aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2009-05-05 17:21:53 +0000
committerdos-reis <gdr@axiomatics.org>2009-05-05 17:21:53 +0000
commit5484d5179027a4599dbac35f17283b26297bc229 (patch)
tree5c69ea81723658b3983f65a260fc41d81a226c6e /src/share/algebra
parentac2f74a3dc5293da393f513a8677513043e1e1d7 (diff)
downloadopen-axiom-5484d5179027a4599dbac35f17283b26297bc229.tar.gz
* algebra/op.spad.pamphlet (property$BasicOperator): Overload with
a version that takes an identifier. (deleteProperty$BasicOpetrator): Likewise. (setProperty$BasicOperator): Likewise.
Diffstat (limited to 'src/share/algebra')
-rw-r--r--src/share/algebra/browse.daase1284
-rw-r--r--src/share/algebra/category.daase1216
-rw-r--r--src/share/algebra/compress.daase1311
-rw-r--r--src/share/algebra/interp.daase8942
-rw-r--r--src/share/algebra/operation.daase30284
5 files changed, 21519 insertions, 21518 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index f71153ac..a767c6a0 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2283354 . 3449600530)
+(2283967 . 3450528888)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4408 . T) (-4406 . T) (-4405 . T) ((-4413 "*") . T) (-4404 . T) (-4409 . T) (-4403 . T))
+((-4409 . T) (-4407 . T) (-4406 . T) ((-4414 "*") . T) (-4405 . T) (-4410 . T) (-4404 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3378)
+(-32 R -3438)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4411)))
+((|HasAttribute| |#1| (QUOTE -4412)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4411 . T) (-4412 . T))
+((-4412 . T) (-4413 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,17 +82,17 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3378 UP UPUP -4022)
+(-40 -3438 UP UPUP -3756)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4404 |has| (-407 |#2|) (-363)) (-4409 |has| (-407 |#2|) (-363)) (-4403 |has| (-407 |#2|) (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4002 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4002 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4002 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4002 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
-(-41 R -3378)
+((-4405 |has| (-407 |#2|) (-363)) (-4410 |has| (-407 |#2|) (-363)) (-4404 |has| (-407 |#2|) (-363)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4012 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4012 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4012 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
+(-41 R -3438)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))))
@@ -106,23 +106,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-307))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4408 |has| |#1| (-556)) (-4406 . T) (-4405 . T))
+((-4409 |has| |#1| (-556)) (-4407 . T) (-4406 . T))
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4411 . T) (-4412 . T))
-((-4002 (-12 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#2|))))))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#2|)))))))
+((-4412 . T) (-4413 . T))
+((-4012 (-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|))))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
@@ -130,7 +130,7 @@ NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3378)
+(-54 |Base| R -3438)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4411 . T) (-4412 . T))
+((-4412 . T) (-4413 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
-(-61 -4363)
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+(-61 -4337)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -4363)
+(-62 -4337)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -4363)
+(-63 -4337)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -4363)
+(-64 -4337)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -4363)
+(-65 -4337)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -4363)
+(-66 -4337)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -4363)
+(-67 -4337)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -4363)
+(-68 -4337)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -4363)
+(-69 -4337)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -4363)
+(-70 -4337)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -4363)
+(-71 -4337)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -4363)
+(-72 -4337)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -4363)
+(-73 -4337)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -4363)
+(-74 -4337)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -4363)
+(-77 -4337)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -4363)
+(-78 -4337)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -4363)
+(-79 -4337)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -4363)
+(-80 -4337)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -4363)
+(-81 -4337)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -4363)
+(-82 -4337)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -4363)
+(-83 -4337)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -4363)
+(-84 -4337)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -4363)
+(-85 -4337)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -4363)
+(-86 -4337)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -4363)
+(-87 -4337)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -4363)
+(-88 -4337)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -4363)
+(-89 -4337)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-363))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4411 . T))
+((-4412 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4411 . T) ((-4413 "*") . T) (-4412 . T) (-4408 . T) (-4406 . T) (-4405 . T) (-4404 . T) (-4409 . T) (-4403 . T) (-4402 . T) (-4401 . T) (-4400 . T) (-4399 . T) (-4407 . T) (-4410 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4398 . T))
+((-4412 . T) ((-4414 "*") . T) (-4413 . T) (-4409 . T) (-4407 . T) (-4406 . T) (-4405 . T) (-4410 . T) (-4404 . T) (-4403 . T) (-4402 . T) (-4401 . T) (-4400 . T) (-4408 . T) (-4411 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4399 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4413 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4414 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4411 . T))
+((-4412 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4002 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145)))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4012 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-859)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -385,25 +385,25 @@ NIL
NIL
((|HasCategory| |#1| (QUOTE (-847))))
(-114)
-((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
+((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op,{} p,{} v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op,{} p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op,{} p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad}op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-115 -3378 UP)
+(-115 -3438 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-906))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1019))) (|HasCategory| (-116 |#1|) (QUOTE (-817))) (-4002 (|HasCategory| (-116 |#1|) (QUOTE (-817))) (|HasCategory| (-116 |#1|) (QUOTE (-847)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-906))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1019))) (|HasCategory| (-116 |#1|) (QUOTE (-817))) (-4012 (|HasCategory| (-116 |#1|) (QUOTE (-817))) (|HasCategory| (-116 |#1|) (QUOTE (-847)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4412)))
+((|HasAttribute| |#1| (QUOTE -4413)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4411 . T) (-4412 . T))
+((-4412 . T) (-4413 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-128)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-4002 (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094)))) (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-4012 (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094)))) (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -466,13 +466,13 @@ NIL
NIL
(-134)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4413 "*") . T))
+(((-4414 "*") . T))
NIL
-(-135 |minix| -2592 S T$)
+(-135 |minix| -2880 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-136 |minix| -2592 R)
+(-136 |minix| -2880 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -494,8 +494,8 @@ NIL
NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4411 . T) (-4401 . T) (-4412 . T))
-((-4002 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-4412 . T) (-4402 . T) (-4413 . T))
+((-4012 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -510,7 +510,7 @@ NIL
NIL
(-145)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-146 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -518,9 +518,9 @@ NIL
NIL
(-147)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4408 . T))
+((-4409 . T))
NIL
-(-148 -3378 UP UPUP)
+(-148 -3438 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -531,14 +531,14 @@ NIL
(-150 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasAttribute| |#1| (QUOTE -4411)))
+((|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasAttribute| |#1| (QUOTE -4412)))
(-151 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-152 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4406 . T) (-4405 . T) (-4408 . T))
+((-4407 . T) (-4406 . T) (-4409 . T))
NIL
(-153)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -3378)
+(-158 R -3438)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -591,10 +591,10 @@ NIL
(-165 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-999))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4407)) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-847))))
+((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-999))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-847))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4404 -4002 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4407 |has| |#1| (-6 -4407)) (-4410 |has| |#1| (-6 -4410)) (-2305 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 -4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4411 |has| |#1| (-6 -4411)) (-2453 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -606,8 +606,8 @@ NIL
NIL
(-169 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4404 -4002 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4407 |has| |#1| (-6 -4407)) (-4410 |has| |#1| (-6 -4410)) (-2305 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasAttribute| |#1| (QUOTE -4407)) (|HasAttribute| |#1| (QUOTE -4410)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-349)))))
+((-4405 -4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4408 |has| |#1| (-6 -4408)) (-4411 |has| |#1| (-6 -4411)) (-2453 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4411)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-349)))))
(-170 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -618,7 +618,7 @@ NIL
NIL
(-172)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-173)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -626,7 +626,7 @@ NIL
NIL
(-174 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4413 "*") . T) (-4404 . T) (-4409 . T) (-4403 . T) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") . T) (-4405 . T) (-4410 . T) (-4404 . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-175)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -677,10 +677,10 @@ NIL
NIL
NIL
(-187)
-((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
+((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-188 R -3378)
+(-188 R -3438)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -788,23 +788,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-215 -3378 UP UPUP R)
+(-215 -3438 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-216 -3378 FP)
+(-216 -3438 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-217)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4002 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145)))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4012 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145)))))
(-218)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-219 R -3378)
+(-219 R -3438)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -818,19 +818,19 @@ NIL
NIL
(-222 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-223 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4408 . T))
+((-4409 . T))
NIL
-(-224 R -3378)
+(-224 R -3438)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-225)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-2299 . T) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-2441 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-226)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -838,15 +838,15 @@ NIL
NIL
(-227 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4413 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4414 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-228 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-229 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-230 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
@@ -854,7 +854,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))))
(-231 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-232 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -862,36 +862,36 @@ NIL
NIL
(-233)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-234 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4411)))
+((|HasAttribute| |#1| (QUOTE -4412)))
(-235 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-236)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-237 S -2592 R)
+(-237 S -2880 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasAttribute| |#3| (QUOTE -4408)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094))))
-(-238 -2592 R)
+((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasAttribute| |#3| (QUOTE -4409)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094))))
+(-238 -2880 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4405 |has| |#2| (-1046)) (-4406 |has| |#2| (-1046)) (-4408 |has| |#2| (-6 -4408)) ((-4413 "*") |has| |#2| (-172)) (-4411 . T))
+((-4406 |has| |#2| (-1046)) (-4407 |has| |#2| (-1046)) (-4409 |has| |#2| (-6 -4409)) ((-4414 "*") |has| |#2| (-172)) (-4412 . T))
NIL
-(-239 -2592 A B)
+(-239 -2880 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-240 -2592 R)
+(-240 -2880 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4405 |has| |#2| (-1046)) (-4406 |has| |#2| (-1046)) (-4408 |has| |#2| (-6 -4408)) ((-4413 "*") |has| |#2| (-172)) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4002 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4002 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-4406 |has| |#2| (-1046)) (-4407 |has| |#2| (-1046)) (-4409 |has| |#2| (-6 -4409)) ((-4414 "*") |has| |#2| (-172)) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4012 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-241)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -902,7 +902,7 @@ NIL
NIL
(-243)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4404 . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-244 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -910,16 +910,16 @@ NIL
NIL
(-245 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-246 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-247 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#2| (QUOTE (-906))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-248)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -930,23 +930,23 @@ NIL
NIL
(-250 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4408 -4002 (-4266 (|has| |#4| (-1046)) (|has| |#4| (-233))) (-4266 (|has| |#4| (-1046)) (|has| |#4| (-897 (-1170)))) (|has| |#4| (-6 -4408)) (-4266 (|has| |#4| (-1046)) (|has| |#4| (-637 (-564))))) (-4405 |has| |#4| (-1046)) (-4406 |has| |#4| (-1046)) ((-4413 "*") |has| |#4| (-172)) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-363))) (-4002 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4002 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (QUOTE (-790))) (-4002 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (QUOTE (-845)))) (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-172))) (-4002 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4002 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-790)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-845)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094))))) (-4002 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4002 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-723))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4002 (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094)))) (-4002 (|HasAttribute| |#4| (QUOTE -4408)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))))
+((-4409 -4012 (-4264 (|has| |#4| (-1046)) (|has| |#4| (-233))) (-4264 (|has| |#4| (-1046)) (|has| |#4| (-897 (-1170)))) (|has| |#4| (-6 -4409)) (-4264 (|has| |#4| (-1046)) (|has| |#4| (-637 (-564))))) (-4406 |has| |#4| (-1046)) (-4407 |has| |#4| (-1046)) ((-4414 "*") |has| |#4| (-172)) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-363))) (-4012 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4012 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (QUOTE (-790))) (-4012 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (QUOTE (-845)))) (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-172))) (-4012 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-790)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-845)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4012 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-723))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4012 (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094)))) (-4012 (|HasAttribute| |#4| (QUOTE -4409)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))))
(-251 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4408 -4002 (-4266 (|has| |#3| (-1046)) (|has| |#3| (-233))) (-4266 (|has| |#3| (-1046)) (|has| |#3| (-897 (-1170)))) (|has| |#3| (-6 -4408)) (-4266 (|has| |#3| (-1046)) (|has| |#3| (-637 (-564))))) (-4405 |has| |#3| (-1046)) (-4406 |has| |#3| (-1046)) ((-4413 "*") |has| |#3| (-172)) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-363))) (-4002 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4002 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4002 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4002 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4002 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4002 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4002 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-723))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4002 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4002 (|HasAttribute| |#3| (QUOTE -4408)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
+((-4409 -4012 (-4264 (|has| |#3| (-1046)) (|has| |#3| (-233))) (-4264 (|has| |#3| (-1046)) (|has| |#3| (-897 (-1170)))) (|has| |#3| (-6 -4409)) (-4264 (|has| |#3| (-1046)) (|has| |#3| (-637 (-564))))) (-4406 |has| |#3| (-1046)) (-4407 |has| |#3| (-1046)) ((-4414 "*") |has| |#3| (-172)) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-363))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4012 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-723))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4012 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4012 (|HasAttribute| |#3| (QUOTE -4409)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
(-252 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-233))))
(-253 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
NIL
(-254 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4411 . T) (-4412 . T))
+((-4412 . T) (-4413 . T))
NIL
(-255)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -986,8 +986,8 @@ NIL
NIL
(-264 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-265 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1032,11 +1032,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-276 R -3378)
+(-276 R -3438)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-277 R -3378)
+(-277 R -3438)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1058,7 +1058,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))))
(-282 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-283 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1079,18 +1079,18 @@ NIL
(-287 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4412)))
+((|HasAttribute| |#1| (QUOTE -4413)))
(-288 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-289 S R |Mod| -3753 -4012 |exactQuo|)
+(-289 S R |Mod| -3126 -3678 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-290)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4404 . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-291)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1106,21 +1106,21 @@ NIL
NIL
(-294 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4408 -4002 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4405 |has| |#1| (-1046)) (-4406 |has| |#1| (-1046)))
-((|HasCategory| |#1| (QUOTE (-363))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4002 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723)))) (|HasCategory| |#1| (QUOTE (-473))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4002 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-4002 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723)))) (-4002 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-172))))
+((-4409 -4012 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4406 |has| |#1| (-1046)) (-4407 |has| |#1| (-1046)))
+((|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723)))) (|HasCategory| |#1| (QUOTE (-473))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-4012 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-172))))
(-295 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#2|)))))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))))
(-296)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-297 -3378 S)
+(-297 -3438 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-298 E -3378)
+(-298 E -3438)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1158,7 +1158,7 @@ NIL
NIL
(-307)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-308 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1168,7 +1168,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-310 -3378)
+(-310 -3438)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1182,8 +1182,8 @@ NIL
NIL
(-313 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1019))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (-4002 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-4002 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145))))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1019))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (-4012 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-4012 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145))))))
(-314 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1194,9 +1194,9 @@ NIL
NIL
(-316 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4408 -4002 (-4266 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-4002 (-4266 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1046)) (|has| |#1| (-473)))) (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) ((-4413 "*") |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-556)) (-4403 |has| |#1| (-556)))
-((-4002 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-4002 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4002 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4002 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4002 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4002 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564)))))
-(-317 R -3378)
+((-4409 -4012 (-4264 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-4012 (-4264 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1046)) (|has| |#1| (-473)))) (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) ((-4414 "*") |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-556)) (-4404 |has| |#1| (-556)))
+((-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4012 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4012 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4012 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4012 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564)))))
+(-317 R -3438)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1206,8 +1206,8 @@ NIL
NIL
(-319 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
(-320 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1218,7 +1218,7 @@ NIL
NIL
(-322 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
((|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-789))))
(-323 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1234,19 +1234,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))))
(-326 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-327 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-328 S -3378)
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-328 S -3438)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))))
-(-329 -3378)
+(-329 -3438)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-330)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1264,15 +1264,15 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-334 S -3378 UP UPUP R)
+(-334 S -3438 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-335 -3378 UP UPUP R)
+(-335 -3438 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-336 -3378 UP UPUP R)
+(-336 -3438 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1286,32 +1286,32 @@ NIL
NIL
(-339 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564)))))
(-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-341 S -3378 UP UPUP)
+(-341 S -3438 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-363))))
-(-342 -3378 UP UPUP)
+(-342 -3438 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4404 |has| (-407 |#2|) (-363)) (-4409 |has| (-407 |#2|) (-363)) (-4403 |has| (-407 |#2|) (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 |has| (-407 |#2|) (-363)) (-4410 |has| (-407 |#2|) (-363)) (-4404 |has| (-407 |#2|) (-363)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-343 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145))))
(-344 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-345 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-346 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1326,33 +1326,33 @@ NIL
NIL
(-349)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
-(-350 R UP -3378)
+(-350 R UP -3438)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-351 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145))))
(-352 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-353 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-354 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145))))
(-355 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
-(-356 -3378 GF)
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+(-356 -3438 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1360,21 +1360,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-358 -3378 FP FPP)
+(-358 -3438 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-359 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-360 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-361 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-362 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1382,7 +1382,7 @@ NIL
NIL
(-363)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-364 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1398,7 +1398,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-556))))
(-367 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4408 |has| |#1| (-556)) (-4406 . T) (-4405 . T))
+((-4409 |has| |#1| (-556)) (-4407 . T) (-4406 . T))
NIL
(-368)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1410,7 +1410,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-363))))
(-370 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-371 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1419,14 +1419,14 @@ NIL
(-372 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))))
+((|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))))
(-373 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4411 . T))
+((-4412 . T))
NIL
(-374 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4406 . T) (-4405 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4407 . T) (-4406 . T))
NIL
(-375 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1438,7 +1438,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))))
(-377 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4408 . T))
+((-4409 . T))
NIL
(-378 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1446,7 +1446,7 @@ NIL
NIL
(-379)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4394 . T) (-4402 . T) (-2299 . T) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4395 . T) (-4403 . T) (-2441 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-380 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1454,11 +1454,11 @@ NIL
NIL
(-381 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-382 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
NIL
(-383)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1470,7 +1470,7 @@ NIL
NIL
(-385 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-386 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1478,7 +1478,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-847))))
(-387)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-388)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1490,13 +1490,13 @@ NIL
NIL
(-390 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
NIL
(-391)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-392 -3378 UP UPUP R)
+(-392 -3438 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1520,11 +1520,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-398 -4363 |returnType| -4229 |symbols|)
+(-398 -4337 |returnType| -2841 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-399 -3378 UP)
+(-399 -3438 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1538,15 +1538,15 @@ NIL
NIL
(-402)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-403 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4394)) (|HasAttribute| |#1| (QUOTE -4402)))
+((|HasAttribute| |#1| (QUOTE -4395)) (|HasAttribute| |#1| (QUOTE -4403)))
(-404)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-2299 . T) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-2441 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-405 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1558,15 +1558,15 @@ NIL
NIL
(-407 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4398 -12 (|has| |#1| (-6 -4409)) (|has| |#1| (-452)) (|has| |#1| (-6 -4398))) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-817))) (-4002 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-847)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4409)) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((-4399 -12 (|has| |#1| (-6 -4410)) (|has| |#1| (-452)) (|has| |#1| (-6 -4399))) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-817))) (-4012 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-847)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4399)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-408 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-409 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-410 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1580,11 +1580,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-413 R -3378 UP A)
+(-413 R -3438 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4408 . T))
+((-4409 . T))
NIL
-(-414 R -3378 UP A |ibasis|)
+(-414 R -3438 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1035) (|devaluate| |#2|))))
@@ -1598,12 +1598,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-417 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4408 |has| |#1| (-556)) (-4406 . T) (-4405 . T))
+((-4409 |has| |#1| (-556)) (-4407 . T) (-4406 . T))
NIL
(-418 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1213))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1213)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452))))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1213))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1213)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452))))
(-419 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1630,17 +1630,17 @@ NIL
((|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-368))))
(-425 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4411 . T) (-4401 . T) (-4412 . T))
+((-4412 . T) (-4402 . T) (-4413 . T))
NIL
-(-426 R -3378)
+(-426 R -3438)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-427 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4398 -12 (|has| |#1| (-6 -4398)) (|has| |#2| (-6 -4398))) (-4405 . T) (-4406 . T) (-4408 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4398)) (|HasAttribute| |#2| (QUOTE -4398))))
-(-428 R -3378)
+((-4399 -12 (|has| |#1| (-6 -4399)) (|has| |#2| (-6 -4399))) (-4406 . T) (-4407 . T) (-4409 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4399)) (|HasAttribute| |#2| (QUOTE -4399))))
+(-428 R -3438)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1650,17 +1650,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))))
(-430 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4408 -4002 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) ((-4413 "*") |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-556)) (-4403 |has| |#1| (-556)))
+((-4409 -4012 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) ((-4414 "*") |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-556)) (-4404 |has| |#1| (-556)))
NIL
-(-431 R -3378)
+(-431 R -3438)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-432 R -3378)
+(-432 R -3438)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-433 R -3378)
+(-433 R -3438)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1668,7 +1668,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-435 R -3378 UP)
+(-435 R -3438 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-48)))))
@@ -1700,7 +1700,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-443 R UP -3378)
+(-443 R UP -3438)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1738,16 +1738,16 @@ NIL
NIL
(-452)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-453 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4408 |has| (-407 (-949 |#1|)) (-556)) (-4406 . T) (-4405 . T))
+((-4409 |has| (-407 (-949 |#1|)) (-556)) (-4407 . T) (-4406 . T))
((|HasCategory| (-407 (-949 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-407 (-949 |#1|)) (QUOTE (-556))))
(-454 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#2| (QUOTE (-906))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-455 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1774,7 +1774,7 @@ NIL
NIL
(-461 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
NIL
(-462 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1782,7 +1782,7 @@ NIL
NIL
(-463 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))))
(-464 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
@@ -1812,7 +1812,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-471 |lv| -3378 R)
+(-471 |lv| -3438 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1822,23 +1822,23 @@ NIL
NIL
(-473)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-474 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
(-475 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#2|)))))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))))
+((-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))))
(-476 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))))
(-477)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-478)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1846,29 +1846,29 @@ NIL
NIL
(-479 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#2|)))))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))))
(-480)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-481 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#2| (QUOTE (-906))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-482 -2592 S)
+(((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-482 -2880 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4405 |has| |#2| (-1046)) (-4406 |has| |#2| (-1046)) (-4408 |has| |#2| (-6 -4408)) ((-4413 "*") |has| |#2| (-172)) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4002 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4002 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-4406 |has| |#2| (-1046)) (-4407 |has| |#2| (-1046)) (-4409 |has| |#2| (-6 -4409)) ((-4414 "*") |has| |#2| (-172)) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4012 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-483)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
NIL
(-484 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
-(-485 -3378 UP UPUP R)
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+(-485 -3438 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1878,12 +1878,12 @@ NIL
NIL
(-487)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4002 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145)))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4012 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145)))))
(-488 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4411)) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))
+((|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))
(-489 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1904,33 +1904,33 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-494 -3378 UP |AlExt| |AlPol|)
+(-494 -3438 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-495)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564)))))
(-496 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-497 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-498 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-499 R UP -3378)
+(-499 R UP -3438)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-500 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-859)))))
(-501 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -1944,7 +1944,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-504 -3378 |Expon| |VarSet| |DPoly|)
+(-504 -3438 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-1170)))))
@@ -1953,7 +1953,7 @@ NIL
NIL
NIL
(-506)
-((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|new| (($) "returns a new identifier,{} different from any other identifier in the running system")))
+((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
NIL
NIL
(-507 A S)
@@ -1994,36 +1994,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-789))))
(-516 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-517)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-518 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145))))
(-519 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-520 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-521 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4412)))
+((|HasAttribute| |#3| (QUOTE -4413)))
(-522 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4412)))
+((|HasAttribute| |#7| (QUOTE -4413)))
(-523 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4413 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4414 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-524)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2056,7 +2056,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-532 K -3378 |Par|)
+(-532 K -3438 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2080,7 +2080,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-538 K -3378 |Par|)
+(-538 K -3438 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2110,7 +2110,7 @@ NIL
NIL
(-545)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4409 . T) (-4410 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4410 . T) (-4411 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-546)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -2130,13 +2130,13 @@ NIL
NIL
(-550 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#2|)))))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))))
-(-551 R -3378)
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))))
+(-551 R -3438)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-552 R0 -3378 UP UPUP R)
+(-552 R0 -3438 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2146,7 +2146,7 @@ NIL
NIL
(-554 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-2299 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-2441 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-555 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2154,9 +2154,9 @@ NIL
NIL
(-556)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
-(-557 R -3378)
+(-557 R -3438)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2168,7 +2168,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-560 R -3378 L)
+(-560 R -3438 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|))))
@@ -2176,31 +2176,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-562 -3378 UP UPUP R)
+(-562 -3438 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-563 -3378 UP)
+(-563 -3438 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-564)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4393 . T) (-4399 . T) (-4403 . T) (-4398 . T) (-4409 . T) (-4410 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4394 . T) (-4400 . T) (-4404 . T) (-4399 . T) (-4410 . T) (-4411 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-565)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-566 R -3378 L)
+(-566 R -3438 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|))))
-(-567 R -3378)
+(-567 R -3438)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-627)))))
-(-568 -3378 UP)
+(-568 -3438 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2208,27 +2208,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-570 -3378)
+(-570 -3438)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-571 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-2299 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-2441 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-572)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-573 R -3378)
+(-573 R -3438)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-627))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-556))))
-(-574 -3378 UP)
+(-574 -3438 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-575 R -3378)
+(-575 R -3438)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2250,27 +2250,27 @@ NIL
NIL
(-580 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-581 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368))))
(-582)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-583 R -3378)
+(-583 R -3438)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-584 E -3378)
+(-584 E -3438)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-585 -3378)
+(-585 -3438)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
((|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170)))))
(-586 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
@@ -2298,19 +2298,19 @@ NIL
NIL
(-592 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-4002 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-4012 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-593 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-594 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))))
(-595 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4406 |has| |#1| (-556)) (-4405 |has| |#1| (-556)) ((-4413 "*") |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4408 . T))
+((-4407 |has| |#1| (-556)) (-4406 |has| |#1| (-556)) ((-4414 "*") |has| |#1| (-556)) (-4405 |has| |#1| (-556)) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-556))))
(-596 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2320,7 +2320,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-598 R -3378 FG)
+(-598 R -3438 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2330,12 +2330,12 @@ NIL
NIL
(-600 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-601 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-847))) (|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#3| (QUOTE (-1094))))
+((|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-847))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#3| (QUOTE (-1094))))
(-602 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2350,19 +2350,19 @@ NIL
NIL
(-605 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4408 -4002 (-4266 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4406 . T) (-4405 . T))
-((-4002 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
+((-4409 -4012 (-4264 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4407 . T) (-4406 . T))
+((-4012 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
(-606 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))))
(-607 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-608 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-609 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2380,7 +2380,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-613 -3378 UP)
+(-613 -3438 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2402,19 +2402,19 @@ NIL
NIL
(-618 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-619 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-845))))
-(-620 R -3378)
+(-620 R -3438)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-621 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4406 . T) (-4405 . T) ((-4413 "*") . T) (-4404 . T) (-4408 . T))
+((-4407 . T) (-4406 . T) ((-4414 "*") . T) (-4405 . T) (-4409 . T))
((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))
(-622 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
@@ -2430,7 +2430,7 @@ NIL
NIL
(-625 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-626 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2440,30 +2440,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-628 R -3378)
+(-628 R -3438)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-629 |lv| -3378)
+(-629 |lv| -3438)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-630)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -1327) (QUOTE (-52))))))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1152) (QUOTE (-847))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (QUOTE (-1094))))
+((-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2575) (QUOTE (-52))))))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1152) (QUOTE (-847))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (QUOTE (-1094))))
(-631 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-632 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4406 . T) (-4405 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4407 . T) (-4406 . T))
NIL
(-633 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4408 -4002 (-4266 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4406 . T) (-4405 . T))
-((-4002 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
+((-4409 -4012 (-4264 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4407 . T) (-4406 . T))
+((-4012 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
(-634 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2475,10 +2475,10 @@ NIL
(-636 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-4254 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363))))
+((-4253 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363))))
(-637 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-638 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
@@ -2494,16 +2494,16 @@ NIL
NIL
(-641 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-642 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
(-643 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-644 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2515,22 +2515,22 @@ NIL
(-646 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4412)))
+((|HasAttribute| |#1| (QUOTE -4413)))
(-647 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-648 R -3378 L)
+(-648 R -3438 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-649 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
(-650 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
(-651 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2538,15 +2538,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-652 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
NIL
-(-653 -3378 UP)
+(-653 -3438 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-654 A -3691)
+(-654 A -3750)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
(-655 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
@@ -2562,7 +2562,7 @@ NIL
NIL
(-658 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
((|HasCategory| |#1| (QUOTE (-788))))
(-659 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2570,7 +2570,7 @@ NIL
NIL
(-660 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4406 . T) (-4405 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4407 . T) (-4406 . T))
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-172))))
(-661 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2578,13 +2578,13 @@ NIL
NIL
(-662 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
-(-663 -3378)
+(-663 -3438)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-664 -3378 |Row| |Col| M)
+(-664 -3438 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2594,8 +2594,8 @@ NIL
NIL
(-666 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4408 . T) (-4411 . T) (-4405 . T) (-4406 . T))
-((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-4002 (|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((-4409 . T) (-4412 . T) (-4406 . T) (-4407 . T))
+((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-4012 (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-667)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2615,7 +2615,7 @@ NIL
(-671 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-672)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2659,10 +2659,10 @@ NIL
(-682 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))))
+((|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))))
(-683 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4411 . T) (-4412 . T))
+((-4412 . T) (-4413 . T))
NIL
(-684 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2670,8 +2670,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))))
(-685 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4411 . T) (-4412 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4413 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4412 . T) (-4413 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4414 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-686 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2680,7 +2680,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-688 S -3378 FLAF FLAS)
+(-688 S -3438 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2690,11 +2690,11 @@ NIL
NIL
(-690)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4404 . T) (-4409 |has| (-695) (-363)) (-4403 |has| (-695) (-363)) (-2305 . T) (-4410 |has| (-695) (-6 -4410)) (-4407 |has| (-695) (-6 -4407)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-695) (QUOTE (-147))) (|HasCategory| (-695) (QUOTE (-145))) (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-368))) (|HasCategory| (-695) (QUOTE (-363))) (-4002 (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-233))) (-4002 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (LIST (QUOTE -286) (QUOTE (-695)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -309) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4002 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-695) (QUOTE (-1019))) (|HasCategory| (-695) (QUOTE (-1194))) (-12 (|HasCategory| (-695) (QUOTE (-999))) (|HasCategory| (-695) (QUOTE (-1194)))) (-4002 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (-4002 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (|HasCategory| (-695) (QUOTE (-545))) (-12 (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-1194)))) (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906))) (-4002 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363)))) (-4002 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-556)))) (-12 (|HasCategory| (-695) (QUOTE (-233))) (|HasCategory| (-695) (QUOTE (-363)))) (-12 (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-847))) (|HasCategory| (-695) (QUOTE (-556))) (|HasAttribute| (-695) (QUOTE -4410)) (|HasAttribute| (-695) (QUOTE -4407)) (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-145)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-349)))))
+((-4405 . T) (-4410 |has| (-695) (-363)) (-4404 |has| (-695) (-363)) (-2453 . T) (-4411 |has| (-695) (-6 -4411)) (-4408 |has| (-695) (-6 -4408)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-695) (QUOTE (-147))) (|HasCategory| (-695) (QUOTE (-145))) (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-368))) (|HasCategory| (-695) (QUOTE (-363))) (-4012 (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-233))) (-4012 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (LIST (QUOTE -286) (QUOTE (-695)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -309) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4012 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-695) (QUOTE (-1019))) (|HasCategory| (-695) (QUOTE (-1194))) (-12 (|HasCategory| (-695) (QUOTE (-999))) (|HasCategory| (-695) (QUOTE (-1194)))) (-4012 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (-4012 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (|HasCategory| (-695) (QUOTE (-545))) (-12 (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-1194)))) (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906))) (-4012 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363)))) (-4012 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-556)))) (-12 (|HasCategory| (-695) (QUOTE (-233))) (|HasCategory| (-695) (QUOTE (-363)))) (-12 (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-847))) (|HasCategory| (-695) (QUOTE (-556))) (|HasAttribute| (-695) (QUOTE -4411)) (|HasAttribute| (-695) (QUOTE -4408)) (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-145)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-349)))))
(-691 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-692 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2704,13 +2704,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-694 OV E -3378 PG)
+(-694 OV E -3438 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-695)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-2299 . T) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-2441 . T) (-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-696 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2718,7 +2718,7 @@ NIL
NIL
(-697)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4410 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4411 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-698 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2740,7 +2740,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-703 S -3190 I)
+(-703 S -2238 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2750,7 +2750,7 @@ NIL
NIL
(-705 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-706 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2760,25 +2760,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-708 R |Mod| -3753 -4012 |exactQuo|)
+(-708 R |Mod| -3126 -3678 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-709 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4407 |has| |#1| (-363)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-710 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-711 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T))
+((-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-712 R |Mod| -3753 -4012 |exactQuo|)
+(-712 R |Mod| -3126 -3678 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4408 . T))
+((-4409 . T))
NIL
(-713 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2786,11 +2786,11 @@ NIL
NIL
(-714 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
NIL
-(-715 -3378)
+(-715 -3438)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-716 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2814,7 +2814,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))))
(-721 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4404 |has| |#1| (-363)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 |has| |#1| (-363)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-722 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2824,7 +2824,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-724 -3378 UP)
+(-724 -3438 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2842,8 +2842,8 @@ NIL
NIL
(-728 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#2| (QUOTE (-906))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-729 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2858,15 +2858,15 @@ NIL
NIL
(-732 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T))
+((-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) (-4409 . T))
((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-847))))
(-733 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4401 . T) (-4412 . T))
+((-4402 . T) (-4413 . T))
NIL
(-734 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4411 . T) (-4401 . T) (-4412 . T))
+((-4412 . T) (-4402 . T) (-4413 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-735)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2878,7 +2878,7 @@ NIL
NIL
(-737 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4406 . T) (-4405 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4407 . T) (-4406 . T) (-4409 . T))
NIL
(-738 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2894,7 +2894,7 @@ NIL
NIL
(-741 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
NIL
(-742)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2976,11 +2976,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-762 -3378)
+(-762 -3438)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-763 P -3378)
+(-763 P -3438)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -2988,7 +2988,7 @@ NIL
NIL
NIL
NIL
-(-765 UP -3378)
+(-765 UP -3438)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3002,9 +3002,9 @@ NIL
NIL
(-768)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4413 "*") . T))
+(((-4414 "*") . T))
NIL
-(-769 R -3378)
+(-769 R -3438)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3024,7 +3024,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-774 -3378 |ExtF| |SUEx| |ExtP| |n|)
+(-774 -3438 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3038,23 +3038,23 @@ NIL
NIL
(-777 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4254 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4254 (|HasCategory| |#1| (QUOTE (-545)))) (-4254 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4254 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-4254 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4254 (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4253 (|HasCategory| |#1| (QUOTE (-545)))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4253 (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-778 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-779 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4407 |has| |#1| (-363)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-780 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))
(-781 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-782 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -3106,25 +3106,25 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-368))))
(-794 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
NIL
-(-795 -4002 R OS S)
+(-795 -4012 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-796 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-4002 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4002 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))
+((-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-4012 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))
(-797)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-798 R -3378 L)
+(-798 R -3438 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-799 R -3378)
+(-799 R -3438)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3132,7 +3132,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-801 R -3378)
+(-801 R -3438)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3140,11 +3140,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-803 -3378 UP UPUP R)
+(-803 -3438 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-804 -3378 UP L LQ)
+(-804 -3438 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3152,41 +3152,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-806 -3378 UP L LQ)
+(-806 -3438 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-807 -3378 UP)
+(-807 -3438 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-808 -3378 L UP A LO)
+(-808 -3438 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-809 -3378 UP)
+(-809 -3438 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-810 -3378 LO)
+(-810 -3438 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-811 -3378 LODO)
+(-811 -3438 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-812 -2592 S |f|)
+(-812 -2880 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4405 |has| |#2| (-1046)) (-4406 |has| |#2| (-1046)) (-4408 |has| |#2| (-6 -4408)) ((-4413 "*") |has| |#2| (-172)) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4002 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4002 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-4406 |has| |#2| (-1046)) (-4407 |has| |#2| (-1046)) (-4409 |has| |#2| (-6 -4409)) ((-4414 "*") |has| |#2| (-172)) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4012 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-813 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-814 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4413 "*") |has| |#2| (-363)) (-4404 |has| |#2| (-363)) (-4409 |has| |#2| (-363)) (-4403 |has| |#2| (-363)) (-4408 . T) (-4406 . T) (-4405 . T))
+(((-4414 "*") |has| |#2| (-363)) (-4405 |has| |#2| (-363)) (-4410 |has| |#2| (-363)) (-4404 |has| |#2| (-363)) (-4409 . T) (-4407 . T) (-4406 . T))
((|HasCategory| |#2| (QUOTE (-363))))
(-815 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3198,7 +3198,7 @@ NIL
NIL
(-817)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-818)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3226,7 +3226,7 @@ NIL
NIL
(-824 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233))))
(-825)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3238,7 +3238,7 @@ NIL
NIL
(-827 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4411 . T) (-4401 . T) (-4412 . T))
+((-4412 . T) (-4402 . T) (-4413 . T))
NIL
(-828)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3250,8 +3250,8 @@ NIL
NIL
(-830 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4408 |has| |#1| (-845)))
-((|HasCategory| |#1| (QUOTE (-845))) (-4002 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4002 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4409 |has| |#1| (-845)))
+((|HasCategory| |#1| (QUOTE (-845))) (-4012 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
(-831 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
@@ -3262,7 +3262,7 @@ NIL
NIL
(-833 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T))
+((-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
(-834)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3290,13 +3290,13 @@ NIL
NIL
(-840 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4408 |has| |#1| (-845)))
-((|HasCategory| |#1| (QUOTE (-845))) (-4002 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4002 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4409 |has| |#1| (-845)))
+((|HasCategory| |#1| (QUOTE (-845))) (-4012 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
(-841)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-842 -2592 S)
+(-842 -2880 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3310,7 +3310,7 @@ NIL
NIL
(-845)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-846 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3326,19 +3326,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))))
(-849 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-850 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))))
-(-851 R |sigma| -2689)
+(-851 R |sigma| -3225)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
-(-852 |x| R |sigma| -2689)
+(-852 |x| R |sigma| -3225)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363))))
(-853 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
@@ -3382,7 +3382,7 @@ NIL
NIL
(-863 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T))
+((-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))))
(-864 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3394,24 +3394,24 @@ NIL
NIL
(-866 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-867 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-868 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-867 |#1|) (QUOTE (-906))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-147))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-867 |#1|) (QUOTE (-1019))) (|HasCategory| (-867 |#1|) (QUOTE (-817))) (-4002 (|HasCategory| (-867 |#1|) (QUOTE (-817))) (|HasCategory| (-867 |#1|) (QUOTE (-847)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-1145))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-233))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -867) (|devaluate| |#1|)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (QUOTE (-307))) (|HasCategory| (-867 |#1|) (QUOTE (-545))) (|HasCategory| (-867 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (|HasCategory| (-867 |#1|) (QUOTE (-145)))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-867 |#1|) (QUOTE (-906))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-147))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-867 |#1|) (QUOTE (-1019))) (|HasCategory| (-867 |#1|) (QUOTE (-817))) (-4012 (|HasCategory| (-867 |#1|) (QUOTE (-817))) (|HasCategory| (-867 |#1|) (QUOTE (-847)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-1145))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-233))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -867) (|devaluate| |#1|)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (QUOTE (-307))) (|HasCategory| (-867 |#1|) (QUOTE (-545))) (|HasCategory| (-867 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (|HasCategory| (-867 |#1|) (QUOTE (-145)))))
(-869 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-817))) (-4002 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-817))) (-4012 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-870 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))))
(-871)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3467,7 +3467,7 @@ NIL
(-884 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-4254 (|HasCategory| |#2| (QUOTE (-1046)))) (-4254 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (-4254 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))
+((-12 (-4253 (|HasCategory| |#2| (QUOTE (-1046)))) (-4253 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (-4253 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))
(-885 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3476,7 +3476,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-887 R -3190)
+(-887 R -2238)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3500,7 +3500,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-893 UP -3378)
+(-893 UP -3438)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3518,19 +3518,19 @@ NIL
NIL
(-897 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-898 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-899 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-900 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-901 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3538,8 +3538,8 @@ NIL
NIL
(-902 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4408 . T))
-((-4002 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847))))
+((-4409 . T))
+((-4012 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847))))
(-903 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3554,13 +3554,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-145))))
(-906)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-907 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368))))
-(-908 R0 -3378 UP UPUP R)
+(-908 R0 -3438 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3574,7 +3574,7 @@ NIL
NIL
(-911 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-912 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3588,7 +3588,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-915 -3378)
+(-915 -3438)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3598,17 +3598,17 @@ NIL
NIL
(-917)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-918)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4413 "*") . T))
+(((-4414 "*") . T))
NIL
-(-919 -3378 P)
+(-919 -3438 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-920 |xx| -3378)
+(-920 |xx| -3438)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
@@ -3632,7 +3632,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-926 R -3378)
+(-926 R -3438)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3644,7 +3644,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-929 S R -3378)
+(-929 S R -3438)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3664,11 +3664,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -883) (|devaluate| |#1|))))
-(-934 R -3378 -3190)
+(-934 R -3438 -2238)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-935 -3190)
+(-935 -2238)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3690,8 +3690,8 @@ NIL
NIL
(-940 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-941 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3711,12 +3711,12 @@ NIL
(-945 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-906))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-847))))
+((|HasCategory| |#2| (QUOTE (-906))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-847))))
(-946 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
NIL
-(-947 E V R P -3378)
+(-947 E V R P -3438)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3726,9 +3726,9 @@ NIL
NIL
(-949 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-950 E V R P -3378)
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-950 E V R P -3438)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-452))))
@@ -3750,13 +3750,13 @@ NIL
NIL
(-955 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-956)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-957 -3378)
+(-957 -3438)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3770,12 +3770,12 @@ NIL
NIL
(-960 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4409)))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4410)))
(-961 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4408 -12 (|has| |#2| (-473)) (|has| |#1| (-473))))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847)))))
+((-4409 -12 (|has| |#2| (-473)) (|has| |#1| (-473))))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847)))))
(-962)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3790,7 +3790,7 @@ NIL
NIL
(-965 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4411 . T) (-4412 . T))
+((-4412 . T) (-4413 . T))
NIL
(-966 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3810,7 +3810,7 @@ NIL
NIL
(-970 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-971)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3822,7 +3822,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-556))))
(-973 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4411 . T))
+((-4412 . T))
NIL
(-974 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3838,7 +3838,7 @@ NIL
NIL
(-977 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-978 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
@@ -3856,7 +3856,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-982 K R UP -3378)
+(-982 K R UP -3438)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -3886,7 +3886,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))))
(-989 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-990 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3898,7 +3898,7 @@ NIL
NIL
(-992 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4411 . T) (-4412 . T))
+((-4412 . T) (-4413 . T))
NIL
(-993 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
@@ -3906,7 +3906,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-290))))
(-994 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4404 |has| |#1| (-290)) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 |has| |#1| (-290)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-995 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -3914,12 +3914,12 @@ NIL
NIL
(-996 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4404 |has| |#1| (-290)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-4002 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545))))
+((-4405 |has| |#1| (-290)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545))))
(-997 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-998 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3928,14 +3928,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1000 -3378 UP UPUP |radicnd| |n|)
+(-1000 -3438 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4404 |has| (-407 |#2|) (-363)) (-4409 |has| (-407 |#2|) (-363)) (-4403 |has| (-407 |#2|) (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4002 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4002 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4002 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4002 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
+((-4405 |has| (-407 |#2|) (-363)) (-4410 |has| (-407 |#2|) (-363)) (-4404 |has| (-407 |#2|) (-363)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4012 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4012 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4012 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
(-1001 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4002 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145)))))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4012 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145)))))
(-1002)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3955,7 +3955,7 @@ NIL
(-1006 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-1094))))
+((|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-1094))))
(-1007 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -3966,21 +3966,21 @@ NIL
NIL
(-1009)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4404 . T) (-4409 . T) (-4403 . T) (-4406 . T) (-4405 . T) ((-4413 "*") . T) (-4408 . T))
+((-4405 . T) (-4410 . T) (-4404 . T) (-4407 . T) (-4406 . T) ((-4414 "*") . T) (-4409 . T))
NIL
-(-1010 R -3378)
+(-1010 R -3438)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1011 R -3378)
+(-1011 R -3438)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1012 -3378 UP)
+(-1012 -3438 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1013 -3378 UP)
+(-1013 -3438 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -4014,9 +4014,9 @@ NIL
NIL
(-1021 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4404 . T) (-4409 . T) (-4403 . T) (-4406 . T) (-4405 . T) ((-4413 "*") . T) (-4408 . T))
-((-4002 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564)))))
-(-1022 -3378 L)
+((-4405 . T) (-4410 . T) (-4404 . T) (-4407 . T) (-4406 . T) ((-4414 "*") . T) (-4409 . T))
+((-4012 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564)))))
+(-1022 -3438 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -4026,12 +4026,12 @@ NIL
((|HasCategory| |#1| (QUOTE (-1094))))
(-1024 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))))
(-1025 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4413 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4414 "*"))))
(-1026 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -4052,14 +4052,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1031 -3378 |Expon| |VarSet| |FPol| |LFPol|)
+(-1031 -3438 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1032)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -1327) (QUOTE (-52))))))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -2575) (QUOTE (-52))))))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))))
(-1033)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4102,7 +4102,7 @@ NIL
NIL
(-1043 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
((-12 (|HasCategory| (-777 |#1| (-861 |#2|)) (QUOTE (-1094))) (|HasCategory| (-777 |#1| (-861 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -777) (|devaluate| |#1|) (LIST (QUOTE -861) (|devaluate| |#2|)))))) (|HasCategory| (-777 |#1| (-861 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-777 |#1| (-861 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-861 |#2|) (QUOTE (-368))) (|HasCategory| (-777 |#1| (-861 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))))
(-1044)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -4114,9 +4114,9 @@ NIL
NIL
(-1046)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4408 . T))
+((-4409 . T))
NIL
-(-1047 |xx| -3378)
+(-1047 |xx| -3438)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4126,12 +4126,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-556))) (|HasCategory| |#4| (QUOTE (-172))))
(-1049 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4411 . T) (-4406 . T) (-4405 . T))
+((-4412 . T) (-4407 . T) (-4406 . T))
NIL
(-1050 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4411 . T) (-4406 . T) (-4405 . T))
-((-4002 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4407 . T) (-4406 . T))
+((-4012 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))))
(-1051 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4150,7 +4150,7 @@ NIL
NIL
(-1055)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1056 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -4158,19 +4158,19 @@ NIL
NIL
(-1057)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4399 . T) (-4403 . T) (-4398 . T) (-4409 . T) (-4410 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4400 . T) (-4404 . T) (-4399 . T) (-4410 . T) (-4411 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1058)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -1327) (QUOTE (-52))))))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -2575) (QUOTE (-52))))))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))))
(-1059 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-1170)))))
(-1060 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
NIL
(-1061)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4194,7 +4194,7 @@ NIL
NIL
(-1066 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-1067 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -4208,11 +4208,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1070 |Base| R -3378)
+(-1070 |Base| R -3438)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1071 |Base| R -3378)
+(-1071 |Base| R -3438)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -4226,8 +4226,8 @@ NIL
NIL
(-1074 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4404 |has| |#1| (-363)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))))
+((-4405 |has| |#1| (-363)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))))
(-1075 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4254,8 +4254,8 @@ NIL
NIL
(-1081 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1082 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4298,7 +4298,7 @@ NIL
NIL
(-1092 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4401 . T))
+((-4402 . T))
NIL
(-1093 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -4314,8 +4314,8 @@ NIL
NIL
(-1096 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4411 . T) (-4401 . T) (-4412 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4412 . T) (-4402 . T) (-4413 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-1097 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
@@ -4342,7 +4342,7 @@ NIL
NIL
(-1103 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-1104)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4358,8 +4358,8 @@ NIL
NIL
(-1107 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4405 |has| |#3| (-1046)) (-4406 |has| |#3| (-1046)) (-4408 |has| |#3| (-6 -4408)) ((-4413 "*") |has| |#3| (-172)) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4002 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#3| (QUOTE (-363))) (-4002 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4002 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4002 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4002 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4002 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4002 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4002 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4002 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4002 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4002 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4002 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (|HasAttribute| |#3| (QUOTE -4408)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
+((-4406 |has| |#3| (-1046)) (-4407 |has| |#3| (-1046)) (-4409 |has| |#3| (-6 -4409)) ((-4414 "*") |has| |#3| (-172)) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#3| (QUOTE (-363))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4012 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4012 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4012 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4012 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (|HasAttribute| |#3| (QUOTE -4409)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
(-1108 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4368,7 +4368,7 @@ NIL
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1110 R -3378)
+(-1110 R -3438)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4386,19 +4386,19 @@ NIL
NIL
(-1114)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4399 . T) (-4403 . T) (-4398 . T) (-4409 . T) (-4410 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4400 . T) (-4404 . T) (-4399 . T) (-4410 . T) (-4411 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1115 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4411 . T) (-4412 . T))
+((-4412 . T) (-4413 . T))
NIL
(-1116 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4413 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
+((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4414 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
(-1117 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4411 . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4412 . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1118 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4406,17 +4406,17 @@ NIL
NIL
(-1119 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1120 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
(-1121 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
-(-1122 UP -3378)
+(-1122 UP -3438)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4470,19 +4470,19 @@ NIL
NIL
(-1135 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))) (-4002 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))))) (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))) (-4012 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))))) (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859)))))
(-1136 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4408 . T) (-4400 |has| |#2| (-6 (-4413 "*"))) (-4411 . T) (-4405 . T) (-4406 . T))
-((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (-4002 (|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((-4409 . T) (-4401 |has| |#2| (-6 (-4414 "*"))) (-4412 . T) (-4406 . T) (-4407 . T))
+((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (-4012 (|HasAttribute| |#2| (QUOTE (-4414 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-1137 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1138)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-1139 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4490,12 +4490,12 @@ NIL
NIL
(-1140 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))))
(-1141 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-1142 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4506,8 +4506,8 @@ NIL
NIL
(-1144 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#2|)))))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))))
+((-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))))
(-1145)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4530,20 +4530,20 @@ NIL
NIL
(-1150 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-1151)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-1152)
NIL
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-1153 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)))))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#1|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))))
(-1154 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
@@ -4574,9 +4574,9 @@ NIL
NIL
(-1161 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4413 "*") -4002 (-4266 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4266 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4404 -4002 (-4266 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4266 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4002 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4002 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4002 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4002 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4002 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1162 R -3378)
+(((-4414 "*") -4012 (-4264 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4264 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4405 -4012 (-4264 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4264 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1162 R -3438)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4594,16 +4594,16 @@ NIL
NIL
(-1166 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4407 |has| |#1| (-363)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1167 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
(-1168 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
(-1169)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4618,8 +4618,8 @@ NIL
NIL
(-1172 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-968) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4409)))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-6 -4410)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-968) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4410)))
(-1173)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4658,8 +4658,8 @@ NIL
NIL
(-1182 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4411 . T) (-4412 . T))
-((-12 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2351) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#2|)))))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4002 (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4412 . T) (-4413 . T))
+((-12 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1350) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2575) (|devaluate| |#2|)))))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4012 (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))))
(-1183 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4670,7 +4670,7 @@ NIL
NIL
(-1185 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-1186 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4710,8 +4710,8 @@ NIL
NIL
(-1195 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4412 . T) (-4411 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
+((-4413 . T) (-4412 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
(-1196 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4720,7 +4720,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1198 R -3378)
+(-1198 R -3438)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4728,7 +4728,7 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1200 R -3378)
+(-1200 R -3438)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -883) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -883) (|devaluate| |#1|)))))
@@ -4738,12 +4738,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-368))))
(-1202 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-1203 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))))
(-1204 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4756,7 +4756,7 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))))
-(-1207 -3378)
+(-1207 -3438)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
@@ -4782,7 +4782,7 @@ NIL
NIL
(-1213)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1214)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
@@ -4806,7 +4806,7 @@ NIL
NIL
(-1219 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1220 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
@@ -4814,16 +4814,16 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-1221 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1222 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-4002 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847))))) (-4002 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (QUOTE (-906))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-4012 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847))))) (-4012 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (QUOTE (-906))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))))
(-1223 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4413 "*") -4002 (-4266 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4266 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4404 -4002 (-4266 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4266 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
-((-4002 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4002 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4002 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4002 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4002 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4002 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4414 "*") -4012 (-4264 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4264 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4405 -4012 (-4264 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4264 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
+((-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1224 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4858,8 +4858,8 @@ NIL
NIL
(-1232 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4407 |has| |#2| (-363)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4002 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4002 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4002 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4414 "*") |has| |#2| (-172)) (-4405 |has| |#2| (-556)) (-4408 |has| |#2| (-363)) (-4410 |has| |#2| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4012 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4012 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4012 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-1233 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
@@ -4870,15 +4870,15 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1145))))
(-1235 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4407 |has| |#1| (-363)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4408 |has| |#1| (-363)) (-4410 |has| |#1| (-6 -4410)) (-4407 . T) (-4406 . T) (-4409 . T))
NIL
(-1236 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1765) (LIST (|devaluate| |#2|) (QUOTE (-1170))))))
+((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3714) (LIST (|devaluate| |#2|) (QUOTE (-1170))))))
(-1237 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1238 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
@@ -4890,7 +4890,7 @@ NIL
NIL
(-1240 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1241 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
@@ -4898,24 +4898,24 @@ NIL
NIL
(-1242 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1243 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))
(-1244 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4002 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4410 |has| |#1| (-363)) (-4404 |has| |#1| (-363)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4012 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
(-1245 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4413 "*") |has| (-1244 |#2| |#3| |#4|) (-172)) (-4404 |has| (-1244 |#2| |#3| |#4|) (-556)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-172))) (-4002 (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-556))))
+(((-4414 "*") |has| (-1244 |#2| |#3| |#4|) (-172)) (-4405 |has| (-1244 |#2| |#3| |#4|) (-556)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-172))) (-4012 (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-556))))
(-1246 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4412)))
+((|HasAttribute| |#1| (QUOTE -4413)))
(-1247 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
@@ -4927,20 +4927,20 @@ NIL
(-1249 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasSignature| |#2| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3591) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasSignature| |#2| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4039) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))))
(-1250 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1251 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4002 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -1765) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4002 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3591) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
+(((-4414 "*") |has| |#1| (-172)) (-4405 |has| |#1| (-556)) (-4406 . T) (-4407 . T) (-4409 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4012 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -3714) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4012 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -4039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4292) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))))
(-1252 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1253 -3378 UP L UTS)
+(-1253 -3438 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-556))))
@@ -4958,7 +4958,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-999))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1257 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
NIL
(-1258 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
@@ -4966,8 +4966,8 @@ NIL
NIL
(-1259 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4412 . T) (-4411 . T))
-((-4002 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4002 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4002 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4413 . T) (-4412 . T))
+((-4012 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4012 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4012 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-1260)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
@@ -4994,13 +4994,13 @@ NIL
NIL
(-1266 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4406 . T) (-4405 . T))
+((-4407 . T) (-4406 . T))
NIL
(-1267 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1268 K R UP -3378)
+(-1268 K R UP -3438)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -5014,56 +5014,56 @@ NIL
NIL
(-1271 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T))
+((-4407 |has| |#1| (-172)) (-4406 |has| |#1| (-172)) (-4409 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))))
(-1272 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4412 . T) (-4411 . T))
+((-4413 . T) (-4412 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))))
(-1273 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4405 . T) (-4406 . T) (-4408 . T))
+((-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1274 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4408 . T) (-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4404)))
+((-4409 . T) (-4405 |has| |#2| (-6 -4405)) (-4407 . T) (-4406 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4405)))
(-1275 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
(-1276 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T))
+((-4405 |has| |#2| (-6 -4405)) (-4407 . T) (-4406 . T) (-4409 . T))
NIL
-(-1277 S -3378)
+(-1277 S -3438)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1278 -3378)
+(-1278 -3438)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+((-4404 . T) (-4410 . T) (-4405 . T) ((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
(-1279 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -714) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasAttribute| |#2| (QUOTE -4404)))
+((-4405 |has| |#2| (-6 -4405)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -714) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasAttribute| |#2| (QUOTE -4405)))
(-1280 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T))
+((-4405 |has| |#2| (-6 -4405)) (-4407 . T) (-4406 . T) (-4409 . T))
NIL
(-1281 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4404 |has| |#1| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4404)))
+((-4405 |has| |#1| (-6 -4405)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4405)))
(-1282 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4408 . T) (-4409 |has| |#1| (-6 -4409)) (-4404 |has| |#1| (-6 -4404)) (-4406 . T) (-4405 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4409)) (|HasAttribute| |#1| (QUOTE -4404)))
+((-4409 . T) (-4410 |has| |#1| (-6 -4410)) (-4405 |has| |#1| (-6 -4405)) (-4407 . T) (-4406 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4405)))
(-1283 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4404)))
+((-4405 |has| |#2| (-6 -4405)) (-4407 . T) (-4406 . T) (-4409 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4405)))
(-1284 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
@@ -5078,7 +5078,7 @@ NIL
NIL
(-1287 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T))
+(((-4414 "*") . T) (-4406 . T) (-4407 . T) (-4409 . T))
NIL
NIL
NIL
@@ -5096,4 +5096,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2283334 2283339 2283344 2283349) (-2 NIL 2283314 2283319 2283324 2283329) (-1 NIL 2283294 2283299 2283304 2283309) (0 NIL 2283274 2283279 2283284 2283289) (-1287 "ZMOD.spad" 2283083 2283096 2283212 2283269) (-1286 "ZLINDEP.spad" 2282127 2282138 2283073 2283078) (-1285 "ZDSOLVE.spad" 2271976 2271998 2282117 2282122) (-1284 "YSTREAM.spad" 2271469 2271480 2271966 2271971) (-1283 "XRPOLY.spad" 2270689 2270709 2271325 2271394) (-1282 "XPR.spad" 2268480 2268493 2270407 2270506) (-1281 "XPOLY.spad" 2268035 2268046 2268336 2268405) (-1280 "XPOLYC.spad" 2267352 2267368 2267961 2268030) (-1279 "XPBWPOLY.spad" 2265789 2265809 2267132 2267201) (-1278 "XF.spad" 2264250 2264265 2265691 2265784) (-1277 "XF.spad" 2262691 2262708 2264134 2264139) (-1276 "XFALG.spad" 2259715 2259731 2262617 2262686) (-1275 "XEXPPKG.spad" 2258966 2258992 2259705 2259710) (-1274 "XDPOLY.spad" 2258580 2258596 2258822 2258891) (-1273 "XALG.spad" 2258240 2258251 2258536 2258575) (-1272 "WUTSET.spad" 2254079 2254096 2257886 2257913) (-1271 "WP.spad" 2253278 2253322 2253937 2254004) (-1270 "WHILEAST.spad" 2253076 2253085 2253268 2253273) (-1269 "WHEREAST.spad" 2252747 2252756 2253066 2253071) (-1268 "WFFINTBS.spad" 2250310 2250332 2252737 2252742) (-1267 "WEIER.spad" 2248524 2248535 2250300 2250305) (-1266 "VSPACE.spad" 2248197 2248208 2248492 2248519) (-1265 "VSPACE.spad" 2247890 2247903 2248187 2248192) (-1264 "VOID.spad" 2247567 2247576 2247880 2247885) (-1263 "VIEW.spad" 2245189 2245198 2247557 2247562) (-1262 "VIEWDEF.spad" 2240386 2240395 2245179 2245184) (-1261 "VIEW3D.spad" 2224221 2224230 2240376 2240381) (-1260 "VIEW2D.spad" 2211958 2211967 2224211 2224216) (-1259 "VECTOR.spad" 2210633 2210644 2210884 2210911) (-1258 "VECTOR2.spad" 2209260 2209273 2210623 2210628) (-1257 "VECTCAT.spad" 2207160 2207171 2209228 2209255) (-1256 "VECTCAT.spad" 2204868 2204881 2206938 2206943) (-1255 "VARIABLE.spad" 2204648 2204663 2204858 2204863) (-1254 "UTYPE.spad" 2204292 2204301 2204638 2204643) (-1253 "UTSODETL.spad" 2203585 2203609 2204248 2204253) (-1252 "UTSODE.spad" 2201773 2201793 2203575 2203580) (-1251 "UTS.spad" 2196562 2196590 2200240 2200337) (-1250 "UTSCAT.spad" 2194013 2194029 2196460 2196557) (-1249 "UTSCAT.spad" 2191108 2191126 2193557 2193562) (-1248 "UTS2.spad" 2190701 2190736 2191098 2191103) (-1247 "URAGG.spad" 2185333 2185344 2190691 2190696) (-1246 "URAGG.spad" 2179929 2179942 2185289 2185294) (-1245 "UPXSSING.spad" 2177572 2177598 2179010 2179143) (-1244 "UPXS.spad" 2174720 2174748 2175704 2175853) (-1243 "UPXSCONS.spad" 2172477 2172497 2172852 2173001) (-1242 "UPXSCCA.spad" 2171042 2171062 2172323 2172472) (-1241 "UPXSCCA.spad" 2169749 2169771 2171032 2171037) (-1240 "UPXSCAT.spad" 2168330 2168346 2169595 2169744) (-1239 "UPXS2.spad" 2167871 2167924 2168320 2168325) (-1238 "UPSQFREE.spad" 2166283 2166297 2167861 2167866) (-1237 "UPSCAT.spad" 2163876 2163900 2166181 2166278) (-1236 "UPSCAT.spad" 2161175 2161201 2163482 2163487) (-1235 "UPOLYC.spad" 2156153 2156164 2161017 2161170) (-1234 "UPOLYC.spad" 2151023 2151036 2155889 2155894) (-1233 "UPOLYC2.spad" 2150492 2150511 2151013 2151018) (-1232 "UP.spad" 2147649 2147664 2148042 2148195) (-1231 "UPMP.spad" 2146539 2146552 2147639 2147644) (-1230 "UPDIVP.spad" 2146102 2146116 2146529 2146534) (-1229 "UPDECOMP.spad" 2144339 2144353 2146092 2146097) (-1228 "UPCDEN.spad" 2143546 2143562 2144329 2144334) (-1227 "UP2.spad" 2142908 2142929 2143536 2143541) (-1226 "UNISEG.spad" 2142261 2142272 2142827 2142832) (-1225 "UNISEG2.spad" 2141754 2141767 2142217 2142222) (-1224 "UNIFACT.spad" 2140855 2140867 2141744 2141749) (-1223 "ULS.spad" 2131407 2131435 2132500 2132929) (-1222 "ULSCONS.spad" 2123801 2123821 2124173 2124322) (-1221 "ULSCCAT.spad" 2121530 2121550 2123647 2123796) (-1220 "ULSCCAT.spad" 2119367 2119389 2121486 2121491) (-1219 "ULSCAT.spad" 2117583 2117599 2119213 2119362) (-1218 "ULS2.spad" 2117095 2117148 2117573 2117578) (-1217 "UINT8.spad" 2116972 2116981 2117085 2117090) (-1216 "UINT64.spad" 2116848 2116857 2116962 2116967) (-1215 "UINT32.spad" 2116724 2116733 2116838 2116843) (-1214 "UINT16.spad" 2116600 2116609 2116714 2116719) (-1213 "UFD.spad" 2115665 2115674 2116526 2116595) (-1212 "UFD.spad" 2114792 2114803 2115655 2115660) (-1211 "UDVO.spad" 2113639 2113648 2114782 2114787) (-1210 "UDPO.spad" 2111066 2111077 2113595 2113600) (-1209 "TYPE.spad" 2110998 2111007 2111056 2111061) (-1208 "TYPEAST.spad" 2110917 2110926 2110988 2110993) (-1207 "TWOFACT.spad" 2109567 2109582 2110907 2110912) (-1206 "TUPLE.spad" 2109051 2109062 2109466 2109471) (-1205 "TUBETOOL.spad" 2105888 2105897 2109041 2109046) (-1204 "TUBE.spad" 2104529 2104546 2105878 2105883) (-1203 "TS.spad" 2103118 2103134 2104094 2104191) (-1202 "TSETCAT.spad" 2090245 2090262 2103086 2103113) (-1201 "TSETCAT.spad" 2077358 2077377 2090201 2090206) (-1200 "TRMANIP.spad" 2071724 2071741 2077064 2077069) (-1199 "TRIMAT.spad" 2070683 2070708 2071714 2071719) (-1198 "TRIGMNIP.spad" 2069200 2069217 2070673 2070678) (-1197 "TRIGCAT.spad" 2068712 2068721 2069190 2069195) (-1196 "TRIGCAT.spad" 2068222 2068233 2068702 2068707) (-1195 "TREE.spad" 2066793 2066804 2067829 2067856) (-1194 "TRANFUN.spad" 2066624 2066633 2066783 2066788) (-1193 "TRANFUN.spad" 2066453 2066464 2066614 2066619) (-1192 "TOPSP.spad" 2066127 2066136 2066443 2066448) (-1191 "TOOLSIGN.spad" 2065790 2065801 2066117 2066122) (-1190 "TEXTFILE.spad" 2064347 2064356 2065780 2065785) (-1189 "TEX.spad" 2061479 2061488 2064337 2064342) (-1188 "TEX1.spad" 2061035 2061046 2061469 2061474) (-1187 "TEMUTL.spad" 2060590 2060599 2061025 2061030) (-1186 "TBCMPPK.spad" 2058683 2058706 2060580 2060585) (-1185 "TBAGG.spad" 2057719 2057742 2058663 2058678) (-1184 "TBAGG.spad" 2056763 2056788 2057709 2057714) (-1183 "TANEXP.spad" 2056139 2056150 2056753 2056758) (-1182 "TABLE.spad" 2054550 2054573 2054820 2054847) (-1181 "TABLEAU.spad" 2054031 2054042 2054540 2054545) (-1180 "TABLBUMP.spad" 2050814 2050825 2054021 2054026) (-1179 "SYSTEM.spad" 2050042 2050051 2050804 2050809) (-1178 "SYSSOLP.spad" 2047515 2047526 2050032 2050037) (-1177 "SYSNNI.spad" 2046695 2046706 2047505 2047510) (-1176 "SYSINT.spad" 2046099 2046110 2046685 2046690) (-1175 "SYNTAX.spad" 2042293 2042302 2046089 2046094) (-1174 "SYMTAB.spad" 2040349 2040358 2042283 2042288) (-1173 "SYMS.spad" 2036334 2036343 2040339 2040344) (-1172 "SYMPOLY.spad" 2035341 2035352 2035423 2035550) (-1171 "SYMFUNC.spad" 2034816 2034827 2035331 2035336) (-1170 "SYMBOL.spad" 2032243 2032252 2034806 2034811) (-1169 "SWITCH.spad" 2029000 2029009 2032233 2032238) (-1168 "SUTS.spad" 2025899 2025927 2027467 2027564) (-1167 "SUPXS.spad" 2023034 2023062 2024031 2024180) (-1166 "SUP.spad" 2019803 2019814 2020584 2020737) (-1165 "SUPFRACF.spad" 2018908 2018926 2019793 2019798) (-1164 "SUP2.spad" 2018298 2018311 2018898 2018903) (-1163 "SUMRF.spad" 2017264 2017275 2018288 2018293) (-1162 "SUMFS.spad" 2016897 2016914 2017254 2017259) (-1161 "SULS.spad" 2007436 2007464 2008542 2008971) (-1160 "SUCHTAST.spad" 2007205 2007214 2007426 2007431) (-1159 "SUCH.spad" 2006885 2006900 2007195 2007200) (-1158 "SUBSPACE.spad" 1998892 1998907 2006875 2006880) (-1157 "SUBRESP.spad" 1998052 1998066 1998848 1998853) (-1156 "STTF.spad" 1994151 1994167 1998042 1998047) (-1155 "STTFNC.spad" 1990619 1990635 1994141 1994146) (-1154 "STTAYLOR.spad" 1983017 1983028 1990500 1990505) (-1153 "STRTBL.spad" 1981522 1981539 1981671 1981698) (-1152 "STRING.spad" 1980931 1980940 1980945 1980972) (-1151 "STRICAT.spad" 1980719 1980728 1980899 1980926) (-1150 "STREAM.spad" 1977577 1977588 1980244 1980259) (-1149 "STREAM3.spad" 1977122 1977137 1977567 1977572) (-1148 "STREAM2.spad" 1976190 1976203 1977112 1977117) (-1147 "STREAM1.spad" 1975894 1975905 1976180 1976185) (-1146 "STINPROD.spad" 1974800 1974816 1975884 1975889) (-1145 "STEP.spad" 1974001 1974010 1974790 1974795) (-1144 "STBL.spad" 1972527 1972555 1972694 1972709) (-1143 "STAGG.spad" 1971602 1971613 1972517 1972522) (-1142 "STAGG.spad" 1970675 1970688 1971592 1971597) (-1141 "STACK.spad" 1970026 1970037 1970282 1970309) (-1140 "SREGSET.spad" 1967730 1967747 1969672 1969699) (-1139 "SRDCMPK.spad" 1966275 1966295 1967720 1967725) (-1138 "SRAGG.spad" 1961372 1961381 1966243 1966270) (-1137 "SRAGG.spad" 1956489 1956500 1961362 1961367) (-1136 "SQMATRIX.spad" 1954105 1954123 1955021 1955108) (-1135 "SPLTREE.spad" 1948657 1948670 1953541 1953568) (-1134 "SPLNODE.spad" 1945245 1945258 1948647 1948652) (-1133 "SPFCAT.spad" 1944022 1944031 1945235 1945240) (-1132 "SPECOUT.spad" 1942572 1942581 1944012 1944017) (-1131 "SPADXPT.spad" 1934711 1934720 1942562 1942567) (-1130 "spad-parser.spad" 1934176 1934185 1934701 1934706) (-1129 "SPADAST.spad" 1933877 1933886 1934166 1934171) (-1128 "SPACEC.spad" 1917890 1917901 1933867 1933872) (-1127 "SPACE3.spad" 1917666 1917677 1917880 1917885) (-1126 "SORTPAK.spad" 1917211 1917224 1917622 1917627) (-1125 "SOLVETRA.spad" 1914968 1914979 1917201 1917206) (-1124 "SOLVESER.spad" 1913488 1913499 1914958 1914963) (-1123 "SOLVERAD.spad" 1909498 1909509 1913478 1913483) (-1122 "SOLVEFOR.spad" 1907918 1907936 1909488 1909493) (-1121 "SNTSCAT.spad" 1907518 1907535 1907886 1907913) (-1120 "SMTS.spad" 1905778 1905804 1907083 1907180) (-1119 "SMP.spad" 1903217 1903237 1903607 1903734) (-1118 "SMITH.spad" 1902060 1902085 1903207 1903212) (-1117 "SMATCAT.spad" 1900170 1900200 1902004 1902055) (-1116 "SMATCAT.spad" 1898212 1898244 1900048 1900053) (-1115 "SKAGG.spad" 1897173 1897184 1898180 1898207) (-1114 "SINT.spad" 1895999 1896008 1897039 1897168) (-1113 "SIMPAN.spad" 1895727 1895736 1895989 1895994) (-1112 "SIG.spad" 1895055 1895064 1895717 1895722) (-1111 "SIGNRF.spad" 1894163 1894174 1895045 1895050) (-1110 "SIGNEF.spad" 1893432 1893449 1894153 1894158) (-1109 "SIGAST.spad" 1892813 1892822 1893422 1893427) (-1108 "SHP.spad" 1890731 1890746 1892769 1892774) (-1107 "SHDP.spad" 1880442 1880469 1880951 1881082) (-1106 "SGROUP.spad" 1880050 1880059 1880432 1880437) (-1105 "SGROUP.spad" 1879656 1879667 1880040 1880045) (-1104 "SGCF.spad" 1872537 1872546 1879646 1879651) (-1103 "SFRTCAT.spad" 1871465 1871482 1872505 1872532) (-1102 "SFRGCD.spad" 1870528 1870548 1871455 1871460) (-1101 "SFQCMPK.spad" 1865165 1865185 1870518 1870523) (-1100 "SFORT.spad" 1864600 1864614 1865155 1865160) (-1099 "SEXOF.spad" 1864443 1864483 1864590 1864595) (-1098 "SEX.spad" 1864335 1864344 1864433 1864438) (-1097 "SEXCAT.spad" 1861886 1861926 1864325 1864330) (-1096 "SET.spad" 1860186 1860197 1861307 1861346) (-1095 "SETMN.spad" 1858620 1858637 1860176 1860181) (-1094 "SETCAT.spad" 1858105 1858114 1858610 1858615) (-1093 "SETCAT.spad" 1857588 1857599 1858095 1858100) (-1092 "SETAGG.spad" 1854109 1854120 1857568 1857583) (-1091 "SETAGG.spad" 1850638 1850651 1854099 1854104) (-1090 "SEQAST.spad" 1850341 1850350 1850628 1850633) (-1089 "SEGXCAT.spad" 1849463 1849476 1850331 1850336) (-1088 "SEG.spad" 1849276 1849287 1849382 1849387) (-1087 "SEGCAT.spad" 1848183 1848194 1849266 1849271) (-1086 "SEGBIND.spad" 1847255 1847266 1848138 1848143) (-1085 "SEGBIND2.spad" 1846951 1846964 1847245 1847250) (-1084 "SEGAST.spad" 1846665 1846674 1846941 1846946) (-1083 "SEG2.spad" 1846090 1846103 1846621 1846626) (-1082 "SDVAR.spad" 1845366 1845377 1846080 1846085) (-1081 "SDPOL.spad" 1842756 1842767 1843047 1843174) (-1080 "SCPKG.spad" 1840835 1840846 1842746 1842751) (-1079 "SCOPE.spad" 1839988 1839997 1840825 1840830) (-1078 "SCACHE.spad" 1838670 1838681 1839978 1839983) (-1077 "SASTCAT.spad" 1838579 1838588 1838660 1838665) (-1076 "SAOS.spad" 1838451 1838460 1838569 1838574) (-1075 "SAERFFC.spad" 1838164 1838184 1838441 1838446) (-1074 "SAE.spad" 1836339 1836355 1836950 1837085) (-1073 "SAEFACT.spad" 1836040 1836060 1836329 1836334) (-1072 "RURPK.spad" 1833681 1833697 1836030 1836035) (-1071 "RULESET.spad" 1833122 1833146 1833671 1833676) (-1070 "RULE.spad" 1831326 1831350 1833112 1833117) (-1069 "RULECOLD.spad" 1831178 1831191 1831316 1831321) (-1068 "RSTRCAST.spad" 1830895 1830904 1831168 1831173) (-1067 "RSETGCD.spad" 1827273 1827293 1830885 1830890) (-1066 "RSETCAT.spad" 1817057 1817074 1827241 1827268) (-1065 "RSETCAT.spad" 1806861 1806880 1817047 1817052) (-1064 "RSDCMPK.spad" 1805313 1805333 1806851 1806856) (-1063 "RRCC.spad" 1803697 1803727 1805303 1805308) (-1062 "RRCC.spad" 1802079 1802111 1803687 1803692) (-1061 "RPTAST.spad" 1801781 1801790 1802069 1802074) (-1060 "RPOLCAT.spad" 1781141 1781156 1801649 1801776) (-1059 "RPOLCAT.spad" 1760215 1760232 1780725 1780730) (-1058 "ROUTINE.spad" 1756078 1756087 1758862 1758889) (-1057 "ROMAN.spad" 1755406 1755415 1755944 1756073) (-1056 "ROIRC.spad" 1754486 1754518 1755396 1755401) (-1055 "RNS.spad" 1753389 1753398 1754388 1754481) (-1054 "RNS.spad" 1752378 1752389 1753379 1753384) (-1053 "RNG.spad" 1752113 1752122 1752368 1752373) (-1052 "RMODULE.spad" 1751751 1751762 1752103 1752108) (-1051 "RMCAT2.spad" 1751159 1751216 1751741 1751746) (-1050 "RMATRIX.spad" 1749983 1750002 1750326 1750365) (-1049 "RMATCAT.spad" 1745516 1745547 1749939 1749978) (-1048 "RMATCAT.spad" 1740939 1740972 1745364 1745369) (-1047 "RINTERP.spad" 1740827 1740847 1740929 1740934) (-1046 "RING.spad" 1740297 1740306 1740807 1740822) (-1045 "RING.spad" 1739775 1739786 1740287 1740292) (-1044 "RIDIST.spad" 1739159 1739168 1739765 1739770) (-1043 "RGCHAIN.spad" 1737738 1737754 1738644 1738671) (-1042 "RGBCSPC.spad" 1737519 1737531 1737728 1737733) (-1041 "RGBCMDL.spad" 1737049 1737061 1737509 1737514) (-1040 "RF.spad" 1734663 1734674 1737039 1737044) (-1039 "RFFACTOR.spad" 1734125 1734136 1734653 1734658) (-1038 "RFFACT.spad" 1733860 1733872 1734115 1734120) (-1037 "RFDIST.spad" 1732848 1732857 1733850 1733855) (-1036 "RETSOL.spad" 1732265 1732278 1732838 1732843) (-1035 "RETRACT.spad" 1731693 1731704 1732255 1732260) (-1034 "RETRACT.spad" 1731119 1731132 1731683 1731688) (-1033 "RETAST.spad" 1730931 1730940 1731109 1731114) (-1032 "RESULT.spad" 1728991 1729000 1729578 1729605) (-1031 "RESRING.spad" 1728338 1728385 1728929 1728986) (-1030 "RESLATC.spad" 1727662 1727673 1728328 1728333) (-1029 "REPSQ.spad" 1727391 1727402 1727652 1727657) (-1028 "REP.spad" 1724943 1724952 1727381 1727386) (-1027 "REPDB.spad" 1724648 1724659 1724933 1724938) (-1026 "REP2.spad" 1714220 1714231 1724490 1724495) (-1025 "REP1.spad" 1708210 1708221 1714170 1714175) (-1024 "REGSET.spad" 1706007 1706024 1707856 1707883) (-1023 "REF.spad" 1705336 1705347 1705962 1705967) (-1022 "REDORDER.spad" 1704512 1704529 1705326 1705331) (-1021 "RECLOS.spad" 1703295 1703315 1703999 1704092) (-1020 "REALSOLV.spad" 1702427 1702436 1703285 1703290) (-1019 "REAL.spad" 1702299 1702308 1702417 1702422) (-1018 "REAL0Q.spad" 1699581 1699596 1702289 1702294) (-1017 "REAL0.spad" 1696409 1696424 1699571 1699576) (-1016 "RDUCEAST.spad" 1696130 1696139 1696399 1696404) (-1015 "RDIV.spad" 1695781 1695806 1696120 1696125) (-1014 "RDIST.spad" 1695344 1695355 1695771 1695776) (-1013 "RDETRS.spad" 1694140 1694158 1695334 1695339) (-1012 "RDETR.spad" 1692247 1692265 1694130 1694135) (-1011 "RDEEFS.spad" 1691320 1691337 1692237 1692242) (-1010 "RDEEF.spad" 1690316 1690333 1691310 1691315) (-1009 "RCFIELD.spad" 1687502 1687511 1690218 1690311) (-1008 "RCFIELD.spad" 1684774 1684785 1687492 1687497) (-1007 "RCAGG.spad" 1682686 1682697 1684764 1684769) (-1006 "RCAGG.spad" 1680525 1680538 1682605 1682610) (-1005 "RATRET.spad" 1679885 1679896 1680515 1680520) (-1004 "RATFACT.spad" 1679577 1679589 1679875 1679880) (-1003 "RANDSRC.spad" 1678896 1678905 1679567 1679572) (-1002 "RADUTIL.spad" 1678650 1678659 1678886 1678891) (-1001 "RADIX.spad" 1675551 1675565 1677117 1677210) (-1000 "RADFF.spad" 1673964 1674001 1674083 1674239) (-999 "RADCAT.spad" 1673558 1673566 1673954 1673959) (-998 "RADCAT.spad" 1673150 1673160 1673548 1673553) (-997 "QUEUE.spad" 1672493 1672503 1672757 1672784) (-996 "QUAT.spad" 1671075 1671085 1671417 1671482) (-995 "QUATCT2.spad" 1670694 1670712 1671065 1671070) (-994 "QUATCAT.spad" 1668859 1668869 1670624 1670689) (-993 "QUATCAT.spad" 1666775 1666787 1668542 1668547) (-992 "QUAGG.spad" 1665601 1665611 1666743 1666770) (-991 "QQUTAST.spad" 1665370 1665378 1665591 1665596) (-990 "QFORM.spad" 1664833 1664847 1665360 1665365) (-989 "QFCAT.spad" 1663536 1663546 1664735 1664828) (-988 "QFCAT.spad" 1661830 1661842 1663031 1663036) (-987 "QFCAT2.spad" 1661521 1661537 1661820 1661825) (-986 "QEQUAT.spad" 1661078 1661086 1661511 1661516) (-985 "QCMPACK.spad" 1655825 1655844 1661068 1661073) (-984 "QALGSET.spad" 1651900 1651932 1655739 1655744) (-983 "QALGSET2.spad" 1649896 1649914 1651890 1651895) (-982 "PWFFINTB.spad" 1647206 1647227 1649886 1649891) (-981 "PUSHVAR.spad" 1646535 1646554 1647196 1647201) (-980 "PTRANFN.spad" 1642661 1642671 1646525 1646530) (-979 "PTPACK.spad" 1639749 1639759 1642651 1642656) (-978 "PTFUNC2.spad" 1639570 1639584 1639739 1639744) (-977 "PTCAT.spad" 1638819 1638829 1639538 1639565) (-976 "PSQFR.spad" 1638126 1638150 1638809 1638814) (-975 "PSEUDLIN.spad" 1636984 1636994 1638116 1638121) (-974 "PSETPK.spad" 1622417 1622433 1636862 1636867) (-973 "PSETCAT.spad" 1616337 1616360 1622397 1622412) (-972 "PSETCAT.spad" 1610231 1610256 1616293 1616298) (-971 "PSCURVE.spad" 1609214 1609222 1610221 1610226) (-970 "PSCAT.spad" 1607981 1608010 1609112 1609209) (-969 "PSCAT.spad" 1606838 1606869 1607971 1607976) (-968 "PRTITION.spad" 1605783 1605791 1606828 1606833) (-967 "PRTDAST.spad" 1605502 1605510 1605773 1605778) (-966 "PRS.spad" 1595064 1595081 1605458 1605463) (-965 "PRQAGG.spad" 1594495 1594505 1595032 1595059) (-964 "PROPLOG.spad" 1593898 1593906 1594485 1594490) (-963 "PROPFRML.spad" 1591816 1591827 1593888 1593893) (-962 "PROPERTY.spad" 1591310 1591318 1591806 1591811) (-961 "PRODUCT.spad" 1588990 1589002 1589276 1589331) (-960 "PR.spad" 1587376 1587388 1588081 1588208) (-959 "PRINT.spad" 1587128 1587136 1587366 1587371) (-958 "PRIMES.spad" 1585379 1585389 1587118 1587123) (-957 "PRIMELT.spad" 1583360 1583374 1585369 1585374) (-956 "PRIMCAT.spad" 1582983 1582991 1583350 1583355) (-955 "PRIMARR.spad" 1581988 1581998 1582166 1582193) (-954 "PRIMARR2.spad" 1580711 1580723 1581978 1581983) (-953 "PREASSOC.spad" 1580083 1580095 1580701 1580706) (-952 "PPCURVE.spad" 1579220 1579228 1580073 1580078) (-951 "PORTNUM.spad" 1578995 1579003 1579210 1579215) (-950 "POLYROOT.spad" 1577824 1577846 1578951 1578956) (-949 "POLY.spad" 1575121 1575131 1575638 1575765) (-948 "POLYLIFT.spad" 1574382 1574405 1575111 1575116) (-947 "POLYCATQ.spad" 1572484 1572506 1574372 1574377) (-946 "POLYCAT.spad" 1565890 1565911 1572352 1572479) (-945 "POLYCAT.spad" 1558598 1558621 1565062 1565067) (-944 "POLY2UP.spad" 1558046 1558060 1558588 1558593) (-943 "POLY2.spad" 1557641 1557653 1558036 1558041) (-942 "POLUTIL.spad" 1556582 1556611 1557597 1557602) (-941 "POLTOPOL.spad" 1555330 1555345 1556572 1556577) (-940 "POINT.spad" 1554169 1554179 1554256 1554283) (-939 "PNTHEORY.spad" 1550835 1550843 1554159 1554164) (-938 "PMTOOLS.spad" 1549592 1549606 1550825 1550830) (-937 "PMSYM.spad" 1549137 1549147 1549582 1549587) (-936 "PMQFCAT.spad" 1548724 1548738 1549127 1549132) (-935 "PMPRED.spad" 1548193 1548207 1548714 1548719) (-934 "PMPREDFS.spad" 1547637 1547659 1548183 1548188) (-933 "PMPLCAT.spad" 1546707 1546725 1547569 1547574) (-932 "PMLSAGG.spad" 1546288 1546302 1546697 1546702) (-931 "PMKERNEL.spad" 1545855 1545867 1546278 1546283) (-930 "PMINS.spad" 1545431 1545441 1545845 1545850) (-929 "PMFS.spad" 1545004 1545022 1545421 1545426) (-928 "PMDOWN.spad" 1544290 1544304 1544994 1544999) (-927 "PMASS.spad" 1543302 1543310 1544280 1544285) (-926 "PMASSFS.spad" 1542271 1542287 1543292 1543297) (-925 "PLOTTOOL.spad" 1542051 1542059 1542261 1542266) (-924 "PLOT.spad" 1536882 1536890 1542041 1542046) (-923 "PLOT3D.spad" 1533302 1533310 1536872 1536877) (-922 "PLOT1.spad" 1532443 1532453 1533292 1533297) (-921 "PLEQN.spad" 1519659 1519686 1532433 1532438) (-920 "PINTERP.spad" 1519275 1519294 1519649 1519654) (-919 "PINTERPA.spad" 1519057 1519073 1519265 1519270) (-918 "PI.spad" 1518664 1518672 1519031 1519052) (-917 "PID.spad" 1517620 1517628 1518590 1518659) (-916 "PICOERCE.spad" 1517277 1517287 1517610 1517615) (-915 "PGROEB.spad" 1515874 1515888 1517267 1517272) (-914 "PGE.spad" 1507127 1507135 1515864 1515869) (-913 "PGCD.spad" 1506009 1506026 1507117 1507122) (-912 "PFRPAC.spad" 1505152 1505162 1505999 1506004) (-911 "PFR.spad" 1501809 1501819 1505054 1505147) (-910 "PFOTOOLS.spad" 1501067 1501083 1501799 1501804) (-909 "PFOQ.spad" 1500437 1500455 1501057 1501062) (-908 "PFO.spad" 1499856 1499883 1500427 1500432) (-907 "PF.spad" 1499430 1499442 1499661 1499754) (-906 "PFECAT.spad" 1497096 1497104 1499356 1499425) (-905 "PFECAT.spad" 1494790 1494800 1497052 1497057) (-904 "PFBRU.spad" 1492660 1492672 1494780 1494785) (-903 "PFBR.spad" 1490198 1490221 1492650 1492655) (-902 "PERM.spad" 1485879 1485889 1490028 1490043) (-901 "PERMGRP.spad" 1480615 1480625 1485869 1485874) (-900 "PERMCAT.spad" 1479167 1479177 1480595 1480610) (-899 "PERMAN.spad" 1477699 1477713 1479157 1479162) (-898 "PENDTREE.spad" 1477038 1477048 1477328 1477333) (-897 "PDRING.spad" 1475529 1475539 1477018 1477033) (-896 "PDRING.spad" 1474028 1474040 1475519 1475524) (-895 "PDEPROB.spad" 1473043 1473051 1474018 1474023) (-894 "PDEPACK.spad" 1467045 1467053 1473033 1473038) (-893 "PDECOMP.spad" 1466507 1466524 1467035 1467040) (-892 "PDECAT.spad" 1464861 1464869 1466497 1466502) (-891 "PCOMP.spad" 1464712 1464725 1464851 1464856) (-890 "PBWLB.spad" 1463294 1463311 1464702 1464707) (-889 "PATTERN.spad" 1457725 1457735 1463284 1463289) (-888 "PATTERN2.spad" 1457461 1457473 1457715 1457720) (-887 "PATTERN1.spad" 1455763 1455779 1457451 1457456) (-886 "PATRES.spad" 1453310 1453322 1455753 1455758) (-885 "PATRES2.spad" 1452972 1452986 1453300 1453305) (-884 "PATMATCH.spad" 1451129 1451160 1452680 1452685) (-883 "PATMAB.spad" 1450554 1450564 1451119 1451124) (-882 "PATLRES.spad" 1449638 1449652 1450544 1450549) (-881 "PATAB.spad" 1449402 1449412 1449628 1449633) (-880 "PARTPERM.spad" 1446764 1446772 1449392 1449397) (-879 "PARSURF.spad" 1446192 1446220 1446754 1446759) (-878 "PARSU2.spad" 1445987 1446003 1446182 1446187) (-877 "script-parser.spad" 1445507 1445515 1445977 1445982) (-876 "PARSCURV.spad" 1444935 1444963 1445497 1445502) (-875 "PARSC2.spad" 1444724 1444740 1444925 1444930) (-874 "PARPCURV.spad" 1444182 1444210 1444714 1444719) (-873 "PARPC2.spad" 1443971 1443987 1444172 1444177) (-872 "PAN2EXPR.spad" 1443383 1443391 1443961 1443966) (-871 "PALETTE.spad" 1442353 1442361 1443373 1443378) (-870 "PAIR.spad" 1441336 1441349 1441941 1441946) (-869 "PADICRC.spad" 1438666 1438684 1439841 1439934) (-868 "PADICRAT.spad" 1436681 1436693 1436902 1436995) (-867 "PADIC.spad" 1436376 1436388 1436607 1436676) (-866 "PADICCT.spad" 1434917 1434929 1436302 1436371) (-865 "PADEPAC.spad" 1433596 1433615 1434907 1434912) (-864 "PADE.spad" 1432336 1432352 1433586 1433591) (-863 "OWP.spad" 1431576 1431606 1432194 1432261) (-862 "OVERSET.spad" 1431149 1431157 1431566 1431571) (-861 "OVAR.spad" 1430930 1430953 1431139 1431144) (-860 "OUT.spad" 1430014 1430022 1430920 1430925) (-859 "OUTFORM.spad" 1419310 1419318 1430004 1430009) (-858 "OUTBFILE.spad" 1418728 1418736 1419300 1419305) (-857 "OUTBCON.spad" 1417726 1417734 1418718 1418723) (-856 "OUTBCON.spad" 1416722 1416732 1417716 1417721) (-855 "OSI.spad" 1416197 1416205 1416712 1416717) (-854 "OSGROUP.spad" 1416115 1416123 1416187 1416192) (-853 "ORTHPOL.spad" 1414576 1414586 1416032 1416037) (-852 "OREUP.spad" 1414029 1414057 1414256 1414295) (-851 "ORESUP.spad" 1413328 1413352 1413709 1413748) (-850 "OREPCTO.spad" 1411147 1411159 1413248 1413253) (-849 "OREPCAT.spad" 1405204 1405214 1411103 1411142) (-848 "OREPCAT.spad" 1399151 1399163 1405052 1405057) (-847 "ORDSET.spad" 1398317 1398325 1399141 1399146) (-846 "ORDSET.spad" 1397481 1397491 1398307 1398312) (-845 "ORDRING.spad" 1396871 1396879 1397461 1397476) (-844 "ORDRING.spad" 1396269 1396279 1396861 1396866) (-843 "ORDMON.spad" 1396124 1396132 1396259 1396264) (-842 "ORDFUNS.spad" 1395250 1395266 1396114 1396119) (-841 "ORDFIN.spad" 1395070 1395078 1395240 1395245) (-840 "ORDCOMP.spad" 1393535 1393545 1394617 1394646) (-839 "ORDCOMP2.spad" 1392820 1392832 1393525 1393530) (-838 "OPTPROB.spad" 1391458 1391466 1392810 1392815) (-837 "OPTPACK.spad" 1383843 1383851 1391448 1391453) (-836 "OPTCAT.spad" 1381518 1381526 1383833 1383838) (-835 "OPSIG.spad" 1381170 1381178 1381508 1381513) (-834 "OPQUERY.spad" 1380719 1380727 1381160 1381165) (-833 "OP.spad" 1380461 1380471 1380541 1380608) (-832 "OPERCAT.spad" 1380049 1380059 1380451 1380456) (-831 "OPERCAT.spad" 1379635 1379647 1380039 1380044) (-830 "ONECOMP.spad" 1378380 1378390 1379182 1379211) (-829 "ONECOMP2.spad" 1377798 1377810 1378370 1378375) (-828 "OMSERVER.spad" 1376800 1376808 1377788 1377793) (-827 "OMSAGG.spad" 1376588 1376598 1376756 1376795) (-826 "OMPKG.spad" 1375200 1375208 1376578 1376583) (-825 "OM.spad" 1374165 1374173 1375190 1375195) (-824 "OMLO.spad" 1373590 1373602 1374051 1374090) (-823 "OMEXPR.spad" 1373424 1373434 1373580 1373585) (-822 "OMERR.spad" 1372967 1372975 1373414 1373419) (-821 "OMERRK.spad" 1372001 1372009 1372957 1372962) (-820 "OMENC.spad" 1371345 1371353 1371991 1371996) (-819 "OMDEV.spad" 1365634 1365642 1371335 1371340) (-818 "OMCONN.spad" 1365043 1365051 1365624 1365629) (-817 "OINTDOM.spad" 1364806 1364814 1364969 1365038) (-816 "OFMONOID.spad" 1360993 1361003 1364796 1364801) (-815 "ODVAR.spad" 1360254 1360264 1360983 1360988) (-814 "ODR.spad" 1359898 1359924 1360066 1360215) (-813 "ODPOL.spad" 1357244 1357254 1357584 1357711) (-812 "ODP.spad" 1347091 1347111 1347464 1347595) (-811 "ODETOOLS.spad" 1345674 1345693 1347081 1347086) (-810 "ODESYS.spad" 1343324 1343341 1345664 1345669) (-809 "ODERTRIC.spad" 1339265 1339282 1343281 1343286) (-808 "ODERED.spad" 1338652 1338676 1339255 1339260) (-807 "ODERAT.spad" 1336203 1336220 1338642 1338647) (-806 "ODEPRRIC.spad" 1333094 1333116 1336193 1336198) (-805 "ODEPROB.spad" 1332351 1332359 1333084 1333089) (-804 "ODEPRIM.spad" 1329625 1329647 1332341 1332346) (-803 "ODEPAL.spad" 1329001 1329025 1329615 1329620) (-802 "ODEPACK.spad" 1315603 1315611 1328991 1328996) (-801 "ODEINT.spad" 1315034 1315050 1315593 1315598) (-800 "ODEIFTBL.spad" 1312429 1312437 1315024 1315029) (-799 "ODEEF.spad" 1307796 1307812 1312419 1312424) (-798 "ODECONST.spad" 1307315 1307333 1307786 1307791) (-797 "ODECAT.spad" 1305911 1305919 1307305 1307310) (-796 "OCT.spad" 1304049 1304059 1304765 1304804) (-795 "OCTCT2.spad" 1303693 1303714 1304039 1304044) (-794 "OC.spad" 1301467 1301477 1303649 1303688) (-793 "OC.spad" 1298966 1298978 1301150 1301155) (-792 "OCAMON.spad" 1298814 1298822 1298956 1298961) (-791 "OASGP.spad" 1298629 1298637 1298804 1298809) (-790 "OAMONS.spad" 1298149 1298157 1298619 1298624) (-789 "OAMON.spad" 1298010 1298018 1298139 1298144) (-788 "OAGROUP.spad" 1297872 1297880 1298000 1298005) (-787 "NUMTUBE.spad" 1297459 1297475 1297862 1297867) (-786 "NUMQUAD.spad" 1285321 1285329 1297449 1297454) (-785 "NUMODE.spad" 1276457 1276465 1285311 1285316) (-784 "NUMINT.spad" 1274015 1274023 1276447 1276452) (-783 "NUMFMT.spad" 1272855 1272863 1274005 1274010) (-782 "NUMERIC.spad" 1264927 1264937 1272660 1272665) (-781 "NTSCAT.spad" 1263429 1263445 1264895 1264922) (-780 "NTPOLFN.spad" 1262974 1262984 1263346 1263351) (-779 "NSUP.spad" 1255984 1255994 1260524 1260677) (-778 "NSUP2.spad" 1255376 1255388 1255974 1255979) (-777 "NSMP.spad" 1251571 1251590 1251879 1252006) (-776 "NREP.spad" 1249943 1249957 1251561 1251566) (-775 "NPCOEF.spad" 1249189 1249209 1249933 1249938) (-774 "NORMRETR.spad" 1248787 1248826 1249179 1249184) (-773 "NORMPK.spad" 1246689 1246708 1248777 1248782) (-772 "NORMMA.spad" 1246377 1246403 1246679 1246684) (-771 "NONE.spad" 1246118 1246126 1246367 1246372) (-770 "NONE1.spad" 1245794 1245804 1246108 1246113) (-769 "NODE1.spad" 1245263 1245279 1245784 1245789) (-768 "NNI.spad" 1244150 1244158 1245237 1245258) (-767 "NLINSOL.spad" 1242772 1242782 1244140 1244145) (-766 "NIPROB.spad" 1241313 1241321 1242762 1242767) (-765 "NFINTBAS.spad" 1238773 1238790 1241303 1241308) (-764 "NETCLT.spad" 1238747 1238758 1238763 1238768) (-763 "NCODIV.spad" 1236945 1236961 1238737 1238742) (-762 "NCNTFRAC.spad" 1236587 1236601 1236935 1236940) (-761 "NCEP.spad" 1234747 1234761 1236577 1236582) (-760 "NASRING.spad" 1234343 1234351 1234737 1234742) (-759 "NASRING.spad" 1233937 1233947 1234333 1234338) (-758 "NARNG.spad" 1233281 1233289 1233927 1233932) (-757 "NARNG.spad" 1232623 1232633 1233271 1233276) (-756 "NAGSP.spad" 1231696 1231704 1232613 1232618) (-755 "NAGS.spad" 1221221 1221229 1231686 1231691) (-754 "NAGF07.spad" 1219614 1219622 1221211 1221216) (-753 "NAGF04.spad" 1213846 1213854 1219604 1219609) (-752 "NAGF02.spad" 1207655 1207663 1213836 1213841) (-751 "NAGF01.spad" 1203258 1203266 1207645 1207650) (-750 "NAGE04.spad" 1196718 1196726 1203248 1203253) (-749 "NAGE02.spad" 1187060 1187068 1196708 1196713) (-748 "NAGE01.spad" 1182944 1182952 1187050 1187055) (-747 "NAGD03.spad" 1180864 1180872 1182934 1182939) (-746 "NAGD02.spad" 1173395 1173403 1180854 1180859) (-745 "NAGD01.spad" 1167508 1167516 1173385 1173390) (-744 "NAGC06.spad" 1163295 1163303 1167498 1167503) (-743 "NAGC05.spad" 1161764 1161772 1163285 1163290) (-742 "NAGC02.spad" 1161019 1161027 1161754 1161759) (-741 "NAALG.spad" 1160554 1160564 1160987 1161014) (-740 "NAALG.spad" 1160109 1160121 1160544 1160549) (-739 "MULTSQFR.spad" 1157067 1157084 1160099 1160104) (-738 "MULTFACT.spad" 1156450 1156467 1157057 1157062) (-737 "MTSCAT.spad" 1154484 1154505 1156348 1156445) (-736 "MTHING.spad" 1154141 1154151 1154474 1154479) (-735 "MSYSCMD.spad" 1153575 1153583 1154131 1154136) (-734 "MSET.spad" 1151517 1151527 1153281 1153320) (-733 "MSETAGG.spad" 1151362 1151372 1151485 1151512) (-732 "MRING.spad" 1148333 1148345 1151070 1151137) (-731 "MRF2.spad" 1147901 1147915 1148323 1148328) (-730 "MRATFAC.spad" 1147447 1147464 1147891 1147896) (-729 "MPRFF.spad" 1145477 1145496 1147437 1147442) (-728 "MPOLY.spad" 1142912 1142927 1143271 1143398) (-727 "MPCPF.spad" 1142176 1142195 1142902 1142907) (-726 "MPC3.spad" 1141991 1142031 1142166 1142171) (-725 "MPC2.spad" 1141633 1141666 1141981 1141986) (-724 "MONOTOOL.spad" 1139968 1139985 1141623 1141628) (-723 "MONOID.spad" 1139287 1139295 1139958 1139963) (-722 "MONOID.spad" 1138604 1138614 1139277 1139282) (-721 "MONOGEN.spad" 1137350 1137363 1138464 1138599) (-720 "MONOGEN.spad" 1136118 1136133 1137234 1137239) (-719 "MONADWU.spad" 1134132 1134140 1136108 1136113) (-718 "MONADWU.spad" 1132144 1132154 1134122 1134127) (-717 "MONAD.spad" 1131288 1131296 1132134 1132139) (-716 "MONAD.spad" 1130430 1130440 1131278 1131283) (-715 "MOEBIUS.spad" 1129116 1129130 1130410 1130425) (-714 "MODULE.spad" 1128986 1128996 1129084 1129111) (-713 "MODULE.spad" 1128876 1128888 1128976 1128981) (-712 "MODRING.spad" 1128207 1128246 1128856 1128871) (-711 "MODOP.spad" 1126866 1126878 1128029 1128096) (-710 "MODMONOM.spad" 1126595 1126613 1126856 1126861) (-709 "MODMON.spad" 1123354 1123370 1124073 1124226) (-708 "MODFIELD.spad" 1122712 1122751 1123256 1123349) (-707 "MMLFORM.spad" 1121572 1121580 1122702 1122707) (-706 "MMAP.spad" 1121312 1121346 1121562 1121567) (-705 "MLO.spad" 1119739 1119749 1121268 1121307) (-704 "MLIFT.spad" 1118311 1118328 1119729 1119734) (-703 "MKUCFUNC.spad" 1117844 1117862 1118301 1118306) (-702 "MKRECORD.spad" 1117446 1117459 1117834 1117839) (-701 "MKFUNC.spad" 1116827 1116837 1117436 1117441) (-700 "MKFLCFN.spad" 1115783 1115793 1116817 1116822) (-699 "MKCHSET.spad" 1115648 1115658 1115773 1115778) (-698 "MKBCFUNC.spad" 1115133 1115151 1115638 1115643) (-697 "MINT.spad" 1114572 1114580 1115035 1115128) (-696 "MHROWRED.spad" 1113073 1113083 1114562 1114567) (-695 "MFLOAT.spad" 1111589 1111597 1112963 1113068) (-694 "MFINFACT.spad" 1110989 1111011 1111579 1111584) (-693 "MESH.spad" 1108721 1108729 1110979 1110984) (-692 "MDDFACT.spad" 1106914 1106924 1108711 1108716) (-691 "MDAGG.spad" 1106201 1106211 1106894 1106909) (-690 "MCMPLX.spad" 1102175 1102183 1102789 1102990) (-689 "MCDEN.spad" 1101383 1101395 1102165 1102170) (-688 "MCALCFN.spad" 1098485 1098511 1101373 1101378) (-687 "MAYBE.spad" 1097769 1097780 1098475 1098480) (-686 "MATSTOR.spad" 1095045 1095055 1097759 1097764) (-685 "MATRIX.spad" 1093749 1093759 1094233 1094260) (-684 "MATLIN.spad" 1091075 1091099 1093633 1093638) (-683 "MATCAT.spad" 1082660 1082682 1091043 1091070) (-682 "MATCAT.spad" 1074117 1074141 1082502 1082507) (-681 "MATCAT2.spad" 1073385 1073433 1074107 1074112) (-680 "MAPPKG3.spad" 1072284 1072298 1073375 1073380) (-679 "MAPPKG2.spad" 1071618 1071630 1072274 1072279) (-678 "MAPPKG1.spad" 1070436 1070446 1071608 1071613) (-677 "MAPPAST.spad" 1069749 1069757 1070426 1070431) (-676 "MAPHACK3.spad" 1069557 1069571 1069739 1069744) (-675 "MAPHACK2.spad" 1069322 1069334 1069547 1069552) (-674 "MAPHACK1.spad" 1068952 1068962 1069312 1069317) (-673 "MAGMA.spad" 1066742 1066759 1068942 1068947) (-672 "MACROAST.spad" 1066321 1066329 1066732 1066737) (-671 "M3D.spad" 1064017 1064027 1065699 1065704) (-670 "LZSTAGG.spad" 1061245 1061255 1064007 1064012) (-669 "LZSTAGG.spad" 1058471 1058483 1061235 1061240) (-668 "LWORD.spad" 1055176 1055193 1058461 1058466) (-667 "LSTAST.spad" 1054960 1054968 1055166 1055171) (-666 "LSQM.spad" 1053186 1053200 1053584 1053635) (-665 "LSPP.spad" 1052719 1052736 1053176 1053181) (-664 "LSMP.spad" 1051559 1051587 1052709 1052714) (-663 "LSMP1.spad" 1049363 1049377 1051549 1051554) (-662 "LSAGG.spad" 1049032 1049042 1049331 1049358) (-661 "LSAGG.spad" 1048721 1048733 1049022 1049027) (-660 "LPOLY.spad" 1047675 1047694 1048577 1048646) (-659 "LPEFRAC.spad" 1046932 1046942 1047665 1047670) (-658 "LO.spad" 1046333 1046347 1046866 1046893) (-657 "LOGIC.spad" 1045935 1045943 1046323 1046328) (-656 "LOGIC.spad" 1045535 1045545 1045925 1045930) (-655 "LODOOPS.spad" 1044453 1044465 1045525 1045530) (-654 "LODO.spad" 1043837 1043853 1044133 1044172) (-653 "LODOF.spad" 1042881 1042898 1043794 1043799) (-652 "LODOCAT.spad" 1041539 1041549 1042837 1042876) (-651 "LODOCAT.spad" 1040195 1040207 1041495 1041500) (-650 "LODO2.spad" 1039468 1039480 1039875 1039914) (-649 "LODO1.spad" 1038868 1038878 1039148 1039187) (-648 "LODEEF.spad" 1037640 1037658 1038858 1038863) (-647 "LNAGG.spad" 1033442 1033452 1037630 1037635) (-646 "LNAGG.spad" 1029208 1029220 1033398 1033403) (-645 "LMOPS.spad" 1025944 1025961 1029198 1029203) (-644 "LMODULE.spad" 1025586 1025596 1025934 1025939) (-643 "LMDICT.spad" 1024869 1024879 1025137 1025164) (-642 "LITERAL.spad" 1024775 1024786 1024859 1024864) (-641 "LIST.spad" 1022493 1022503 1023922 1023949) (-640 "LIST3.spad" 1021784 1021798 1022483 1022488) (-639 "LIST2.spad" 1020424 1020436 1021774 1021779) (-638 "LIST2MAP.spad" 1017301 1017313 1020414 1020419) (-637 "LINEXP.spad" 1016733 1016743 1017281 1017296) (-636 "LINDEP.spad" 1015510 1015522 1016645 1016650) (-635 "LIMITRF.spad" 1013424 1013434 1015500 1015505) (-634 "LIMITPS.spad" 1012307 1012320 1013414 1013419) (-633 "LIE.spad" 1010321 1010333 1011597 1011742) (-632 "LIECAT.spad" 1009797 1009807 1010247 1010316) (-631 "LIECAT.spad" 1009301 1009313 1009753 1009758) (-630 "LIB.spad" 1007349 1007357 1007960 1007975) (-629 "LGROBP.spad" 1004702 1004721 1007339 1007344) (-628 "LF.spad" 1003621 1003637 1004692 1004697) (-627 "LFCAT.spad" 1002640 1002648 1003611 1003616) (-626 "LEXTRIPK.spad" 998143 998158 1002630 1002635) (-625 "LEXP.spad" 996146 996173 998123 998138) (-624 "LETAST.spad" 995845 995853 996136 996141) (-623 "LEADCDET.spad" 994229 994246 995835 995840) (-622 "LAZM3PK.spad" 992933 992955 994219 994224) (-621 "LAUPOL.spad" 991622 991635 992526 992595) (-620 "LAPLACE.spad" 991195 991211 991612 991617) (-619 "LA.spad" 990635 990649 991117 991156) (-618 "LALG.spad" 990411 990421 990615 990630) (-617 "LALG.spad" 990195 990207 990401 990406) (-616 "KVTFROM.spad" 989930 989940 990185 990190) (-615 "KTVLOGIC.spad" 989353 989361 989920 989925) (-614 "KRCFROM.spad" 989091 989101 989343 989348) (-613 "KOVACIC.spad" 987804 987821 989081 989086) (-612 "KONVERT.spad" 987526 987536 987794 987799) (-611 "KOERCE.spad" 987263 987273 987516 987521) (-610 "KERNEL.spad" 985798 985808 987047 987052) (-609 "KERNEL2.spad" 985501 985513 985788 985793) (-608 "KDAGG.spad" 984604 984626 985481 985496) (-607 "KDAGG.spad" 983715 983739 984594 984599) (-606 "KAFILE.spad" 982678 982694 982913 982940) (-605 "JORDAN.spad" 980505 980517 981968 982113) (-604 "JOINAST.spad" 980199 980207 980495 980500) (-603 "JAVACODE.spad" 980065 980073 980189 980194) (-602 "IXAGG.spad" 978188 978212 980055 980060) (-601 "IXAGG.spad" 976166 976192 978035 978040) (-600 "IVECTOR.spad" 974937 974952 975092 975119) (-599 "ITUPLE.spad" 974082 974092 974927 974932) (-598 "ITRIGMNP.spad" 972893 972912 974072 974077) (-597 "ITFUN3.spad" 972387 972401 972883 972888) (-596 "ITFUN2.spad" 972117 972129 972377 972382) (-595 "ITAYLOR.spad" 969909 969924 971953 972078) (-594 "ISUPS.spad" 962320 962335 968883 968980) (-593 "ISUMP.spad" 961817 961833 962310 962315) (-592 "ISTRING.spad" 960820 960833 960986 961013) (-591 "ISAST.spad" 960539 960547 960810 960815) (-590 "IRURPK.spad" 959252 959271 960529 960534) (-589 "IRSN.spad" 957212 957220 959242 959247) (-588 "IRRF2F.spad" 955687 955697 957168 957173) (-587 "IRREDFFX.spad" 955288 955299 955677 955682) (-586 "IROOT.spad" 953619 953629 955278 955283) (-585 "IR.spad" 951408 951422 953474 953501) (-584 "IR2.spad" 950428 950444 951398 951403) (-583 "IR2F.spad" 949628 949644 950418 950423) (-582 "IPRNTPK.spad" 949388 949396 949618 949623) (-581 "IPF.spad" 948953 948965 949193 949286) (-580 "IPADIC.spad" 948714 948740 948879 948948) (-579 "IP4ADDR.spad" 948271 948279 948704 948709) (-578 "IOMODE.spad" 947892 947900 948261 948266) (-577 "IOBFILE.spad" 947253 947261 947882 947887) (-576 "IOBCON.spad" 947118 947126 947243 947248) (-575 "INVLAPLA.spad" 946763 946779 947108 947113) (-574 "INTTR.spad" 940009 940026 946753 946758) (-573 "INTTOOLS.spad" 937720 937736 939583 939588) (-572 "INTSLPE.spad" 937026 937034 937710 937715) (-571 "INTRVL.spad" 936592 936602 936940 937021) (-570 "INTRF.spad" 934956 934970 936582 936587) (-569 "INTRET.spad" 934388 934398 934946 934951) (-568 "INTRAT.spad" 933063 933080 934378 934383) (-567 "INTPM.spad" 931426 931442 932706 932711) (-566 "INTPAF.spad" 929194 929212 931358 931363) (-565 "INTPACK.spad" 919504 919512 929184 929189) (-564 "INT.spad" 918865 918873 919358 919499) (-563 "INTHERTR.spad" 918131 918148 918855 918860) (-562 "INTHERAL.spad" 917797 917821 918121 918126) (-561 "INTHEORY.spad" 914210 914218 917787 917792) (-560 "INTG0.spad" 907673 907691 914142 914147) (-559 "INTFTBL.spad" 901702 901710 907663 907668) (-558 "INTFACT.spad" 900761 900771 901692 901697) (-557 "INTEF.spad" 899076 899092 900751 900756) (-556 "INTDOM.spad" 897691 897699 899002 899071) (-555 "INTDOM.spad" 896368 896378 897681 897686) (-554 "INTCAT.spad" 894621 894631 896282 896363) (-553 "INTBIT.spad" 894124 894132 894611 894616) (-552 "INTALG.spad" 893306 893333 894114 894119) (-551 "INTAF.spad" 892798 892814 893296 893301) (-550 "INTABL.spad" 891316 891347 891479 891506) (-549 "INT8.spad" 891196 891204 891306 891311) (-548 "INT64.spad" 891075 891083 891186 891191) (-547 "INT32.spad" 890954 890962 891065 891070) (-546 "INT16.spad" 890833 890841 890944 890949) (-545 "INS.spad" 888300 888308 890735 890828) (-544 "INS.spad" 885853 885863 888290 888295) (-543 "INPSIGN.spad" 885287 885300 885843 885848) (-542 "INPRODPF.spad" 884353 884372 885277 885282) (-541 "INPRODFF.spad" 883411 883435 884343 884348) (-540 "INNMFACT.spad" 882382 882399 883401 883406) (-539 "INMODGCD.spad" 881866 881896 882372 882377) (-538 "INFSP.spad" 880151 880173 881856 881861) (-537 "INFPROD0.spad" 879201 879220 880141 880146) (-536 "INFORM.spad" 876362 876370 879191 879196) (-535 "INFORM1.spad" 875987 875997 876352 876357) (-534 "INFINITY.spad" 875539 875547 875977 875982) (-533 "INETCLTS.spad" 875516 875524 875529 875534) (-532 "INEP.spad" 874048 874070 875506 875511) (-531 "INDE.spad" 873777 873794 874038 874043) (-530 "INCRMAPS.spad" 873198 873208 873767 873772) (-529 "INBFILE.spad" 872270 872278 873188 873193) (-528 "INBFF.spad" 868040 868051 872260 872265) (-527 "INBCON.spad" 866328 866336 868030 868035) (-526 "INBCON.spad" 864614 864624 866318 866323) (-525 "INAST.spad" 864275 864283 864604 864609) (-524 "IMPTAST.spad" 863983 863991 864265 864270) (-523 "IMATRIX.spad" 862928 862954 863440 863467) (-522 "IMATQF.spad" 862022 862066 862884 862889) (-521 "IMATLIN.spad" 860627 860651 861978 861983) (-520 "ILIST.spad" 859283 859298 859810 859837) (-519 "IIARRAY2.spad" 858671 858709 858890 858917) (-518 "IFF.spad" 858081 858097 858352 858445) (-517 "IFAST.spad" 857695 857703 858071 858076) (-516 "IFARRAY.spad" 855182 855197 856878 856905) (-515 "IFAMON.spad" 855044 855061 855138 855143) (-514 "IEVALAB.spad" 854433 854445 855034 855039) (-513 "IEVALAB.spad" 853820 853834 854423 854428) (-512 "IDPO.spad" 853618 853630 853810 853815) (-511 "IDPOAMS.spad" 853374 853386 853608 853613) (-510 "IDPOAM.spad" 853094 853106 853364 853369) (-509 "IDPC.spad" 852028 852040 853084 853089) (-508 "IDPAM.spad" 851773 851785 852018 852023) (-507 "IDPAG.spad" 851520 851532 851763 851768) (-506 "IDENT.spad" 851190 851198 851510 851515) (-505 "IDECOMP.spad" 848427 848445 851180 851185) (-504 "IDEAL.spad" 843350 843389 848362 848367) (-503 "ICDEN.spad" 842501 842517 843340 843345) (-502 "ICARD.spad" 841690 841698 842491 842496) (-501 "IBPTOOLS.spad" 840283 840300 841680 841685) (-500 "IBITS.spad" 839482 839495 839919 839946) (-499 "IBATOOL.spad" 836357 836376 839472 839477) (-498 "IBACHIN.spad" 834844 834859 836347 836352) (-497 "IARRAY2.spad" 833832 833858 834451 834478) (-496 "IARRAY1.spad" 832877 832892 833015 833042) (-495 "IAN.spad" 831090 831098 832693 832786) (-494 "IALGFACT.spad" 830691 830724 831080 831085) (-493 "HYPCAT.spad" 830115 830123 830681 830686) (-492 "HYPCAT.spad" 829537 829547 830105 830110) (-491 "HOSTNAME.spad" 829345 829353 829527 829532) (-490 "HOMOTOP.spad" 829088 829098 829335 829340) (-489 "HOAGG.spad" 826356 826366 829078 829083) (-488 "HOAGG.spad" 823399 823411 826123 826128) (-487 "HEXADEC.spad" 821501 821509 821866 821959) (-486 "HEUGCD.spad" 820516 820527 821491 821496) (-485 "HELLFDIV.spad" 820106 820130 820506 820511) (-484 "HEAP.spad" 819498 819508 819713 819740) (-483 "HEADAST.spad" 819029 819037 819488 819493) (-482 "HDP.spad" 808872 808888 809249 809380) (-481 "HDMP.spad" 806048 806063 806666 806793) (-480 "HB.spad" 804285 804293 806038 806043) (-479 "HASHTBL.spad" 802755 802786 802966 802993) (-478 "HASAST.spad" 802471 802479 802745 802750) (-477 "HACKPI.spad" 801954 801962 802373 802466) (-476 "GTSET.spad" 800893 800909 801600 801627) (-475 "GSTBL.spad" 799412 799447 799586 799601) (-474 "GSERIES.spad" 796579 796606 797544 797693) (-473 "GROUP.spad" 795848 795856 796559 796574) (-472 "GROUP.spad" 795125 795135 795838 795843) (-471 "GROEBSOL.spad" 793613 793634 795115 795120) (-470 "GRMOD.spad" 792184 792196 793603 793608) (-469 "GRMOD.spad" 790753 790767 792174 792179) (-468 "GRIMAGE.spad" 783358 783366 790743 790748) (-467 "GRDEF.spad" 781737 781745 783348 783353) (-466 "GRAY.spad" 780196 780204 781727 781732) (-465 "GRALG.spad" 779243 779255 780186 780191) (-464 "GRALG.spad" 778288 778302 779233 779238) (-463 "GPOLSET.spad" 777742 777765 777970 777997) (-462 "GOSPER.spad" 777007 777025 777732 777737) (-461 "GMODPOL.spad" 776145 776172 776975 777002) (-460 "GHENSEL.spad" 775214 775228 776135 776140) (-459 "GENUPS.spad" 771315 771328 775204 775209) (-458 "GENUFACT.spad" 770892 770902 771305 771310) (-457 "GENPGCD.spad" 770476 770493 770882 770887) (-456 "GENMFACT.spad" 769928 769947 770466 770471) (-455 "GENEEZ.spad" 767867 767880 769918 769923) (-454 "GDMP.spad" 764885 764902 765661 765788) (-453 "GCNAALG.spad" 758780 758807 764679 764746) (-452 "GCDDOM.spad" 757952 757960 758706 758775) (-451 "GCDDOM.spad" 757186 757196 757942 757947) (-450 "GB.spad" 754704 754742 757142 757147) (-449 "GBINTERN.spad" 750724 750762 754694 754699) (-448 "GBF.spad" 746481 746519 750714 750719) (-447 "GBEUCLID.spad" 744355 744393 746471 746476) (-446 "GAUSSFAC.spad" 743652 743660 744345 744350) (-445 "GALUTIL.spad" 741974 741984 743608 743613) (-444 "GALPOLYU.spad" 740420 740433 741964 741969) (-443 "GALFACTU.spad" 738585 738604 740410 740415) (-442 "GALFACT.spad" 728718 728729 738575 738580) (-441 "FVFUN.spad" 725741 725749 728708 728713) (-440 "FVC.spad" 724793 724801 725731 725736) (-439 "FUNDESC.spad" 724471 724479 724783 724788) (-438 "FUNCTION.spad" 724320 724332 724461 724466) (-437 "FT.spad" 722613 722621 724310 724315) (-436 "FTEM.spad" 721776 721784 722603 722608) (-435 "FSUPFACT.spad" 720676 720695 721712 721717) (-434 "FST.spad" 718762 718770 720666 720671) (-433 "FSRED.spad" 718240 718256 718752 718757) (-432 "FSPRMELT.spad" 717064 717080 718197 718202) (-431 "FSPECF.spad" 715141 715157 717054 717059) (-430 "FS.spad" 709203 709213 714916 715136) (-429 "FS.spad" 703043 703055 708758 708763) (-428 "FSINT.spad" 702701 702717 703033 703038) (-427 "FSERIES.spad" 701888 701900 702521 702620) (-426 "FSCINT.spad" 701201 701217 701878 701883) (-425 "FSAGG.spad" 700318 700328 701157 701196) (-424 "FSAGG.spad" 699397 699409 700238 700243) (-423 "FSAGG2.spad" 698096 698112 699387 699392) (-422 "FS2UPS.spad" 692579 692613 698086 698091) (-421 "FS2.spad" 692224 692240 692569 692574) (-420 "FS2EXPXP.spad" 691347 691370 692214 692219) (-419 "FRUTIL.spad" 690289 690299 691337 691342) (-418 "FR.spad" 683983 683993 689313 689382) (-417 "FRNAALG.spad" 679070 679080 683925 683978) (-416 "FRNAALG.spad" 674169 674181 679026 679031) (-415 "FRNAAF2.spad" 673623 673641 674159 674164) (-414 "FRMOD.spad" 673017 673047 673554 673559) (-413 "FRIDEAL.spad" 672212 672233 672997 673012) (-412 "FRIDEAL2.spad" 671814 671846 672202 672207) (-411 "FRETRCT.spad" 671325 671335 671804 671809) (-410 "FRETRCT.spad" 670702 670714 671183 671188) (-409 "FRAMALG.spad" 669030 669043 670658 670697) (-408 "FRAMALG.spad" 667390 667405 669020 669025) (-407 "FRAC.spad" 664489 664499 664892 665065) (-406 "FRAC2.spad" 664092 664104 664479 664484) (-405 "FR2.spad" 663426 663438 664082 664087) (-404 "FPS.spad" 660235 660243 663316 663421) (-403 "FPS.spad" 657072 657082 660155 660160) (-402 "FPC.spad" 656114 656122 656974 657067) (-401 "FPC.spad" 655242 655252 656104 656109) (-400 "FPATMAB.spad" 655004 655014 655232 655237) (-399 "FPARFRAC.spad" 653477 653494 654994 654999) (-398 "FORTRAN.spad" 651983 652026 653467 653472) (-397 "FORT.spad" 650912 650920 651973 651978) (-396 "FORTFN.spad" 648082 648090 650902 650907) (-395 "FORTCAT.spad" 647766 647774 648072 648077) (-394 "FORMULA.spad" 645230 645238 647756 647761) (-393 "FORMULA1.spad" 644709 644719 645220 645225) (-392 "FORDER.spad" 644400 644424 644699 644704) (-391 "FOP.spad" 643601 643609 644390 644395) (-390 "FNLA.spad" 643025 643047 643569 643596) (-389 "FNCAT.spad" 641612 641620 643015 643020) (-388 "FNAME.spad" 641504 641512 641602 641607) (-387 "FMTC.spad" 641302 641310 641430 641499) (-386 "FMONOID.spad" 638357 638367 641258 641263) (-385 "FM.spad" 638052 638064 638291 638318) (-384 "FMFUN.spad" 635082 635090 638042 638047) (-383 "FMC.spad" 634134 634142 635072 635077) (-382 "FMCAT.spad" 631788 631806 634102 634129) (-381 "FM1.spad" 631145 631157 631722 631749) (-380 "FLOATRP.spad" 628866 628880 631135 631140) (-379 "FLOAT.spad" 622154 622162 628732 628861) (-378 "FLOATCP.spad" 619571 619585 622144 622149) (-377 "FLINEXP.spad" 619283 619293 619551 619566) (-376 "FLINEXP.spad" 618949 618961 619219 619224) (-375 "FLASORT.spad" 618269 618281 618939 618944) (-374 "FLALG.spad" 615915 615934 618195 618264) (-373 "FLAGG.spad" 612933 612943 615895 615910) (-372 "FLAGG.spad" 609852 609864 612816 612821) (-371 "FLAGG2.spad" 608533 608549 609842 609847) (-370 "FINRALG.spad" 606562 606575 608489 608528) (-369 "FINRALG.spad" 604517 604532 606446 606451) (-368 "FINITE.spad" 603669 603677 604507 604512) (-367 "FINAALG.spad" 592650 592660 603611 603664) (-366 "FINAALG.spad" 581643 581655 592606 592611) (-365 "FILE.spad" 581226 581236 581633 581638) (-364 "FILECAT.spad" 579744 579761 581216 581221) (-363 "FIELD.spad" 579150 579158 579646 579739) (-362 "FIELD.spad" 578642 578652 579140 579145) (-361 "FGROUP.spad" 577251 577261 578622 578637) (-360 "FGLMICPK.spad" 576038 576053 577241 577246) (-359 "FFX.spad" 575413 575428 575754 575847) (-358 "FFSLPE.spad" 574902 574923 575403 575408) (-357 "FFPOLY.spad" 566154 566165 574892 574897) (-356 "FFPOLY2.spad" 565214 565231 566144 566149) (-355 "FFP.spad" 564611 564631 564930 565023) (-354 "FF.spad" 564059 564075 564292 564385) (-353 "FFNBX.spad" 562571 562591 563775 563868) (-352 "FFNBP.spad" 561084 561101 562287 562380) (-351 "FFNB.spad" 559549 559570 560765 560858) (-350 "FFINTBAS.spad" 556963 556982 559539 559544) (-349 "FFIELDC.spad" 554538 554546 556865 556958) (-348 "FFIELDC.spad" 552199 552209 554528 554533) (-347 "FFHOM.spad" 550947 550964 552189 552194) (-346 "FFF.spad" 548382 548393 550937 550942) (-345 "FFCGX.spad" 547229 547249 548098 548191) (-344 "FFCGP.spad" 546118 546138 546945 547038) (-343 "FFCG.spad" 544910 544931 545799 545892) (-342 "FFCAT.spad" 537937 537959 544749 544905) (-341 "FFCAT.spad" 531043 531067 537857 537862) (-340 "FFCAT2.spad" 530788 530828 531033 531038) (-339 "FEXPR.spad" 522497 522543 530544 530583) (-338 "FEVALAB.spad" 522203 522213 522487 522492) (-337 "FEVALAB.spad" 521694 521706 521980 521985) (-336 "FDIV.spad" 521136 521160 521684 521689) (-335 "FDIVCAT.spad" 519178 519202 521126 521131) (-334 "FDIVCAT.spad" 517218 517244 519168 519173) (-333 "FDIV2.spad" 516872 516912 517208 517213) (-332 "FCPAK1.spad" 515425 515433 516862 516867) (-331 "FCOMP.spad" 514804 514814 515415 515420) (-330 "FC.spad" 504719 504727 514794 514799) (-329 "FAXF.spad" 497654 497668 504621 504714) (-328 "FAXF.spad" 490641 490657 497610 497615) (-327 "FARRAY.spad" 488787 488797 489824 489851) (-326 "FAMR.spad" 486907 486919 488685 488782) (-325 "FAMR.spad" 485011 485025 486791 486796) (-324 "FAMONOID.spad" 484661 484671 484965 484970) (-323 "FAMONC.spad" 482883 482895 484651 484656) (-322 "FAGROUP.spad" 482489 482499 482779 482806) (-321 "FACUTIL.spad" 480685 480702 482479 482484) (-320 "FACTFUNC.spad" 479861 479871 480675 480680) (-319 "EXPUPXS.spad" 476694 476717 477993 478142) (-318 "EXPRTUBE.spad" 473922 473930 476684 476689) (-317 "EXPRODE.spad" 470794 470810 473912 473917) (-316 "EXPR.spad" 466069 466079 466783 467190) (-315 "EXPR2UPS.spad" 462161 462174 466059 466064) (-314 "EXPR2.spad" 461864 461876 462151 462156) (-313 "EXPEXPAN.spad" 458802 458827 459436 459529) (-312 "EXIT.spad" 458473 458481 458792 458797) (-311 "EXITAST.spad" 458209 458217 458463 458468) (-310 "EVALCYC.spad" 457667 457681 458199 458204) (-309 "EVALAB.spad" 457231 457241 457657 457662) (-308 "EVALAB.spad" 456793 456805 457221 457226) (-307 "EUCDOM.spad" 454335 454343 456719 456788) (-306 "EUCDOM.spad" 451939 451949 454325 454330) (-305 "ESTOOLS.spad" 443779 443787 451929 451934) (-304 "ESTOOLS2.spad" 443380 443394 443769 443774) (-303 "ESTOOLS1.spad" 443065 443076 443370 443375) (-302 "ES.spad" 435612 435620 443055 443060) (-301 "ES.spad" 428065 428075 435510 435515) (-300 "ESCONT.spad" 424838 424846 428055 428060) (-299 "ESCONT1.spad" 424587 424599 424828 424833) (-298 "ES2.spad" 424082 424098 424577 424582) (-297 "ES1.spad" 423648 423664 424072 424077) (-296 "ERROR.spad" 420969 420977 423638 423643) (-295 "EQTBL.spad" 419441 419463 419650 419677) (-294 "EQ.spad" 414315 414325 417114 417226) (-293 "EQ2.spad" 414031 414043 414305 414310) (-292 "EP.spad" 410345 410355 414021 414026) (-291 "ENV.spad" 409021 409029 410335 410340) (-290 "ENTIRER.spad" 408689 408697 408965 409016) (-289 "EMR.spad" 407890 407931 408615 408684) (-288 "ELTAGG.spad" 406130 406149 407880 407885) (-287 "ELTAGG.spad" 404334 404355 406086 406091) (-286 "ELTAB.spad" 403781 403799 404324 404329) (-285 "ELFUTS.spad" 403160 403179 403771 403776) (-284 "ELEMFUN.spad" 402849 402857 403150 403155) (-283 "ELEMFUN.spad" 402536 402546 402839 402844) (-282 "ELAGG.spad" 400479 400489 402516 402531) (-281 "ELAGG.spad" 398359 398371 400398 400403) (-280 "ELABEXPR.spad" 397282 397290 398349 398354) (-279 "EFUPXS.spad" 394058 394088 397238 397243) (-278 "EFULS.spad" 390894 390917 394014 394019) (-277 "EFSTRUC.spad" 388849 388865 390884 390889) (-276 "EF.spad" 383615 383631 388839 388844) (-275 "EAB.spad" 381891 381899 383605 383610) (-274 "E04UCFA.spad" 381427 381435 381881 381886) (-273 "E04NAFA.spad" 381004 381012 381417 381422) (-272 "E04MBFA.spad" 380584 380592 380994 380999) (-271 "E04JAFA.spad" 380120 380128 380574 380579) (-270 "E04GCFA.spad" 379656 379664 380110 380115) (-269 "E04FDFA.spad" 379192 379200 379646 379651) (-268 "E04DGFA.spad" 378728 378736 379182 379187) (-267 "E04AGNT.spad" 374570 374578 378718 378723) (-266 "DVARCAT.spad" 371255 371265 374560 374565) (-265 "DVARCAT.spad" 367938 367950 371245 371250) (-264 "DSMP.spad" 365369 365383 365674 365801) (-263 "DROPT.spad" 359314 359322 365359 365364) (-262 "DROPT1.spad" 358977 358987 359304 359309) (-261 "DROPT0.spad" 353804 353812 358967 358972) (-260 "DRAWPT.spad" 351959 351967 353794 353799) (-259 "DRAW.spad" 344559 344572 351949 351954) (-258 "DRAWHACK.spad" 343867 343877 344549 344554) (-257 "DRAWCX.spad" 341309 341317 343857 343862) (-256 "DRAWCURV.spad" 340846 340861 341299 341304) (-255 "DRAWCFUN.spad" 330018 330026 340836 340841) (-254 "DQAGG.spad" 328186 328196 329986 330013) (-253 "DPOLCAT.spad" 323527 323543 328054 328181) (-252 "DPOLCAT.spad" 318954 318972 323483 323488) (-251 "DPMO.spad" 311180 311196 311318 311619) (-250 "DPMM.spad" 303419 303437 303544 303845) (-249 "DOMCTOR.spad" 303311 303319 303409 303414) (-248 "DOMAIN.spad" 302442 302450 303301 303306) (-247 "DMP.spad" 299664 299679 300236 300363) (-246 "DLP.spad" 299012 299022 299654 299659) (-245 "DLIST.spad" 297591 297601 298195 298222) (-244 "DLAGG.spad" 296002 296012 297581 297586) (-243 "DIVRING.spad" 295544 295552 295946 295997) (-242 "DIVRING.spad" 295130 295140 295534 295539) (-241 "DISPLAY.spad" 293310 293318 295120 295125) (-240 "DIRPROD.spad" 282890 282906 283530 283661) (-239 "DIRPROD2.spad" 281698 281716 282880 282885) (-238 "DIRPCAT.spad" 280640 280656 281562 281693) (-237 "DIRPCAT.spad" 279311 279329 280235 280240) (-236 "DIOSP.spad" 278136 278144 279301 279306) (-235 "DIOPS.spad" 277120 277130 278116 278131) (-234 "DIOPS.spad" 276078 276090 277076 277081) (-233 "DIFRING.spad" 275370 275378 276058 276073) (-232 "DIFRING.spad" 274670 274680 275360 275365) (-231 "DIFEXT.spad" 273829 273839 274650 274665) (-230 "DIFEXT.spad" 272905 272917 273728 273733) (-229 "DIAGG.spad" 272535 272545 272885 272900) (-228 "DIAGG.spad" 272173 272185 272525 272530) (-227 "DHMATRIX.spad" 270477 270487 271630 271657) (-226 "DFSFUN.spad" 263885 263893 270467 270472) (-225 "DFLOAT.spad" 260606 260614 263775 263880) (-224 "DFINTTLS.spad" 258815 258831 260596 260601) (-223 "DERHAM.spad" 256725 256757 258795 258810) (-222 "DEQUEUE.spad" 256043 256053 256332 256359) (-221 "DEGRED.spad" 255658 255672 256033 256038) (-220 "DEFINTRF.spad" 253183 253193 255648 255653) (-219 "DEFINTEF.spad" 251679 251695 253173 253178) (-218 "DEFAST.spad" 251047 251055 251669 251674) (-217 "DECIMAL.spad" 249153 249161 249514 249607) (-216 "DDFACT.spad" 246952 246969 249143 249148) (-215 "DBLRESP.spad" 246550 246574 246942 246947) (-214 "DBASE.spad" 245204 245214 246540 246545) (-213 "DATAARY.spad" 244666 244679 245194 245199) (-212 "D03FAFA.spad" 244494 244502 244656 244661) (-211 "D03EEFA.spad" 244314 244322 244484 244489) (-210 "D03AGNT.spad" 243394 243402 244304 244309) (-209 "D02EJFA.spad" 242856 242864 243384 243389) (-208 "D02CJFA.spad" 242334 242342 242846 242851) (-207 "D02BHFA.spad" 241824 241832 242324 242329) (-206 "D02BBFA.spad" 241314 241322 241814 241819) (-205 "D02AGNT.spad" 236118 236126 241304 241309) (-204 "D01WGTS.spad" 234437 234445 236108 236113) (-203 "D01TRNS.spad" 234414 234422 234427 234432) (-202 "D01GBFA.spad" 233936 233944 234404 234409) (-201 "D01FCFA.spad" 233458 233466 233926 233931) (-200 "D01ASFA.spad" 232926 232934 233448 233453) (-199 "D01AQFA.spad" 232372 232380 232916 232921) (-198 "D01APFA.spad" 231796 231804 232362 232367) (-197 "D01ANFA.spad" 231290 231298 231786 231791) (-196 "D01AMFA.spad" 230800 230808 231280 231285) (-195 "D01ALFA.spad" 230340 230348 230790 230795) (-194 "D01AKFA.spad" 229866 229874 230330 230335) (-193 "D01AJFA.spad" 229389 229397 229856 229861) (-192 "D01AGNT.spad" 225448 225456 229379 229384) (-191 "CYCLOTOM.spad" 224954 224962 225438 225443) (-190 "CYCLES.spad" 221786 221794 224944 224949) (-189 "CVMP.spad" 221203 221213 221776 221781) (-188 "CTRIGMNP.spad" 219693 219709 221193 221198) (-187 "CTOR.spad" 219388 219396 219683 219688) (-186 "CTORKIND.spad" 218991 218999 219378 219383) (-185 "CTORCAT.spad" 218240 218248 218981 218986) (-184 "CTORCAT.spad" 217487 217497 218230 218235) (-183 "CTORCALL.spad" 217067 217075 217477 217482) (-182 "CSTTOOLS.spad" 216310 216323 217057 217062) (-181 "CRFP.spad" 210014 210027 216300 216305) (-180 "CRCEAST.spad" 209734 209742 210004 210009) (-179 "CRAPACK.spad" 208777 208787 209724 209729) (-178 "CPMATCH.spad" 208277 208292 208702 208707) (-177 "CPIMA.spad" 207982 208001 208267 208272) (-176 "COORDSYS.spad" 202875 202885 207972 207977) (-175 "CONTOUR.spad" 202286 202294 202865 202870) (-174 "CONTFRAC.spad" 197898 197908 202188 202281) (-173 "CONDUIT.spad" 197656 197664 197888 197893) (-172 "COMRING.spad" 197330 197338 197594 197651) (-171 "COMPPROP.spad" 196844 196852 197320 197325) (-170 "COMPLPAT.spad" 196611 196626 196834 196839) (-169 "COMPLEX.spad" 190635 190645 190879 191140) (-168 "COMPLEX2.spad" 190348 190360 190625 190630) (-167 "COMPFACT.spad" 189950 189964 190338 190343) (-166 "COMPCAT.spad" 188018 188028 189684 189945) (-165 "COMPCAT.spad" 185779 185791 187447 187452) (-164 "COMMUPC.spad" 185525 185543 185769 185774) (-163 "COMMONOP.spad" 185058 185066 185515 185520) (-162 "COMM.spad" 184867 184875 185048 185053) (-161 "COMMAAST.spad" 184630 184638 184857 184862) (-160 "COMBOPC.spad" 183535 183543 184620 184625) (-159 "COMBINAT.spad" 182280 182290 183525 183530) (-158 "COMBF.spad" 179648 179664 182270 182275) (-157 "COLOR.spad" 178485 178493 179638 179643) (-156 "COLONAST.spad" 178151 178159 178475 178480) (-155 "CMPLXRT.spad" 177860 177877 178141 178146) (-154 "CLLCTAST.spad" 177522 177530 177850 177855) (-153 "CLIP.spad" 173614 173622 177512 177517) (-152 "CLIF.spad" 172253 172269 173570 173609) (-151 "CLAGG.spad" 168738 168748 172243 172248) (-150 "CLAGG.spad" 165094 165106 168601 168606) (-149 "CINTSLPE.spad" 164419 164432 165084 165089) (-148 "CHVAR.spad" 162497 162519 164409 164414) (-147 "CHARZ.spad" 162412 162420 162477 162492) (-146 "CHARPOL.spad" 161920 161930 162402 162407) (-145 "CHARNZ.spad" 161673 161681 161900 161915) (-144 "CHAR.spad" 159541 159549 161663 161668) (-143 "CFCAT.spad" 158857 158865 159531 159536) (-142 "CDEN.spad" 158015 158029 158847 158852) (-141 "CCLASS.spad" 156164 156172 157426 157465) (-140 "CATEGORY.spad" 155254 155262 156154 156159) (-139 "CATCTOR.spad" 155145 155153 155244 155249) (-138 "CATAST.spad" 154763 154771 155135 155140) (-137 "CASEAST.spad" 154477 154485 154753 154758) (-136 "CARTEN.spad" 149580 149604 154467 154472) (-135 "CARTEN2.spad" 148966 148993 149570 149575) (-134 "CARD.spad" 146255 146263 148940 148961) (-133 "CAPSLAST.spad" 146029 146037 146245 146250) (-132 "CACHSET.spad" 145651 145659 146019 146024) (-131 "CABMON.spad" 145204 145212 145641 145646) (-130 "BYTEORD.spad" 144879 144887 145194 145199) (-129 "BYTE.spad" 144304 144312 144869 144874) (-128 "BYTEBUF.spad" 142161 142169 143473 143500) (-127 "BTREE.spad" 141230 141240 141768 141795) (-126 "BTOURN.spad" 140233 140243 140837 140864) (-125 "BTCAT.spad" 139621 139631 140201 140228) (-124 "BTCAT.spad" 139029 139041 139611 139616) (-123 "BTAGG.spad" 138151 138159 138997 139024) (-122 "BTAGG.spad" 137293 137303 138141 138146) (-121 "BSTREE.spad" 136028 136038 136900 136927) (-120 "BRILL.spad" 134223 134234 136018 136023) (-119 "BRAGG.spad" 133147 133157 134213 134218) (-118 "BRAGG.spad" 132035 132047 133103 133108) (-117 "BPADICRT.spad" 130016 130028 130271 130364) (-116 "BPADIC.spad" 129680 129692 129942 130011) (-115 "BOUNDZRO.spad" 129336 129353 129670 129675) (-114 "BOP.spad" 124800 124808 129326 129331) (-113 "BOP1.spad" 122186 122196 124756 124761) (-112 "BOOLEAN.spad" 121510 121518 122176 122181) (-111 "BMODULE.spad" 121222 121234 121478 121505) (-110 "BITS.spad" 120641 120649 120858 120885) (-109 "BINDING.spad" 120060 120068 120631 120636) (-108 "BINARY.spad" 118171 118179 118527 118620) (-107 "BGAGG.spad" 117368 117378 118151 118166) (-106 "BGAGG.spad" 116573 116585 117358 117363) (-105 "BFUNCT.spad" 116137 116145 116553 116568) (-104 "BEZOUT.spad" 115271 115298 116087 116092) (-103 "BBTREE.spad" 112090 112100 114878 114905) (-102 "BASTYPE.spad" 111762 111770 112080 112085) (-101 "BASTYPE.spad" 111432 111442 111752 111757) (-100 "BALFACT.spad" 110871 110884 111422 111427) (-99 "AUTOMOR.spad" 110318 110327 110851 110866) (-98 "ATTREG.spad" 107037 107044 110070 110313) (-97 "ATTRBUT.spad" 103060 103067 107017 107032) (-96 "ATTRAST.spad" 102777 102784 103050 103055) (-95 "ATRIG.spad" 102247 102254 102767 102772) (-94 "ATRIG.spad" 101715 101724 102237 102242) (-93 "ASTCAT.spad" 101619 101626 101705 101710) (-92 "ASTCAT.spad" 101521 101530 101609 101614) (-91 "ASTACK.spad" 100854 100863 101128 101155) (-90 "ASSOCEQ.spad" 99654 99665 100810 100815) (-89 "ASP9.spad" 98735 98748 99644 99649) (-88 "ASP8.spad" 97778 97791 98725 98730) (-87 "ASP80.spad" 97100 97113 97768 97773) (-86 "ASP7.spad" 96260 96273 97090 97095) (-85 "ASP78.spad" 95711 95724 96250 96255) (-84 "ASP77.spad" 95080 95093 95701 95706) (-83 "ASP74.spad" 94172 94185 95070 95075) (-82 "ASP73.spad" 93443 93456 94162 94167) (-81 "ASP6.spad" 92310 92323 93433 93438) (-80 "ASP55.spad" 90819 90832 92300 92305) (-79 "ASP50.spad" 88636 88649 90809 90814) (-78 "ASP4.spad" 87931 87944 88626 88631) (-77 "ASP49.spad" 86930 86943 87921 87926) (-76 "ASP42.spad" 85337 85376 86920 86925) (-75 "ASP41.spad" 83916 83955 85327 85332) (-74 "ASP35.spad" 82904 82917 83906 83911) (-73 "ASP34.spad" 82205 82218 82894 82899) (-72 "ASP33.spad" 81765 81778 82195 82200) (-71 "ASP31.spad" 80905 80918 81755 81760) (-70 "ASP30.spad" 79797 79810 80895 80900) (-69 "ASP29.spad" 79263 79276 79787 79792) (-68 "ASP28.spad" 70536 70549 79253 79258) (-67 "ASP27.spad" 69433 69446 70526 70531) (-66 "ASP24.spad" 68520 68533 69423 69428) (-65 "ASP20.spad" 67984 67997 68510 68515) (-64 "ASP1.spad" 67365 67378 67974 67979) (-63 "ASP19.spad" 62051 62064 67355 67360) (-62 "ASP12.spad" 61465 61478 62041 62046) (-61 "ASP10.spad" 60736 60749 61455 61460) (-60 "ARRAY2.spad" 60096 60105 60343 60370) (-59 "ARRAY1.spad" 58931 58940 59279 59306) (-58 "ARRAY12.spad" 57600 57611 58921 58926) (-57 "ARR2CAT.spad" 53262 53283 57568 57595) (-56 "ARR2CAT.spad" 48944 48967 53252 53257) (-55 "ARITY.spad" 48512 48519 48934 48939) (-54 "APPRULE.spad" 47756 47778 48502 48507) (-53 "APPLYORE.spad" 47371 47384 47746 47751) (-52 "ANY.spad" 45713 45720 47361 47366) (-51 "ANY1.spad" 44784 44793 45703 45708) (-50 "ANTISYM.spad" 43223 43239 44764 44779) (-49 "ANON.spad" 42916 42923 43213 43218) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2283947 2283952 2283957 2283962) (-2 NIL 2283927 2283932 2283937 2283942) (-1 NIL 2283907 2283912 2283917 2283922) (0 NIL 2283887 2283892 2283897 2283902) (-1287 "ZMOD.spad" 2283696 2283709 2283825 2283882) (-1286 "ZLINDEP.spad" 2282740 2282751 2283686 2283691) (-1285 "ZDSOLVE.spad" 2272589 2272611 2282730 2282735) (-1284 "YSTREAM.spad" 2272082 2272093 2272579 2272584) (-1283 "XRPOLY.spad" 2271302 2271322 2271938 2272007) (-1282 "XPR.spad" 2269093 2269106 2271020 2271119) (-1281 "XPOLY.spad" 2268648 2268659 2268949 2269018) (-1280 "XPOLYC.spad" 2267965 2267981 2268574 2268643) (-1279 "XPBWPOLY.spad" 2266402 2266422 2267745 2267814) (-1278 "XF.spad" 2264863 2264878 2266304 2266397) (-1277 "XF.spad" 2263304 2263321 2264747 2264752) (-1276 "XFALG.spad" 2260328 2260344 2263230 2263299) (-1275 "XEXPPKG.spad" 2259579 2259605 2260318 2260323) (-1274 "XDPOLY.spad" 2259193 2259209 2259435 2259504) (-1273 "XALG.spad" 2258853 2258864 2259149 2259188) (-1272 "WUTSET.spad" 2254692 2254709 2258499 2258526) (-1271 "WP.spad" 2253891 2253935 2254550 2254617) (-1270 "WHILEAST.spad" 2253689 2253698 2253881 2253886) (-1269 "WHEREAST.spad" 2253360 2253369 2253679 2253684) (-1268 "WFFINTBS.spad" 2250923 2250945 2253350 2253355) (-1267 "WEIER.spad" 2249137 2249148 2250913 2250918) (-1266 "VSPACE.spad" 2248810 2248821 2249105 2249132) (-1265 "VSPACE.spad" 2248503 2248516 2248800 2248805) (-1264 "VOID.spad" 2248180 2248189 2248493 2248498) (-1263 "VIEW.spad" 2245802 2245811 2248170 2248175) (-1262 "VIEWDEF.spad" 2240999 2241008 2245792 2245797) (-1261 "VIEW3D.spad" 2224834 2224843 2240989 2240994) (-1260 "VIEW2D.spad" 2212571 2212580 2224824 2224829) (-1259 "VECTOR.spad" 2211246 2211257 2211497 2211524) (-1258 "VECTOR2.spad" 2209873 2209886 2211236 2211241) (-1257 "VECTCAT.spad" 2207773 2207784 2209841 2209868) (-1256 "VECTCAT.spad" 2205481 2205494 2207551 2207556) (-1255 "VARIABLE.spad" 2205261 2205276 2205471 2205476) (-1254 "UTYPE.spad" 2204905 2204914 2205251 2205256) (-1253 "UTSODETL.spad" 2204198 2204222 2204861 2204866) (-1252 "UTSODE.spad" 2202386 2202406 2204188 2204193) (-1251 "UTS.spad" 2197175 2197203 2200853 2200950) (-1250 "UTSCAT.spad" 2194626 2194642 2197073 2197170) (-1249 "UTSCAT.spad" 2191721 2191739 2194170 2194175) (-1248 "UTS2.spad" 2191314 2191349 2191711 2191716) (-1247 "URAGG.spad" 2185946 2185957 2191304 2191309) (-1246 "URAGG.spad" 2180542 2180555 2185902 2185907) (-1245 "UPXSSING.spad" 2178185 2178211 2179623 2179756) (-1244 "UPXS.spad" 2175333 2175361 2176317 2176466) (-1243 "UPXSCONS.spad" 2173090 2173110 2173465 2173614) (-1242 "UPXSCCA.spad" 2171655 2171675 2172936 2173085) (-1241 "UPXSCCA.spad" 2170362 2170384 2171645 2171650) (-1240 "UPXSCAT.spad" 2168943 2168959 2170208 2170357) (-1239 "UPXS2.spad" 2168484 2168537 2168933 2168938) (-1238 "UPSQFREE.spad" 2166896 2166910 2168474 2168479) (-1237 "UPSCAT.spad" 2164489 2164513 2166794 2166891) (-1236 "UPSCAT.spad" 2161788 2161814 2164095 2164100) (-1235 "UPOLYC.spad" 2156766 2156777 2161630 2161783) (-1234 "UPOLYC.spad" 2151636 2151649 2156502 2156507) (-1233 "UPOLYC2.spad" 2151105 2151124 2151626 2151631) (-1232 "UP.spad" 2148262 2148277 2148655 2148808) (-1231 "UPMP.spad" 2147152 2147165 2148252 2148257) (-1230 "UPDIVP.spad" 2146715 2146729 2147142 2147147) (-1229 "UPDECOMP.spad" 2144952 2144966 2146705 2146710) (-1228 "UPCDEN.spad" 2144159 2144175 2144942 2144947) (-1227 "UP2.spad" 2143521 2143542 2144149 2144154) (-1226 "UNISEG.spad" 2142874 2142885 2143440 2143445) (-1225 "UNISEG2.spad" 2142367 2142380 2142830 2142835) (-1224 "UNIFACT.spad" 2141468 2141480 2142357 2142362) (-1223 "ULS.spad" 2132020 2132048 2133113 2133542) (-1222 "ULSCONS.spad" 2124414 2124434 2124786 2124935) (-1221 "ULSCCAT.spad" 2122143 2122163 2124260 2124409) (-1220 "ULSCCAT.spad" 2119980 2120002 2122099 2122104) (-1219 "ULSCAT.spad" 2118196 2118212 2119826 2119975) (-1218 "ULS2.spad" 2117708 2117761 2118186 2118191) (-1217 "UINT8.spad" 2117585 2117594 2117698 2117703) (-1216 "UINT64.spad" 2117461 2117470 2117575 2117580) (-1215 "UINT32.spad" 2117337 2117346 2117451 2117456) (-1214 "UINT16.spad" 2117213 2117222 2117327 2117332) (-1213 "UFD.spad" 2116278 2116287 2117139 2117208) (-1212 "UFD.spad" 2115405 2115416 2116268 2116273) (-1211 "UDVO.spad" 2114252 2114261 2115395 2115400) (-1210 "UDPO.spad" 2111679 2111690 2114208 2114213) (-1209 "TYPE.spad" 2111611 2111620 2111669 2111674) (-1208 "TYPEAST.spad" 2111530 2111539 2111601 2111606) (-1207 "TWOFACT.spad" 2110180 2110195 2111520 2111525) (-1206 "TUPLE.spad" 2109664 2109675 2110079 2110084) (-1205 "TUBETOOL.spad" 2106501 2106510 2109654 2109659) (-1204 "TUBE.spad" 2105142 2105159 2106491 2106496) (-1203 "TS.spad" 2103731 2103747 2104707 2104804) (-1202 "TSETCAT.spad" 2090858 2090875 2103699 2103726) (-1201 "TSETCAT.spad" 2077971 2077990 2090814 2090819) (-1200 "TRMANIP.spad" 2072337 2072354 2077677 2077682) (-1199 "TRIMAT.spad" 2071296 2071321 2072327 2072332) (-1198 "TRIGMNIP.spad" 2069813 2069830 2071286 2071291) (-1197 "TRIGCAT.spad" 2069325 2069334 2069803 2069808) (-1196 "TRIGCAT.spad" 2068835 2068846 2069315 2069320) (-1195 "TREE.spad" 2067406 2067417 2068442 2068469) (-1194 "TRANFUN.spad" 2067237 2067246 2067396 2067401) (-1193 "TRANFUN.spad" 2067066 2067077 2067227 2067232) (-1192 "TOPSP.spad" 2066740 2066749 2067056 2067061) (-1191 "TOOLSIGN.spad" 2066403 2066414 2066730 2066735) (-1190 "TEXTFILE.spad" 2064960 2064969 2066393 2066398) (-1189 "TEX.spad" 2062092 2062101 2064950 2064955) (-1188 "TEX1.spad" 2061648 2061659 2062082 2062087) (-1187 "TEMUTL.spad" 2061203 2061212 2061638 2061643) (-1186 "TBCMPPK.spad" 2059296 2059319 2061193 2061198) (-1185 "TBAGG.spad" 2058332 2058355 2059276 2059291) (-1184 "TBAGG.spad" 2057376 2057401 2058322 2058327) (-1183 "TANEXP.spad" 2056752 2056763 2057366 2057371) (-1182 "TABLE.spad" 2055163 2055186 2055433 2055460) (-1181 "TABLEAU.spad" 2054644 2054655 2055153 2055158) (-1180 "TABLBUMP.spad" 2051427 2051438 2054634 2054639) (-1179 "SYSTEM.spad" 2050655 2050664 2051417 2051422) (-1178 "SYSSOLP.spad" 2048128 2048139 2050645 2050650) (-1177 "SYSNNI.spad" 2047308 2047319 2048118 2048123) (-1176 "SYSINT.spad" 2046712 2046723 2047298 2047303) (-1175 "SYNTAX.spad" 2042906 2042915 2046702 2046707) (-1174 "SYMTAB.spad" 2040962 2040971 2042896 2042901) (-1173 "SYMS.spad" 2036947 2036956 2040952 2040957) (-1172 "SYMPOLY.spad" 2035954 2035965 2036036 2036163) (-1171 "SYMFUNC.spad" 2035429 2035440 2035944 2035949) (-1170 "SYMBOL.spad" 2032856 2032865 2035419 2035424) (-1169 "SWITCH.spad" 2029613 2029622 2032846 2032851) (-1168 "SUTS.spad" 2026512 2026540 2028080 2028177) (-1167 "SUPXS.spad" 2023647 2023675 2024644 2024793) (-1166 "SUP.spad" 2020416 2020427 2021197 2021350) (-1165 "SUPFRACF.spad" 2019521 2019539 2020406 2020411) (-1164 "SUP2.spad" 2018911 2018924 2019511 2019516) (-1163 "SUMRF.spad" 2017877 2017888 2018901 2018906) (-1162 "SUMFS.spad" 2017510 2017527 2017867 2017872) (-1161 "SULS.spad" 2008049 2008077 2009155 2009584) (-1160 "SUCHTAST.spad" 2007818 2007827 2008039 2008044) (-1159 "SUCH.spad" 2007498 2007513 2007808 2007813) (-1158 "SUBSPACE.spad" 1999505 1999520 2007488 2007493) (-1157 "SUBRESP.spad" 1998665 1998679 1999461 1999466) (-1156 "STTF.spad" 1994764 1994780 1998655 1998660) (-1155 "STTFNC.spad" 1991232 1991248 1994754 1994759) (-1154 "STTAYLOR.spad" 1983630 1983641 1991113 1991118) (-1153 "STRTBL.spad" 1982135 1982152 1982284 1982311) (-1152 "STRING.spad" 1981544 1981553 1981558 1981585) (-1151 "STRICAT.spad" 1981332 1981341 1981512 1981539) (-1150 "STREAM.spad" 1978190 1978201 1980857 1980872) (-1149 "STREAM3.spad" 1977735 1977750 1978180 1978185) (-1148 "STREAM2.spad" 1976803 1976816 1977725 1977730) (-1147 "STREAM1.spad" 1976507 1976518 1976793 1976798) (-1146 "STINPROD.spad" 1975413 1975429 1976497 1976502) (-1145 "STEP.spad" 1974614 1974623 1975403 1975408) (-1144 "STBL.spad" 1973140 1973168 1973307 1973322) (-1143 "STAGG.spad" 1972215 1972226 1973130 1973135) (-1142 "STAGG.spad" 1971288 1971301 1972205 1972210) (-1141 "STACK.spad" 1970639 1970650 1970895 1970922) (-1140 "SREGSET.spad" 1968343 1968360 1970285 1970312) (-1139 "SRDCMPK.spad" 1966888 1966908 1968333 1968338) (-1138 "SRAGG.spad" 1961985 1961994 1966856 1966883) (-1137 "SRAGG.spad" 1957102 1957113 1961975 1961980) (-1136 "SQMATRIX.spad" 1954718 1954736 1955634 1955721) (-1135 "SPLTREE.spad" 1949270 1949283 1954154 1954181) (-1134 "SPLNODE.spad" 1945858 1945871 1949260 1949265) (-1133 "SPFCAT.spad" 1944635 1944644 1945848 1945853) (-1132 "SPECOUT.spad" 1943185 1943194 1944625 1944630) (-1131 "SPADXPT.spad" 1935324 1935333 1943175 1943180) (-1130 "spad-parser.spad" 1934789 1934798 1935314 1935319) (-1129 "SPADAST.spad" 1934490 1934499 1934779 1934784) (-1128 "SPACEC.spad" 1918503 1918514 1934480 1934485) (-1127 "SPACE3.spad" 1918279 1918290 1918493 1918498) (-1126 "SORTPAK.spad" 1917824 1917837 1918235 1918240) (-1125 "SOLVETRA.spad" 1915581 1915592 1917814 1917819) (-1124 "SOLVESER.spad" 1914101 1914112 1915571 1915576) (-1123 "SOLVERAD.spad" 1910111 1910122 1914091 1914096) (-1122 "SOLVEFOR.spad" 1908531 1908549 1910101 1910106) (-1121 "SNTSCAT.spad" 1908131 1908148 1908499 1908526) (-1120 "SMTS.spad" 1906391 1906417 1907696 1907793) (-1119 "SMP.spad" 1903830 1903850 1904220 1904347) (-1118 "SMITH.spad" 1902673 1902698 1903820 1903825) (-1117 "SMATCAT.spad" 1900783 1900813 1902617 1902668) (-1116 "SMATCAT.spad" 1898825 1898857 1900661 1900666) (-1115 "SKAGG.spad" 1897786 1897797 1898793 1898820) (-1114 "SINT.spad" 1896612 1896621 1897652 1897781) (-1113 "SIMPAN.spad" 1896340 1896349 1896602 1896607) (-1112 "SIG.spad" 1895668 1895677 1896330 1896335) (-1111 "SIGNRF.spad" 1894776 1894787 1895658 1895663) (-1110 "SIGNEF.spad" 1894045 1894062 1894766 1894771) (-1109 "SIGAST.spad" 1893426 1893435 1894035 1894040) (-1108 "SHP.spad" 1891344 1891359 1893382 1893387) (-1107 "SHDP.spad" 1881055 1881082 1881564 1881695) (-1106 "SGROUP.spad" 1880663 1880672 1881045 1881050) (-1105 "SGROUP.spad" 1880269 1880280 1880653 1880658) (-1104 "SGCF.spad" 1873150 1873159 1880259 1880264) (-1103 "SFRTCAT.spad" 1872078 1872095 1873118 1873145) (-1102 "SFRGCD.spad" 1871141 1871161 1872068 1872073) (-1101 "SFQCMPK.spad" 1865778 1865798 1871131 1871136) (-1100 "SFORT.spad" 1865213 1865227 1865768 1865773) (-1099 "SEXOF.spad" 1865056 1865096 1865203 1865208) (-1098 "SEX.spad" 1864948 1864957 1865046 1865051) (-1097 "SEXCAT.spad" 1862499 1862539 1864938 1864943) (-1096 "SET.spad" 1860799 1860810 1861920 1861959) (-1095 "SETMN.spad" 1859233 1859250 1860789 1860794) (-1094 "SETCAT.spad" 1858718 1858727 1859223 1859228) (-1093 "SETCAT.spad" 1858201 1858212 1858708 1858713) (-1092 "SETAGG.spad" 1854722 1854733 1858181 1858196) (-1091 "SETAGG.spad" 1851251 1851264 1854712 1854717) (-1090 "SEQAST.spad" 1850954 1850963 1851241 1851246) (-1089 "SEGXCAT.spad" 1850076 1850089 1850944 1850949) (-1088 "SEG.spad" 1849889 1849900 1849995 1850000) (-1087 "SEGCAT.spad" 1848796 1848807 1849879 1849884) (-1086 "SEGBIND.spad" 1847868 1847879 1848751 1848756) (-1085 "SEGBIND2.spad" 1847564 1847577 1847858 1847863) (-1084 "SEGAST.spad" 1847278 1847287 1847554 1847559) (-1083 "SEG2.spad" 1846703 1846716 1847234 1847239) (-1082 "SDVAR.spad" 1845979 1845990 1846693 1846698) (-1081 "SDPOL.spad" 1843369 1843380 1843660 1843787) (-1080 "SCPKG.spad" 1841448 1841459 1843359 1843364) (-1079 "SCOPE.spad" 1840601 1840610 1841438 1841443) (-1078 "SCACHE.spad" 1839283 1839294 1840591 1840596) (-1077 "SASTCAT.spad" 1839192 1839201 1839273 1839278) (-1076 "SAOS.spad" 1839064 1839073 1839182 1839187) (-1075 "SAERFFC.spad" 1838777 1838797 1839054 1839059) (-1074 "SAE.spad" 1836952 1836968 1837563 1837698) (-1073 "SAEFACT.spad" 1836653 1836673 1836942 1836947) (-1072 "RURPK.spad" 1834294 1834310 1836643 1836648) (-1071 "RULESET.spad" 1833735 1833759 1834284 1834289) (-1070 "RULE.spad" 1831939 1831963 1833725 1833730) (-1069 "RULECOLD.spad" 1831791 1831804 1831929 1831934) (-1068 "RSTRCAST.spad" 1831508 1831517 1831781 1831786) (-1067 "RSETGCD.spad" 1827886 1827906 1831498 1831503) (-1066 "RSETCAT.spad" 1817670 1817687 1827854 1827881) (-1065 "RSETCAT.spad" 1807474 1807493 1817660 1817665) (-1064 "RSDCMPK.spad" 1805926 1805946 1807464 1807469) (-1063 "RRCC.spad" 1804310 1804340 1805916 1805921) (-1062 "RRCC.spad" 1802692 1802724 1804300 1804305) (-1061 "RPTAST.spad" 1802394 1802403 1802682 1802687) (-1060 "RPOLCAT.spad" 1781754 1781769 1802262 1802389) (-1059 "RPOLCAT.spad" 1760828 1760845 1781338 1781343) (-1058 "ROUTINE.spad" 1756691 1756700 1759475 1759502) (-1057 "ROMAN.spad" 1756019 1756028 1756557 1756686) (-1056 "ROIRC.spad" 1755099 1755131 1756009 1756014) (-1055 "RNS.spad" 1754002 1754011 1755001 1755094) (-1054 "RNS.spad" 1752991 1753002 1753992 1753997) (-1053 "RNG.spad" 1752726 1752735 1752981 1752986) (-1052 "RMODULE.spad" 1752364 1752375 1752716 1752721) (-1051 "RMCAT2.spad" 1751772 1751829 1752354 1752359) (-1050 "RMATRIX.spad" 1750596 1750615 1750939 1750978) (-1049 "RMATCAT.spad" 1746129 1746160 1750552 1750591) (-1048 "RMATCAT.spad" 1741552 1741585 1745977 1745982) (-1047 "RINTERP.spad" 1741440 1741460 1741542 1741547) (-1046 "RING.spad" 1740910 1740919 1741420 1741435) (-1045 "RING.spad" 1740388 1740399 1740900 1740905) (-1044 "RIDIST.spad" 1739772 1739781 1740378 1740383) (-1043 "RGCHAIN.spad" 1738351 1738367 1739257 1739284) (-1042 "RGBCSPC.spad" 1738132 1738144 1738341 1738346) (-1041 "RGBCMDL.spad" 1737662 1737674 1738122 1738127) (-1040 "RF.spad" 1735276 1735287 1737652 1737657) (-1039 "RFFACTOR.spad" 1734738 1734749 1735266 1735271) (-1038 "RFFACT.spad" 1734473 1734485 1734728 1734733) (-1037 "RFDIST.spad" 1733461 1733470 1734463 1734468) (-1036 "RETSOL.spad" 1732878 1732891 1733451 1733456) (-1035 "RETRACT.spad" 1732306 1732317 1732868 1732873) (-1034 "RETRACT.spad" 1731732 1731745 1732296 1732301) (-1033 "RETAST.spad" 1731544 1731553 1731722 1731727) (-1032 "RESULT.spad" 1729604 1729613 1730191 1730218) (-1031 "RESRING.spad" 1728951 1728998 1729542 1729599) (-1030 "RESLATC.spad" 1728275 1728286 1728941 1728946) (-1029 "REPSQ.spad" 1728004 1728015 1728265 1728270) (-1028 "REP.spad" 1725556 1725565 1727994 1727999) (-1027 "REPDB.spad" 1725261 1725272 1725546 1725551) (-1026 "REP2.spad" 1714833 1714844 1725103 1725108) (-1025 "REP1.spad" 1708823 1708834 1714783 1714788) (-1024 "REGSET.spad" 1706620 1706637 1708469 1708496) (-1023 "REF.spad" 1705949 1705960 1706575 1706580) (-1022 "REDORDER.spad" 1705125 1705142 1705939 1705944) (-1021 "RECLOS.spad" 1703908 1703928 1704612 1704705) (-1020 "REALSOLV.spad" 1703040 1703049 1703898 1703903) (-1019 "REAL.spad" 1702912 1702921 1703030 1703035) (-1018 "REAL0Q.spad" 1700194 1700209 1702902 1702907) (-1017 "REAL0.spad" 1697022 1697037 1700184 1700189) (-1016 "RDUCEAST.spad" 1696743 1696752 1697012 1697017) (-1015 "RDIV.spad" 1696394 1696419 1696733 1696738) (-1014 "RDIST.spad" 1695957 1695968 1696384 1696389) (-1013 "RDETRS.spad" 1694753 1694771 1695947 1695952) (-1012 "RDETR.spad" 1692860 1692878 1694743 1694748) (-1011 "RDEEFS.spad" 1691933 1691950 1692850 1692855) (-1010 "RDEEF.spad" 1690929 1690946 1691923 1691928) (-1009 "RCFIELD.spad" 1688115 1688124 1690831 1690924) (-1008 "RCFIELD.spad" 1685387 1685398 1688105 1688110) (-1007 "RCAGG.spad" 1683299 1683310 1685377 1685382) (-1006 "RCAGG.spad" 1681138 1681151 1683218 1683223) (-1005 "RATRET.spad" 1680498 1680509 1681128 1681133) (-1004 "RATFACT.spad" 1680190 1680202 1680488 1680493) (-1003 "RANDSRC.spad" 1679509 1679518 1680180 1680185) (-1002 "RADUTIL.spad" 1679263 1679272 1679499 1679504) (-1001 "RADIX.spad" 1676164 1676178 1677730 1677823) (-1000 "RADFF.spad" 1674577 1674614 1674696 1674852) (-999 "RADCAT.spad" 1674171 1674179 1674567 1674572) (-998 "RADCAT.spad" 1673763 1673773 1674161 1674166) (-997 "QUEUE.spad" 1673106 1673116 1673370 1673397) (-996 "QUAT.spad" 1671688 1671698 1672030 1672095) (-995 "QUATCT2.spad" 1671307 1671325 1671678 1671683) (-994 "QUATCAT.spad" 1669472 1669482 1671237 1671302) (-993 "QUATCAT.spad" 1667388 1667400 1669155 1669160) (-992 "QUAGG.spad" 1666214 1666224 1667356 1667383) (-991 "QQUTAST.spad" 1665983 1665991 1666204 1666209) (-990 "QFORM.spad" 1665446 1665460 1665973 1665978) (-989 "QFCAT.spad" 1664149 1664159 1665348 1665441) (-988 "QFCAT.spad" 1662443 1662455 1663644 1663649) (-987 "QFCAT2.spad" 1662134 1662150 1662433 1662438) (-986 "QEQUAT.spad" 1661691 1661699 1662124 1662129) (-985 "QCMPACK.spad" 1656438 1656457 1661681 1661686) (-984 "QALGSET.spad" 1652513 1652545 1656352 1656357) (-983 "QALGSET2.spad" 1650509 1650527 1652503 1652508) (-982 "PWFFINTB.spad" 1647819 1647840 1650499 1650504) (-981 "PUSHVAR.spad" 1647148 1647167 1647809 1647814) (-980 "PTRANFN.spad" 1643274 1643284 1647138 1647143) (-979 "PTPACK.spad" 1640362 1640372 1643264 1643269) (-978 "PTFUNC2.spad" 1640183 1640197 1640352 1640357) (-977 "PTCAT.spad" 1639432 1639442 1640151 1640178) (-976 "PSQFR.spad" 1638739 1638763 1639422 1639427) (-975 "PSEUDLIN.spad" 1637597 1637607 1638729 1638734) (-974 "PSETPK.spad" 1623030 1623046 1637475 1637480) (-973 "PSETCAT.spad" 1616950 1616973 1623010 1623025) (-972 "PSETCAT.spad" 1610844 1610869 1616906 1616911) (-971 "PSCURVE.spad" 1609827 1609835 1610834 1610839) (-970 "PSCAT.spad" 1608594 1608623 1609725 1609822) (-969 "PSCAT.spad" 1607451 1607482 1608584 1608589) (-968 "PRTITION.spad" 1606396 1606404 1607441 1607446) (-967 "PRTDAST.spad" 1606115 1606123 1606386 1606391) (-966 "PRS.spad" 1595677 1595694 1606071 1606076) (-965 "PRQAGG.spad" 1595108 1595118 1595645 1595672) (-964 "PROPLOG.spad" 1594511 1594519 1595098 1595103) (-963 "PROPFRML.spad" 1592429 1592440 1594501 1594506) (-962 "PROPERTY.spad" 1591923 1591931 1592419 1592424) (-961 "PRODUCT.spad" 1589603 1589615 1589889 1589944) (-960 "PR.spad" 1587989 1588001 1588694 1588821) (-959 "PRINT.spad" 1587741 1587749 1587979 1587984) (-958 "PRIMES.spad" 1585992 1586002 1587731 1587736) (-957 "PRIMELT.spad" 1583973 1583987 1585982 1585987) (-956 "PRIMCAT.spad" 1583596 1583604 1583963 1583968) (-955 "PRIMARR.spad" 1582601 1582611 1582779 1582806) (-954 "PRIMARR2.spad" 1581324 1581336 1582591 1582596) (-953 "PREASSOC.spad" 1580696 1580708 1581314 1581319) (-952 "PPCURVE.spad" 1579833 1579841 1580686 1580691) (-951 "PORTNUM.spad" 1579608 1579616 1579823 1579828) (-950 "POLYROOT.spad" 1578437 1578459 1579564 1579569) (-949 "POLY.spad" 1575734 1575744 1576251 1576378) (-948 "POLYLIFT.spad" 1574995 1575018 1575724 1575729) (-947 "POLYCATQ.spad" 1573097 1573119 1574985 1574990) (-946 "POLYCAT.spad" 1566503 1566524 1572965 1573092) (-945 "POLYCAT.spad" 1559211 1559234 1565675 1565680) (-944 "POLY2UP.spad" 1558659 1558673 1559201 1559206) (-943 "POLY2.spad" 1558254 1558266 1558649 1558654) (-942 "POLUTIL.spad" 1557195 1557224 1558210 1558215) (-941 "POLTOPOL.spad" 1555943 1555958 1557185 1557190) (-940 "POINT.spad" 1554782 1554792 1554869 1554896) (-939 "PNTHEORY.spad" 1551448 1551456 1554772 1554777) (-938 "PMTOOLS.spad" 1550205 1550219 1551438 1551443) (-937 "PMSYM.spad" 1549750 1549760 1550195 1550200) (-936 "PMQFCAT.spad" 1549337 1549351 1549740 1549745) (-935 "PMPRED.spad" 1548806 1548820 1549327 1549332) (-934 "PMPREDFS.spad" 1548250 1548272 1548796 1548801) (-933 "PMPLCAT.spad" 1547320 1547338 1548182 1548187) (-932 "PMLSAGG.spad" 1546901 1546915 1547310 1547315) (-931 "PMKERNEL.spad" 1546468 1546480 1546891 1546896) (-930 "PMINS.spad" 1546044 1546054 1546458 1546463) (-929 "PMFS.spad" 1545617 1545635 1546034 1546039) (-928 "PMDOWN.spad" 1544903 1544917 1545607 1545612) (-927 "PMASS.spad" 1543915 1543923 1544893 1544898) (-926 "PMASSFS.spad" 1542884 1542900 1543905 1543910) (-925 "PLOTTOOL.spad" 1542664 1542672 1542874 1542879) (-924 "PLOT.spad" 1537495 1537503 1542654 1542659) (-923 "PLOT3D.spad" 1533915 1533923 1537485 1537490) (-922 "PLOT1.spad" 1533056 1533066 1533905 1533910) (-921 "PLEQN.spad" 1520272 1520299 1533046 1533051) (-920 "PINTERP.spad" 1519888 1519907 1520262 1520267) (-919 "PINTERPA.spad" 1519670 1519686 1519878 1519883) (-918 "PI.spad" 1519277 1519285 1519644 1519665) (-917 "PID.spad" 1518233 1518241 1519203 1519272) (-916 "PICOERCE.spad" 1517890 1517900 1518223 1518228) (-915 "PGROEB.spad" 1516487 1516501 1517880 1517885) (-914 "PGE.spad" 1507740 1507748 1516477 1516482) (-913 "PGCD.spad" 1506622 1506639 1507730 1507735) (-912 "PFRPAC.spad" 1505765 1505775 1506612 1506617) (-911 "PFR.spad" 1502422 1502432 1505667 1505760) (-910 "PFOTOOLS.spad" 1501680 1501696 1502412 1502417) (-909 "PFOQ.spad" 1501050 1501068 1501670 1501675) (-908 "PFO.spad" 1500469 1500496 1501040 1501045) (-907 "PF.spad" 1500043 1500055 1500274 1500367) (-906 "PFECAT.spad" 1497709 1497717 1499969 1500038) (-905 "PFECAT.spad" 1495403 1495413 1497665 1497670) (-904 "PFBRU.spad" 1493273 1493285 1495393 1495398) (-903 "PFBR.spad" 1490811 1490834 1493263 1493268) (-902 "PERM.spad" 1486492 1486502 1490641 1490656) (-901 "PERMGRP.spad" 1481228 1481238 1486482 1486487) (-900 "PERMCAT.spad" 1479780 1479790 1481208 1481223) (-899 "PERMAN.spad" 1478312 1478326 1479770 1479775) (-898 "PENDTREE.spad" 1477651 1477661 1477941 1477946) (-897 "PDRING.spad" 1476142 1476152 1477631 1477646) (-896 "PDRING.spad" 1474641 1474653 1476132 1476137) (-895 "PDEPROB.spad" 1473656 1473664 1474631 1474636) (-894 "PDEPACK.spad" 1467658 1467666 1473646 1473651) (-893 "PDECOMP.spad" 1467120 1467137 1467648 1467653) (-892 "PDECAT.spad" 1465474 1465482 1467110 1467115) (-891 "PCOMP.spad" 1465325 1465338 1465464 1465469) (-890 "PBWLB.spad" 1463907 1463924 1465315 1465320) (-889 "PATTERN.spad" 1458338 1458348 1463897 1463902) (-888 "PATTERN2.spad" 1458074 1458086 1458328 1458333) (-887 "PATTERN1.spad" 1456376 1456392 1458064 1458069) (-886 "PATRES.spad" 1453923 1453935 1456366 1456371) (-885 "PATRES2.spad" 1453585 1453599 1453913 1453918) (-884 "PATMATCH.spad" 1451742 1451773 1453293 1453298) (-883 "PATMAB.spad" 1451167 1451177 1451732 1451737) (-882 "PATLRES.spad" 1450251 1450265 1451157 1451162) (-881 "PATAB.spad" 1450015 1450025 1450241 1450246) (-880 "PARTPERM.spad" 1447377 1447385 1450005 1450010) (-879 "PARSURF.spad" 1446805 1446833 1447367 1447372) (-878 "PARSU2.spad" 1446600 1446616 1446795 1446800) (-877 "script-parser.spad" 1446120 1446128 1446590 1446595) (-876 "PARSCURV.spad" 1445548 1445576 1446110 1446115) (-875 "PARSC2.spad" 1445337 1445353 1445538 1445543) (-874 "PARPCURV.spad" 1444795 1444823 1445327 1445332) (-873 "PARPC2.spad" 1444584 1444600 1444785 1444790) (-872 "PAN2EXPR.spad" 1443996 1444004 1444574 1444579) (-871 "PALETTE.spad" 1442966 1442974 1443986 1443991) (-870 "PAIR.spad" 1441949 1441962 1442554 1442559) (-869 "PADICRC.spad" 1439279 1439297 1440454 1440547) (-868 "PADICRAT.spad" 1437294 1437306 1437515 1437608) (-867 "PADIC.spad" 1436989 1437001 1437220 1437289) (-866 "PADICCT.spad" 1435530 1435542 1436915 1436984) (-865 "PADEPAC.spad" 1434209 1434228 1435520 1435525) (-864 "PADE.spad" 1432949 1432965 1434199 1434204) (-863 "OWP.spad" 1432189 1432219 1432807 1432874) (-862 "OVERSET.spad" 1431762 1431770 1432179 1432184) (-861 "OVAR.spad" 1431543 1431566 1431752 1431757) (-860 "OUT.spad" 1430627 1430635 1431533 1431538) (-859 "OUTFORM.spad" 1419923 1419931 1430617 1430622) (-858 "OUTBFILE.spad" 1419341 1419349 1419913 1419918) (-857 "OUTBCON.spad" 1418339 1418347 1419331 1419336) (-856 "OUTBCON.spad" 1417335 1417345 1418329 1418334) (-855 "OSI.spad" 1416810 1416818 1417325 1417330) (-854 "OSGROUP.spad" 1416728 1416736 1416800 1416805) (-853 "ORTHPOL.spad" 1415189 1415199 1416645 1416650) (-852 "OREUP.spad" 1414642 1414670 1414869 1414908) (-851 "ORESUP.spad" 1413941 1413965 1414322 1414361) (-850 "OREPCTO.spad" 1411760 1411772 1413861 1413866) (-849 "OREPCAT.spad" 1405817 1405827 1411716 1411755) (-848 "OREPCAT.spad" 1399764 1399776 1405665 1405670) (-847 "ORDSET.spad" 1398930 1398938 1399754 1399759) (-846 "ORDSET.spad" 1398094 1398104 1398920 1398925) (-845 "ORDRING.spad" 1397484 1397492 1398074 1398089) (-844 "ORDRING.spad" 1396882 1396892 1397474 1397479) (-843 "ORDMON.spad" 1396737 1396745 1396872 1396877) (-842 "ORDFUNS.spad" 1395863 1395879 1396727 1396732) (-841 "ORDFIN.spad" 1395683 1395691 1395853 1395858) (-840 "ORDCOMP.spad" 1394148 1394158 1395230 1395259) (-839 "ORDCOMP2.spad" 1393433 1393445 1394138 1394143) (-838 "OPTPROB.spad" 1392071 1392079 1393423 1393428) (-837 "OPTPACK.spad" 1384456 1384464 1392061 1392066) (-836 "OPTCAT.spad" 1382131 1382139 1384446 1384451) (-835 "OPSIG.spad" 1381783 1381791 1382121 1382126) (-834 "OPQUERY.spad" 1381332 1381340 1381773 1381778) (-833 "OP.spad" 1381074 1381084 1381154 1381221) (-832 "OPERCAT.spad" 1380662 1380672 1381064 1381069) (-831 "OPERCAT.spad" 1380248 1380260 1380652 1380657) (-830 "ONECOMP.spad" 1378993 1379003 1379795 1379824) (-829 "ONECOMP2.spad" 1378411 1378423 1378983 1378988) (-828 "OMSERVER.spad" 1377413 1377421 1378401 1378406) (-827 "OMSAGG.spad" 1377201 1377211 1377369 1377408) (-826 "OMPKG.spad" 1375813 1375821 1377191 1377196) (-825 "OM.spad" 1374778 1374786 1375803 1375808) (-824 "OMLO.spad" 1374203 1374215 1374664 1374703) (-823 "OMEXPR.spad" 1374037 1374047 1374193 1374198) (-822 "OMERR.spad" 1373580 1373588 1374027 1374032) (-821 "OMERRK.spad" 1372614 1372622 1373570 1373575) (-820 "OMENC.spad" 1371958 1371966 1372604 1372609) (-819 "OMDEV.spad" 1366247 1366255 1371948 1371953) (-818 "OMCONN.spad" 1365656 1365664 1366237 1366242) (-817 "OINTDOM.spad" 1365419 1365427 1365582 1365651) (-816 "OFMONOID.spad" 1361606 1361616 1365409 1365414) (-815 "ODVAR.spad" 1360867 1360877 1361596 1361601) (-814 "ODR.spad" 1360511 1360537 1360679 1360828) (-813 "ODPOL.spad" 1357857 1357867 1358197 1358324) (-812 "ODP.spad" 1347704 1347724 1348077 1348208) (-811 "ODETOOLS.spad" 1346287 1346306 1347694 1347699) (-810 "ODESYS.spad" 1343937 1343954 1346277 1346282) (-809 "ODERTRIC.spad" 1339878 1339895 1343894 1343899) (-808 "ODERED.spad" 1339265 1339289 1339868 1339873) (-807 "ODERAT.spad" 1336816 1336833 1339255 1339260) (-806 "ODEPRRIC.spad" 1333707 1333729 1336806 1336811) (-805 "ODEPROB.spad" 1332964 1332972 1333697 1333702) (-804 "ODEPRIM.spad" 1330238 1330260 1332954 1332959) (-803 "ODEPAL.spad" 1329614 1329638 1330228 1330233) (-802 "ODEPACK.spad" 1316216 1316224 1329604 1329609) (-801 "ODEINT.spad" 1315647 1315663 1316206 1316211) (-800 "ODEIFTBL.spad" 1313042 1313050 1315637 1315642) (-799 "ODEEF.spad" 1308409 1308425 1313032 1313037) (-798 "ODECONST.spad" 1307928 1307946 1308399 1308404) (-797 "ODECAT.spad" 1306524 1306532 1307918 1307923) (-796 "OCT.spad" 1304662 1304672 1305378 1305417) (-795 "OCTCT2.spad" 1304306 1304327 1304652 1304657) (-794 "OC.spad" 1302080 1302090 1304262 1304301) (-793 "OC.spad" 1299579 1299591 1301763 1301768) (-792 "OCAMON.spad" 1299427 1299435 1299569 1299574) (-791 "OASGP.spad" 1299242 1299250 1299417 1299422) (-790 "OAMONS.spad" 1298762 1298770 1299232 1299237) (-789 "OAMON.spad" 1298623 1298631 1298752 1298757) (-788 "OAGROUP.spad" 1298485 1298493 1298613 1298618) (-787 "NUMTUBE.spad" 1298072 1298088 1298475 1298480) (-786 "NUMQUAD.spad" 1285934 1285942 1298062 1298067) (-785 "NUMODE.spad" 1277070 1277078 1285924 1285929) (-784 "NUMINT.spad" 1274628 1274636 1277060 1277065) (-783 "NUMFMT.spad" 1273468 1273476 1274618 1274623) (-782 "NUMERIC.spad" 1265540 1265550 1273273 1273278) (-781 "NTSCAT.spad" 1264042 1264058 1265508 1265535) (-780 "NTPOLFN.spad" 1263587 1263597 1263959 1263964) (-779 "NSUP.spad" 1256597 1256607 1261137 1261290) (-778 "NSUP2.spad" 1255989 1256001 1256587 1256592) (-777 "NSMP.spad" 1252184 1252203 1252492 1252619) (-776 "NREP.spad" 1250556 1250570 1252174 1252179) (-775 "NPCOEF.spad" 1249802 1249822 1250546 1250551) (-774 "NORMRETR.spad" 1249400 1249439 1249792 1249797) (-773 "NORMPK.spad" 1247302 1247321 1249390 1249395) (-772 "NORMMA.spad" 1246990 1247016 1247292 1247297) (-771 "NONE.spad" 1246731 1246739 1246980 1246985) (-770 "NONE1.spad" 1246407 1246417 1246721 1246726) (-769 "NODE1.spad" 1245876 1245892 1246397 1246402) (-768 "NNI.spad" 1244763 1244771 1245850 1245871) (-767 "NLINSOL.spad" 1243385 1243395 1244753 1244758) (-766 "NIPROB.spad" 1241926 1241934 1243375 1243380) (-765 "NFINTBAS.spad" 1239386 1239403 1241916 1241921) (-764 "NETCLT.spad" 1239360 1239371 1239376 1239381) (-763 "NCODIV.spad" 1237558 1237574 1239350 1239355) (-762 "NCNTFRAC.spad" 1237200 1237214 1237548 1237553) (-761 "NCEP.spad" 1235360 1235374 1237190 1237195) (-760 "NASRING.spad" 1234956 1234964 1235350 1235355) (-759 "NASRING.spad" 1234550 1234560 1234946 1234951) (-758 "NARNG.spad" 1233894 1233902 1234540 1234545) (-757 "NARNG.spad" 1233236 1233246 1233884 1233889) (-756 "NAGSP.spad" 1232309 1232317 1233226 1233231) (-755 "NAGS.spad" 1221834 1221842 1232299 1232304) (-754 "NAGF07.spad" 1220227 1220235 1221824 1221829) (-753 "NAGF04.spad" 1214459 1214467 1220217 1220222) (-752 "NAGF02.spad" 1208268 1208276 1214449 1214454) (-751 "NAGF01.spad" 1203871 1203879 1208258 1208263) (-750 "NAGE04.spad" 1197331 1197339 1203861 1203866) (-749 "NAGE02.spad" 1187673 1187681 1197321 1197326) (-748 "NAGE01.spad" 1183557 1183565 1187663 1187668) (-747 "NAGD03.spad" 1181477 1181485 1183547 1183552) (-746 "NAGD02.spad" 1174008 1174016 1181467 1181472) (-745 "NAGD01.spad" 1168121 1168129 1173998 1174003) (-744 "NAGC06.spad" 1163908 1163916 1168111 1168116) (-743 "NAGC05.spad" 1162377 1162385 1163898 1163903) (-742 "NAGC02.spad" 1161632 1161640 1162367 1162372) (-741 "NAALG.spad" 1161167 1161177 1161600 1161627) (-740 "NAALG.spad" 1160722 1160734 1161157 1161162) (-739 "MULTSQFR.spad" 1157680 1157697 1160712 1160717) (-738 "MULTFACT.spad" 1157063 1157080 1157670 1157675) (-737 "MTSCAT.spad" 1155097 1155118 1156961 1157058) (-736 "MTHING.spad" 1154754 1154764 1155087 1155092) (-735 "MSYSCMD.spad" 1154188 1154196 1154744 1154749) (-734 "MSET.spad" 1152130 1152140 1153894 1153933) (-733 "MSETAGG.spad" 1151975 1151985 1152098 1152125) (-732 "MRING.spad" 1148946 1148958 1151683 1151750) (-731 "MRF2.spad" 1148514 1148528 1148936 1148941) (-730 "MRATFAC.spad" 1148060 1148077 1148504 1148509) (-729 "MPRFF.spad" 1146090 1146109 1148050 1148055) (-728 "MPOLY.spad" 1143525 1143540 1143884 1144011) (-727 "MPCPF.spad" 1142789 1142808 1143515 1143520) (-726 "MPC3.spad" 1142604 1142644 1142779 1142784) (-725 "MPC2.spad" 1142246 1142279 1142594 1142599) (-724 "MONOTOOL.spad" 1140581 1140598 1142236 1142241) (-723 "MONOID.spad" 1139900 1139908 1140571 1140576) (-722 "MONOID.spad" 1139217 1139227 1139890 1139895) (-721 "MONOGEN.spad" 1137963 1137976 1139077 1139212) (-720 "MONOGEN.spad" 1136731 1136746 1137847 1137852) (-719 "MONADWU.spad" 1134745 1134753 1136721 1136726) (-718 "MONADWU.spad" 1132757 1132767 1134735 1134740) (-717 "MONAD.spad" 1131901 1131909 1132747 1132752) (-716 "MONAD.spad" 1131043 1131053 1131891 1131896) (-715 "MOEBIUS.spad" 1129729 1129743 1131023 1131038) (-714 "MODULE.spad" 1129599 1129609 1129697 1129724) (-713 "MODULE.spad" 1129489 1129501 1129589 1129594) (-712 "MODRING.spad" 1128820 1128859 1129469 1129484) (-711 "MODOP.spad" 1127479 1127491 1128642 1128709) (-710 "MODMONOM.spad" 1127208 1127226 1127469 1127474) (-709 "MODMON.spad" 1123967 1123983 1124686 1124839) (-708 "MODFIELD.spad" 1123325 1123364 1123869 1123962) (-707 "MMLFORM.spad" 1122185 1122193 1123315 1123320) (-706 "MMAP.spad" 1121925 1121959 1122175 1122180) (-705 "MLO.spad" 1120352 1120362 1121881 1121920) (-704 "MLIFT.spad" 1118924 1118941 1120342 1120347) (-703 "MKUCFUNC.spad" 1118457 1118475 1118914 1118919) (-702 "MKRECORD.spad" 1118059 1118072 1118447 1118452) (-701 "MKFUNC.spad" 1117440 1117450 1118049 1118054) (-700 "MKFLCFN.spad" 1116396 1116406 1117430 1117435) (-699 "MKCHSET.spad" 1116261 1116271 1116386 1116391) (-698 "MKBCFUNC.spad" 1115746 1115764 1116251 1116256) (-697 "MINT.spad" 1115185 1115193 1115648 1115741) (-696 "MHROWRED.spad" 1113686 1113696 1115175 1115180) (-695 "MFLOAT.spad" 1112202 1112210 1113576 1113681) (-694 "MFINFACT.spad" 1111602 1111624 1112192 1112197) (-693 "MESH.spad" 1109334 1109342 1111592 1111597) (-692 "MDDFACT.spad" 1107527 1107537 1109324 1109329) (-691 "MDAGG.spad" 1106814 1106824 1107507 1107522) (-690 "MCMPLX.spad" 1102788 1102796 1103402 1103603) (-689 "MCDEN.spad" 1101996 1102008 1102778 1102783) (-688 "MCALCFN.spad" 1099098 1099124 1101986 1101991) (-687 "MAYBE.spad" 1098382 1098393 1099088 1099093) (-686 "MATSTOR.spad" 1095658 1095668 1098372 1098377) (-685 "MATRIX.spad" 1094362 1094372 1094846 1094873) (-684 "MATLIN.spad" 1091688 1091712 1094246 1094251) (-683 "MATCAT.spad" 1083273 1083295 1091656 1091683) (-682 "MATCAT.spad" 1074730 1074754 1083115 1083120) (-681 "MATCAT2.spad" 1073998 1074046 1074720 1074725) (-680 "MAPPKG3.spad" 1072897 1072911 1073988 1073993) (-679 "MAPPKG2.spad" 1072231 1072243 1072887 1072892) (-678 "MAPPKG1.spad" 1071049 1071059 1072221 1072226) (-677 "MAPPAST.spad" 1070362 1070370 1071039 1071044) (-676 "MAPHACK3.spad" 1070170 1070184 1070352 1070357) (-675 "MAPHACK2.spad" 1069935 1069947 1070160 1070165) (-674 "MAPHACK1.spad" 1069565 1069575 1069925 1069930) (-673 "MAGMA.spad" 1067355 1067372 1069555 1069560) (-672 "MACROAST.spad" 1066934 1066942 1067345 1067350) (-671 "M3D.spad" 1064630 1064640 1066312 1066317) (-670 "LZSTAGG.spad" 1061858 1061868 1064620 1064625) (-669 "LZSTAGG.spad" 1059084 1059096 1061848 1061853) (-668 "LWORD.spad" 1055789 1055806 1059074 1059079) (-667 "LSTAST.spad" 1055573 1055581 1055779 1055784) (-666 "LSQM.spad" 1053799 1053813 1054197 1054248) (-665 "LSPP.spad" 1053332 1053349 1053789 1053794) (-664 "LSMP.spad" 1052172 1052200 1053322 1053327) (-663 "LSMP1.spad" 1049976 1049990 1052162 1052167) (-662 "LSAGG.spad" 1049645 1049655 1049944 1049971) (-661 "LSAGG.spad" 1049334 1049346 1049635 1049640) (-660 "LPOLY.spad" 1048288 1048307 1049190 1049259) (-659 "LPEFRAC.spad" 1047545 1047555 1048278 1048283) (-658 "LO.spad" 1046946 1046960 1047479 1047506) (-657 "LOGIC.spad" 1046548 1046556 1046936 1046941) (-656 "LOGIC.spad" 1046148 1046158 1046538 1046543) (-655 "LODOOPS.spad" 1045066 1045078 1046138 1046143) (-654 "LODO.spad" 1044450 1044466 1044746 1044785) (-653 "LODOF.spad" 1043494 1043511 1044407 1044412) (-652 "LODOCAT.spad" 1042152 1042162 1043450 1043489) (-651 "LODOCAT.spad" 1040808 1040820 1042108 1042113) (-650 "LODO2.spad" 1040081 1040093 1040488 1040527) (-649 "LODO1.spad" 1039481 1039491 1039761 1039800) (-648 "LODEEF.spad" 1038253 1038271 1039471 1039476) (-647 "LNAGG.spad" 1034055 1034065 1038243 1038248) (-646 "LNAGG.spad" 1029821 1029833 1034011 1034016) (-645 "LMOPS.spad" 1026557 1026574 1029811 1029816) (-644 "LMODULE.spad" 1026199 1026209 1026547 1026552) (-643 "LMDICT.spad" 1025482 1025492 1025750 1025777) (-642 "LITERAL.spad" 1025388 1025399 1025472 1025477) (-641 "LIST.spad" 1023106 1023116 1024535 1024562) (-640 "LIST3.spad" 1022397 1022411 1023096 1023101) (-639 "LIST2.spad" 1021037 1021049 1022387 1022392) (-638 "LIST2MAP.spad" 1017914 1017926 1021027 1021032) (-637 "LINEXP.spad" 1017346 1017356 1017894 1017909) (-636 "LINDEP.spad" 1016123 1016135 1017258 1017263) (-635 "LIMITRF.spad" 1014037 1014047 1016113 1016118) (-634 "LIMITPS.spad" 1012920 1012933 1014027 1014032) (-633 "LIE.spad" 1010934 1010946 1012210 1012355) (-632 "LIECAT.spad" 1010410 1010420 1010860 1010929) (-631 "LIECAT.spad" 1009914 1009926 1010366 1010371) (-630 "LIB.spad" 1007962 1007970 1008573 1008588) (-629 "LGROBP.spad" 1005315 1005334 1007952 1007957) (-628 "LF.spad" 1004234 1004250 1005305 1005310) (-627 "LFCAT.spad" 1003253 1003261 1004224 1004229) (-626 "LEXTRIPK.spad" 998756 998771 1003243 1003248) (-625 "LEXP.spad" 996759 996786 998736 998751) (-624 "LETAST.spad" 996458 996466 996749 996754) (-623 "LEADCDET.spad" 994842 994859 996448 996453) (-622 "LAZM3PK.spad" 993546 993568 994832 994837) (-621 "LAUPOL.spad" 992235 992248 993139 993208) (-620 "LAPLACE.spad" 991808 991824 992225 992230) (-619 "LA.spad" 991248 991262 991730 991769) (-618 "LALG.spad" 991024 991034 991228 991243) (-617 "LALG.spad" 990808 990820 991014 991019) (-616 "KVTFROM.spad" 990543 990553 990798 990803) (-615 "KTVLOGIC.spad" 989966 989974 990533 990538) (-614 "KRCFROM.spad" 989704 989714 989956 989961) (-613 "KOVACIC.spad" 988417 988434 989694 989699) (-612 "KONVERT.spad" 988139 988149 988407 988412) (-611 "KOERCE.spad" 987876 987886 988129 988134) (-610 "KERNEL.spad" 986411 986421 987660 987665) (-609 "KERNEL2.spad" 986114 986126 986401 986406) (-608 "KDAGG.spad" 985217 985239 986094 986109) (-607 "KDAGG.spad" 984328 984352 985207 985212) (-606 "KAFILE.spad" 983291 983307 983526 983553) (-605 "JORDAN.spad" 981118 981130 982581 982726) (-604 "JOINAST.spad" 980812 980820 981108 981113) (-603 "JAVACODE.spad" 980678 980686 980802 980807) (-602 "IXAGG.spad" 978801 978825 980668 980673) (-601 "IXAGG.spad" 976779 976805 978648 978653) (-600 "IVECTOR.spad" 975550 975565 975705 975732) (-599 "ITUPLE.spad" 974695 974705 975540 975545) (-598 "ITRIGMNP.spad" 973506 973525 974685 974690) (-597 "ITFUN3.spad" 973000 973014 973496 973501) (-596 "ITFUN2.spad" 972730 972742 972990 972995) (-595 "ITAYLOR.spad" 970522 970537 972566 972691) (-594 "ISUPS.spad" 962933 962948 969496 969593) (-593 "ISUMP.spad" 962430 962446 962923 962928) (-592 "ISTRING.spad" 961433 961446 961599 961626) (-591 "ISAST.spad" 961152 961160 961423 961428) (-590 "IRURPK.spad" 959865 959884 961142 961147) (-589 "IRSN.spad" 957825 957833 959855 959860) (-588 "IRRF2F.spad" 956300 956310 957781 957786) (-587 "IRREDFFX.spad" 955901 955912 956290 956295) (-586 "IROOT.spad" 954232 954242 955891 955896) (-585 "IR.spad" 952021 952035 954087 954114) (-584 "IR2.spad" 951041 951057 952011 952016) (-583 "IR2F.spad" 950241 950257 951031 951036) (-582 "IPRNTPK.spad" 950001 950009 950231 950236) (-581 "IPF.spad" 949566 949578 949806 949899) (-580 "IPADIC.spad" 949327 949353 949492 949561) (-579 "IP4ADDR.spad" 948884 948892 949317 949322) (-578 "IOMODE.spad" 948505 948513 948874 948879) (-577 "IOBFILE.spad" 947866 947874 948495 948500) (-576 "IOBCON.spad" 947731 947739 947856 947861) (-575 "INVLAPLA.spad" 947376 947392 947721 947726) (-574 "INTTR.spad" 940622 940639 947366 947371) (-573 "INTTOOLS.spad" 938333 938349 940196 940201) (-572 "INTSLPE.spad" 937639 937647 938323 938328) (-571 "INTRVL.spad" 937205 937215 937553 937634) (-570 "INTRF.spad" 935569 935583 937195 937200) (-569 "INTRET.spad" 935001 935011 935559 935564) (-568 "INTRAT.spad" 933676 933693 934991 934996) (-567 "INTPM.spad" 932039 932055 933319 933324) (-566 "INTPAF.spad" 929807 929825 931971 931976) (-565 "INTPACK.spad" 920117 920125 929797 929802) (-564 "INT.spad" 919478 919486 919971 920112) (-563 "INTHERTR.spad" 918744 918761 919468 919473) (-562 "INTHERAL.spad" 918410 918434 918734 918739) (-561 "INTHEORY.spad" 914823 914831 918400 918405) (-560 "INTG0.spad" 908286 908304 914755 914760) (-559 "INTFTBL.spad" 902315 902323 908276 908281) (-558 "INTFACT.spad" 901374 901384 902305 902310) (-557 "INTEF.spad" 899689 899705 901364 901369) (-556 "INTDOM.spad" 898304 898312 899615 899684) (-555 "INTDOM.spad" 896981 896991 898294 898299) (-554 "INTCAT.spad" 895234 895244 896895 896976) (-553 "INTBIT.spad" 894737 894745 895224 895229) (-552 "INTALG.spad" 893919 893946 894727 894732) (-551 "INTAF.spad" 893411 893427 893909 893914) (-550 "INTABL.spad" 891929 891960 892092 892119) (-549 "INT8.spad" 891809 891817 891919 891924) (-548 "INT64.spad" 891688 891696 891799 891804) (-547 "INT32.spad" 891567 891575 891678 891683) (-546 "INT16.spad" 891446 891454 891557 891562) (-545 "INS.spad" 888913 888921 891348 891441) (-544 "INS.spad" 886466 886476 888903 888908) (-543 "INPSIGN.spad" 885900 885913 886456 886461) (-542 "INPRODPF.spad" 884966 884985 885890 885895) (-541 "INPRODFF.spad" 884024 884048 884956 884961) (-540 "INNMFACT.spad" 882995 883012 884014 884019) (-539 "INMODGCD.spad" 882479 882509 882985 882990) (-538 "INFSP.spad" 880764 880786 882469 882474) (-537 "INFPROD0.spad" 879814 879833 880754 880759) (-536 "INFORM.spad" 876975 876983 879804 879809) (-535 "INFORM1.spad" 876600 876610 876965 876970) (-534 "INFINITY.spad" 876152 876160 876590 876595) (-533 "INETCLTS.spad" 876129 876137 876142 876147) (-532 "INEP.spad" 874661 874683 876119 876124) (-531 "INDE.spad" 874390 874407 874651 874656) (-530 "INCRMAPS.spad" 873811 873821 874380 874385) (-529 "INBFILE.spad" 872883 872891 873801 873806) (-528 "INBFF.spad" 868653 868664 872873 872878) (-527 "INBCON.spad" 866941 866949 868643 868648) (-526 "INBCON.spad" 865227 865237 866931 866936) (-525 "INAST.spad" 864888 864896 865217 865222) (-524 "IMPTAST.spad" 864596 864604 864878 864883) (-523 "IMATRIX.spad" 863541 863567 864053 864080) (-522 "IMATQF.spad" 862635 862679 863497 863502) (-521 "IMATLIN.spad" 861240 861264 862591 862596) (-520 "ILIST.spad" 859896 859911 860423 860450) (-519 "IIARRAY2.spad" 859284 859322 859503 859530) (-518 "IFF.spad" 858694 858710 858965 859058) (-517 "IFAST.spad" 858308 858316 858684 858689) (-516 "IFARRAY.spad" 855795 855810 857491 857518) (-515 "IFAMON.spad" 855657 855674 855751 855756) (-514 "IEVALAB.spad" 855046 855058 855647 855652) (-513 "IEVALAB.spad" 854433 854447 855036 855041) (-512 "IDPO.spad" 854231 854243 854423 854428) (-511 "IDPOAMS.spad" 853987 853999 854221 854226) (-510 "IDPOAM.spad" 853707 853719 853977 853982) (-509 "IDPC.spad" 852641 852653 853697 853702) (-508 "IDPAM.spad" 852386 852398 852631 852636) (-507 "IDPAG.spad" 852133 852145 852376 852381) (-506 "IDENT.spad" 851783 851791 852123 852128) (-505 "IDECOMP.spad" 849020 849038 851773 851778) (-504 "IDEAL.spad" 843943 843982 848955 848960) (-503 "ICDEN.spad" 843094 843110 843933 843938) (-502 "ICARD.spad" 842283 842291 843084 843089) (-501 "IBPTOOLS.spad" 840876 840893 842273 842278) (-500 "IBITS.spad" 840075 840088 840512 840539) (-499 "IBATOOL.spad" 836950 836969 840065 840070) (-498 "IBACHIN.spad" 835437 835452 836940 836945) (-497 "IARRAY2.spad" 834425 834451 835044 835071) (-496 "IARRAY1.spad" 833470 833485 833608 833635) (-495 "IAN.spad" 831683 831691 833286 833379) (-494 "IALGFACT.spad" 831284 831317 831673 831678) (-493 "HYPCAT.spad" 830708 830716 831274 831279) (-492 "HYPCAT.spad" 830130 830140 830698 830703) (-491 "HOSTNAME.spad" 829938 829946 830120 830125) (-490 "HOMOTOP.spad" 829681 829691 829928 829933) (-489 "HOAGG.spad" 826949 826959 829671 829676) (-488 "HOAGG.spad" 823992 824004 826716 826721) (-487 "HEXADEC.spad" 822094 822102 822459 822552) (-486 "HEUGCD.spad" 821109 821120 822084 822089) (-485 "HELLFDIV.spad" 820699 820723 821099 821104) (-484 "HEAP.spad" 820091 820101 820306 820333) (-483 "HEADAST.spad" 819622 819630 820081 820086) (-482 "HDP.spad" 809465 809481 809842 809973) (-481 "HDMP.spad" 806641 806656 807259 807386) (-480 "HB.spad" 804878 804886 806631 806636) (-479 "HASHTBL.spad" 803348 803379 803559 803586) (-478 "HASAST.spad" 803064 803072 803338 803343) (-477 "HACKPI.spad" 802547 802555 802966 803059) (-476 "GTSET.spad" 801486 801502 802193 802220) (-475 "GSTBL.spad" 800005 800040 800179 800194) (-474 "GSERIES.spad" 797172 797199 798137 798286) (-473 "GROUP.spad" 796441 796449 797152 797167) (-472 "GROUP.spad" 795718 795728 796431 796436) (-471 "GROEBSOL.spad" 794206 794227 795708 795713) (-470 "GRMOD.spad" 792777 792789 794196 794201) (-469 "GRMOD.spad" 791346 791360 792767 792772) (-468 "GRIMAGE.spad" 783951 783959 791336 791341) (-467 "GRDEF.spad" 782330 782338 783941 783946) (-466 "GRAY.spad" 780789 780797 782320 782325) (-465 "GRALG.spad" 779836 779848 780779 780784) (-464 "GRALG.spad" 778881 778895 779826 779831) (-463 "GPOLSET.spad" 778335 778358 778563 778590) (-462 "GOSPER.spad" 777600 777618 778325 778330) (-461 "GMODPOL.spad" 776738 776765 777568 777595) (-460 "GHENSEL.spad" 775807 775821 776728 776733) (-459 "GENUPS.spad" 771908 771921 775797 775802) (-458 "GENUFACT.spad" 771485 771495 771898 771903) (-457 "GENPGCD.spad" 771069 771086 771475 771480) (-456 "GENMFACT.spad" 770521 770540 771059 771064) (-455 "GENEEZ.spad" 768460 768473 770511 770516) (-454 "GDMP.spad" 765478 765495 766254 766381) (-453 "GCNAALG.spad" 759373 759400 765272 765339) (-452 "GCDDOM.spad" 758545 758553 759299 759368) (-451 "GCDDOM.spad" 757779 757789 758535 758540) (-450 "GB.spad" 755297 755335 757735 757740) (-449 "GBINTERN.spad" 751317 751355 755287 755292) (-448 "GBF.spad" 747074 747112 751307 751312) (-447 "GBEUCLID.spad" 744948 744986 747064 747069) (-446 "GAUSSFAC.spad" 744245 744253 744938 744943) (-445 "GALUTIL.spad" 742567 742577 744201 744206) (-444 "GALPOLYU.spad" 741013 741026 742557 742562) (-443 "GALFACTU.spad" 739178 739197 741003 741008) (-442 "GALFACT.spad" 729311 729322 739168 739173) (-441 "FVFUN.spad" 726334 726342 729301 729306) (-440 "FVC.spad" 725386 725394 726324 726329) (-439 "FUNDESC.spad" 725064 725072 725376 725381) (-438 "FUNCTION.spad" 724913 724925 725054 725059) (-437 "FT.spad" 723206 723214 724903 724908) (-436 "FTEM.spad" 722369 722377 723196 723201) (-435 "FSUPFACT.spad" 721269 721288 722305 722310) (-434 "FST.spad" 719355 719363 721259 721264) (-433 "FSRED.spad" 718833 718849 719345 719350) (-432 "FSPRMELT.spad" 717657 717673 718790 718795) (-431 "FSPECF.spad" 715734 715750 717647 717652) (-430 "FS.spad" 709796 709806 715509 715729) (-429 "FS.spad" 703636 703648 709351 709356) (-428 "FSINT.spad" 703294 703310 703626 703631) (-427 "FSERIES.spad" 702481 702493 703114 703213) (-426 "FSCINT.spad" 701794 701810 702471 702476) (-425 "FSAGG.spad" 700911 700921 701750 701789) (-424 "FSAGG.spad" 699990 700002 700831 700836) (-423 "FSAGG2.spad" 698689 698705 699980 699985) (-422 "FS2UPS.spad" 693172 693206 698679 698684) (-421 "FS2.spad" 692817 692833 693162 693167) (-420 "FS2EXPXP.spad" 691940 691963 692807 692812) (-419 "FRUTIL.spad" 690882 690892 691930 691935) (-418 "FR.spad" 684576 684586 689906 689975) (-417 "FRNAALG.spad" 679663 679673 684518 684571) (-416 "FRNAALG.spad" 674762 674774 679619 679624) (-415 "FRNAAF2.spad" 674216 674234 674752 674757) (-414 "FRMOD.spad" 673610 673640 674147 674152) (-413 "FRIDEAL.spad" 672805 672826 673590 673605) (-412 "FRIDEAL2.spad" 672407 672439 672795 672800) (-411 "FRETRCT.spad" 671918 671928 672397 672402) (-410 "FRETRCT.spad" 671295 671307 671776 671781) (-409 "FRAMALG.spad" 669623 669636 671251 671290) (-408 "FRAMALG.spad" 667983 667998 669613 669618) (-407 "FRAC.spad" 665082 665092 665485 665658) (-406 "FRAC2.spad" 664685 664697 665072 665077) (-405 "FR2.spad" 664019 664031 664675 664680) (-404 "FPS.spad" 660828 660836 663909 664014) (-403 "FPS.spad" 657665 657675 660748 660753) (-402 "FPC.spad" 656707 656715 657567 657660) (-401 "FPC.spad" 655835 655845 656697 656702) (-400 "FPATMAB.spad" 655597 655607 655825 655830) (-399 "FPARFRAC.spad" 654070 654087 655587 655592) (-398 "FORTRAN.spad" 652576 652619 654060 654065) (-397 "FORT.spad" 651505 651513 652566 652571) (-396 "FORTFN.spad" 648675 648683 651495 651500) (-395 "FORTCAT.spad" 648359 648367 648665 648670) (-394 "FORMULA.spad" 645823 645831 648349 648354) (-393 "FORMULA1.spad" 645302 645312 645813 645818) (-392 "FORDER.spad" 644993 645017 645292 645297) (-391 "FOP.spad" 644194 644202 644983 644988) (-390 "FNLA.spad" 643618 643640 644162 644189) (-389 "FNCAT.spad" 642205 642213 643608 643613) (-388 "FNAME.spad" 642097 642105 642195 642200) (-387 "FMTC.spad" 641895 641903 642023 642092) (-386 "FMONOID.spad" 638950 638960 641851 641856) (-385 "FM.spad" 638645 638657 638884 638911) (-384 "FMFUN.spad" 635675 635683 638635 638640) (-383 "FMC.spad" 634727 634735 635665 635670) (-382 "FMCAT.spad" 632381 632399 634695 634722) (-381 "FM1.spad" 631738 631750 632315 632342) (-380 "FLOATRP.spad" 629459 629473 631728 631733) (-379 "FLOAT.spad" 622747 622755 629325 629454) (-378 "FLOATCP.spad" 620164 620178 622737 622742) (-377 "FLINEXP.spad" 619876 619886 620144 620159) (-376 "FLINEXP.spad" 619542 619554 619812 619817) (-375 "FLASORT.spad" 618862 618874 619532 619537) (-374 "FLALG.spad" 616508 616527 618788 618857) (-373 "FLAGG.spad" 613526 613536 616488 616503) (-372 "FLAGG.spad" 610445 610457 613409 613414) (-371 "FLAGG2.spad" 609126 609142 610435 610440) (-370 "FINRALG.spad" 607155 607168 609082 609121) (-369 "FINRALG.spad" 605110 605125 607039 607044) (-368 "FINITE.spad" 604262 604270 605100 605105) (-367 "FINAALG.spad" 593243 593253 604204 604257) (-366 "FINAALG.spad" 582236 582248 593199 593204) (-365 "FILE.spad" 581819 581829 582226 582231) (-364 "FILECAT.spad" 580337 580354 581809 581814) (-363 "FIELD.spad" 579743 579751 580239 580332) (-362 "FIELD.spad" 579235 579245 579733 579738) (-361 "FGROUP.spad" 577844 577854 579215 579230) (-360 "FGLMICPK.spad" 576631 576646 577834 577839) (-359 "FFX.spad" 576006 576021 576347 576440) (-358 "FFSLPE.spad" 575495 575516 575996 576001) (-357 "FFPOLY.spad" 566747 566758 575485 575490) (-356 "FFPOLY2.spad" 565807 565824 566737 566742) (-355 "FFP.spad" 565204 565224 565523 565616) (-354 "FF.spad" 564652 564668 564885 564978) (-353 "FFNBX.spad" 563164 563184 564368 564461) (-352 "FFNBP.spad" 561677 561694 562880 562973) (-351 "FFNB.spad" 560142 560163 561358 561451) (-350 "FFINTBAS.spad" 557556 557575 560132 560137) (-349 "FFIELDC.spad" 555131 555139 557458 557551) (-348 "FFIELDC.spad" 552792 552802 555121 555126) (-347 "FFHOM.spad" 551540 551557 552782 552787) (-346 "FFF.spad" 548975 548986 551530 551535) (-345 "FFCGX.spad" 547822 547842 548691 548784) (-344 "FFCGP.spad" 546711 546731 547538 547631) (-343 "FFCG.spad" 545503 545524 546392 546485) (-342 "FFCAT.spad" 538530 538552 545342 545498) (-341 "FFCAT.spad" 531636 531660 538450 538455) (-340 "FFCAT2.spad" 531381 531421 531626 531631) (-339 "FEXPR.spad" 523090 523136 531137 531176) (-338 "FEVALAB.spad" 522796 522806 523080 523085) (-337 "FEVALAB.spad" 522287 522299 522573 522578) (-336 "FDIV.spad" 521729 521753 522277 522282) (-335 "FDIVCAT.spad" 519771 519795 521719 521724) (-334 "FDIVCAT.spad" 517811 517837 519761 519766) (-333 "FDIV2.spad" 517465 517505 517801 517806) (-332 "FCPAK1.spad" 516018 516026 517455 517460) (-331 "FCOMP.spad" 515397 515407 516008 516013) (-330 "FC.spad" 505312 505320 515387 515392) (-329 "FAXF.spad" 498247 498261 505214 505307) (-328 "FAXF.spad" 491234 491250 498203 498208) (-327 "FARRAY.spad" 489380 489390 490417 490444) (-326 "FAMR.spad" 487500 487512 489278 489375) (-325 "FAMR.spad" 485604 485618 487384 487389) (-324 "FAMONOID.spad" 485254 485264 485558 485563) (-323 "FAMONC.spad" 483476 483488 485244 485249) (-322 "FAGROUP.spad" 483082 483092 483372 483399) (-321 "FACUTIL.spad" 481278 481295 483072 483077) (-320 "FACTFUNC.spad" 480454 480464 481268 481273) (-319 "EXPUPXS.spad" 477287 477310 478586 478735) (-318 "EXPRTUBE.spad" 474515 474523 477277 477282) (-317 "EXPRODE.spad" 471387 471403 474505 474510) (-316 "EXPR.spad" 466662 466672 467376 467783) (-315 "EXPR2UPS.spad" 462754 462767 466652 466657) (-314 "EXPR2.spad" 462457 462469 462744 462749) (-313 "EXPEXPAN.spad" 459395 459420 460029 460122) (-312 "EXIT.spad" 459066 459074 459385 459390) (-311 "EXITAST.spad" 458802 458810 459056 459061) (-310 "EVALCYC.spad" 458260 458274 458792 458797) (-309 "EVALAB.spad" 457824 457834 458250 458255) (-308 "EVALAB.spad" 457386 457398 457814 457819) (-307 "EUCDOM.spad" 454928 454936 457312 457381) (-306 "EUCDOM.spad" 452532 452542 454918 454923) (-305 "ESTOOLS.spad" 444372 444380 452522 452527) (-304 "ESTOOLS2.spad" 443973 443987 444362 444367) (-303 "ESTOOLS1.spad" 443658 443669 443963 443968) (-302 "ES.spad" 436205 436213 443648 443653) (-301 "ES.spad" 428658 428668 436103 436108) (-300 "ESCONT.spad" 425431 425439 428648 428653) (-299 "ESCONT1.spad" 425180 425192 425421 425426) (-298 "ES2.spad" 424675 424691 425170 425175) (-297 "ES1.spad" 424241 424257 424665 424670) (-296 "ERROR.spad" 421562 421570 424231 424236) (-295 "EQTBL.spad" 420034 420056 420243 420270) (-294 "EQ.spad" 414908 414918 417707 417819) (-293 "EQ2.spad" 414624 414636 414898 414903) (-292 "EP.spad" 410938 410948 414614 414619) (-291 "ENV.spad" 409614 409622 410928 410933) (-290 "ENTIRER.spad" 409282 409290 409558 409609) (-289 "EMR.spad" 408483 408524 409208 409277) (-288 "ELTAGG.spad" 406723 406742 408473 408478) (-287 "ELTAGG.spad" 404927 404948 406679 406684) (-286 "ELTAB.spad" 404374 404392 404917 404922) (-285 "ELFUTS.spad" 403753 403772 404364 404369) (-284 "ELEMFUN.spad" 403442 403450 403743 403748) (-283 "ELEMFUN.spad" 403129 403139 403432 403437) (-282 "ELAGG.spad" 401072 401082 403109 403124) (-281 "ELAGG.spad" 398952 398964 400991 400996) (-280 "ELABEXPR.spad" 397875 397883 398942 398947) (-279 "EFUPXS.spad" 394651 394681 397831 397836) (-278 "EFULS.spad" 391487 391510 394607 394612) (-277 "EFSTRUC.spad" 389442 389458 391477 391482) (-276 "EF.spad" 384208 384224 389432 389437) (-275 "EAB.spad" 382484 382492 384198 384203) (-274 "E04UCFA.spad" 382020 382028 382474 382479) (-273 "E04NAFA.spad" 381597 381605 382010 382015) (-272 "E04MBFA.spad" 381177 381185 381587 381592) (-271 "E04JAFA.spad" 380713 380721 381167 381172) (-270 "E04GCFA.spad" 380249 380257 380703 380708) (-269 "E04FDFA.spad" 379785 379793 380239 380244) (-268 "E04DGFA.spad" 379321 379329 379775 379780) (-267 "E04AGNT.spad" 375163 375171 379311 379316) (-266 "DVARCAT.spad" 371848 371858 375153 375158) (-265 "DVARCAT.spad" 368531 368543 371838 371843) (-264 "DSMP.spad" 365962 365976 366267 366394) (-263 "DROPT.spad" 359907 359915 365952 365957) (-262 "DROPT1.spad" 359570 359580 359897 359902) (-261 "DROPT0.spad" 354397 354405 359560 359565) (-260 "DRAWPT.spad" 352552 352560 354387 354392) (-259 "DRAW.spad" 345152 345165 352542 352547) (-258 "DRAWHACK.spad" 344460 344470 345142 345147) (-257 "DRAWCX.spad" 341902 341910 344450 344455) (-256 "DRAWCURV.spad" 341439 341454 341892 341897) (-255 "DRAWCFUN.spad" 330611 330619 341429 341434) (-254 "DQAGG.spad" 328779 328789 330579 330606) (-253 "DPOLCAT.spad" 324120 324136 328647 328774) (-252 "DPOLCAT.spad" 319547 319565 324076 324081) (-251 "DPMO.spad" 311773 311789 311911 312212) (-250 "DPMM.spad" 304012 304030 304137 304438) (-249 "DOMCTOR.spad" 303904 303912 304002 304007) (-248 "DOMAIN.spad" 303035 303043 303894 303899) (-247 "DMP.spad" 300257 300272 300829 300956) (-246 "DLP.spad" 299605 299615 300247 300252) (-245 "DLIST.spad" 298184 298194 298788 298815) (-244 "DLAGG.spad" 296595 296605 298174 298179) (-243 "DIVRING.spad" 296137 296145 296539 296590) (-242 "DIVRING.spad" 295723 295733 296127 296132) (-241 "DISPLAY.spad" 293903 293911 295713 295718) (-240 "DIRPROD.spad" 283483 283499 284123 284254) (-239 "DIRPROD2.spad" 282291 282309 283473 283478) (-238 "DIRPCAT.spad" 281233 281249 282155 282286) (-237 "DIRPCAT.spad" 279904 279922 280828 280833) (-236 "DIOSP.spad" 278729 278737 279894 279899) (-235 "DIOPS.spad" 277713 277723 278709 278724) (-234 "DIOPS.spad" 276671 276683 277669 277674) (-233 "DIFRING.spad" 275963 275971 276651 276666) (-232 "DIFRING.spad" 275263 275273 275953 275958) (-231 "DIFEXT.spad" 274422 274432 275243 275258) (-230 "DIFEXT.spad" 273498 273510 274321 274326) (-229 "DIAGG.spad" 273128 273138 273478 273493) (-228 "DIAGG.spad" 272766 272778 273118 273123) (-227 "DHMATRIX.spad" 271070 271080 272223 272250) (-226 "DFSFUN.spad" 264478 264486 271060 271065) (-225 "DFLOAT.spad" 261199 261207 264368 264473) (-224 "DFINTTLS.spad" 259408 259424 261189 261194) (-223 "DERHAM.spad" 257318 257350 259388 259403) (-222 "DEQUEUE.spad" 256636 256646 256925 256952) (-221 "DEGRED.spad" 256251 256265 256626 256631) (-220 "DEFINTRF.spad" 253776 253786 256241 256246) (-219 "DEFINTEF.spad" 252272 252288 253766 253771) (-218 "DEFAST.spad" 251640 251648 252262 252267) (-217 "DECIMAL.spad" 249746 249754 250107 250200) (-216 "DDFACT.spad" 247545 247562 249736 249741) (-215 "DBLRESP.spad" 247143 247167 247535 247540) (-214 "DBASE.spad" 245797 245807 247133 247138) (-213 "DATAARY.spad" 245259 245272 245787 245792) (-212 "D03FAFA.spad" 245087 245095 245249 245254) (-211 "D03EEFA.spad" 244907 244915 245077 245082) (-210 "D03AGNT.spad" 243987 243995 244897 244902) (-209 "D02EJFA.spad" 243449 243457 243977 243982) (-208 "D02CJFA.spad" 242927 242935 243439 243444) (-207 "D02BHFA.spad" 242417 242425 242917 242922) (-206 "D02BBFA.spad" 241907 241915 242407 242412) (-205 "D02AGNT.spad" 236711 236719 241897 241902) (-204 "D01WGTS.spad" 235030 235038 236701 236706) (-203 "D01TRNS.spad" 235007 235015 235020 235025) (-202 "D01GBFA.spad" 234529 234537 234997 235002) (-201 "D01FCFA.spad" 234051 234059 234519 234524) (-200 "D01ASFA.spad" 233519 233527 234041 234046) (-199 "D01AQFA.spad" 232965 232973 233509 233514) (-198 "D01APFA.spad" 232389 232397 232955 232960) (-197 "D01ANFA.spad" 231883 231891 232379 232384) (-196 "D01AMFA.spad" 231393 231401 231873 231878) (-195 "D01ALFA.spad" 230933 230941 231383 231388) (-194 "D01AKFA.spad" 230459 230467 230923 230928) (-193 "D01AJFA.spad" 229982 229990 230449 230454) (-192 "D01AGNT.spad" 226041 226049 229972 229977) (-191 "CYCLOTOM.spad" 225547 225555 226031 226036) (-190 "CYCLES.spad" 222379 222387 225537 225542) (-189 "CVMP.spad" 221796 221806 222369 222374) (-188 "CTRIGMNP.spad" 220286 220302 221786 221791) (-187 "CTOR.spad" 219977 219985 220276 220281) (-186 "CTORKIND.spad" 219580 219588 219967 219972) (-185 "CTORCAT.spad" 218829 218837 219570 219575) (-184 "CTORCAT.spad" 218076 218086 218819 218824) (-183 "CTORCALL.spad" 217656 217664 218066 218071) (-182 "CSTTOOLS.spad" 216899 216912 217646 217651) (-181 "CRFP.spad" 210603 210616 216889 216894) (-180 "CRCEAST.spad" 210323 210331 210593 210598) (-179 "CRAPACK.spad" 209366 209376 210313 210318) (-178 "CPMATCH.spad" 208866 208881 209291 209296) (-177 "CPIMA.spad" 208571 208590 208856 208861) (-176 "COORDSYS.spad" 203464 203474 208561 208566) (-175 "CONTOUR.spad" 202875 202883 203454 203459) (-174 "CONTFRAC.spad" 198487 198497 202777 202870) (-173 "CONDUIT.spad" 198245 198253 198477 198482) (-172 "COMRING.spad" 197919 197927 198183 198240) (-171 "COMPPROP.spad" 197433 197441 197909 197914) (-170 "COMPLPAT.spad" 197200 197215 197423 197428) (-169 "COMPLEX.spad" 191224 191234 191468 191729) (-168 "COMPLEX2.spad" 190937 190949 191214 191219) (-167 "COMPFACT.spad" 190539 190553 190927 190932) (-166 "COMPCAT.spad" 188607 188617 190273 190534) (-165 "COMPCAT.spad" 186368 186380 188036 188041) (-164 "COMMUPC.spad" 186114 186132 186358 186363) (-163 "COMMONOP.spad" 185647 185655 186104 186109) (-162 "COMM.spad" 185456 185464 185637 185642) (-161 "COMMAAST.spad" 185219 185227 185446 185451) (-160 "COMBOPC.spad" 184124 184132 185209 185214) (-159 "COMBINAT.spad" 182869 182879 184114 184119) (-158 "COMBF.spad" 180237 180253 182859 182864) (-157 "COLOR.spad" 179074 179082 180227 180232) (-156 "COLONAST.spad" 178740 178748 179064 179069) (-155 "CMPLXRT.spad" 178449 178466 178730 178735) (-154 "CLLCTAST.spad" 178111 178119 178439 178444) (-153 "CLIP.spad" 174203 174211 178101 178106) (-152 "CLIF.spad" 172842 172858 174159 174198) (-151 "CLAGG.spad" 169327 169337 172832 172837) (-150 "CLAGG.spad" 165683 165695 169190 169195) (-149 "CINTSLPE.spad" 165008 165021 165673 165678) (-148 "CHVAR.spad" 163086 163108 164998 165003) (-147 "CHARZ.spad" 163001 163009 163066 163081) (-146 "CHARPOL.spad" 162509 162519 162991 162996) (-145 "CHARNZ.spad" 162262 162270 162489 162504) (-144 "CHAR.spad" 160130 160138 162252 162257) (-143 "CFCAT.spad" 159446 159454 160120 160125) (-142 "CDEN.spad" 158604 158618 159436 159441) (-141 "CCLASS.spad" 156753 156761 158015 158054) (-140 "CATEGORY.spad" 155843 155851 156743 156748) (-139 "CATCTOR.spad" 155734 155742 155833 155838) (-138 "CATAST.spad" 155352 155360 155724 155729) (-137 "CASEAST.spad" 155066 155074 155342 155347) (-136 "CARTEN.spad" 150169 150193 155056 155061) (-135 "CARTEN2.spad" 149555 149582 150159 150164) (-134 "CARD.spad" 146844 146852 149529 149550) (-133 "CAPSLAST.spad" 146618 146626 146834 146839) (-132 "CACHSET.spad" 146240 146248 146608 146613) (-131 "CABMON.spad" 145793 145801 146230 146235) (-130 "BYTEORD.spad" 145468 145476 145783 145788) (-129 "BYTE.spad" 144893 144901 145458 145463) (-128 "BYTEBUF.spad" 142750 142758 144062 144089) (-127 "BTREE.spad" 141819 141829 142357 142384) (-126 "BTOURN.spad" 140822 140832 141426 141453) (-125 "BTCAT.spad" 140210 140220 140790 140817) (-124 "BTCAT.spad" 139618 139630 140200 140205) (-123 "BTAGG.spad" 138740 138748 139586 139613) (-122 "BTAGG.spad" 137882 137892 138730 138735) (-121 "BSTREE.spad" 136617 136627 137489 137516) (-120 "BRILL.spad" 134812 134823 136607 136612) (-119 "BRAGG.spad" 133736 133746 134802 134807) (-118 "BRAGG.spad" 132624 132636 133692 133697) (-117 "BPADICRT.spad" 130605 130617 130860 130953) (-116 "BPADIC.spad" 130269 130281 130531 130600) (-115 "BOUNDZRO.spad" 129925 129942 130259 130264) (-114 "BOP.spad" 124800 124808 129915 129920) (-113 "BOP1.spad" 122186 122196 124756 124761) (-112 "BOOLEAN.spad" 121510 121518 122176 122181) (-111 "BMODULE.spad" 121222 121234 121478 121505) (-110 "BITS.spad" 120641 120649 120858 120885) (-109 "BINDING.spad" 120060 120068 120631 120636) (-108 "BINARY.spad" 118171 118179 118527 118620) (-107 "BGAGG.spad" 117368 117378 118151 118166) (-106 "BGAGG.spad" 116573 116585 117358 117363) (-105 "BFUNCT.spad" 116137 116145 116553 116568) (-104 "BEZOUT.spad" 115271 115298 116087 116092) (-103 "BBTREE.spad" 112090 112100 114878 114905) (-102 "BASTYPE.spad" 111762 111770 112080 112085) (-101 "BASTYPE.spad" 111432 111442 111752 111757) (-100 "BALFACT.spad" 110871 110884 111422 111427) (-99 "AUTOMOR.spad" 110318 110327 110851 110866) (-98 "ATTREG.spad" 107037 107044 110070 110313) (-97 "ATTRBUT.spad" 103060 103067 107017 107032) (-96 "ATTRAST.spad" 102777 102784 103050 103055) (-95 "ATRIG.spad" 102247 102254 102767 102772) (-94 "ATRIG.spad" 101715 101724 102237 102242) (-93 "ASTCAT.spad" 101619 101626 101705 101710) (-92 "ASTCAT.spad" 101521 101530 101609 101614) (-91 "ASTACK.spad" 100854 100863 101128 101155) (-90 "ASSOCEQ.spad" 99654 99665 100810 100815) (-89 "ASP9.spad" 98735 98748 99644 99649) (-88 "ASP8.spad" 97778 97791 98725 98730) (-87 "ASP80.spad" 97100 97113 97768 97773) (-86 "ASP7.spad" 96260 96273 97090 97095) (-85 "ASP78.spad" 95711 95724 96250 96255) (-84 "ASP77.spad" 95080 95093 95701 95706) (-83 "ASP74.spad" 94172 94185 95070 95075) (-82 "ASP73.spad" 93443 93456 94162 94167) (-81 "ASP6.spad" 92310 92323 93433 93438) (-80 "ASP55.spad" 90819 90832 92300 92305) (-79 "ASP50.spad" 88636 88649 90809 90814) (-78 "ASP4.spad" 87931 87944 88626 88631) (-77 "ASP49.spad" 86930 86943 87921 87926) (-76 "ASP42.spad" 85337 85376 86920 86925) (-75 "ASP41.spad" 83916 83955 85327 85332) (-74 "ASP35.spad" 82904 82917 83906 83911) (-73 "ASP34.spad" 82205 82218 82894 82899) (-72 "ASP33.spad" 81765 81778 82195 82200) (-71 "ASP31.spad" 80905 80918 81755 81760) (-70 "ASP30.spad" 79797 79810 80895 80900) (-69 "ASP29.spad" 79263 79276 79787 79792) (-68 "ASP28.spad" 70536 70549 79253 79258) (-67 "ASP27.spad" 69433 69446 70526 70531) (-66 "ASP24.spad" 68520 68533 69423 69428) (-65 "ASP20.spad" 67984 67997 68510 68515) (-64 "ASP1.spad" 67365 67378 67974 67979) (-63 "ASP19.spad" 62051 62064 67355 67360) (-62 "ASP12.spad" 61465 61478 62041 62046) (-61 "ASP10.spad" 60736 60749 61455 61460) (-60 "ARRAY2.spad" 60096 60105 60343 60370) (-59 "ARRAY1.spad" 58931 58940 59279 59306) (-58 "ARRAY12.spad" 57600 57611 58921 58926) (-57 "ARR2CAT.spad" 53262 53283 57568 57595) (-56 "ARR2CAT.spad" 48944 48967 53252 53257) (-55 "ARITY.spad" 48512 48519 48934 48939) (-54 "APPRULE.spad" 47756 47778 48502 48507) (-53 "APPLYORE.spad" 47371 47384 47746 47751) (-52 "ANY.spad" 45713 45720 47361 47366) (-51 "ANY1.spad" 44784 44793 45703 45708) (-50 "ANTISYM.spad" 43223 43239 44764 44779) (-49 "ANON.spad" 42916 42923 43213 43218) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 40d5bd47..9d15f54b 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,15 +1,15 @@
-(162147 . 3449600536)
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) #0#) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
-((((-564)) . T) (($) -4002 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T))
+(162147 . 3450528894)
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) #0#) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
+((((-564)) . T) (($) -4012 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T))
(((|#2| |#2|) . T))
((((-564)) . T))
-((($ $) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))))
+((($ $) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#2|) . T))
-((($) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
(|has| |#1| (-906))
((((-859)) . T))
((((-859)) . T))
@@ -24,19 +24,19 @@
((((-225)) . T) (((-859)) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1|) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-845)))
-((($ $) . T) ((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
-(-4002 (|has| |#1| (-817)) (|has| |#1| (-847)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-845)))
+((($ $) . T) ((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
+(-4012 (|has| |#1| (-817)) (|has| |#1| (-847)))
((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T))
((((-859)) . T))
((((-859)) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-845))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1| |#2| |#3|) . T))
((((-1175)) . T))
((((-564)) . T) (((-867 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
-((($) . T) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) . T) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((((-859)) . T))
((((-1175)) . T))
(((|#4|) . T))
@@ -46,14 +46,14 @@
(((|#1|) . T) ((|#2|) . T))
((((-1175)) . T))
(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-(((|#2| (-482 (-2589 |#1|) (-768))) . T))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(((|#2| (-482 (-2779 |#1|) (-768))) . T))
(((|#1| (-531 (-1170))) . T))
(((#0=(-867 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
((((-1152)) . T) (((-955 (-129))) . T) (((-859)) . T))
((((-859)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(|has| |#4| (-368))
(|has| |#3| (-368))
(((|#1|) . T))
@@ -66,13 +66,13 @@
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-556))
-((((-564)) . T) (((-407 (-564))) -4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
-((((-2 (|:| -1403 |#1|) (|:| -3747 |#2|))) . T))
+((((-564)) . T) (((-407 (-564))) -4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
+((((-2 (|:| -3338 |#1|) (|:| -3078 |#2|))) . T))
((($) . T))
-((((-564)) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1170)) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-564)) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1170)) . T))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-536)) |has| |#1| (-612 (-536))))
((((-1170)) . T))
((((-564)) . T) (($) . T))
@@ -83,66 +83,66 @@
((((-859)) . T))
((((-859)) . T))
((((-407 (-564))) . T) (($) . T))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
((((-859)) . T))
(((|#1|) . T))
((((-859)) . T))
((((-859)) . T))
-(((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
+(((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
(((|#1| |#2|) . T))
((((-859)) . T))
(((|#1|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
(((|#1|) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
-((($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T) (((-564)) . T))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
(((|#2|) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
((($ $) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
((($) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-368))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
((((-859)) . T))
(((|#1| |#2|) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
(((|#1| |#1|) . T))
((((-859)) . T))
(|has| |#1| (-556))
(((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|))))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-845)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-845)))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(|has| |#1| (-1094))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(|has| |#1| (-1094))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(|has| |#1| (-845))
((($) . T) (((-407 (-564))) . T))
(((|#1|) . T))
((((-564) (-129)) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
((((-129)) . T))
((((-1175)) . T))
-(-4002 (|has| |#4| (-790)) (|has| |#4| (-845)))
-(-4002 (|has| |#4| (-790)) (|has| |#4| (-845)))
-(-4002 (|has| |#3| (-790)) (|has| |#3| (-845)))
-(-4002 (|has| |#3| (-790)) (|has| |#3| (-845)))
+(-4012 (|has| |#4| (-790)) (|has| |#4| (-845)))
+(-4012 (|has| |#4| (-790)) (|has| |#4| (-845)))
+(-4012 (|has| |#3| (-790)) (|has| |#3| (-845)))
+(-4012 (|has| |#3| (-790)) (|has| |#3| (-845)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-1094))
@@ -156,33 +156,33 @@
((((-564)) . T))
((((-564)) . T))
(((|#1|) . T))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(((|#1| (-768)) . T))
(|has| |#2| (-790))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
(|has| |#2| (-845))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
((((-1152) |#1|) . T))
((((-564) (-129)) . T))
(((|#1|) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
(((|#3| (-768)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-1094))
((((-407 (-564))) . T) (((-564)) . T))
((((-564)) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))))
-((((-564)) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#2|) . T))
+((((-564)) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#2|) . T))
((((-1170) |#2|) |has| |#2| (-514 (-1170) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|)))
((((-407 (-564))) . T) (((-564)) . T))
-((((-564)) . T) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
+((((-564)) . T) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
(((|#1|) . T) (($) . T))
((((-564)) . T))
((((-564)) . T))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
((((-564)) . T))
((((-564)) . T))
(((#0=(-695) (-1166 #0#)) . T))
@@ -201,13 +201,13 @@
((((-859)) . T))
((((-859)) . T))
(((|#1| |#1|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) . T))
(((|#1|) . T))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((($) -4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))))
((((-859)) . T))
((((-859)) . T))
((((-859)) . T))
@@ -218,17 +218,17 @@
((((-169 (-225))) |has| |#1| (-1019)) (((-169 (-379))) |has| |#1| (-1019)) (((-536)) |has| |#1| (-612 (-536))) (((-1166 |#1|)) . T) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1|) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-845)))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-845)))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-845)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-845)))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))))
(|has| |#1| (-363))
((((-859)) . T))
((((-129)) . T))
(-12 (|has| |#4| (-233)) (|has| |#4| (-1046)))
(-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))
-(-4002 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046)))
-(-4002 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046)))
+(-4012 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
((((-859)) . T) (((-1175)) . T))
((((-859)) . T) (((-1175)) . T))
((((-1175)) . T))
@@ -237,14 +237,14 @@
(((|#1|) . T))
((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
-(((|#2|) . T) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
(|has| |#1| (-556))
-((((-564)) -4002 (|has| |#4| (-172)) (|has| |#4| (-845)) (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1046))) ((|#4|) -4002 (|has| |#4| (-172)) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))
-((((-564)) -4002 (|has| |#3| (-172)) (|has| |#3| (-845)) (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046))) ((|#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))
+((((-564)) -4012 (|has| |#4| (-172)) (|has| |#4| (-845)) (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1046))) ((|#4|) -4012 (|has| |#4| (-172)) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))
+((((-564)) -4012 (|has| |#3| (-172)) (|has| |#3| (-845)) (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046))) ((|#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(|has| |#1| (-556))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(((|#1|) . T))
(|has| |#1| (-556))
(|has| |#1| (-556))
@@ -255,21 +255,21 @@
(((|#2|) . T) (($) . T) (((-407 (-564))) . T))
(-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))
((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T))
-(((|#4| |#4|) -4002 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))) (($ $) |has| |#4| (-172)))
-(((|#3| |#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($ $) |has| |#3| (-172)))
+(((|#4| |#4|) -4012 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))) (($ $) |has| |#4| (-172)))
+(((|#3| |#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($ $) |has| |#3| (-172)))
(((|#1|) . T))
(((|#2|) . T))
((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564)))))
((((-859)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -1403 |#1|) (|:| -3747 |#2|))) . T) (((-859)) . T))
+((((-2 (|:| -3338 |#1|) (|:| -3078 |#2|))) . T) (((-859)) . T))
((((-536)) |has| |#1| (-612 (-536))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))))
-(((|#4|) -4002 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))) (($) |has| |#4| (-172)))
-(((|#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($) |has| |#3| (-172)))
-((((-2 (|:| -1403 |#1|) (|:| -3747 |#2|))) . T))
+(((|#4|) -4012 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))) (($) |has| |#4| (-172)))
+(((|#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($) |has| |#3| (-172)))
+((((-2 (|:| -3338 |#1|) (|:| -3078 |#2|))) . T))
((((-859)) . T))
((((-859)) . T))
((((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T))
@@ -277,14 +277,14 @@
(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))))
((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
((((-407 $) (-407 $)) |has| |#2| (-556)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) . T))
(((|#1|) . T))
(|has| |#2| (-906))
((((-1152) (-52)) . T))
((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T))
((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-889 (-379))) . T))
((((-859)) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
(((|#1|) |has| |#1| (-172)))
(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
((((-859)) . T))
@@ -296,15 +296,15 @@
(((|#2|) . T) (((-564)) . T) (((-816 |#1|)) . T))
(|has| |#1| (-1094))
(((|#1|) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-536)) |has| |#1| (-612 (-536))))
((((-859)) . T) (((-1175)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
((((-1175)) . T))
-((($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(|has| |#1| (-233))
-((($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1| (-531 (-815 (-1170)))) . T))
(((|#1| (-968)) . T))
(((#0=(-867 |#1|) $) |has| #0# (-286 #0# #0#)))
@@ -313,7 +313,7 @@
(((|#1|) . T))
(((|#2| |#2|) . T))
(|has| |#1| (-1145))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
(|has| (-1245 |#1| |#2| |#3| |#4|) (-145))
(|has| (-1245 |#1| |#2| |#3| |#4|) (-147))
(|has| |#1| (-145))
@@ -325,27 +325,27 @@
(((|#2|) . T))
(((|#1|) . T))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
-((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-815 (-1170))) . T) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-1170)) . T))
+((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-815 (-1170))) . T) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-1170)) . T))
(|has| |#2| (-368))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
((($) . T) ((|#1|) . T))
(((|#2|) |has| |#2| (-1046)))
((((-859)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) #0#) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) #0#) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
(((|#1|) . T))
-((((-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) #0#) |has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))))
+((((-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) #0#) |has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))))
((((-859)) . T))
((((-564) |#1|) . T))
((((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))) (((-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379))))) (((-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564))))))
((($) . T))
((((-859)) . T))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
((((-859)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-859)) . T))
((((-859)) . T))
(|has| (-1244 |#2| |#3| |#4|) (-147))
@@ -356,16 +356,16 @@
((((-859)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
(((|#1|) . T))
((((-564) |#1|) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-845)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-845)))
((((-859)) |has| |#1| (-1094)))
-(-4002 (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
((((-907 |#1|)) . T))
((((-407 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-564) |#1|)))
@@ -377,7 +377,7 @@
(((|#1|) . T))
((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
(|has| |#1| (-363))
-(-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))
+(-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))
(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))
(|has| |#1| (-363))
((((-564)) . T))
@@ -390,35 +390,35 @@
((((-564) |#1|) . T))
((((-859)) . T))
(((|#2|) . T))
-(-4002 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
((($) |has| |#1| (-556)) (((-564)) . T))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
-((((-1251 |#1| |#2| |#3|)) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1255 |#2|)) . T) (((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
+((((-1251 |#1| |#2| |#3|)) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
+((((-1255 |#2|)) . T) (((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T))
(((|#1|) . T))
((((-1170)) -12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046))))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(-12 (|has| |#1| (-363)) (|has| |#2| (-817)))
-(-4002 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556)))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))))
+(-4012 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556)))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))))
((($ $) |has| |#1| (-556)))
(((#0=(-695) (-1166 #0#)) . T))
((((-859)) . T) (((-1259 |#4|)) . T))
((((-859)) . T) (((-1259 |#3|)) . T))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)))
((((-859)) . T))
((($) . T))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1251 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
-(((|#1|) . T) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1251 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
+(((|#1|) . T) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
(((|#3|) |has| |#3| (-1046)))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(|has| |#1| (-1094))
(((|#2| (-816 |#1|)) . T))
(((|#1|) . T))
@@ -431,39 +431,39 @@
((((-144)) . T))
(((|#3|) |has| |#3| (-1094)) (((-564)) -12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))
((((-859)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#1|) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) . T))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) . T))
(|has| |#1| (-363))
((((-1175)) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-845)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-845)))
((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
(|has| |#2| (-817))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-845))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
((((-859)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-536)) |has| |#1| (-612 (-536))))
(((|#1| |#2|) . T))
((((-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170)))))
((((-1152) |#1|) . T))
(((|#1| |#2| |#3| (-531 |#3|)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
((((-859)) . T))
(((|#1|) . T))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
(|has| |#1| (-368))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
((((-564)) . T))
((((-564)) . T))
(((|#1|) . T) (((-564)) . T))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
((((-859)) . T))
((((-859)) . T))
(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
@@ -474,10 +474,10 @@
((((-564) |#4|) . T))
((((-564) |#3|) . T))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
((((-1245 |#1| |#2| |#3| |#4|)) . T))
((((-407 (-564))) . T) (((-564)) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
@@ -488,7 +488,7 @@
((((-564)) . T))
((($) . T) (((-564)) . T) (((-407 (-564))) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
-((((-564)) -4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))))
+((((-564)) -4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -507,45 +507,45 @@
((($) . T))
((($ $) . T) ((#0=(-1170) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-172)))
-((($) -4002 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
-(((|#2| |#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172)))
+((($) -4012 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
+(((|#2| |#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172)))
((((-144)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-368)) (|has| |#2| (-368)))
((((-859)) . T))
-(((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172)))
+(((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172)))
(((|#1|) . T))
((((-859)) . T))
(|has| |#1| (-1094))
(|has| $ (-147))
((((-1175)) . T))
((((-564) |#1|) . T))
-((($) -4002 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) -4012 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))))
(|has| |#1| (-363))
-(-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))
+(-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))
(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))
(|has| |#1| (-363))
(|has| |#1| (-15 * (|#1| (-768) |#1|)))
(((|#1|) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
((((-859)) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
(((|#2| (-531 (-861 |#1|))) . T))
((((-859)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1|) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
((((-581 |#1|)) . T))
((($) . T))
((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
(((|#1|) . T) (($) . T))
((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T))
-((((-1168 |#1| |#2| |#3|)) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1255 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-1168 |#1| |#2| |#3|)) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
+((((-1255 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))))
(((|#4|) . T))
(((|#3|) . T))
((((-867 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
@@ -554,35 +554,35 @@
(((|#1|) . T))
((((-859)) . T))
((((-859)) . T))
-((((-564)) . T) (((-407 (-564))) -4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T))
+((((-564)) . T) (((-407 (-564))) -4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T))
((((-564) |#2|) . T))
((((-859)) . T))
((((-859)) . T))
((((-859)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1168 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1168 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
((((-859)) . T))
(((|#2|) |has| |#2| (-1046)))
(|has| |#1| (-1094))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
-(((|#1|) . T) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T))
+(((|#1|) . T) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) |has| |#1| (-172)) (($) . T))
(((|#1|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
((((-859)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
(((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
((($) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(((|#1|) . T))
(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))))
(((|#2|) |has| |#1| (-363)))
@@ -605,8 +605,8 @@
(|has| |#1| (-145))
(|has| |#1| (-147))
((((-1175)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
-((($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
@@ -617,13 +617,13 @@
(((|#1| (-768) (-1076)) . T))
((((-407 (-564))) |has| |#2| (-363)) (($) . T))
(((|#1| (-531 (-1082 (-1170))) (-1082 (-1170))) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(((|#1|) . T))
-((((-996 |#1|)) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) -4002 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+((((-996 |#1|)) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) -4012 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(|has| |#2| (-790))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
@@ -655,34 +655,34 @@
(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
(((|#2|) . T) (((-564)) |has| |#2| (-1035 (-564))) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))))
(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
(((|#2|) . T))
-((((-859)) -4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T))
+((((-859)) -4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T))
((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T) (($) . T))
(((|#1|) |has| |#1| (-172)))
((((-564)) . T))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-564) (-144)) . T))
-((($) -4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))))
+((($) -4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))))
((((-564)) . T))
(((|#1|) . T) ((|#2|) . T) (((-564)) . T))
-((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
+((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
(((|#1|) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
(((|#2|) |has| |#1| (-363)))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
((((-1175)) . T))
(((|#1| (-531 #0=(-1170)) #0#) . T))
@@ -690,34 +690,34 @@
(|has| |#4| (-172))
(|has| |#3| (-172))
(((#0=(-407 (-949 |#1|)) #0#) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(|has| |#1| (-1094))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(|has| |#1| (-1094))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-536)) |has| |#1| (-612 (-536))))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
((((-859)) . T) (((-1175)) . T))
((((-1175)) . T))
(((|#1| |#1|) |has| |#1| (-172)))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1|) . T))
((((-407 (-949 |#1|))) . T))
(((|#1|) |has| |#1| (-172)))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
((((-859)) . T))
((((-1245 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) |has| |#1| (-1046)) (((-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))
(((|#1| |#2|) . T))
-(-4002 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
(|has| |#3| (-790))
-(-4002 (|has| |#3| (-790)) (|has| |#3| (-845)))
+(-4012 (|has| |#3| (-790)) (|has| |#3| (-845)))
(|has| |#3| (-845))
(((|#1|) . T))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))))
(((|#2|) . T))
((((-859)) . T))
((((-859)) . T))
@@ -732,22 +732,22 @@
(|has| |#1| (-1094))
(((|#2|) . T))
((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564)))))
-(((|#4|) -4002 (|has| |#4| (-172)) (|has| |#4| (-363))))
-(((|#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-363))))
+(((|#4|) -4012 (|has| |#4| (-172)) (|has| |#4| (-363))))
+(((|#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-363))))
((((-859)) . T))
(((|#1|) . T))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-906)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906)))
((($ $) . T) ((#0=(-1170) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-815 (-1170)) |#1|) . T) ((#1# $) . T))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-906)))
((((-564) |#2|) . T))
((((-859)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((($) -4002 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) ((|#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))))
+((($) -4012 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) ((|#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))))
((((-564) |#1|) . T))
(|has| (-407 |#2|) (-147))
(|has| (-407 |#2|) (-145))
@@ -760,15 +760,15 @@
(|has| |#1| (-556))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-859)) . T))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
(|has| |#1| (-38 (-407 (-564))))
-((((-388) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
+((((-388) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#2| (-1145))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
((((-859)) . T) (((-1175)) . T))
((((-859)) . T) (((-1175)) . T))
((((-859)) . T) (((-1175)) . T))
@@ -786,7 +786,7 @@
((((-388) (-1152)) . T))
(|has| |#1| (-556))
((((-564) |#1|) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
(((|#2|) . T))
@@ -802,7 +802,7 @@
((((-641 |#1|)) . T))
((((-859)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(((|#2|) |has| |#2| (-309 |#2|)))
(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
(((|#1|) . T))
@@ -812,7 +812,7 @@
(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
((($) . T) (((-564)) . T) (((-407 (-564))) . T))
(|has| |#2| (-368))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
@@ -826,8 +826,8 @@
((((-859)) . T))
((((-859)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
-((($) . T) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((($) . T) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((($ $) . T))
((((-859)) . T))
((($ $) . T))
@@ -837,12 +837,12 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-407 (-564))) . T) (((-564)) . T))
((((-564) (-144)) . T))
((((-144)) . T))
(((|#1|) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
((((-112)) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
((((-112)) . T))
@@ -851,26 +851,26 @@
((((-859)) . T))
((((-1175)) . T))
(|has| |#1| (-817))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(|has| |#1| (-847))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-556)))
(|has| |#1| (-556))
((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T))
(|has| |#1| (-906))
(((|#1|) . T))
(|has| |#1| (-1094))
((((-859)) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-556)))
((((-859)) . T))
((((-859)) . T))
((((-859)) . T))
(((|#1| (-1259 |#1|) (-1259 |#1|)) . T))
((((-564) (-144)) . T))
((($) . T))
-(-4002 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046)))
-(-4002 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046)))
+(-4012 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
((((-1175)) . T) (((-859)) . T))
((((-1175)) . T))
((((-859)) . T))
@@ -878,14 +878,14 @@
(((|#1| (-968)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
(-12 (|has| |#1| (-473)) (|has| |#2| (-473)))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
-(-4002 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))
(((|#1|) . T))
(|has| |#2| (-790))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
(((|#1| |#2|) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(|has| |#2| (-845))
@@ -901,8 +901,8 @@
(((|#1|) . T))
(((|#1|) . T))
((((-407 (-564))) . T) (($) . T))
-((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T))
-((($) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
+((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T))
+((($) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
(|has| |#1| (-825))
((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T))
(|has| |#1| (-1094))
@@ -913,30 +913,30 @@
(((|#3|) |has| |#3| (-1094)))
(|has| |#3| (-368))
(((|#1|) . T) (((-859)) . T))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
((((-859)) . T))
((((-859)) . T))
(((|#1| |#2|) . T))
(((|#2|) . T))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1| |#1|) |has| |#1| (-172)))
(|has| |#2| (-363))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
((((-407 (-564))) . T) (((-564)) . T))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
((((-144)) . T))
(((|#1|) . T))
-((($) -4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))))
+((($) -4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))))
((((-144)) . T))
((((-144)) . T))
((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#) ((|#2|) . T) (((-564)) . T))
(((|#1| |#2| |#3|) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
(|has| $ (-147))
(|has| $ (-147))
((((-1175)) . T))
@@ -944,14 +944,14 @@
((((-859)) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1046)) (|has| |#1| (-1106)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1046)) (|has| |#1| (-1106)))
((($ $) |has| |#1| (-286 $ $)) ((|#1| $) |has| |#1| (-286 |#1| |#1|)))
(((|#1| (-407 (-564))) . T))
(((|#1|) . T))
((((-1170)) . T))
(|has| |#1| (-556))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-556))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
@@ -962,7 +962,7 @@
(|has| |#1| (-147))
(|has| |#1| (-145))
(|has| |#4| (-845))
-(((|#2| (-240 (-2589 |#1|) (-768)) (-861 |#1|)) . T))
+(((|#2| (-240 (-2779 |#1|) (-768)) (-861 |#1|)) . T))
(|has| |#3| (-845))
(((|#1| (-531 |#3|) |#3|) . T))
(|has| |#1| (-147))
@@ -977,20 +977,20 @@
(|has| |#1| (-145))
((((-407 (-564))) |has| |#2| (-363)) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
-(-4002 (|has| |#1| (-349)) (|has| |#1| (-368)))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#1| (-349)) (|has| |#1| (-368)))
((((-1136 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-172))
(((|#1| |#2|) . T))
(-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))
-(((|#2|) . T) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-(-4002 (|has| |#3| (-790)) (|has| |#3| (-845)))
-(-4002 (|has| |#3| (-790)) (|has| |#3| (-845)))
+(((|#2|) . T) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+(-4012 (|has| |#3| (-790)) (|has| |#3| (-845)))
+(-4012 (|has| |#3| (-790)) (|has| |#3| (-845)))
((((-859)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
((((-695)) . T))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(|has| |#1| (-556))
(((|#1|) . T))
(((|#1|) . T))
@@ -1014,11 +1014,11 @@
(((|#1| (-407 (-564))) . T))
(((|#3|) . T) (((-610 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-((((-564)) -4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+((((-564)) -4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
@@ -1026,8 +1026,8 @@
((((-859)) . T))
((((-859)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) |has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) |has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))))
((((-859)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
@@ -1038,10 +1038,10 @@
((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T))
(|has| |#1| (-825))
(|has| |#1| (-1094))
-(((|#2| |#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172)))
-(((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363))))
-((((-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172)))
+(((|#2| |#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172)))
+(((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363))))
+((((-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172)))
((((-1175)) . T))
((((-768)) . T))
(|has| |#1| (-556))
@@ -1055,31 +1055,31 @@
((((-116 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-147))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-556)))
((((-889 (-564))) . T) (((-889 (-379))) . T) (((-536)) . T) (((-1170)) . T))
((((-859)) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
((((-859)) . T) (((-1175)) . T))
((((-1175)) . T))
((($) . T))
((((-859)) . T))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
(((|#2|) |has| |#2| (-172)))
-((($) -4002 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))))
((((-867 |#1|)) . T))
-(-4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
+(-4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
(-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))
(|has| |#2| (-1145))
-(((#0=(-52)) . T) (((-2 (|:| -2351 (-1170)) (|:| -1327 #0#))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1350 (-1170)) (|:| -2575 #0#))) . T))
(((|#1| |#2|) . T))
-(-4002 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
(((|#1| (-564) (-1076)) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1| (-407 (-564)) (-1076)) . T))
-((($) -4002 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) -4012 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((((-564) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
@@ -1087,39 +1087,39 @@
(-12 (|has| |#1| (-368)) (|has| |#2| (-368)))
((((-859)) . T))
((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
(((|#1|) . T))
((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#4|) . T))
(|has| |#1| (-349))
-((((-564)) -4002 (|has| |#3| (-172)) (|has| |#3| (-845)) (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046))) ((|#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))
+((((-564)) -4012 (|has| |#3| (-172)) (|has| |#3| (-845)) (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046))) ((|#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))
(((|#1|) . T))
(((|#4|) . T) (((-859)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) #0#) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) #0#) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
(|has| |#1| (-556))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
((((-859)) . T))
(((|#1| |#2|) . T))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-906)))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-906)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-906)))
((((-407 (-564))) . T) (((-564)) . T))
((((-564)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
((($) . T))
((((-859)) . T))
(((|#1|) . T))
((((-867 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
((((-859)) . T))
-(((|#3| |#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($ $) |has| |#3| (-172)))
+(((|#3| |#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($ $) |has| |#3| (-172)))
(|has| |#1| (-1019))
((((-859)) . T))
-(((|#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($) |has| |#3| (-172)))
+(((|#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($) |has| |#3| (-172)))
((((-564) (-112)) . T))
((((-1175)) . T))
(((|#1|) |has| |#1| (-309 |#1|)))
@@ -1129,11 +1129,11 @@
(|has| |#1| (-368))
((((-1170) $) |has| |#1| (-514 (-1170) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)))
((((-1170)) |has| |#1| (-897 (-1170))))
-(-4002 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))
+(-4012 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-388) |#1|) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
(|has| |#1| (-1094))
(((|#2|) . T) (((-859)) . T))
((((-859)) . T))
@@ -1141,8 +1141,8 @@
((((-907 |#1|)) . T))
((((-859)) . T) (((-1175)) . T))
((((-1175)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
(((|#1| |#2|) . T))
((($) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
@@ -1151,16 +1151,16 @@
(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
(((|#1| |#1|) . T))
(((#0=(-867 |#1|)) |has| #0# (-309 #0#)))
-((((-564)) . T) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T))
+((((-564)) . T) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
(((|#1|) . T))
(-12 (|has| |#1| (-790)) (|has| |#2| (-790)))
(-12 (|has| |#1| (-790)) (|has| |#2| (-790)))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(|has| |#1| (-1194))
(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
((((-407 (-564))) . T) (($) . T))
@@ -1171,8 +1171,8 @@
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(|has| |#1| (-363))
((((-564)) . T) (((-407 (-564))) . T) (($) . T))
-((($ $) . T) ((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((($ $) . T) ((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
((((-859)) . T))
((((-859)) . T))
@@ -1187,14 +1187,14 @@
(((|#1| |#2|) . T))
(|has| |#1| (-845))
(|has| |#1| (-845))
-((($) . T) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-556)))
+((($) . T) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-556)))
((($) . T))
-(((#0=(-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) #0#) |has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))))
+(((#0=(-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) #0#) |has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))))
(|has| |#2| (-847))
((($) . T))
(((|#2|) |has| |#2| (-1094)))
-((((-859)) -4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T))
+((((-859)) -4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T))
(|has| |#1| (-847))
(|has| |#1| (-847))
((((-1152) (-52)) . T))
@@ -1203,10 +1203,10 @@
((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T))
((($) . T) (((-564)) . T))
((((-564) (-144)) . T))
-((((-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T) ((|#1| |#2|) . T))
+((((-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T) ((|#1| |#2|) . T))
((((-407 (-564))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-859)) . T))
((((-907 |#1|)) . T))
(|has| |#1| (-363))
@@ -1233,21 +1233,21 @@
((((-859)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T) ((|#1| |#2|) . T))
+((((-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-172)))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(((|#1|) . T))
((((-536)) |has| |#1| (-612 (-536))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))))
((((-859)) . T))
-(((|#2|) . T) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-506)) . T))
(|has| |#2| (-845))
((((-506)) . T))
@@ -1255,39 +1255,39 @@
(|has| |#1| (-556))
((((-1152) |#1|) . T))
(|has| |#1| (-1145))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
((((-955 |#1|)) . T))
-(((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
+(((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
((((-407 (-564))) |has| |#1| (-1035 (-564))) (((-564)) |has| |#1| (-1035 (-564))) (((-1170)) |has| |#1| (-1035 (-1170))) ((|#1|) . T))
((((-564) |#2|) . T))
((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T))
((((-564)) |has| |#1| (-883 (-564))) (((-379)) |has| |#1| (-883 (-379))))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
(((|#1|) . T))
((((-641 |#4|)) . T) (((-859)) . T))
((((-536)) |has| |#4| (-612 (-536))))
((((-536)) |has| |#4| (-612 (-536))))
((((-859)) . T) (((-641 |#4|)) . T))
((($) |has| |#1| (-845)))
-((((-564)) -4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))))
+((((-564)) -4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))))
(((|#1|) . T))
((((-641 |#4|)) . T) (((-859)) . T))
((((-536)) |has| |#4| (-612 (-536))))
(((|#1|) . T))
(((|#2|) . T))
((((-1170)) |has| (-407 |#2|) (-897 (-1170))))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) #0#) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) #0#) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-859)) -4002 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-611 (-859))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094))) (((-1259 |#3|)) . T))
+((((-859)) -4012 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-611 (-859))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094))) (((-1259 |#3|)) . T))
((((-564) |#2|) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
-(((|#2| |#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(((|#2| |#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172)))
(((|#2|) . T) (((-564)) . T))
((((-859)) . T))
((((-859)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T) ((|#2|) . T))
((((-859)) . T))
((((-859)) . T))
((((-1152) (-1170) (-564) (-225) (-859)) . T))
@@ -1322,8 +1322,8 @@
(|has| |#1| (-38 (-407 (-564))))
((((-859)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
-(((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172)))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+(((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172)))
(|has| $ (-147))
((((-407 |#2|)) . T))
((((-890 |#1|)) . T) ((|#2|) . T) (((-564)) . T) (((-816 |#1|)) . T))
@@ -1335,11 +1335,11 @@
(((|#3|) |has| |#3| (-172)))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
(((|#1|) . T))
(|has| |#2| (-233))
@@ -1376,7 +1376,7 @@
((((-996 |#1|)) . T) ((|#1|) . T))
((((-859)) . T))
((((-859)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (($) . T))
(((|#1| (-1166 |#1|)) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
@@ -1384,9 +1384,9 @@
(|has| |#1| (-847))
(((|#2|) . T))
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
((((-564) |#2|) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
(((|#2|) . T))
((((-564) |#3|) . T))
(((|#2|) . T))
@@ -1399,7 +1399,7 @@
(|has| |#1| (-1094))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) #0#) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) #0#) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
(((|#2| |#2|) . T))
(|has| |#1| (-38 (-407 (-564))))
(((|#2|) . T))
@@ -1434,19 +1434,19 @@
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1| |#2|) . T))
((((-564) (-144)) . T))
-(((#0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) #0#) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
-((($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+(((#0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) #0#) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+((($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(|has| |#1| (-847))
(((|#2| (-768) (-1076)) . T))
(((|#1| |#2|) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-556)))
(|has| |#1| (-788))
(((|#1|) |has| |#1| (-172)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-4002 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147))))
-(-4002 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145))))
+(-4012 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147))))
+(-4012 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145))))
(((|#4|) . T))
(|has| |#1| (-145))
((((-1152) |#1|) . T))
@@ -1460,10 +1460,10 @@
(((|#3|) . T))
((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
((((-859)) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(((|#1|) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))) (((-955 |#1|)) . T))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))) (((-955 |#1|)) . T))
(|has| |#1| (-845))
(|has| |#1| (-845))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
@@ -1477,8 +1477,8 @@
((($) . T))
((((-388) (-1152)) . T))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-859)) -4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2351 (-1152)) (|:| -1327 #0#))) . T))
+((((-859)) -4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1350 (-1152)) (|:| -2575 #0#))) . T))
(((|#1|) . T))
((((-859)) . T))
(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
@@ -1486,7 +1486,7 @@
(|has| |#2| (-145))
(|has| |#2| (-147))
(|has| |#1| (-473))
-(-4002 (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
+(-4012 (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
(|has| |#1| (-363))
((((-859)) . T))
(|has| |#1| (-38 (-407 (-564))))
@@ -1497,8 +1497,8 @@
(|has| |#1| (-845))
((((-859)) . T))
(((|#2|) . T))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#2|) . T) (((-564)) . T) (((-816 |#1|)) . T))
(((|#1| |#2|) . T))
@@ -1507,7 +1507,7 @@
((((-859)) . T))
((((-859)) . T))
(|has| |#1| (-1094))
-(((|#2| (-482 (-2589 |#1|) (-768)) (-861 |#1|)) . T))
+(((|#2| (-482 (-2779 |#1|) (-768)) (-861 |#1|)) . T))
((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#))
(((|#1| (-531 (-1170)) (-1170)) . T))
(((|#1|) . T))
@@ -1527,16 +1527,16 @@
(|has| |#1| (-147))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) . T))
+(((|#1|) . T) (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) . T))
((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-1170) (-52)) . T))
((($ $) . T))
(((|#1| (-564)) . T))
((((-907 |#1|)) . T))
-(((|#1|) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046))) (($) -4002 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))))
+(((|#1|) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046))) (($) -4012 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))))
(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))))
(|has| |#1| (-847))
(|has| |#1| (-847))
@@ -1555,11 +1555,11 @@
(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
(|has| |#2| (-847))
(|has| |#1| (-847))
-(((|#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-363))))
-(-4002 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-906)))
+(((|#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-363))))
+(-4012 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-906)))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
((((-564) |#2|) . T))
-(((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363))))
+(((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363))))
(|has| |#1| (-349))
(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
(((|#2|) . T) (((-564)) . T))
@@ -1568,7 +1568,7 @@
(|has| |#1| (-817))
(|has| |#1| (-817))
(((|#1|) . T))
-(-4002 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
(|has| |#1| (-845))
(|has| |#1| (-845))
(|has| |#1| (-845))
@@ -1577,13 +1577,13 @@
((((-564)) . T) (($) . T) (((-407 (-564))) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
(|has| |#1| (-38 (-407 (-564))))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-1170)) |has| |#1| (-897 (-1170))) (((-1076)) . T))
(((|#1|) . T))
(|has| |#1| (-845))
-(((#0=(-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) #0#) |has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))))
+(((#0=(-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) #0#) |has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(|has| |#1| (-1094))
((((-859)) . T) (((-1175)) . T))
@@ -1602,11 +1602,11 @@
(((|#1| (-768) (-1076)) . T))
(((|#3|) . T))
((((-144)) . T))
-((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) -4002 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))) ((|#1|) . T))
+((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) -4012 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))) ((|#1|) . T))
(((|#1|) . T))
((((-144)) . T))
(((|#2|) |has| |#2| (-172)))
-(-4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
+(-4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
(((|#1|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -1629,32 +1629,32 @@
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) #0#) |has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-906)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-906)))
+(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) #0#) |has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-906)))
(((|#1|) . T) (($) . T))
(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-363))))
+(((|#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-363))))
(|has| |#1| (-847))
(|has| |#1| (-556))
((((-581 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-4002 (-12 (|has| |#1| (-363)) (|has| |#2| (-817))) (-12 (|has| |#1| (-363)) (|has| |#2| (-847))))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (-12 (|has| |#1| (-363)) (|has| |#2| (-817))) (-12 (|has| |#1| (-363)) (|has| |#2| (-847))))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
((((-907 |#1|)) . T))
(((|#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-768)) . T))
((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) . T))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
((((-668 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
@@ -1663,7 +1663,7 @@
((((-859)) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
((((-859)) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
((((-1175)) . T))
((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-564)) . T))
(((|#3|) . T) (((-564)) . T) (((-610 $)) . T))
@@ -1671,12 +1671,12 @@
((((-859)) . T))
((((-859)) . T))
(((|#2|) . T))
-(-4002 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094)))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T))
(|has| |#1| (-1194))
(|has| |#1| (-1194))
-(-4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
+(-4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
(|has| |#1| (-1194))
(|has| |#1| (-1194))
(((|#3| |#3|) . T))
@@ -1689,16 +1689,16 @@
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
((((-1152) (-52)) . T))
(|has| |#1| (-1094))
-(-4002 (|has| |#2| (-817)) (|has| |#2| (-847)))
+(-4012 (|has| |#2| (-817)) (|has| |#2| (-847)))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)) (($) . T))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((($) . T))
((((-1168 |#1| |#2| |#3|)) -12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))
((((-859)) . T))
((((-564)) . T) (($) . T))
((((-768)) . T))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
((((-859)) . T))
((($) . T) (((-564)) . T))
@@ -1706,30 +1706,30 @@
(|has| |#2| (-906))
(|has| |#1| (-363))
(((|#2|) |has| |#2| (-1094)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
((((-536)) . T) (((-407 (-1166 (-564)))) . T) (((-225)) . T) (((-379)) . T))
((((-379)) . T) (((-225)) . T) (((-859)) . T))
(|has| |#1| (-906))
(|has| |#1| (-906))
(|has| |#1| (-906))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-906)))
((($) . T) ((|#2|) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906)))
((((-859)) . T))
(((|#1|) . T))
(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
((($ $) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((($ $) . T))
((((-564) (-112)) . T))
((($) . T))
(((|#1|) . T))
((((-564)) . T))
((((-112)) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-38 (-407 (-564))))
(((|#1| (-564)) . T))
((($) . T))
@@ -1751,7 +1751,7 @@
(((|#1| (-1223 |#1| |#2| |#3|)) . T))
(((|#1| (-768)) . T))
(((|#1|) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-859)) . T))
(|has| |#1| (-1094))
((((-1152) |#1|) . T))
@@ -1771,18 +1771,18 @@
(((|#1|) . T))
((((-564)) . T))
((((-859)) . T))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-349)))
(|has| |#1| (-147))
((((-859)) . T))
(((|#3|) . T))
-(-4002 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
((((-859)) . T))
((((-1244 |#2| |#3| |#4|)) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T))
((((-859)) . T))
-((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (((-610 $)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) -4002 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-407 (-949 |#1|))) |has| |#1| (-556)) (((-949 |#1|)) |has| |#1| (-1046)) (((-1170)) . T))
+((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (((-610 $)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) -4012 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-407 (-949 |#1|))) |has| |#1| (-556)) (((-949 |#1|)) |has| |#1| (-1046)) (((-1170)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-768)) . T))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
(((|#1|) |has| |#1| (-309 |#1|)))
((((-1245 |#1| |#2| |#3| |#4|)) . T))
((((-564)) |has| |#1| (-883 (-564))) (((-379)) |has| |#1| (-883 (-379))))
@@ -1790,7 +1790,7 @@
(|has| |#1| (-556))
(((|#1|) . T))
((((-859)) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
(((|#1|) |has| |#1| (-172)))
((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
@@ -1798,7 +1798,7 @@
(((|#1|) . T))
(((|#3|) |has| |#3| (-1094)))
((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
-(((|#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-363))))
+(((|#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-363))))
((((-1244 |#2| |#3| |#4|)) . T))
((((-112)) . T))
(|has| |#1| (-817))
@@ -1808,8 +1808,8 @@
(|has| |#1| (-845))
(|has| |#1| (-845))
(((|#1| (-564) (-1076)) . T))
-(-4002 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+(-4012 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#1| (-407 (-564)) (-1076)) . T))
(((|#1| (-768) (-1076)) . T))
(|has| |#1| (-847))
@@ -1822,33 +1822,33 @@
(|has| |#1| (-1094))
((((-907 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
(|has| |#1| (-1094))
-((((-564)) -4002 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))))
+((((-564)) -4012 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))))
(((|#1|) . T))
(|has| |#1| (-1094))
((((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((|#2|) |has| |#1| (-363)))
-(-4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
-((((-685 (-339 (-1776) (-1776 (QUOTE X) (QUOTE HESS)) (-695)))) . T))
+(-4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
+((((-685 (-339 (-3725) (-3725 (QUOTE X) (QUOTE HESS)) (-695)))) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
((((-859)) . T))
(|has| |#3| (-845))
((((-859)) . T))
((((-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
((((-859)) . T))
-(((|#1| |#1|) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046))))
+(((|#1| |#1|) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046))))
(((|#1|) . T))
((((-564)) . T))
((((-564)) . T))
-(((|#1|) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046))))
+(((|#1|) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046))))
(((|#2|) |has| |#2| (-363)))
((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-363)))
(|has| |#1| (-847))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) |has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-906)))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) |has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-906)))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
((((-859)) . T))
((((-859)) . T))
@@ -1879,25 +1879,25 @@
(|has| |#1| (-145))
((((-564)) . T) ((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#1| (-1035 (-1170))))
(((|#1| |#2|) . T))
-((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) -4002 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))) ((|#1|) . T))
+((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) -4012 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))) ((|#1|) . T))
((((-144)) . T))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(((|#1|) . T))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T))
(((|#2|) . T) ((|#1|) . T) (((-564)) . T))
((((-859)) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| (-407 |#2|) (-233))
((((-641 |#1|)) . T))
(|has| |#1| (-906))
(((|#2|) |has| |#2| (-1046)))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
(|has| |#1| (-363))
(((|#1|) |has| |#1| (-172)))
(((|#1| |#1|) . T))
@@ -1924,7 +1924,7 @@
(((|#1| (-407 (-564)) (-1076)) . T))
(((|#1| (-768) (-1076)) . T))
(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-564)) -4002 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))) (((-407 (-564))) . T))
+(((|#1|) . T) (((-564)) -4012 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))) (((-407 (-564))) . T))
(((|#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
@@ -1945,25 +1945,25 @@
(((|#2|) |has| |#2| (-172)))
(|has| |#2| (-845))
((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))))
-((((-112)) |has| |#1| (-1094)) (((-859)) -4002 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094))))
+((((-112)) |has| |#1| (-1094)) (((-859)) -4012 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) . T))
((((-859)) . T))
((((-564) |#1|) . T))
((((-859)) . T))
((((-695)) . T) (((-407 (-564))) . T) (((-564)) . T))
(((|#1| |#1|) |has| |#1| (-172)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
((((-379)) . T))
((((-695)) . T))
((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#))
(((|#1|) |has| |#1| (-172)))
((((-407 (-949 |#1|))) . T))
(((|#2| |#2|) . T))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-847))
@@ -1974,14 +1974,14 @@
(((|#3|) |has| |#3| (-1046)))
((((-1170)) |has| |#2| (-897 (-1170))))
((((-859)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-407 (-564))) . T) (($) . T))
(|has| |#1| (-473))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-363))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1046)) (|has| |#1| (-1106)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1046)) (|has| |#1| (-1106)))
(|has| |#1| (-38 (-407 (-564))))
((((-116 |#1|)) . T))
((((-116 |#1|)) . T))
@@ -2002,11 +2002,11 @@
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-847))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
(((|#2|) . T))
(((|#3|) . T))
((((-116 |#1|)) . T))
@@ -2024,11 +2024,11 @@
((((-536)) |has| |#1| (-612 (-536))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))) (((-379)) . #0=(|has| |#1| (-1019))) (((-225)) . #0#))
(((|#1|) |has| |#1| (-363)))
((((-859)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((($ $) . T) (((-610 $) $) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
((($) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T))
-((($) -4002 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)))
+((($) -4012 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)))
(|has| |#1| (-363))
(|has| |#1| (-363))
(|has| |#1| (-363))
@@ -2039,11 +2039,11 @@
((((-379)) . T))
(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))
((((-859)) . T))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-906)))
(((|#1|) . T))
(|has| |#1| (-847))
(|has| |#1| (-847))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
((((-536)) |has| |#1| (-612 (-536))))
(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
((((-768)) . T))
@@ -2054,13 +2054,13 @@
(|has| |#1| (-145))
(|has| |#1| (-147))
((((-564)) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
(((#0=(-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))) (($) . T))
((((-564)) . T))
(|has| |#1| (-363))
-(-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
-(-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
+(-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
+(-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
(|has| |#1| (-363))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -2075,23 +2075,23 @@
(((|#2|) . T))
(|has| |#1| (-1094))
(((|#1| |#2|) . T))
-((((-564)) . T) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))
+((((-564)) . T) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
(((|#3|) |has| |#3| (-172)))
-(-4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
+(-4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
((((-859)) . T))
((((-564)) . T))
(((|#1| $) |has| |#1| (-286 |#1| |#1|)))
((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T))
((((-949 |#1|)) . T) (((-859)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -4002 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-564)) #0#) |has| |#1| (-363)))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) . T))
+(((|#1| |#1|) . T) (($ $) -4012 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-564)) #0#) |has| |#1| (-363)))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) . T))
((((-949 |#1|)) . T))
((($) . T))
((((-564) |#1|) . T))
((((-1170)) |has| (-407 |#2|) (-897 (-1170))))
-(((|#1|) . T) (($) -4002 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363)))
+(((|#1|) . T) (($) -4012 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363)))
((((-536)) |has| |#2| (-612 (-536))))
((((-685 |#2|)) . T) (((-859)) . T))
(((|#1|) . T))
@@ -2099,8 +2099,8 @@
(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
((((-867 |#1|)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(-4002 (|has| |#4| (-790)) (|has| |#4| (-845)))
-(-4002 (|has| |#3| (-790)) (|has| |#3| (-845)))
+(-4012 (|has| |#4| (-790)) (|has| |#4| (-845)))
+(-4012 (|has| |#3| (-790)) (|has| |#3| (-845)))
((((-859)) . T))
((((-859)) . T))
(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
@@ -2116,17 +2116,17 @@
((((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
((((-407 (-564))) . T) (($) . T))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-1213)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-1213)))
((($) . T))
((((-407 (-564))) |has| #0=(-407 |#2|) (-1035 (-407 (-564)))) (((-564)) |has| #0# (-1035 (-564))) ((#0#) . T))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
(((|#1| (-768)) . T))
(|has| |#1| (-847))
(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564))))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((((-564)) . T))
(|has| |#1| (-38 (-407 (-564))))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) |has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) |has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(|has| |#1| (-845))
(|has| |#1| (-38 (-407 (-564))))
@@ -2150,29 +2150,29 @@
(|has| |#1| (-38 (-407 (-564))))
((((-1152)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T))
((((-859)) . T))
-(((|#2|) . T) (((-564)) . T) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
+(((|#2|) . T) (((-564)) . T) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
(((|#1| |#2|) . T))
((((-144)) . T))
((((-777 |#1| (-861 |#2|))) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
(|has| |#1| (-1194))
((((-859)) . T))
(((|#1|) . T))
-(-4002 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094)))
+(-4012 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094)))
((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)))
(((|#2|) . T))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
((((-907 |#1|)) . T))
((($) . T))
((((-407 (-949 |#1|))) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-536)) |has| |#4| (-612 (-536))))
((((-859)) . T) (((-641 |#4|)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-845))
-(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) |has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))))
+(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) |has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))))
(|has| |#1| (-1094))
(|has| |#1| (-363))
(|has| |#1| (-847))
@@ -2181,16 +2181,16 @@
(((|#1|) . T))
((((-668 |#1|)) . T))
((($) . T) (((-407 (-564))) . T))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
-(-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
+(-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147)))
+(-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145)))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
(|has| |#1| (-845))
(((|#1| |#2|) . T))
@@ -2214,9 +2214,9 @@
((((-859)) . T))
((((-859)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-(((|#1|) -4002 (|has| |#1| (-172)) (|has| |#1| (-363))))
+(((|#1|) -4012 (|has| |#1| (-172)) (|has| |#1| (-363))))
((((-316 |#1|)) . T))
(((|#2|) |has| |#2| (-363)))
(((|#2|) . T))
@@ -2238,13 +2238,13 @@
(|has| |#1| (-145))
(|has| |#1| (-147))
((($ $) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094)))
(|has| |#1| (-556))
(((|#2|) . T))
((((-564)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#1|) . T))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
((((-581 |#1|)) . T))
((($) . T))
@@ -2253,14 +2253,14 @@
((($) . T))
(((|#1|) . T))
((((-859)) . T))
-(((|#2|) |has| |#2| (-6 (-4413 "*"))))
+(((|#2|) |has| |#2| (-6 (-4414 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-1244 |#2| |#3| |#4|)) . T) (((-564)) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T))
-((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (((-564)) -4002 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))) (|has| |#1| (-1046))) ((|#1|) . T) (((-610 $)) . T) (($) |has| |#1| (-556)) (((-407 (-564))) -4002 (|has| |#1| (-556)) (|has| |#1| (-1035 (-407 (-564))))) (((-407 (-949 |#1|))) |has| |#1| (-556)) (((-949 |#1|)) |has| |#1| (-1046)) (((-1170)) . T))
+((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (((-564)) -4012 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))) (|has| |#1| (-1046))) ((|#1|) . T) (((-610 $)) . T) (($) |has| |#1| (-556)) (((-407 (-564))) -4012 (|has| |#1| (-556)) (|has| |#1| (-1035 (-407 (-564))))) (((-407 (-949 |#1|))) |has| |#1| (-556)) (((-949 |#1|)) |has| |#1| (-1046)) (((-1170)) . T))
((((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) (((-564)) |has| |#2| (-1035 (-564))) ((|#2|) . T) (((-861 |#1|)) . T))
((($) . T) (((-116 |#1|)) . T) (((-407 (-564))) . T))
((((-1119 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))))
@@ -2273,12 +2273,12 @@
(((|#1| |#2|) . T))
((((-1170) |#1|) . T))
(((|#4|) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
((((-1170) (-52)) . T))
((((-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T))
((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T))
((((-859)) . T))
-(-4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
+(-4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094)))
(((#0=(-1245 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-407 (-564)) #0#) |has| |#1| (-556)) (($ $) |has| |#1| (-556)))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
@@ -2298,14 +2298,14 @@
(((|#1|) . T))
(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
(((|#2| |#3|) . T))
-(-4002 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
(((|#1| (-531 |#2|)) . T))
(((|#1| (-768)) . T))
(((|#1| (-531 (-1082 (-1170)))) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(|has| |#2| (-906))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
((((-859)) . T))
((($ $) . T) ((#0=(-1244 |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) |has| #0# (-38 (-407 (-564)))))
((((-907 |#1|)) . T))
@@ -2314,14 +2314,14 @@
((((-859)) . T))
((($) . T))
((($) . T))
-(-4002 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556)))
(|has| |#1| (-363))
(|has| |#1| (-363))
(((|#1| |#2|) . T))
((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))))
((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363)) (|has| |#1| (-349)))
-(-4002 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
+(-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))
((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-859)) . T))
@@ -2354,27 +2354,27 @@
(((|#1|) |has| |#1| (-172)))
((((-859)) . T))
(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
-(((|#2|) -4002 (|has| |#2| (-6 (-4413 "*"))) (|has| |#2| (-172))))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(((|#2|) -4012 (|has| |#2| (-6 (-4414 "*"))) (|has| |#2| (-172))))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(|has| |#2| (-847))
(|has| |#2| (-906))
(|has| |#1| (-906))
(((|#2|) |has| |#2| (-172)))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
((((-859)) . T))
((((-859)) . T))
((((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) . T))
(((|#1|) . T))
((((-859)) . T))
(((|#1| |#2|) . T))
(((|#1| (-407 (-564))) . T))
(((|#1|) . T))
-(-4002 (|has| |#1| (-290)) (|has| |#1| (-363)))
+(-4012 (|has| |#1| (-290)) (|has| |#1| (-363)))
((((-144)) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
(|has| |#1| (-845))
@@ -2390,7 +2390,7 @@
((((-859)) . T))
((((-859)) . T))
((((-187)) . T) (((-859)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
((((-859)) . T))
((((-859)) . T))
@@ -2403,7 +2403,7 @@
((((-859)) . T))
((((-1152)) . T))
((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|)))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
(|has| |#1| (-847))
((((-859)) . T))
((((-536)) |has| |#1| (-612 (-536))))
@@ -2415,16 +2415,16 @@
(((|#2|) . T))
((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
((($) . T) (((-564)) . T) (((-407 (-564))) . T) (((-610 $)) . T))
-(-4002 (|has| |#4| (-172)) (|has| |#4| (-723)) (|has| |#4| (-845)) (|has| |#4| (-1046)))
-(-4002 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#4| (-172)) (|has| |#4| (-723)) (|has| |#4| (-845)) (|has| |#4| (-1046)))
+(-4012 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
((((-1170) (-52)) . T))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(|has| |#1| (-906))
((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
(|has| |#1| (-906))
@@ -2441,12 +2441,12 @@
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(|has| |#1| (-817))
(((#0=(-907 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T))
((((-407 |#2|)) . T))
(|has| |#1| (-845))
-((((-1195 |#1|)) . T) (((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-1195 |#1|)) . T) (((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
(((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) ((#1=(-564) #1#) . T) (($ $) . T))
((((-907 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
(((|#2|) |has| |#2| (-1046)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046))))
@@ -2457,11 +2457,11 @@
(((|#2|) . T))
((((-859)) . T))
((((-407 (-564))) . T) (((-695)) . T) (($) . T) (((-564)) . T))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2351 (-1170)) (|:| -1327 #0#))) . T))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1350 (-1170)) (|:| -2575 #0#))) . T))
(|has| |#1| (-349))
((((-564)) . T))
((((-859)) . T))
@@ -2469,15 +2469,15 @@
(((#0=(-1245 |#1| |#2| |#3| |#4|) $) |has| #0# (-286 #0# #0#)))
(|has| |#1| (-363))
(((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
(((#0=(-407 (-564)) #0#) . T) ((#1=(-695) #1#) . T) (($ $) . T))
((((-316 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) |has| |#1| (-363)))
((((-859)) . T))
(|has| |#1| (-1094))
(((|#1|) . T))
-(((|#1|) -4002 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
-(((|#1|) -4002 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
+(((|#1|) -4012 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
+(((|#1|) -4012 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|))))
(((|#2|) . T))
((((-407 (-564))) . T) (((-695)) . T) (($) . T))
((((-579)) . T))
@@ -2500,7 +2500,7 @@
(((|#1|) . T))
((((-564)) . T))
(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (($) . T) (((-564)) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2538,7 +2538,7 @@
(|has| |#2| (-1019))
((($) . T))
(|has| |#1| (-906))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
@@ -2546,9 +2546,9 @@
((($) . T))
(|has| |#1| (-363))
((((-907 |#1|)) . T))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
-(-4002 (|has| |#1| (-368)) (|has| |#1| (-847)))
+(-4012 (|has| |#1| (-368)) (|has| |#1| (-847)))
(((|#1|) . T))
((((-768)) . T))
((((-859)) . T))
@@ -2559,16 +2559,16 @@
((((-564)) . T) (($) . T))
((((-564)) . T) (($) . T))
((((-768) |#1|) . T))
-(((|#2| (-240 (-2589 |#1|) (-768))) . T))
+(((|#2| (-240 (-2779 |#1|) (-768))) . T))
(((|#1| (-531 |#3|)) . T))
((((-407 (-564))) . T))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
((((-1152)) . T) (((-859)) . T))
-(((#0=(-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) #0#) |has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))))
+(((#0=(-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) #0#) |has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))))
((((-1152)) . T))
(|has| |#1| (-906))
(|has| |#2| (-363))
-(-4002 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T))
((((-859)) . T))
(((|#1|) . T))
@@ -2585,11 +2585,11 @@
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-4002 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
(|has| |#1| (-38 (-407 (-564))))
(-12 (|has| |#1| (-545)) (|has| |#1| (-825)))
((((-859)) . T))
-((((-1170)) -4002 (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-897 (-1170))))))
+((((-1170)) -4012 (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-897 (-1170))))))
(|has| |#1| (-363))
((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))))
(|has| |#1| (-363))
@@ -2600,7 +2600,7 @@
(((|#2|) |has| |#1| (-363)))
(((|#2|) |has| |#1| (-363)))
((((-564)) . T) (($) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
@@ -2625,9 +2625,9 @@
((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-379)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-564)))))
(|has| |#1| (-363))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-363))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
(|has| |#1| (-363))
(|has| |#1| (-556))
(((|#1|) . T))
@@ -2636,22 +2636,22 @@
((((-1152)) . T) (((-506)) . T) (((-225)) . T) (((-564)) . T))
(((|#1|) . T))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
-(-4002 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(((|#2|) . T))
(((|#2|) . T))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(|has| |#1| (-38 (-407 (-564))))
(((|#1| |#2|) . T))
(|has| |#1| (-38 (-407 (-564))))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
((((-1152) |#1|) . T))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))
(|has| |#1| (-147))
((((-581 |#1|)) . T))
((($) . T))
@@ -2659,7 +2659,7 @@
(|has| |#1| (-556))
(|has| |#1| (-38 (-407 (-564))))
(|has| |#1| (-38 (-407 (-564))))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-349)))
(|has| |#1| (-147))
((((-859)) . T))
((($) . T))
@@ -2686,7 +2686,7 @@
((((-859)) . T))
((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-114)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2708,7 +2708,7 @@
((((-564)) . T))
((((-859)) . T))
((((-564)) . T))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T))
((((-859)) . T))
((((-859)) . T))
@@ -2720,9 +2720,9 @@
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(|has| |#1| (-363))
(|has| |#1| (-363))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094)))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094)))
(|has| |#1| (-1145))
((((-564) |#1|) . T))
(((|#1|) . T))
@@ -2742,8 +2742,8 @@
(((|#1|) . T))
(|has| |#1| (-556))
((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
((((-379)) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2752,7 +2752,7 @@
(|has| |#1| (-556))
(|has| |#1| (-1094))
((((-777 |#1| (-861 |#2|))) |has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
@@ -2764,13 +2764,13 @@
(|has| |#2| (-363))
((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
((((-564)) . T) (((-407 (-564))) . T) (($) . T))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) . T))
(((|#1|) . T))
(((|#1|) . T) (((-564)) . T))
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
((((-859)) . T))
((((-859)) . T))
-(-4002 (|has| |#3| (-790)) (|has| |#3| (-845)))
+(-4012 (|has| |#3| (-790)) (|has| |#3| (-845)))
((((-859)) . T))
((((-1114)) . T) (((-859)) . T))
((((-536)) . T) (((-859)) . T))
@@ -2781,12 +2781,12 @@
((((-564)) . T))
(((|#3|) . T))
((((-859)) . T))
-(-4002 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-564)) . T) (((-407 (-564))) -4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T))
-((((-1119 |#1| |#2|)) . T) ((|#2|) . T) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T))
-((((-1166 |#1|)) . T) (((-564)) . T) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
-(-4002 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
-((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-1082 (-1170))) . T) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-1170)) . T))
+(-4012 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-564)) . T) (((-407 (-564))) -4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T))
+((((-1119 |#1| |#2|)) . T) ((|#2|) . T) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T))
+((((-1166 |#1|)) . T) (((-564)) . T) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
+(-4012 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046)))
+((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-1082 (-1170))) . T) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-1170)) . T))
(((#0=(-581 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T))
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#1|) |has| |#1| (-172)))
@@ -2794,13 +2794,13 @@
((((-581 |#1|)) . T) (($) . T) (((-407 (-564))) . T))
((($) . T) (((-407 (-564))) . T))
((($) . T) (((-407 (-564))) . T))
-(((|#2|) |has| |#2| (-6 (-4413 "*"))))
+(((|#2|) |has| |#2| (-6 (-4414 "*"))))
(((|#1|) . T))
((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T))
(((|#1|) . T))
((((-859)) . T))
((((-294 |#3|)) . T))
-(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
@@ -2808,21 +2808,21 @@
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
(((|#2|) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
((((-859)) . T))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(|has| |#2| (-906))
(|has| |#1| (-906))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-859)) . T))
(((|#1|) . T))
-((((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) . T))
+((((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2837,10 +2837,10 @@
(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))
(((#0=(-407 (-564)) #0#) . T))
((((-407 (-564))) . T))
-(-4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(((|#1|) . T))
(((|#1|) . T))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
((((-407 (-564))) . T) (((-564)) . T) (($) . T))
((((-536)) . T))
((((-859)) . T))
@@ -2857,12 +2857,12 @@
((($ $) . T) ((#0=(-407 (-564)) #0#) . T))
((((-1170)) |has| |#1| (-897 (-1170))))
((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T))
-((($) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
-(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((($) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T))
+(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))))
((($) . T) (((-407 (-564))) . T))
(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
(((|#2|) |has| |#2| (-1046)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046))))
-((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-556))))
+((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-556))))
(|has| |#1| (-556))
(((|#1|) |has| |#1| (-363)))
((((-564)) . T))
@@ -2881,8 +2881,8 @@
((((-859)) . T))
(|has| |#2| (-817))
(|has| |#2| (-817))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))))
((((-564)) |has| |#1| (-883 (-564))) (((-379)) |has| |#1| (-883 (-379))))
@@ -2908,12 +2908,12 @@
(((|#2| (-768)) . T))
((((-1170)) . T))
((((-867 |#1|)) . T))
-(-4002 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
-(-4002 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
((((-859)) . T))
(((|#1|) . T))
-(-4002 (|has| |#2| (-790)) (|has| |#2| (-845)))
-(-4002 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847))))
+(-4012 (|has| |#2| (-790)) (|has| |#2| (-845)))
+(-4012 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847))))
((((-867 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-368))
@@ -2939,7 +2939,7 @@
(((|#1|) . T))
((((-859)) . T))
(|has| |#2| (-906))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) . T))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) . T))
((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564)))))
((((-859)) . T))
((((-859)) . T))
@@ -2980,12 +2980,12 @@
((((-407 |#2|) |#3|) . T))
(((|#1|) . T))
(|has| |#1| (-1094))
-(((|#2| (-482 (-2589 |#1|) (-768))) . T))
+(((|#2| (-482 (-2779 |#1|) (-768))) . T))
((((-564) |#1|) . T))
((((-1152)) . T) (((-859)) . T))
(((|#2| |#2|) . T))
(((|#1| (-531 (-1170))) . T))
-(-4002 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
((((-564)) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -2995,9 +2995,9 @@
((($) . T) (((-407 (-564))) . T))
((($) . T))
((($) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
(((|#1|) . T))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-859)) . T))
((((-144)) . T))
(((|#1|) . T) (((-407 (-564))) . T))
@@ -3036,31 +3036,31 @@
(((|#1|) . T))
(|has| |#1| (-233))
(((|#1| (-531 |#3|)) . T))
-(((|#2| (-240 (-2589 |#1|) (-768))) . T))
+(((|#2| (-240 (-2779 |#1|) (-768))) . T))
(|has| |#1| (-368))
(|has| |#1| (-368))
(|has| |#1| (-368))
(((|#1|) . T) (($) . T))
(((|#1| (-531 |#2|)) . T))
-(-4002 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(((|#1| (-768)) . T))
(|has| |#1| (-556))
-(-4002 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
((((-859)) . T))
((((-564)) . T) (((-407 (-564))) . T) (($) . T))
-(-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))
-(-4002 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))
+(-4012 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
(((|#1|) |has| |#1| (-172)))
(((|#4|) |has| |#4| (-1046)))
(((|#3|) |has| |#3| (-1046)))
(-12 (|has| |#1| (-363)) (|has| |#2| (-817)))
(-12 (|has| |#1| (-363)) (|has| |#2| (-817)))
-((((-564)) . T) (((-407 (-564))) -4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T))
-((((-1119 |#1| |#2|)) . T) (((-564)) . T) ((|#3|) . T) (($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#2|) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-564)) . T) (((-407 (-564))) -4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T))
+((((-1119 |#1| |#2|)) . T) (((-564)) . T) ((|#3|) . T) (($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#2|) . T))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-536)) |has| |#1| (-612 (-536))))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T))
@@ -3079,14 +3079,14 @@
(((|#2|) |has| |#2| (-1046)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046))))
(((|#1|) . T))
(|has| |#2| (-363))
-(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
+(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T))
(((|#2| |#2|) . T))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
(((|#1|) . T) (($) . T) (((-407 (-564))) . T))
@@ -3109,7 +3109,7 @@
((((-859)) . T) (((-1175)) . T))
((((-859)) . T) (((-1175)) . T))
((((-859)) . T) (((-1175)) . T))
-((((-641 |#1|)) . T) (((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-641 |#1|)) . T) (((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-1175)) . T))
((((-1175)) . T))
((((-1175)) . T))
@@ -3122,23 +3122,23 @@
((((-1208)) . T) (((-859)) . T) (((-1175)) . T))
((((-1175)) . T))
((((-1175)) . T))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) |has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) |has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
((((-564) |#1|) . T))
((((-564) |#1|) . T))
((((-564) |#1|) . T))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
((((-564) |#1|) . T))
(((|#1|) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172)))
((((-1170)) |has| |#1| (-897 (-1170))) (((-815 (-1170))) . T))
-(-4002 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
((((-816 |#1|)) . T))
(((|#1| |#2|) . T))
((((-859)) . T))
-(-4002 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
(((|#1| |#2|) . T))
(|has| |#1| (-38 (-407 (-564))))
((((-859)) . T))
@@ -3146,19 +3146,19 @@
(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556)))
(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564))))
(|has| |#1| (-363))
-(-4002 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233))))
+(-4012 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233))))
(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))
(|has| |#1| (-363))
(((|#1|) . T))
-(((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
+(((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T))
((((-564) |#1|) . T))
((((-316 |#1|)) . T))
(((#0=(-695) (-1166 #0#)) . T))
-((((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
+((((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-845))
-(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4002 (|has| |#1| (-363)) (|has| |#1| (-556))))
+(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4012 (|has| |#1| (-363)) (|has| |#1| (-556))))
((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T))
((((-1119 |#1| (-1170))) . T) (((-815 (-1170))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-1170)) . T))
((($) . T))
@@ -3174,12 +3174,12 @@
(((#0=(-1245 |#1| |#2| |#3| |#4|)) |has| #0# (-309 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
(|has| |#2| (-233))
(|has| $ (-147))
((((-859)) . T))
-((($) . T) (((-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
+((($) . T) (((-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T))
((((-859)) . T))
(|has| |#1| (-845))
((((-129)) . T))
@@ -3193,24 +3193,24 @@
(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#4|) . T))
(|has| |#1| (-556))
-((($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T))
-((((-1170)) -4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))
-(((|#1|) . T) (($) -4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
+((($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T))
+((((-1170)) -4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))
+(((|#1|) . T) (($) -4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))))
((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))))
((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170)))))
(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))
((((-564) |#1|) . T))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
(((|#1|) . T))
(((|#1| (-531 (-815 (-1170)))) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
((((-564)) . T) ((|#2|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#2| (-1035 (-1170))))
(((|#1|) . T))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
(((|#1|) . T))
-(-4002 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
-(-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))
+(-4012 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))
((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
((($) . T) (((-867 |#1|)) . T) (((-407 (-564))) . T))
((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
@@ -3219,15 +3219,15 @@
(((|#1|) . T))
(((|#1|) . T))
((((-407 |#2|)) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((((-536)) |has| |#1| (-612 (-536))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
(((|#1|) . T))
(((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T))
((((-564)) . T))
@@ -3257,17 +3257,17 @@
((((-129)) . T))
((((-859)) . T))
((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)))
-((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
+((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T))
(|has| |#1| (-363))
-((($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-1098)) . T))
((((-859)) . T))
-((($) -4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T))
((($) . T))
-((($) -4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
+((($) -4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))))
((((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T))
((((-1170)) . T) (((-859)) . T))
(|has| |#2| (-906))
@@ -3277,7 +3277,7 @@
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-172)))
((((-695)) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
((((-1175)) . T))
(((|#1|) |has| |#1| (-172)))
((((-1175)) . T))
@@ -3289,13 +3289,13 @@
((((-1175)) . T))
((((-1175)) . T))
((((-1175)) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
((((-1175)) . T))
((((-1175)) . T))
(|has| |#1| (-363))
(|has| |#1| (-363))
-(-4002 (|has| |#1| (-172)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-172)) (|has| |#1| (-556)))
(((|#1| (-564)) . T))
(((|#1| (-407 (-564))) . T))
(((|#1| (-768)) . T))
@@ -3310,16 +3310,16 @@
((((-889 (-379))) . T) (((-889 (-564))) . T) (((-1170)) . T) (((-536)) . T))
(((|#1|) . T))
((((-859)) . T))
-(-4002 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
-(-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))
+(-4012 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))
((((-564)) . T))
((((-564)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-4002 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
+(-4012 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046)))
((((-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046))))
-(-4002 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))
+(-4012 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-363))
@@ -3345,7 +3345,7 @@
(((|#1| |#2|) . T))
((((-564)) . T) ((|#2|) |has| |#2| (-172)))
((((-114)) . T) ((|#1|) . T) (((-564)) . T))
-(-4002 (|has| |#1| (-349)) (|has| |#1| (-368)))
+(-4012 (|has| |#1| (-349)) (|has| |#1| (-368)))
(((|#1| |#2|) . T))
((((-225)) . T))
((((-407 (-564))) . T) (($) . T) (((-564)) . T))
@@ -3357,7 +3357,7 @@
(((|#1|) . T))
(((|#1|) . T))
((((-536)) |has| |#1| (-612 (-536))))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094))))
((($) . T) (((-407 (-564))) . T))
(|has| |#1| (-906))
(|has| |#1| (-906))
@@ -3368,14 +3368,14 @@
(((|#1| |#1|) |has| |#1| (-172)))
(((|#1|) . T) (((-564)) . T))
((((-1175)) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-556)))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-845)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-556)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-845)))
(((|#2|) . T))
-(-4002 (|has| |#1| (-21)) (|has| |#1| (-845)))
+(-4012 (|has| |#1| (-21)) (|has| |#1| (-845)))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(((|#1|) . T))
-((((-859)) -4002 (-12 (|has| |#1| (-611 (-859))) (|has| |#2| (-611 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))
+((((-859)) -4012 (-12 (|has| |#1| (-611 (-859))) (|has| |#2| (-611 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))
((((-407 |#2|) |#3|) . T))
((((-407 (-564))) . T) (($) . T))
(|has| |#1| (-38 (-407 (-564))))
@@ -3387,19 +3387,19 @@
(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T))
(((#0=(-564) #0#) . T))
((($) . T) (((-407 (-564))) . T))
-(-4002 (|has| |#4| (-172)) (|has| |#4| (-723)) (|has| |#4| (-845)) (|has| |#4| (-1046)))
-(-4002 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
+(-4012 (|has| |#4| (-172)) (|has| |#4| (-723)) (|has| |#4| (-845)) (|has| |#4| (-1046)))
+(-4012 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046)))
((((-859)) . T) (((-1175)) . T))
(|has| |#4| (-790))
-(-4002 (|has| |#4| (-790)) (|has| |#4| (-845)))
+(-4012 (|has| |#4| (-790)) (|has| |#4| (-845)))
(|has| |#4| (-845))
(|has| |#3| (-790))
((((-1175)) . T))
-(-4002 (|has| |#3| (-790)) (|has| |#3| (-845)))
+(-4012 (|has| |#3| (-790)) (|has| |#3| (-845)))
(|has| |#3| (-845))
((((-564)) . T))
(((|#2|) . T))
-((((-1170)) -4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))
+((((-1170)) -4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))
((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))))
((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170)))))
(((|#1| |#1|) . T) (($ $) . T))
@@ -3414,11 +3414,11 @@
((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
((((-1134 |#1| |#2|)) . T))
((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
-(((|#2|) . T) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) . T))
+(((|#2|) . T) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) . T))
((($) . T))
(|has| |#1| (-1019))
-(((|#2|) . T) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
((((-859)) . T))
((((-536)) |has| |#2| (-612 (-536))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-379)) . #0=(|has| |#2| (-1019))) (((-225)) . #0#))
((((-294 |#3|)) . T))
@@ -3434,15 +3434,15 @@
((((-1168 |#1| |#2| |#3|)) . T))
((((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T))
((((-859)) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
((((-564) |#1|) . T))
((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-363))
-(((|#3|) . T) ((|#2|) . T) (($) -4002 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046))) ((|#4|) -4002 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))))
-(((|#2|) . T) (($) -4002 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) ((|#3|) -4002 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))))
+(((|#3|) . T) ((|#2|) . T) (($) -4012 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046))) ((|#4|) -4012 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))))
+(((|#2|) . T) (($) -4012 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) ((|#3|) -4012 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-363))
@@ -3457,7 +3457,7 @@
((((-187)) . T) (((-859)) . T))
((((-859)) . T))
(((|#1|) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
((((-129)) . T) (((-859)) . T))
((((-564) |#1|) . T))
((((-129)) . T))
@@ -3466,13 +3466,13 @@
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906)))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
((((-859)) . T))
((((-859)) . T))
((((-859)) . T))
(((|#1| (-531 |#2|)) . T))
-((((-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) . T))
+((((-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) . T))
((((-564) (-129)) . T))
(((|#1| (-564)) . T))
(((|#1| (-407 (-564))) . T))
@@ -3486,8 +3486,8 @@
((((-1175)) . T))
((((-859)) . T) (((-1175)) . T))
((((-859)) . T) (((-1175)) . T))
-(-4002 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
-(-4002 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
+(-4012 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))
+(-4012 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))
((($) . T))
(((|#2| (-531 (-861 |#1|))) . T))
((((-1175)) . T))
@@ -3502,13 +3502,13 @@
((((-1175)) . T))
((((-859)) . T) (((-1175)) . T))
((((-1175)) . T))
-((((-859)) -4002 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
+((((-859)) -4012 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))))
(((|#1|) . T))
(((|#2| (-768)) . T))
(((|#1| |#2|) . T))
((((-1152) |#1|) . T))
((((-407 |#2|)) . T))
-((((-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T))
+((((-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T))
(|has| |#1| (-556))
(|has| |#1| (-556))
((($) . T) ((|#2|) . T))
@@ -3517,14 +3517,14 @@
((((-564)) . T) (($) . T))
(((|#2| $) |has| |#2| (-286 |#2| |#2|)))
(((|#1| (-641 |#1|)) |has| |#1| (-845)))
-(-4002 (|has| |#1| (-233)) (|has| |#1| (-349)))
-(-4002 (|has| |#1| (-363)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-233)) (|has| |#1| (-349)))
+(-4012 (|has| |#1| (-363)) (|has| |#1| (-349)))
((((-1255 |#1|)) . T) (((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))))
(|has| |#1| (-1094))
(((|#1|) . T))
-((((-1255 |#1|)) . T) (((-564)) . T) (($) -4002 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-1076)) . T) ((|#2|) . T) (((-407 (-564))) -4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))))
+((((-1255 |#1|)) . T) (((-564)) . T) (($) -4012 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-1076)) . T) ((|#2|) . T) (((-407 (-564))) -4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))))
((((-407 (-564))) . T) (($) . T))
-((((-996 |#1|)) . T) ((|#1|) . T) (((-564)) -4002 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564)))) (((-407 (-564))) -4002 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
+((((-996 |#1|)) . T) ((|#1|) . T) (((-564)) -4012 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564)))) (((-407 (-564))) -4012 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))
@@ -3536,10 +3536,10 @@
(((|#1| |#2| |#3| |#4|) . T))
(((#0=(-1134 |#1| |#2|) #0#) |has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) #0#) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) #0#) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))))
(((#0=(-116 |#1|)) |has| #0# (-309 #0#)))
((($ $) . T))
-(-4002 (|has| |#1| (-847)) (|has| |#1| (-1094)))
+(-4012 (|has| |#1| (-847)) (|has| |#1| (-1094)))
((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T))
(((-478 . -1094) T) ((-264 . -514) 162038) ((-247 . -514) 161981) ((-245 . -1094) 161931) ((-571 . -111) 161916) ((-531 . -23) T) ((-138 . -1094) T) ((-137 . -1094) T) ((-117 . -309) 161873) ((-133 . -1094) T) ((-479 . -514) 161665) ((-673 . -614) 161649) ((-690 . -102) T) ((-1135 . -514) 161568) ((-390 . -131) T) ((-1272 . -973) 161537) ((-31 . -93) T) ((-600 . -489) 161521) ((-619 . -131) T) ((-816 . -843) T) ((-523 . -57) 161471) ((-59 . -514) 161404) ((-519 . -514) 161337) ((-418 . -897) 161296) ((-169 . -1046) T) ((-516 . -514) 161229) ((-497 . -514) 161162) ((-496 . -514) 161095) ((-796 . -1035) 160878) ((-695 . -38) 160843) ((-1232 . -614) 160591) ((-343 . -349) T) ((-1088 . -1087) 160575) ((-1088 . -1094) 160553) ((-852 . -614) 160450) ((-169 . -243) 160401) ((-169 . -233) 160352) ((-1088 . -1089) 160310) ((-869 . -286) 160268) ((-225 . -792) T) ((-225 . -789) T) ((-690 . -284) NIL) ((-571 . -614) 160240) ((-1144 . -1185) 160219) ((-407 . -989) 160203) ((-697 . -21) T) ((-697 . -25) T) ((-1274 . -644) 160177) ((-316 . -160) 160156) ((-316 . -143) 160135) ((-1144 . -107) 160085) ((-134 . -25) T) ((-40 . -231) 160062) ((-116 . -21) T) ((-116 . -25) T) ((-606 . -288) 160038) ((-475 . -288) 160017) ((-1232 . -326) 159994) ((-1232 . -1046) T) ((-852 . -1046) T) ((-796 . -338) 159978) ((-139 . -185) T) ((-117 . -1145) NIL) ((-91 . -611) 159910) ((-477 . -131) T) ((-1232 . -233) T) ((-1090 . -490) 159891) ((-1090 . -611) 159857) ((-1084 . -490) 159838) ((-1084 . -611) 159804) ((-592 . -1209) T) ((-1068 . -490) 159785) ((-571 . -1046) T) ((-1068 . -611) 159751) ((-658 . -714) 159735) ((-1061 . -490) 159716) ((-1061 . -611) 159682) ((-955 . -288) 159659) ((-60 . -34) T) ((-1057 . -792) T) ((-1057 . -789) T) ((-1033 . -490) 159640) ((-1016 . -490) 159621) ((-813 . -723) T) ((-728 . -47) 159586) ((-621 . -38) 159573) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 159504) ((-247 . -290) 159435) ((-1033 . -611) 159401) ((-1021 . -102) T) ((-1016 . -611) 159367) ((-624 . -490) 159348) ((-413 . -723) T) ((-117 . -38) 159293) ((-483 . -490) 159274) ((-624 . -611) 159240) ((-413 . -473) T) ((-218 . -490) 159221) ((-483 . -611) 159187) ((-354 . -102) T) ((-218 . -611) 159153) ((-1203 . -1053) T) ((-708 . -1053) T) ((-1168 . -47) 159130) ((-1167 . -47) 159100) ((-1161 . -47) 159077) ((-128 . -288) 159052) ((-1032 . -151) 158998) ((-907 . -290) T) ((-1120 . -47) 158970) ((-690 . -309) NIL) ((-515 . -611) 158952) ((-510 . -611) 158934) ((-508 . -611) 158916) ((-327 . -1094) 158866) ((-709 . -452) 158797) ((-48 . -102) T) ((-1243 . -286) 158782) ((-1222 . -286) 158702) ((-641 . -662) 158686) ((-641 . -647) 158670) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-641 . -373) 158654) ((-603 . -490) 158636) ((-600 . -286) 158613) ((-603 . -611) 158580) ((-388 . -102) T) ((-1114 . -143) T) ((-126 . -611) 158512) ((-871 . -1094) T) ((-654 . -411) 158496) ((-711 . -611) 158478) ((-249 . -611) 158445) ((-187 . -611) 158427) ((-162 . -611) 158409) ((-157 . -611) 158391) ((-1274 . -723) T) ((-1096 . -34) T) ((-868 . -792) NIL) ((-868 . -789) NIL) ((-855 . -847) T) ((-728 . -883) NIL) ((-1283 . -131) T) ((-381 . -131) T) ((-889 . -614) 158359) ((-901 . -102) T) ((-728 . -1035) 158235) ((-531 . -131) T) ((-1081 . -411) 158219) ((-997 . -489) 158203) ((-117 . -400) 158180) ((-1161 . -1209) 158159) ((-779 . -411) 158143) ((-777 . -411) 158127) ((-940 . -34) T) ((-690 . -1145) NIL) ((-251 . -644) 157962) ((-250 . -644) 157784) ((-814 . -917) 157763) ((-454 . -411) 157747) ((-600 . -19) 157731) ((-1140 . -1202) 157700) ((-1161 . -883) NIL) ((-1161 . -881) 157652) ((-600 . -602) 157629) ((-1195 . -611) 157561) ((-1169 . -611) 157543) ((-62 . -395) T) ((-1167 . -1035) 157478) ((-1161 . -1035) 157444) ((-690 . -38) 157394) ((-474 . -286) 157379) ((-1215 . -611) 157361) ((-728 . -377) 157345) ((-835 . -611) 157327) ((-654 . -1053) T) ((-1243 . -999) 157293) ((-1222 . -999) 157259) ((-1082 . -614) 157243) ((-1058 . -1185) 157218) ((-1070 . -614) 157195) ((-869 . -612) 157002) ((-869 . -611) 156984) ((-1182 . -489) 156921) ((-418 . -1019) 156899) ((-48 . -309) 156886) ((-1058 . -107) 156832) ((-479 . -489) 156769) ((-520 . -1209) T) ((-1161 . -338) 156721) ((-1135 . -489) 156692) ((-1161 . -377) 156644) ((-1081 . -1053) T) ((-437 . -102) T) ((-183 . -1094) T) ((-251 . -34) T) ((-250 . -34) T) ((-779 . -1053) T) ((-777 . -1053) T) ((-728 . -897) 156621) ((-454 . -1053) T) ((-59 . -489) 156605) ((-1031 . -1052) 156579) ((-519 . -489) 156563) ((-516 . -489) 156547) ((-497 . -489) 156531) ((-496 . -489) 156515) ((-245 . -514) 156448) ((-1031 . -111) 156415) ((-1168 . -897) 156328) ((-1167 . -897) 156234) ((-1161 . -897) 156067) ((-1120 . -897) 156051) ((-666 . -1106) T) ((-354 . -1145) T) ((-642 . -93) T) ((-322 . -1052) 156033) ((-251 . -788) 156012) ((-251 . -791) 155963) ((-31 . -490) 155944) ((-251 . -790) 155923) ((-250 . -788) 155902) ((-250 . -791) 155853) ((-250 . -790) 155832) ((-31 . -611) 155798) ((-50 . -1053) T) ((-251 . -723) 155708) ((-250 . -723) 155618) ((-1203 . -1094) T) ((-666 . -23) T) ((-581 . -1053) T) ((-518 . -1053) T) ((-379 . -1052) 155583) ((-322 . -111) 155558) ((-73 . -383) T) ((-73 . -395) T) ((-1021 . -38) 155495) ((-690 . -400) 155477) ((-99 . -102) T) ((-708 . -1094) T) ((-1000 . -145) 155449) ((-1000 . -147) 155421) ((-379 . -111) 155377) ((-319 . -1213) 155356) ((-474 . -999) 155322) ((-354 . -38) 155287) ((-40 . -370) 155259) ((-870 . -611) 155131) ((-127 . -125) 155115) ((-121 . -125) 155099) ((-833 . -1052) 155069) ((-830 . -21) 155021) ((-824 . -1052) 155005) ((-830 . -25) 154957) ((-319 . -556) 154908) ((-517 . -614) 154889) ((-564 . -825) T) ((-240 . -1209) T) ((-1031 . -614) 154858) ((-833 . -111) 154823) ((-824 . -111) 154802) ((-1243 . -611) 154784) ((-1222 . -611) 154766) ((-1222 . -612) 154437) ((-1166 . -906) 154416) ((-1119 . -906) 154395) ((-48 . -38) 154360) ((-1281 . -1106) T) ((-600 . -611) 154272) ((-600 . -612) 154233) ((-1279 . -1106) T) ((-361 . -614) 154217) ((-322 . -614) 154201) ((-240 . -1035) 154028) ((-1166 . -644) 153953) ((-1119 . -644) 153878) ((-851 . -644) 153852) ((-715 . -611) 153834) ((-546 . -368) T) ((-1281 . -23) T) ((-1279 . -23) T) ((-491 . -1094) T) ((-379 . -614) 153784) ((-379 . -616) 153766) ((-1031 . -1046) T) ((-862 . -102) T) ((-1182 . -286) 153745) ((-169 . -368) 153696) ((-1001 . -1209) T) ((-833 . -614) 153650) ((-824 . -614) 153605) ((-44 . -23) T) ((-479 . -286) 153584) ((-585 . -1094) T) ((-1140 . -1103) 153553) ((-1098 . -1097) 153505) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1106) T) ((-1287 . -102) T) ((-1001 . -881) 153487) ((-1001 . -883) 153469) ((-1203 . -714) 153366) ((-621 . -231) 153350) ((-619 . -21) T) ((-289 . -556) T) ((-619 . -25) T) ((-1189 . -1094) T) ((-708 . -714) 153315) ((-240 . -377) 153284) ((-1001 . -1035) 153244) ((-379 . -1046) T) ((-223 . -1053) T) ((-117 . -231) 153221) ((-59 . -286) 153198) ((-152 . -23) T) ((-516 . -286) 153175) ((-327 . -514) 153108) ((-496 . -286) 153085) ((-379 . -243) T) ((-379 . -233) T) ((-833 . -1046) T) ((-824 . -1046) T) ((-709 . -946) 153054) ((-697 . -847) T) ((-474 . -611) 153036) ((-824 . -233) 153015) ((-134 . -847) T) ((-654 . -1094) T) ((-1182 . -602) 152994) ((-550 . -1185) 152973) ((-336 . -1094) T) ((-319 . -363) 152952) ((-407 . -147) 152931) ((-407 . -145) 152910) ((-961 . -1106) 152809) ((-240 . -897) 152741) ((-812 . -1106) 152651) ((-650 . -849) 152635) ((-479 . -602) 152614) ((-550 . -107) 152564) ((-1001 . -377) 152546) ((-1001 . -338) 152528) ((-97 . -1094) T) ((-961 . -23) 152339) ((-477 . -21) T) ((-477 . -25) T) ((-812 . -23) 152209) ((-1170 . -611) 152191) ((-59 . -19) 152175) ((-1170 . -612) 152097) ((-1166 . -723) T) ((-1119 . -723) T) ((-516 . -19) 152081) ((-496 . -19) 152065) ((-59 . -602) 152042) ((-1081 . -1094) T) ((-898 . -102) 152020) ((-851 . -723) T) ((-779 . -1094) T) ((-516 . -602) 151997) ((-496 . -602) 151974) ((-777 . -1094) T) ((-777 . -1060) 151941) ((-461 . -1094) T) ((-454 . -1094) T) ((-585 . -714) 151916) ((-645 . -1094) T) ((-1251 . -47) 151893) ((-1245 . -102) T) ((-1244 . -47) 151863) ((-1223 . -47) 151840) ((-1203 . -172) 151791) ((-1167 . -307) 151770) ((-1001 . -897) NIL) ((-1161 . -307) 151749) ((-625 . -1106) T) ((-666 . -131) T) ((-1090 . -614) 151730) ((-1084 . -614) 151711) ((-1074 . -556) 151662) ((-1074 . -1213) 151613) ((-1068 . -614) 151594) ((-275 . -1094) T) ((-85 . -441) T) ((-85 . -395) T) ((-1061 . -614) 151575) ((-1033 . -614) 151556) ((-50 . -1094) T) ((-1016 . -614) 151537) ((-708 . -172) T) ((-594 . -47) 151514) ((-225 . -644) 151479) ((-581 . -1094) T) ((-518 . -1094) T) ((-359 . -1213) T) ((-353 . -1213) T) ((-345 . -1213) T) ((-487 . -817) T) ((-487 . -917) T) ((-319 . -1106) T) ((-108 . -1213) T) ((-711 . -1052) 151449) ((-339 . -847) T) ((-217 . -917) T) ((-217 . -817) T) ((-624 . -614) 151430) ((-359 . -556) T) ((-353 . -556) T) ((-345 . -556) T) ((-483 . -614) 151411) ((-108 . -556) T) ((-654 . -714) 151381) ((-1161 . -1019) NIL) ((-218 . -614) 151362) ((-319 . -23) T) ((-67 . -1209) T) ((-997 . -611) 151294) ((-690 . -231) 151276) ((-711 . -111) 151241) ((-641 . -34) T) ((-245 . -489) 151225) ((-1096 . -1092) 151209) ((-171 . -1094) T) ((-949 . -906) 151188) ((-515 . -614) 151172) ((-1287 . -1145) T) ((-1283 . -21) T) ((-481 . -906) 151151) ((-1283 . -25) T) ((-1281 . -131) T) ((-1279 . -131) T) ((-1272 . -102) T) ((-1255 . -611) 151117) ((-1244 . -1035) 151052) ((-1081 . -714) 150901) ((-1057 . -644) 150888) ((-949 . -644) 150813) ((-779 . -714) 150642) ((-536 . -611) 150624) ((-536 . -612) 150605) ((-777 . -714) 150454) ((-1223 . -1209) 150433) ((-1071 . -102) T) ((-381 . -25) T) ((-381 . -21) T) ((-481 . -644) 150358) ((-461 . -714) 150329) ((-454 . -714) 150178) ((-984 . -102) T) ((-1223 . -883) NIL) ((-1223 . -881) 150130) ((-1182 . -612) NIL) ((-734 . -102) T) ((-1182 . -611) 150112) ((-603 . -614) 150094) ((-1136 . -1117) 150039) ((-1043 . -1202) 149968) ((-531 . -25) T) ((-898 . -309) 149906) ((-711 . -614) 149860) ((-343 . -1053) T) ((-642 . -490) 149841) ((-141 . -102) T) ((-44 . -131) T) ((-289 . -1106) T) ((-677 . -93) T) ((-672 . -93) T) ((-660 . -611) 149823) ((-642 . -611) 149776) ((-478 . -93) T) ((-355 . -611) 149758) ((-352 . -611) 149740) ((-344 . -611) 149722) ((-264 . -612) 149470) ((-264 . -611) 149452) ((-247 . -611) 149434) ((-247 . -612) 149295) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1223 . -1035) 149261) ((-1203 . -514) 149228) ((-1135 . -611) 149210) ((-816 . -854) T) ((-816 . -723) T) ((-600 . -288) 149187) ((-581 . -714) 149152) ((-479 . -612) NIL) ((-479 . -611) 149134) ((-518 . -714) 149079) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-907 . -611) 149061) ((-386 . -723) T) ((-869 . -1052) 149013) ((-907 . -612) 148995) ((-869 . -111) 148933) ((-711 . -1046) T) ((-709 . -1235) 148917) ((-139 . -102) T) ((-136 . -102) T) ((-114 . -102) T) ((-690 . -349) NIL) ((-519 . -611) 148849) ((-379 . -792) T) ((-223 . -1094) T) ((-379 . -789) T) ((-225 . -791) T) ((-225 . -788) T) ((-59 . -612) 148810) ((-59 . -611) 148722) ((-225 . -723) T) ((-516 . -612) 148683) ((-516 . -611) 148595) ((-497 . -611) 148527) ((-496 . -612) 148488) ((-496 . -611) 148400) ((-1074 . -363) 148351) ((-40 . -411) 148328) ((-77 . -1209) T) ((-868 . -906) NIL) ((-359 . -329) 148312) ((-359 . -363) T) ((-353 . -329) 148296) ((-353 . -363) T) ((-345 . -329) 148280) ((-345 . -363) T) ((-316 . -284) 148259) ((-108 . -363) T) ((-70 . -1209) T) ((-1223 . -338) 148211) ((-868 . -644) 148156) ((-1223 . -377) 148108) ((-961 . -131) 147963) ((-812 . -131) 147833) ((-955 . -647) 147817) ((-1081 . -172) 147728) ((-955 . -373) 147712) ((-1057 . -791) T) ((-1057 . -788) T) ((-869 . -614) 147610) ((-779 . -172) 147501) ((-777 . -172) 147412) ((-813 . -47) 147374) ((-1057 . -723) T) ((-327 . -489) 147358) ((-949 . -723) T) ((-454 . -172) 147269) ((-245 . -286) 147246) ((-1272 . -309) 147184) ((-1251 . -897) 147097) ((-481 . -723) T) ((-1244 . -897) 147003) ((-1243 . -1052) 146838) ((-1223 . -897) 146671) ((-1222 . -1052) 146479) ((-1203 . -290) 146458) ((-1179 . -1209) T) ((-1177 . -368) T) ((-1176 . -368) T) ((-1140 . -151) 146442) ((-1114 . -102) T) ((-1112 . -1094) T) ((-1074 . -23) T) ((-1069 . -102) T) ((-924 . -952) T) ((-734 . -309) 146380) ((-75 . -1209) T) ((-30 . -952) T) ((-169 . -906) 146333) ((-660 . -382) 146305) ((-112 . -841) T) ((-1 . -611) 146287) ((-1074 . -1106) T) ((-128 . -647) 146269) ((-50 . -618) 146253) ((-1000 . -409) 146225) ((-594 . -897) 146138) ((-438 . -102) T) ((-141 . -309) NIL) ((-128 . -373) 146120) ((-869 . -1046) T) ((-830 . -847) 146099) ((-81 . -1209) T) ((-708 . -290) T) ((-40 . -1053) T) ((-581 . -172) T) ((-518 . -172) T) ((-511 . -611) 146081) ((-169 . -644) 145991) ((-507 . -611) 145973) ((-351 . -147) 145955) ((-351 . -145) T) ((-359 . -1106) T) ((-353 . -1106) T) ((-345 . -1106) T) ((-1001 . -307) T) ((-911 . -307) T) ((-869 . -243) T) ((-108 . -1106) T) ((-869 . -233) 145934) ((-1243 . -111) 145755) ((-1222 . -111) 145544) ((-245 . -1247) 145528) ((-564 . -845) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 145515) ((-313 . -309) 145456) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1001 . -1019) T) ((-31 . -614) 145437) ((-108 . -23) T) ((-245 . -602) 145414) ((-1245 . -38) 145306) ((-1232 . -906) 145285) ((-112 . -1094) T) ((-1032 . -102) T) ((-1232 . -644) 145210) ((-868 . -791) NIL) ((-852 . -644) 145184) ((-868 . -788) NIL) ((-813 . -883) NIL) ((-868 . -723) T) ((-1081 . -514) 145057) ((-779 . -514) 145004) ((-777 . -514) 144956) ((-571 . -644) 144943) ((-813 . -1035) 144771) ((-454 . -514) 144714) ((-388 . -389) T) ((-1243 . -614) 144527) ((-1222 . -614) 144275) ((-60 . -1209) T) ((-619 . -847) 144254) ((-500 . -657) T) ((-1140 . -973) 144223) ((-1000 . -452) T) ((-695 . -845) T) ((-510 . -789) T) ((-474 . -1052) 144058) ((-343 . -1094) T) ((-313 . -1145) NIL) ((-289 . -131) T) ((-394 . -1094) T) ((-690 . -370) 144025) ((-867 . -1053) T) ((-223 . -618) 144002) ((-327 . -286) 143979) ((-474 . -111) 143800) ((-1243 . -1046) T) ((-1222 . -1046) T) ((-813 . -377) 143784) ((-169 . -723) T) ((-650 . -102) T) ((-1243 . -243) 143763) ((-1243 . -233) 143715) ((-1222 . -233) 143620) ((-1222 . -243) 143599) ((-1000 . -402) NIL) ((-666 . -637) 143547) ((-316 . -38) 143457) ((-313 . -38) 143386) ((-69 . -611) 143368) ((-319 . -493) 143334) ((-1182 . -288) 143313) ((-1217 . -847) T) ((-1107 . -1106) 143223) ((-83 . -1209) T) ((-61 . -611) 143205) ((-479 . -288) 143184) ((-1274 . -1035) 143161) ((-1158 . -1094) T) ((-1107 . -23) 143031) ((-813 . -897) 142967) ((-1232 . -723) T) ((-1096 . -1209) T) ((-474 . -614) 142793) ((-1081 . -290) 142724) ((-963 . -1094) T) ((-890 . -102) T) ((-779 . -290) 142635) ((-327 . -19) 142619) ((-59 . -288) 142596) ((-777 . -290) 142527) ((-852 . -723) T) ((-117 . -845) NIL) ((-516 . -288) 142504) ((-327 . -602) 142481) ((-496 . -288) 142458) ((-454 . -290) 142389) ((-1032 . -309) 142240) ((-677 . -490) 142221) ((-571 . -723) T) ((-672 . -490) 142202) ((-677 . -611) 142152) ((-672 . -611) 142118) ((-658 . -611) 142100) ((-478 . -490) 142081) ((-478 . -611) 142047) ((-245 . -612) 142008) ((-245 . -490) 141985) ((-138 . -490) 141966) ((-137 . -490) 141947) ((-133 . -490) 141928) ((-245 . -611) 141820) ((-213 . -102) T) ((-138 . -611) 141786) ((-137 . -611) 141752) ((-133 . -611) 141718) ((-1141 . -34) T) ((-940 . -1209) T) ((-343 . -714) 141663) ((-666 . -25) T) ((-666 . -21) T) ((-1170 . -614) 141644) ((-474 . -1046) T) ((-633 . -417) 141609) ((-605 . -417) 141574) ((-1114 . -1145) T) ((-581 . -290) T) ((-518 . -290) T) ((-1244 . -307) 141553) ((-474 . -233) 141505) ((-474 . -243) 141484) ((-1223 . -307) 141463) ((-1223 . -1019) NIL) ((-1074 . -131) T) ((-869 . -792) 141442) ((-144 . -102) T) ((-40 . -1094) T) ((-869 . -789) 141421) ((-641 . -1007) 141405) ((-580 . -1053) T) ((-564 . -1053) T) ((-495 . -1053) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 141389) ((-313 . -400) 141350) ((-353 . -131) T) ((-345 . -131) T) ((-1175 . -1094) T) ((-1114 . -38) 141337) ((-1088 . -611) 141304) ((-108 . -131) T) ((-951 . -1094) T) ((-918 . -1094) T) ((-768 . -1094) T) ((-668 . -1094) T) ((-697 . -147) T) ((-116 . -147) T) ((-1281 . -21) T) ((-1281 . -25) T) ((-1279 . -21) T) ((-1279 . -25) T) ((-660 . -1052) 141288) ((-531 . -847) T) ((-500 . -847) T) ((-355 . -1052) 141240) ((-352 . -1052) 141192) ((-344 . -1052) 141144) ((-251 . -1209) T) ((-250 . -1209) T) ((-264 . -1052) 140987) ((-247 . -1052) 140830) ((-660 . -111) 140809) ((-547 . -841) T) ((-355 . -111) 140747) ((-352 . -111) 140685) ((-344 . -111) 140623) ((-264 . -111) 140452) ((-247 . -111) 140281) ((-814 . -1213) 140260) ((-621 . -411) 140244) ((-44 . -21) T) ((-44 . -25) T) ((-812 . -637) 140150) ((-814 . -556) 140129) ((-251 . -1035) 139956) ((-250 . -1035) 139783) ((-126 . -119) 139767) ((-907 . -1052) 139732) ((-709 . -102) T) ((-695 . -1053) T) ((-536 . -616) 139635) ((-343 . -172) T) ((-88 . -611) 139617) ((-152 . -21) T) ((-152 . -25) T) ((-907 . -111) 139573) ((-40 . -714) 139518) ((-867 . -1094) T) ((-660 . -614) 139495) ((-642 . -614) 139476) ((-355 . -614) 139413) ((-352 . -614) 139350) ((-547 . -1094) T) ((-344 . -614) 139287) ((-327 . -612) 139248) ((-327 . -611) 139160) ((-264 . -614) 138913) ((-247 . -614) 138698) ((-1222 . -789) 138651) ((-1222 . -792) 138604) ((-251 . -377) 138573) ((-250 . -377) 138542) ((-650 . -38) 138512) ((-606 . -34) T) ((-482 . -1106) 138422) ((-475 . -34) T) ((-1107 . -131) 138292) ((-961 . -25) 138103) ((-907 . -614) 138053) ((-871 . -611) 138035) ((-961 . -21) 137990) ((-812 . -21) 137900) ((-812 . -25) 137751) ((-1215 . -368) T) ((-621 . -1053) T) ((-1172 . -556) 137730) ((-1166 . -47) 137707) ((-355 . -1046) T) ((-352 . -1046) T) ((-482 . -23) 137577) ((-344 . -1046) T) ((-247 . -1046) T) ((-264 . -1046) T) ((-1119 . -47) 137549) ((-117 . -1053) T) ((-1031 . -644) 137523) ((-955 . -34) T) ((-355 . -233) 137502) ((-355 . -243) T) ((-352 . -233) 137481) ((-352 . -243) T) ((-344 . -233) 137460) ((-344 . -243) T) ((-247 . -326) 137417) ((-264 . -326) 137389) ((-264 . -233) 137368) ((-1150 . -151) 137352) ((-251 . -897) 137284) ((-250 . -897) 137216) ((-1076 . -847) T) ((-414 . -1106) T) ((-1050 . -23) T) ((-907 . -1046) T) ((-322 . -644) 137198) ((-1021 . -845) T) ((-1203 . -999) 137164) ((-1167 . -917) 137143) ((-1161 . -917) 137122) ((-1161 . -817) NIL) ((-907 . -243) T) ((-814 . -363) 137101) ((-385 . -23) T) ((-127 . -1094) 137079) ((-121 . -1094) 137057) ((-907 . -233) T) ((-128 . -34) T) ((-379 . -644) 137022) ((-867 . -714) 137009) ((-1043 . -151) 136974) ((-40 . -172) T) ((-690 . -411) 136956) ((-709 . -309) 136943) ((-833 . -644) 136903) ((-824 . -644) 136877) ((-319 . -25) T) ((-319 . -21) T) ((-654 . -286) 136856) ((-580 . -1094) T) ((-564 . -1094) T) ((-495 . -1094) T) ((-245 . -288) 136833) ((-313 . -231) 136794) ((-1166 . -883) NIL) ((-55 . -1094) T) ((-1119 . -883) 136653) ((-129 . -847) T) ((-1166 . -1035) 136533) ((-1119 . -1035) 136416) ((-183 . -611) 136398) ((-851 . -1035) 136294) ((-779 . -286) 136221) ((-814 . -1106) T) ((-1031 . -723) T) ((-600 . -647) 136205) ((-1043 . -973) 136134) ((-996 . -102) T) ((-814 . -23) T) ((-709 . -1145) 136112) ((-690 . -1053) T) ((-600 . -373) 136096) ((-351 . -452) T) ((-343 . -290) T) ((-1260 . -1094) T) ((-248 . -1094) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -723) T) ((-707 . -1094) T) ((-695 . -1094) T) ((-361 . -473) T) ((-1203 . -611) 136078) ((-1166 . -377) 136062) ((-1119 . -377) 136046) ((-1021 . -411) 136008) ((-141 . -229) 135990) ((-379 . -791) T) ((-379 . -788) T) ((-867 . -172) T) ((-379 . -723) T) ((-708 . -611) 135972) ((-709 . -38) 135801) ((-1259 . -1257) 135785) ((-351 . -402) T) ((-1259 . -1094) 135735) ((-580 . -714) 135722) ((-564 . -714) 135709) ((-495 . -714) 135674) ((-316 . -627) 135653) ((-833 . -723) T) ((-824 . -723) T) ((-641 . -1209) T) ((-1074 . -637) 135601) ((-1166 . -897) 135544) ((-1119 . -897) 135528) ((-658 . -1052) 135512) ((-108 . -637) 135494) ((-482 . -131) 135364) ((-1172 . -1106) T) ((-949 . -47) 135333) ((-621 . -1094) T) ((-658 . -111) 135312) ((-491 . -611) 135278) ((-327 . -288) 135255) ((-481 . -47) 135212) ((-1172 . -23) T) ((-117 . -1094) T) ((-103 . -102) 135190) ((-1271 . -1106) T) ((-548 . -847) T) ((-1050 . -131) T) ((-1021 . -1053) T) ((-816 . -1035) 135174) ((-1000 . -721) 135146) ((-1271 . -23) T) ((-695 . -714) 135111) ((-585 . -611) 135093) ((-386 . -1035) 135077) ((-354 . -1053) T) ((-385 . -131) T) ((-324 . -1035) 135061) ((-225 . -883) 135043) ((-1001 . -917) T) ((-91 . -34) T) ((-1001 . -817) T) ((-911 . -917) T) ((-1189 . -611) 135025) ((-1114 . -825) T) ((-487 . -1213) T) ((-1099 . -1094) T) ((-1074 . -21) T) ((-1074 . -25) T) ((-217 . -1213) T) ((-996 . -309) 134990) ((-225 . -1035) 134950) ((-40 . -290) T) ((-711 . -644) 134910) ((-677 . -614) 134891) ((-672 . -614) 134872) ((-487 . -556) T) ((-478 . -614) 134853) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -556) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -614) 134830) ((-138 . -614) 134811) ((-137 . -614) 134792) ((-133 . -614) 134773) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1053) T) ((-580 . -172) T) ((-564 . -172) T) ((-495 . -172) T) ((-654 . -611) 134755) ((-734 . -733) 134739) ((-336 . -611) 134721) ((-68 . -383) T) ((-68 . -395) T) ((-1096 . -107) 134705) ((-1057 . -883) 134687) ((-949 . -883) 134612) ((-649 . -1106) T) ((-621 . -714) 134599) ((-481 . -883) NIL) ((-1140 . -102) T) ((-1088 . -616) 134583) ((-1057 . -1035) 134565) ((-97 . -611) 134547) ((-477 . -147) T) ((-949 . -1035) 134427) ((-117 . -714) 134372) ((-649 . -23) T) ((-481 . -1035) 134248) ((-1081 . -612) NIL) ((-1081 . -611) 134230) ((-779 . -612) NIL) ((-779 . -611) 134191) ((-777 . -612) 133825) ((-777 . -611) 133739) ((-1107 . -637) 133645) ((-461 . -611) 133627) ((-454 . -611) 133609) ((-454 . -612) 133470) ((-1032 . -229) 133416) ((-869 . -906) 133395) ((-126 . -34) T) ((-814 . -131) T) ((-645 . -611) 133377) ((-578 . -102) T) ((-355 . -1278) 133361) ((-352 . -1278) 133345) ((-344 . -1278) 133329) ((-127 . -514) 133262) ((-121 . -514) 133195) ((-511 . -789) T) ((-511 . -792) T) ((-510 . -791) T) ((-103 . -309) 133133) ((-222 . -102) 133111) ((-690 . -1094) T) ((-695 . -172) T) ((-869 . -644) 133063) ((-65 . -384) T) ((-275 . -611) 133045) ((-65 . -395) T) ((-949 . -377) 133029) ((-867 . -290) T) ((-50 . -611) 133011) ((-996 . -38) 132959) ((-581 . -611) 132941) ((-481 . -377) 132925) ((-581 . -612) 132907) ((-518 . -611) 132889) ((-907 . -1278) 132876) ((-868 . -1209) T) ((-697 . -452) T) ((-495 . -514) 132842) ((-487 . -363) T) ((-355 . -368) 132821) ((-352 . -368) 132800) ((-344 . -368) 132779) ((-711 . -723) T) ((-217 . -363) T) ((-116 . -452) T) ((-1282 . -1273) 132763) ((-868 . -881) 132740) ((-868 . -883) NIL) ((-961 . -847) 132639) ((-812 . -847) 132590) ((-1216 . -102) T) ((-650 . -652) 132574) ((-1195 . -34) T) ((-171 . -611) 132556) ((-1107 . -21) 132466) ((-1107 . -25) 132317) ((-868 . -1035) 132294) ((-949 . -897) 132275) ((-1232 . -47) 132252) ((-907 . -368) T) ((-59 . -647) 132236) ((-516 . -647) 132220) ((-481 . -897) 132197) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -647) 132181) ((-59 . -373) 132165) ((-621 . -172) T) ((-516 . -373) 132149) ((-496 . -373) 132133) ((-824 . -705) 132117) ((-1166 . -307) 132096) ((-1172 . -131) T) ((-117 . -172) T) ((-1140 . -309) 132034) ((-169 . -1209) T) ((-633 . -741) 132018) ((-605 . -741) 132002) ((-1271 . -131) T) ((-1244 . -917) 131981) ((-1223 . -917) 131960) ((-1223 . -817) NIL) ((-690 . -714) 131910) ((-1222 . -906) 131863) ((-1021 . -1094) T) ((-868 . -377) 131840) ((-868 . -338) 131817) ((-902 . -1106) T) ((-169 . -881) 131801) ((-169 . -883) 131726) ((-487 . -1106) T) ((-354 . -1094) T) ((-217 . -1106) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1035) 131622) ((-319 . -847) T) ((-1259 . -514) 131555) ((-1243 . -644) 131452) ((-1222 . -644) 131322) ((-869 . -791) 131301) ((-869 . -788) 131280) ((-869 . -723) T) ((-487 . -23) T) ((-223 . -611) 131262) ((-174 . -452) T) ((-222 . -309) 131200) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1283 . -1276) 131179) ((-580 . -290) T) ((-564 . -290) T) ((-673 . -1035) 131163) ((-495 . -290) T) ((-136 . -470) 131118) ((-48 . -1094) T) ((-709 . -231) 131102) ((-868 . -897) NIL) ((-1232 . -883) NIL) ((-886 . -102) T) ((-882 . -102) T) ((-388 . -1094) T) ((-169 . -377) 131086) ((-169 . -338) 131070) ((-1232 . -1035) 130950) ((-852 . -1035) 130846) ((-1136 . -102) T) ((-649 . -131) T) ((-117 . -514) 130754) ((-658 . -789) 130733) ((-658 . -792) 130712) ((-571 . -1035) 130694) ((-294 . -1266) 130664) ((-863 . -102) T) ((-960 . -556) 130643) ((-1203 . -1052) 130526) ((-482 . -637) 130432) ((-901 . -1094) T) ((-1021 . -714) 130369) ((-708 . -1052) 130334) ((-615 . -102) T) ((-600 . -34) T) ((-1141 . -1209) T) ((-1203 . -111) 130203) ((-474 . -644) 130100) ((-354 . -714) 130045) ((-169 . -897) 130004) ((-695 . -290) T) ((-690 . -172) T) ((-708 . -111) 129960) ((-1287 . -1053) T) ((-1232 . -377) 129944) ((-418 . -1213) 129922) ((-1112 . -611) 129904) ((-313 . -845) NIL) ((-418 . -556) T) ((-225 . -307) T) ((-1222 . -788) 129857) ((-1222 . -791) 129810) ((-1243 . -723) T) ((-1222 . -723) T) ((-48 . -714) 129775) ((-225 . -1019) T) ((-351 . -1266) 129752) ((-1245 . -411) 129718) ((-715 . -723) T) ((-1232 . -897) 129661) ((-1203 . -614) 129543) ((-112 . -611) 129525) ((-112 . -612) 129507) ((-715 . -473) T) ((-708 . -614) 129457) ((-482 . -21) 129367) ((-127 . -489) 129351) ((-121 . -489) 129335) ((-482 . -25) 129186) ((-621 . -290) T) ((-585 . -1052) 129161) ((-437 . -1094) T) ((-1057 . -307) T) ((-117 . -290) T) ((-1098 . -102) T) ((-1000 . -102) T) ((-585 . -111) 129129) ((-1136 . -309) 129067) ((-1203 . -1046) T) ((-1057 . -1019) T) ((-66 . -1209) T) ((-1050 . -25) T) ((-1050 . -21) T) ((-708 . -1046) T) ((-385 . -21) T) ((-385 . -25) T) ((-690 . -514) NIL) ((-1021 . -172) T) ((-708 . -243) T) ((-1057 . -545) T) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -611) 129049) ((-394 . -611) 129031) ((-474 . -723) T) ((-1114 . -845) T) ((-889 . -1035) 128999) ((-108 . -847) T) ((-654 . -1052) 128983) ((-487 . -131) T) ((-1245 . -1053) T) ((-217 . -131) T) ((-1150 . -102) 128961) ((-99 . -1094) T) ((-245 . -662) 128945) ((-245 . -647) 128929) ((-654 . -111) 128908) ((-585 . -614) 128892) ((-316 . -411) 128876) ((-245 . -373) 128860) ((-1153 . -235) 128807) ((-996 . -231) 128791) ((-74 . -1209) T) ((-48 . -172) T) ((-697 . -387) T) ((-697 . -143) T) ((-1282 . -102) T) ((-1189 . -614) 128773) ((-1081 . -1052) 128616) ((-264 . -906) 128595) ((-247 . -906) 128574) ((-779 . -1052) 128397) ((-777 . -1052) 128240) ((-606 . -1209) T) ((-1158 . -611) 128222) ((-1081 . -111) 128051) ((-1043 . -102) T) ((-475 . -1209) T) ((-461 . -1052) 128022) ((-454 . -1052) 127865) ((-660 . -644) 127849) ((-868 . -307) T) ((-779 . -111) 127658) ((-777 . -111) 127487) ((-355 . -644) 127439) ((-352 . -644) 127391) ((-344 . -644) 127343) ((-264 . -644) 127268) ((-247 . -644) 127193) ((-1152 . -847) T) ((-1082 . -1035) 127177) ((-461 . -111) 127138) ((-454 . -111) 126967) ((-1070 . -1035) 126944) ((-997 . -34) T) ((-963 . -611) 126926) ((-955 . -1209) T) ((-126 . -1007) 126910) ((-960 . -1106) T) ((-868 . -1019) NIL) ((-732 . -1106) T) ((-712 . -1106) T) ((-654 . -614) 126828) ((-1259 . -489) 126812) ((-1136 . -38) 126772) ((-960 . -23) T) ((-862 . -1094) T) ((-840 . -102) T) ((-814 . -21) T) ((-814 . -25) T) ((-732 . -23) T) ((-712 . -23) T) ((-110 . -657) T) ((-907 . -644) 126737) ((-581 . -1052) 126702) ((-518 . -1052) 126647) ((-227 . -57) 126605) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-690 . -290) T) ((-863 . -38) 126575) ((-581 . -111) 126531) ((-518 . -111) 126460) ((-1081 . -614) 126196) ((-418 . -1106) T) ((-316 . -1053) 126086) ((-313 . -1053) T) ((-128 . -1209) T) ((-779 . -614) 125834) ((-777 . -614) 125600) ((-654 . -1046) T) ((-1287 . -1094) T) ((-454 . -614) 125385) ((-169 . -307) 125316) ((-418 . -23) T) ((-40 . -611) 125298) ((-40 . -612) 125282) ((-108 . -989) 125264) ((-116 . -866) 125248) ((-645 . -614) 125232) ((-48 . -514) 125198) ((-1195 . -1007) 125182) ((-1175 . -611) 125149) ((-1182 . -34) T) ((-951 . -611) 125115) ((-918 . -611) 125097) ((-1107 . -847) 125048) ((-768 . -611) 125030) ((-668 . -611) 125012) ((-1150 . -309) 124950) ((-479 . -34) T) ((-1086 . -1209) T) ((-477 . -452) T) ((-1135 . -34) T) ((-1081 . -1046) T) ((-50 . -614) 124919) ((-779 . -1046) T) ((-777 . -1046) T) ((-643 . -235) 124903) ((-630 . -235) 124849) ((-581 . -614) 124799) ((-518 . -614) 124729) ((-1232 . -307) 124708) ((-1081 . -326) 124669) ((-454 . -1046) T) ((-1172 . -21) T) ((-1081 . -233) 124648) ((-779 . -326) 124625) ((-779 . -233) T) ((-777 . -326) 124597) ((-728 . -1213) 124576) ((-327 . -647) 124560) ((-1172 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 124539) ((-327 . -373) 124523) ((-497 . -34) T) ((-496 . -34) T) ((-1000 . -1145) NIL) ((-728 . -556) 124454) ((-633 . -102) T) ((-605 . -102) T) ((-355 . -723) T) ((-352 . -723) T) ((-344 . -723) T) ((-264 . -723) T) ((-247 . -723) T) ((-1043 . -309) 124362) ((-898 . -1094) 124340) ((-50 . -1046) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-1168 . -556) 124319) ((-1167 . -1213) 124298) ((-581 . -1046) T) ((-518 . -1046) T) ((-1161 . -1213) 124277) ((-361 . -1035) 124261) ((-322 . -1035) 124245) ((-1021 . -290) T) ((-379 . -883) 124227) ((-1167 . -556) 124178) ((-1161 . -556) 124129) ((-1000 . -38) 124074) ((-796 . -1106) T) ((-907 . -723) T) ((-581 . -243) T) ((-581 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1120 . -556) 124053) ((-354 . -290) T) ((-643 . -691) 124037) ((-379 . -1035) 123997) ((-1114 . -1053) T) ((-103 . -125) 123981) ((-796 . -23) T) ((-1281 . -1276) 123957) ((-1259 . -286) 123934) ((-407 . -309) 123899) ((-1279 . -1276) 123878) ((-1245 . -1094) T) ((-867 . -611) 123860) ((-833 . -1035) 123829) ((-203 . -784) T) ((-202 . -784) T) ((-201 . -784) T) ((-200 . -784) T) ((-199 . -784) T) ((-198 . -784) T) ((-197 . -784) T) ((-196 . -784) T) ((-195 . -784) T) ((-194 . -784) T) ((-547 . -611) 123811) ((-495 . -999) T) ((-274 . -836) T) ((-273 . -836) T) ((-272 . -836) T) ((-271 . -836) T) ((-48 . -290) T) ((-270 . -836) T) ((-269 . -836) T) ((-268 . -836) T) ((-193 . -784) T) ((-610 . -847) T) ((-650 . -411) 123795) ((-223 . -614) 123757) ((-110 . -847) T) ((-649 . -21) T) ((-649 . -25) T) ((-1282 . -38) 123727) ((-117 . -286) 123678) ((-1259 . -19) 123662) ((-1259 . -602) 123639) ((-1272 . -1094) T) ((-1071 . -1094) T) ((-984 . -1094) T) ((-960 . -131) T) ((-734 . -1094) T) ((-732 . -131) T) ((-712 . -131) T) ((-511 . -790) T) ((-407 . -1145) 123617) ((-453 . -131) T) ((-511 . -791) T) ((-223 . -1046) T) ((-294 . -102) 123399) ((-141 . -1094) T) ((-695 . -999) T) ((-91 . -1209) T) ((-127 . -611) 123331) ((-121 . -611) 123263) ((-1287 . -172) T) ((-1167 . -363) 123242) ((-1161 . -363) 123221) ((-316 . -1094) T) ((-418 . -131) T) ((-313 . -1094) T) ((-407 . -38) 123173) ((-1127 . -102) T) ((-1245 . -714) 123065) ((-650 . -1053) T) ((-1129 . -1254) T) ((-319 . -145) 123044) ((-319 . -147) 123023) ((-139 . -1094) T) ((-136 . -1094) T) ((-114 . -1094) T) ((-855 . -102) T) ((-580 . -611) 123005) ((-564 . -612) 122904) ((-564 . -611) 122886) ((-495 . -611) 122868) ((-495 . -612) 122813) ((-485 . -23) T) ((-482 . -847) 122764) ((-487 . -637) 122746) ((-962 . -611) 122728) ((-217 . -637) 122710) ((-225 . -404) T) ((-658 . -644) 122694) ((-55 . -611) 122676) ((-1166 . -917) 122655) ((-728 . -1106) T) ((-351 . -102) T) ((-1208 . -1077) T) ((-1114 . -841) T) ((-815 . -847) T) ((-728 . -23) T) ((-343 . -1052) 122600) ((-1152 . -1151) T) ((-1141 . -107) 122584) ((-1168 . -1106) T) ((-1167 . -1106) T) ((-515 . -1035) 122568) ((-1161 . -1106) T) ((-1120 . -1106) T) ((-343 . -111) 122497) ((-1001 . -1213) T) ((-126 . -1209) T) ((-911 . -1213) T) ((-690 . -286) NIL) ((-1260 . -611) 122479) ((-1168 . -23) T) ((-1167 . -23) T) ((-1161 . -23) T) ((-1001 . -556) T) ((-1136 . -231) 122463) ((-911 . -556) T) ((-1120 . -23) T) ((-248 . -611) 122445) ((-1069 . -1094) T) ((-796 . -131) T) ((-707 . -611) 122427) ((-316 . -714) 122337) ((-313 . -714) 122266) ((-695 . -611) 122248) ((-695 . -612) 122193) ((-407 . -400) 122177) ((-438 . -1094) T) ((-487 . -25) T) ((-487 . -21) T) ((-1114 . -1094) T) ((-217 . -25) T) ((-217 . -21) T) ((-709 . -411) 122161) ((-711 . -1035) 122130) ((-1259 . -611) 122042) ((-1259 . -612) 122003) ((-1245 . -172) T) ((-245 . -34) T) ((-343 . -614) 121933) ((-394 . -614) 121915) ((-923 . -971) T) ((-1195 . -1209) T) ((-658 . -788) 121894) ((-658 . -791) 121873) ((-398 . -395) T) ((-523 . -102) 121851) ((-1032 . -1094) T) ((-222 . -992) 121835) ((-504 . -102) T) ((-621 . -611) 121817) ((-45 . -847) NIL) ((-621 . -612) 121794) ((-1032 . -608) 121769) ((-898 . -514) 121702) ((-343 . -1046) T) ((-117 . -612) NIL) ((-117 . -611) 121684) ((-869 . -1209) T) ((-666 . -417) 121668) ((-666 . -1117) 121613) ((-500 . -151) 121595) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1052) 121540) ((-869 . -881) 121524) ((-869 . -883) 121449) ((-709 . -1053) T) ((-690 . -999) NIL) ((-3 . |UnionCategory|) T) ((-1243 . -47) 121419) ((-1222 . -47) 121396) ((-1135 . -1007) 121367) ((-225 . -917) T) ((-40 . -111) 121296) ((-869 . -1035) 121160) ((-1114 . -714) 121147) ((-1099 . -611) 121129) ((-1074 . -147) 121108) ((-1074 . -145) 121059) ((-1001 . -363) T) ((-319 . -1197) 121025) ((-379 . -307) T) ((-319 . -1194) 120991) ((-316 . -172) 120970) ((-313 . -172) T) ((-1000 . -231) 120947) ((-911 . -363) T) ((-581 . -1278) 120934) ((-518 . -1278) 120911) ((-359 . -147) 120890) ((-359 . -145) 120841) ((-353 . -147) 120820) ((-353 . -145) 120771) ((-606 . -1185) 120747) ((-345 . -147) 120726) ((-345 . -145) 120677) ((-319 . -35) 120643) ((-475 . -1185) 120622) ((0 . |EnumerationCategory|) T) ((-319 . -95) 120588) ((-379 . -1019) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 120538) ((-650 . -1094) T) ((-606 . -107) 120485) ((-485 . -131) T) ((-475 . -107) 120435) ((-240 . -1106) 120345) ((-869 . -377) 120329) ((-869 . -338) 120313) ((-240 . -23) 120183) ((-40 . -614) 120113) ((-1057 . -917) T) ((-1057 . -817) T) ((-581 . -368) T) ((-518 . -368) T) ((-351 . -1145) T) ((-327 . -34) T) ((-44 . -417) 120097) ((-1175 . -614) 120033) ((-870 . -1209) T) ((-390 . -741) 120017) ((-1272 . -514) 119950) ((-728 . -131) T) ((-668 . -614) 119934) ((-1251 . -556) 119913) ((-1244 . -1213) 119892) ((-1244 . -556) 119843) ((-1223 . -1213) 119822) ((-311 . -1077) T) ((-1223 . -556) 119773) ((-734 . -514) 119706) ((-1222 . -1209) 119685) ((-1222 . -883) 119558) ((-890 . -1094) T) ((-144 . -841) T) ((-1222 . -881) 119528) ((-687 . -611) 119510) ((-1168 . -131) T) ((-523 . -309) 119448) ((-1167 . -131) T) ((-141 . -514) NIL) ((-1161 . -131) T) ((-1120 . -131) T) ((-1021 . -999) T) ((-1001 . -23) T) ((-351 . -38) 119413) ((-1001 . -1106) T) ((-911 . -1106) T) ((-82 . -611) 119395) ((-40 . -1046) T) ((-867 . -1052) 119382) ((-1000 . -349) NIL) ((-869 . -897) 119341) ((-697 . -102) T) ((-968 . -23) T) ((-600 . -1209) T) ((-911 . -23) T) ((-867 . -111) 119326) ((-427 . -1106) T) ((-213 . -1094) T) ((-474 . -47) 119296) ((-134 . -102) T) ((-40 . -233) 119268) ((-40 . -243) T) ((-116 . -102) T) ((-595 . -556) 119247) ((-594 . -556) 119226) ((-690 . -611) 119208) ((-690 . -612) 119116) ((-316 . -514) 119082) ((-313 . -514) 118974) ((-1243 . -1035) 118958) ((-1222 . -1035) 118744) ((-996 . -411) 118728) ((-427 . -23) T) ((-1114 . -172) T) ((-1245 . -290) T) ((-650 . -714) 118698) ((-144 . -1094) T) ((-48 . -999) T) ((-407 . -231) 118682) ((-295 . -235) 118632) ((-868 . -917) T) ((-868 . -817) NIL) ((-867 . -614) 118604) ((-861 . -847) T) ((-1222 . -338) 118574) ((-1222 . -377) 118544) ((-222 . -1115) 118528) ((-1259 . -288) 118505) ((-1203 . -644) 118430) ((-960 . -21) T) ((-960 . -25) T) ((-732 . -21) T) ((-732 . -25) T) ((-712 . -21) T) ((-712 . -25) T) ((-708 . -644) 118395) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-996 . -1053) T) ((-867 . -1046) T) ((-771 . -102) T) ((-1244 . -363) 118374) ((-1243 . -897) 118280) ((-1223 . -363) 118259) ((-1222 . -897) 118110) ((-1021 . -611) 118092) ((-407 . -825) 118045) ((-1168 . -493) 118011) ((-169 . -917) 117942) ((-1167 . -493) 117908) ((-1161 . -493) 117874) ((-709 . -1094) T) ((-1120 . -493) 117840) ((-580 . -1052) 117827) ((-564 . -1052) 117814) ((-495 . -1052) 117779) ((-316 . -290) 117758) ((-313 . -290) T) ((-354 . -611) 117740) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 117719) ((-580 . -111) 117704) ((-564 . -111) 117689) ((-495 . -111) 117645) ((-1170 . -883) 117612) ((-898 . -489) 117596) ((-48 . -611) 117578) ((-48 . -612) 117523) ((-240 . -131) 117393) ((-1232 . -917) 117372) ((-813 . -1213) 117351) ((-388 . -490) 117332) ((-1032 . -514) 117176) ((-388 . -611) 117142) ((-813 . -556) 117073) ((-585 . -644) 117048) ((-264 . -47) 117020) ((-247 . -47) 116977) ((-531 . -509) 116954) ((-580 . -614) 116926) ((-564 . -614) 116898) ((-495 . -614) 116831) ((-997 . -1209) T) ((-695 . -1052) 116796) ((-1251 . -23) T) ((-1251 . -1106) T) ((-1244 . -1106) T) ((-1223 . -1106) T) ((-1000 . -370) 116768) ((-112 . -368) T) ((-474 . -897) 116674) ((-1244 . -23) T) ((-901 . -611) 116656) ((-55 . -614) 116638) ((-91 . -107) 116622) ((-1203 . -723) T) ((-902 . -847) 116573) ((-697 . -1145) T) ((-695 . -111) 116529) ((-1223 . -23) T) ((-595 . -1106) T) ((-594 . -1106) T) ((-709 . -714) 116358) ((-708 . -723) T) ((-1114 . -290) T) ((-1001 . -131) T) ((-487 . -847) T) ((-968 . -131) T) ((-911 . -131) T) ((-796 . -25) T) ((-217 . -847) T) ((-796 . -21) T) ((-580 . -1046) T) ((-564 . -1046) T) ((-495 . -1046) T) ((-595 . -23) T) ((-343 . -1278) 116335) ((-319 . -452) 116314) ((-339 . -309) 116301) ((-594 . -23) T) ((-427 . -131) T) ((-654 . -644) 116275) ((-245 . -1007) 116259) ((-869 . -307) T) ((-1283 . -1273) 116243) ((-768 . -789) T) ((-768 . -792) T) ((-697 . -38) 116230) ((-564 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1144 . -235) 116180) ((-1081 . -906) 116159) ((-116 . -38) 116146) ((-209 . -797) T) ((-208 . -797) T) ((-207 . -797) T) ((-206 . -797) T) ((-869 . -1019) 116124) ((-1272 . -489) 116108) ((-779 . -906) 116087) ((-777 . -906) 116066) ((-1182 . -1209) T) ((-454 . -906) 116045) ((-734 . -489) 116029) ((-1081 . -644) 115954) ((-695 . -614) 115889) ((-779 . -644) 115814) ((-621 . -1052) 115801) ((-479 . -1209) T) ((-343 . -368) T) ((-141 . -489) 115783) ((-777 . -644) 115708) ((-1135 . -1209) T) ((-549 . -847) T) ((-461 . -644) 115679) ((-264 . -883) 115538) ((-247 . -883) NIL) ((-117 . -1052) 115483) ((-454 . -644) 115408) ((-660 . -1035) 115385) ((-621 . -111) 115370) ((-355 . -1035) 115354) ((-352 . -1035) 115338) ((-344 . -1035) 115322) ((-264 . -1035) 115166) ((-247 . -1035) 115042) ((-117 . -111) 114971) ((-59 . -1209) T) ((-519 . -1209) T) ((-516 . -1209) T) ((-497 . -1209) T) ((-496 . -1209) T) ((-437 . -611) 114953) ((-434 . -611) 114935) ((-3 . -102) T) ((-1024 . -1202) 114904) ((-830 . -102) T) ((-685 . -57) 114862) ((-695 . -1046) T) ((-50 . -644) 114836) ((-289 . -452) T) ((-476 . -1202) 114805) ((0 . -102) T) ((-581 . -644) 114770) ((-518 . -644) 114715) ((-49 . -102) T) ((-907 . -1035) 114702) ((-695 . -243) T) ((-1074 . -409) 114681) ((-728 . -637) 114629) ((-996 . -1094) T) ((-709 . -172) 114520) ((-621 . -614) 114415) ((-487 . -989) 114397) ((-264 . -377) 114381) ((-247 . -377) 114365) ((-399 . -1094) T) ((-1023 . -102) 114343) ((-339 . -38) 114327) ((-217 . -989) 114309) ((-117 . -614) 114239) ((-174 . -38) 114171) ((-1243 . -307) 114150) ((-1222 . -307) 114129) ((-654 . -723) T) ((-99 . -611) 114111) ((-1161 . -637) 114063) ((-485 . -25) T) ((-485 . -21) T) ((-1222 . -1019) 114015) ((-621 . -1046) T) ((-379 . -404) T) ((-390 . -102) T) ((-1099 . -616) 113930) ((-264 . -897) 113876) ((-247 . -897) 113853) ((-117 . -1046) T) ((-813 . -1106) T) ((-1081 . -723) T) ((-621 . -233) 113832) ((-619 . -102) T) ((-779 . -723) T) ((-777 . -723) T) ((-413 . -1106) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1214 . -847) T) ((-454 . -723) T) ((-813 . -23) T) ((-728 . -25) T) ((-728 . -21) T) ((-699 . -847) T) ((-1071 . -286) 113811) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -764) 113793) ((-690 . -1052) 113743) ((-1251 . -131) T) ((-1244 . -131) T) ((-1223 . -131) T) ((-1168 . -25) T) ((-1136 . -411) 113727) ((-633 . -367) 113659) ((-605 . -367) 113591) ((-1150 . -1143) 113575) ((-103 . -1094) 113553) ((-1168 . -21) T) ((-1167 . -21) T) ((-862 . -611) 113535) ((-996 . -714) 113483) ((-223 . -644) 113450) ((-690 . -111) 113384) ((-50 . -723) T) ((-1167 . -25) T) ((-351 . -349) T) ((-1161 . -21) T) ((-1074 . -452) 113335) ((-1161 . -25) T) ((-709 . -514) 113282) ((-581 . -723) T) ((-518 . -723) T) ((-1120 . -21) T) ((-1120 . -25) T) ((-595 . -131) T) ((-594 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 113261) ((-1217 . -102) T) ((-313 . -286) 113196) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-687 . -614) 113180) ((-1287 . -611) 113162) ((-1287 . -612) 113144) ((-1074 . -402) 113123) ((-1032 . -489) 113054) ((-564 . -792) T) ((-564 . -789) T) ((-1058 . -235) 113000) ((-359 . -402) 112951) ((-353 . -402) 112902) ((-345 . -402) 112853) ((-1274 . -1106) T) ((-690 . -614) 112788) ((-1274 . -23) T) ((-1261 . -102) T) ((-175 . -611) 112770) ((-1136 . -1053) T) ((-547 . -368) T) ((-666 . -741) 112754) ((-1172 . -145) 112733) ((-1172 . -147) 112712) ((-1140 . -1094) T) ((-1140 . -1066) 112681) ((-69 . -1209) T) ((-1021 . -1052) 112618) ((-863 . -1053) T) ((-240 . -637) 112524) ((-690 . -1046) T) ((-354 . -1052) 112469) ((-61 . -1209) T) ((-1021 . -111) 112385) ((-898 . -611) 112296) ((-690 . -243) T) ((-690 . -233) NIL) ((-840 . -845) 112275) ((-695 . -792) T) ((-695 . -789) T) ((-1000 . -411) 112252) ((-354 . -111) 112181) ((-379 . -917) T) ((-407 . -845) 112160) ((-709 . -290) 112071) ((-223 . -723) T) ((-1251 . -493) 112037) ((-1244 . -493) 112003) ((-1223 . -493) 111969) ((-578 . -1094) T) ((-316 . -999) 111948) ((-222 . -1094) 111926) ((-1216 . -841) T) ((-319 . -970) 111888) ((-105 . -102) T) ((-48 . -1052) 111853) ((-1283 . -102) T) ((-381 . -102) T) ((-48 . -111) 111809) ((-1001 . -637) 111791) ((-1245 . -611) 111773) ((-531 . -102) T) ((-500 . -102) T) ((-1127 . -1128) 111757) ((-152 . -1266) 111741) ((-245 . -1209) T) ((-1208 . -102) T) ((-1021 . -614) 111678) ((-1166 . -1213) 111657) ((-354 . -614) 111587) ((-1119 . -1213) 111566) ((-240 . -21) 111476) ((-240 . -25) 111327) ((-127 . -119) 111311) ((-121 . -119) 111295) ((-44 . -741) 111279) ((-1166 . -556) 111190) ((-1119 . -556) 111121) ((-1216 . -1094) T) ((-1032 . -286) 111096) ((-1160 . -1077) T) ((-991 . -1077) T) ((-813 . -131) T) ((-117 . -792) NIL) ((-117 . -789) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1106) 111006) ((-250 . -1106) 110916) ((-1021 . -1046) T) ((-1000 . -1053) T) ((-48 . -614) 110849) ((-343 . -644) 110794) ((-619 . -38) 110778) ((-1272 . -611) 110740) ((-1272 . -612) 110701) ((-1071 . -611) 110683) ((-1021 . -243) T) ((-354 . -1046) T) ((-812 . -1266) 110653) ((-251 . -23) T) ((-250 . -23) T) ((-984 . -611) 110635) ((-734 . -612) 110596) ((-734 . -611) 110578) ((-796 . -847) 110557) ((-1153 . -151) 110504) ((-996 . -514) 110416) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -614) 110397) ((-1001 . -25) T) ((-141 . -611) 110379) ((-141 . -612) 110338) ((-907 . -307) T) ((-1001 . -21) T) ((-968 . -25) T) ((-911 . -21) T) ((-911 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-840 . -411) 110322) ((-48 . -1046) T) ((-1281 . -1273) 110306) ((-1279 . -1273) 110290) ((-1032 . -602) 110265) ((-316 . -612) 110126) ((-316 . -611) 110108) ((-313 . -612) NIL) ((-313 . -611) 110090) ((-48 . -243) T) ((-48 . -233) T) ((-650 . -286) 110051) ((-550 . -235) 110001) ((-139 . -611) 109968) ((-136 . -611) 109950) ((-114 . -611) 109932) ((-477 . -38) 109897) ((-1283 . -1280) 109876) ((-1274 . -131) T) ((-1282 . -1053) T) ((-1076 . -102) T) ((-88 . -1209) T) ((-500 . -309) NIL) ((-997 . -107) 109860) ((-886 . -1094) T) ((-882 . -1094) T) ((-1259 . -647) 109844) ((-1259 . -373) 109828) ((-327 . -1209) T) ((-592 . -847) T) ((-1136 . -1094) T) ((-1136 . -1049) 109768) ((-103 . -514) 109701) ((-924 . -611) 109683) ((-343 . -723) T) ((-30 . -611) 109665) ((-863 . -1094) T) ((-840 . -1053) 109644) ((-40 . -644) 109589) ((-225 . -1213) T) ((-407 . -1053) T) ((-1152 . -151) 109571) ((-996 . -290) 109522) ((-615 . -1094) T) ((-225 . -556) T) ((-319 . -1240) 109506) ((-319 . -1237) 109476) ((-1182 . -1185) 109455) ((-1069 . -611) 109437) ((-643 . -151) 109421) ((-630 . -151) 109367) ((-1182 . -107) 109317) ((-479 . -1185) 109296) ((-487 . -147) T) ((-487 . -145) NIL) ((-1114 . -612) 109211) ((-438 . -611) 109193) ((-217 . -147) T) ((-217 . -145) NIL) ((-1114 . -611) 109175) ((-129 . -102) T) ((-52 . -102) T) ((-1223 . -637) 109127) ((-479 . -107) 109077) ((-990 . -23) T) ((-1283 . -38) 109047) ((-1166 . -1106) T) ((-1119 . -1106) T) ((-1057 . -1213) T) ((-311 . -102) T) ((-851 . -1106) T) ((-949 . -1213) 109026) ((-481 . -1213) 109005) ((-728 . -847) 108984) ((-1057 . -556) T) ((-949 . -556) 108915) ((-1166 . -23) T) ((-1119 . -23) T) ((-851 . -23) T) ((-481 . -556) 108846) ((-1136 . -714) 108778) ((-1140 . -514) 108711) ((-1032 . -612) NIL) ((-1032 . -611) 108693) ((-96 . -1077) T) ((-863 . -714) 108663) ((-1203 . -47) 108632) ((-251 . -131) T) ((-250 . -131) T) ((-1098 . -1094) T) ((-1000 . -1094) T) ((-62 . -611) 108614) ((-1161 . -847) NIL) ((-1021 . -789) T) ((-1021 . -792) T) ((-1287 . -1052) 108601) ((-1287 . -111) 108586) ((-867 . -644) 108573) ((-1251 . -25) T) ((-1251 . -21) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-1223 . -21) T) ((-1223 . -25) T) ((-1024 . -151) 108557) ((-869 . -817) 108536) ((-869 . -917) T) ((-709 . -286) 108463) ((-595 . -21) T) ((-595 . -25) T) ((-594 . -21) T) ((-40 . -723) T) ((-222 . -514) 108396) ((-594 . -25) T) ((-476 . -151) 108380) ((-463 . -151) 108364) ((-918 . -791) T) ((-918 . -723) T) ((-768 . -790) T) ((-768 . -791) T) ((-506 . -1094) T) ((-502 . -1094) T) ((-768 . -723) T) ((-225 . -363) T) ((-1150 . -1094) 108342) ((-868 . -1213) T) ((-650 . -611) 108324) ((-868 . -556) T) ((-690 . -368) NIL) ((-1287 . -614) 108306) ((-1282 . -1094) T) ((-359 . -1266) 108290) ((-666 . -102) T) ((-353 . -1266) 108274) ((-345 . -1266) 108258) ((-548 . -102) T) ((-520 . -847) 108237) ((-814 . -452) 108216) ((-1043 . -1094) T) ((-1043 . -1066) 108145) ((-1024 . -973) 108114) ((-816 . -1106) T) ((-1000 . -714) 108059) ((-386 . -1106) T) ((-476 . -973) 108028) ((-463 . -973) 107997) ((-110 . -151) 107979) ((-73 . -611) 107961) ((-890 . -611) 107943) ((-1074 . -721) 107922) ((-1287 . -1046) T) ((-813 . -637) 107870) ((-294 . -1053) 107812) ((-169 . -1213) 107717) ((-225 . -1106) T) ((-324 . -23) T) ((-1161 . -989) 107669) ((-840 . -1094) T) ((-1245 . -1052) 107574) ((-1120 . -737) 107553) ((-1243 . -917) 107532) ((-1222 . -917) 107511) ((-867 . -723) T) ((-169 . -556) 107422) ((-580 . -644) 107409) ((-564 . -644) 107396) ((-407 . -1094) T) ((-263 . -1094) T) ((-213 . -611) 107378) ((-495 . -644) 107343) ((-225 . -23) T) ((-1222 . -817) 107296) ((-1281 . -102) T) ((-354 . -1278) 107273) ((-1279 . -102) T) ((-1245 . -111) 107165) ((-144 . -611) 107147) ((-990 . -131) T) ((-44 . -102) T) ((-240 . -847) 107098) ((-1232 . -1213) 107077) ((-103 . -489) 107061) ((-1282 . -714) 107031) ((-1081 . -47) 106992) ((-1057 . -1106) T) ((-949 . -1106) T) ((-127 . -34) T) ((-121 . -34) T) ((-779 . -47) 106969) ((-777 . -47) 106941) ((-1232 . -556) 106852) ((-354 . -368) T) ((-481 . -1106) T) ((-1166 . -131) T) ((-1119 . -131) T) ((-454 . -47) 106831) ((-868 . -363) T) ((-851 . -131) T) ((-152 . -102) T) ((-1057 . -23) T) ((-949 . -23) T) ((-571 . -556) T) ((-813 . -25) T) ((-813 . -21) T) ((-1136 . -514) 106764) ((-591 . -1077) T) ((-585 . -1035) 106748) ((-1245 . -614) 106622) ((-481 . -23) T) ((-351 . -1053) T) ((-1203 . -897) 106603) ((-666 . -309) 106541) ((-1107 . -1266) 106511) ((-695 . -644) 106476) ((-1000 . -172) T) ((-960 . -145) 106455) ((-633 . -1094) T) ((-605 . -1094) T) ((-960 . -147) 106434) ((-1001 . -847) T) ((-732 . -147) 106413) ((-732 . -145) 106392) ((-968 . -847) T) ((-474 . -917) 106371) ((-316 . -1052) 106281) ((-313 . -1052) 106210) ((-996 . -286) 106168) ((-407 . -714) 106120) ((-697 . -845) T) ((-1245 . -1046) T) ((-316 . -111) 106016) ((-313 . -111) 105929) ((-961 . -102) T) ((-812 . -102) 105719) ((-709 . -612) NIL) ((-709 . -611) 105701) ((-654 . -1035) 105597) ((-1245 . -326) 105541) ((-1032 . -288) 105516) ((-580 . -723) T) ((-564 . -791) T) ((-169 . -363) 105467) ((-564 . -788) T) ((-564 . -723) T) ((-495 . -723) T) ((-1140 . -489) 105451) ((-1081 . -883) NIL) ((-868 . -1106) T) ((-117 . -906) NIL) ((-1281 . -1280) 105427) ((-1279 . -1280) 105406) ((-779 . -883) NIL) ((-777 . -883) 105265) ((-1274 . -25) T) ((-1274 . -21) T) ((-1206 . -102) 105243) ((-1100 . -395) T) ((-621 . -644) 105230) ((-454 . -883) NIL) ((-671 . -102) 105208) ((-1081 . -1035) 105035) ((-868 . -23) T) ((-779 . -1035) 104894) ((-777 . -1035) 104751) ((-117 . -644) 104696) ((-454 . -1035) 104572) ((-316 . -614) 104136) ((-313 . -614) 104019) ((-645 . -1035) 104003) ((-625 . -102) T) ((-222 . -489) 103987) ((-1259 . -34) T) ((-136 . -614) 103971) ((-633 . -714) 103955) ((-605 . -714) 103939) ((-666 . -38) 103899) ((-319 . -102) T) ((-85 . -611) 103881) ((-50 . -1035) 103865) ((-1114 . -1052) 103852) ((-1081 . -377) 103836) ((-779 . -377) 103820) ((-695 . -723) T) ((-695 . -791) T) ((-695 . -788) T) ((-581 . -1035) 103807) ((-518 . -1035) 103784) ((-60 . -57) 103746) ((-324 . -131) T) ((-316 . -1046) 103636) ((-313 . -1046) T) ((-169 . -1106) T) ((-777 . -377) 103620) ((-45 . -151) 103570) ((-1001 . -989) 103552) ((-454 . -377) 103536) ((-407 . -172) T) ((-316 . -243) 103515) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1094) 103297) ((-225 . -131) T) ((-1114 . -111) 103282) ((-169 . -23) T) ((-796 . -147) 103261) ((-796 . -145) 103240) ((-251 . -637) 103146) ((-250 . -637) 103052) ((-319 . -284) 103018) ((-1150 . -514) 102951) ((-1127 . -1094) T) ((-225 . -1055) T) ((-812 . -309) 102889) ((-1081 . -897) 102824) ((-779 . -897) 102767) ((-777 . -897) 102751) ((-1281 . -38) 102721) ((-1279 . -38) 102691) ((-1232 . -1106) T) ((-852 . -1106) T) ((-454 . -897) 102668) ((-855 . -1094) T) ((-1232 . -23) T) ((-1114 . -614) 102640) ((-571 . -1106) T) ((-852 . -23) T) ((-621 . -723) T) ((-355 . -917) T) ((-352 . -917) T) ((-289 . -102) T) ((-344 . -917) T) ((-1057 . -131) T) ((-967 . -1077) T) ((-949 . -131) T) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-117 . -723) T) ((-690 . -906) NIL) ((-1043 . -514) 102541) ((-481 . -131) T) ((-571 . -23) T) ((-671 . -309) 102479) ((-633 . -758) T) ((-605 . -758) T) ((-1223 . -847) NIL) ((-1000 . -290) T) ((-251 . -21) T) ((-690 . -644) 102429) ((-351 . -1094) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 102413) ((-2 . -102) T) ((-907 . -917) T) ((-482 . -1266) 102383) ((-223 . -1035) 102360) ((-1114 . -1046) T) ((-708 . -307) T) ((-294 . -714) 102302) ((-697 . -1053) T) ((-487 . -452) T) ((-407 . -514) 102214) ((-217 . -452) T) ((-1114 . -233) T) ((-295 . -151) 102164) ((-996 . -612) 102125) ((-996 . -611) 102107) ((-986 . -611) 102089) ((-116 . -1053) T) ((-650 . -1052) 102073) ((-225 . -493) T) ((-399 . -611) 102055) ((-399 . -612) 102032) ((-1050 . -1266) 102002) ((-650 . -111) 101981) ((-1136 . -489) 101965) ((-812 . -38) 101935) ((-63 . -441) T) ((-63 . -395) T) ((-1153 . -102) T) ((-868 . -131) T) ((-484 . -102) 101913) ((-1287 . -368) T) ((-1074 . -102) T) ((-1056 . -102) T) ((-351 . -714) 101858) ((-728 . -147) 101837) ((-728 . -145) 101816) ((-650 . -614) 101734) ((-1021 . -644) 101671) ((-523 . -1094) 101649) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1094) T) ((-354 . -644) 101594) ((-1166 . -637) 101542) ((-1119 . -637) 101490) ((-385 . -509) 101469) ((-830 . -845) 101448) ((-379 . -1213) T) ((-690 . -723) T) ((-339 . -1053) T) ((-1223 . -989) 101400) ((-174 . -1053) T) ((-103 . -611) 101332) ((-1168 . -145) 101311) ((-1168 . -147) 101290) ((-379 . -556) T) ((-1167 . -147) 101269) ((-1167 . -145) 101248) ((-1161 . -145) 101155) ((-407 . -290) T) ((-1161 . -147) 101062) ((-1120 . -147) 101041) ((-1120 . -145) 101020) ((-319 . -38) 100861) ((-169 . -131) T) ((-313 . -792) NIL) ((-313 . -789) NIL) ((-650 . -1046) T) ((-48 . -644) 100826) ((-890 . -614) 100803) ((-1160 . -102) T) ((-991 . -102) T) ((-990 . -21) T) ((-127 . -1007) 100787) ((-121 . -1007) 100771) ((-990 . -25) T) ((-898 . -119) 100755) ((-1152 . -102) T) ((-813 . -847) 100734) ((-1232 . -131) T) ((-1166 . -25) T) ((-1166 . -21) T) ((-852 . -131) T) ((-1119 . -25) T) ((-1119 . -21) T) ((-851 . -25) T) ((-851 . -21) T) ((-779 . -307) 100713) ((-643 . -102) 100691) ((-630 . -102) T) ((-1153 . -309) 100486) ((-571 . -131) T) ((-619 . -845) 100465) ((-1150 . -489) 100449) ((-1144 . -151) 100399) ((-1140 . -611) 100361) ((-1140 . -612) 100322) ((-1021 . -788) T) ((-1021 . -791) T) ((-1021 . -723) T) ((-709 . -1052) 100145) ((-484 . -309) 100083) ((-453 . -417) 100053) ((-351 . -172) T) ((-289 . -38) 100040) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1035) 100017) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -723) T) ((-709 . -111) 99826) ((-666 . -231) 99810) ((-581 . -307) T) ((-518 . -307) T) ((-294 . -514) 99759) ((-108 . -309) NIL) ((-72 . -395) T) ((-1107 . -102) 99549) ((-830 . -411) 99533) ((-1114 . -792) T) ((-1114 . -789) T) ((-697 . -1094) T) ((-578 . -611) 99515) ((-379 . -363) T) ((-169 . -493) 99493) ((-222 . -611) 99425) ((-134 . -1094) T) ((-116 . -1094) T) ((-48 . -723) T) ((-1043 . -489) 99390) ((-141 . -425) 99372) ((-141 . -368) T) ((-1024 . -102) T) ((-512 . -509) 99351) ((-709 . -614) 99107) ((-476 . -102) T) ((-463 . -102) T) ((-1031 . -1106) T) ((-1216 . -611) 99089) ((-1175 . -1035) 99025) ((-1168 . -35) 98991) ((-1168 . -95) 98957) ((-1168 . -1197) 98923) ((-1168 . -1194) 98889) ((-1152 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1074 . -1145) 98868) ((-1167 . -1194) 98834) ((-1167 . -1197) 98800) ((-1031 . -23) T) ((-1167 . -95) 98766) ((-571 . -493) T) ((-1167 . -35) 98732) ((-1161 . -1194) 98698) ((-1161 . -1197) 98664) ((-1161 . -95) 98630) ((-361 . -1106) T) ((-359 . -1145) 98609) ((-353 . -1145) 98588) ((-345 . -1145) 98567) ((-1161 . -35) 98533) ((-1120 . -35) 98499) ((-1120 . -95) 98465) ((-108 . -1145) T) ((-1120 . -1197) 98431) ((-830 . -1053) 98410) ((-643 . -309) 98348) ((-630 . -309) 98199) ((-1120 . -1194) 98165) ((-709 . -1046) T) ((-1057 . -637) 98147) ((-1074 . -38) 98015) ((-949 . -637) 97963) ((-1001 . -147) T) ((-1001 . -145) NIL) ((-379 . -1106) T) ((-324 . -25) T) ((-322 . -23) T) ((-940 . -847) 97942) ((-709 . -326) 97919) ((-481 . -637) 97867) ((-40 . -1035) 97755) ((-709 . -233) T) ((-697 . -714) 97742) ((-339 . -1094) T) ((-174 . -1094) T) ((-331 . -847) T) ((-418 . -452) 97692) ((-379 . -23) T) ((-359 . -38) 97657) ((-353 . -38) 97622) ((-345 . -38) 97587) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-833 . -1106) T) ((-108 . -38) 97537) ((-824 . -1106) T) ((-771 . -1094) T) ((-116 . -714) 97524) ((-668 . -1035) 97508) ((-610 . -102) T) ((-833 . -23) T) ((-824 . -23) T) ((-1150 . -286) 97485) ((-1107 . -309) 97423) ((-1096 . -235) 97407) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-40 . -377) 97384) ((-96 . -102) T) ((-649 . -849) 97368) ((-1129 . -1077) T) ((-1057 . -21) T) ((-1057 . -25) T) ((-812 . -231) 97337) ((-949 . -25) T) ((-949 . -21) T) ((-619 . -1053) T) ((-1114 . -368) T) ((-481 . -25) T) ((-481 . -21) T) ((-1024 . -309) 97275) ((-886 . -611) 97257) ((-882 . -611) 97239) ((-251 . -847) 97190) ((-250 . -847) 97141) ((-523 . -514) 97074) ((-868 . -637) 97051) ((-476 . -309) 96989) ((-463 . -309) 96927) ((-351 . -290) T) ((-1150 . -1247) 96911) ((-1136 . -611) 96873) ((-1136 . -612) 96834) ((-1134 . -102) T) ((-996 . -1052) 96730) ((-40 . -897) 96682) ((-1150 . -602) 96659) ((-1287 . -644) 96646) ((-863 . -490) 96623) ((-1058 . -151) 96569) ((-869 . -1213) T) ((-996 . -111) 96451) ((-339 . -714) 96435) ((-863 . -611) 96397) ((-174 . -714) 96329) ((-407 . -286) 96287) ((-869 . -556) T) ((-108 . -400) 96269) ((-84 . -384) T) ((-84 . -395) T) ((-697 . -172) T) ((-615 . -611) 96251) ((-99 . -723) T) ((-482 . -102) 96041) ((-99 . -473) T) ((-116 . -172) T) ((-1107 . -38) 96011) ((-169 . -637) 95959) ((-1050 . -102) T) ((-996 . -614) 95849) ((-868 . -25) T) ((-812 . -238) 95828) ((-868 . -21) T) ((-815 . -102) T) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 95806) ((-127 . -1209) T) ((-121 . -1209) T) ((-1031 . -131) T) ((-666 . -367) 95790) ((-996 . -1046) T) ((-1232 . -637) 95738) ((-1098 . -611) 95720) ((-1000 . -611) 95702) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1094) T) ((-1000 . -612) 95686) ((-996 . -243) 95665) ((-996 . -233) 95644) ((-1287 . -723) T) ((-1251 . -145) 95623) ((-830 . -1094) T) ((-1251 . -147) 95602) ((-1244 . -147) 95581) ((-1244 . -145) 95560) ((-1243 . -1213) 95539) ((-1223 . -145) 95446) ((-1223 . -147) 95353) ((-1222 . -1213) 95332) ((-379 . -131) T) ((-564 . -883) 95314) ((0 . -1094) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1094) T) ((-1245 . -644) 95219) ((-1243 . -556) 95170) ((-711 . -1106) T) ((-1222 . -556) 95121) ((-564 . -1035) 95103) ((-594 . -147) 95082) ((-594 . -145) 95061) ((-495 . -1035) 95004) ((-1129 . -1131) T) ((-87 . -384) T) ((-87 . -395) T) ((-869 . -363) T) ((-833 . -131) T) ((-824 . -131) T) ((-711 . -23) T) ((-506 . -611) 94970) ((-502 . -611) 94952) ((-1283 . -1053) T) ((-379 . -1055) T) ((-1023 . -1094) 94930) ((-55 . -1035) 94912) ((-898 . -34) T) ((-482 . -309) 94850) ((-591 . -102) T) ((-1150 . -612) 94811) ((-1150 . -611) 94743) ((-1166 . -847) 94722) ((-45 . -102) T) ((-1119 . -847) 94701) ((-814 . -102) T) ((-1232 . -25) T) ((-1232 . -21) T) ((-852 . -25) T) ((-44 . -367) 94685) ((-852 . -21) T) ((-728 . -452) 94636) ((-1282 . -611) 94618) ((-1050 . -309) 94556) ((-667 . -1077) T) ((-604 . -1077) T) ((-390 . -1094) T) ((-571 . -25) T) ((-571 . -21) T) ((-180 . -1077) T) ((-161 . -1077) T) ((-156 . -1077) T) ((-154 . -1077) T) ((-619 . -1094) T) ((-695 . -883) 94538) ((-1259 . -1209) T) ((-227 . -309) 94476) ((-144 . -368) T) ((-1043 . -612) 94418) ((-1043 . -611) 94361) ((-313 . -906) NIL) ((-1217 . -841) T) ((-695 . -1035) 94306) ((-708 . -917) T) ((-474 . -1213) 94285) ((-1167 . -452) 94264) ((-1161 . -452) 94243) ((-330 . -102) T) ((-869 . -1106) T) ((-316 . -644) 94064) ((-313 . -644) 93993) ((-474 . -556) 93944) ((-339 . -514) 93910) ((-550 . -151) 93860) ((-40 . -307) T) ((-840 . -611) 93842) ((-697 . -290) T) ((-869 . -23) T) ((-379 . -493) T) ((-1074 . -231) 93812) ((-512 . -102) T) ((-407 . -612) 93619) ((-407 . -611) 93601) ((-263 . -611) 93583) ((-116 . -290) T) ((-1245 . -723) T) ((-1243 . -363) 93562) ((-1222 . -363) 93541) ((-1272 . -34) T) ((-1217 . -1094) T) ((-117 . -1209) T) ((-108 . -231) 93523) ((-1172 . -102) T) ((-477 . -1094) T) ((-523 . -489) 93507) ((-734 . -34) T) ((-482 . -38) 93477) ((-141 . -34) T) ((-117 . -881) 93454) ((-117 . -883) NIL) ((-621 . -1035) 93337) ((-641 . -847) 93316) ((-1271 . -102) T) ((-295 . -102) T) ((-709 . -368) 93295) ((-117 . -1035) 93272) ((-390 . -714) 93256) ((-619 . -714) 93240) ((-45 . -309) 93044) ((-813 . -145) 93023) ((-813 . -147) 93002) ((-1282 . -382) 92981) ((-816 . -847) T) ((-1261 . -1094) T) ((-1153 . -229) 92928) ((-386 . -847) 92907) ((-1251 . -1197) 92873) ((-1251 . -1194) 92839) ((-1244 . -1194) 92805) ((-515 . -131) T) ((-1244 . -1197) 92771) ((-1223 . -1194) 92737) ((-1223 . -1197) 92703) ((-1251 . -35) 92669) ((-1251 . -95) 92635) ((-633 . -611) 92604) ((-605 . -611) 92573) ((-225 . -847) T) ((-1244 . -95) 92539) ((-1244 . -35) 92505) ((-1243 . -1106) T) ((-1114 . -644) 92492) ((-1223 . -95) 92458) ((-1222 . -1106) T) ((-592 . -151) 92440) ((-1074 . -349) 92419) ((-174 . -290) T) ((-117 . -377) 92396) ((-117 . -338) 92373) ((-1223 . -35) 92339) ((-867 . -307) T) ((-313 . -791) NIL) ((-313 . -788) NIL) ((-316 . -723) 92188) ((-313 . -723) T) ((-474 . -363) 92167) ((-359 . -349) 92146) ((-353 . -349) 92125) ((-345 . -349) 92104) ((-316 . -473) 92083) ((-1243 . -23) T) ((-1222 . -23) T) ((-715 . -1106) T) ((-711 . -131) T) ((-649 . -102) T) ((-477 . -714) 92048) ((-45 . -282) 91998) ((-105 . -1094) T) ((-68 . -611) 91980) ((-967 . -102) T) ((-861 . -102) T) ((-621 . -897) 91939) ((-1283 . -1094) T) ((-381 . -1094) T) ((-1208 . -1094) T) ((-1107 . -231) 91908) ((-82 . -1209) T) ((-1057 . -847) T) ((-949 . -847) 91887) ((-117 . -897) NIL) ((-779 . -917) 91866) ((-710 . -847) T) ((-531 . -1094) T) ((-500 . -1094) T) ((-355 . -1213) T) ((-352 . -1213) T) ((-344 . -1213) T) ((-264 . -1213) 91845) ((-247 . -1213) 91824) ((-533 . -857) T) ((-481 . -847) 91803) ((-1152 . -825) T) ((-1136 . -1052) 91787) ((-390 . -758) T) ((-690 . -1209) T) ((-687 . -1035) 91771) ((-355 . -556) T) ((-352 . -556) T) ((-344 . -556) T) ((-264 . -556) 91702) ((-247 . -556) 91633) ((-525 . -1077) T) ((-1136 . -111) 91612) ((-453 . -741) 91582) ((-863 . -1052) 91552) ((-814 . -38) 91494) ((-690 . -881) 91476) ((-690 . -883) 91458) ((-295 . -309) 91262) ((-907 . -1213) T) ((-666 . -411) 91246) ((-863 . -111) 91211) ((-690 . -1035) 91156) ((-1001 . -452) T) ((-907 . -556) T) ((-533 . -611) 91138) ((-581 . -917) T) ((-474 . -1106) T) ((-518 . -917) T) ((-1150 . -288) 91115) ((-911 . -452) T) ((-65 . -611) 91097) ((-630 . -229) 91043) ((-474 . -23) T) ((-1114 . -791) T) ((-869 . -131) T) ((-1114 . -788) T) ((-1274 . -1276) 91022) ((-1114 . -723) T) ((-650 . -644) 90996) ((-294 . -611) 90737) ((-1136 . -614) 90655) ((-1032 . -34) T) ((-812 . -845) 90634) ((-580 . -307) T) ((-564 . -307) T) ((-495 . -307) T) ((-1283 . -714) 90604) ((-690 . -377) 90586) ((-690 . -338) 90568) ((-477 . -172) T) ((-381 . -714) 90538) ((-863 . -614) 90473) ((-868 . -847) NIL) ((-564 . -1019) T) ((-495 . -1019) T) ((-1127 . -611) 90455) ((-1107 . -238) 90434) ((-214 . -102) T) ((-1144 . -102) T) ((-71 . -611) 90416) ((-1136 . -1046) T) ((-1172 . -38) 90313) ((-855 . -611) 90295) ((-564 . -545) T) ((-666 . -1053) T) ((-728 . -946) 90248) ((-1136 . -233) 90227) ((-1076 . -1094) T) ((-1031 . -25) T) ((-1031 . -21) T) ((-1000 . -1052) 90172) ((-902 . -102) T) ((-863 . -1046) T) ((-690 . -897) NIL) ((-355 . -329) 90156) ((-355 . -363) T) ((-352 . -329) 90140) ((-352 . -363) T) ((-344 . -329) 90124) ((-344 . -363) T) ((-487 . -102) T) ((-1271 . -38) 90094) ((-546 . -847) T) ((-523 . -683) 90044) ((-217 . -102) T) ((-1021 . -1035) 89924) ((-1000 . -111) 89853) ((-1168 . -970) 89822) ((-1167 . -970) 89784) ((-520 . -151) 89768) ((-1074 . -370) 89747) ((-351 . -611) 89729) ((-322 . -21) T) ((-354 . -1035) 89706) ((-322 . -25) T) ((-1161 . -970) 89675) ((-1120 . -970) 89642) ((-76 . -611) 89624) ((-695 . -307) T) ((-169 . -847) 89603) ((-129 . -841) T) ((-907 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-907 . -329) 89590) ((-86 . -611) 89572) ((-695 . -1019) T) ((-673 . -847) T) ((-1243 . -131) T) ((-1222 . -131) T) ((-898 . -1007) 89556) ((-833 . -21) T) ((-48 . -1035) 89499) ((-833 . -25) T) ((-824 . -25) T) ((-824 . -21) T) ((-1281 . -1053) T) ((-549 . -102) T) ((-1279 . -1053) T) ((-650 . -723) T) ((-1098 . -616) 89402) ((-1000 . -614) 89332) ((-1282 . -1052) 89316) ((-1232 . -847) 89295) ((-812 . -411) 89264) ((-103 . -119) 89248) ((-129 . -1094) T) ((-52 . -1094) T) ((-923 . -611) 89230) ((-868 . -989) 89207) ((-820 . -102) T) ((-1282 . -111) 89186) ((-649 . -38) 89156) ((-571 . -847) T) ((-355 . -1106) T) ((-352 . -1106) T) ((-344 . -1106) T) ((-264 . -1106) T) ((-247 . -1106) T) ((-621 . -307) 89135) ((-1144 . -309) 88939) ((-524 . -1077) T) ((-311 . -1094) T) ((-660 . -23) T) ((-482 . -231) 88908) ((-152 . -1053) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-1000 . -1046) T) ((-709 . -906) 88887) ((-1150 . -614) 88864) ((-1000 . -233) 88836) ((-1000 . -243) T) ((-117 . -1019) NIL) ((-907 . -1106) T) ((-1244 . -452) 88815) ((-1223 . -452) 88794) ((-523 . -611) 88726) ((-709 . -644) 88651) ((-407 . -1052) 88603) ((-504 . -611) 88585) ((-907 . -23) T) ((-487 . -309) NIL) ((-1282 . -614) 88541) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 88479) ((-812 . -1053) 88409) ((-734 . -1092) 88393) ((-1243 . -493) 88359) ((-1222 . -493) 88325) ((-548 . -841) T) ((-141 . -1092) 88307) ((-477 . -290) T) ((-1282 . -1046) T) ((-1214 . -102) T) ((-1058 . -102) T) ((-840 . -614) 88175) ((-500 . -514) NIL) ((-699 . -102) T) ((-482 . -238) 88154) ((-407 . -614) 88052) ((-1166 . -145) 88031) ((-1166 . -147) 88010) ((-1119 . -147) 87989) ((-1119 . -145) 87968) ((-633 . -1052) 87952) ((-605 . -1052) 87936) ((-1168 . -1250) 87920) ((-666 . -1094) T) ((-666 . -1049) 87860) ((-1168 . -1237) 87837) ((-548 . -1094) T) ((-487 . -1145) T) ((-1167 . -1242) 87798) ((-1167 . -1237) 87768) ((-1167 . -1240) 87752) ((-217 . -1145) T) ((-343 . -917) T) ((-815 . -266) 87736) ((-633 . -111) 87715) ((-605 . -111) 87694) ((-1161 . -1221) 87655) ((-840 . -1046) 87634) ((-1161 . -1237) 87611) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-1161 . -1219) 87595) ((-407 . -1046) T) ((-319 . -1053) T) ((-690 . -307) T) ((-108 . -845) T) ((-709 . -723) T) ((-407 . -243) T) ((-407 . -233) 87574) ((-487 . -38) 87524) ((-217 . -38) 87474) ((-474 . -493) 87440) ((-1216 . -368) T) ((-1152 . -1138) T) ((-1095 . -102) T) ((-697 . -611) 87422) ((-697 . -612) 87337) ((-711 . -21) T) ((-711 . -25) T) ((-1129 . -102) T) ((-134 . -611) 87319) ((-116 . -611) 87301) ((-157 . -25) T) ((-1281 . -1094) T) ((-869 . -637) 87249) ((-1279 . -1094) T) ((-960 . -102) T) ((-732 . -102) T) ((-712 . -102) T) ((-453 . -102) T) ((-813 . -452) 87200) ((-44 . -1094) T) ((-1082 . -847) T) ((-660 . -131) T) ((-1058 . -309) 87051) ((-666 . -714) 87035) ((-289 . -1053) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-418 . -102) T) ((-152 . -1094) T) ((-45 . -229) 86985) ((-955 . -847) 86964) ((-996 . -644) 86902) ((-240 . -1266) 86872) ((-1021 . -307) T) ((-294 . -1052) 86793) ((-907 . -131) T) ((-40 . -917) T) ((-487 . -400) 86775) ((-354 . -307) T) ((-217 . -400) 86757) ((-1074 . -411) 86741) ((-294 . -111) 86657) ((-1177 . -847) T) ((-1176 . -847) T) ((-869 . -25) T) ((-869 . -21) T) ((-339 . -611) 86639) ((-1245 . -47) 86583) ((-225 . -147) T) ((-174 . -611) 86565) ((-1107 . -845) 86544) ((-771 . -611) 86526) ((-128 . -847) T) ((-606 . -235) 86473) ((-475 . -235) 86423) ((-1281 . -714) 86393) ((-48 . -307) T) ((-1279 . -714) 86363) ((-65 . -614) 86292) ((-961 . -1094) T) ((-812 . -1094) 86082) ((-312 . -102) T) ((-898 . -1209) T) ((-48 . -1019) T) ((-1222 . -637) 85990) ((-685 . -102) 85968) ((-44 . -714) 85952) ((-550 . -102) T) ((-294 . -614) 85883) ((-67 . -383) T) ((-67 . -395) T) ((-658 . -23) T) ((-666 . -758) T) ((-1206 . -1094) 85861) ((-351 . -1052) 85806) ((-671 . -1094) 85784) ((-1057 . -147) T) ((-949 . -147) 85763) ((-949 . -145) 85742) ((-796 . -102) T) ((-152 . -714) 85726) ((-481 . -147) 85705) ((-481 . -145) 85684) ((-351 . -111) 85613) ((-1074 . -1053) T) ((-322 . -847) 85592) ((-1251 . -970) 85561) ((-625 . -1094) T) ((-1244 . -970) 85523) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 85473) ((-359 . -1053) T) ((-353 . -1053) T) ((-345 . -1053) T) ((-294 . -1046) 85415) ((-1223 . -970) 85384) ((-379 . -847) T) ((-108 . -1053) T) ((-996 . -723) T) ((-867 . -917) T) ((-840 . -792) 85363) ((-840 . -789) 85342) ((-418 . -309) 85281) ((-468 . -102) T) ((-594 . -970) 85250) ((-319 . -1094) T) ((-407 . -792) 85229) ((-407 . -789) 85208) ((-500 . -489) 85190) ((-1245 . -1035) 85156) ((-1243 . -21) T) ((-1243 . -25) T) ((-1222 . -21) T) ((-1222 . -25) T) ((-812 . -714) 85098) ((-351 . -614) 85028) ((-695 . -404) T) ((-1272 . -1209) T) ((-604 . -102) T) ((-1107 . -411) 84997) ((-1000 . -368) NIL) ((-667 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-734 . -1209) T) ((-44 . -758) T) ((-592 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-649 . -652) 84981) ((-141 . -1209) T) ((-868 . -147) T) ((-868 . -145) NIL) ((-1208 . -93) T) ((-351 . -1046) T) ((-70 . -383) T) ((-70 . -395) T) ((-1159 . -102) T) ((-666 . -514) 84914) ((-685 . -309) 84852) ((-960 . -38) 84749) ((-732 . -38) 84719) ((-550 . -309) 84523) ((-316 . -1209) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1209) T) ((-289 . -1094) T) ((-1174 . -611) 84505) ((-708 . -1213) T) ((-1150 . -647) 84489) ((-1203 . -556) 84468) ((-708 . -556) T) ((-316 . -881) 84452) ((-316 . -883) 84377) ((-313 . -881) 84338) ((-313 . -883) NIL) ((-796 . -309) 84303) ((-319 . -714) 84144) ((-324 . -323) 84121) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 84095) ((-316 . -1035) 83758) ((-225 . -1194) T) ((-225 . -1197) T) ((-3 . -611) 83740) ((-313 . -1035) 83670) ((-2 . -1094) T) ((-2 . |RecordCategory|) T) ((-830 . -611) 83652) ((-1107 . -1053) 83582) ((-580 . -917) T) ((-564 . -817) T) ((-564 . -917) T) ((-495 . -917) T) ((-136 . -1035) 83566) ((-225 . -95) T) ((-75 . -441) T) ((-75 . -395) T) ((0 . -611) 83548) ((-169 . -147) 83527) ((-169 . -145) 83478) ((-225 . -35) T) ((-49 . -611) 83460) ((-477 . -1053) T) ((-487 . -231) 83442) ((-484 . -965) 83426) ((-482 . -845) 83405) ((-217 . -231) 83387) ((-81 . -441) T) ((-81 . -395) T) ((-1140 . -34) T) ((-812 . -172) 83366) ((-728 . -102) T) ((-1023 . -611) 83333) ((-500 . -286) 83308) ((-316 . -377) 83277) ((-313 . -377) 83238) ((-313 . -338) 83199) ((-1079 . -611) 83181) ((-813 . -946) 83128) ((-658 . -131) T) ((-1232 . -145) 83107) ((-1232 . -147) 83086) ((-1168 . -102) T) ((-1167 . -102) T) ((-1161 . -102) T) ((-1153 . -1094) T) ((-1120 . -102) T) ((-222 . -34) T) ((-289 . -714) 83073) ((-1153 . -608) 83049) ((-592 . -309) NIL) ((-484 . -1094) 83027) ((-390 . -611) 83009) ((-510 . -847) T) ((-1144 . -229) 82959) ((-1251 . -1250) 82943) ((-1251 . -1237) 82920) ((-1244 . -1242) 82881) ((-1244 . -1237) 82851) ((-1244 . -1240) 82835) ((-1223 . -1221) 82796) ((-1223 . -1237) 82773) ((-619 . -611) 82755) ((-1223 . -1219) 82739) ((-695 . -917) T) ((-1168 . -284) 82705) ((-1167 . -284) 82671) ((-1161 . -284) 82637) ((-1074 . -1094) T) ((-1056 . -1094) T) ((-48 . -302) T) ((-316 . -897) 82603) ((-313 . -897) NIL) ((-1056 . -1063) 82582) ((-1114 . -883) 82564) ((-796 . -38) 82548) ((-264 . -637) 82496) ((-247 . -637) 82444) ((-697 . -1052) 82431) ((-594 . -1237) 82408) ((-1120 . -284) 82374) ((-319 . -172) 82305) ((-359 . -1094) T) ((-353 . -1094) T) ((-345 . -1094) T) ((-500 . -19) 82287) ((-1114 . -1035) 82269) ((-1096 . -151) 82253) ((-108 . -1094) T) ((-116 . -1052) 82240) ((-708 . -363) T) ((-500 . -602) 82215) ((-697 . -111) 82200) ((-436 . -102) T) ((-45 . -1143) 82150) ((-116 . -111) 82135) ((-633 . -717) T) ((-605 . -717) T) ((-812 . -514) 82068) ((-1032 . -1209) T) ((-940 . -151) 82052) ((-1217 . -611) 82034) ((-1166 . -452) 81965) ((-1160 . -1094) T) ((-1152 . -1094) T) ((-525 . -102) T) ((-520 . -102) 81915) ((-1136 . -644) 81889) ((-1119 . -452) 81840) ((-1081 . -1213) 81819) ((-779 . -1213) 81798) ((-777 . -1213) 81777) ((-62 . -1209) T) ((-477 . -611) 81729) ((-477 . -612) 81651) ((-1081 . -556) 81582) ((-991 . -1094) T) ((-779 . -556) 81493) ((-777 . -556) 81424) ((-482 . -411) 81393) ((-621 . -917) 81372) ((-454 . -1213) 81351) ((-728 . -309) 81338) ((-697 . -614) 81310) ((-398 . -611) 81292) ((-671 . -514) 81225) ((-660 . -25) T) ((-660 . -21) T) ((-454 . -556) 81156) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -917) T) ((-117 . -817) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -614) 81138) ((-116 . -614) 81110) ((-1261 . -611) 81092) ((-1215 . -847) T) ((-1203 . -1106) T) ((-1203 . -23) T) ((-1161 . -309) 80977) ((-1120 . -309) 80964) ((-1074 . -714) 80832) ((-863 . -644) 80792) ((-940 . -977) 80776) ((-907 . -21) T) ((-289 . -172) T) ((-907 . -25) T) ((-311 . -93) T) ((-869 . -847) 80727) ((-708 . -1106) T) ((-708 . -23) T) ((-697 . -1046) T) ((-643 . -1094) 80705) ((-630 . -1094) T) ((-581 . -1213) T) ((-518 . -1213) T) ((-697 . -233) T) ((-630 . -608) 80680) ((-581 . -556) T) ((-518 . -556) T) ((-359 . -714) 80632) ((-339 . -1052) 80616) ((-353 . -714) 80568) ((-345 . -714) 80520) ((-174 . -1052) 80452) ((-174 . -111) 80363) ((-108 . -714) 80313) ((-339 . -111) 80292) ((-274 . -1094) T) ((-273 . -1094) T) ((-272 . -1094) T) ((-271 . -1094) T) ((-270 . -1094) T) ((-269 . -1094) T) ((-268 . -1094) T) ((-212 . -1094) T) ((-211 . -1094) T) ((-169 . -1197) 80270) ((-169 . -1194) 80248) ((-209 . -1094) T) ((-208 . -1094) T) ((-116 . -1046) T) ((-207 . -1094) T) ((-206 . -1094) T) ((-203 . -1094) T) ((-202 . -1094) T) ((-201 . -1094) T) ((-200 . -1094) T) ((-199 . -1094) T) ((-198 . -1094) T) ((-197 . -1094) T) ((-196 . -1094) T) ((-195 . -1094) T) ((-194 . -1094) T) ((-193 . -1094) T) ((-240 . -102) 80038) ((-169 . -35) 80016) ((-169 . -95) 79994) ((-650 . -1035) 79890) ((-482 . -1053) 79820) ((-1107 . -1094) 79610) ((-1136 . -34) T) ((-666 . -489) 79594) ((-73 . -1209) T) ((-105 . -611) 79576) ((-1283 . -611) 79558) ((-381 . -611) 79540) ((-339 . -614) 79492) ((-174 . -614) 79409) ((-1208 . -490) 79390) ((-728 . -38) 79239) ((-571 . -1197) T) ((-571 . -1194) T) ((-531 . -611) 79221) ((-520 . -309) 79159) ((-500 . -611) 79141) ((-500 . -612) 79123) ((-1208 . -611) 79089) ((-1161 . -1145) NIL) ((-1024 . -1066) 79058) ((-1024 . -1094) T) ((-1001 . -102) T) ((-968 . -102) T) ((-911 . -102) T) ((-890 . -1035) 79035) ((-1136 . -723) T) ((-1000 . -644) 78980) ((-476 . -1094) T) ((-463 . -1094) T) ((-585 . -23) T) ((-571 . -35) T) ((-571 . -95) T) ((-427 . -102) T) ((-1058 . -229) 78926) ((-1168 . -38) 78823) ((-863 . -723) T) ((-690 . -917) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1167 . -38) 78664) ((-339 . -1046) T) ((-1161 . -38) 78460) ((-1074 . -172) T) ((-174 . -1046) T) ((-1120 . -38) 78357) ((-709 . -47) 78334) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 78308) ((-497 . -57) 78258) ((-351 . -1278) 78235) ((-225 . -452) T) ((-319 . -290) 78186) ((-345 . -172) T) ((-174 . -243) T) ((-1222 . -847) 78085) ((-108 . -172) T) ((-869 . -989) 78069) ((-654 . -1106) T) ((-581 . -363) T) ((-581 . -329) 78056) ((-518 . -329) 78033) ((-518 . -363) T) ((-316 . -307) 78012) ((-313 . -307) T) ((-600 . -847) 77991) ((-1107 . -714) 77933) ((-520 . -282) 77917) ((-654 . -23) T) ((-418 . -231) 77901) ((-313 . -1019) NIL) ((-336 . -23) T) ((-103 . -1007) 77885) ((-45 . -36) 77864) ((-610 . -1094) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 77802) ((-1081 . -1106) T) ((-1282 . -644) 77776) ((-779 . -1106) T) ((-777 . -1106) T) ((-454 . -1106) T) ((-1057 . -452) T) ((-949 . -452) 77727) ((-1109 . -1077) T) ((-110 . -1094) T) ((-1081 . -23) T) ((-814 . -1053) T) ((-779 . -23) T) ((-777 . -23) T) ((-481 . -452) 77678) ((-1153 . -514) 77461) ((-381 . -382) 77440) ((-1172 . -411) 77424) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1094) T) ((-484 . -514) 77357) ((-289 . -290) T) ((-1076 . -611) 77339) ((-1076 . -612) 77320) ((-407 . -906) 77299) ((-50 . -1106) T) ((-1021 . -917) T) ((-1000 . -723) T) ((-709 . -883) NIL) ((-581 . -1106) T) ((-518 . -1106) T) ((-840 . -644) 77272) ((-1203 . -131) T) ((-1161 . -400) 77224) ((-1001 . -309) NIL) ((-812 . -489) 77208) ((-354 . -917) T) ((-1150 . -34) T) ((-407 . -644) 77160) ((-50 . -23) T) ((-708 . -131) T) ((-709 . -1035) 77040) ((-581 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 77011) ((-1134 . -1094) T) ((-1274 . -1273) 76995) ((-697 . -792) T) ((-697 . -789) T) ((-1114 . -307) T) ((-379 . -147) T) ((-280 . -611) 76977) ((-1222 . -989) 76947) ((-48 . -917) T) ((-671 . -489) 76931) ((-251 . -1266) 76901) ((-250 . -1266) 76871) ((-1170 . -847) T) ((-1107 . -172) 76850) ((-1114 . -1019) T) ((-1043 . -34) T) ((-833 . -147) 76829) ((-833 . -145) 76808) ((-734 . -107) 76792) ((-610 . -132) T) ((-482 . -1094) 76582) ((-1172 . -1053) T) ((-868 . -452) T) ((-85 . -1209) T) ((-240 . -38) 76552) ((-141 . -107) 76534) ((-709 . -377) 76518) ((-830 . -614) 76386) ((-1114 . -545) T) ((-579 . -102) T) ((-129 . -490) 76368) ((-390 . -1052) 76352) ((-1282 . -723) T) ((-1166 . -946) 76321) ((-129 . -611) 76288) ((-52 . -611) 76270) ((-1119 . -946) 76237) ((-649 . -411) 76221) ((-1271 . -1053) T) ((-619 . -1052) 76205) ((-658 . -25) T) ((-658 . -21) T) ((-1152 . -514) NIL) ((-1251 . -102) T) ((-1244 . -102) T) ((-390 . -111) 76184) ((-222 . -254) 76168) ((-1223 . -102) T) ((-1050 . -1094) T) ((-1001 . -1145) T) ((-1050 . -1049) 76108) ((-815 . -1094) T) ((-343 . -1213) T) ((-633 . -644) 76092) ((-619 . -111) 76071) ((-605 . -644) 76055) ((-595 . -102) T) ((-311 . -490) 76036) ((-585 . -131) T) ((-594 . -102) T) ((-414 . -1094) T) ((-385 . -1094) T) ((-311 . -611) 76002) ((-227 . -1094) 75980) ((-643 . -514) 75913) ((-630 . -514) 75757) ((-830 . -1046) 75736) ((-641 . -151) 75720) ((-343 . -556) T) ((-709 . -897) 75663) ((-550 . -229) 75613) ((-1251 . -284) 75579) ((-1074 . -290) 75530) ((-487 . -845) T) ((-223 . -1106) T) ((-1244 . -284) 75496) ((-1223 . -284) 75462) ((-1001 . -38) 75412) ((-217 . -845) T) ((-1203 . -493) 75378) ((-911 . -38) 75330) ((-840 . -791) 75309) ((-840 . -788) 75288) ((-840 . -723) 75267) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 75198) ((-427 . -38) 75182) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -791) 75161) ((-407 . -788) 75140) ((-407 . -723) T) ((-500 . -288) 75115) ((-477 . -1052) 75080) ((-654 . -131) T) ((-619 . -614) 75049) ((-1107 . -514) 74982) ((-336 . -131) T) ((-169 . -402) 74961) ((-482 . -714) 74903) ((-812 . -286) 74880) ((-477 . -111) 74836) ((-649 . -1053) T) ((-1232 . -452) 74767) ((-1270 . -1077) T) ((-1269 . -1077) T) ((-1081 . -131) T) ((-1050 . -714) 74709) ((-264 . -847) 74688) ((-247 . -847) 74667) ((-779 . -131) T) ((-777 . -131) T) ((-571 . -452) T) ((-1024 . -514) 74600) ((-619 . -1046) T) ((-591 . -1094) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1094) T) ((-385 . -714) 74570) ((-814 . -1094) T) ((-476 . -514) 74503) ((-463 . -514) 74436) ((-453 . -367) 74406) ((-45 . -608) 74385) ((-316 . -302) T) ((-477 . -614) 74335) ((-666 . -611) 74297) ((-59 . -847) 74276) ((-1223 . -309) 74161) ((-548 . -611) 74143) ((-1001 . -400) 74125) ((-812 . -602) 74102) ((-516 . -847) 74081) ((-496 . -847) 74060) ((-40 . -1213) T) ((-996 . -1035) 73956) ((-50 . -131) T) ((-581 . -131) T) ((-518 . -131) T) ((-294 . -644) 73816) ((-343 . -329) 73793) ((-343 . -363) T) ((-322 . -323) 73770) ((-319 . -286) 73755) ((-40 . -556) T) ((-379 . -1194) T) ((-379 . -1197) T) ((-1032 . -1185) 73730) ((-1182 . -235) 73680) ((-1161 . -231) 73632) ((-330 . -1094) T) ((-379 . -95) T) ((-379 . -35) T) ((-1032 . -107) 73578) ((-477 . -1046) T) ((-479 . -235) 73528) ((-1153 . -489) 73462) ((-1283 . -1052) 73446) ((-381 . -1052) 73430) ((-477 . -243) T) ((-813 . -102) T) ((-711 . -147) 73409) ((-711 . -145) 73388) ((-484 . -489) 73372) ((-485 . -335) 73341) ((-1283 . -111) 73320) ((-512 . -1094) T) ((-482 . -172) 73299) ((-996 . -377) 73283) ((-413 . -102) T) ((-381 . -111) 73262) ((-996 . -338) 73246) ((-279 . -980) 73230) ((-278 . -980) 73214) ((-1281 . -611) 73196) ((-1279 . -611) 73178) ((-110 . -514) NIL) ((-1166 . -1235) 73162) ((-851 . -849) 73146) ((-1172 . -1094) T) ((-103 . -1209) T) ((-949 . -946) 73107) ((-814 . -714) 73049) ((-1223 . -1145) NIL) ((-481 . -946) 72994) ((-1057 . -143) T) ((-60 . -102) 72972) ((-44 . -611) 72954) ((-78 . -611) 72936) ((-351 . -644) 72881) ((-1271 . -1094) T) ((-511 . -847) T) ((-343 . -1106) T) ((-295 . -1094) T) ((-996 . -897) 72840) ((-295 . -608) 72819) ((-1283 . -614) 72768) ((-1251 . -38) 72665) ((-1244 . -38) 72506) ((-1223 . -38) 72302) ((-487 . -1053) T) ((-381 . -614) 72286) ((-217 . -1053) T) ((-343 . -23) T) ((-152 . -611) 72268) ((-830 . -792) 72247) ((-830 . -789) 72226) ((-1208 . -614) 72207) ((-595 . -38) 72180) ((-594 . -38) 72077) ((-867 . -556) T) ((-223 . -131) T) ((-319 . -999) 72043) ((-79 . -611) 72025) ((-709 . -307) 72004) ((-294 . -723) 71906) ((-821 . -102) T) ((-861 . -841) T) ((-294 . -473) 71885) ((-1274 . -102) T) ((-40 . -363) T) ((-869 . -147) 71864) ((-869 . -145) 71843) ((-1152 . -489) 71825) ((-1283 . -1046) T) ((-482 . -514) 71758) ((-1140 . -1209) T) ((-961 . -611) 71740) ((-643 . -489) 71724) ((-630 . -489) 71655) ((-812 . -611) 71386) ((-48 . -27) T) ((-1172 . -714) 71283) ((-649 . -1094) T) ((-858 . -857) T) ((-436 . -364) 71257) ((-1096 . -102) T) ((-967 . -1094) T) ((-861 . -1094) T) ((-813 . -309) 71244) ((-533 . -527) T) ((-533 . -576) T) ((-1279 . -382) 71216) ((-1050 . -514) 71149) ((-1153 . -286) 71125) ((-240 . -231) 71094) ((-1271 . -714) 71064) ((-1160 . -93) T) ((-991 . -93) T) ((-814 . -172) 71043) ((-1206 . -490) 71020) ((-227 . -514) 70953) ((-619 . -792) 70932) ((-619 . -789) 70911) ((-1206 . -611) 70823) ((-222 . -1209) T) ((-671 . -611) 70755) ((-1150 . -1007) 70739) ((-940 . -102) 70689) ((-351 . -723) T) ((-858 . -611) 70671) ((-1223 . -400) 70623) ((-1107 . -489) 70607) ((-60 . -309) 70545) ((-331 . -102) T) ((-1203 . -21) T) ((-1203 . -25) T) ((-40 . -1106) T) ((-708 . -21) T) ((-625 . -611) 70527) ((-515 . -323) 70506) ((-708 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-918 . -1106) T) ((-40 . -23) T) ((-768 . -1106) T) ((-564 . -1213) T) ((-495 . -1213) T) ((-319 . -611) 70488) ((-1001 . -231) 70470) ((-169 . -166) 70454) ((-580 . -556) T) ((-564 . -556) T) ((-495 . -556) T) ((-768 . -23) T) ((-1243 . -147) 70433) ((-1153 . -602) 70409) ((-1243 . -145) 70388) ((-1024 . -489) 70372) ((-1222 . -145) 70297) ((-1222 . -147) 70222) ((-1274 . -1280) 70201) ((-476 . -489) 70185) ((-463 . -489) 70169) ((-523 . -34) T) ((-649 . -714) 70139) ((-112 . -964) T) ((-658 . -847) 70118) ((-1172 . -172) 70069) ((-365 . -102) T) ((-240 . -238) 70048) ((-251 . -102) T) ((-250 . -102) T) ((-1232 . -946) 70017) ((-245 . -847) 69996) ((-813 . -38) 69845) ((-45 . -514) 69637) ((-1152 . -286) 69612) ((-214 . -1094) T) ((-1144 . -1094) T) ((-1144 . -608) 69591) ((-585 . -25) T) ((-585 . -21) T) ((-1096 . -309) 69529) ((-960 . -411) 69513) ((-695 . -1213) T) ((-630 . -286) 69488) ((-1081 . -637) 69436) ((-779 . -637) 69384) ((-777 . -637) 69332) ((-343 . -131) T) ((-289 . -611) 69314) ((-902 . -1094) T) ((-695 . -556) T) ((-129 . -614) 69296) ((-867 . -1106) T) ((-454 . -637) 69244) ((-902 . -900) 69228) ((-379 . -452) T) ((-487 . -1094) T) ((-940 . -309) 69166) ((-697 . -644) 69153) ((-549 . -841) T) ((-217 . -1094) T) ((-316 . -917) 69132) ((-313 . -917) T) ((-313 . -817) NIL) ((-390 . -717) T) ((-867 . -23) T) ((-116 . -644) 69119) ((-474 . -145) 69098) ((-418 . -411) 69082) ((-474 . -147) 69061) ((-110 . -489) 69043) ((-311 . -614) 69024) ((-2 . -611) 69006) ((-186 . -102) T) ((-1152 . -19) 68988) ((-1152 . -602) 68963) ((-654 . -21) T) ((-654 . -25) T) ((-592 . -1138) T) ((-1107 . -286) 68940) ((-336 . -25) T) ((-336 . -21) T) ((-495 . -363) T) ((-1274 . -38) 68910) ((-1136 . -1209) T) ((-630 . -602) 68885) ((-549 . -1094) T) ((-1081 . -25) T) ((-1081 . -21) T) ((-531 . -789) T) ((-531 . -792) T) ((-117 . -1213) T) ((-960 . -1053) T) ((-621 . -556) T) ((-779 . -25) T) ((-779 . -21) T) ((-777 . -21) T) ((-777 . -25) T) ((-732 . -1053) T) ((-712 . -1053) T) ((-666 . -1052) 68869) ((-517 . -1077) T) ((-461 . -25) T) ((-117 . -556) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1281 . -1052) 68853) ((-1136 . -1035) 68749) ((-814 . -290) 68728) ((-1279 . -1052) 68712) ((-820 . -1094) T) ((-1243 . -1194) 68678) ((-963 . -964) T) ((-666 . -111) 68657) ((-295 . -514) 68449) ((-1243 . -1197) 68415) ((-1243 . -95) 68381) ((-1226 . -102) 68359) ((-251 . -309) 68297) ((-250 . -309) 68235) ((-1223 . -231) 68187) ((-1153 . -612) NIL) ((-1153 . -611) 68169) ((-1222 . -1194) 68135) ((-1222 . -1197) 68101) ((-1217 . -368) T) ((-96 . -93) T) ((-1214 . -841) T) ((-1136 . -377) 68085) ((-1114 . -817) T) ((-1114 . -917) T) ((-1107 . -602) 68062) ((-1074 . -612) 68046) ((-484 . -611) 67978) ((-812 . -288) 67955) ((-606 . -151) 67902) ((-418 . -1053) T) ((-487 . -714) 67852) ((-482 . -489) 67836) ((-327 . -847) 67815) ((-339 . -644) 67789) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -714) 67739) ((-169 . -721) 67710) ((-174 . -644) 67642) ((-581 . -21) T) ((-581 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 67592) ((-1074 . -611) 67574) ((-1056 . -611) 67556) ((-990 . -102) T) ((-859 . -102) T) ((-796 . -411) 67520) ((-40 . -131) T) ((-695 . -363) T) ((-697 . -723) T) ((-697 . -791) T) ((-697 . -788) T) ((-212 . -892) T) ((-580 . -1106) T) ((-564 . -1106) T) ((-495 . -1106) T) ((-359 . -611) 67502) ((-353 . -611) 67484) ((-345 . -611) 67466) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -612) 67396) ((-108 . -611) 67338) ((-211 . -892) T) ((-955 . -151) 67322) ((-768 . -131) T) ((-666 . -614) 67240) ((-134 . -723) T) ((-116 . -723) T) ((-1243 . -35) 67206) ((-1050 . -489) 67190) ((-580 . -23) T) ((-564 . -23) T) ((-495 . -23) T) ((-1222 . -95) 67156) ((-1222 . -35) 67122) ((-1166 . -102) T) ((-1119 . -102) T) ((-851 . -102) T) ((-227 . -489) 67106) ((-1281 . -111) 67085) ((-1279 . -111) 67064) ((-44 . -1052) 67048) ((-1232 . -1235) 67032) ((-852 . -849) 67016) ((-1281 . -614) 66962) ((-1172 . -290) 66941) ((-110 . -286) 66916) ((-1214 . -1094) T) ((-128 . -151) 66898) ((-1136 . -897) 66857) ((-44 . -111) 66836) ((-1175 . -1254) T) ((-1160 . -490) 66817) ((-1160 . -611) 66783) ((-1152 . -612) NIL) ((-666 . -1046) T) ((-1152 . -611) 66765) ((-1058 . -608) 66740) ((-1058 . -1094) T) ((-991 . -490) 66721) ((-991 . -611) 66687) ((-74 . -441) T) ((-74 . -395) T) ((-699 . -1094) T) ((-152 . -1052) 66671) ((-666 . -233) 66650) ((-571 . -554) 66634) ((-355 . -147) 66613) ((-355 . -145) 66564) ((-352 . -147) 66543) ((-352 . -145) 66494) ((-344 . -147) 66473) ((-344 . -145) 66424) ((-264 . -145) 66403) ((-264 . -147) 66382) ((-251 . -38) 66352) ((-247 . -147) 66331) ((-117 . -363) T) ((-247 . -145) 66310) ((-250 . -38) 66280) ((-152 . -111) 66259) ((-1000 . -1035) 66147) ((-1161 . -845) NIL) ((-690 . -1213) T) ((-796 . -1053) T) ((-695 . -1106) T) ((-1281 . -1046) T) ((-1279 . -614) 66076) ((-1279 . -1046) T) ((-1150 . -1209) T) ((-1000 . -377) 66053) ((-907 . -145) T) ((-907 . -147) 66035) ((-867 . -131) T) ((-812 . -1052) 65932) ((-690 . -556) T) ((-695 . -23) T) ((-643 . -611) 65864) ((-643 . -612) 65825) ((-630 . -612) NIL) ((-630 . -611) 65807) ((-487 . -172) T) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1197) 65773) ((-474 . -1194) 65739) ((-274 . -611) 65721) ((-273 . -611) 65703) ((-272 . -611) 65685) ((-271 . -611) 65667) ((-270 . -611) 65649) ((-500 . -647) 65631) ((-269 . -611) 65613) ((-339 . -723) T) ((-268 . -611) 65595) ((-110 . -19) 65577) ((-174 . -723) T) ((-500 . -373) 65559) ((-212 . -611) 65541) ((-520 . -1143) 65525) ((-500 . -123) T) ((-110 . -602) 65500) ((-211 . -611) 65482) ((-474 . -35) 65448) ((-474 . -95) 65414) ((-209 . -611) 65396) ((-208 . -611) 65378) ((-207 . -611) 65360) ((-206 . -611) 65342) ((-203 . -611) 65324) ((-202 . -611) 65306) ((-201 . -611) 65288) ((-200 . -611) 65270) ((-199 . -611) 65252) ((-198 . -611) 65234) ((-197 . -611) 65216) ((-536 . -1097) 65168) ((-196 . -611) 65150) ((-195 . -611) 65132) ((-45 . -489) 65069) ((-194 . -611) 65051) ((-193 . -611) 65033) ((-152 . -614) 65002) ((-1109 . -102) T) ((-812 . -111) 64892) ((-641 . -102) 64842) ((-482 . -286) 64819) ((-1107 . -611) 64550) ((-1095 . -1094) T) ((-1043 . -1209) T) ((-1282 . -1035) 64534) ((-621 . -1106) T) ((-1166 . -309) 64521) ((-1129 . -1094) T) ((-1119 . -309) 64508) ((-1090 . -1077) T) ((-1084 . -1077) T) ((-1068 . -1077) T) ((-1061 . -1077) T) ((-1033 . -1077) T) ((-1016 . -1077) T) ((-117 . -1106) T) ((-816 . -102) T) ((-624 . -1077) T) ((-621 . -23) T) ((-1144 . -514) 64300) ((-483 . -1077) T) ((-1000 . -897) 64252) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1077) T) ((-960 . -1094) T) ((-152 . -1046) T) ((-728 . -411) 64236) ((-117 . -23) T) ((-732 . -1094) T) ((-712 . -1094) T) ((-699 . -132) T) ((-453 . -1094) T) ((-407 . -1209) T) ((-316 . -430) 64220) ((-591 . -93) T) ((-1024 . -612) 64181) ((-1021 . -1213) T) ((-225 . -102) T) ((-1024 . -611) 64143) ((-813 . -231) 64127) ((-812 . -614) 63857) ((-1021 . -556) T) ((-830 . -644) 63830) ((-354 . -1213) T) ((-476 . -611) 63792) ((-476 . -612) 63753) ((-463 . -612) 63714) ((-463 . -611) 63676) ((-407 . -881) 63660) ((-319 . -1052) 63495) ((-407 . -883) 63420) ((-840 . -1035) 63316) ((-487 . -514) NIL) ((-482 . -602) 63293) ((-354 . -556) T) ((-217 . -514) NIL) ((-869 . -452) T) ((-418 . -1094) T) ((-407 . -1035) 63157) ((-319 . -111) 62978) ((-690 . -363) T) ((-225 . -284) T) ((-1206 . -614) 62955) ((-48 . -1213) T) ((-812 . -1046) 62885) ((-580 . -131) T) ((-564 . -131) T) ((-495 . -131) T) ((-1166 . -1145) 62863) ((-48 . -556) T) ((-1153 . -288) 62839) ((-1057 . -102) T) ((-949 . -102) T) ((-316 . -27) 62818) ((-812 . -233) 62770) ((-249 . -832) 62752) ((-240 . -845) 62731) ((-187 . -832) 62713) ((-710 . -102) T) ((-295 . -489) 62650) ((-481 . -102) T) ((-728 . -1053) T) ((-610 . -611) 62632) ((-610 . -612) 62493) ((-407 . -377) 62477) ((-407 . -338) 62461) ((-319 . -614) 62287) ((-1166 . -38) 62116) ((-1119 . -38) 61965) ((-851 . -38) 61935) ((-390 . -644) 61919) ((-641 . -309) 61857) ((-960 . -714) 61754) ((-732 . -714) 61724) ((-222 . -107) 61708) ((-45 . -286) 61633) ((-619 . -644) 61607) ((-312 . -1094) T) ((-289 . -1052) 61594) ((-110 . -611) 61576) ((-110 . -612) 61558) ((-453 . -714) 61528) ((-813 . -253) 61467) ((-685 . -1094) 61445) ((-550 . -1094) T) ((-1168 . -1053) T) ((-1167 . -1053) T) ((-96 . -490) 61426) ((-1161 . -1053) T) ((-289 . -111) 61411) ((-1120 . -1053) T) ((-550 . -608) 61390) ((-96 . -611) 61356) ((-1001 . -845) T) ((-227 . -683) 61314) ((-690 . -1106) T) ((-1203 . -737) 61290) ((-1021 . -363) T) ((-835 . -832) 61272) ((-319 . -1046) T) ((-343 . -25) T) ((-343 . -21) T) ((-407 . -897) 61231) ((-68 . -1209) T) ((-830 . -791) 61210) ((-418 . -714) 61184) ((-796 . -1094) T) ((-830 . -788) 61163) ((-695 . -131) T) ((-709 . -917) 61142) ((-690 . -23) T) ((-487 . -290) T) ((-830 . -723) 61121) ((-319 . -233) 61073) ((-319 . -243) 61052) ((-217 . -290) T) ((-129 . -368) T) ((-1243 . -452) 61031) ((-1222 . -452) 61010) ((-354 . -329) 60987) ((-354 . -363) T) ((-1134 . -611) 60969) ((-45 . -1247) 60919) ((-868 . -102) T) ((-641 . -282) 60903) ((-695 . -1055) T) ((-1270 . -102) T) ((-1269 . -102) T) ((-477 . -644) 60868) ((-468 . -1094) T) ((-45 . -602) 60793) ((-1152 . -288) 60768) ((-289 . -614) 60740) ((-40 . -637) 60679) ((-48 . -363) T) ((-1100 . -611) 60661) ((-1081 . -847) 60640) ((-630 . -288) 60615) ((-779 . -847) 60594) ((-777 . -847) 60573) ((-482 . -611) 60304) ((-240 . -411) 60273) ((-949 . -309) 60260) ((-454 . -847) 60239) ((-65 . -1209) T) ((-1058 . -514) 60083) ((-621 . -131) T) ((-546 . -102) T) ((-481 . -309) 60070) ((-604 . -1094) T) ((-117 . -131) T) ((-667 . -1094) T) ((-289 . -1046) T) ((-180 . -1094) T) ((-161 . -1094) T) ((-156 . -1094) T) ((-154 . -1094) T) ((-453 . -758) T) ((-31 . -1077) T) ((-960 . -172) 60021) ((-967 . -93) T) ((-1074 . -1052) 59931) ((-619 . -791) 59910) ((-592 . -1094) T) ((-619 . -788) 59889) ((-619 . -723) T) ((-295 . -286) 59868) ((-294 . -1209) T) ((-1050 . -611) 59830) ((-1050 . -612) 59791) ((-1021 . -1106) T) ((-169 . -102) T) ((-275 . -847) T) ((-1159 . -1094) T) ((-815 . -611) 59773) ((-1107 . -288) 59750) ((-1096 . -229) 59734) ((-1000 . -307) T) ((-796 . -714) 59718) ((-359 . -1052) 59670) ((-354 . -1106) T) ((-353 . -1052) 59622) ((-414 . -611) 59604) ((-385 . -611) 59586) ((-345 . -1052) 59538) ((-227 . -611) 59470) ((-1074 . -111) 59366) ((-1021 . -23) T) ((-108 . -1052) 59316) ((-895 . -102) T) ((-838 . -102) T) ((-805 . -102) T) ((-766 . -102) T) ((-673 . -102) T) ((-474 . -452) 59295) ((-418 . -172) T) ((-359 . -111) 59233) ((-353 . -111) 59171) ((-345 . -111) 59109) ((-251 . -231) 59078) ((-250 . -231) 59047) ((-354 . -23) T) ((-71 . -1209) T) ((-225 . -38) 59012) ((-108 . -111) 58946) ((-40 . -25) T) ((-40 . -21) T) ((-666 . -717) T) ((-169 . -284) 58924) ((-48 . -1106) T) ((-918 . -25) T) ((-768 . -25) T) ((-1144 . -489) 58861) ((-485 . -1094) T) ((-1283 . -644) 58835) ((-1232 . -102) T) ((-1057 . -1145) T) ((-852 . -102) T) ((-240 . -1053) 58765) ((-961 . -789) 58718) ((-961 . -792) 58671) ((-381 . -644) 58655) ((-48 . -23) T) ((-812 . -792) 58606) ((-812 . -789) 58557) ((-548 . -368) T) ((-295 . -602) 58536) ((-477 . -723) T) ((-571 . -102) T) ((-1074 . -614) 58354) ((-249 . -185) T) ((-187 . -185) T) ((-868 . -309) 58311) ((-649 . -286) 58290) ((-112 . -657) T) ((-359 . -614) 58227) ((-353 . -614) 58164) ((-345 . -614) 58101) ((-76 . -1209) T) ((-108 . -614) 58051) ((-1057 . -38) 58038) ((-660 . -374) 58017) ((-949 . -38) 57866) ((-728 . -1094) T) ((-481 . -38) 57715) ((-86 . -1209) T) ((-591 . -490) 57696) ((-571 . -284) T) ((-1223 . -845) NIL) ((-591 . -611) 57662) ((-1168 . -1094) T) ((-1167 . -1094) T) ((-1074 . -1046) T) ((-351 . -1035) 57639) ((-814 . -490) 57623) ((-1001 . -1053) T) ((-45 . -611) 57605) ((-45 . -612) NIL) ((-911 . -1053) T) ((-814 . -611) 57574) ((-1161 . -1094) T) ((-1141 . -102) 57552) ((-1074 . -243) 57503) ((-427 . -1053) T) ((-359 . -1046) T) ((-365 . -364) 57480) ((-353 . -1046) T) ((-345 . -1046) T) ((-251 . -238) 57459) ((-250 . -238) 57438) ((-1074 . -233) 57363) ((-1120 . -1094) T) ((-294 . -897) 57322) ((-108 . -1046) T) ((-690 . -131) T) ((-418 . -514) 57164) ((-359 . -233) 57143) ((-359 . -243) T) ((-44 . -717) T) ((-353 . -233) 57122) ((-353 . -243) T) ((-345 . -233) 57101) ((-345 . -243) T) ((-1160 . -614) 57082) ((-169 . -309) 57047) ((-108 . -243) T) ((-108 . -233) T) ((-991 . -614) 57028) ((-319 . -789) T) ((-867 . -21) T) ((-867 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 57003) ((-1107 . -1052) 56900) ((-868 . -1145) NIL) ((-330 . -611) 56882) ((-407 . -1019) 56860) ((-1107 . -111) 56750) ((-687 . -1254) T) ((-436 . -1094) T) ((-1283 . -723) T) ((-63 . -611) 56732) ((-868 . -38) 56677) ((-523 . -1209) T) ((-600 . -151) 56661) ((-512 . -611) 56643) ((-1232 . -309) 56630) ((-728 . -714) 56479) ((-531 . -790) T) ((-531 . -791) T) ((-564 . -637) 56461) ((-495 . -637) 56421) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 56372) ((-525 . -1094) T) ((-520 . -1094) 56322) ((-247 . -452) 56273) ((-1144 . -286) 56252) ((-1172 . -611) 56234) ((-685 . -514) 56167) ((-960 . -290) 56146) ((-550 . -514) 55938) ((-1271 . -611) 55907) ((-1166 . -231) 55891) ((-1107 . -614) 55621) ((-169 . -1145) 55600) ((-1271 . -490) 55584) ((-1168 . -714) 55481) ((-1167 . -714) 55322) ((-889 . -102) T) ((-1161 . -714) 55118) ((-1120 . -714) 55015) ((-1150 . -670) 54999) ((-355 . -402) 54950) ((-352 . -402) 54901) ((-344 . -402) 54852) ((-1021 . -131) T) ((-796 . -514) 54764) ((-295 . -612) NIL) ((-295 . -611) 54746) ((-907 . -452) T) ((-961 . -368) 54699) ((-812 . -368) 54678) ((-510 . -509) 54657) ((-508 . -509) 54636) ((-487 . -286) NIL) ((-482 . -288) 54613) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-690 . -493) NIL) ((-99 . -1106) T) ((-169 . -38) 54441) ((-1243 . -970) 54403) ((-1141 . -309) 54341) ((-1222 . -970) 54310) ((-907 . -402) T) ((-1107 . -1046) 54240) ((-1245 . -556) T) ((-1144 . -602) 54219) ((-112 . -847) T) ((-1058 . -489) 54150) ((-580 . -21) T) ((-580 . -25) T) ((-564 . -21) T) ((-564 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1232 . -1145) 54128) ((-1107 . -233) 54080) ((-48 . -131) T) ((-1190 . -102) T) ((-240 . -1094) 53870) ((-868 . -400) 53847) ((-1082 . -102) T) ((-1070 . -102) T) ((-606 . -102) T) ((-475 . -102) T) ((-1232 . -38) 53676) ((-852 . -38) 53646) ((-728 . -172) 53557) ((-649 . -611) 53539) ((-642 . -1077) T) ((-571 . -38) 53526) ((-967 . -490) 53507) ((-967 . -611) 53473) ((-955 . -102) 53423) ((-861 . -611) 53405) ((-861 . -612) 53327) ((-592 . -514) NIL) ((-1251 . -1053) T) ((-1244 . -1053) T) ((-1223 . -1053) T) ((-1287 . -1106) T) ((-1177 . -102) T) ((-595 . -1053) T) ((-594 . -1053) T) ((-1176 . -102) T) ((-1168 . -172) 53278) ((-1167 . -172) 53209) ((-1161 . -172) 53140) ((-1120 . -172) 53091) ((-1001 . -1094) T) ((-968 . -1094) T) ((-911 . -1094) T) ((-1203 . -147) 53070) ((-796 . -794) 53054) ((-695 . -25) T) ((-695 . -21) T) ((-117 . -637) 53031) ((-697 . -883) 53013) ((-427 . -1094) T) ((-316 . -1213) 52992) ((-313 . -1213) T) ((-169 . -400) 52976) ((-1203 . -145) 52955) ((-474 . -970) 52917) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -611) 52899) ((-108 . -792) T) ((-108 . -789) T) ((-697 . -1035) 52881) ((-316 . -556) 52860) ((-313 . -556) T) ((-1287 . -23) T) ((-134 . -1035) 52842) ((-96 . -614) 52823) ((-482 . -1052) 52720) ((-45 . -288) 52645) ((-240 . -714) 52587) ((-517 . -102) T) ((-482 . -111) 52477) ((-1086 . -102) 52455) ((-1031 . -102) T) ((-641 . -825) 52434) ((-728 . -514) 52377) ((-1050 . -1052) 52361) ((-1129 . -93) T) ((-1058 . -286) 52336) ((-621 . -21) T) ((-621 . -25) T) ((-524 . -1094) T) ((-361 . -102) T) ((-322 . -102) T) ((-666 . -644) 52310) ((-385 . -1052) 52294) ((-1050 . -111) 52273) ((-813 . -411) 52257) ((-117 . -25) T) ((-89 . -611) 52239) ((-117 . -21) T) ((-606 . -309) 52034) ((-475 . -309) 51838) ((-1144 . -612) NIL) ((-385 . -111) 51817) ((-379 . -102) T) ((-214 . -611) 51799) ((-1144 . -611) 51781) ((-1161 . -514) 51550) ((-1001 . -714) 51500) ((-1120 . -514) 51470) ((-911 . -714) 51422) ((-482 . -614) 51152) ((-351 . -307) T) ((-1182 . -151) 51102) ((-955 . -309) 51040) ((-833 . -102) T) ((-427 . -714) 51024) ((-225 . -825) T) ((-824 . -102) T) ((-822 . -102) T) ((-479 . -151) 50974) ((-1243 . -1242) 50953) ((-1114 . -1213) T) ((-339 . -1035) 50920) ((-1243 . -1237) 50890) ((-1243 . -1240) 50874) ((-1222 . -1221) 50853) ((-80 . -611) 50835) ((-902 . -611) 50817) ((-1222 . -1237) 50794) ((-1114 . -556) T) ((-918 . -847) T) ((-768 . -847) T) ((-487 . -612) 50724) ((-487 . -611) 50665) ((-379 . -284) T) ((-668 . -847) T) ((-1222 . -1219) 50649) ((-1245 . -1106) T) ((-217 . -612) 50579) ((-217 . -611) 50520) ((-1281 . -644) 50494) ((-1058 . -602) 50469) ((-815 . -614) 50453) ((-59 . -151) 50437) ((-516 . -151) 50421) ((-496 . -151) 50405) ((-359 . -1278) 50389) ((-353 . -1278) 50373) ((-345 . -1278) 50357) ((-316 . -363) 50336) ((-313 . -363) T) ((-482 . -1046) 50266) ((-690 . -637) 50248) ((-1279 . -644) 50222) ((-128 . -309) NIL) ((-1245 . -23) T) ((-685 . -489) 50206) ((-64 . -611) 50188) ((-1107 . -792) 50139) ((-1107 . -789) 50090) ((-550 . -489) 50027) ((-666 . -34) T) ((-482 . -233) 49979) ((-295 . -288) 49958) ((-240 . -172) 49937) ((-813 . -1053) T) ((-44 . -644) 49895) ((-1074 . -368) 49846) ((-728 . -290) 49777) ((-520 . -514) 49710) ((-814 . -1052) 49661) ((-1081 . -145) 49640) ((-549 . -611) 49622) ((-359 . -368) 49601) ((-353 . -368) 49580) ((-345 . -368) 49559) ((-1081 . -147) 49538) ((-868 . -231) 49515) ((-814 . -111) 49457) ((-779 . -145) 49436) ((-779 . -147) 49415) ((-264 . -946) 49382) ((-251 . -845) 49361) ((-247 . -946) 49306) ((-250 . -845) 49285) ((-777 . -145) 49264) ((-777 . -147) 49243) ((-152 . -644) 49217) ((-579 . -1094) T) ((-454 . -147) 49196) ((-454 . -145) 49175) ((-666 . -723) T) ((-820 . -611) 49157) ((-1251 . -1094) T) ((-1244 . -1094) T) ((-1223 . -1094) T) ((-1203 . -1197) 49123) ((-1203 . -1194) 49089) ((-1168 . -290) 49068) ((-1167 . -290) 49019) ((-1161 . -290) 48970) ((-1120 . -290) 48949) ((-339 . -897) 48930) ((-1001 . -172) T) ((-911 . -172) T) ((-595 . -1094) T) ((-594 . -1094) T) ((-690 . -21) T) ((-690 . -25) T) ((-474 . -1240) 48914) ((-474 . -1237) 48884) ((-418 . -286) 48812) ((-547 . -847) T) ((-316 . -1106) 48661) ((-313 . -1106) T) ((-1203 . -35) 48627) ((-1203 . -95) 48593) ((-84 . -611) 48575) ((-91 . -102) 48553) ((-1287 . -131) T) ((-591 . -614) 48534) ((-581 . -145) T) ((-581 . -147) 48516) ((-518 . -147) 48498) ((-518 . -145) T) ((-316 . -23) 48350) ((-40 . -342) 48324) ((-313 . -23) T) ((-814 . -614) 48238) ((-1152 . -647) 48220) ((-1274 . -1053) T) ((-1152 . -373) 48202) ((-812 . -644) 48050) ((-1090 . -102) T) ((-1084 . -102) T) ((-1068 . -102) T) ((-169 . -231) 48034) ((-1061 . -102) T) ((-1033 . -102) T) ((-1016 . -102) T) ((-592 . -489) 48016) ((-624 . -102) T) ((-240 . -514) 47949) ((-483 . -102) T) ((-1281 . -723) T) ((-1279 . -723) T) ((-218 . -102) T) ((-1172 . -1052) 47832) ((-1172 . -111) 47701) ((-858 . -173) T) ((-814 . -1046) T) ((-677 . -1077) T) ((-672 . -1077) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -637) 47661) ((-508 . -102) T) ((-478 . -1077) T) ((-1271 . -1052) 47631) ((-138 . -1077) T) ((-137 . -1077) T) ((-133 . -1077) T) ((-1031 . -38) 47615) ((-814 . -233) T) ((-814 . -243) 47594) ((-1271 . -111) 47559) ((-1251 . -714) 47456) ((-1244 . -714) 47297) ((-1232 . -231) 47281) ((-550 . -286) 47260) ((-1214 . -611) 47242) ((-1058 . -612) NIL) ((-604 . -93) T) ((-1058 . -611) 47224) ((-699 . -490) 47208) ((-667 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1223 . -714) 47004) ((-1000 . -917) T) ((-699 . -611) 46973) ((-152 . -723) T) ((-1107 . -368) 46952) ((-1001 . -514) NIL) ((-251 . -411) 46921) ((-250 . -411) 46890) ((-1021 . -25) T) ((-1021 . -21) T) ((-595 . -714) 46863) ((-594 . -714) 46760) ((-796 . -286) 46718) ((-126 . -102) 46696) ((-830 . -1035) 46592) ((-169 . -825) 46571) ((-319 . -644) 46468) ((-812 . -34) T) ((-711 . -102) T) ((-1172 . -614) 46321) ((-1114 . -1106) T) ((-1023 . -1209) T) ((-379 . -38) 46286) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1266) 46270) ((-352 . -1266) 46254) ((-344 . -1266) 46238) ((-169 . -349) 46217) ((-564 . -847) T) ((-495 . -847) T) ((-1114 . -23) T) ((-87 . -611) 46199) ((-697 . -307) T) ((-833 . -38) 46169) ((-824 . -38) 46139) ((-1271 . -614) 46081) ((-1245 . -131) T) ((-1144 . -288) 46060) ((-961 . -790) 46013) ((-961 . -791) 45966) ((-812 . -788) 45945) ((-116 . -307) T) ((-91 . -309) 45883) ((-671 . -34) T) ((-550 . -602) 45862) ((-48 . -25) T) ((-48 . -21) T) ((-812 . -791) 45813) ((-812 . -790) 45792) ((-697 . -1019) T) ((-649 . -1052) 45776) ((-961 . -723) 45675) ((-812 . -723) 45585) ((-961 . -473) 45538) ((-482 . -792) 45489) ((-482 . -789) 45440) ((-907 . -1266) 45427) ((-1172 . -1046) T) ((-649 . -111) 45406) ((-1172 . -326) 45383) ((-1195 . -102) 45361) ((-1095 . -611) 45343) ((-697 . -545) T) ((-813 . -1094) T) ((-1271 . -1046) T) ((-1129 . -490) 45324) ((-1215 . -102) T) ((-413 . -1094) T) ((-1129 . -611) 45290) ((-251 . -1053) 45220) ((-250 . -1053) 45150) ((-835 . -102) T) ((-289 . -644) 45137) ((-592 . -286) 45112) ((-685 . -683) 45070) ((-960 . -611) 45052) ((-869 . -102) T) ((-732 . -611) 45034) ((-712 . -611) 45016) ((-1251 . -172) 44967) ((-1244 . -172) 44898) ((-1223 . -172) 44829) ((-695 . -847) T) ((-1001 . -290) T) ((-453 . -611) 44811) ((-625 . -723) T) ((-60 . -1094) 44789) ((-245 . -151) 44773) ((-911 . -290) T) ((-1021 . -1009) T) ((-625 . -473) T) ((-709 . -1213) 44752) ((-649 . -614) 44670) ((-595 . -172) 44649) ((-594 . -172) 44600) ((-1259 . -847) 44579) ((-709 . -556) 44490) ((-407 . -917) T) ((-407 . -817) 44469) ((-319 . -791) T) ((-967 . -614) 44450) ((-319 . -723) T) ((-418 . -611) 44432) ((-418 . -612) 44339) ((-641 . -1143) 44323) ((-110 . -647) 44305) ((-174 . -307) T) ((-126 . -309) 44243) ((-110 . -373) 44225) ((-398 . -1209) T) ((-316 . -131) 44096) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 44080) ((-650 . -1106) T) ((-592 . -19) 44062) ((-61 . -441) T) ((-61 . -395) T) ((-821 . -1094) T) ((-592 . -602) 44037) ((-477 . -1035) 43997) ((-649 . -1046) T) ((-650 . -23) T) ((-1274 . -1094) T) ((-31 . -102) T) ((-813 . -714) 43846) ((-577 . -857) T) ((-117 . -847) NIL) ((-1166 . -411) 43830) ((-1119 . -411) 43814) ((-851 . -411) 43798) ((-870 . -102) 43749) ((-1243 . -102) T) ((-1223 . -514) 43518) ((-1222 . -102) T) ((-1195 . -309) 43456) ((-525 . -93) T) ((-1168 . -286) 43441) ((-312 . -611) 43423) ((-1167 . -286) 43408) ((-1096 . -1094) T) ((-1074 . -644) 43318) ((-685 . -611) 43250) ((-289 . -723) T) ((-108 . -906) NIL) ((-685 . -612) 43211) ((-599 . -611) 43193) ((-577 . -611) 43175) ((-550 . -612) NIL) ((-550 . -611) 43157) ((-529 . -611) 43139) ((-1161 . -286) 42987) ((-487 . -1052) 42937) ((-708 . -452) T) ((-511 . -509) 42916) ((-507 . -509) 42895) ((-217 . -1052) 42845) ((-359 . -644) 42797) ((-353 . -644) 42749) ((-225 . -845) T) ((-345 . -644) 42701) ((-600 . -102) 42651) ((-482 . -368) 42630) ((-108 . -644) 42580) ((-487 . -111) 42514) ((-240 . -489) 42498) ((-343 . -147) 42480) ((-343 . -145) T) ((-169 . -370) 42451) ((-940 . -1257) 42435) ((-217 . -111) 42369) ((-869 . -309) 42334) ((-940 . -1094) 42284) ((-796 . -612) 42245) ((-796 . -611) 42227) ((-715 . -102) T) ((-331 . -1094) T) ((-214 . -614) 42204) ((-1114 . -131) T) ((-711 . -38) 42174) ((-316 . -493) 42153) ((-500 . -1209) T) ((-1243 . -284) 42119) ((-1222 . -284) 42085) ((-327 . -151) 42069) ((-439 . -1094) T) ((-1058 . -288) 42044) ((-1274 . -714) 42014) ((-1153 . -34) T) ((-1283 . -1035) 41991) ((-468 . -611) 41973) ((-484 . -34) T) ((-381 . -1035) 41957) ((-1166 . -1053) T) ((-1119 . -1053) T) ((-851 . -1053) T) ((-1057 . -845) T) ((-487 . -614) 41907) ((-217 . -614) 41857) ((-813 . -172) 41768) ((-520 . -286) 41745) ((-1251 . -290) 41724) ((-1190 . -364) 41698) ((-1082 . -266) 41682) ((-667 . -490) 41663) ((-667 . -611) 41629) ((-604 . -490) 41610) ((-117 . -989) 41587) ((-604 . -611) 41537) ((-474 . -102) T) ((-180 . -490) 41518) ((-180 . -611) 41484) ((-161 . -490) 41465) ((-156 . -490) 41446) ((-154 . -490) 41427) ((-161 . -611) 41393) ((-156 . -611) 41359) ((-365 . -1094) T) ((-251 . -1094) T) ((-250 . -1094) T) ((-154 . -611) 41325) ((-1244 . -290) 41276) ((-1223 . -290) 41227) ((-869 . -1145) 41205) ((-1168 . -999) 41171) ((-606 . -364) 41111) ((-1167 . -999) 41077) ((-606 . -229) 41024) ((-592 . -611) 41006) ((-592 . -612) NIL) ((-690 . -847) T) ((-475 . -229) 40956) ((-487 . -1046) T) ((-1161 . -999) 40922) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1046) T) ((-1120 . -999) 40888) ((-1074 . -723) T) ((-709 . -1106) T) ((-595 . -290) 40867) ((-594 . -290) 40846) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1159 . -611) 40828) ((-869 . -38) 40780) ((-359 . -723) T) ((-353 . -723) T) ((-345 . -723) T) ((-108 . -791) T) ((-108 . -788) T) ((-709 . -23) T) ((-108 . -723) T) ((-520 . -1247) 40764) ((-1287 . -25) T) ((-474 . -284) 40730) ((-1287 . -21) T) ((-1222 . -309) 40669) ((-1170 . -102) T) ((-40 . -145) 40641) ((-40 . -147) 40613) ((-520 . -602) 40590) ((-1107 . -644) 40438) ((-600 . -309) 40376) ((-45 . -647) 40326) ((-45 . -662) 40276) ((-45 . -373) 40226) ((-1152 . -34) T) ((-868 . -845) NIL) ((-650 . -131) T) ((-485 . -611) 40208) ((-240 . -286) 40185) ((-186 . -1094) T) ((-643 . -34) T) ((-630 . -34) T) ((-1081 . -452) 40136) ((-813 . -514) 40010) ((-779 . -452) 39941) ((-777 . -452) 39892) ((-454 . -452) 39843) ((-949 . -411) 39827) ((-728 . -611) 39809) ((-251 . -714) 39751) ((-250 . -714) 39693) ((-728 . -612) 39554) ((-481 . -411) 39538) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -917) T) ((-997 . -102) 39516) ((-1021 . -847) T) ((-60 . -514) 39449) ((-1222 . -1145) 39401) ((-1001 . -286) NIL) ((-225 . -1053) T) ((-379 . -825) T) ((-1107 . -34) T) ((-581 . -452) T) ((-518 . -452) T) ((-1226 . -1087) 39385) ((-1226 . -1094) 39363) ((-240 . -602) 39340) ((-1226 . -1089) 39297) ((-1168 . -611) 39279) ((-1167 . -611) 39261) ((-1161 . -611) 39243) ((-1161 . -612) NIL) ((-1120 . -611) 39225) ((-869 . -400) 39209) ((-536 . -102) T) ((-1243 . -38) 39050) ((-1222 . -38) 38864) ((-867 . -147) T) ((-699 . -614) 38848) ((-581 . -402) T) ((-48 . -847) T) ((-518 . -402) T) ((-1255 . -102) T) ((-1245 . -21) T) ((-1245 . -25) T) ((-1107 . -788) 38827) ((-1107 . -791) 38778) ((-1107 . -790) 38757) ((-990 . -1094) T) ((-1024 . -34) T) ((-859 . -1094) T) ((-1107 . -723) 38667) ((-660 . -102) T) ((-642 . -102) T) ((-550 . -288) 38646) ((-1182 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1057 . -1053) T) ((-949 . -1053) T) ((-316 . -637) 38552) ((-313 . -637) 38513) ((-481 . -1053) T) ((-479 . -102) T) ((-436 . -611) 38495) ((-1166 . -1094) T) ((-1119 . -1094) T) ((-851 . -1094) T) ((-1135 . -102) T) ((-813 . -290) 38426) ((-960 . -1052) 38309) ((-477 . -1019) T) ((-732 . -1052) 38279) ((-453 . -1052) 38249) ((-1141 . -1115) 38233) ((-1096 . -514) 38166) ((-960 . -111) 38035) ((-907 . -102) T) ((-732 . -111) 38000) ((-525 . -490) 37981) ((-525 . -611) 37947) ((-59 . -102) 37897) ((-520 . -612) 37858) ((-520 . -611) 37770) ((-519 . -102) 37748) ((-516 . -102) 37698) ((-497 . -102) 37676) ((-496 . -102) 37626) ((-453 . -111) 37589) ((-251 . -172) 37568) ((-250 . -172) 37547) ((-418 . -1052) 37521) ((-1203 . -970) 37483) ((-996 . -1106) T) ((-1129 . -614) 37464) ((-940 . -514) 37397) ((-487 . -792) T) ((-474 . -38) 37238) ((-418 . -111) 37205) ((-487 . -789) T) ((-997 . -309) 37143) ((-217 . -792) T) ((-217 . -789) T) ((-996 . -23) T) ((-709 . -131) T) ((-1222 . -400) 37113) ((-316 . -25) 36965) ((-169 . -411) 36949) ((-316 . -21) 36820) ((-313 . -25) T) ((-313 . -21) T) ((-861 . -368) T) ((-960 . -614) 36673) ((-110 . -34) T) ((-732 . -614) 36629) ((-712 . -614) 36611) ((-482 . -644) 36459) ((-868 . -1053) T) ((-592 . -288) 36434) ((-580 . -147) T) ((-564 . -147) T) ((-495 . -147) T) ((-1166 . -714) 36263) ((-1119 . -714) 36112) ((-1114 . -637) 36094) ((-851 . -714) 36064) ((-666 . -1209) T) ((-1 . -102) T) ((-418 . -614) 35972) ((-240 . -611) 35703) ((-1109 . -1094) T) ((-1232 . -411) 35687) ((-1182 . -309) 35491) ((-960 . -1046) T) ((-732 . -1046) T) ((-712 . -1046) T) ((-641 . -1094) 35441) ((-1050 . -644) 35425) ((-852 . -411) 35409) ((-511 . -102) T) ((-507 . -102) T) ((-247 . -309) 35396) ((-264 . -309) 35383) ((-960 . -326) 35362) ((-385 . -644) 35346) ((-479 . -309) 35150) ((-251 . -514) 35083) ((-666 . -1035) 34979) ((-250 . -514) 34912) ((-1135 . -309) 34838) ((-816 . -1094) T) ((-796 . -1052) 34822) ((-1251 . -286) 34807) ((-1244 . -286) 34792) ((-1223 . -286) 34640) ((-386 . -1094) T) ((-324 . -1094) T) ((-418 . -1046) T) ((-169 . -1053) T) ((-59 . -309) 34578) ((-796 . -111) 34557) ((-594 . -286) 34542) ((-519 . -309) 34480) ((-516 . -309) 34418) ((-497 . -309) 34356) ((-496 . -309) 34294) ((-418 . -233) 34273) ((-482 . -34) T) ((-1001 . -612) 34203) ((-225 . -1094) T) ((-1001 . -611) 34163) ((-968 . -611) 34123) ((-968 . -612) 34098) ((-911 . -611) 34080) ((-695 . -147) T) ((-697 . -917) T) ((-697 . -817) T) ((-427 . -611) 34062) ((-1114 . -21) T) ((-1114 . -25) T) ((-666 . -377) 34046) ((-116 . -917) T) ((-869 . -231) 34030) ((-78 . -1209) T) ((-126 . -125) 34014) ((-1050 . -34) T) ((-1281 . -1035) 33988) ((-1279 . -1035) 33945) ((-1232 . -1053) T) ((-852 . -1053) T) ((-482 . -788) 33924) ((-355 . -1145) 33903) ((-352 . -1145) 33882) ((-344 . -1145) 33861) ((-482 . -791) 33812) ((-482 . -790) 33791) ((-227 . -34) T) ((-482 . -723) 33701) ((-796 . -614) 33549) ((-60 . -489) 33533) ((-571 . -1053) T) ((-1166 . -172) 33424) ((-1119 . -172) 33335) ((-1057 . -1094) T) ((-1081 . -946) 33280) ((-949 . -1094) T) ((-814 . -644) 33231) ((-779 . -946) 33200) ((-710 . -1094) T) ((-777 . -946) 33167) ((-516 . -282) 33151) ((-666 . -897) 33110) ((-481 . -1094) T) ((-454 . -946) 33077) ((-79 . -1209) T) ((-355 . -38) 33042) ((-352 . -38) 33007) ((-344 . -38) 32972) ((-264 . -38) 32821) ((-247 . -38) 32670) ((-907 . -1145) T) ((-524 . -490) 32651) ((-621 . -147) 32630) ((-621 . -145) 32609) ((-524 . -611) 32575) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -723) T) ((-796 . -1046) T) ((-343 . -452) T) ((-1251 . -999) 32541) ((-1244 . -999) 32507) ((-1223 . -999) 32473) ((-907 . -38) 32438) ((-225 . -714) 32403) ((-319 . -47) 32373) ((-40 . -409) 32345) ((-140 . -611) 32327) ((-996 . -131) T) ((-812 . -1209) T) ((-174 . -917) T) ((-549 . -368) T) ((-604 . -614) 32308) ((-343 . -402) T) ((-667 . -614) 32289) ((-180 . -614) 32270) ((-161 . -614) 32251) ((-156 . -614) 32232) ((-154 . -614) 32213) ((-520 . -288) 32190) ((-1222 . -231) 32160) ((-812 . -1035) 31987) ((-45 . -34) T) ((-677 . -102) T) ((-672 . -102) T) ((-658 . -102) T) ((-650 . -21) T) ((-650 . -25) T) ((-1096 . -489) 31971) ((-671 . -1209) T) ((-478 . -102) T) ((-245 . -102) 31921) ((-546 . -841) T) ((-138 . -102) T) ((-137 . -102) T) ((-133 . -102) T) ((-868 . -1094) T) ((-1172 . -644) 31846) ((-1057 . -714) 31833) ((-728 . -1052) 31676) ((-1166 . -514) 31623) ((-949 . -714) 31472) ((-1119 . -514) 31424) ((-1270 . -1094) T) ((-1269 . -1094) T) ((-481 . -714) 31273) ((-67 . -611) 31255) ((-728 . -111) 31084) ((-940 . -489) 31068) ((-1271 . -644) 31028) ((-814 . -723) T) ((-1168 . -1052) 30911) ((-1167 . -1052) 30746) ((-1161 . -1052) 30536) ((-1120 . -1052) 30419) ((-1000 . -1213) T) ((-1088 . -102) 30397) ((-812 . -377) 30366) ((-579 . -611) 30348) ((-546 . -1094) T) ((-1000 . -556) T) ((-1168 . -111) 30217) ((-1167 . -111) 30038) ((-1161 . -111) 29807) ((-1120 . -111) 29676) ((-1099 . -1097) 29640) ((-379 . -845) T) ((-1251 . -611) 29622) ((-1244 . -611) 29604) ((-1223 . -611) 29586) ((-1223 . -612) NIL) ((-240 . -288) 29563) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1094) T) ((-728 . -614) 29348) ((-690 . -147) T) ((-690 . -145) NIL) ((-595 . -611) 29330) ((-594 . -611) 29312) ((-895 . -1094) T) ((-838 . -1094) T) ((-805 . -1094) T) ((-766 . -1094) T) ((-654 . -849) 29296) ((-673 . -1094) T) ((-812 . -897) 29228) ((-1214 . -368) T) ((-40 . -402) NIL) ((-1168 . -614) 29110) ((-1114 . -657) T) ((-868 . -714) 29055) ((-251 . -489) 29039) ((-250 . -489) 29023) ((-1167 . -614) 28766) ((-1161 . -614) 28561) ((-709 . -637) 28509) ((-649 . -644) 28483) ((-1120 . -614) 28365) ((-295 . -34) T) ((-728 . -1046) T) ((-581 . -1266) 28352) ((-518 . -1266) 28329) ((-1232 . -1094) T) ((-1166 . -290) 28240) ((-1119 . -290) 28171) ((-1057 . -172) T) ((-852 . -1094) T) ((-949 . -172) 28082) ((-779 . -1235) 28066) ((-641 . -514) 27999) ((-77 . -611) 27981) ((-728 . -326) 27946) ((-1172 . -723) T) ((-571 . -1094) T) ((-481 . -172) 27857) ((-245 . -309) 27795) ((-1136 . -1106) T) ((-70 . -611) 27777) ((-1271 . -723) T) ((-1168 . -1046) T) ((-1167 . -1046) T) ((-327 . -102) 27727) ((-1161 . -1046) T) ((-1136 . -23) T) ((-1120 . -1046) T) ((-91 . -1115) 27711) ((-863 . -1106) T) ((-1168 . -233) 27670) ((-1167 . -243) 27649) ((-1167 . -233) 27601) ((-1161 . -233) 27488) ((-1161 . -243) 27467) ((-319 . -897) 27373) ((-863 . -23) T) ((-169 . -714) 27201) ((-407 . -1213) T) ((-1095 . -368) T) ((-1021 . -147) T) ((-1000 . -363) T) ((-867 . -452) T) ((-940 . -286) 27178) ((-316 . -847) T) ((-313 . -847) NIL) ((-871 . -102) T) ((-709 . -25) T) ((-407 . -556) T) ((-709 . -21) T) ((-525 . -614) 27159) ((-354 . -147) 27141) ((-354 . -145) T) ((-1141 . -1094) 27119) ((-453 . -717) T) ((-75 . -611) 27101) ((-114 . -847) T) ((-245 . -282) 27085) ((-240 . -1052) 26982) ((-81 . -611) 26964) ((-732 . -368) 26917) ((-1170 . -825) T) ((-734 . -235) 26901) ((-1153 . -1209) T) ((-141 . -235) 26883) ((-240 . -111) 26773) ((-1232 . -714) 26602) ((-48 . -147) T) ((-868 . -172) T) ((-852 . -714) 26572) ((-484 . -1209) T) ((-949 . -514) 26519) ((-649 . -723) T) ((-571 . -714) 26506) ((-1031 . -1053) T) ((-481 . -514) 26449) ((-940 . -19) 26433) ((-940 . -602) 26410) ((-813 . -612) NIL) ((-813 . -611) 26392) ((-1001 . -1052) 26342) ((-413 . -611) 26324) ((-251 . -286) 26301) ((-250 . -286) 26278) ((-487 . -906) NIL) ((-316 . -29) 26248) ((-108 . -1209) T) ((-1000 . -1106) T) ((-217 . -906) NIL) ((-911 . -1052) 26200) ((-1074 . -1035) 26096) ((-1001 . -111) 26030) ((-1000 . -23) T) ((-734 . -691) 26014) ((-264 . -231) 25998) ((-427 . -1052) 25982) ((-379 . -1053) T) ((-240 . -614) 25712) ((-911 . -111) 25650) ((-690 . -1197) NIL) ((-487 . -644) 25600) ((-108 . -881) 25582) ((-108 . -883) 25564) ((-690 . -1194) NIL) ((-217 . -644) 25514) ((-359 . -1035) 25498) ((-353 . -1035) 25482) ((-327 . -309) 25420) ((-345 . -1035) 25404) ((-225 . -290) T) ((-427 . -111) 25383) ((-60 . -611) 25315) ((-169 . -172) T) ((-1114 . -847) T) ((-108 . -1035) 25275) ((-889 . -1094) T) ((-833 . -1053) T) ((-824 . -1053) T) ((-690 . -35) NIL) ((-690 . -95) NIL) ((-313 . -989) 25236) ((-183 . -102) T) ((-580 . -452) T) ((-564 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1046) 25166) ((-1144 . -34) T) ((-477 . -917) T) ((-996 . -637) 25114) ((-251 . -602) 25091) ((-250 . -602) 25068) ((-1074 . -377) 25052) ((-868 . -514) 24960) ((-240 . -233) 24912) ((-1152 . -1209) T) ((-1001 . -614) 24862) ((-911 . -614) 24799) ((-821 . -611) 24781) ((-1282 . -1106) T) ((-1274 . -611) 24763) ((-1232 . -172) 24654) ((-427 . -614) 24623) ((-108 . -377) 24605) ((-108 . -338) 24587) ((-1057 . -290) T) ((-949 . -290) 24518) ((-796 . -368) 24497) ((-643 . -1209) T) ((-630 . -1209) T) ((-481 . -290) 24428) ((-571 . -172) T) ((-327 . -282) 24412) ((-1282 . -23) T) ((-1203 . -102) T) ((-1190 . -1094) T) ((-1082 . -1094) T) ((-1070 . -1094) T) ((-83 . -611) 24394) ((-1177 . -841) T) ((-1176 . -841) T) ((-708 . -102) T) ((-355 . -349) 24373) ((-606 . -1094) T) ((-352 . -349) 24352) ((-344 . -349) 24331) ((-475 . -1094) T) ((-1182 . -229) 24281) ((-264 . -253) 24243) ((-1136 . -131) T) ((-606 . -608) 24219) ((-1074 . -897) 24152) ((-1001 . -1046) T) ((-911 . -1046) T) ((-475 . -608) 24131) ((-1161 . -789) NIL) ((-1161 . -792) NIL) ((-1096 . -612) 24092) ((-479 . -229) 24042) ((-1096 . -611) 24024) ((-1001 . -243) T) ((-1001 . -233) T) ((-427 . -1046) T) ((-955 . -1094) 23974) ((-911 . -243) T) ((-863 . -131) T) ((-695 . -452) T) ((-840 . -1106) 23953) ((-108 . -897) NIL) ((-1203 . -284) 23919) ((-869 . -845) 23898) ((-1107 . -1209) T) ((-902 . -723) T) ((-169 . -514) 23810) ((-996 . -25) T) ((-902 . -473) T) ((-407 . -1106) T) ((-487 . -791) T) ((-487 . -788) T) ((-907 . -349) T) ((-487 . -723) T) ((-217 . -791) T) ((-217 . -788) T) ((-996 . -21) T) ((-217 . -723) T) ((-840 . -23) 23762) ((-524 . -614) 23743) ((-1177 . -1094) T) ((-319 . -307) 23722) ((-1176 . -1094) T) ((-1032 . -235) 23668) ((-407 . -23) T) ((-940 . -612) 23629) ((-940 . -611) 23541) ((-641 . -489) 23525) ((-45 . -1007) 23475) ((-615 . -964) T) ((-491 . -102) T) ((-331 . -611) 23457) ((-1107 . -1035) 23284) ((-592 . -647) 23266) ((-130 . -1094) T) ((-128 . -1094) T) ((-592 . -373) 23248) ((-343 . -1266) 23225) ((-439 . -611) 23207) ((-1024 . -1209) T) ((-868 . -290) T) ((-1232 . -514) 23154) ((-476 . -1209) T) ((-463 . -1209) T) ((-585 . -102) T) ((-1166 . -286) 23081) ((-621 . -452) 23060) ((-997 . -992) 23044) ((-1274 . -382) 23016) ((-517 . -1094) T) ((-117 . -452) T) ((-1189 . -102) T) ((-1086 . -1094) 22994) ((-1031 . -1094) T) ((-1109 . -93) T) ((-890 . -847) T) ((-351 . -1213) T) ((-1251 . -1052) 22877) ((-1107 . -377) 22846) ((-1244 . -1052) 22681) ((-1223 . -1052) 22471) ((-1251 . -111) 22340) ((-1244 . -111) 22161) ((-1223 . -111) 21930) ((-1203 . -309) 21917) ((-351 . -556) T) ((-365 . -611) 21899) ((-289 . -307) T) ((-595 . -1052) 21872) ((-594 . -1052) 21755) ((-361 . -1094) T) ((-322 . -1094) T) ((-251 . -611) 21716) ((-250 . -611) 21677) ((-1000 . -131) T) ((-633 . -23) T) ((-690 . -409) 21644) ((-605 . -23) T) ((-654 . -102) T) ((-595 . -111) 21615) ((-594 . -111) 21484) ((-379 . -1094) T) ((-336 . -102) T) ((-169 . -290) 21395) ((-1222 . -845) 21348) ((-711 . -1053) T) ((-1141 . -514) 21281) ((-1107 . -897) 21213) ((-833 . -1094) T) ((-824 . -1094) T) ((-822 . -1094) T) ((-97 . -102) T) ((-144 . -847) T) ((-610 . -881) 21197) ((-110 . -1209) T) ((-1081 . -102) T) ((-1058 . -34) T) ((-779 . -102) T) ((-777 . -102) T) ((-1251 . -614) 21079) ((-1244 . -614) 20822) ((-461 . -102) T) ((-454 . -102) T) ((-1223 . -614) 20617) ((-240 . -792) 20568) ((-240 . -789) 20519) ((-645 . -102) T) ((-595 . -614) 20477) ((-594 . -614) 20359) ((-1232 . -290) 20270) ((-660 . -632) 20254) ((-186 . -611) 20236) ((-641 . -286) 20213) ((-1031 . -714) 20197) ((-571 . -290) T) ((-960 . -644) 20122) ((-1282 . -131) T) ((-732 . -644) 20082) ((-712 . -644) 20069) ((-275 . -102) T) ((-453 . -644) 19999) ((-50 . -102) T) ((-581 . -102) T) ((-518 . -102) T) ((-1251 . -1046) T) ((-1244 . -1046) T) ((-1223 . -1046) T) ((-1251 . -233) 19958) ((-322 . -714) 19940) ((-1244 . -243) 19919) ((-1244 . -233) 19871) ((-1223 . -233) 19758) ((-1223 . -243) 19737) ((-1203 . -38) 19634) ((-1001 . -792) T) ((-595 . -1046) T) ((-594 . -1046) T) ((-1001 . -789) T) ((-968 . -792) T) ((-968 . -789) T) ((-869 . -1053) T) ((-867 . -866) 19618) ((-109 . -611) 19600) ((-690 . -452) T) ((-379 . -714) 19565) ((-418 . -644) 19539) ((-709 . -847) 19518) ((-708 . -38) 19483) ((-594 . -233) 19442) ((-40 . -721) 19414) ((-351 . -329) 19391) ((-351 . -363) T) ((-1074 . -307) 19342) ((-294 . -1106) 19223) ((-1100 . -1209) T) ((-171 . -102) T) ((-1226 . -611) 19190) ((-840 . -131) 19142) ((-641 . -1247) 19126) ((-833 . -714) 19096) ((-824 . -714) 19066) ((-482 . -1209) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-641 . -602) 19043) ((-407 . -131) T) ((-520 . -662) 19027) ((-108 . -307) T) ((-294 . -23) 18910) ((-520 . -647) 18894) ((-690 . -402) NIL) ((-520 . -373) 18878) ((-291 . -611) 18860) ((-91 . -1094) 18838) ((-108 . -1019) T) ((-564 . -143) T) ((-1259 . -151) 18822) ((-482 . -1035) 18649) ((-1245 . -145) 18610) ((-1245 . -147) 18571) ((-1050 . -1209) T) ((-990 . -611) 18553) ((-859 . -611) 18535) ((-813 . -1052) 18378) ((-1270 . -93) T) ((-1269 . -93) T) ((-1166 . -612) NIL) ((-1090 . -1094) T) ((-1084 . -1094) T) ((-1081 . -309) 18365) ((-1068 . -1094) T) ((-227 . -1209) T) ((-1061 . -1094) T) ((-1033 . -1094) T) ((-1016 . -1094) T) ((-779 . -309) 18352) ((-777 . -309) 18339) ((-1166 . -611) 18321) ((-813 . -111) 18150) ((-1119 . -611) 18132) ((-624 . -1094) T) ((-577 . -173) T) ((-529 . -173) T) ((-454 . -309) 18119) ((-483 . -1094) T) ((-1119 . -612) 17867) ((-1031 . -172) T) ((-940 . -288) 17844) ((-218 . -1094) T) ((-851 . -611) 17826) ((-606 . -514) 17609) ((-81 . -614) 17550) ((-815 . -1035) 17534) ((-475 . -514) 17326) ((-960 . -723) T) ((-732 . -723) T) ((-712 . -723) T) ((-351 . -1106) T) ((-1173 . -611) 17308) ((-223 . -102) T) ((-482 . -377) 17277) ((-515 . -1094) T) ((-510 . -1094) T) ((-508 . -1094) T) ((-796 . -644) 17251) ((-1021 . -452) T) ((-955 . -514) 17184) ((-351 . -23) T) ((-633 . -131) T) ((-605 . -131) T) ((-354 . -452) T) ((-240 . -368) 17163) ((-379 . -172) T) ((-1243 . -1053) T) ((-1222 . -1053) T) ((-225 . -999) T) ((-813 . -614) 16900) ((-695 . -387) T) ((-418 . -723) T) ((-697 . -1213) T) ((-1136 . -637) 16848) ((-580 . -866) 16832) ((-1274 . -1052) 16816) ((-1153 . -1185) 16792) ((-697 . -556) T) ((-126 . -1094) 16770) ((-711 . -1094) T) ((-482 . -897) 16702) ((-249 . -1094) T) ((-187 . -1094) T) ((-654 . -38) 16672) ((-354 . -402) T) ((-316 . -147) 16651) ((-316 . -145) 16630) ((-128 . -514) NIL) ((-116 . -556) T) ((-313 . -147) 16586) ((-313 . -145) 16542) ((-48 . -452) T) ((-162 . -1094) T) ((-157 . -1094) T) ((-1153 . -107) 16489) ((-779 . -1145) 16467) ((-685 . -34) T) ((-1274 . -111) 16446) ((-550 . -34) T) ((-484 . -107) 16430) ((-251 . -288) 16407) ((-250 . -288) 16384) ((-868 . -286) 16335) ((-45 . -1209) T) ((-1215 . -841) T) ((-813 . -1046) T) ((-1172 . -47) 16312) ((-813 . -326) 16274) ((-1081 . -38) 16123) ((-813 . -233) 16102) ((-779 . -38) 15931) ((-777 . -38) 15780) ((-1109 . -490) 15761) ((-454 . -38) 15610) ((-1109 . -611) 15576) ((-1112 . -102) T) ((-641 . -612) 15537) ((-641 . -611) 15449) ((-581 . -1145) T) ((-518 . -1145) T) ((-1141 . -489) 15433) ((-1195 . -1094) 15411) ((-1136 . -25) T) ((-1136 . -21) T) ((-1274 . -614) 15360) ((-474 . -1053) T) ((-1215 . -1094) T) ((-1223 . -789) NIL) ((-1223 . -792) NIL) ((-996 . -847) 15339) ((-835 . -1094) T) ((-816 . -611) 15321) ((-863 . -21) T) ((-863 . -25) T) ((-796 . -723) T) ((-174 . -1213) T) ((-581 . -38) 15286) ((-518 . -38) 15251) ((-386 . -611) 15233) ((-324 . -611) 15215) ((-169 . -286) 15173) ((-63 . -1209) T) ((-112 . -102) T) ((-869 . -1094) T) ((-174 . -556) T) ((-711 . -714) 15143) ((-294 . -131) 15026) ((-225 . -611) 15008) ((-225 . -612) 14938) ((-1000 . -637) 14877) ((-1274 . -1046) T) ((-1114 . -147) T) ((-630 . -1185) 14852) ((-728 . -906) 14831) ((-592 . -34) T) ((-643 . -107) 14815) ((-630 . -107) 14761) ((-1232 . -286) 14688) ((-728 . -644) 14613) ((-295 . -1209) T) ((-1172 . -1035) 14509) ((-940 . -616) 14486) ((-577 . -576) T) ((-577 . -527) T) ((-529 . -527) T) ((-1161 . -906) NIL) ((-1057 . -612) 14401) ((-1057 . -611) 14383) ((-949 . -611) 14365) ((-710 . -490) 14315) ((-343 . -102) T) ((-251 . -1052) 14212) ((-250 . -1052) 14109) ((-394 . -102) T) ((-31 . -1094) T) ((-949 . -612) 13970) ((-710 . -611) 13905) ((-1272 . -1202) 13874) ((-481 . -611) 13856) ((-481 . -612) 13717) ((-247 . -411) 13701) ((-264 . -411) 13685) ((-251 . -111) 13575) ((-250 . -111) 13465) ((-1168 . -644) 13390) ((-1167 . -644) 13287) ((-1161 . -644) 13139) ((-1120 . -644) 13064) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-1000 . -25) T) ((-1000 . -21) T) ((-870 . -1094) 13015) ((-869 . -714) 12967) ((-379 . -290) T) ((-169 . -999) 12919) ((-690 . -387) T) ((-996 . -994) 12903) ((-697 . -1106) T) ((-690 . -166) 12885) ((-1243 . -1094) T) ((-1222 . -1094) T) ((-316 . -1194) 12864) ((-316 . -1197) 12843) ((-1158 . -102) T) ((-316 . -956) 12822) ((-134 . -1106) T) ((-116 . -1106) T) ((-600 . -1257) 12806) ((-697 . -23) T) ((-600 . -1094) 12756) ((-316 . -95) 12735) ((-91 . -514) 12668) ((-174 . -363) T) ((-251 . -614) 12398) ((-250 . -614) 12128) ((-316 . -35) 12107) ((-606 . -489) 12041) ((-134 . -23) T) ((-116 . -23) T) ((-963 . -102) T) ((-715 . -1094) T) ((-475 . -489) 11978) ((-407 . -637) 11926) ((-649 . -1035) 11822) ((-955 . -489) 11806) ((-355 . -1053) T) ((-352 . -1053) T) ((-344 . -1053) T) ((-264 . -1053) T) ((-247 . -1053) T) ((-868 . -612) NIL) ((-868 . -611) 11788) ((-1270 . -490) 11769) ((-1269 . -490) 11750) ((-1282 . -21) T) ((-1270 . -611) 11716) ((-1269 . -611) 11682) ((-571 . -999) T) ((-728 . -723) T) ((-1282 . -25) T) ((-251 . -1046) 11612) ((-250 . -1046) 11542) ((-72 . -1209) T) ((-251 . -233) 11494) ((-250 . -233) 11446) ((-40 . -102) T) ((-907 . -1053) T) ((-128 . -489) 11428) ((-1175 . -102) T) ((-1168 . -723) T) ((-1167 . -723) T) ((-1161 . -723) T) ((-1161 . -788) NIL) ((-1161 . -791) NIL) ((-951 . -102) T) ((-918 . -102) T) ((-1120 . -723) T) ((-768 . -102) T) ((-668 . -102) T) ((-546 . -611) 11410) ((-474 . -1094) T) ((-339 . -1106) T) ((-174 . -1106) T) ((-319 . -917) 11389) ((-1243 . -714) 11230) ((-869 . -172) T) ((-1222 . -714) 11044) ((-840 . -21) 10996) ((-840 . -25) 10948) ((-245 . -1143) 10932) ((-126 . -514) 10865) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -612) 10631) ((-169 . -611) 10613) ((-174 . -23) T) ((-641 . -288) 10590) ((-520 . -34) T) ((-895 . -611) 10572) ((-89 . -1209) T) ((-838 . -611) 10554) ((-805 . -611) 10536) ((-766 . -611) 10518) ((-673 . -611) 10500) ((-240 . -644) 10348) ((-1170 . -1094) T) ((-1166 . -1052) 10171) ((-1144 . -1209) T) ((-1119 . -1052) 10014) ((-851 . -1052) 9998) ((-1226 . -616) 9982) ((-1166 . -111) 9791) ((-1119 . -111) 9620) ((-851 . -111) 9599) ((-1216 . -847) T) ((-1232 . -612) NIL) ((-1232 . -611) 9581) ((-343 . -1145) T) ((-852 . -611) 9563) ((-1070 . -286) 9542) ((-80 . -1209) T) ((-1001 . -906) NIL) ((-606 . -286) 9518) ((-1195 . -514) 9451) ((-487 . -1209) T) ((-571 . -611) 9433) ((-475 . -286) 9412) ((-517 . -93) T) ((-217 . -1209) T) ((-1081 . -231) 9396) ((-1001 . -644) 9346) ((-289 . -917) T) ((-814 . -307) 9325) ((-867 . -102) T) ((-779 . -231) 9309) ((-955 . -286) 9286) ((-911 . -644) 9238) ((-633 . -21) T) ((-633 . -25) T) ((-605 . -21) T) ((-547 . -102) T) ((-343 . -38) 9203) ((-690 . -721) 9170) ((-487 . -881) 9152) ((-487 . -883) 9134) ((-474 . -714) 8975) ((-217 . -881) 8957) ((-64 . -1209) T) ((-217 . -883) 8939) ((-605 . -25) T) ((-427 . -644) 8913) ((-1166 . -614) 8682) ((-487 . -1035) 8642) ((-869 . -514) 8554) ((-1119 . -614) 8346) ((-851 . -614) 8264) ((-217 . -1035) 8224) ((-240 . -34) T) ((-997 . -1094) 8202) ((-1243 . -172) 8133) ((-1222 . -172) 8064) ((-709 . -145) 8043) ((-709 . -147) 8022) ((-697 . -131) T) ((-136 . -465) 7999) ((-1141 . -611) 7931) ((-654 . -652) 7915) ((-128 . -286) 7890) ((-116 . -131) T) ((-477 . -1213) T) ((-606 . -602) 7866) ((-475 . -602) 7845) ((-336 . -335) 7814) ((-536 . -1094) T) ((-477 . -556) T) ((-1166 . -1046) T) ((-1119 . -1046) T) ((-851 . -1046) T) ((-240 . -788) 7793) ((-240 . -791) 7744) ((-240 . -790) 7723) ((-1166 . -326) 7700) ((-240 . -723) 7610) ((-955 . -19) 7594) ((-487 . -377) 7576) ((-487 . -338) 7558) ((-1119 . -326) 7530) ((-354 . -1266) 7507) ((-217 . -377) 7489) ((-217 . -338) 7471) ((-955 . -602) 7448) ((-1166 . -233) T) ((-660 . -1094) T) ((-642 . -1094) T) ((-1255 . -1094) T) ((-1182 . -1094) T) ((-1081 . -253) 7385) ((-355 . -1094) T) ((-352 . -1094) T) ((-344 . -1094) T) ((-264 . -1094) T) ((-247 . -1094) T) ((-84 . -1209) T) ((-127 . -102) 7363) ((-121 . -102) 7341) ((-1182 . -608) 7320) ((-479 . -1094) T) ((-1135 . -1094) T) ((-479 . -608) 7299) ((-251 . -792) 7250) ((-251 . -789) 7201) ((-250 . -792) 7152) ((-40 . -1145) NIL) ((-250 . -789) 7103) ((-1109 . -614) 7084) ((-128 . -19) 7066) ((-1074 . -917) 7017) ((-1001 . -791) T) ((-1001 . -788) T) ((-1001 . -723) T) ((-968 . -791) T) ((-128 . -602) 6992) ((-911 . -723) T) ((-91 . -489) 6976) ((-487 . -897) NIL) ((-907 . -1094) T) ((-225 . -1052) 6941) ((-869 . -290) T) ((-217 . -897) NIL) ((-830 . -1106) 6920) ((-59 . -1094) 6870) ((-519 . -1094) 6848) ((-516 . -1094) 6798) ((-497 . -1094) 6776) ((-496 . -1094) 6726) ((-580 . -102) T) ((-564 . -102) T) ((-495 . -102) T) ((-474 . -172) 6657) ((-359 . -917) T) ((-353 . -917) T) ((-345 . -917) T) ((-225 . -111) 6613) ((-830 . -23) 6565) ((-427 . -723) T) ((-108 . -917) T) ((-40 . -38) 6510) ((-108 . -817) T) ((-581 . -349) T) ((-518 . -349) T) ((-1222 . -514) 6370) ((-316 . -452) 6349) ((-313 . -452) T) ((-889 . -611) 6331) ((-833 . -286) 6310) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6174) ((-294 . -21) 6057) ((-45 . -1185) 6036) ((-66 . -611) 6018) ((-55 . -102) T) ((-600 . -514) 5951) ((-45 . -107) 5901) ((-816 . -614) 5885) ((-1096 . -425) 5869) ((-1096 . -368) 5848) ((-386 . -614) 5832) ((-324 . -614) 5816) ((-1058 . -1209) T) ((-1057 . -1052) 5803) ((-949 . -1052) 5646) ((-1260 . -102) T) ((-1259 . -102) 5596) ((-1057 . -111) 5581) ((-481 . -1052) 5424) ((-660 . -714) 5408) ((-949 . -111) 5237) ((-225 . -614) 5187) ((-477 . -363) T) ((-355 . -714) 5139) ((-352 . -714) 5091) ((-344 . -714) 5043) ((-264 . -714) 4892) ((-247 . -714) 4741) ((-1251 . -644) 4666) ((-1223 . -906) NIL) ((-1090 . -93) T) ((-1084 . -93) T) ((-940 . -647) 4650) ((-1068 . -93) T) ((-481 . -111) 4479) ((-1061 . -93) T) ((-1033 . -93) T) ((-940 . -373) 4463) ((-248 . -102) T) ((-1016 . -93) T) ((-74 . -611) 4445) ((-960 . -47) 4424) ((-707 . -102) T) ((-695 . -102) T) ((-1 . -1094) T) ((-619 . -1106) T) ((-1244 . -644) 4321) ((-624 . -93) T) ((-1190 . -611) 4303) ((-1082 . -611) 4285) ((-126 . -489) 4269) ((-483 . -93) T) ((-1070 . -611) 4251) ((-390 . -23) T) ((-87 . -1209) T) ((-218 . -93) T) ((-1223 . -644) 4103) ((-907 . -714) 4068) ((-619 . -23) T) ((-606 . -611) 4050) ((-606 . -612) NIL) ((-475 . -612) NIL) ((-475 . -611) 4032) ((-511 . -1094) T) ((-507 . -1094) T) ((-351 . -25) T) ((-351 . -21) T) ((-127 . -309) 3970) ((-121 . -309) 3908) ((-595 . -644) 3895) ((-225 . -1046) T) ((-594 . -644) 3820) ((-379 . -999) T) ((-225 . -243) T) ((-225 . -233) T) ((-1057 . -614) 3792) ((-1057 . -616) 3773) ((-955 . -612) 3734) ((-955 . -611) 3646) ((-949 . -614) 3435) ((-867 . -38) 3422) ((-710 . -614) 3372) ((-1243 . -290) 3323) ((-1222 . -290) 3274) ((-481 . -614) 3059) ((-1114 . -452) T) ((-502 . -847) T) ((-316 . -1133) 3038) ((-996 . -147) 3017) ((-996 . -145) 2996) ((-495 . -309) 2983) ((-295 . -1185) 2962) ((-1177 . -611) 2944) ((-1176 . -611) 2926) ((-868 . -1052) 2871) ((-477 . -1106) T) ((-139 . -832) 2853) ((-621 . -102) T) ((-1195 . -489) 2837) ((-251 . -368) 2816) ((-250 . -368) 2795) ((-1057 . -1046) T) ((-295 . -107) 2745) ((-130 . -611) 2727) ((-128 . -612) NIL) ((-128 . -611) 2671) ((-117 . -102) T) ((-949 . -1046) T) ((-868 . -111) 2600) ((-477 . -23) T) ((-481 . -1046) T) ((-1057 . -233) T) ((-949 . -326) 2569) ((-481 . -326) 2526) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2437) ((-247 . -172) 2348) ((-960 . -1035) 2244) ((-517 . -490) 2225) ((-732 . -1035) 2196) ((-517 . -611) 2162) ((-1099 . -102) T) ((-1086 . -611) 2129) ((-1031 . -611) 2111) ((-1272 . -151) 2095) ((-1270 . -614) 2076) ((-1264 . -611) 2058) ((-1251 . -723) T) ((-1244 . -723) T) ((-1223 . -788) NIL) ((-1223 . -791) NIL) ((-169 . -1052) 1968) ((-907 . -172) T) ((-868 . -614) 1898) ((-1223 . -723) T) ((-1269 . -614) 1879) ((-1000 . -342) 1853) ((-997 . -514) 1786) ((-840 . -847) 1765) ((-564 . -1145) T) ((-474 . -290) 1716) ((-595 . -723) T) ((-361 . -611) 1698) ((-322 . -611) 1680) ((-418 . -1035) 1576) ((-594 . -723) T) ((-407 . -847) 1527) ((-169 . -111) 1423) ((-830 . -131) 1375) ((-734 . -151) 1359) ((-1259 . -309) 1297) ((-487 . -307) T) ((-379 . -611) 1264) ((-520 . -1007) 1248) ((-379 . -612) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-711 . -286) 1123) ((-487 . -1019) T) ((-580 . -38) 1110) ((-564 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1019) T) ((-868 . -1046) T) ((-833 . -611) 1044) ((-824 . -611) 1026) ((-822 . -611) 1008) ((-813 . -906) 987) ((-1283 . -1106) T) ((-1232 . -1052) 810) ((-852 . -1052) 794) ((-868 . -243) T) ((-868 . -233) NIL) ((-685 . -1209) T) ((-1283 . -23) T) ((-813 . -644) 719) ((-550 . -1209) T) ((-418 . -338) 703) ((-571 . -1052) 690) ((-1232 . -111) 499) ((-697 . -637) 481) ((-852 . -111) 460) ((-381 . -23) T) ((-169 . -614) 238) ((-1182 . -514) 30) ((-658 . -1094) T) ((-677 . -1094) T) ((-672 . -1094) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index ecefc886..f09aa508 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3449600528)
-(4414 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3450528886)
+(4415 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -477,661 +477,658 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |sech2cosh| |squareFreeFactors| |xn| |isPlus|
- |finiteBasis| |rightFactorCandidate| |uniform01| |hermiteH|
- |addPoint2| |getCode| |child| |alternatingGroup| |shade| |update|
- |tryFunctionalDecomposition| |d01asf| |s17ajf| |getProperties|
- |colorDef| |noLinearFactor?| |musserTrials| |algebraicDecompose|
- |internalZeroSetSplit| |Lazard| |iiGamma| |simplifyLog|
- |processTemplate| |e02akf| |vspace| |bivariate?| |reducedForm|
- |countRealRoots| |character?| |complexEigenvectors| |fixedPointExquo|
- |entry| |indicialEquationAtInfinity| |zeroMatrix| |d02cjf|
- |OMParseError?| |port| |outputList| |sum| |setTopPredicate|
- |integralLastSubResultant| |scripted?| |f2st| |makeFR| |birth|
- |zeroDim?| |setMinPoints| |exquo| |opeval| |flexibleArray|
- |mainMonomials| |largest| |singularitiesOf| |acoshIfCan| |freeOf?|
- |BasicMethod| |gcdPrimitive| |t| |div| |B1solve| |position|
- |UnVectorise| |dihedral| |patternVariable| |ord| |range|
- |nextNormalPoly| |generic?| |rowEchelon| |multiset| |quo| |rischDE|
- |squareFreePart| |extensionDegree| |leader| |indices| |paraboloidal|
- |f02adf| |pointPlot| |stFunc1| |call| |byte| |roughBase?|
- |antiCommutative?| |s19aaf| |partition| |lp| |safetyMargin|
- |getExplanations| |s18aff| |OMReadError?| |rem| |euler|
- |startTableInvSet!| |logpart| |extractClosed| |computeInt|
- |mainSquareFreePart| |imagE| |removeRoughlyRedundantFactorsInPols|
- |readInt8!| |merge!| |zero| |hasHi| |clipWithRanges| |df2st|
- |taylorQuoByVar| |index| |components| |tryFunctionalDecomposition?|
- |unrankImproperPartitions1| |rk4qc| |plotPolar| |selectAndPolynomials|
- |int| |tablePow| |lfintegrate| |rootKerSimp| |e02def| |multiple?|
- |firstDenom| |top| |possiblyInfinite?| |viewPosDefault| |And|
- |primintegrate| |iiasin| |primaryDecomp| |s18adf| |extractPoint|
- |f02awf| |multisect| |curveColorPalette| |term?| |Or|
- |expenseOfEvaluationIF| |recur| |s21bcf| |pair| |henselFact|
- |setPosition| |clipParametric| |inverseIntegralMatrixAtInfinity|
- |showTheFTable| |cAsech| |Not| |tValues| F2FG |lambert|
- |intPatternMatch| |d02gaf| |mat| |createPrimitivePoly| |bytes|
- |setValue!| |value| |startPolynomial| |numerators| |maxrank|
- |laplacian| |purelyTranscendental?| |scalarTypeOf| |virtualDegree|
- |pole?| |quasiAlgebraicSet| |ramified?| |pureLex| BY |modularGcd|
- |pquo| |pointSizeDefault| |every?| |component| |screenResolution|
- |setRow!| |combineFeatureCompatibility| |normalForm| |rangeIsFinite|
- |permutations| |besselJ| |stiffnessAndStabilityOfODEIF|
- |leftExactQuotient| |cAcot| |maxIndex| |intermediateResultsIF|
- |idealiser| |critBonD| |charClass| |factorset| |indicialEquations|
- |interpret| |deepCopy| |constantCoefficientRicDE| |lastSubResultant|
- |pow| |supersub| |checkPrecision| |complexExpand| |iipow|
- |innerSolve1| |unitNormalize| |numberOfChildren| |internalIntegrate|
- |nsqfree| |interReduce| |radicalSimplify| |generator| |cTan|
- |discreteLog| |imagk| |pseudoQuotient| |numer| |sequences|
- |antisymmetric?| |mightHaveRoots| |c05nbf| |headReduced?|
- |symmetricSquare| |se2rfi| |sqfree| |atrapezoidal| |denom| |even?|
- |lo| |e02aef| |factorSquareFreeByRecursion| |minGbasis| |f07fdf|
- |e01sff| |f01rdf| |weighted| |completeEchelonBasis| |outputFloating|
- |incr| |removeSuperfluousQuasiComponents| |coercePreimagesImages|
- |extractSplittingLeaf| |getMatch| |monic?| |printingInfo?| |subSet|
- |subresultantSequence| |realElementary| |pi| |socf2socdf| |d01gaf|
- |subspace| |rk4a| |extendedSubResultantGcd| |invertIfCan| |f04qaf|
- |max| LODO2FUN |leftRegularRepresentation| |forLoop| |infinity|
- |d01fcf| |plusInfinity| |f02ajf| |quoted?| |legendre|
- |LazardQuotient2| |OMputEndAtp| |enterInCache| |Frobenius| |diag|
- |showTypeInOutput| |leftCharacteristicPolynomial| |minusInfinity|
- |cylindrical| |firstUncouplingMatrix| |mainMonomial|
- |setVariableOrder| ~ |meatAxe| |iisqrt3| |setScreenResolution3D|
- |belong?| |hexDigit| |cosh2sech| |monicCompleteDecompose|
- |branchPointAtInfinity?| |fullPartialFraction| |notelem| |nor|
- |taylorRep| |associates?| |kernel| |coefChoose| |mkcomm|
- |radicalEigenvalues| |s18aef| |chiSquare1| |open| |mapSolve|
- |genericPosition| |leftMult| |relativeApprox| |draw| |unravel|
- |s17adf| |coHeight| |simpsono| |autoReduced?| |id| |c06gsf|
- |symmetricPower| |cyclicEntries| |inverseLaplace| |matrix| |permanent|
- |useEisensteinCriterion| |OMputEndError| |rightOne| |goto| |init|
- |argumentListOf| |factorial| |functionIsFracPolynomial?| |f02bbf|
- |type| |intersect| |df2fi| |algint| |subNode?| |diagonals| |table|
- |enqueue!| |shellSort| |expandLog| |simpleBounds?| |ode1|
- |strongGenerators| |odd?| |f02wef| |setStatus!| |operations| |new|
- |viewWriteAvailable| |getStream| |s17agf| |sub| |makeObject|
- |reciprocalPolynomial| |palgint| |primPartElseUnitCanonical|
- |shallowCopy| |e02adf| |s21bbf| |search| |pushNewContour| |arbitrary|
- |generalLambert| |legendreP| |normalElement| |bandedJacobian| |hi|
- |f01qcf| |split| |leftRemainder| |clikeUniv| |measure|
- |basisOfNucleus| |readUInt8!| |explicitlyEmpty?| |symbolTable| |coef|
- |regularRepresentation| |elliptic| |lfextlimint| |reorder|
- |SturmHabichtCoefficients| |untab| |acosIfCan| |integer?| |ratDsolve|
- |monomRDEsys| |setleaves!| |rectangularMatrix| |inverse| |ode|
- |flagFactor| |rightRank| |numberOfDivisors| |infiniteProduct|
- |clearCache| |uncouplingMatrices| |skewSFunction| |checkRur|
- |outlineRender| = |cot2trig| |chainSubResultants| |droot| |f04axf|
- |isExpt| |shiftLeft| |linkToFortran| |omError| |packageCall|
- |binaryFunction| |graeffe| |linearPart| |compound?| |ref|
- |polynomialZeros| |edf2ef| |powerAssociative?| |linearDependence| <
- |normalise| |variable?| |setImagSteps| |column| |OMconnOutDevice|
- |fi2df| |branchPoint?| |monomialIntPoly| |numFunEvals3D| >
- |signatureAst| |setProperty| |iicsc| |box| |oddlambert| |vector|
- |numberOfCycles| |yellow| |rischNormalize|
- |rightRegularRepresentation| |OMgetObject| |explogs2trigs| <=
- |sin2csc| |reseed| |showTheSymbolTable| |iisqrt2| |reify|
- |integralCoordinates| |makeTerm| |hconcat| |viewZoomDefault| >=
- |removeRoughlyRedundantFactorsInPol| |child?| |e04jaf| |f02akf|
- |transcendenceDegree| |getIdentifier| |presub| |s18def|
- |trivialIdeal?| |rightExtendedGcd| |pToDmp| |quotedOperators|
- |positive?| |endOfFile?| |normInvertible?| ~= |charpol|
- |jacobiIdentity?| |coefficient| |e04naf| |algebraicCoefficients?|
- |isQuotient| |factorPolynomial| |commutator|
- |indiceSubResultantEuclidean| |associatedSystem| |coerce|
- |trailingCoefficient| |wronskianMatrix| |normalizedAssociate|
- |generalInfiniteProduct| |decompose| + |superscript| |chebyshevT|
- |bat| |anticoord| |construct| |sPol| |elRow2!| |norm|
- |maximumExponent| |OMgetAtp| |OMputBVar| - |unexpand| |cycles|
- |minRowIndex| |rotatex| |factorByRecursion|
- |setLegalFortranSourceExtensions| |numericIfCan| |integralBasis|
- |unaryFunction| / |writeUInt8!| |e02bbf| |univariateSolve| |unary?|
- |quotientByP| |leastAffineMultiple| |semiSubResultantGcdEuclidean1|
- |genericRightTrace| |GospersMethod| |listBranches| |extractTop!|
- |df2mf| |comment| |OMputAtp| |idealiserMatrix| |copies| |zCoord|
- |OMputString| |create3Space| |height| |roughBasicSet| |movedPoints|
- |lowerCase| |clip| |extendedint| |monicRightDivide| |innerSolve|
- |head| |lists| |newLine| |digits| |adjoint| |operator| |nextPartition|
- |hermite| |internalAugment| |stoseInvertible?reg| |decomposeFunc|
- |complexElementary| |inspect| |genus| |Is| |constantOperator|
- |nextsubResultant2| |setProperties| |stop| |unitCanonical|
- |lexGroebner| |checkForZero| |balancedBinaryTree| |viewDeltaXDefault|
- |collect| |llprop| |sizeMultiplication| |myDegree| |deleteRoutine!|
- |associator| |eigenvector| |var2StepsDefault| |mainVariable?|
- |nullary?| |stopTableGcd!| |basisOfLeftAnnihilator| |bright|
- |showIntensityFunctions| |toseInvertible?| |HenselLift| |cycle|
- |ParCond| |weakBiRank| |rightPower|
- |solveLinearPolynomialEquationByFractions| |totalDifferential|
- |cyclic?| |solveLinearPolynomialEquationByRecursion| |collectUnder|
- |rightDiscriminant| |squareFreePolynomial| |move| |leftScalarTimes!|
- |output| |tubeRadius| |sn| |nextNormalPrimitivePoly| |randnum|
- |drawCurves| |isConnected?| |setelt| |tail| |stirling1| |sayLength|
- |interactiveEnv| |normalizedDivide| |setright!| |iterationVar|
- |perfectSquare?| |evenlambert| |s17dhf| |OMputAttr| |minordet|
- |usingTable?| |OMmakeConn| |OMunhandledSymbol| |optpair| |identity|
- |copy| |c06gqf| |contractSolve| |nand| |addmod| |currentEnv|
- |infieldIntegrate| |OMUnknownCD?| |remove!| |prinb| |makeUnit|
- |showClipRegion| |tanintegrate| |prem| |diophantineSystem| |mainValue|
- |style| |definingPolynomial| |OMgetString| |seed| |error| |OMreceive|
- |numberOfFactors| |lazyEvaluate| |selectPDERoutines| |autoCoerce|
- |rightScalarTimes!| |recip| |exists?| |stoseIntegralLastSubResultant|
- |infinityNorm| |super| |lazyIrreducibleFactors| |inverseColeman|
- |options| |assert| |nthRoot| |OMserve| |simplifyPower| |discriminant|
- |binomial| |stronglyReduced?| |credPol| |atanhIfCan|
- |viewThetaDefault| |overbar| |froot| |startStats!| |initTable!|
- |setOrder| |elRow1!| |unit| |fibonacci| |drawComplex| |multiEuclidean|
- |li| |pack!| |semiDiscriminantEuclidean| |numerator| |besselY|
- |divide| |rename!| |string| |ran| |iiperm| |isTimes| |characteristic|
- |failed| |getOperator| |cCot| |sortConstraints| |partitions|
- |completeSmith| |parametersOf| |medialSet| |normalDenom| |f04arf|
- |resultantEuclidean| |c06ekf| |rationalIfCan| |compose|
- |parabolicCylindrical| |solveInField| |parabolic| |prefixRagits|
- |evaluate| |radPoly| |decrease|
- |rewriteSetByReducingWithParticularGenerators| |updateStatus!|
- |duplicates?| |primitiveElement| |useNagFunctions| |matrixGcd|
- |OMconnInDevice| |term| |jordanAlgebra?| |shuffle| |lexTriangular|
- |clipPointsDefault| |mdeg| |useEisensteinCriterion?|
- |expressIdealMember| |fractionPart| |difference| |FormatArabic|
- |startTable!| |numberOfVariables| |iiacosh| |delete| |OMgetEndAttr|
- |universe| |readInt16!| |nthCoef| |retractIfCan| |calcRanges|
- |doubleComplex?| |abs| |getVariableOrder| |submod| |repeating?|
- |zeroVector| |readByte!| |mainVariable| |coord| |sh|
- |integralAtInfinity?| |palginfieldint| |c05pbf| |OMcloseConn|
- |commaSeparate| |integralDerivationMatrix| |iiasinh|
- |symmetricDifference| |integralBasisAtInfinity| |digit?| |elliptic?|
- |withPredicates| |leftOne| |moduleSum| |drawStyle| |swap|
- |stoseLastSubResultant| |factorsOfCyclicGroupSize| |LyndonWordsList1|
- |s17aff| |qPot| |quasiRegular?| |totalfract| |newTypeLists| UP2UTS
- |equivOperands| |outputMeasure| |exponentialOrder|
- |noncommutativeJordanAlgebra?| |inputBinaryFile| |generalPosition|
- |quartic| |depth| |quasiComponent| |rightZero| |commutative?|
- |exprToXXP| |numberOfIrreduciblePoly| |quasiMonicPolynomials|
- |retract| |prindINFO| |dAndcExp| |groebner| |unparse|
- |inputOutputBinaryFile| |d02kef| |factorials| |c06ebf|
- |changeThreshhold| |palgintegrate| |zeroDimensional?| |eq|
- |symbolTableOf| |rationalPoints| |symmetricGroup| |expintegrate|
- |part?| |map| |cRationalPower| |fortranLiteral| |prod| |iter|
- |resultantReduit| |leastPower| |vark| |constantIfCan| |d01aqf|
- |condition| |mapGen| |coerceP| |lfunc| |graphImage|
- |purelyAlgebraicLeadingMonomial?| |insert!| |listOfMonoms|
- |endSubProgram| |setOfMinN| |logGamma| |numberOfComponents|
- |maxColIndex| |push| |e02agf| |generate| |rootPower| |deriv|
- |coerceImages| |solveLinearPolynomialEquation| |unmakeSUP|
- |createMultiplicationMatrix| |isList| |stoseInternalLastSubResultant|
- |f04mcf| |selectIntegrationRoutines| |minPoints3D| |quadratic?|
- |leftFactor| |contract| |incrementBy| |reducedDiscriminant|
- |hitherPlane| |complexZeros| |lineColorDefault| |convert|
- |getMultiplicationMatrix| |mappingAst| |setPrologue!| |meshPar2Var|
- |mapCoef| |cSin| |expand| |sparsityIF| |lexico| |mantissa|
- |fortranDoubleComplex| |float| |intChoose| |explicitlyFinite?|
- |geometric| |secIfCan| |filterWhile| |pointColorDefault| |jacobian|
- |cycleRagits| |palgint0| |option?| |limitPlus| |cAsec| |exp|
- |setprevious!| |outputArgs| |filterUntil| |iidsum| |iiasech|
- |qualifier| |leadingIdeal| |mainCharacterization| |approximants|
- |OMgetAttr| |zeroSetSplitIntoTriangularSystems| |select| |cardinality|
- |const| SEGMENT |setFieldInfo| |subHeight| |bernoulliB|
- |clearTheSymbolTable| |hdmpToDmp| |stirling2| |d03faf| |linearMatrix|
- |modifyPointData| |testDim| |divideIfCan| |bitTruth| |twoFactor|
- |generalizedInverse| |SFunction| |complex?| |primeFrobenius|
- |commutativeEquality| |log| |jordanAdmissible?| |cCosh| |arity|
- |primitivePart| |bitCoef| |addPoint| |transform| |coerceL|
- |OMgetEndBVar| |bothWays| |triangular?| |fmecg| |drawToScale| |leaf?|
- |functionIsContinuousAtEndPoints| |s15aef| |refine|
- |fortranCarriageReturn| |OMgetInteger| |primitivePart!|
- |setButtonValue| |pushuconst| |lookup| |redmat| |ipow| GE |power|
- |monicDecomposeIfCan| |fortranTypeOf| |iiatanh| |makeRecord| |exprex|
- |pointColor| |extendedIntegrate| |datalist| |compile| |dequeue!| GT
- |basisOfLeftNucleus| |selectfirst| |generators|
- |getMultiplicationTable| |prologue| |btwFact| |f01qdf| |outputFixed|
- LE |inverseIntegralMatrix| |hostPlatform| |atom?| |any?| |e04gcf|
- |pmintegrate| |lazyPseudoDivide| |compBound| LT |hostByteOrder|
- |tanh2trigh| |f01qef| |addMatchRestricted| |monomRDE| |readBytes!|
- |viewPhiDefault| |showScalarValues| |factor1| |printInfo!| |times|
- |rewriteIdealWithRemainder| |branchIfCan| |createThreeSpace|
- |applyRules| |central?| |revert| |exponential1| |order|
- |createLowComplexityTable| |directory| |pointColorPalette| |polygon|
- |balancedFactorisation| |createLowComplexityNormalBasis| |nil|
- |precision| |bivariatePolynomials| |setPredicates| |node?| |poisson|
- |cLog| |rowEchelonLocal| |f01maf| |property| |permutationGroup| |comp|
- |OMgetBVar| |drawComplexVectorField| |completeEval| |pToHdmp| |rotate|
- |powerSum| |copyInto!| |setelt!| |consnewpol| |colorFunction|
- |littleEndian| |leftDiscriminant| |monom| |setrest!| |cycleTail|
- |nary?| |addMatch| |clipBoolean| |invertibleSet| |approximate|
- |multiplyExponents| |reducedContinuedFraction| |genericLeftNorm|
- |LazardQuotient| |isOp| |complex| |trace2PowMod| |nextIrreduciblePoly|
- |s14baf| |f01rcf| |units| |inc| |resetBadValues|
- |currentCategoryFrame| |permutation| |monicRightFactorIfCan| |gderiv|
- |symbolIfCan| |collectUpper| |expenseOfEvaluation|
- |halfExtendedSubResultantGcd1| |times!| |toScale| |alternative?|
- |common| |groebnerIdeal| |basisOfCenter| |reflect| |copy!| |addiag|
- |totalGroebner| |zag| |isAbsolutelyIrreducible?| |tensorProduct|
- |absolutelyIrreducible?| |toseSquareFreePart| |att2Result|
- |OMputEndBind| |digit| |localReal?| |elseBranch| |c02agf|
- |exactQuotient| |find| |separateFactors| |initial| |listYoungTableaus|
- |loadNativeModule| |exprHasWeightCosWXorSinWX| |setProperties!|
- |systemSizeIF| |key| |reindex| |code| |mr| |cycleLength|
- |physicalLength| |d01bbf| |setLabelValue| |remove| |pdf2ef| |s17def|
- |factors| |compdegd| |definingEquations| |infinite?| |rightRemainder|
- |tree| |cAcsc| |OMreadFile| |returnType!| |filename| |schema|
- |numericalOptimization| |prepareSubResAlgo| |isMult| |last| |argument|
- |curry| |not?| |algebraicVariables| |complexSolve| |OMgetSymbol|
- |nonLinearPart| |radicalSolve| |assoc| |antisymmetricTensors|
- |function| |iiasec| |subscript| |predicates| |parse| |multinomial|
- |genericLeftDiscriminant| |exprToUPS| |bombieriNorm|
- |representationType| |any| |biRank| |mapBivariate| |whitePoint|
- |clearTheIFTable| |Hausdorff| |npcoef| |optimize| |leftExtendedGcd|
- |backOldPos| |eval| |isOpen?| |ratPoly| |hspace| |dflist| |mesh|
- |characteristicSet| |gradient| |normalized?| |symbol?| |OMgetEndApp|
- |makeSUP| |one?| |OMsupportsCD?| |expint| |hMonic| |divergence|
- |primes| |unknownEndian| |mathieu24| |basisOfRightNucleus| |iicsch|
- |showSummary| |createMultiplicationTable| |minPoly| |purelyAlgebraic?|
- |numberOfPrimitivePoly| |toseInvertibleSet| |setCondition!| |separate|
- |nextPrimitivePoly| |whatInfinity| |pushucoef| |totolex| |psolve|
- |quatern| |float?| |showAttributes| |deleteProperty!| |relerror|
- |f04jgf| |dmp2rfi| |boundOfCauchy| |stFuncN| |Ci| |closedCurve|
- |perfectSqrt| |setAttributeButtonStep| |plot|
- |rewriteIdealWithQuasiMonicGenerators| |basisOfCommutingElements|
- |comparison| |minPol| |scalarMatrix| |c06frf| |setRealSteps|
- |argscript| |exprHasAlgebraicWeight| |userOrdered?| |cAtanh|
- |splitNodeOf!| |f04maf| |s19adf| |rk4| |substring?| |primlimitedint|
- |radicalRoots| |linSolve| |RemainderList| |polarCoordinates| |d01apf|
- |concat!| |cscIfCan| |makingStats?| |getlo| |e02bdf|
- |leadingBasisTerm| |palgextint0| |in?| |midpoint| |zeroOf| |lcm|
- |cyclicCopy| |suffix?| |setref| |subResultantGcdEuclidean|
- |nextLatticePermutation| |sort| |OMputEndAttr| |trunc| |f02xef|
- |laurentRep| |iiacoth| |changeName| |generalizedEigenvectors|
- |conjugate| |oddintegers| |printCode| |scaleRoots| |negative?|
- |writeByte!| |cos2sec| |nothing| |result| |operation| |trueEqual|
- |minimalPolynomial| |append| |minus!| |prefix?| |s15adf|
- |OMgetEndError| |beauzamyBound| |genericRightNorm| |rotatey|
- |laguerre| |linGenPos| |e01sbf| |reset| |bumprow| |gcd| |curve|
- |KrullNumber| |currentSubProgram| |prinshINFO| |integerIfCan|
- |imports| |setchildren!| |f01brf| |leadingTerm| |graphState| |false|
- |tab1| |makeSketch| |constDsolve| |random| |morphism| |plenaryPower|
- |createIrreduciblePoly| |extractIndex| |monicDivide| |write|
- |patternMatch| |factorAndSplit| |numberOfComputedEntries| |goodPoint|
- |raisePolynomial| |rightLcm| |bigEndian| |completeHermite|
- |getZechTable| |lquo| |reopen!| |save| |irreducibleFactor|
- |stopTable!| |cosSinInfo| |length| |bezoutMatrix| |randomLC| |trim|
- |expPot| |stripCommentsAndBlanks| |removeSuperfluousCases|
- |defineProperty| |iiabs| |cAsin| |conditionP| |symmetricTensors|
- |scripts| |subMatrix| |internalInfRittWu?| |width| |createZechTable|
- |expintfldpoly| |Nul| |sequence| |modifyPoint| |normalizeAtInfinity|
- |matrixConcat3D| |setMaxPoints3D| |infix?| |#|
- |tableForDiscreteLogarithm| |simplifyExp| |dim| |numberOfNormalPoly|
- |e02dcf| |clearTheFTable| |nthRootIfCan| |lazyIntegrate| |alphabetic|
- |critMonD1| |mask| |curryRight| |setStatus| |subQuasiComponent?|
- |phiCoord| |rur| |eq?| |replaceKthElement| RF2UTS |fortranComplex|
- |approxNthRoot| |s13aaf| |OMputApp| |uniform| |fill!| |power!| |dark|
- |firstNumer| |epilogue| |cPower| |reducedSystem| |factorFraction|
- |binaryTournament| |dfRange| |horizConcat| |cubic| |acotIfCan|
- |noKaratsuba| |possiblyNewVariety?| |insertBottom!| |showTheIFTable|
- |graphs| |extendedResultant| |positiveSolve| |build| |s17dlf| |OMsend|
- |degreeSubResultantEuclidean| |zoom| |cyclotomicDecomposition|
- |squareMatrix| |separateDegrees| |besselI| |polyred| |subTriSet?|
- |OMlistCDs| |expIfCan| |separant| |airyBi| |irreducibleFactors|
- |basisOfMiddleNucleus| |d01anf| |bag| |triangulate|
- |seriesToOutputForm| |moreAlgebraic?| |optional| |qfactor|
- |palglimint| |lyndon?| |weierstrass| |rightUnit| |subst|
- |associatorDependence| |lazyPseudoQuotient| |singleFactorBound|
- |genericLeftMinimalPolynomial| |updatD| |flatten| |primextendedint|
- |fractRadix| |setErrorBound| |determinant| |subResultantGcd|
- |perfectNthRoot| |alternating| |mulmod| |floor| |extend| |figureUnits|
- |mainForm| |curve?| |internal?| |setsubMatrix!| |mathieu12|
- |rightTraceMatrix| |makeCrit| |inrootof| |distdfact| |delta|
- |printInfo| |semiResultantReduitEuclidean| |preprocess| |returns|
- |roughEqualIdeals?| |subCase?| |paren| |solveid| |row| |block|
- |pascalTriangle| |imagI| |loopPoints| |weights| |viewDeltaYDefault|
- |byteBuffer| |lazyPrem| |argumentList!| |factorSquareFree| |rational?|
- |generalSqFr| |second| |content| |rischDEsys| |mainCoefficients|
- |unitsColorDefault| |linearDependenceOverZ| |OMbindTCP|
- |fillPascalTriangle| |halfExtendedResultant2| |anfactor| |listLoops|
- |third| |subset?| |karatsubaDivide| |lfinfieldint| |getPickedPoints|
- |removeConstantTerm| |exteriorDifferential| |heapSort|
- |numberOfOperations| |groebnerFactorize| |linears| |objects|
- |curveColor| |permutationRepresentation| |pointData| |laurentIfCan|
- |whileLoop| |cCoth| |tanIfCan| |symmetric?| |empty?| |base| |nodeOf?|
- |ratpart| |remainder| |conical| |expt| |acschIfCan| |summation|
- |dualSignature| |rst| |makeVariable| |rationalFunction| |makeSin|
- |OMputEndObject| |isobaric?| |removeZero| |categories| |bsolve|
- |iicot| |palglimint0| |messagePrint| |yCoordinates| |resize| |lambda|
- |innerEigenvectors| |numberOfFractionalTerms| |getConstant|
- |external?| |generalizedContinuumHypothesisAssumed|
- |transcendentalDecompose| |critT| |nthExpon| |bit?| |mirror| |iiacsch|
- |monicModulo| |thenBranch| |adaptive?| |high| |vconcat| |shrinkable|
- |digamma| |iisech| |e02ajf| |lflimitedint| |solveLinearlyOverQ|
- |OMputEndApp| |semicolonSeparate| |monomials| |bounds| |lyndonIfCan|
- |ridHack1| |constantKernel| |region| |matrixDimensions| |rotate!|
- |octon| |tanNa| |aCubic| |OMsupportsSymbol?| |splitSquarefree|
- |indiceSubResultant| |normal?| |root| |laplace|
- |stoseInvertibleSetsqfreg| |escape| |minColIndex| |headAst| |vedf2vef|
- |constant?| |quasiMonic?| |sts2stst| |goodnessOfFit| |concat|
- |bandedHessian| |nextColeman| |fortranInteger|
- |rewriteIdealWithHeadRemainder| |algebraicSort| |stack| |lieAlgebra?|
- |toroidal| |nlde| |changeBase| |symFunc| |f04faf| |more?|
- |totalDegree| |square?| |lprop| |parents| |eulerE|
- |derivationCoordinates| |Beta| |wholeRagits| |rquo| |s19acf| |tRange|
- |readUInt32!| |makeYoungTableau| |dmpToHdmp| |acscIfCan| |sncndn|
- |lowerCase!| |pointLists| |e01sef| |cotIfCan| |upperCase|
- |LyndonCoordinates| |complexForm| |realSolve| |previous| |replace|
- |qroot| |orOperands| |dihedralGroup| |tan2cot|
- |exprHasLogarithmicWeights| |thetaCoord| |setProperty!| |charthRoot|
- |interpretString| |leftQuotient| |minimize| |transcendent?| |setPoly|
- |elements| |cyclotomic| |mindeg| |bumptab| |removeCoshSq| |infix|
- |inR?| |pomopo!| |OMclose| |alphanumeric| |univariate?|
- |semiResultantEuclideannaif| |integers| |leftMinimalPolynomial|
- |perspective| |operators| |sylvesterSequence| |extendedEuclidean|
- |janko2| |coth2tanh| |cSech| |hasoln| |obj| |alphanumeric?|
- |OMputObject| |mkIntegral| |hdmpToP| |light| |distribute| |singular?|
- |direction| |nthExponent| |nthFactor| |insertRoot!| |cache|
- |printHeader| |closedCurve?| |removeSinhSq| |axesColorDefault|
- |integralMatrixAtInfinity| |represents| |bringDown| |imagj|
- |abelianGroup| |logIfCan| |firstSubsetGray| |linear?|
- |screenResolution3D| |setTex!| |upperCase?| |radicalOfLeftTraceForm|
- |binaryTree| |deepExpand| |queue| |heap| |mkPrim| |makeCos| |point?|
- |iilog| |interpolate| |makeprod| |genericLeftTraceForm| |OMgetEndBind|
- |s19abf| |andOperands| |triangularSystems| |readLine!|
- |measure2Result| |coerceS| |edf2df| |f02fjf| |bits| |moduloP| |ideal|
- |semiIndiceSubResultantEuclidean| |brillhartTrials| |modularFactor|
- |sec2cos| |Vectorise| |OMgetVariable| |mindegTerm| |approxSqrt|
- |gcdcofactprim| |list| |padecf| |jacobi| |quote| |convergents|
- |binomThmExpt| |removeRedundantFactorsInContents| |iitan|
- |taylorIfCan| |iiatan| |squareTop| |mapExponents| |car| |pdct|
- |cothIfCan| |SturmHabichtSequence| |fortranReal| |OMencodingBinary|
- |e01baf| |less?| |derivative| |palgLODE0| |cdr| |iifact| |OMread|
- |c06eaf| |rule| |shift| |deepestTail| |constantLeft|
- |componentUpperBound| |rootsOf| |cond| |iicosh| |iiexp| |declare|
- |setDifference| |clearTable!| |ceiling| |resetVariableOrder| |cCos|
- |viewDefaults| |callForm?| |currentScope| |lastSubResultantEuclidean|
- |push!| |top!| |setIntersection| |internalSubPolSet?| |domainOf|
- |s17dcf| |resetAttributeButtons| |bipolarCylindrical|
- |mainPrimitivePart| |polygamma| |antiCommutator| |dimensionsOf|
- |setUnion| |scopes| |quadratic| |differentialVariables| |subNodeOf?|
- |flexible?| |setMinPoints3D| |sinhcosh| |validExponential|
- |changeMeasure| |pseudoRemainder| |apply| |algSplitSimple| |rdregime|
- |capacity| |splitLinear| |localUnquote| |repSq| |continuedFraction|
- |OMputFloat| |complexEigenvalues| |subPolSet?| |LiePoly|
- |wordInStrongGenerators| |Aleph| |bivariateSLPEBR| |compiledFunction|
- |closed?| |stoseInvertible?sqfreg| |round| |generalizedEigenvector|
- |mainContent| |size| |LagrangeInterpolation| |diagonalProduct|
- |sumOfSquares| |outputGeneral| |mapDown!| |void| |externalList|
- |createPrimitiveNormalPoly| |hasTopPredicate?| |addPointLast|
- |lighting| |generalizedContinuumHypothesisAssumed?| |getRef|
- |setLength!| |s17dgf| |halfExtendedSubResultantGcd2| |mapMatrixIfCan|
- |groebner?| |outputAsTex| |cyclic| |basicSet| |redPo| |surface|
- |schwerpunkt| |position!| |properties| |setMaxPoints| |solveLinear|
- |sumOfDivisors| |coordinates| |first| |explicitEntries?| |rightGcd|
- |readUInt16!| |mathieu23| |tanSum| |rationalPower| |parts|
- |degreeSubResultant| |translate| |removeDuplicates!| |kmax|
- |internalSubQuasiComponent?| |rest| |f2df|
- |genericRightMinimalPolynomial| |compactFraction| |implies?| |romberg|
- |fullDisplay| |s17ahf| |substitute| |tube| |OMconnectTCP|
- |insertMatch| |stopMusserTrials| |karatsuba| |linearlyDependent?|
- |monomial?| |hexDigit?| |wordInGenerators| |removeDuplicates|
- |palgextint| |say| |numberOfMonomials| |spherical|
- |removeIrreducibleRedundantFactors| |makeSeries| |normFactors|
- |realEigenvectors| |factorSquareFreePolynomial| |iidprod| |s20acf|
- |mergeFactors| |ksec| |ignore?| |squareFreeLexTriangular| |lintgcd|
- |parseString| |lex| |product| |traceMatrix| |hcrf| |satisfy?|
- |leastMonomial| |match?| |setlast!| |leftGcd|
- |internalLastSubResultant| |zeroDimPrime?| |simplify| |quadraticForm|
- |linearAssociatedLog| |LyndonBasis| |ScanArabic| |double?|
- |fortranCompilerName| |computeCycleEntry| |divisors| |list?|
- |lagrange| |generic| |mainExpression| |findBinding| |viewport2D|
- |useSingleFactorBound| |selectPolynomials| |monomialIntegrate|
- |selectFiniteRoutines| |associatedEquations| |fractRagits| |composite|
- |fprindINFO| |equality| |nthFractionalTerm| |rightNorm| |extendIfCan|
- |categoryFrame| |bitLength| |mvar| |dimensions|
- |leadingCoefficientRicDE| |structuralConstants| |script| |errorKind|
- |sylvesterMatrix| |getGraph| |module| GF2FG |tubePoints| |ldf2vmf|
- |exQuo| ** |s18dcf| |minPoints| |complexNumericIfCan| |debug|
- |overlabel| |just| |putGraph| |subscriptedVariables| FG2F
- |getProperty| |coerceListOfPairs| |SturmHabicht| |nil?| |pushup| D
- |invmultisect| |rationalApproximation| |OMopenFile| |complexIntegrate|
- |slash| |limitedIntegrate| |semiDegreeSubResultantEuclidean|
- |dioSolve| |setScreenResolution| |shufflein| |tex| |rightAlternative?|
- |ScanFloatIgnoreSpacesIfCan| |complete| EQ |FormatRoman|
- |rewriteSetWithReduction| |dn| |cAcsch| |d02ejf| |keys| |repeating|
- |e02dff| |double| |hclf| |characteristicPolynomial| |OMputError|
- |resultantnaif| |terms| |d01gbf| |isPower| |lieAdmissible?|
- |cyclicEqual?| |writeInt8!| |selectOrPolynomials| |differentiate|
- |critMTonD1| |subResultantChain| |leftPower| |leftFactorIfCan|
- |aromberg| |selectSumOfSquaresRoutines| |someBasis| |pr2dmp|
- |fortranLiteralLine| |hessian| |rootPoly| |asinhIfCan| |viewpoint|
- |supDimElseRittWu?| |prime?| |primitive?| |bernoulli| |padicFraction|
- |definingInequation| |constant| |rk4f| |primPartElseUnitCanonical!|
- |iteratedInitials| |baseRDEsys| |stoseInvertibleSetreg| |bipolar|
- |leadingSupport| |constantToUnaryFunction| |e01bhf|
- |incrementKthElement| |LiePolyIfCan| |finiteBound| |char|
- |fixedDivisor| |rightMinimalPolynomial| |removeRedundantFactors|
- |size?| |setEmpty!| |varList| |iibinom| |composites| |solid?|
- |stiffnessAndStabilityFactor| |ricDsolve| |unrankImproperPartitions0|
- |infieldint| |iCompose| |dequeue| |blue| |topFortranOutputStack|
- |initials| |hasPredicate?| |eigenMatrix| |split!| |gcdPolynomial|
- |mapUnivariateIfCan| |var1StepsDefault| |e04ucf| |randomR|
- |knownInfBasis| |fixedPoint| |deepestInitial| |lazyPquo| |allRootsOf|
- |print| |declare!| |divisor| |hyperelliptic| |/\\| |OMgetError|
- |generalTwoFactor| |OMencodingUnknown| |level| |sin?| |makeViewport3D|
- |f02aff| |univariatePolynomials| |resolve| |OMputInteger| |\\/|
- |e01saf| |nonSingularModel| |color| |useSingleFactorBound?| |besselK|
- |dec| |factorsOfDegree| |d02bbf| |groebgen| |bracket| |exptMod|
- |upperCase!| |eigenvalues| |leftZero| |partialQuotients| |addBadValue|
- |adaptive| |computeBasis| |linearAssociatedExp| |writeLine!|
- |rightExactQuotient| |squareFreePrim| |edf2efi| |rootOf| |e02bef|
- |aQuadratic| |wholeRadix| |showTheRoutinesTable| |stoseSquareFreePart|
- |polygon?| |formula| |tableau| |kind| |maxrow| |nilFactor|
- |zeroDimPrimary?| |increase| |degree| |setleft!| |readable?|
- |insertTop!| |sinh2csch| |iiacos| |normDeriv2| |op| |c06fpf| |back|
- |algDsolve| |mathieu22| |choosemon| |d01akf| |tanQ| |nullary|
- |evaluateInverse| |diagonal| |countRealRootsMultiple| |pseudoDivide|
- |accuracyIF| |getDatabase| |OMgetEndObject| |topPredicate| |cycleElt|
- |normal01| |cSinh| |segment| |removeSinSq| |var1Steps| |nextItem|
- |cyclicSubmodule| |Gamma| |Si| F |graphStates| |primintfldpoly|
- |f02axf| |sup| |nrows| |leftRank| |sizeLess?| |finite?|
- |createNormalElement| |printStatement| |extract!| |principal?|
- |setAdaptive3D| |expandPower| |ncols| |mapdiv| |node| |iflist2Result|
- |yCoord| |kovacic| |maxdeg| |outputSpacing| |element?| |quadraticNorm|
- |e02bcf| |shanksDiscLogAlgorithm| |notOperand| |internalDecompose|
- |binarySearchTree| |eigenvectors| |edf2fi| |readInt32!| |doubleDisc|
- |insert| |htrigs| |plus| |center| |LyndonWordsList| |adaptive3D?|
- |factorList| |palgLODE| |e01bef| |bindings| |factorGroebnerBasis|
- |union| |rational| |outputAsScript| |tanh2coth| |scale|
- |pushFortranOutputStack| |scanOneDimSubspaces| |collectQuasiMonic|
- |redPol| |rspace| |mix| |hypergeometric0F1| |df2ef| |saturate|
- |buildSyntax| |sign| |close| |eyeDistance| |popFortranOutputStack|
- |makeFloatFunction| |numericalIntegration| |PollardSmallFactor|
- |certainlySubVariety?| |sdf2lst| |oddInfiniteProduct| |rootNormalize|
- |leftTraceMatrix| |leadingExponent| |changeWeightLevel| |ocf2ocdf|
- |d02gbf| |orthonormalBasis| |qelt| |parametric?|
- |ScanFloatIgnoreSpaces| |findConstructor| |complexNormalize|
- |createNormalPoly| |sinIfCan| |deref| |display| |qsetelt|
- |blankSeparate| |front| |fractionFreeGauss!| |fixPredicate| |localAbs|
- |splitDenominator| |entry?| |radicalEigenvector| |unitVector|
- |stFunc2| |doublyTransitive?| |swap!| |ptree| |OMencodingXML| |xRange|
- |readLineIfCan!| |complement| |getOperands| |intensity|
- |identitySquareMatrix| |lfextendedint| |prolateSpheroidal|
- |complementaryBasis| |integerBound| |point| |rarrow| |headReduce|
- |yRange| |over| |printTypes| |slex| |iicos| |varselect| |setEpilogue!|
- |evenInfiniteProduct| |magnitude| |outputAsFortran| |lazy?| |e01bff|
- |integral| |zRange| |mathieu11| |pop!| |principalIdeal|
- |OMlistSymbols| |discriminantEuclidean| |sqfrFactor| |selectsecond|
- |map!| |maxPoints3D| |printStats!| |radix| |recoverAfterFail|
- |fortranDouble| |specialTrigs| |idealSimplify| |updatF| |critpOrder|
- |input| |chiSquare| |ratDenom| |series| |principalAncestors|
- |qsetelt!| |palgRDE| |diagonalMatrix| |getBadValues|
- |bezoutDiscriminant| |iomode| |showAllElements| |sumSquares| |lepol|
- |library| |left| |lowerCase?| |torsionIfCan| |denomRicDE| |tanhIfCan|
- |tracePowMod| |s14aaf| |pastel| |rightQuotient| |algebraicOf|
- |resultantEuclideannaif| |right| |rightUnits| |roman| |listexp|
- |cyclicGroup| |s17aef| |f01mcf| |clearFortranOutputStack| |low|
- |pushdterm| |is?| |sturmVariationsOf| |initiallyReduced?| |e01daf|
- |outputForm| |retractable?| |partialNumerators| |equation|
- |subResultantsChain| |solveRetract| |prinpolINFO| |c06gcf| |min|
- |getMeasure| |aLinear| |multMonom| |viewSizeDefault|
- |UpTriBddDenomInv| |genericRightTraceForm| |swapRows!|
- |rightFactorIfCan| |d03eef| |set| |category| |signAround| |unitNormal|
- |extractProperty| |acsch| |crushedSet| |listConjugateBases| |f02bjf|
- |pmComplexintegrate| |integrate| |reduceBasisAtInfinity| |getCurve|
- |alphabetic?| |domain| |cTanh| |makeMulti| |removeSquaresIfCan|
- |entries| |denomLODE| |setFormula!| |augment| |cCsc| |points|
- |package| |sort!| |interval| |padicallyExpand|
- |linearlyDependentOverZ?| |iExquo| |connectTo| |rowEchLocal| |baseRDE|
- |cExp| |overlap| |cn| |expr| |genericRightDiscriminant|
- |OMsetEncoding| |writeBytes!| |reduceByQuasiMonic| |nonQsign|
- |algebraic?| |primlimintfrac| |f02aaf| |open?| |selectODEIVPRoutines|
- |mapmult| |index?| |OMencodingSGML| |basisOfLeftNucloid|
- |homogeneous?| |showFortranOutputStack| |e04dgf| |fortran|
- |optAttributes| |d02bhf| |f07fef| |log2| |viewWriteDefault|
- |elementary| |f02aef| |fracPart| |BumInSepFFE| |linearAssociatedOrder|
- |dom| |leftRecip| |null?| |rootDirectory| |var2Steps| |status|
- |setColumn!| |internalIntegrate0| |euclideanGroebner| |expextendedint|
- |ffactor| |variable| |ScanRoman| |transpose|
- |rightCharacteristicPolynomial| |wreath| |reverseLex| |cross| |symbol|
- |coshIfCan| |enumerate| |upDateBranches| |mergeDifference| |iterators|
- |singRicDE| |listOfLists| |polyRicDE| |standardBasisOfCyclicSubmodule|
- |e02baf| |member?| |rationalPoint?| |erf| |expression|
- |semiSubResultantGcdEuclidean2| |fortranCharacter| |e02gaf| |f04atf|
- |returnTypeOf| |regime| |stopTableInvSet!| |cAcosh| |bfEntry|
- |repeatUntilLoop| |antiAssociative?| |integer| |diff| |show|
- |putColorInfo| |atoms| |asinIfCan| |lifting1| |critB|
- |resultantReduitEuclidean| |parent| |rightDivide|
- |createRandomElement| |decimal| |weight| |moebiusMu| |lazyGintegrate|
- |children| |complexRoots| |title| |singularAtInfinity?| |numberOfHues|
- |ddFact| |euclideanSize| |close!| |dilog| |trace| |reverse| |plus!|
- |e02ahf| |triangSolve| |rootSplit| |e02ddf| |smith| |ListOfTerms|
- |cAcoth| |indicialEquation| |createPrimitiveElement| |sin| |rCoord|
- |patternMatchTimes| |associative?| |palgRDE0| |rootBound| |OMputBind|
- |leftAlternative?| |delay| |solid| |c06gbf| |next| |cos| |ef2edf|
- |quotient| |truncate| |leftRankPolynomial| |eof?| |e| |OMgetBind|
- |exponent| |cSec| |fglmIfCan| |host| |csch2sinh| |tan| |reduction|
- |csubst| |label| |minrank| |s13acf| |asimpson| |e02daf| |sample|
- |failed?| |denominator| |exprToGenUPS| |subresultantVector| |cot|
- |basisOfRightNucloid| |d01amf| |setvalue!| |probablyZeroDim?|
- |getOrder| |critM| |computeCycleLength| |true| |s01eaf| |po|
- |HermiteIntegrate| |radicalEigenvectors| |sec| |debug3D| |lllp|
- |quoByVar| |pile| |stoseInvertibleSet| |dictionary| |problemPoints|
- |ip4Address| |iiacot| |halfExtendedResultant1| |csc| |arrayStack|
- |ranges| |genericLeftTrace| |c02aff| |denominators| |Lazard2| |f01bsf|
- |limit| |nullSpace| |distFact| |makeResult| |asin| |hash| |iicoth|
- |makeop| |asecIfCan| |areEquivalent?| |decreasePrecision| |pol|
- |removeCosSq| |innerint| |trigs| |changeNameToObjf| |lazyVariations|
- |acos| |count| |recolor| |members| |perfectNthPower?| |prime| |conjug|
- |viewport3D| |bezoutResultant| |symmetricRemainder| |imagJ| |exp1|
- |middle| |atan| |rightRecip| |minimumDegree| |bubbleSort!| |sincos|
- |doubleFloatFormat| |stoseInvertible?| |basisOfRightAnnihilator|
- |gcdprim| |constructor| |distance| |relationsIdeal| |fTable| |acot|
- |divisorCascade| |cyclePartition| |f04mbf| |asechIfCan| |empty|
- |closeComponent| |e01bgf| |leaves| |multiplyCoefficients| |dimension|
- |inf| |reverse!| |tower| |asec| |option| |harmonic| |fintegrate|
- |changeVar| |pair?| |getSyntaxFormsFromFile| |findCycle| |infRittWu?|
- |degreePartition| |showArrayValues| |red| |invertibleElseSplit?|
- |acsc| |modTree| |powern| |directSum| |swapColumns!| |pleskenSplit|
- |resetNew| |initiallyReduce| |optional?| |sturmSequence|
- |explimitedint| |LowTriBddDenomInv| |sinh| |symmetricProduct|
- |removeZeroes| |s17akf| |diagonal?| |ptFunc| |implies| |OMwrite|
- |setClipValue| |mesh?| |imaginary| |nthFlag| |cosh| |cup| |read!|
- |f07adf| |realEigenvalues| |maxRowIndex| |insertionSort!|
- |oblateSpheroidal| |leftTrace| |cAsinh| |lazyPseudoRemainder|
- |constantRight| |postfix| |tanh| |doubleResultant| |irreducible?|
- |midpoints| |gethi| |numberOfImproperPartitions| |assign|
- |roughSubIdeal?| |iisec| |increasePrecision| |polyRDE| |ReduceOrder|
- |complexNumeric| |companionBlocks| |coth| |rightTrim| |binding|
- |bottom!| |brillhartIrreducible?| |fortranLogical|
- |sumOfKthPowerDivisors| |tubePointsDefault| |leadingIndex| |curryLeft|
- |OMputSymbol| |or?| |readIfCan!| |s13adf| |SturmHabichtMultiple|
- |sech| |leftTrim| |exponential| |subtractIfCan| |exportedOperators|
- |orbit| |rroot| |realRoots| |basis| |mapUp!| |kernels| |continue|
- |routines| |commonDenominator| |minset| |univariatePolynomial| |csch|
- |rules| |unknown| |polCase| |selectMultiDimensionalRoutines|
- |unprotectedRemoveRedundantFactors| |hue| |stosePrepareSubResAlgo|
- |imagK| |identityMatrix| |rootProduct| |intcompBasis| |PDESolve|
- |headRemainder| |asinh| |univariate| |test| |iiacsc| |trapezoidal|
- |prepareDecompose| |realZeros| |dmpToP| |selectNonFiniteRoutines|
- |has?| |binary| |orbits| |nextsousResultant2| |zero?| |acosh|
- |predicate| |leftUnit| |atanIfCan| |squareFree| |partialFraction|
- |exactQuotient!| |aQuartic| |basisOfCentroid| |multiEuclideanTree|
- |partialDenominators| NOT |supRittWu?| |tubeRadiusDefault| |atanh|
- |doubleRank| |stronglyReduce| |enterPointData| |shiftRight| |c06fuf|
- |traverse| |rootRadius| |univcase| |prefix| |inconsistent?| OR
- |computePowers| |d03edf| |acoth| |factor| |leviCivitaSymbol|
- |frobenius| |leftNorm| |cAtan| |setnext!| |merge| |appendPoint|
- |OMputVariable| AND |showRegion| |OMgetType| |localIntegralBasis|
- |sqrt| |asech| |irreducibleRepresentation| |modulus| |normalizeIfCan|
- |Ei| |fortranLinkerArgs| |tab| |dominantTerm| |safeFloor| |chebyshevU|
- |integral?| |rangePascalTriangle| |real| |rotatez| |inRadical?|
- |unit?| |quasiRegular| |pattern| |showAll?| |makeViewport2D|
- |cschIfCan| |s18acf| |rename| |powmod| |qqq| |imag| |multiple|
- |fixedPoints| |tubePlot| |minimumExponent| |meshFun2Var|
- |karatsubaOnce| |leftDivide| |newSubProgram| |badValues|
- |highCommonTerms| |errorInfo| |pade| |equiv| |directProduct|
- |applyQuote| |s14abf| |nextPrimitiveNormalPoly| |f02abf| |increment|
- |minIndex| |airyAi| |cot2tan| |createNormalPrimitivePoly| |log10|
- |mapUnivariate| |positiveRemainder| |An| |crest| |gbasis|
- |expandTrigProducts| |nextPrime| |scan| |testModulus| |rightMult|
- |bitand| |mainDefiningPolynomial| |e04ycf| |wrregime| |ldf2lst|
- |quickSort| |brace| |iisinh| |parameters| |rightRankPolynomial|
- |twist| |message| |lazyResidueClass| |vertConcat| |rowEch| |s21baf|
- |bitior| |lSpaceBasis| |OMgetEndAtp| |integralMatrix| |e04mbf|
- |destruct| |ruleset| |contains?| |corrPoly| |coordinate| |powers|
- |f04asf| |characteristicSerie| |extractBottom!|
- |wordsForStrongGenerators| |univariatePolynomialsGcds| |writable?|
- |getGoodPrime| |f07aef| |number?| |OMreadStr| |nthr|
- |particularSolution| |cycleEntry| |inGroundField?|
- |removeRedundantFactorsInPols| |real?| |restorePrecision| |f04adf|
- |monicLeftDivide| |getButtonValue| |newReduc| |vectorise| |ODESolve| *
- |listRepresentation| |algintegrate| |d01alf| |suchThat|
- |divideExponents| |iitanh| |reduceLODE| |iprint| |shallowExpand|
- |green| |meshPar1Var| |graphCurves| |mapExpon| |string?| |monomial|
- |rdHack1| |outerProduct| |overset?| |clearDenominator| |d02raf|
- |oneDimensionalArray| |moebius| |sizePascalTriangle| |setAdaptive|
- |cosIfCan| |cons| |multivariate| |dot| |variationOfParameters|
- |functionIsOscillatory| |rombergo| |outputBinaryFile| |cartesian|
- |divideIfCan!| |s20adf| |extractIfCan| |linear| |normalize| |create|
- |variables| |countable?| |tanAn| |elColumn2!| |cyclicParents| |bfKeys|
- |lowerPolynomial| |roughUnitIdeal?| |chineseRemainder|
- |dimensionOfIrreducibleRepresentation| |cAcos|
- |lastSubResultantElseSplit| |polar| |delete!| |axes| |key?| |zerosOf|
- |signature| |complexLimit| |acothIfCan| |OMputEndBVar| |polynomial|
- |numberOfComposites| |typeList| |select!| |seriesSolve| |groebSolve|
- |c05adf| |iroot| |rootSimp| |torsion?| |extension| |latex| Y
- |splitConstant| |superHeight| |xCoord| |cycleSplit!|
- |toseLastSubResultant| |zeroSquareMatrix| |c06fqf|
- |cyclotomicFactorization| |makeEq| |ode2| |invertible?| |lllip| |hex|
- |polyPart| |cfirst| |hasSolution?| |semiLastSubResultantEuclidean|
- |coleman| |source| |taylor| |rank| |objectOf| |ramifiedAtInfinity?|
- |nullity| |prevPrime| |arguments| |space| |neglist| |youngGroup|
- |invmod| |nativeModuleExtension| |laurent| |makeGraphImage|
- |trigs2explogs| |trapezoidalo| |lazyPremWithDefault| |identification|
- |null| |shiftRoots| |OMopenString| |OMgetApp| |e02zaf|
- |semiResultantEuclidean1| |arg1| |puiseux| |normalDeriv|
- |selectOptimizationRoutines| |laguerreL| |and?| |leftLcm| |not|
- |s17acf| |exponents| |presuper| |s21bdf| |root?| |arg2|
- |constantOpIfCan| |startTableGcd!| |bumptab1| |coefficients|
- |rubiksGroup| |and| |resultant| |eulerPhi| |reduced?|
- |generateIrredPoly| |mpsode| |inv| |nextSubsetGray| |completeHensel|
- |cap| |imagi| |or| |linearPolynomials| |integralRepresents|
- |leftUnits| |physicalLength!| |duplicates| |redpps| |target| |ground?|
- |conditions| |check| |eisensteinIrreducible?| |nextSublist|
- |modularGcdPrimitive| |xor| |inHallBasis?| |mainKernel| |OMgetFloat|
- UTS2UP |numFunEvals| |factorSFBRlcUnit| |ground| |match|
- |systemCommand| |qinterval| |ellipticCylindrical| |primeFactor|
- |maxPoints| |case| |conjugates| |safeCeiling| |setClosed| |write!|
- |sorted?| |leadingMonomial| |lhs| |csc2sin| |semiResultantEuclidean2|
- |RittWuCompare| |maxint| |Zero| |setfirst!| |UP2ifCan| |equiv?|
- |nodes| |clipSurface| |leadingCoefficient| |rhs| |solve| |coth2trigh|
- |One| |wholePart| |chvar| |frst| |infLex?| |simpson|
- |OMUnknownSymbol?| |primitiveMonomials| |pdf2df| |normal|
- |factorOfDegree| |connect| |conditionsForIdempotents|
- |createGenericMatrix| |kroneckerDelta| |c06ecf| |mainVariables|
- |tan2trig| |ravel| |reductum| |cCsch| |reducedQPowers| |rightTrace|
- |primextintfrac| |iisin| |e04fdf| |bat1| |f02agf| |controlPanel|
- |reshape| |rootOfIrreduciblePoly| |lift| |euclideanNormalForm|
- |iFTable| |lyndon| |elem?| |name| |initializeGroupForWordProblem|
- |sinhIfCan| |pushdown| |reduce| |solve1| |impliesOperands| |sechIfCan|
- |mkAnswer| |aspFilename| |totalLex| |body| |numeric| |ParCondList|
- |typeLists| |limitedint| |f01ref| |gramschmidt| |logical?| |elt|
- |gcdcofact| |lifting| |removeRoughlyRedundantFactorsInContents|
- |radical| |contours| |unvectorise| |zeroSetSplit| |d01ajf| |badNum|
- |nil| |infinite| |arbitraryExponent| |approximate| |complex|
+ |Record| |Union| |simpleBounds?| |nonSingularModel| |units| |inv|
+ |monomRDE| |minimize| |univariatePolynomial| |internalSubPolSet?|
+ |stronglyReduced?| |removeSuperfluousCases| |open?| |leftUnits|
+ |ground?| |ode1| |readBytes!| |color| |polCase| |transcendent?|
+ |domainOf| |credPol| |selectODEIVPRoutines| |defineProperty|
+ |physicalLength!| |rischDE| |ground| |useSingleFactorBound?|
+ |strongGenerators| |port| |viewPhiDefault| |setPoly|
+ |selectMultiDimensionalRoutines| |s17dcf| |atanhIfCan| |iiabs|
+ |mapmult| |duplicates| |squareFreePart| |odd?| |leadingMonomial|
+ |showScalarValues| |besselK| |unprotectedRemoveRedundantFactors|
+ |elements| |resetAttributeButtons| |viewThetaDefault| |cAsin| |index?|
+ |redpps| |factorsOfDegree| |factor1| |f02wef| |cyclotomic| |t|
+ |leadingCoefficient| |hue| |exquo| |bipolarCylindrical| |overbar|
+ |key| |OMencodingSGML| |conditionP| |code| |check| |arg1| |d02bbf|
+ |div| |setStatus!| |primitiveMonomials| |printInfo!|
+ |stosePrepareSubResAlgo| |mindeg| |basisOfLeftNucloid| |froot|
+ |mainPrimitivePart| |nextNormalPoly| |symmetricTensors|
+ |eisensteinIrreducible?| |groebgen| |arg2| |quo| |viewWriteAvailable|
+ |rewriteIdealWithRemainder| |reductum| |imagK| |bumptab|
+ |homogeneous?| |filename| |subMatrix| |polygamma| |startStats!|
+ |generic?| |printInfo| |nextSublist| |getStream| |bracket|
+ |branchIfCan| |identityMatrix| |removeCoshSq| |antiCommutator| |not?|
+ |initTable!| |showFortranOutputStack| |internalInfRittWu?|
+ |modularGcdPrimitive| |rootProduct| |exptMod| |s17agf| |rem|
+ |createThreeSpace| |infix| |conditions| |dimensionsOf| |parse|
+ |setOrder| |createZechTable| |e04dgf| |inHallBasis?| |applyRules|
+ |sub| |intcompBasis| |upperCase!| |inR?| |match| |scopes| |elRow1!|
+ |optAttributes| |expintfldpoly| |mainKernel| |reciprocalPolynomial|
+ |central?| |eigenvalues| |pomopo!| |PDESolve| |unit| |quadratic| |Nul|
+ |d02bhf| |OMgetFloat| |palgint| |leftZero| |revert| |OMclose|
+ |headRemainder| |differentialVariables| |fibonacci| |sequence|
+ |f07fef| UTS2UP |alphanumeric| |primPartElseUnitCanonical|
+ |partialQuotients| |exponential1| |iiacsc| |substring?| |drawComplex|
+ |subNodeOf?| |log2| |modifyPoint| |numFunEvals| |showSummary|
+ |shallowCopy| |addBadValue| |order| |trapezoidal| |univariate?|
+ |multiEuclidean| |flexible?| |normalizeAtInfinity| |viewWriteDefault|
+ |parameters| |factorSFBRlcUnit| |createLowComplexityTable| |e02adf|
+ |adaptive| |semiResultantEuclideannaif| |prepareDecompose| |suffix?|
+ |pack!| |setMinPoints3D| |elementary| |matrixConcat3D| |qinterval|
+ |pointColorPalette| |showAttributes| |computeBasis| |realZeros|
+ |integers| |semiDiscriminantEuclidean| |sinhcosh| |f02aef|
+ |setMaxPoints3D| |ellipticCylindrical| |result| |headReduced?|
+ |linearAssociatedExp| |leftMinimalPolynomial| |polygon| |dmpToP|
+ |prefix?| |validExponential| |numerator| BY
+ |tableForDiscreteLogarithm| |fracPart| |primeFactor| |symmetricSquare|
+ |balancedFactorisation| |writeLine!| |reset| |selectNonFiniteRoutines|
+ |perspective| |changeMeasure| |besselY| |simplifyExp| |BumInSepFFE|
+ |maxPoints| |se2rfi| |createLowComplexityNormalBasis|
+ |rightExactQuotient| |has?| |operators| |linearAssociatedOrder|
+ |numberOfNormalPoly| |tryFunctionalDecomposition?| |conjugates|
+ |sqfree| |squareFreePrim| |bivariatePolynomials| |write| |binary|
+ |sylvesterSequence| |genus| |leftRecip| |e02dcf|
+ |unrankImproperPartitions1| |safeCeiling|
+ |removeRoughlyRedundantFactorsInPols| |atrapezoidal| |edf2efi| |save|
+ |zero| |setPredicates| |extendedEuclidean| |orbits| |Is|
+ |clearTheFTable| |rk4qc| |null?| |readInt8!| |setClosed| |even?|
+ |node?| |rootOf| |janko2| |nextsousResultant2| |constantOperator|
+ |plotPolar| |nthRootIfCan| |rootDirectory| |write!| |e02aef| |nothing|
+ |infix?| |And| |zero?| |coth2tanh| |nextsubResultant2| |var2Steps|
+ |selectAndPolynomials| |lazyIntegrate| |sorted?|
+ |factorSquareFreeByRecursion| |FormatRoman| |pointColorDefault|
+ |leftUnit| |Or| |mask| |cSech| |setProperties| |setColumn!|
+ |alphabetic| |tablePow| |csc2sin| |minGbasis| |jacobian|
+ |plusInfinity| |rewriteSetWithReduction| |Not| |hasoln| |atanIfCan|
+ |unitCanonical| |internalIntegrate0| |critMonD1| |lfintegrate|
+ |semiResultantEuclidean2| |dn| |f07fdf| |minusInfinity| |cycleRagits|
+ |alphanumeric?| |squareFree| |lexGroebner| |rootKerSimp| |rank|
+ |RittWuCompare| |e01sff| |palgint0| |cAcsch| |OMputObject|
+ |partialFraction| |checkForZero| |ratDenom| |splitNodeOf!| |e02def|
+ |maxint| |f01rdf| |option?| |d02ejf| |mkIntegral| |exactQuotient!|
+ |balancedBinaryTree| |principalAncestors| |f04maf| |width| |multiple?|
+ |setfirst!| |weighted| |repeating| |limitPlus| |hdmpToP| |aQuartic|
+ |viewDeltaXDefault| |palgRDE| |s19adf| |firstDenom| |UP2ifCan|
+ |completeEchelonBasis| |cAsec| |e02dff| |flatten| |collect| |rk4|
+ |diagonalMatrix| |possiblyInfinite?| |equiv?| |setprevious!|
+ |outputFloating| |type| |hclf| |inf| |adaptive?| |llprop|
+ |primlimitedint| |getBadValues| |viewPosDefault| |nodes|
+ |removeSuperfluousQuasiComponents| |outputArgs|
+ |characteristicPolynomial| |reverse!| |high| |bezoutDiscriminant|
+ |sizeMultiplication| |numer| |radicalRoots| |primintegrate|
+ |clipSurface| |iidsum| |coercePreimagesImages| |harmonic| |OMputError|
+ |vconcat| |hasHi| |iomode| |myDegree| |linSolve| |denom| |iiasin|
+ |extractSplittingLeaf| |iiasech| |resultantnaif| |shrinkable|
+ |fintegrate| |deleteRoutine!| |showAllElements| |RemainderList|
+ |primaryDecomp| |axes| |getMatch| |terms| |qualifier| |changeVar|
+ |digamma| |polarCoordinates| |sumSquares| |associator| |pi| |optional|
+ |key?| |s18adf| |monic?| |leadingIdeal| |d01gbf| |iisech| |pair?|
+ |eigenvector| |lepol| |d01apf| |infinity| |zerosOf| |extractPoint| ~
+ |printingInfo?| |isPower| |mainCharacterization| |e02ajf|
+ |getSyntaxFormsFromFile| |var2StepsDefault| |lowerCase?| |concat!|
+ |complexLimit| |f02awf| |lift| |subSet| |approximants|
+ |lieAdmissible?| |lflimitedint| |findCycle| = |open| |mainVariable?|
+ |torsionIfCan| |cscIfCan| |acothIfCan| |multisect| |categories|
+ |reduce| |generator| |subresultantSequence| |OMgetAttr| |cyclicEqual?|
+ |infRittWu?| |solveLinearlyOverQ| |nullary?| |kernel| |denomRicDE|
+ |makingStats?| |curveColorPalette| |OMputEndBVar| |realElementary|
+ |writeInt8!| |zeroSetSplitIntoTriangularSystems| |degreePartition|
+ |OMputEndApp| < |draw| |stopTableGcd!| |getlo| |tanhIfCan|
+ |numberOfComposites| |term?| |socf2socdf| |cardinality|
+ |selectOrPolynomials| |semicolonSeparate| |showArrayValues| >
+ |basisOfLeftAnnihilator| |tracePowMod| |e02bdf|
+ |expenseOfEvaluationIF| |typeList| |d01gaf| |critMTonD1| |const|
+ |monomials| |red| <= |showIntensityFunctions| |leadingBasisTerm|
+ |s14aaf| |select!| |recur| |operations| |subspace| |setFieldInfo|
+ |subResultantChain| |invertibleElseSplit?| |bounds| >=
+ |toseInvertible?| |palgextint0| |pastel| |seriesSolve| |s21bcf| |rk4a|
+ |leftPower| |subHeight| |modTree| |lyndonIfCan| |makeObject|
+ |HenselLift| |in?| |rightQuotient| |groebSolve| |henselFact|
+ |extendedSubResultantGcd| |bernoulliB| |leftFactorIfCan| |ridHack1|
+ |powern| |cycle| |midpoint| |algebraicOf| |setPosition| |c05adf|
+ |clipWithRanges| |invertIfCan| |aromberg| |clearTheSymbolTable|
+ |constantKernel| |directSum| + |zeroOf| |ParCond| |coef|
+ |resultantEuclideannaif| |iroot| |clipParametric| |currentEnv| |df2st|
+ |f04qaf| |hdmpToDmp| |selectSumOfSquaresRoutines| |swapColumns!|
+ |region| - |weakBiRank| |rightUnits| |clearCache| |cyclicCopy|
+ |rootSimp| |inverseIntegralMatrixAtInfinity| |taylorQuoByVar| LODO2FUN
+ |stirling2| |someBasis| |pleskenSplit| |matrixDimensions| /
+ |rightPower| |setref| |roman| |showTheFTable| |torsion?|
+ |leftRegularRepresentation| |components| |d03faf| |pr2dmp| |rotate!|
+ |resetNew| |solveLinearPolynomialEquationByFractions| |listexp|
+ |subResultantGcdEuclidean| |extension| |cAsech| |byte| |forLoop|
+ |linearMatrix| |fortranLiteralLine| |octon| |initiallyReduce|
+ |totalDifferential| |concat| |cyclicGroup| |nextLatticePermutation|
+ |latex| |tValues| |d01fcf| |hessian| |modifyPointData| |optional?|
+ |tanNa| |cyclic?| |s17aef| |OMputEndAttr| |splitConstant| F2FG
+ |f02ajf| |rootPoly| |testDim| |sturmSequence| |aCubic|
+ |solveLinearPolynomialEquationByRecursion| |f01mcf| |trunc|
+ |superHeight| |lambert| |int| |quoted?| |asinhIfCan| |divideIfCan|
+ |explimitedint| |OMsupportsSymbol?| |collectUnder|
+ |clearFortranOutputStack| |f02xef| |intPatternMatch| |xCoord|
+ |bitTruth| |legendre| |bright| |viewpoint| |splitSquarefree|
+ |LowTriBddDenomInv| |rightDiscriminant| |low| |laurentRep| |d02gaf|
+ |cycleSplit!| |LazardQuotient2| |supDimElseRittWu?| |twoFactor|
+ |symmetricProduct| |indiceSubResultant| |squareFreePolynomial|
+ |iiacoth| |pushdterm| |mat| |toseLastSubResultant| |keys| |reverse|
+ |OMputEndAtp| |generalizedInverse| |prime?| |normal?| |removeZeroes|
+ |list| |move| |changeName| |is?| |zeroSquareMatrix|
+ |createPrimitivePoly| |enterInCache| |SFunction| |primitive?| |s17akf|
+ |root| |car| |leftScalarTimes!| |generalizedEigenvectors|
+ |sturmVariationsOf| |bytes| |c06fqf| |Frobenius| |complex?|
+ |bernoulli| |laplace| |diagonal?| |cdr| |tubeRadius| |conjugate|
+ |initiallyReduced?| |cyclotomicFactorization| |diag| |primeFrobenius|
+ |padicFraction| |ptFunc| |stoseInvertibleSetsqfreg| |setDifference|
+ |sn| |e01daf| |rule| |yRange| |oddintegers| |makeEq|
+ |showTypeInOutput| |commutativeEquality| |definingInequation| |escape|
+ |implies| |setIntersection| |declare| |printCode|
+ |nextNormalPrimitivePoly| |zRange| |outputForm| |ode2|
+ |leftCharacteristicPolynomial| |jordanAdmissible?| |rk4f| |OMwrite|
+ |minColIndex| |setUnion| |scaleRoots| |randnum| |map!| |retractable?|
+ |invertible?| |cylindrical| |cCosh| |primPartElseUnitCanonical!|
+ |setClipValue| |headAst| |apply| |partialNumerators| |qsetelt!|
+ |drawCurves| |error| |negative?| |lllip| |firstUncouplingMatrix|
+ |arity| |iteratedInitials| |vedf2vef| |mesh?| |isConnected?|
+ |subResultantsChain| |writeByte!| |assert| |hex| |mainMonomial|
+ |baseRDEsys| |primitivePart| |imaginary| |constant?| |size|
+ |stirling1| |computeInt| |dec| |solveRetract| |cos2sec| |polyPart|
+ |setVariableOrder| |bitCoef| |stoseInvertibleSetreg| |nthFlag|
+ |quasiMonic?| |sayLength| |prinpolINFO| |trueEqual| |cfirst| |meatAxe|
+ |bipolar| |addPoint| |cup| |sts2stst| |interactiveEnv|
+ |mainSquareFreePart| |minimalPolynomial| |c06gcf| |hasSolution?|
+ |iisqrt3| |leadingSupport| |transform| |read!| |goodnessOfFit| |first|
+ |minus!| |normalizedDivide| |imagE| |acsch| |getMeasure|
+ |semiLastSubResultantEuclidean| |properties| |constantToUnaryFunction|
+ |setScreenResolution3D| |bandedHessian| |coerceL| |f07adf| |failed|
+ |rest| |setright!| |s15adf| |aLinear| |coleman| |belong?| |translate|
+ |e01bhf| |OMgetEndBVar| |realEigenvalues| |nextColeman| |substitute|
+ |iterationVar| |multMonom| |OMgetEndError| |objectOf| |hexDigit|
+ |bothWays| |incrementKthElement| |fortranInteger| |maxRowIndex|
+ |removeDuplicates| |perfectSquare?| |beauzamyBound| |viewSizeDefault|
+ |ramifiedAtInfinity?| |say| |delete| |cosh2sech| |triangular?|
+ |LiePolyIfCan| |rewriteIdealWithHeadRemainder| |insertionSort!|
+ |evenlambert| |genericRightNorm| |UpTriBddDenomInv| |nullity|
+ |monicCompleteDecompose| |finiteBound| |fmecg| |oblateSpheroidal|
+ |algebraicSort| |s17dhf| |rotatey| |genericRightTraceForm| |prevPrime|
+ |drawToScale| |fixedDivisor| |lieAlgebra?| |leftTrace| |swapRows!|
+ |OMputAttr| |d01asf| |laguerre| |space| |setValue!|
+ |rightMinimalPolynomial| |leaf?| |toroidal| |cAsinh| |linGenPos|
+ |euler| |minordet| |s17ajf| |rightFactorIfCan| |neglist|
+ |startPolynomial| |functionIsContinuousAtEndPoints|
+ |removeRedundantFactors| |lazyPseudoRemainder| |nlde| |getProperties|
+ |startTableInvSet!| |usingTable?| |d03eef| |e01sbf| |youngGroup|
+ |numerators| |size?| |s15aef| |constantRight| |changeBase|
+ |signAround| |colorDef| |bumprow| |invmod| |maxrank| |refine|
+ |setEmpty!| |postfix| |symFunc| |superscript| |noLinearFactor?|
+ |unitNormal| |curve| |nativeModuleExtension| |laplacian| |iibinom|
+ |fortranCarriageReturn| |doubleResultant| |f04faf| |chebyshevT|
+ |musserTrials| |KrullNumber| |extractProperty| |makeGraphImage|
+ |purelyTranscendental?| |OMgetInteger| |composites| |irreducible?|
+ |more?| |match?| |bat| |algebraicDecompose| |crushedSet|
+ |currentSubProgram| |trigs2explogs| |scalarTypeOf| |totalDegree|
+ |midpoints| |anticoord| |prinshINFO| |listConjugateBases|
+ |internalZeroSetSplit| |trapezoidalo| |virtualDegree| |double|
+ |generic| |symmetricGroup| |gethi| |square?| |sPol|
+ |pushFortranOutputStack| |integerIfCan| |f02bjf| |Lazard|
+ |lazyPremWithDefault| |pole?| |expintegrate| |mainExpression|
+ |differentiate| |numberOfImproperPartitions| |lprop| |elRow2!|
+ |popFortranOutputStack| |iiGamma| |imports| |pmComplexintegrate|
+ |identification| |quasiAlgebraicSet| |findBinding| |part?| |eulerE|
+ |assign| |norm| |logpart| |ramified?| |simplifyLog| |shiftRoots|
+ |constant| |cRationalPower| |retractIfCan| |viewport2D| |debug|
+ |derivationCoordinates| |roughSubIdeal?| |ratPoly| |maximumExponent|
+ |extractClosed| |complexNormalize| |processTemplate| |OMopenString|
+ |fortranLiteral| |pureLex| |useSingleFactorBound| D |iisec| |Beta|
+ |createNormalPoly| |OMgetAtp| |hspace| |float| |e02akf| |OMgetApp|
+ |modularGcd| |prod| |selectPolynomials| |increasePrecision|
+ |wholeRagits| |OMputBVar| |dflist| |sinIfCan| |vspace| |e02zaf| |pquo|
+ |monomialIntegrate| |resultantReduit| |unexpand| |deref| |mesh|
+ |outputAsFortran| |bivariate?| |leastPower| |semiResultantEuclidean1|
+ |declare!| |pointSizeDefault| |ip4Address| |selectFiniteRoutines|
+ |/\\| |halfExtendedResultant2| |level| |cycles| |blankSeparate|
+ |characteristicSet| |reducedForm| |normalDeriv| |associatedEquations|
+ |every?| |iiacot| |vark| |anfactor| |\\/| |minRowIndex| |gradient|
+ |front| |countRealRoots| |selectOptimizationRoutines| |component|
+ |constantIfCan| |fractRagits| |halfExtendedResultant1| |listLoops|
+ |rotatex| |fractionFreeGauss!| |normalized?| |character?|
+ |screenResolution| |d01aqf| |composite| |arrayStack| |subset?|
+ |factorByRecursion| |log| |fixPredicate| |symbol?|
+ |complexEigenvectors| |inGroundField?| |setRow!| |fprindINFO| |mapGen|
+ |map| |ranges| |karatsubaDivide| |setLegalFortranSourceExtensions|
+ |localAbs| |OMgetEndApp| |removeRedundantFactorsInPols|
+ |fixedPointExquo| |combineFeatureCompatibility| |equality| |coerceP|
+ |genericLeftTrace| |lfinfieldint| |numericIfCan| GE |splitDenominator|
+ |makeSUP| |real?| |indicialEquationAtInfinity| |lfunc| |normalForm|
+ |nthFractionalTerm| |print| |c02aff| |getPickedPoints| |entry?|
+ |integralBasis| |one?| GT |zeroMatrix| |restorePrecision|
+ |rangeIsFinite| |rightNorm| |segment| |graphImage| |resolve|
+ |denominators| |removeConstantTerm| |unaryFunction| |OMsupportsCD?|
+ |radicalEigenvector| LE |d02cjf| |f04adf| |permutations|
+ |purelyAlgebraicLeadingMonomial?| |extendIfCan| |exteriorDifferential|
+ |Lazard2| |node| |writeUInt8!| |expint| LT |unitVector|
+ |OMParseError?| |monicLeftDivide| |categoryFrame| |heapSort|
+ |mantissa| |besselJ| |insert!| |convert| |f01bsf| |retract| |e02bbf|
+ |hMonic| |stFunc2| |getButtonValue| |setTopPredicate|
+ |stiffnessAndStabilityOfODEIF| |bitLength| |listOfMonoms|
+ |numberOfOperations| |limit| |doublyTransitive?| |univariateSolve|
+ |divergence| |center| |newReduc| |integralLastSubResultant|
+ |leftExactQuotient| |mvar| |endSubProgram| |groebnerFactorize|
+ |nullSpace| |unary?| |swap!| |primes| |vectorise| |scripted?| |cAcot|
+ |setOfMinN| |dimensions| |distFact| |linears| |nil| |quotientByP|
+ |unknownEndian| |OMencodingXML| |f2st| |ODESolve| |logGamma|
+ |maxIndex| |curveColor| |leadingCoefficientRicDE| |makeResult|
+ |status| |leastAffineMultiple| |mathieu24| |readLineIfCan!| |makeFR|
+ |listRepresentation| |intermediateResultsIF| |structuralConstants|
+ |numberOfComponents| |iicoth| |permutationRepresentation|
+ |semiSubResultantGcdEuclidean1| |basisOfRightNucleus| |complement|
+ |algintegrate| |birth| |idealiser| |errorKind| |maxColIndex| |makeop|
+ |pointData| |iicsch| |approximate| |genericRightTrace| |zeroDim?|
+ |erf| |getOperands| |d01alf| |ptree| |critBonD| |sylvesterMatrix|
+ |push| |asecIfCan| |laurentIfCan| |complex| |GospersMethod| |insert|
+ |createMultiplicationTable| |intensity| |divideExponents|
+ |setMinPoints| |charClass| |e02agf| |getGraph| |whileLoop|
+ |areEquivalent?| |listBranches| |minPoly| |identitySquareMatrix|
+ |iitanh| |opeval| |super| |factorset| |rootPower| |module|
+ |decreasePrecision| |cCoth| |extractTop!| |lfextendedint| |dilog|
+ |purelyAlgebraic?| |flexibleArray| |reduceLODE| |indicialEquations|
+ GF2FG |deriv| |pol| |tanIfCan| |prolateSpheroidal| |df2mf|
+ |numberOfPrimitivePoly| |shift| |sin| |iprint| |mainMonomials|
+ |deepCopy| |tubePoints| |coerceImages| |symmetric?| |removeCosSq|
+ |complementaryBasis| |OMputAtp| |toseInvertibleSet| |cos|
+ |shallowExpand| |largest| |innerint| |constantCoefficientRicDE|
+ |ldf2vmf| |solveLinearPolynomialEquation| |safetyMargin| |empty?|
+ |integerBound| |idealiserMatrix| |setCondition!| |remove|
+ |loadNativeModule| |tan| |singularitiesOf| |green| |exQuo|
+ |getExplanations| |lastSubResultant| |unmakeSUP| |leaves| |nodeOf?|
+ |trigs| |copies| |rarrow| |times| |cot| |separate| |meshPar1Var|
+ |acoshIfCan| |changeNameToObjf| |pow| |createMultiplicationMatrix|
+ |s18dcf| |ratpart| |equation| |nextPrimitivePoly| |zCoord| |last|
+ |sec| |headReduce| |freeOf?| |graphCurves| |supersub| |isList|
+ |minPoints| |lazyVariations| |remainder| |comp| |assoc| |function|
+ |whatInfinity| |OMputString| |over| |csc| |mapExpon| |complexExpand|
+ |complexNumericIfCan| |stoseInternalLastSubResultant| |conical|
+ |recolor| |pushucoef| |create3Space| |asin| |printTypes| |string?|
+ |iipow| |f04mcf| |overlabel| |members| |merge!| |expt| |entry|
+ |totolex| |acos| |left| |monom| |roughBasicSet| |slex| |eval|
+ |rdHack1| |innerSolve1| |just| |selectIntegrationRoutines|
+ |perfectNthPower?| |acschIfCan| |optimize| |iicos| |cn| |right|
+ |movedPoints| |psolve| |atan| |overset?| |unitNormalize| |minPoints3D|
+ |putGraph| |summation| |prime| |varselect| |lowerCase| |quatern|
+ |acot| |clearDenominator| |numberOfChildren| |subscriptedVariables|
+ |quadratic?| |dualSignature| |conjug| |clip| |common| |float?| |asec|
+ |setEpilogue!| |d02raf| |internalIntegrate| FG2F |leftFactor| |rst|
+ |viewport3D| |deleteProperty!| |extendedint| |evenInfiniteProduct|
+ |acsc| |oneDimensionalArray| |nsqfree| |getProperty| |contract|
+ |bezoutResultant| |makeVariable| |relerror| |monicRightDivide| |sinh|
+ |magnitude| |moebius| |predicate| |interReduce| |coerceListOfPairs|
+ |reducedDiscriminant| |symmetricRemainder| |rationalFunction|
+ |innerSolve| |lazy?| |f04jgf| |cosh| |sizePascalTriangle|
+ |radicalSimplify| |SturmHabicht| |hitherPlane| |makeSin| |imagJ|
+ |e01bff| |head| |dmp2rfi| |tanh| |setAdaptive| |cTan| |complexZeros|
+ |nil?| |exp1| |OMputEndObject| |newLine| |B1solve| |boundOfCauchy|
+ |top| |integral| |coth| |cosIfCan| |discreteLog| |pushup|
+ |lineColorDefault| |isobaric?| |middle| |UnVectorise| |mathieu11|
+ |digits| |sech| |stFuncN| |dot| |getMultiplicationMatrix| |imagk|
+ |rightRecip| |invmultisect| |child| |removeZero| |lcm| |Ci| |adjoint|
+ |pop!| |csch| |variationOfParameters| |dom| |rationalApproximation|
+ |pseudoQuotient| |mappingAst| |alternatingGroup| |bsolve|
+ |minimumDegree| |principalIdeal| |operator| |closedCurve| |asinh|
+ |functionIsOscillatory| |sequences| |OMopenFile| |setPrologue!|
+ |iicot| |bubbleSort!| |perfectSqrt| |append| |symbol| |nextPartition|
+ |OMlistSymbols| |acosh| |rombergo| |antisymmetric?| |complexIntegrate|
+ |meshPar2Var| |palglimint0| |sincos| |setAttributeButtonStep|
+ |discriminantEuclidean| |hermite| |expression| |gcd| |atanh|
+ |outputBinaryFile| |mightHaveRoots| |mapCoef| |slash|
+ |doubleFloatFormat| |messagePrint| |sqfrFactor| |false|
+ |internalAugment| |integer| |plot| |acoth| |cartesian| |yCoordinates|
+ |c05nbf| |limitedIntegrate| |cSin| |stoseInvertible?| |tree|
+ |selectsecond| |stoseInvertible?reg|
+ |rewriteIdealWithQuasiMonicGenerators| |asech| |divideIfCan!|
+ |sparsityIF| |semiDegreeSubResultantEuclidean| |title|
+ |basisOfRightAnnihilator| |resize| |decomposeFunc|
+ |basisOfCommutingElements| |maxPoints3D| |s20adf| |dioSolve| |lexico|
+ |gcdprim| |innerEigenvectors| |comparison| |complexElementary|
+ |multiple| |printStats!| |extractIfCan| |fortranDoubleComplex|
+ |setScreenResolution| |numberOfFractionalTerms| |distance| |inspect|
+ |applyQuote| |minPol| |radix| |#| |normalize| |e| |intChoose|
+ |shufflein| |getConstant| |relationsIdeal| |recoverAfterFail|
+ |scalarMatrix| |create| |label| |rightAlternative?|
+ |explicitlyFinite?| |external?| |fTable| |variable?| |fortranDouble|
+ |c06frf| |countable?| |ScanFloatIgnoreSpacesIfCan| |geometric|
+ |generalizedContinuumHypothesisAssumed| |divisorCascade|
+ |setImagSteps| |setRealSteps| |specialTrigs| |ruleset| |tanAn|
+ |complete| |secIfCan| |cyclePartition| |transcendentalDecompose|
+ |column| |gensym| |idealSimplify| |argscript| |elColumn2!| |critT|
+ |f04mbf| |OMconnOutDevice| |exprHasAlgebraicWeight| |updatF|
+ |cyclicParents| |removeDuplicates!| |repeating?| |nthExpon|
+ |asechIfCan| |fi2df| |critpOrder| |suchThat| |userOrdered?| |bfKeys|
+ |zeroVector| |kmax| |bit?| |empty| |branchPoint?| |cAtanh| |chiSquare|
+ |lowerPolynomial| |readByte!| |internalSubQuasiComponent?| |arguments|
+ |closeComponent| |mirror| |constructor| |monomialIntPoly|
+ |roughUnitIdeal?| |f2df| |mainVariable| |stack| |iiacsch| |e01bgf|
+ |numFunEvals3D| |OMputEndBind| |mapdiv| |chineseRemainder| |option|
+ |genericRightMinimalPolynomial| |coord| |monicModulo|
+ |multiplyCoefficients| |rules| |signatureAst| |digit| |iflist2Result|
+ |dimensionOfIrreducibleRepresentation| |compactFraction| |sh|
+ |thenBranch| |dimension| |test| |setProperty| |localReal?| |yCoord|
+ |cAcos| |integralAtInfinity?| |implies?| |iicsc| |elseBranch|
+ |kovacic| |dim| |lastSubResultantElseSplit| |palginfieldint| |romberg|
+ |palglimint| |e02ddf| |oddlambert| |c02agf| |maxdeg| |polar|
+ |fullDisplay| |lyndon?| |c05pbf| |prefix| |smith| |outputSpacing|
+ |numberOfCycles| |exactQuotient| |rightTrim| |delete!| |s17ahf|
+ |OMcloseConn| |ListOfTerms| |weierstrass| |sort| |find| |yellow|
+ |element?| |leftTrim| |commaSeparate| |tube| |rightUnit| |cAcoth|
+ |rischNormalize| |quadraticNorm| |separateFactors| |badValues|
+ |integralDerivationMatrix| |OMconnectTCP| |associatorDependence|
+ |indicialEquation| |rightRegularRepresentation| |e02bcf|
+ |listYoungTableaus| |highCommonTerms| |iiasinh| |insertMatch|
+ |createPrimitiveElement| |lazyPseudoQuotient| |shade| |OMgetObject|
+ |exprHasWeightCosWXorSinWX| |shanksDiscLogAlgorithm| |errorInfo|
+ |stopMusserTrials| |symmetricDifference| |singleFactorBound| |rCoord|
+ |tryFunctionalDecomposition| |random| |explogs2trigs| |setProperties!|
+ |notOperand| |pade| |integralBasisAtInfinity| |karatsuba|
+ |genericLeftMinimalPolynomial| |patternMatchTimes| |sin2csc|
+ |systemSizeIF| |internalDecompose| |equiv| |elliptic?|
+ |linearlyDependent?| |associative?| |updatD| |reseed|
+ |binarySearchTree| |reindex| |s14abf| |withPredicates| |monomial?|
+ |palgRDE0| |primextendedint| |showTheSymbolTable| |eigenvectors|
+ |cycleLength| |nextPrimitiveNormalPoly| |pattern| |hexDigit?|
+ |leftOne| |rootBound| |fractRadix| |iisqrt2| |edf2fi| |physicalLength|
+ |second| |f02abf| |moduleSum| |wordInGenerators| |setErrorBound|
+ |OMputBind| |reify| |readInt32!| |d01bbf| |third| |increment|
+ |palgextint| |drawStyle| |leftAlternative?| |determinant|
+ |integralCoordinates| |setLabelValue| |doubleDisc| |minIndex|
+ |addPoint2| |outerProduct| |swap| |numberOfMonomials| |delay|
+ |subResultantGcd| |makeTerm| |pdf2ef| |htrigs| |getCode| |airyAi|
+ |message| |spherical| |stoseLastSubResultant| |solid| |perfectNthRoot|
+ |hconcat| |LyndonWordsList| |s17def| |cot2tan|
+ |factorsOfCyclicGroupSize| |removeIrreducibleRedundantFactors|
+ |alternating| |c06gbf| |viewZoomDefault| |factors| |adaptive3D?|
+ |createNormalPrimitivePoly| |makeSeries| |LyndonWordsList1| |ef2edf|
+ |mulmod| |removeRoughlyRedundantFactorsInPol| |factorList| |compdegd|
+ |mapUnivariate| |quotient| |s17aff| |normFactors| |floor| |void|
+ |child?| |palgLODE| |definingEquations| |positiveRemainder| |qPot|
+ |realEigenvectors| |extend| |truncate| |e04jaf| |e01bef| |infinite?|
+ |An| |factorSquareFreePolynomial| |quasiRegular?| |leftRankPolynomial|
+ |figureUnits| |f02akf| |cons| |bindings| |rightRemainder| |crest|
+ |iidprod| |totalfract| |eof?| |mainForm| |factorGroebnerBasis|
+ |transcendenceDegree| |cAcsc| |sum| |gbasis| |s20acf| |OMgetBind|
+ |newTypeLists| |curve?| |mr| |getIdentifier| |sech2cosh| |OMreadFile|
+ |rational| |expandTrigProducts| |mergeFactors| UP2UTS |exponent|
+ |internal?| |presub| |squareFreeFactors| |outputAsScript|
+ |returnType!| |nextPrime| |ksec| |equivOperands| |cSec|
+ |setsubMatrix!| |s18def| |schema| |tanh2coth| |scan| |ignore?|
+ |outputMeasure| |fglmIfCan| |mathieu12| |trivialIdeal?|
+ |numericalOptimization| |scale| |testModulus| |exponentialOrder|
+ |rightTraceMatrix| |squareFreeLexTriangular| |host| |lp|
+ |systemCommand| |rightExtendedGcd| |source| |lhs|
+ |scanOneDimSubspaces| |prepareSubResAlgo| |rightMult|
+ |noncommutativeJordanAlgebra?| |makeCrit| |lintgcd| |csch2sinh|
+ |extensionDegree| |pToDmp| |rhs| |isMult| |collectQuasiMonic|
+ |mainDefiningPolynomial| |inrootof| |inputBinaryFile| |parseString|
+ |reduction| |indices| |quotedOperators| |redPol| |argument| |e04ycf|
+ |generalPosition| |lex| |distdfact| |csubst| |curry| |positive?|
+ |rspace| |normal| |wrregime| |quartic| |product| |minrank|
+ |semiResultantReduitEuclidean| |endOfFile?| |box| |mix|
+ |algebraicVariables| |ldf2lst| |traceMatrix| |quasiComponent| |s13acf|
+ |preprocess| |normInvertible?| |target| |hypergeometric0F1|
+ |complexSolve| |parents| |quickSort| |rightZero| |hcrf| |returns|
+ |asimpson| |charpol| |df2ef| |OMgetSymbol| |iisinh| |commutative?|
+ |satisfy?| |e02daf| |roughEqualIdeals?| |jacobiIdentity?| |precision|
+ |nonLinearPart| |saturate| |rightRankPolynomial| |exprToXXP|
+ |leastMonomial| |subCase?| |sample| |coefficient| |radicalSolve|
+ |buildSyntax| |twist| |numberOfIrreduciblePoly| |setlast!| |paren|
+ |failed?| |e04naf| |antisymmetricTensors| |sign| |lazyResidueClass|
+ |cond| |leftGcd| |quasiMonicPolynomials| |solveid| |denominator|
+ |ravel| |algebraicCoefficients?| |iiasec| |eyeDistance| |vertConcat|
+ |subst| |prindINFO| |internalLastSubResultant| |exprToGenUPS| |row|
+ |makeFloatFunction| |factorPolynomial| |reshape| |subscript| |rowEch|
+ |zeroDimPrime?| |dAndcExp| |block| |subresultantVector| |commutator|
+ |numericalIntegration| |predicates| |s21baf| |basisOfRightNucloid|
+ |groebner| |simplify| |pascalTriangle| |delta| |outputList|
+ |indiceSubResultantEuclidean| |multinomial| |PollardSmallFactor|
+ |lSpaceBasis| |unparse| |quadraticForm| |d01amf| |imagI| |lists|
+ |associatedSystem| |genericLeftDiscriminant| |certainlySubVariety?|
+ |OMgetEndAtp| |linearAssociatedLog| |inputOutputBinaryFile|
+ |setvalue!| |loopPoints| |trailingCoefficient| |sdf2lst| |exprToUPS|
+ |integralMatrix| |LyndonBasis| |d02kef| |weights| |probablyZeroDim?|
+ |call| |bombieriNorm| |wronskianMatrix| |oddInfiniteProduct| |update|
+ |e04mbf| |leader| |factorials| |ScanArabic| |objects| |getOrder|
+ |viewDeltaYDefault| |normalizedAssociate| |rootNormalize|
+ |representationType| |contains?| |double?| |c06ebf| |base| **
+ |byteBuffer| |critM| |generalInfiniteProduct| |biRank|
+ |leftTraceMatrix| |corrPoly| |fortranCompilerName| |changeThreshhold|
+ |computeCycleLength| |lazyPrem| |decompose| |leadingExponent|
+ |mapBivariate| |coordinate| |computeCycleEntry| |lambda|
+ |palgintegrate| |s01eaf| |argumentList!| |any| EQ |whitePoint|
+ |changeWeightLevel| |powers| |divisors| |zeroDimensional?| |po|
+ |factorSquareFree| |s21bbf| |ocf2ocdf| |clearTheIFTable| |position|
+ |init| |f04asf| |list?| |symbolTableOf| |HermiteIntegrate| |rational?|
+ |pushNewContour| |d02gbf| |Hausdorff| |characteristicSerie|
+ |rationalPoints| |lagrange| |radicalEigenvectors| |generalSqFr|
+ |arbitrary| |char| |npcoef| |orthonormalBasis| |extractBottom!|
+ |debug3D| |content| |generalLambert| |leftExtendedGcd| |parametric?|
+ |wordsForStrongGenerators| |divide| |pseudoRemainder| |rischDEsys|
+ |lllp| |legendreP| |backOldPos| |ScanFloatIgnoreSpaces|
+ |univariatePolynomialsGcds| |algSplitSimple| |index| |rename!|
+ |linear| |mainCoefficients| |symbolTable| |quoByVar| |normalElement|
+ |findConstructor| |isOpen?| |writable?| |ran| |rdregime| |pile|
+ |unitsColorDefault| |bandedJacobian| |BasicMethod| |getGoodPrime|
+ |capacity| |iiperm| |polynomial| |interpret| |stoseInvertibleSet|
+ |linearDependenceOverZ| |e02bef| |point| |f01qcf| |checkPrecision|
+ |gcdPrimitive| |poisson| |f07aef| |splitLinear| |pair| |isTimes|
+ |previous| |dictionary| |OMbindTCP| |split| |cLog| |aQuadratic|
+ |number?| |localUnquote| |characteristic| |lo| |problemPoints|
+ |fillPascalTriangle| |kind| |rowEchelonLocal| |leftRemainder|
+ |wholeRadix| |value| |OMreadStr| |repSq| |getOperator| |incr| |series|
+ |f01maf| |clikeUniv| |op| |showTheRoutinesTable| |nthr| |cCot|
+ |continuedFraction| |euclideanGroebner| |curryRight| |measure|
+ |permutationGroup| |stoseSquareFreePart| |particularSolution|
+ |sortConstraints| |OMputFloat| |expextendedint| |setStatus|
+ |basisOfNucleus| |OMgetBVar| |polygon?| |max| |cycleEntry| |ffactor|
+ |complexEigenvalues| |partitions| |s18aff| |subQuasiComponent?|
+ |readUInt8!| |drawComplexVectorField| |tableau| |ScanRoman|
+ |subPolSet?| |completeSmith| |phiCoord| |OMReadError?| |min|
+ |explicitlyEmpty?| |completeEval| |maxrow| |basisOfCentroid| |light|
+ |LiePoly| |parametersOf| |rur| |transpose| F |regularRepresentation|
+ |nilFactor| |varList| |pToHdmp| |multiEuclideanTree| |distribute|
+ |wordInStrongGenerators| |medialSet| |eq?|
+ |rightCharacteristicPolynomial| |elliptic| |zeroDimPrimary?| |length|
+ |union| |rotate| |partialDenominators| |singular?| |Aleph|
+ |normalDenom| |wreath| |replaceKthElement| |increase| |powerSum|
+ |lfextlimint| |scripts| |supRittWu?| |script| |direction| |f04arf|
+ |bivariateSLPEBR| |matrix| |reverseLex| RF2UTS |solve| |reorder|
+ |copyInto!| |degree| |nthExponent| |tubeRadiusDefault| |comment|
+ |compiledFunction| |resultantEuclidean| |fortranComplex| |cross|
+ |coth2trigh| |SturmHabichtCoefficients| |setleft!| |setelt!|
+ |doubleRank| |nthFactor| |close| |c06ekf| |closed?| |approxNthRoot|
+ |coshIfCan| |wholePart| |insertRoot!| |untab| |readable?| |consnewpol|
+ |tex| |stronglyReduce| |s13aaf| |rationalIfCan|
+ |stoseInvertible?sqfreg| |enumerate| |hi| |chvar| |acosIfCan|
+ |insertTop!| |colorFunction| |enterPointData| |printHeader| |display|
+ |round| |compose| |OMputApp| |upDateBranches| |frst| |integer?|
+ |littleEndian| |sinh2csch| |closedCurve?| |shiftRight|
+ |parabolicCylindrical| |generalizedEigenvector| |numeric|
+ |mergeDifference| |uniform| |infLex?| |iiacos| |ratDsolve|
+ |leftDiscriminant| |id| |c06fuf| |removeSinhSq| |radical|
+ |solveInField| |mainContent| |fill!| |singRicDE| |simpson|
+ |monomRDEsys| |normDeriv2| |setrest!| |traverse| |axesColorDefault|
+ |parabolic| |LagrangeInterpolation| |power!| |listOfLists|
+ |OMUnknownSymbol?| |setleaves!| |c06fpf| |table| |cycleTail|
+ |rootRadius| |integralMatrixAtInfinity| |prefixRagits|
+ |diagonalProduct| |polyRicDE| |dark| |pdf2df| |nary?|
+ |rectangularMatrix| |new| |back| |represents| |univcase| |input| |obj|
+ |sumOfSquares| |evaluate| |firstNumer|
+ |standardBasisOfCyclicSubmodule| |factorOfDegree| |xn| |search|
+ |inverse| |algDsolve| |addMatch| |bringDown| |inconsistent?| |library|
+ |radPoly| |outputGeneral| |e02baf| |epilogue| |cache| |connect|
+ |clipBoolean| |plus| |isPlus| |ode| |qelt| |mathieu22| |computePowers|
+ |imagj| |vector| |decrease| |mapDown!| |cPower| |member?|
+ |conditionsForIdempotents| |qsetelt| |finiteBasis| |flagFactor|
+ |choosemon| |invertibleSet| |d03edf| |abelianGroup|
+ |rewriteSetByReducingWithParticularGenerators| |externalList|
+ |rationalPoint?| |reducedSystem| |createGenericMatrix| |rightRank|
+ |d01akf| |rightFactorCandidate| |xRange| |multiplyExponents|
+ |leviCivitaSymbol| |logIfCan| |uniform01| |createPrimitiveNormalPoly|
+ |updateStatus!| |semiSubResultantGcdEuclidean2| |factorFraction|
+ |kroneckerDelta| |numberOfDivisors| |reducedContinuedFraction| |tanQ|
+ |firstSubsetGray| |frobenius| |set| |binaryTournament| |hermiteH|
+ |duplicates?| |hasTopPredicate?| |category| |fortranCharacter|
+ |c06ecf| |isQuotient| |infiniteProduct| |genericLeftNorm| |nullary|
+ |leftNorm| |linear?| |domain| |primitiveElement| |addPointLast|
+ |dfRange| |e02gaf| |mainVariables| |uncouplingMatrices|
+ |evaluateInverse| |LazardQuotient| |cAtan| |screenResolution3D|
+ |package| |useNagFunctions| |lighting| |horizConcat| |f04atf|
+ |tan2trig| |skewSFunction| |isOp| |diagonal| |setnext!| |setTex!|
+ |generalizedContinuumHypothesisAssumed?| |matrixGcd| |cubic|
+ |returnTypeOf| |cCsch| |checkRur| |trace2PowMod|
+ |countRealRootsMultiple| |upperCase?| |merge| |getRef|
+ |OMconnInDevice| |regime| |acotIfCan| |reducedQPowers| |outlineRender|
+ |nextIrreduciblePoly| |pseudoDivide| |radicalOfLeftTraceForm|
+ |appendPoint| |setLength!| |term| |stopTableInvSet!| |noKaratsuba|
+ |rightTrace| |height| |cot2trig| |accuracyIF| |s14baf| |binaryTree|
+ |OMputVariable| |jordanAlgebra?| |s17dgf| ~= |cAcosh|
+ |possiblyNewVariety?| |datalist| |primextintfrac| |chainSubResultants|
+ |f01rcf| |getDatabase| |deepExpand| |showRegion| |shuffle|
+ |halfExtendedSubResultantGcd2| |coerce| |bfEntry| |insertBottom!|
+ |iisin| |droot| |OMgetEndObject| |resetBadValues| |OMgetType| |queue|
+ |mapMatrixIfCan| |lexTriangular| |construct| |repeatUntilLoop|
+ |showTheIFTable| |e04fdf| |f04axf| |topPredicate|
+ |currentCategoryFrame| |heap| |localIntegralBasis| |stop| |depth|
+ |clipPointsDefault| |groebner?| |antiAssociative?| |graphs| |bat1|
+ |isExpt| |permutation| |cycleElt| |mkPrim| |irreducibleRepresentation|
+ |show| |mdeg| |outputAsTex| |extendedResultant| |diff| |f02agf|
+ |shiftLeft| |normal01| |monicRightFactorIfCan| |makeCos| |modulus|
+ |cyclic| |useEisensteinCriterion?| |putColorInfo| |positiveSolve|
+ |controlPanel| |linkToFortran| |cSinh| |gderiv| |normalizeIfCan|
+ |point?| |trace| |expressIdealMember| |basicSet| |build| |atoms|
+ |rootOfIrreduciblePoly| |omError| |symbolIfCan| |removeSinSq| |iilog|
+ |Ei| |digit?| |expr| |redPo| |rowEchelon| |fractionPart| |output|
+ |s17dlf| |asinIfCan| |euclideanNormalForm| |packageCall| |var1Steps|
+ |collectUpper| |fortranLinkerArgs| |interpolate| |lifting1| |multiset|
+ |tail| |surface| |difference| |OMsend| |roughBase?| |dihedral|
+ |iFTable| |expenseOfEvaluation| |binaryFunction| |true| |nextItem|
+ |makeprod| |tab| |schwerpunkt| |antiCommutative?| |FormatArabic|
+ |critB| |degreeSubResultantEuclidean| |lyndon| |patternVariable|
+ |pointPlot| |graeffe| |cyclicSubmodule| |halfExtendedSubResultantGcd1|
+ |genericLeftTraceForm| |dominantTerm| |position!| |unknown|
+ |startTable!| |resultantReduitEuclidean| |zoom| |elem?| |stFunc1|
+ |linearPart| |times!| |Gamma| |safeFloor| |OMgetEndBind| |variable|
+ |setMaxPoints| |numberOfVariables| |cyclotomicDecomposition| |parent|
+ |initializeGroupForWordProblem| |compound?| |toScale| |Si| |s19abf|
+ |chebyshevU| |iterators| |hash| |iiacosh| |solveLinear| |rightDivide|
+ |squareMatrix| |sinhIfCan| |ref| |alternative?| |graphStates|
+ |integral?| |andOperands| |count| |sumOfDivisors| |OMgetEndAttr|
+ |separateDegrees| |createRandomElement| |pushdown| |polynomialZeros|
+ |groebnerIdeal| |primintfldpoly| |rangePascalTriangle|
+ |triangularSystems| |universe| |coordinates| |setelt| |decimal|
+ |besselI| |solve1| |edf2ef| |basisOfCenter| |f02axf| |rotatez|
+ |readLine!| |readInt16!| |explicitEntries?| |weight| |polyred|
+ |impliesOperands| |powerAssociative?| |reflect| |sup| |measure2Result|
+ |inRadical?| |nthCoef| |moebiusMu| |rightGcd| |copy| |li| |subTriSet?|
+ |sechIfCan| |linearDependence| |leftRank| |copy!| |unit?| |coerceS|
+ |formula| |readUInt16!| |calcRanges| |OMlistCDs| |lazyGintegrate|
+ |mkAnswer| |next| |normalise| |sizeLess?| |addiag| |edf2df|
+ |quasiRegular| |doubleComplex?| |mathieu23| |expIfCan| |children|
+ |aspFilename| |finite?| |totalGroebner| |f02fjf| |showAll?| |abs|
+ |autoCoerce| |tanSum| |separant| |complexRoots| |totalLex|
+ |branchPointAtInfinity?| |createNormalElement| |zag| |bits|
+ |makeViewport2D| |options| |singularAtInfinity?| |getVariableOrder|
+ |rationalPower| |fortran| |airyBi| |ParCondList| |fullPartialFraction|
+ |printStatement| |isAbsolutelyIrreducible?| |moduloP| |cschIfCan|
+ |numberOfHues| |submod| |degreeSubResultant| |irreducibleFactors|
+ |nrows| |typeLists| |notelem| |extract!| |tensorProduct| |ideal|
+ |s18acf| |basisOfMiddleNucleus| |ddFact| |ncols| |limitedint| |nor|
+ |principal?| |absolutelyIrreducible?|
+ |semiIndiceSubResultantEuclidean| |rename| |string| |jacobi|
+ |OMmakeConn| |euclideanSize| |d01anf| |f01ref| |taylorRep|
+ |setAdaptive3D| |toseSquareFreePart| |brillhartTrials| |powmod|
+ |OMunhandledSymbol| |quote| |bag| |close!| |gramschmidt| |associates?|
+ |att2Result| |expandPower| |modularFactor| |qqq| |convergents|
+ |optpair| |plus!| |triangulate| |logical?| |coefChoose| |fixedPoints|
+ |sec2cos| |identity| |binomThmExpt| |seriesToOutputForm| |e02ahf|
+ |gcdcofact| |mkcomm| |solid?| |primitivePart!| NOT |tubePlot|
+ |Vectorise| |c06gqf| |removeRedundantFactorsInContents|
+ |moreAlgebraic?| |triangSolve| |lifting| |setButtonValue|
+ |radicalEigenvalues| |stiffnessAndStabilityFactor| |tower| OR
+ |minimumExponent| |OMgetVariable| |iitan| |contractSolve| |rootSplit|
+ |qfactor| |removeRoughlyRedundantFactorsInContents| |s18aef|
+ |pushuconst| |ricDsolve| AND |meshFun2Var| |mindegTerm| |nand|
+ |taylorIfCan| |s19aaf| |contours| |chiSquare1| |lookup|
+ |unrankImproperPartitions0| |approxSqrt| |karatsubaOnce| |eq| |iiatan|
+ |addmod| |setchildren!| |integrate| |partition| |unvectorise| |log10|
+ |mapSolve| |infieldint| |redmat| |gcdcofactprim| |leftDivide| |iter|
+ |infieldIntegrate| |squareTop| |reduceBasisAtInfinity| |f01brf| |ipow|
+ |operation| |zeroSetSplit| |genericPosition| |iCompose| |bitand|
+ |condition| |padecf| |newSubProgram| |mapExponents| |leadingTerm|
+ |OMUnknownCD?| |directory| |getCurve| |dequeue| |d01ajf| |leftMult|
+ |complexNumeric| |power| |bitior| |pdct| |remove!| |alphabetic?|
+ |graphState| |generate| |continue| |badNum| |relativeApprox| |blue|
+ |monicDecomposeIfCan| |polyRDE| |rquo| |prinb| |cothIfCan| |cTanh|
+ |tab1| |unravel| |kernels| |topFortranOutputStack| |fortranTypeOf|
+ |s19acf| |ReduceOrder| |makeUnit| |SturmHabichtSequence| |makeSketch|
+ |makeMulti| |incrementBy| |paraboloidal| |iiatanh| |s17adf|
+ |univariate| |initials| |tRange| |companionBlocks| |fortranReal|
+ |showClipRegion| |constDsolve| |removeSquaresIfCan| |expand| |exprex|
+ |coHeight| |f02adf| |hasPredicate?| |binding| |readUInt32!|
+ |tanintegrate| |OMencodingBinary| |morphism| |entries| |laguerreL|
+ |filterWhile| |bottom!| |simpsono| |pointColor| |eigenMatrix| *
+ |makeYoungTableau| |exp| |e01baf| |prem| |plenaryPower| |denomLODE|
+ |and?| |filterUntil| |extendedIntegrate| |autoReduced?| |factor|
+ |split!| |brillhartIrreducible?| |dmpToHdmp| |diophantineSystem|
+ |less?| |createIrreduciblePoly| |setFormula!| |leftLcm| |select|
+ |c06gsf| |gcdPolynomial| |dequeue!| |sqrt| |fortranLogical|
+ |acscIfCan| |derivative| |ord| |mainValue| |augment| |extractIndex|
+ |s17acf| |basisOfLeftNucleus| |symmetricPower| |mapUnivariateIfCan|
+ |real| |sncndn| |sumOfKthPowerDivisors| |range| |style| |palgLODE0|
+ |cCsc| |monicDivide| |exponents| |selectfirst| |cyclicEntries| |imag|
+ |var1StepsDefault| |lowerCase!| |tubePointsDefault| |iifact|
+ |definingPolynomial| |patternMatch| |points| |presuper|
+ |directProduct| |inverseLaplace| |e04ucf| |generators| |leadingIndex|
+ |pointLists| |OMgetString| |OMread| Y |factorAndSplit| |sort!|
+ |s21bdf| |permanent| |getMultiplicationTable| |randomR| |curryLeft|
+ |e01sef| |c06eaf| |seed| |interval| |numberOfComputedEntries| |root?|
+ |knownInfBasis| |useEisensteinCriterion| |brace| |prologue|
+ |OMputSymbol| |cotIfCan| |OMreceive| |deepestTail| |goodPoint|
+ |padicallyExpand| |constantOpIfCan| |makeRecord| |btwFact| |compile|
+ |fixedPoint| |OMputEndError| |destruct| SEGMENT |or?| |upperCase|
+ |numberOfFactors| |constantLeft| |raisePolynomial|
+ |linearlyDependentOverZ?| |startTableGcd!| |rightOne| |f01qdf|
+ |deepestInitial| |LyndonCoordinates| |readIfCan!| |lazyEvaluate|
+ |componentUpperBound| |iExquo| |rightLcm| |bumptab1| |null| |goto|
+ |outputFixed| |parts| |lazyPquo| |s13adf| |complexForm| |rootsOf|
+ |selectPDERoutines| |bigEndian| |connectTo| |coefficients| |not|
+ |argumentListOf| |inverseIntegralMatrix| |allRootsOf|
+ |SturmHabichtMultiple| |realSolve| |iicosh| |rightScalarTimes!|
+ |rowEchLocal| |completeHermite| |rubiksGroup| |and| |factorial|
+ |divisor| |monomial| |hostPlatform| |exponential| |replace| |iiexp|
+ |recip| |getZechTable| |baseRDE| |resultant| |or|
+ |functionIsFracPolynomial?| |hyperelliptic| |multivariate| |atom?|
+ |subtractIfCan| |qroot| |exists?| |clearTable!| |cExp| |lquo|
+ |eulerPhi| |xor| |any?| |f02bbf| |OMgetError| |variables|
+ |exportedOperators| |orOperands| |reopen!| |ceiling|
+ |stoseIntegralLastSubResultant| |overlap| |signature| |reduced?|
+ |case| |intersect| |e04gcf| |generalTwoFactor| |orbit| |dihedralGroup|
+ |infinityNorm| |resetVariableOrder| |irreducibleFactor|
+ |genericRightDiscriminant| |generateIrredPoly| |Zero| |df2fi|
+ |pmintegrate| |OMencodingUnknown| |rroot| |tan2cot| |cCos|
+ |lazyIrreducibleFactors| |OMsetEncoding| |stopTable!| |mpsode| |One|
+ |inc| |algint| |sin?| |lazyPseudoDivide| |exprHasLogarithmicWeights|
+ |realRoots| |inverseColeman| |viewDefaults| |writeBytes!| |cosSinInfo|
+ |nextSubsetGray| |compBound| |subNode?| |name| |makeViewport3D|
+ |basis| |thetaCoord| |callForm?| |nthRoot| |bezoutMatrix|
+ |reduceByQuasiMonic| |completeHensel| |f02aff| |body| |diagonals|
+ |hostByteOrder| |taylor| |mapUp!| |setProperty!| |OMserve|
+ |currentScope| |randomLC| |nonQsign| |cap| |univariatePolynomials|
+ |property| |enqueue!| |tanh2trigh| |laurent| |charthRoot| |routines|
+ |simplifyPower| |lastSubResultantEuclidean| |trim| |algebraic?|
+ |imagi| |initial| |shellSort| |f01qef| |OMputInteger| |puiseux|
+ |interpretString| |commonDenominator| |push!| |discriminant| |expPot|
+ |primlimintfrac| |linearPolynomials| |elt| |expandLog| |e01saf|
+ |addMatchRestricted| |leftQuotient| |minset| |top!| |binomial|
+ |f02aaf| |stripCommentsAndBlanks| |integralRepresents| |nil|
+ |infinite| |arbitraryExponent| |approximate| |complex|
|shallowMutable| |canonical| |noetherian| |central|
|partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
|noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index d60fd9a3..f0478176 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5296 +1,5296 @@
-(3199907 . 3449600551)
-((-4310 (((-112) (-1 (-112) |#2| |#2|) $) 85) (((-112) $) NIL)) (-3606 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1881 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 43)) (-3852 (($ $) 79)) (-4367 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 49) ((|#2| (-1 |#2| |#2| |#2|) $) 48)) (-1356 (((-564) (-1 (-112) |#2|) $) 27) (((-564) |#2| $) NIL) (((-564) |#2| $ (-564)) 95)) (-3080 (((-641 |#2|) $) 13)) (-4012 (($ (-1 (-112) |#2| |#2|) $ $) 62) (($ $ $) NIL)) (-3513 (($ (-1 |#2| |#2|) $) 37)) (-2082 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 59)) (-3412 (($ |#2| $ (-564)) NIL) (($ $ $ (-564)) 65)) (-2343 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1467 (((-112) (-1 (-112) |#2|) $) 23)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL) (($ $ (-1226 (-564))) 64)) (-2008 (($ $ (-564)) 74) (($ $ (-1226 (-564))) 73)) (-3815 (((-768) (-1 (-112) |#2|) $) 34) (((-768) |#2| $) NIL)) (-2286 (($ $ $ (-564)) 67)) (-1899 (($ $) 66)) (-1776 (($ (-641 |#2|)) 71)) (-2817 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 86) (($ (-641 $)) 84)) (-1765 (((-859) $) 91)) (-2237 (((-112) (-1 (-112) |#2|) $) 22)) (-1686 (((-112) $ $) 94)) (-1705 (((-112) $ $) 98)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1686 ((-112) |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3606 (|#1| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -2286 (|#1| |#1| |#1| (-564))) (-15 -4310 ((-112) |#1|)) (-15 -4012 (|#1| |#1| |#1|)) (-15 -1356 ((-564) |#2| |#1| (-564))) (-15 -1356 ((-564) |#2| |#1|)) (-15 -1356 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -4310 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4012 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1881 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3412 (|#1| |#1| |#1| (-564))) (-15 -3412 (|#1| |#2| |#1| (-564))) (-15 -2008 (|#1| |#1| (-1226 (-564)))) (-15 -2008 (|#1| |#1| (-564))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2082 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2817 (|#1| (-641 |#1|))) (-15 -2817 (|#1| |#1| |#1|)) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#2|)) (-15 -1776 (|#1| (-641 |#2|))) (-15 -2343 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -1881 (|#2| |#1| (-564) |#2|)) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3080 ((-641 |#2|) |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3513 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1899 (|#1| |#1|))) (-19 |#2|) (-1209)) (T -18))
+(3200379 . 3450528909)
+((-1562 (((-112) (-1 (-112) |#2| |#2|) $) 85) (((-112) $) NIL)) (-4194 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3868 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 43)) (-1651 (($ $) 79)) (-1728 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 49) ((|#2| (-1 |#2| |#2| |#2|) $) 48)) (-3303 (((-564) (-1 (-112) |#2|) $) 27) (((-564) |#2| $) NIL) (((-564) |#2| $ (-564)) 95)) (-4244 (((-641 |#2|) $) 13)) (-3678 (($ (-1 (-112) |#2| |#2|) $ $) 62) (($ $ $) NIL)) (-1988 (($ (-1 |#2| |#2|) $) 37)) (-2313 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 59)) (-2455 (($ |#2| $ (-564)) NIL) (($ $ $ (-564)) 65)) (-2905 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2280 (((-112) (-1 (-112) |#2|) $) 23)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL) (($ $ (-1226 (-564))) 64)) (-2090 (($ $ (-564)) 74) (($ $ (-1226 (-564))) 73)) (-3855 (((-768) (-1 (-112) |#2|) $) 34) (((-768) |#2| $) NIL)) (-3474 (($ $ $ (-564)) 67)) (-3890 (($ $) 66)) (-3725 (($ (-641 |#2|)) 71)) (-1865 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 86) (($ (-641 $)) 84)) (-3714 (((-859) $) 91)) (-4289 (((-112) (-1 (-112) |#2|) $) 22)) (-1720 (((-112) $ $) 94)) (-1746 (((-112) $ $) 98)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -1720 ((-112) |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4194 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1651 (|#1| |#1|)) (-15 -3474 (|#1| |#1| |#1| (-564))) (-15 -1562 ((-112) |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -3303 ((-564) |#2| |#1| (-564))) (-15 -3303 ((-564) |#2| |#1|)) (-15 -3303 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1562 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3868 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -2455 (|#1| |#1| |#1| (-564))) (-15 -2455 (|#1| |#2| |#1| (-564))) (-15 -2090 (|#1| |#1| (-1226 (-564)))) (-15 -2090 (|#1| |#1| (-564))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1865 (|#1| (-641 |#1|))) (-15 -1865 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#2|)) (-15 -3725 (|#1| (-641 |#2|))) (-15 -2905 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -3868 (|#2| |#1| (-564) |#2|)) (-15 -3855 ((-768) |#2| |#1|)) (-15 -4244 ((-641 |#2|) |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1988 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3890 (|#1| |#1|))) (-19 |#2|) (-1209)) (T -18))
NIL
-(-10 -8 (-15 -1686 ((-112) |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3606 (|#1| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -2286 (|#1| |#1| |#1| (-564))) (-15 -4310 ((-112) |#1|)) (-15 -4012 (|#1| |#1| |#1|)) (-15 -1356 ((-564) |#2| |#1| (-564))) (-15 -1356 ((-564) |#2| |#1|)) (-15 -1356 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -4310 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4012 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1881 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3412 (|#1| |#1| |#1| (-564))) (-15 -3412 (|#1| |#2| |#1| (-564))) (-15 -2008 (|#1| |#1| (-1226 (-564)))) (-15 -2008 (|#1| |#1| (-564))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2082 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2817 (|#1| (-641 |#1|))) (-15 -2817 (|#1| |#1| |#1|)) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#2|)) (-15 -1776 (|#1| (-641 |#2|))) (-15 -2343 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -1881 (|#2| |#1| (-564) |#2|)) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3080 ((-641 |#2|) |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3513 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1899 (|#1| |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3476 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) 8)) (-1881 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3852 (($ $) 90 (|has| $ (-6 -4412)))) (-3716 (($ $) 100)) (-3104 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 51)) (-1356 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-1633 (($ (-768) |#1|) 69)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 43 (|has| (-564) (-847)))) (-3571 (($ $ $) 87 (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 44 (|has| (-564) (-847)))) (-1547 (($ $ $) 86 (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-1371 (((-641 (-564)) $) 46)) (-3629 (((-112) (-564) $) 47)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3073 ((|#1| $) 42 (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2614 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2008 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2286 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-1899 (($ $) 13)) (-2127 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 70)) (-2817 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1728 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 82 (|has| |#1| (-847)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+(-10 -8 (-15 -1720 ((-112) |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4194 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1651 (|#1| |#1|)) (-15 -3474 (|#1| |#1| |#1| (-564))) (-15 -1562 ((-112) |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -3303 ((-564) |#2| |#1| (-564))) (-15 -3303 ((-564) |#2| |#1|)) (-15 -3303 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1562 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3868 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -2455 (|#1| |#1| |#1| (-564))) (-15 -2455 (|#1| |#2| |#1| (-564))) (-15 -2090 (|#1| |#1| (-1226 (-564)))) (-15 -2090 (|#1| |#1| (-564))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1865 (|#1| (-641 |#1|))) (-15 -1865 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#2|)) (-15 -3725 (|#1| (-641 |#2|))) (-15 -2905 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -3868 (|#2| |#1| (-564) |#2|)) (-15 -3855 ((-768) |#2| |#1|)) (-15 -4244 ((-641 |#2|) |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1988 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3890 (|#1| |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2399 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4413))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4413))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) 8)) (-3868 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-1651 (($ $) 90 (|has| $ (-6 -4413)))) (-1923 (($ $) 100)) (-2084 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 51)) (-3303 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-3564 (($ (-768) |#1|) 69)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 43 (|has| (-564) (-847)))) (-3428 (($ $ $) 87 (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-3413 (($ $ $) 86 (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3127 (((-641 (-564)) $) 46)) (-1338 (((-112) (-564) $) 47)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2049 ((|#1| $) 42 (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3538 (($ $ |#1|) 41 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2090 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3474 (($ $ $ (-564)) 91 (|has| $ (-6 -4413)))) (-3890 (($ $) 13)) (-2374 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 70)) (-1865 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1769 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 82 (|has| |#1| (-847)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-19 |#1|) (-140) (-1209)) (T -19))
NIL
-(-13 (-373 |t#1|) (-10 -7 (-6 -4412)))
-(((-34) . T) ((-102) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T))
-((-3936 (((-3 $ "failed") $ $) 12)) (-1783 (($ $) NIL) (($ $ $) 9)) (* (($ (-918) $) NIL) (($ (-768) $) 16) (($ (-564) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -3936 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-21)) (T -20))
+(-13 (-373 |t#1|) (-10 -7 (-6 -4413)))
+(((-34) . T) ((-102) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T))
+((-4281 (((-3 $ "failed") $ $) 12)) (-1828 (($ $) NIL) (($ $ $) 9)) (* (($ (-918) $) NIL) (($ (-768) $) 16) (($ (-564) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -3936 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20)))
+(-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20)))
(((-21) (-140)) (T -21))
-((-1783 (*1 *1 *1) (-4 *1 (-21))) (-1783 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564)))))
-(-13 (-131) (-10 -8 (-15 -1783 ($ $)) (-15 -1783 ($ $ $)) (-15 * ($ (-564) $))))
+((-1828 (*1 *1 *1) (-4 *1 (-21))) (-1828 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564)))))
+(-13 (-131) (-10 -8 (-15 -1828 ($ $)) (-15 -1828 ($ $ $)) (-15 * ($ (-564) $))))
(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-3976 (((-112) $) 10)) (-3760 (($) 15)) (* (($ (-918) $) 14) (($ (-768) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-768) |#1|)) (-15 -3976 ((-112) |#1|)) (-15 -3760 (|#1|)) (-15 * (|#1| (-918) |#1|))) (-23)) (T -22))
+((-1556 (((-112) $) 10)) (-3180 (($) 15)) (* (($ (-918) $) 14) (($ (-768) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-768) |#1|)) (-15 -1556 ((-112) |#1|)) (-15 -3180 (|#1|)) (-15 * (|#1| (-918) |#1|))) (-23)) (T -22))
NIL
-(-10 -8 (-15 * (|#1| (-768) |#1|)) (-15 -3976 ((-112) |#1|)) (-15 -3760 (|#1|)) (-15 * (|#1| (-918) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15)))
+(-10 -8 (-15 * (|#1| (-768) |#1|)) (-15 -1556 ((-112) |#1|)) (-15 -3180 (|#1|)) (-15 * (|#1| (-918) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15)))
(((-23) (-140)) (T -23))
-((-4317 (*1 *1) (-4 *1 (-23))) (-3760 (*1 *1) (-4 *1 (-23))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-768)))))
-(-13 (-25) (-10 -8 (-15 (-4317) ($) -3246) (-15 -3760 ($) -3246) (-15 -3976 ((-112) $)) (-15 * ($ (-768) $))))
+((-4312 (*1 *1) (-4 *1 (-23))) (-3180 (*1 *1) (-4 *1 (-23))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-768)))))
+(-13 (-25) (-10 -8 (-15 (-4312) ($) -2222) (-15 -3180 ($) -2222) (-15 -1556 ((-112) $)) (-15 * ($ (-768) $))))
(((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
((* (($ (-918) $) 10)))
(((-24 |#1|) (-10 -8 (-15 * (|#1| (-918) |#1|))) (-25)) (T -24))
NIL
(-10 -8 (-15 * (|#1| (-918) |#1|)))
-((-1754 (((-112) $ $) 7)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13)))
+((-3702 (((-112) $ $) 7)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13)))
(((-25) (-140)) (T -25))
-((-1771 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-918)))))
-(-13 (-1094) (-10 -8 (-15 -1771 ($ $ $)) (-15 * ($ (-918) $))))
+((-1814 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-918)))))
+(-13 (-1094) (-10 -8 (-15 -1814 ($ $ $)) (-15 * ($ (-918) $))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-4186 (((-641 $) (-949 $)) 32) (((-641 $) (-1166 $)) 16) (((-641 $) (-1166 $) (-1170)) 20)) (-2487 (($ (-949 $)) 30) (($ (-1166 $)) 11) (($ (-1166 $) (-1170)) 60)) (-2984 (((-641 $) (-949 $)) 33) (((-641 $) (-1166 $)) 18) (((-641 $) (-1166 $) (-1170)) 19)) (-3330 (($ (-949 $)) 31) (($ (-1166 $)) 13) (($ (-1166 $) (-1170)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -4186 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4186 ((-641 |#1|) (-1166 |#1|))) (-15 -4186 ((-641 |#1|) (-949 |#1|))) (-15 -2487 (|#1| (-1166 |#1|) (-1170))) (-15 -2487 (|#1| (-1166 |#1|))) (-15 -2487 (|#1| (-949 |#1|))) (-15 -2984 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2984 ((-641 |#1|) (-1166 |#1|))) (-15 -2984 ((-641 |#1|) (-949 |#1|))) (-15 -3330 (|#1| (-1166 |#1|) (-1170))) (-15 -3330 (|#1| (-1166 |#1|))) (-15 -3330 (|#1| (-949 |#1|)))) (-27)) (T -26))
+((-1701 (((-641 $) (-949 $)) 32) (((-641 $) (-1166 $)) 16) (((-641 $) (-1166 $) (-1170)) 20)) (-1815 (($ (-949 $)) 30) (($ (-1166 $)) 11) (($ (-1166 $) (-1170)) 60)) (-4248 (((-641 $) (-949 $)) 33) (((-641 $) (-1166 $)) 18) (((-641 $) (-1166 $) (-1170)) 19)) (-1544 (($ (-949 $)) 31) (($ (-1166 $)) 13) (($ (-1166 $) (-1170)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1701 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -1701 ((-641 |#1|) (-1166 |#1|))) (-15 -1701 ((-641 |#1|) (-949 |#1|))) (-15 -1815 (|#1| (-1166 |#1|) (-1170))) (-15 -1815 (|#1| (-1166 |#1|))) (-15 -1815 (|#1| (-949 |#1|))) (-15 -4248 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4248 ((-641 |#1|) (-1166 |#1|))) (-15 -4248 ((-641 |#1|) (-949 |#1|))) (-15 -1544 (|#1| (-1166 |#1|) (-1170))) (-15 -1544 (|#1| (-1166 |#1|))) (-15 -1544 (|#1| (-949 |#1|)))) (-27)) (T -26))
NIL
-(-10 -8 (-15 -4186 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4186 ((-641 |#1|) (-1166 |#1|))) (-15 -4186 ((-641 |#1|) (-949 |#1|))) (-15 -2487 (|#1| (-1166 |#1|) (-1170))) (-15 -2487 (|#1| (-1166 |#1|))) (-15 -2487 (|#1| (-949 |#1|))) (-15 -2984 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2984 ((-641 |#1|) (-1166 |#1|))) (-15 -2984 ((-641 |#1|) (-949 |#1|))) (-15 -3330 (|#1| (-1166 |#1|) (-1170))) (-15 -3330 (|#1| (-1166 |#1|))) (-15 -3330 (|#1| (-949 |#1|))))
-((-1754 (((-112) $ $) 7)) (-4186 (((-641 $) (-949 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79)) (-2487 (($ (-949 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-4019 (($ $) 93)) (-3385 (((-112) $ $) 60)) (-3760 (($) 17 T CONST)) (-2984 (((-641 $) (-949 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85)) (-3330 (($ (-949 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88)) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-3241 (((-112) $) 72)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 92)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-4006 (((-418 $) $) 75)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ $) 66)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
+(-10 -8 (-15 -1701 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -1701 ((-641 |#1|) (-1166 |#1|))) (-15 -1701 ((-641 |#1|) (-949 |#1|))) (-15 -1815 (|#1| (-1166 |#1|) (-1170))) (-15 -1815 (|#1| (-1166 |#1|))) (-15 -1815 (|#1| (-949 |#1|))) (-15 -4248 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4248 ((-641 |#1|) (-1166 |#1|))) (-15 -4248 ((-641 |#1|) (-949 |#1|))) (-15 -1544 (|#1| (-1166 |#1|) (-1170))) (-15 -1544 (|#1| (-1166 |#1|))) (-15 -1544 (|#1| (-949 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1701 (((-641 $) (-949 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79)) (-1815 (($ (-949 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-4152 (($ $) 93)) (-3907 (((-112) $ $) 60)) (-3180 (($) 17 T CONST)) (-4248 (((-641 $) (-949 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85)) (-1544 (($ (-949 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88)) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-1926 (((-112) $) 72)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 92)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-4139 (((-418 $) $) 75)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ $) 66)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
(((-27) (-140)) (T -27))
-((-3330 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-3330 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2984 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2487 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-2487 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-2487 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))))
-(-13 (-363) (-999) (-10 -8 (-15 -3330 ($ (-949 $))) (-15 -3330 ($ (-1166 $))) (-15 -3330 ($ (-1166 $) (-1170))) (-15 -2984 ((-641 $) (-949 $))) (-15 -2984 ((-641 $) (-1166 $))) (-15 -2984 ((-641 $) (-1166 $) (-1170))) (-15 -2487 ($ (-949 $))) (-15 -2487 ($ (-1166 $))) (-15 -2487 ($ (-1166 $) (-1170))) (-15 -4186 ((-641 $) (-949 $))) (-15 -4186 ((-641 $) (-1166 $))) (-15 -4186 ((-641 $) (-1166 $) (-1170)))))
+((-1544 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-1544 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-1815 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-1815 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-1815 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))))
+(-13 (-363) (-999) (-10 -8 (-15 -1544 ($ (-949 $))) (-15 -1544 ($ (-1166 $))) (-15 -1544 ($ (-1166 $) (-1170))) (-15 -4248 ((-641 $) (-949 $))) (-15 -4248 ((-641 $) (-1166 $))) (-15 -4248 ((-641 $) (-1166 $) (-1170))) (-15 -1815 ($ (-949 $))) (-15 -1815 ($ (-1166 $))) (-15 -1815 ($ (-1166 $) (-1170))) (-15 -1701 ((-641 $) (-949 $))) (-15 -1701 ((-641 $) (-1166 $))) (-15 -1701 ((-641 $) (-1166 $) (-1170)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-999) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-4186 (((-641 $) (-949 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 60) (((-641 $) $) 22) (((-641 $) $ (-1170)) 51)) (-2487 (($ (-949 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) 62) (($ $) 20) (($ $ (-1170)) 45)) (-2984 (((-641 $) (-949 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 58) (((-641 $) $) 18) (((-641 $) $ (-1170)) 53)) (-3330 (($ (-949 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) NIL) (($ $) 15) (($ $ (-1170)) 47)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -4186 ((-641 |#1|) |#1| (-1170))) (-15 -2487 (|#1| |#1| (-1170))) (-15 -4186 ((-641 |#1|) |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -2984 ((-641 |#1|) |#1| (-1170))) (-15 -3330 (|#1| |#1| (-1170))) (-15 -2984 ((-641 |#1|) |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4186 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4186 ((-641 |#1|) (-1166 |#1|))) (-15 -4186 ((-641 |#1|) (-949 |#1|))) (-15 -2487 (|#1| (-1166 |#1|) (-1170))) (-15 -2487 (|#1| (-1166 |#1|))) (-15 -2487 (|#1| (-949 |#1|))) (-15 -2984 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2984 ((-641 |#1|) (-1166 |#1|))) (-15 -2984 ((-641 |#1|) (-949 |#1|))) (-15 -3330 (|#1| (-1166 |#1|) (-1170))) (-15 -3330 (|#1| (-1166 |#1|))) (-15 -3330 (|#1| (-949 |#1|)))) (-29 |#2|) (-13 (-847) (-556))) (T -28))
+((-1701 (((-641 $) (-949 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 60) (((-641 $) $) 22) (((-641 $) $ (-1170)) 51)) (-1815 (($ (-949 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) 62) (($ $) 20) (($ $ (-1170)) 45)) (-4248 (((-641 $) (-949 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 58) (((-641 $) $) 18) (((-641 $) $ (-1170)) 53)) (-1544 (($ (-949 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) NIL) (($ $) 15) (($ $ (-1170)) 47)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1701 ((-641 |#1|) |#1| (-1170))) (-15 -1815 (|#1| |#1| (-1170))) (-15 -1701 ((-641 |#1|) |#1|)) (-15 -1815 (|#1| |#1|)) (-15 -4248 ((-641 |#1|) |#1| (-1170))) (-15 -1544 (|#1| |#1| (-1170))) (-15 -4248 ((-641 |#1|) |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1701 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -1701 ((-641 |#1|) (-1166 |#1|))) (-15 -1701 ((-641 |#1|) (-949 |#1|))) (-15 -1815 (|#1| (-1166 |#1|) (-1170))) (-15 -1815 (|#1| (-1166 |#1|))) (-15 -1815 (|#1| (-949 |#1|))) (-15 -4248 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4248 ((-641 |#1|) (-1166 |#1|))) (-15 -4248 ((-641 |#1|) (-949 |#1|))) (-15 -1544 (|#1| (-1166 |#1|) (-1170))) (-15 -1544 (|#1| (-1166 |#1|))) (-15 -1544 (|#1| (-949 |#1|)))) (-29 |#2|) (-13 (-847) (-556))) (T -28))
NIL
-(-10 -8 (-15 -4186 ((-641 |#1|) |#1| (-1170))) (-15 -2487 (|#1| |#1| (-1170))) (-15 -4186 ((-641 |#1|) |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -2984 ((-641 |#1|) |#1| (-1170))) (-15 -3330 (|#1| |#1| (-1170))) (-15 -2984 ((-641 |#1|) |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -4186 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4186 ((-641 |#1|) (-1166 |#1|))) (-15 -4186 ((-641 |#1|) (-949 |#1|))) (-15 -2487 (|#1| (-1166 |#1|) (-1170))) (-15 -2487 (|#1| (-1166 |#1|))) (-15 -2487 (|#1| (-949 |#1|))) (-15 -2984 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2984 ((-641 |#1|) (-1166 |#1|))) (-15 -2984 ((-641 |#1|) (-949 |#1|))) (-15 -3330 (|#1| (-1166 |#1|) (-1170))) (-15 -3330 (|#1| (-1166 |#1|))) (-15 -3330 (|#1| (-949 |#1|))))
-((-1754 (((-112) $ $) 7)) (-4186 (((-641 $) (-949 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79) (((-641 $) $) 125) (((-641 $) $ (-1170)) 123)) (-2487 (($ (-949 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82) (($ $) 126) (($ $ (-1170)) 124)) (-3976 (((-112) $) 16)) (-4170 (((-641 (-1170)) $) 200)) (-3964 (((-407 (-1166 $)) $ (-610 $)) 232 (|has| |#1| (-556)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3853 (((-641 (-610 $)) $) 163)) (-3936 (((-3 $ "failed") $ $) 19)) (-2662 (($ $ (-641 (-610 $)) (-641 $)) 153) (($ $ (-641 (-294 $))) 152) (($ $ (-294 $)) 151)) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-4019 (($ $) 93)) (-3385 (((-112) $ $) 60)) (-3760 (($) 17 T CONST)) (-2984 (((-641 $) (-949 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85) (((-641 $) $) 129) (((-641 $) $ (-1170)) 127)) (-3330 (($ (-949 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88) (($ $) 130) (($ $ (-1170)) 128)) (-2013 (((-3 (-949 |#1|) "failed") $) 250 (|has| |#1| (-1046))) (((-3 (-407 (-949 |#1|)) "failed") $) 234 (|has| |#1| (-556))) (((-3 |#1| "failed") $) 196) (((-3 (-564) "failed") $) 193 (|has| |#1| (-1035 (-564)))) (((-3 (-1170) "failed") $) 187) (((-3 (-610 $) "failed") $) 138) (((-3 (-407 (-564)) "failed") $) 121 (-4002 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-2064 (((-949 |#1|) $) 249 (|has| |#1| (-1046))) (((-407 (-949 |#1|)) $) 233 (|has| |#1| (-556))) ((|#1| $) 195) (((-564) $) 194 (|has| |#1| (-1035 (-564)))) (((-1170) $) 186) (((-610 $) $) 137) (((-407 (-564)) $) 122 (-4002 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-1387 (($ $ $) 56)) (-2620 (((-685 |#1|) (-685 $)) 240 (|has| |#1| (-1046))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 239 (|has| |#1| (-1046))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 120 (-4002 (-4266 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-4266 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (((-685 (-564)) (-685 $)) 119 (-4002 (-4266 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-4266 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-3241 (((-112) $) 72)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 192 (|has| |#1| (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 191 (|has| |#1| (-883 (-564))))) (-2696 (($ (-641 $)) 157) (($ $) 156)) (-2885 (((-641 (-114)) $) 164)) (-1826 (((-114) (-114)) 165)) (-2419 (((-112) $) 31)) (-1629 (((-112) $) 185 (|has| $ (-1035 (-564))))) (-1957 (($ $) 217 (|has| |#1| (-1046)))) (-1507 (((-1119 |#1| (-610 $)) $) 216 (|has| |#1| (-1046)))) (-1935 (($ $ (-564)) 92)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2431 (((-1166 $) (-610 $)) 182 (|has| $ (-1046)))) (-3571 (($ $ $) 136)) (-1547 (($ $ $) 135)) (-2082 (($ (-1 $ $) (-610 $)) 171)) (-4293 (((-3 (-610 $) "failed") $) 161)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-3943 (((-641 (-610 $)) $) 162)) (-1583 (($ (-114) (-641 $)) 170) (($ (-114) $) 169)) (-1964 (((-3 (-641 $) "failed") $) 211 (|has| |#1| (-1106)))) (-3221 (((-3 (-2 (|:| |val| $) (|:| -3747 (-564))) "failed") $) 220 (|has| |#1| (-1046)))) (-1295 (((-3 (-641 $) "failed") $) 213 (|has| |#1| (-25)))) (-2375 (((-3 (-2 (|:| -1662 (-564)) (|:| |var| (-610 $))) "failed") $) 214 (|has| |#1| (-25)))) (-1691 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-1170)) 219 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-114)) 218 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $) 212 (|has| |#1| (-1106)))) (-3559 (((-112) $ (-1170)) 168) (((-112) $ (-114)) 167)) (-4272 (($ $) 71)) (-1813 (((-768) $) 160)) (-3802 (((-1114) $) 10)) (-4285 (((-112) $) 198)) (-4298 ((|#1| $) 199)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-1350 (((-112) $ (-1170)) 173) (((-112) $ $) 172)) (-4006 (((-418 $) $) 75)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-1518 (((-112) $) 184 (|has| $ (-1035 (-564))))) (-2407 (($ $ (-1170) (-768) (-1 $ $)) 224 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) 223 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 222 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 221 (|has| |#1| (-1046))) (($ $ (-641 (-114)) (-641 $) (-1170)) 210 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 209 (|has| |#1| (-612 (-536)))) (($ $) 208 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 207 (|has| |#1| (-612 (-536)))) (($ $ (-1170)) 206 (|has| |#1| (-612 (-536)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-641 $))) 180) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 179) (($ $ (-641 (-114)) (-641 (-1 $ $))) 178) (($ $ (-1170) (-1 $ $)) 177) (($ $ (-1170) (-1 $ (-641 $))) 176) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 175) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 174) (($ $ (-641 $) (-641 $)) 145) (($ $ $ $) 144) (($ $ (-294 $)) 143) (($ $ (-641 (-294 $))) 142) (($ $ (-641 (-610 $)) (-641 $)) 141) (($ $ (-610 $) $) 140)) (-3712 (((-768) $) 59)) (-4382 (($ (-114) (-641 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-2898 (($ $ $) 159) (($ $) 158)) (-3226 (($ $ (-1170)) 248 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 247 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 246 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) 245 (|has| |#1| (-1046)))) (-3762 (($ $) 227 (|has| |#1| (-556)))) (-1517 (((-1119 |#1| (-610 $)) $) 226 (|has| |#1| (-556)))) (-1916 (($ $) 183 (|has| $ (-1046)))) (-2127 (((-536) $) 254 (|has| |#1| (-612 (-536)))) (($ (-418 $)) 225 (|has| |#1| (-556))) (((-889 (-379)) $) 190 (|has| |#1| (-612 (-889 (-379))))) (((-889 (-564)) $) 189 (|has| |#1| (-612 (-889 (-564)))))) (-2502 (($ $ $) 253 (|has| |#1| (-473)))) (-1762 (($ $ $) 252 (|has| |#1| (-473)))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-949 |#1|)) 251 (|has| |#1| (-1046))) (($ (-407 (-949 |#1|))) 235 (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) 231 (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) 230 (|has| |#1| (-556))) (($ (-407 |#1|)) 229 (|has| |#1| (-556))) (($ (-1119 |#1| (-610 $))) 215 (|has| |#1| (-1046))) (($ |#1|) 197) (($ (-1170)) 188) (($ (-610 $)) 139)) (-2864 (((-3 $ "failed") $) 238 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-1719 (($ (-641 $)) 155) (($ $) 154)) (-1573 (((-112) (-114)) 166)) (-1582 (((-112) $ $) 40)) (-4060 (($ (-1170) (-641 $)) 205) (($ (-1170) $ $ $ $) 204) (($ (-1170) $ $ $) 203) (($ (-1170) $ $) 202) (($ (-1170) $) 201)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-1170)) 244 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 243 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 242 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) 241 (|has| |#1| (-1046)))) (-1738 (((-112) $ $) 133)) (-1715 (((-112) $ $) 132)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 134)) (-1705 (((-112) $ $) 131)) (-1793 (($ $ $) 66) (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 228 (|has| |#1| (-556)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-172))) (($ |#1| $) 236 (|has| |#1| (-172)))))
+(-10 -8 (-15 -1701 ((-641 |#1|) |#1| (-1170))) (-15 -1815 (|#1| |#1| (-1170))) (-15 -1701 ((-641 |#1|) |#1|)) (-15 -1815 (|#1| |#1|)) (-15 -4248 ((-641 |#1|) |#1| (-1170))) (-15 -1544 (|#1| |#1| (-1170))) (-15 -4248 ((-641 |#1|) |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1701 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -1701 ((-641 |#1|) (-1166 |#1|))) (-15 -1701 ((-641 |#1|) (-949 |#1|))) (-15 -1815 (|#1| (-1166 |#1|) (-1170))) (-15 -1815 (|#1| (-1166 |#1|))) (-15 -1815 (|#1| (-949 |#1|))) (-15 -4248 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -4248 ((-641 |#1|) (-1166 |#1|))) (-15 -4248 ((-641 |#1|) (-949 |#1|))) (-15 -1544 (|#1| (-1166 |#1|) (-1170))) (-15 -1544 (|#1| (-1166 |#1|))) (-15 -1544 (|#1| (-949 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1701 (((-641 $) (-949 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79) (((-641 $) $) 125) (((-641 $) $ (-1170)) 123)) (-1815 (($ (-949 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82) (($ $) 126) (($ $ (-1170)) 124)) (-1556 (((-112) $) 16)) (-4292 (((-641 (-1170)) $) 200)) (-4103 (((-407 (-1166 $)) $ (-610 $)) 232 (|has| |#1| (-556)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4011 (((-641 (-610 $)) $) 163)) (-4281 (((-3 $ "failed") $ $) 19)) (-3203 (($ $ (-641 (-610 $)) (-641 $)) 153) (($ $ (-641 (-294 $))) 152) (($ $ (-294 $)) 151)) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-4152 (($ $) 93)) (-3907 (((-112) $ $) 60)) (-3180 (($) 17 T CONST)) (-4248 (((-641 $) (-949 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85) (((-641 $) $) 129) (((-641 $) $ (-1170)) 127)) (-1544 (($ (-949 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88) (($ $) 130) (($ $ (-1170)) 128)) (-2224 (((-3 (-949 |#1|) "failed") $) 250 (|has| |#1| (-1046))) (((-3 (-407 (-949 |#1|)) "failed") $) 234 (|has| |#1| (-556))) (((-3 |#1| "failed") $) 196) (((-3 (-564) "failed") $) 193 (|has| |#1| (-1035 (-564)))) (((-3 (-1170) "failed") $) 187) (((-3 (-610 $) "failed") $) 138) (((-3 (-407 (-564)) "failed") $) 121 (-4012 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-2376 (((-949 |#1|) $) 249 (|has| |#1| (-1046))) (((-407 (-949 |#1|)) $) 233 (|has| |#1| (-556))) ((|#1| $) 195) (((-564) $) 194 (|has| |#1| (-1035 (-564)))) (((-1170) $) 186) (((-610 $) $) 137) (((-407 (-564)) $) 122 (-4012 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-1399 (($ $ $) 56)) (-3613 (((-685 |#1|) (-685 $)) 240 (|has| |#1| (-1046))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 239 (|has| |#1| (-1046))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 120 (-4012 (-4264 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-4264 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (((-685 (-564)) (-685 $)) 119 (-4012 (-4264 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-4264 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-1926 (((-112) $) 72)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 192 (|has| |#1| (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 191 (|has| |#1| (-883 (-564))))) (-3187 (($ (-641 $)) 157) (($ $) 156)) (-1512 (((-641 (-114)) $) 164)) (-2702 (((-114) (-114)) 165)) (-2340 (((-112) $) 31)) (-1329 (((-112) $) 185 (|has| $ (-1035 (-564))))) (-1492 (($ $) 217 (|has| |#1| (-1046)))) (-1655 (((-1119 |#1| (-610 $)) $) 216 (|has| |#1| (-1046)))) (-4342 (($ $ (-564)) 92)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2466 (((-1166 $) (-610 $)) 182 (|has| $ (-1046)))) (-3428 (($ $ $) 136)) (-3413 (($ $ $) 135)) (-2313 (($ (-1 $ $) (-610 $)) 171)) (-1419 (((-3 (-610 $) "failed") $) 161)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-4090 (((-641 (-610 $)) $) 162)) (-1736 (($ (-114) (-641 $)) 170) (($ (-114) $) 169)) (-3370 (((-3 (-641 $) "failed") $) 211 (|has| |#1| (-1106)))) (-1705 (((-3 (-2 (|:| |val| $) (|:| -3078 (-564))) "failed") $) 220 (|has| |#1| (-1046)))) (-3591 (((-3 (-641 $) "failed") $) 213 (|has| |#1| (-25)))) (-3120 (((-3 (-2 (|:| -1817 (-564)) (|:| |var| (-610 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3741 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-1170)) 219 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-114)) 218 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $) 212 (|has| |#1| (-1106)))) (-1932 (((-112) $ (-1170)) 168) (((-112) $ (-114)) 167)) (-1295 (($ $) 71)) (-3694 (((-768) $) 160)) (-3844 (((-1114) $) 10)) (-1304 (((-112) $) 198)) (-1316 ((|#1| $) 199)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-2544 (((-112) $ (-1170)) 173) (((-112) $ $) 172)) (-4139 (((-418 $) $) 75)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-1542 (((-112) $) 184 (|has| $ (-1035 (-564))))) (-2582 (($ $ (-1170) (-768) (-1 $ $)) 224 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) 223 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 222 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 221 (|has| |#1| (-1046))) (($ $ (-641 (-114)) (-641 $) (-1170)) 210 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 209 (|has| |#1| (-612 (-536)))) (($ $) 208 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 207 (|has| |#1| (-612 (-536)))) (($ $ (-1170)) 206 (|has| |#1| (-612 (-536)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-641 $))) 180) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 179) (($ $ (-641 (-114)) (-641 (-1 $ $))) 178) (($ $ (-1170) (-1 $ $)) 177) (($ $ (-1170) (-1 $ (-641 $))) 176) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 175) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 174) (($ $ (-641 $) (-641 $)) 145) (($ $ $ $) 144) (($ $ (-294 $)) 143) (($ $ (-641 (-294 $))) 142) (($ $ (-641 (-610 $)) (-641 $)) 141) (($ $ (-610 $) $) 140)) (-3966 (((-768) $) 59)) (-4382 (($ (-114) (-641 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-3444 (($ $ $) 159) (($ $) 158)) (-2203 (($ $ (-1170)) 248 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 247 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 246 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) 245 (|has| |#1| (-1046)))) (-3197 (($ $) 227 (|has| |#1| (-556)))) (-1668 (((-1119 |#1| (-610 $)) $) 226 (|has| |#1| (-556)))) (-4180 (($ $) 183 (|has| $ (-1046)))) (-2374 (((-536) $) 254 (|has| |#1| (-612 (-536)))) (($ (-418 $)) 225 (|has| |#1| (-556))) (((-889 (-379)) $) 190 (|has| |#1| (-612 (-889 (-379))))) (((-889 (-564)) $) 189 (|has| |#1| (-612 (-889 (-564)))))) (-1953 (($ $ $) 253 (|has| |#1| (-473)))) (-3217 (($ $ $) 252 (|has| |#1| (-473)))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-949 |#1|)) 251 (|has| |#1| (-1046))) (($ (-407 (-949 |#1|))) 235 (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) 231 (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) 230 (|has| |#1| (-556))) (($ (-407 |#1|)) 229 (|has| |#1| (-556))) (($ (-1119 |#1| (-610 $))) 215 (|has| |#1| (-1046))) (($ |#1|) 197) (($ (-1170)) 188) (($ (-610 $)) 139)) (-4363 (((-3 $ "failed") $) 238 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-3146 (($ (-641 $)) 155) (($ $) 154)) (-2068 (((-112) (-114)) 166)) (-3979 (((-112) $ $) 40)) (-2776 (($ (-1170) (-641 $)) 205) (($ (-1170) $ $ $ $) 204) (($ (-1170) $ $ $) 203) (($ (-1170) $ $) 202) (($ (-1170) $) 201)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-1170)) 244 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 243 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 242 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) 241 (|has| |#1| (-1046)))) (-1781 (((-112) $ $) 133)) (-1758 (((-112) $ $) 132)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 134)) (-1746 (((-112) $ $) 131)) (-1841 (($ $ $) 66) (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 228 (|has| |#1| (-556)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-172))) (($ |#1| $) 236 (|has| |#1| (-172)))))
(((-29 |#1|) (-140) (-13 (-847) (-556))) (T -29))
-((-3330 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) (-2984 (*1 *2 *1) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) (-2984 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))) (-2487 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) (-4186 (*1 *2 *1) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-2487 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) (-4186 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -3330 ($ $)) (-15 -2984 ((-641 $) $)) (-15 -3330 ($ $ (-1170))) (-15 -2984 ((-641 $) $ (-1170))) (-15 -2487 ($ $)) (-15 -4186 ((-641 $) $)) (-15 -2487 ($ $ (-1170))) (-15 -4186 ((-641 $) $ (-1170)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 #1=(-407 (-949 |#1|))) |has| |#1| (-556)) ((-614 (-564)) . T) ((-614 #2=(-610 $)) . T) ((-614 #3=(-949 |#1|)) |has| |#1| (-1046)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1046)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) ((-637 |#1|) |has| |#1| (-1046)) ((-714 #0#) . T) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-897 (-1170)) |has| |#1| (-1046)) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-917) . T) ((-999) . T) ((-1035 (-407 (-564))) -4002 (|has| |#1| (-1035 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) ((-1035 #1#) |has| |#1| (-556)) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 #3#) |has| |#1| (-1046)) ((-1035 #4#) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T) ((-1213) . T))
-((-3492 (((-1088 (-225)) $) NIL)) (-3479 (((-1088 (-225)) $) NIL)) (-2203 (($ $ (-225)) 167)) (-2540 (($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564)))) 102)) (-1803 (((-641 (-641 (-940 (-225)))) $) 183)) (-1765 (((-859) $) 197)))
-(((-30) (-13 (-952) (-10 -8 (-15 -2540 ($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2203 ($ $ (-225)))))) (T -30))
-((-2540 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-949 (-564))) (-5 *3 (-1170)) (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
-(-13 (-952) (-10 -8 (-15 -2540 ($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2203 ($ $ (-225)))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-1129) $) 11)) (-2743 (((-1129) $) 9)) (-1686 (((-112) $ $) NIL)))
-(((-31) (-13 (-1077) (-10 -8 (-15 -2743 ((-1129) $)) (-15 -4374 ((-1129) $))))) (T -31))
-((-2743 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))))
-(-13 (-1077) (-10 -8 (-15 -2743 ((-1129) $)) (-15 -4374 ((-1129) $))))
-((-3330 ((|#2| (-1166 |#2|) (-1170)) 46)) (-1826 (((-114) (-114)) 60)) (-2431 (((-1166 |#2|) (-610 |#2|)) 151 (|has| |#1| (-1035 (-564))))) (-4198 ((|#2| |#1| (-564)) 139 (|has| |#1| (-1035 (-564))))) (-2687 ((|#2| (-1166 |#2|) |#2|) 29)) (-1689 (((-859) (-641 |#2|)) 88)) (-1916 ((|#2| |#2|) 146 (|has| |#1| (-1035 (-564))))) (-1573 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-564))) 105 (|has| |#1| (-1035 (-564))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3330 (|#2| (-1166 |#2|) (-1170))) (-15 -1826 ((-114) (-114))) (-15 -1573 ((-112) (-114))) (-15 -2687 (|#2| (-1166 |#2|) |#2|)) (-15 -1689 ((-859) (-641 |#2|))) (IF (|has| |#1| (-1035 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2431 ((-1166 |#2|) (-610 |#2|))) (-15 -1916 (|#2| |#2|)) (-15 -4198 (|#2| |#1| (-564)))) |%noBranch|)) (-13 (-847) (-556)) (-430 |#1|)) (T -32))
-((-4198 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1035 *4)) (-4 *3 (-13 (-847) (-556))))) (-1916 (*1 *2 *2) (-12 (-4 *3 (-1035 (-564))) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1035 (-564))) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1035 (-564))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-859)) (-5 *1 (-32 *4 *5)))) (-2687 (*1 *2 *3 *2) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-3330 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-847) (-556))))))
-(-10 -7 (-15 -3330 (|#2| (-1166 |#2|) (-1170))) (-15 -1826 ((-114) (-114))) (-15 -1573 ((-112) (-114))) (-15 -2687 (|#2| (-1166 |#2|) |#2|)) (-15 -1689 ((-859) (-641 |#2|))) (IF (|has| |#1| (-1035 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2431 ((-1166 |#2|) (-610 |#2|))) (-15 -1916 (|#2| |#2|)) (-15 -4198 (|#2| |#1| (-564)))) |%noBranch|))
-((-3263 (((-112) $ (-768)) 19)) (-3760 (($) 10)) (-2830 (((-112) $ (-768)) 18)) (-2972 (((-112) $ (-768)) 17)) (-2606 (((-112) $ $) 8)) (-2742 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -3760 (|#1|)) (-15 -3263 ((-112) |#1| (-768))) (-15 -2830 ((-112) |#1| (-768))) (-15 -2972 ((-112) |#1| (-768))) (-15 -2742 ((-112) |#1|)) (-15 -2606 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -3760 (|#1|)) (-15 -3263 ((-112) |#1| (-768))) (-15 -2830 ((-112) |#1| (-768))) (-15 -2972 ((-112) |#1| (-768))) (-15 -2742 ((-112) |#1|)) (-15 -2606 ((-112) |#1| |#1|)))
-((-3263 (((-112) $ (-768)) 8)) (-3760 (($) 7 T CONST)) (-2830 (((-112) $ (-768)) 9)) (-2972 (((-112) $ (-768)) 10)) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-1899 (($ $) 13)) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-1544 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) (-4248 (*1 *2 *1) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-1544 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) (-4248 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))) (-1815 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) (-1701 (*1 *2 *1) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-1815 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) (-1701 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -1544 ($ $)) (-15 -4248 ((-641 $) $)) (-15 -1544 ($ $ (-1170))) (-15 -4248 ((-641 $) $ (-1170))) (-15 -1815 ($ $)) (-15 -1701 ((-641 $) $)) (-15 -1815 ($ $ (-1170))) (-15 -1701 ((-641 $) $ (-1170)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 #1=(-407 (-949 |#1|))) |has| |#1| (-556)) ((-614 (-564)) . T) ((-614 #2=(-610 $)) . T) ((-614 #3=(-949 |#1|)) |has| |#1| (-1046)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1046)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) ((-637 |#1|) |has| |#1| (-1046)) ((-714 #0#) . T) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-897 (-1170)) |has| |#1| (-1046)) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-917) . T) ((-999) . T) ((-1035 (-407 (-564))) -4012 (|has| |#1| (-1035 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) ((-1035 #1#) |has| |#1| (-556)) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 #3#) |has| |#1| (-1046)) ((-1035 #4#) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T) ((-1213) . T))
+((-1965 (((-1088 (-225)) $) NIL)) (-3618 (((-1088 (-225)) $) NIL)) (-2150 (($ $ (-225)) 167)) (-4097 (($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564)))) 102)) (-2465 (((-641 (-641 (-940 (-225)))) $) 183)) (-3714 (((-859) $) 197)))
+(((-30) (-13 (-952) (-10 -8 (-15 -4097 ($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2150 ($ $ (-225)))))) (T -30))
+((-4097 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-949 (-564))) (-5 *3 (-1170)) (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30)))) (-2150 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
+(-13 (-952) (-10 -8 (-15 -4097 ($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2150 ($ $ (-225)))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-1129) $) 11)) (-3270 (((-1129) $) 9)) (-1720 (((-112) $ $) NIL)))
+(((-31) (-13 (-1077) (-10 -8 (-15 -3270 ((-1129) $)) (-15 -4347 ((-1129) $))))) (T -31))
+((-3270 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))))
+(-13 (-1077) (-10 -8 (-15 -3270 ((-1129) $)) (-15 -4347 ((-1129) $))))
+((-1544 ((|#2| (-1166 |#2|) (-1170)) 46)) (-2702 (((-114) (-114)) 60)) (-2466 (((-1166 |#2|) (-610 |#2|)) 151 (|has| |#1| (-1035 (-564))))) (-1819 ((|#2| |#1| (-564)) 139 (|has| |#1| (-1035 (-564))))) (-3123 ((|#2| (-1166 |#2|) |#2|) 29)) (-3718 (((-859) (-641 |#2|)) 88)) (-4180 ((|#2| |#2|) 146 (|has| |#1| (-1035 (-564))))) (-2068 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-564))) 105 (|has| |#1| (-1035 (-564))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -1544 (|#2| (-1166 |#2|) (-1170))) (-15 -2702 ((-114) (-114))) (-15 -2068 ((-112) (-114))) (-15 -3123 (|#2| (-1166 |#2|) |#2|)) (-15 -3718 ((-859) (-641 |#2|))) (IF (|has| |#1| (-1035 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2466 ((-1166 |#2|) (-610 |#2|))) (-15 -4180 (|#2| |#2|)) (-15 -1819 (|#2| |#1| (-564)))) |%noBranch|)) (-13 (-847) (-556)) (-430 |#1|)) (T -32))
+((-1819 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1035 *4)) (-4 *3 (-13 (-847) (-556))))) (-4180 (*1 *2 *2) (-12 (-4 *3 (-1035 (-564))) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1035 (-564))) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1035 (-564))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-859)) (-5 *1 (-32 *4 *5)))) (-3123 (*1 *2 *3 *2) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-2702 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-847) (-556))))))
+(-10 -7 (-15 -1544 (|#2| (-1166 |#2|) (-1170))) (-15 -2702 ((-114) (-114))) (-15 -2068 ((-112) (-114))) (-15 -3123 (|#2| (-1166 |#2|) |#2|)) (-15 -3718 ((-859) (-641 |#2|))) (IF (|has| |#1| (-1035 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2466 ((-1166 |#2|) (-610 |#2|))) (-15 -4180 (|#2| |#2|)) (-15 -1819 (|#2| |#1| (-564)))) |%noBranch|))
+((-2141 (((-112) $ (-768)) 19)) (-3180 (($) 10)) (-2173 (((-112) $ (-768)) 18)) (-4144 (((-112) $ (-768)) 17)) (-3447 (((-112) $ $) 8)) (-2510 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -3180 (|#1|)) (-15 -2141 ((-112) |#1| (-768))) (-15 -2173 ((-112) |#1| (-768))) (-15 -4144 ((-112) |#1| (-768))) (-15 -2510 ((-112) |#1|)) (-15 -3447 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -3180 (|#1|)) (-15 -2141 ((-112) |#1| (-768))) (-15 -2173 ((-112) |#1| (-768))) (-15 -4144 ((-112) |#1| (-768))) (-15 -2510 ((-112) |#1|)) (-15 -3447 ((-112) |#1| |#1|)))
+((-2141 (((-112) $ (-768)) 8)) (-3180 (($) 7 T CONST)) (-2173 (((-112) $ (-768)) 9)) (-4144 (((-112) $ (-768)) 10)) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3890 (($ $) 13)) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-34) (-140)) (T -34))
-((-2606 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1899 (*1 *1 *1) (-4 *1 (-34))) (-3845 (*1 *1) (-4 *1 (-34))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2972 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-2830 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-3263 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-3760 (*1 *1) (-4 *1 (-34))) (-2589 (*1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-34)) (-5 *2 (-768)))))
-(-13 (-1209) (-10 -8 (-15 -2606 ((-112) $ $)) (-15 -1899 ($ $)) (-15 -3845 ($)) (-15 -2742 ((-112) $)) (-15 -2972 ((-112) $ (-768))) (-15 -2830 ((-112) $ (-768))) (-15 -3263 ((-112) $ (-768))) (-15 -3760 ($) -3246) (IF (|has| $ (-6 -4411)) (-15 -2589 ((-768) $)) |%noBranch|)))
+((-3447 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3890 (*1 *1 *1) (-4 *1 (-34))) (-2834 (*1 *1) (-4 *1 (-34))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4144 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-2173 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-2141 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-3180 (*1 *1) (-4 *1 (-34))) (-2779 (*1 *2 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-34)) (-5 *2 (-768)))))
+(-13 (-1209) (-10 -8 (-15 -3447 ((-112) $ $)) (-15 -3890 ($ $)) (-15 -2834 ($)) (-15 -2510 ((-112) $)) (-15 -4144 ((-112) $ (-768))) (-15 -2173 ((-112) $ (-768))) (-15 -2141 ((-112) $ (-768))) (-15 -3180 ($) -2222) (IF (|has| $ (-6 -4412)) (-15 -2779 ((-768) $)) |%noBranch|)))
(((-1209) . T))
-((-3991 (($ $) 11)) (-3963 (($ $) 10)) (-4020 (($ $) 9)) (-3586 (($ $) 8)) (-4005 (($ $) 7)) (-3977 (($ $) 6)))
+((-2728 (($ $) 11)) (-2704 (($ $) 10)) (-2751 (($ $) 9)) (-2053 (($ $) 8)) (-2740 (($ $) 7)) (-2716 (($ $) 6)))
(((-35) (-140)) (T -35))
-((-3991 (*1 *1 *1) (-4 *1 (-35))) (-3963 (*1 *1 *1) (-4 *1 (-35))) (-4020 (*1 *1 *1) (-4 *1 (-35))) (-3586 (*1 *1 *1) (-4 *1 (-35))) (-4005 (*1 *1 *1) (-4 *1 (-35))) (-3977 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3977 ($ $)) (-15 -4005 ($ $)) (-15 -3586 ($ $)) (-15 -4020 ($ $)) (-15 -3963 ($ $)) (-15 -3991 ($ $))))
-((-1754 (((-112) $ $) 19 (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1451 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 125)) (-2722 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 148)) (-1882 (($ $) 146)) (-1622 (($) 72) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 71)) (-3476 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4412))) (((-1264) $ (-564) (-564)) 178 (|has| $ (-6 -4412)))) (-3280 (($ $ (-564)) 159 (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-3606 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 200 (|has| $ (-6 -4412))) (($ $) 199 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)) (|has| $ (-6 -4412))))) (-2494 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-3263 (((-112) $ (-768)) 8)) (-3768 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 134 (|has| $ (-6 -4412)))) (-2293 (($ $ $) 155 (|has| $ (-6 -4412)))) (-3129 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 157 (|has| $ (-6 -4412)))) (-4318 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 153 (|has| $ (-6 -4412)))) (-1881 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 189 (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-1226 (-564)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 160 (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "last" (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 158 (|has| $ (-6 -4412))) (($ $ "rest" $) 156 (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "first" (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 154 (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "value" (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 133 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 132 (|has| $ (-6 -4412)))) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 45 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 216)) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 55 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 175 (|has| $ (-6 -4411)))) (-2711 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 147)) (-1645 (((-3 |#2| "failed") |#1| $) 61)) (-3760 (($) 7 T CONST)) (-3852 (($ $) 201 (|has| $ (-6 -4412)))) (-3716 (($ $) 211)) (-3086 (($ $ (-768)) 142) (($ $) 140)) (-3083 (($ $) 214 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-3104 (($ $) 58 (-4002 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411))) (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 46 (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 220) (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 215 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 54 (|has| $ (-6 -4411))) (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 174 (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 56 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 53 (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 52 (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 176 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 173 (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 172 (|has| $ (-6 -4411)))) (-3528 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 190 (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) 88) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) 188)) (-1418 (((-112) $) 192)) (-1356 (((-564) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 208) (((-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 207 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) (((-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) 206 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 30 (|has| $ (-6 -4411))) (((-641 |#2|) $) 79 (|has| $ (-6 -4411))) (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 114 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 123)) (-2272 (((-112) $ $) 131 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-1633 (($ (-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 169)) (-2830 (((-112) $ (-768)) 9)) (-4065 ((|#1| $) 96 (|has| |#1| (-847))) (((-564) $) 180 (|has| (-564) (-847)))) (-3571 (($ $ $) 198 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-1397 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-4012 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 29 (|has| $ (-6 -4411))) (((-641 |#2|) $) 80 (|has| $ (-6 -4411))) (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 115 (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411)))) (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-1479 ((|#1| $) 95 (|has| |#1| (-847))) (((-564) $) 181 (|has| (-564) (-847)))) (-1547 (($ $ $) 197 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 34 (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4412))) (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 110 (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 109)) (-2953 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 225)) (-2972 (((-112) $ (-768)) 10)) (-3848 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 128)) (-2200 (((-112) $) 124)) (-4202 (((-1152) $) 22 (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-2376 (($ $ (-768)) 145) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 143)) (-3211 (((-641 |#1|) $) 63)) (-4185 (((-112) |#1| $) 64)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 39)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 40) (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) 219) (($ $ $ (-564)) 218)) (-3412 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) 162) (($ $ $ (-564)) 161)) (-1371 (((-641 |#1|) $) 93) (((-641 (-564)) $) 183)) (-3629 (((-112) |#1| $) 92) (((-112) (-564) $) 184)) (-3802 (((-1114) $) 21 (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-3073 ((|#2| $) 97 (|has| |#1| (-847))) (($ $ (-768)) 139) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 137)) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 51) (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 171)) (-2614 (($ $ |#2|) 98 (|has| $ (-6 -4412))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 179 (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 41)) (-2141 (((-112) $) 191)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 32 (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 112 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) 26 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 25 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 24 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 23 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 121 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 120 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 119 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) 118 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 182 (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-3599 (((-641 |#2|) $) 91) (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 185)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 187) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) 186) (($ $ (-1226 (-564))) 165) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "first") 138) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "value") 126)) (-3837 (((-564) $ $) 129)) (-3784 (($) 49) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 48)) (-4183 (($ $ (-564)) 222) (($ $ (-1226 (-564))) 221)) (-2008 (($ $ (-564)) 164) (($ $ (-1226 (-564))) 163)) (-1867 (((-112) $) 127)) (-2294 (($ $) 151)) (-4207 (($ $) 152 (|has| $ (-6 -4412)))) (-2355 (((-768) $) 150)) (-4119 (($ $) 149)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 31 (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-768) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 113 (|has| $ (-6 -4411)))) (-2286 (($ $ $ (-564)) 202 (|has| $ (-6 -4412)))) (-1899 (($ $) 13)) (-2127 (((-536) $) 59 (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536)))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 50) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 170)) (-2478 (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 224) (($ $ $) 223)) (-2817 (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 168) (($ (-641 $)) 167) (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 136) (($ $ $) 135)) (-1765 (((-859) $) 18 (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859)))))) (-3706 (((-641 $) $) 122)) (-1740 (((-112) $ $) 130 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 42)) (-2385 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") |#1| $) 108)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 33 (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 111 (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) 195 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-1715 (((-112) $ $) 194 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-1686 (((-112) $ $) 20 (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1728 (((-112) $ $) 196 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-1705 (((-112) $ $) 193 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-2728 (*1 *1 *1) (-4 *1 (-35))) (-2704 (*1 *1 *1) (-4 *1 (-35))) (-2751 (*1 *1 *1) (-4 *1 (-35))) (-2053 (*1 *1 *1) (-4 *1 (-35))) (-2740 (*1 *1 *1) (-4 *1 (-35))) (-2716 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -2716 ($ $)) (-15 -2740 ($ $)) (-15 -2053 ($ $)) (-15 -2751 ($ $)) (-15 -2704 ($ $)) (-15 -2728 ($ $))))
+((-3702 (((-112) $ $) 19 (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-3387 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 125)) (-2985 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 148)) (-3794 (($ $) 146)) (-3553 (($) 72) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 71)) (-2399 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4413))) (((-1264) $ (-564) (-564)) 178 (|has| $ (-6 -4413)))) (-4140 (($ $ (-564)) 159 (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-4194 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 200 (|has| $ (-6 -4413))) (($ $) 199 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)) (|has| $ (-6 -4413))))) (-2904 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-2141 (((-112) $ (-768)) 8)) (-3242 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 134 (|has| $ (-6 -4413)))) (-3543 (($ $ $) 155 (|has| $ (-6 -4413)))) (-3186 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 157 (|has| $ (-6 -4413)))) (-1617 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 153 (|has| $ (-6 -4413)))) (-3868 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 189 (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-1226 (-564)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 160 (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "last" (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 158 (|has| $ (-6 -4413))) (($ $ "rest" $) 156 (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "first" (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 154 (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "value" (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 133 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 132 (|has| $ (-6 -4413)))) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 45 (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 216)) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 55 (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 175 (|has| $ (-6 -4412)))) (-2976 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 147)) (-3576 (((-3 |#2| "failed") |#1| $) 61)) (-3180 (($) 7 T CONST)) (-1651 (($ $) 201 (|has| $ (-6 -4413)))) (-1923 (($ $) 211)) (-2063 (($ $ (-768)) 142) (($ $) 140)) (-2822 (($ $) 214 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-2084 (($ $) 58 (-4012 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412))) (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 47 (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 46 (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 220) (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 215 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 54 (|has| $ (-6 -4412))) (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 177 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 174 (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 56 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 53 (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 52 (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 176 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 173 (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 172 (|has| $ (-6 -4412)))) (-1998 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 190 (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) 88) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) 188)) (-1635 (((-112) $) 192)) (-3303 (((-564) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 208) (((-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 207 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) (((-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) 206 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 30 (|has| $ (-6 -4412))) (((-641 |#2|) $) 79 (|has| $ (-6 -4412))) (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 114 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 123)) (-1543 (((-112) $ $) 131 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-3564 (($ (-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 169)) (-2173 (((-112) $ (-768)) 9)) (-2994 ((|#1| $) 96 (|has| |#1| (-847))) (((-564) $) 180 (|has| (-564) (-847)))) (-3428 (($ $ $) 198 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-2573 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-3678 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 29 (|has| $ (-6 -4412))) (((-641 |#2|) $) 80 (|has| $ (-6 -4412))) (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 115 (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412)))) (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412))))) (-2415 ((|#1| $) 95 (|has| |#1| (-847))) (((-564) $) 181 (|has| (-564) (-847)))) (-3413 (($ $ $) 197 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 34 (|has| $ (-6 -4413))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4413))) (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 110 (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 109)) (-1929 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 225)) (-4144 (((-112) $ (-768)) 10)) (-2523 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 128)) (-2120 (((-112) $) 124)) (-1868 (((-1152) $) 22 (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-2541 (($ $ (-768)) 145) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 143)) (-1922 (((-641 |#1|) $) 63)) (-1690 (((-112) |#1| $) 64)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 39)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 40) (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) 219) (($ $ $ (-564)) 218)) (-2455 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) 162) (($ $ $ (-564)) 161)) (-3127 (((-641 |#1|) $) 93) (((-641 (-564)) $) 183)) (-1338 (((-112) |#1| $) 92) (((-112) (-564) $) 184)) (-3844 (((-1114) $) 21 (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-2049 ((|#2| $) 97 (|has| |#1| (-847))) (($ $ (-768)) 139) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 137)) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 51) (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 171)) (-3538 (($ $ |#2|) 98 (|has| $ (-6 -4413))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 179 (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 41)) (-2791 (((-112) $) 191)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 32 (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 112 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) 26 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 25 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 24 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 23 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 121 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 120 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 119 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) 118 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 182 (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-4121 (((-641 |#2|) $) 91) (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 185)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 187) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) 186) (($ $ (-1226 (-564))) 165) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "first") 138) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "value") 126)) (-2774 (((-564) $ $) 129)) (-3372 (($) 49) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 48)) (-2899 (($ $ (-564)) 222) (($ $ (-1226 (-564))) 221)) (-2090 (($ $ (-564)) 164) (($ $ (-1226 (-564))) 163)) (-1875 (((-112) $) 127)) (-3554 (($ $) 151)) (-1911 (($ $) 152 (|has| $ (-6 -4413)))) (-2966 (((-768) $) 150)) (-3414 (($ $) 149)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 31 (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (((-768) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 116 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 113 (|has| $ (-6 -4412)))) (-3474 (($ $ $ (-564)) 202 (|has| $ (-6 -4413)))) (-3890 (($ $) 13)) (-2374 (((-536) $) 59 (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536)))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 50) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 170)) (-1711 (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 224) (($ $ $) 223)) (-1865 (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 168) (($ (-641 $)) 167) (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 136) (($ $ $) 135)) (-3714 (((-859) $) 18 (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859)))))) (-3914 (((-641 $) $) 122)) (-3036 (((-112) $ $) 130 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 42)) (-2552 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") |#1| $) 108)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 33 (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 111 (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) 195 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-1758 (((-112) $ $) 194 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-1720 (((-112) $ $) 20 (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-1769 (((-112) $ $) 196 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-1746 (((-112) $ $) 193 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-36 |#1| |#2|) (-140) (-1094) (-1094)) (T -36))
-((-2385 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| -2351 *3) (|:| -1327 *4))))))
-(-13 (-1185 |t#1| |t#2|) (-662 (-2 (|:| -2351 |t#1|) (|:| -1327 |t#2|))) (-10 -8 (-15 -2385 ((-3 (-2 (|:| -2351 |t#1|) (|:| -1327 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T) ((-102) -4002 (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847))) ((-611 (-859)) -4002 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859)))) ((-151 #1=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T) ((-612 (-536)) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-564) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-602 #2# #1#) . T) ((-602 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-647 #1#) . T) ((-662 #1#) . T) ((-847) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)) ((-1007 #1#) . T) ((-1094) -4002 (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847))) ((-1143 #1#) . T) ((-1185 |#1| |#2|) . T) ((-1209) . T) ((-1247 #1#) . T))
-((-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|))) (-38 |#2|) (-172)) (T -37))
-NIL
-(-10 -8 (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-2552 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| -1350 *3) (|:| -2575 *4))))))
+(-13 (-1185 |t#1| |t#2|) (-662 (-2 (|:| -1350 |t#1|) (|:| -2575 |t#2|))) (-10 -8 (-15 -2552 ((-3 (-2 (|:| -1350 |t#1|) (|:| -2575 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T) ((-102) -4012 (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847))) ((-611 (-859)) -4012 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859)))) ((-151 #1=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T) ((-612 (-536)) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-564) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-602 #2# #1#) . T) ((-602 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-647 #1#) . T) ((-662 #1#) . T) ((-847) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)) ((-1007 #1#) . T) ((-1094) -4012 (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847))) ((-1143 #1#) . T) ((-1185 |#1| |#2|) . T) ((-1209) . T) ((-1247 #1#) . T))
+((-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|))) (-38 |#2|) (-172)) (T -37))
+NIL
+(-10 -8 (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-38 |#1|) (-140) (-172)) (T -38))
NIL
(-13 (-1046) (-714 |t#1|) (-614 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1654 (((-418 |#1|) |#1|) 41)) (-4006 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-641 (-48))) 33)) (-3475 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -4006 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -1654 ((-418 |#1|) |#1|)) (-15 -3475 ((-112) |#1|))) (-1235 (-48))) (T -39))
-((-3475 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-1654 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-4006 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))))
-(-10 -7 (-15 -4006 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -1654 ((-418 |#1|) |#1|)) (-15 -3475 ((-112) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-2764 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1840 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4035 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3124 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3715 (((-407 |#2|) $) NIL)) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3981 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3385 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3042 (((-768)) NIL (|has| (-407 |#2|) (-368)))) (-3709 (((-112)) NIL)) (-2899 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-2910 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 61) (($ (-1259 |#2|) |#2|) 135)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-1387 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1663 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-3592 (((-1259 $) (-1259 $)) NIL)) (-4367 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-1926 (((-3 $ "failed") $) NIL)) (-2078 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-3676 (((-112) |#1| |#1|) NIL)) (-4224 (((-918)) NIL)) (-2542 (($) NIL (|has| (-407 |#2|) (-368)))) (-4226 (((-112)) NIL)) (-1461 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1366 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-2190 (($ $) NIL)) (-1990 (($) NIL (|has| (-407 |#2|) (-349)))) (-3242 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-2184 (($ $ (-768)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-3241 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2261 (((-918) $) NIL (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) NIL (|has| (-407 |#2|) (-349)))) (-2419 (((-112) $) NIL)) (-2103 (((-768)) NIL)) (-2585 (((-1259 $) (-1259 $)) 111)) (-1779 (((-407 |#2|) $) NIL)) (-3308 (((-641 (-949 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-3374 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2513 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-2209 (((-918) $) NIL (|has| (-407 |#2|) (-368)))) (-4358 ((|#3| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4202 (((-1152) $) NIL)) (-3286 (((-1264) (-768)) 88)) (-1438 (((-685 (-407 |#2|))) 56)) (-2234 (((-685 (-407 |#2|))) 49)) (-4272 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4279 (($ (-1259 |#2|) |#2|) 136)) (-2909 (((-685 (-407 |#2|))) 50)) (-4099 (((-685 (-407 |#2|))) 48)) (-2030 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 134)) (-1734 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 68)) (-2033 (((-1259 $)) 47)) (-1791 (((-1259 $)) 46)) (-2025 (((-112) $) NIL)) (-4030 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1611 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-1403 (($ (-918)) NIL (|has| (-407 |#2|) (-368)))) (-3294 (((-3 |#2| "failed")) NIL)) (-3802 (((-1114) $) NIL)) (-1834 (((-768)) NIL)) (-1502 (($) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2527 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-4006 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1343 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3712 (((-768) $) NIL (|has| (-407 |#2|) (-363)))) (-4382 ((|#1| $ |#1| |#1|) NIL)) (-1664 (((-3 |#2| "failed")) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1938 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 44)) (-1504 (((-768) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-3226 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 130) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4002 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4002 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2836 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-1916 ((|#3|) 55)) (-3726 (($) NIL (|has| (-407 |#2|) (-349)))) (-3072 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 62) (((-685 (-407 |#2|)) (-1259 $)) 112)) (-2127 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-3487 (((-1259 $) (-1259 $)) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-4002 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2864 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-3216 ((|#3| $) NIL)) (-1965 (((-768)) NIL T CONST)) (-1577 (((-112)) 42)) (-1712 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-3941 (((-1259 $)) 102)) (-1582 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3022 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2334 (((-112)) NIL)) (-4317 (($) 17 T CONST)) (-4327 (($) 27 T CONST)) (-3190 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4002 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4002 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -3286 ((-1264) (-768))))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) |#3|) (T -40))
-((-3286 (*1 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6))))
-(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -3286 ((-1264) (-768)))))
-((-3720 ((|#2| |#2|) 48)) (-4199 ((|#2| |#2|) 143 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-3959 ((|#2| |#2|) 100 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-2108 ((|#2| |#2|) 101 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-1413 ((|#2| (-114) |#2| (-768)) 139 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-2409 (((-1166 |#2|) |#2|) 45)) (-3525 ((|#2| |#2| (-641 (-610 |#2|))) 18) ((|#2| |#2| (-641 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -3720 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3525 (|#2| |#2| |#2|)) (-15 -3525 (|#2| |#2| (-641 |#2|))) (-15 -3525 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -2409 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-847)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1035 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -2108 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -4199 (|#2| |#2|)) (-15 -1413 (|#2| (-114) |#2| (-768)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-556) (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 |#1| (-610 $)) $)) (-15 -1517 ((-1119 |#1| (-610 $)) $)) (-15 -1765 ($ (-1119 |#1| (-610 $))))))) (T -41))
-((-1413 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-768)) (-4 *5 (-452)) (-4 *5 (-847)) (-4 *5 (-1035 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *5 (-610 $)) $)) (-15 -1517 ((-1119 *5 (-610 $)) $)) (-15 -1765 ($ (-1119 *5 (-610 $))))))))) (-4199 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $)) (-15 -1517 ((-1119 *3 (-610 $)) $)) (-15 -1765 ($ (-1119 *3 (-610 $))))))))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $)) (-15 -1517 ((-1119 *3 (-610 $)) $)) (-15 -1765 ($ (-1119 *3 (-610 $))))))))) (-2108 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $)) (-15 -1517 ((-1119 *3 (-610 $)) $)) (-15 -1765 ($ (-1119 *3 (-610 $))))))))) (-2409 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *4 (-610 $)) $)) (-15 -1517 ((-1119 *4 (-610 $)) $)) (-15 -1765 ($ (-1119 *4 (-610 $))))))))) (-3525 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-610 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *4 (-610 $)) $)) (-15 -1517 ((-1119 *4 (-610 $)) $)) (-15 -1765 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-3525 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *4 (-610 $)) $)) (-15 -1517 ((-1119 *4 (-610 $)) $)) (-15 -1765 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-3525 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $)) (-15 -1517 ((-1119 *3 (-610 $)) $)) (-15 -1765 ($ (-1119 *3 (-610 $))))))))) (-3525 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $)) (-15 -1517 ((-1119 *3 (-610 $)) $)) (-15 -1765 ($ (-1119 *3 (-610 $))))))))) (-3720 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $)) (-15 -1517 ((-1119 *3 (-610 $)) $)) (-15 -1765 ($ (-1119 *3 (-610 $))))))))))
-(-10 -7 (-15 -3720 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3525 (|#2| |#2| |#2|)) (-15 -3525 (|#2| |#2| (-641 |#2|))) (-15 -3525 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -2409 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-847)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1035 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -2108 (|#2| |#2|)) (-15 -3959 (|#2| |#2|)) (-15 -4199 (|#2| |#2|)) (-15 -1413 (|#2| (-114) |#2| (-768)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-4006 (((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))) 23) (((-418 |#3|) |#3| (-641 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4006 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -4006 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))))) (-847) (-790) (-946 (-48) |#2| |#1|)) (T -42))
-((-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *7 (-946 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-946 (-48) *6 *5)))))
-(-10 -7 (-15 -4006 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -4006 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48)))))
-((-1863 (((-768) |#2|) 72)) (-1678 (((-768) |#2|) 76)) (-2920 (((-641 |#2|)) 39)) (-3384 (((-768) |#2|) 75)) (-3992 (((-768) |#2|) 71)) (-2398 (((-768) |#2|) 74)) (-3766 (((-641 (-685 |#1|))) 67)) (-2427 (((-641 |#2|)) 62)) (-3834 (((-641 |#2|) |#2|) 50)) (-1658 (((-641 |#2|)) 64)) (-2650 (((-641 |#2|)) 63)) (-3631 (((-641 (-685 |#1|))) 55)) (-2225 (((-641 |#2|)) 61)) (-1856 (((-641 |#2|) |#2|) 49)) (-2457 (((-641 |#2|)) 57)) (-3985 (((-641 (-685 |#1|))) 68)) (-2326 (((-641 |#2|)) 66)) (-3941 (((-1259 |#2|) (-1259 |#2|)) 100 (|has| |#1| (-307)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -3384 ((-768) |#2|)) (-15 -1678 ((-768) |#2|)) (-15 -3992 ((-768) |#2|)) (-15 -1863 ((-768) |#2|)) (-15 -2398 ((-768) |#2|)) (-15 -2457 ((-641 |#2|))) (-15 -1856 ((-641 |#2|) |#2|)) (-15 -3834 ((-641 |#2|) |#2|)) (-15 -2225 ((-641 |#2|))) (-15 -2427 ((-641 |#2|))) (-15 -2650 ((-641 |#2|))) (-15 -1658 ((-641 |#2|))) (-15 -2326 ((-641 |#2|))) (-15 -3631 ((-641 (-685 |#1|)))) (-15 -3766 ((-641 (-685 |#1|)))) (-15 -3985 ((-641 (-685 |#1|)))) (-15 -2920 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -3941 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|)) (-556) (-417 |#1|)) (T -43))
-((-3941 (*1 *2 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) (-2920 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3985 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3766 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3631 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2326 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1658 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2650 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2427 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2225 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3834 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2457 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2398 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1863 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3992 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1678 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3384 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
-(-10 -7 (-15 -3384 ((-768) |#2|)) (-15 -1678 ((-768) |#2|)) (-15 -3992 ((-768) |#2|)) (-15 -1863 ((-768) |#2|)) (-15 -2398 ((-768) |#2|)) (-15 -2457 ((-641 |#2|))) (-15 -1856 ((-641 |#2|) |#2|)) (-15 -3834 ((-641 |#2|) |#2|)) (-15 -2225 ((-641 |#2|))) (-15 -2427 ((-641 |#2|))) (-15 -2650 ((-641 |#2|))) (-15 -1658 ((-641 |#2|))) (-15 -2326 ((-641 |#2|))) (-15 -3631 ((-641 (-685 |#1|)))) (-15 -3766 ((-641 (-685 |#1|)))) (-15 -3985 ((-641 (-685 |#1|)))) (-15 -2920 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -3941 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-1950 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3165 (((-1259 (-685 |#1|)) (-1259 $)) NIL) (((-1259 (-685 |#1|))) 24)) (-3233 (((-1259 $)) 55)) (-3760 (($) NIL T CONST)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-2661 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-2685 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-4349 ((|#1| $) NIL)) (-1725 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-4089 (((-1166 (-949 |#1|))) NIL (|has| |#1| (-363)))) (-1864 (($ $ (-918)) NIL)) (-3158 ((|#1| $) NIL)) (-3261 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-1870 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-3660 (((-1166 |#1|) $) NIL)) (-3202 (((-112)) 102)) (-2910 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-1926 (((-3 $ "failed") $) 14 (|has| |#1| (-556)))) (-4224 (((-918)) 56)) (-1703 (((-112)) NIL)) (-2544 (($ $ (-918)) NIL)) (-2053 (((-112)) NIL)) (-2824 (((-112)) NIL)) (-3222 (((-112)) 104)) (-4280 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-3979 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3449 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3899 ((|#1| $) NIL)) (-1549 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3647 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-3743 (((-1166 (-949 |#1|))) NIL (|has| |#1| (-363)))) (-3229 (($ $ (-918)) NIL)) (-4009 ((|#1| $) NIL)) (-2883 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-2291 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-1563 (((-1166 |#1|) $) NIL)) (-3734 (((-112)) 101)) (-4202 (((-1152) $) NIL)) (-1995 (((-112)) 109)) (-2187 (((-112)) 108)) (-1756 (((-112)) 110)) (-3802 (((-1114) $) NIL)) (-3015 (((-112)) 103)) (-4382 ((|#1| $ (-564)) 58)) (-3072 (((-1259 |#1|) $ (-1259 $)) 53) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 28) (((-685 |#1|) (-1259 $)) NIL)) (-2127 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL)) (-4339 (((-641 (-949 |#1|)) (-1259 $)) NIL) (((-641 (-949 |#1|))) NIL)) (-1762 (($ $ $) NIL)) (-2060 (((-112)) 98)) (-1765 (((-859) $) 75) (($ (-1259 |#1|)) 22)) (-3941 (((-1259 $)) 49)) (-2663 (((-641 (-1259 |#1|))) NIL (|has| |#1| (-556)))) (-1850 (($ $ $ $) NIL)) (-3730 (((-112)) 94)) (-3021 (($ (-685 |#1|) $) 18)) (-3008 (($ $ $) NIL)) (-1379 (((-112)) 100)) (-3689 (((-112)) 95)) (-2323 (((-112)) 93)) (-4317 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1136 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -1765 ($ (-1259 |#1|))))) (-363) (-918) (-641 (-1170)) (-1259 (-685 |#1|))) (T -44))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))))))
-(-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -1765 ($ (-1259 |#1|)))))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1451 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-2722 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1882 (($ $) NIL)) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3476 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412))) (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3280 (($ $ (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-3606 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847))))) (-2494 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-3768 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4412)))) (-2293 (($ $ $) 33 (|has| $ (-6 -4412)))) (-3129 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4412)))) (-4318 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 35 (|has| $ (-6 -4412)))) (-1881 ((|#2| $ |#1| |#2|) 52) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-1226 (-564)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "last" (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4412))) (($ $ "rest" $) NIL (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "first" (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "value" (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2711 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1645 (((-3 |#2| "failed") |#1| $) 43)) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3086 (($ $ (-768)) NIL) (($ $) 29)) (-3083 (($ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 55) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) NIL) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) NIL)) (-1418 (((-112) $) NIL)) (-1356 (((-564) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (((-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) (((-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 20 (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411))) (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 20 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-1633 (($ (-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 ((|#1| $) NIL (|has| |#1| (-847))) (((-564) $) 38 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-1397 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-4012 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411))) (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1479 ((|#1| $) NIL (|has| |#1| (-847))) (((-564) $) 40 (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2953 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3848 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2200 (((-112) $) NIL)) (-4202 (((-1152) $) 48 (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2376 (($ $ (-768)) NIL) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-3211 (((-641 |#1|) $) 22)) (-4185 (((-112) |#1| $) NIL)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL) (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3412 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 |#1|) $) NIL) (((-641 (-564)) $) NIL)) (-3629 (((-112) |#1| $) NIL) (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3073 ((|#2| $) NIL (|has| |#1| (-847))) (($ $ (-768)) NIL) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 27)) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-2141 (((-112) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-3599 (((-641 |#2|) $) NIL) (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 19)) (-2742 (((-112) $) 18)) (-3845 (($) 14)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "first") NIL) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $ "value") NIL)) (-3837 (((-564) $ $) NIL)) (-3784 (($) 13) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-4183 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-1867 (((-112) $) NIL)) (-2294 (($ $) NIL)) (-4207 (($ $) NIL (|has| $ (-6 -4412)))) (-2355 (((-768) $) NIL)) (-4119 (($ $) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-2478 (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL) (($ $ $) NIL)) (-2817 (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL) (($ (-641 $)) NIL) (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 31) (($ $ $) NIL)) (-1765 (((-859) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-2385 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") |#1| $) 50)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1728 (((-112) $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-1705 (((-112) $ $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-847)))) (-2589 (((-768) $) 25 (|has| $ (-6 -4411)))))
+((-3374 (((-418 |#1|) |#1|) 41)) (-4139 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-641 (-48))) 33)) (-2387 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -4139 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3374 ((-418 |#1|) |#1|)) (-15 -2387 ((-112) |#1|))) (-1235 (-48))) (T -39))
+((-2387 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-3374 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))))
+(-10 -7 (-15 -4139 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3374 ((-418 |#1|) |#1|)) (-15 -2387 ((-112) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2742 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1582 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3897 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3150 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3767 (((-407 |#2|) $) NIL)) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1592 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3907 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2018 (((-768)) NIL (|has| (-407 |#2|) (-368)))) (-3932 (((-112)) NIL)) (-3455 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-3566 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 61) (($ (-1259 |#2|) |#2|) 135)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-1399 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3439 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-4051 (((-1259 $) (-1259 $)) NIL)) (-1728 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-4272 (((-3 $ "failed") $) NIL)) (-3314 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-3612 (((-112) |#1| |#1|) NIL)) (-1595 (((-918)) NIL)) (-2939 (($) NIL (|has| (-407 |#2|) (-368)))) (-2088 (((-112)) NIL)) (-2219 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1371 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-2015 (($ $) NIL)) (-3648 (($) NIL (|has| (-407 |#2|) (-349)))) (-1937 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-1957 (($ $ (-768)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-1926 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1454 (((-918) $) NIL (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) NIL (|has| (-407 |#2|) (-349)))) (-2340 (((-112) $) NIL)) (-2427 (((-768)) NIL)) (-1459 (((-1259 $) (-1259 $)) 111)) (-2217 (((-407 |#2|) $) NIL)) (-1293 (((-641 (-949 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-3804 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2041 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-4031 (((-918) $) NIL (|has| (-407 |#2|) (-368)))) (-1714 ((|#3| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1868 (((-1152) $) NIL)) (-4206 (((-1264) (-768)) 88)) (-1834 (((-685 (-407 |#2|))) 56)) (-4255 (((-685 (-407 |#2|))) 49)) (-1295 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4392 (($ (-1259 |#2|) |#2|) 136)) (-3556 (((-685 (-407 |#2|))) 50)) (-3247 (((-685 (-407 |#2|))) 48)) (-2917 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 134)) (-2991 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 68)) (-2944 (((-1259 $)) 47)) (-2339 (((-1259 $)) 46)) (-2875 (((-112) $) NIL)) (-3853 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3304 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-3338 (($ (-918)) NIL (|has| (-407 |#2|) (-368)))) (-4278 (((-3 |#2| "failed")) NIL)) (-3844 (((-1114) $) NIL)) (-1523 (((-768)) NIL)) (-1729 (($) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2727 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-4139 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1347 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3966 (((-768) $) NIL (|has| (-407 |#2|) (-363)))) (-4382 ((|#1| $ |#1| |#1|) NIL)) (-3449 (((-3 |#2| "failed")) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4378 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 44)) (-2671 (((-768) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-2203 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 130) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4012 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4012 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2227 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-4180 ((|#3|) 55)) (-2927 (($) NIL (|has| (-407 |#2|) (-349)))) (-3867 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 62) (((-685 (-407 |#2|)) (-1259 $)) 112)) (-2374 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-2499 (((-1259 $) (-1259 $)) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-4012 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4363 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-1650 ((|#3| $) NIL)) (-3379 (((-768)) NIL T CONST)) (-3926 (((-112)) 42)) (-2835 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-4339 (((-1259 $)) 102)) (-3979 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3337 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3960 (((-112)) NIL)) (-4312 (($) 17 T CONST)) (-4323 (($) 27 T CONST)) (-2238 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4012 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4012 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -4206 ((-1264) (-768))))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) |#3|) (T -40))
+((-4206 (*1 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6))))
+(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -4206 ((-1264) (-768)))))
+((-4017 ((|#2| |#2|) 48)) (-1833 ((|#2| |#2|) 143 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-1396 ((|#2| |#2|) 100 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-2472 ((|#2| |#2|) 101 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-1594 ((|#2| (-114) |#2| (-768)) 139 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-2229 (((-1166 |#2|) |#2|) 45)) (-1603 ((|#2| |#2| (-641 (-610 |#2|))) 18) ((|#2| |#2| (-641 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -4017 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1603 (|#2| |#2| |#2|)) (-15 -1603 (|#2| |#2| (-641 |#2|))) (-15 -1603 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -2229 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-847)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1035 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -2472 (|#2| |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -1833 (|#2| |#2|)) (-15 -1594 (|#2| (-114) |#2| (-768)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-556) (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 |#1| (-610 $)) $)) (-15 -1668 ((-1119 |#1| (-610 $)) $)) (-15 -3714 ($ (-1119 |#1| (-610 $))))))) (T -41))
+((-1594 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-768)) (-4 *5 (-452)) (-4 *5 (-847)) (-4 *5 (-1035 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *5 (-610 $)) $)) (-15 -1668 ((-1119 *5 (-610 $)) $)) (-15 -3714 ($ (-1119 *5 (-610 $))))))))) (-1833 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $)) (-15 -1668 ((-1119 *3 (-610 $)) $)) (-15 -3714 ($ (-1119 *3 (-610 $))))))))) (-1396 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $)) (-15 -1668 ((-1119 *3 (-610 $)) $)) (-15 -3714 ($ (-1119 *3 (-610 $))))))))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $)) (-15 -1668 ((-1119 *3 (-610 $)) $)) (-15 -3714 ($ (-1119 *3 (-610 $))))))))) (-2229 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *4 (-610 $)) $)) (-15 -1668 ((-1119 *4 (-610 $)) $)) (-15 -3714 ($ (-1119 *4 (-610 $))))))))) (-1603 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-610 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *4 (-610 $)) $)) (-15 -1668 ((-1119 *4 (-610 $)) $)) (-15 -3714 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1603 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *4 (-610 $)) $)) (-15 -1668 ((-1119 *4 (-610 $)) $)) (-15 -3714 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1603 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $)) (-15 -1668 ((-1119 *3 (-610 $)) $)) (-15 -3714 ($ (-1119 *3 (-610 $))))))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $)) (-15 -1668 ((-1119 *3 (-610 $)) $)) (-15 -3714 ($ (-1119 *3 (-610 $))))))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $)) (-15 -1668 ((-1119 *3 (-610 $)) $)) (-15 -3714 ($ (-1119 *3 (-610 $))))))))))
+(-10 -7 (-15 -4017 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1603 (|#2| |#2| |#2|)) (-15 -1603 (|#2| |#2| (-641 |#2|))) (-15 -1603 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -2229 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-847)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1035 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -2472 (|#2| |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -1833 (|#2| |#2|)) (-15 -1594 (|#2| (-114) |#2| (-768)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-4139 (((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))) 23) (((-418 |#3|) |#3| (-641 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -4139 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))))) (-847) (-790) (-946 (-48) |#2| |#1|)) (T -42))
+((-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *7 (-946 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-946 (-48) *6 *5)))))
+(-10 -7 (-15 -4139 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -4139 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48)))))
+((-1829 (((-768) |#2|) 72)) (-3615 (((-768) |#2|) 76)) (-3687 (((-641 |#2|)) 39)) (-3895 (((-768) |#2|) 75)) (-3487 (((-768) |#2|) 71)) (-3275 (((-768) |#2|) 74)) (-3221 (((-641 (-685 |#1|))) 67)) (-2431 (((-641 |#2|)) 62)) (-2756 (((-641 |#2|) |#2|) 50)) (-3410 (((-641 |#2|)) 64)) (-3954 (((-641 |#2|)) 63)) (-1363 (((-641 (-685 |#1|))) 55)) (-4161 (((-641 |#2|)) 61)) (-1759 (((-641 |#2|) |#2|) 49)) (-2759 (((-641 |#2|)) 57)) (-3432 (((-641 (-685 |#1|))) 68)) (-3873 (((-641 |#2|)) 66)) (-4339 (((-1259 |#2|) (-1259 |#2|)) 100 (|has| |#1| (-307)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -3895 ((-768) |#2|)) (-15 -3615 ((-768) |#2|)) (-15 -3487 ((-768) |#2|)) (-15 -1829 ((-768) |#2|)) (-15 -3275 ((-768) |#2|)) (-15 -2759 ((-641 |#2|))) (-15 -1759 ((-641 |#2|) |#2|)) (-15 -2756 ((-641 |#2|) |#2|)) (-15 -4161 ((-641 |#2|))) (-15 -2431 ((-641 |#2|))) (-15 -3954 ((-641 |#2|))) (-15 -3410 ((-641 |#2|))) (-15 -3873 ((-641 |#2|))) (-15 -1363 ((-641 (-685 |#1|)))) (-15 -3221 ((-641 (-685 |#1|)))) (-15 -3432 ((-641 (-685 |#1|)))) (-15 -3687 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -4339 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|)) (-556) (-417 |#1|)) (T -43))
+((-4339 (*1 *2 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) (-3687 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3432 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3221 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1363 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3873 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3410 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3954 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2431 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-4161 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2756 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1759 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2759 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3275 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1829 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3487 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3615 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))))
+(-10 -7 (-15 -3895 ((-768) |#2|)) (-15 -3615 ((-768) |#2|)) (-15 -3487 ((-768) |#2|)) (-15 -1829 ((-768) |#2|)) (-15 -3275 ((-768) |#2|)) (-15 -2759 ((-641 |#2|))) (-15 -1759 ((-641 |#2|) |#2|)) (-15 -2756 ((-641 |#2|) |#2|)) (-15 -4161 ((-641 |#2|))) (-15 -2431 ((-641 |#2|))) (-15 -3954 ((-641 |#2|))) (-15 -3410 ((-641 |#2|))) (-15 -3873 ((-641 |#2|))) (-15 -1363 ((-641 (-685 |#1|)))) (-15 -3221 ((-641 (-685 |#1|)))) (-15 -3432 ((-641 (-685 |#1|)))) (-15 -3687 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -4339 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1425 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-2426 (((-1259 (-685 |#1|)) (-1259 $)) NIL) (((-1259 (-685 |#1|))) 24)) (-1838 (((-1259 $)) 55)) (-3180 (($) NIL T CONST)) (-1830 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-2911 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3102 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3693 ((|#1| $) NIL)) (-2921 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-2684 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-3176 (((-1166 (-949 |#1|))) NIL (|has| |#1| (-363)))) (-1842 (($ $ (-918)) NIL)) (-2345 ((|#1| $) NIL)) (-2119 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-1907 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-3448 (((-1166 |#1|) $) NIL)) (-2790 (((-112)) 102)) (-3566 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-4272 (((-3 $ "failed") $) 14 (|has| |#1| (-556)))) (-1595 (((-918)) 56)) (-3882 (((-112)) NIL)) (-4133 (($ $ (-918)) NIL)) (-3113 (((-112)) NIL)) (-2111 (((-112)) NIL)) (-1717 (((-112)) 104)) (-1303 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-1566 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3276 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-2112 ((|#1| $) NIL)) (-1847 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-1524 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-3050 (((-1166 (-949 |#1|))) NIL (|has| |#1| (-363)))) (-1788 (($ $ (-918)) NIL)) (-3645 ((|#1| $) NIL)) (-1487 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-3531 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-1980 (((-1166 |#1|) $) NIL)) (-2989 (((-112)) 101)) (-1868 (((-1152) $) NIL)) (-3700 (((-112)) 109)) (-1981 (((-112)) 108)) (-3172 (((-112)) 110)) (-3844 (((-1114) $) NIL)) (-1458 (((-112)) 103)) (-4382 ((|#1| $ (-564)) 58)) (-3867 (((-1259 |#1|) $ (-1259 $)) 53) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 28) (((-685 |#1|) (-1259 $)) NIL)) (-2374 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL)) (-3602 (((-641 (-949 |#1|)) (-1259 $)) NIL) (((-641 (-949 |#1|))) NIL)) (-3217 (($ $ $) NIL)) (-3168 (((-112)) 98)) (-3714 (((-859) $) 75) (($ (-1259 |#1|)) 22)) (-4339 (((-1259 $)) 49)) (-2919 (((-641 (-1259 |#1|))) NIL (|has| |#1| (-556)))) (-1687 (($ $ $ $) NIL)) (-2954 (((-112)) 94)) (-1996 (($ (-685 |#1|) $) 18)) (-1390 (($ $ $) NIL)) (-3808 (((-112)) 100)) (-3738 (((-112)) 95)) (-3851 (((-112)) 93)) (-4312 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1136 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -3714 ($ (-1259 |#1|))))) (-363) (-918) (-641 (-1170)) (-1259 (-685 |#1|))) (T -44))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))))))
+(-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -3714 ($ (-1259 |#1|)))))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3387 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2985 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-3794 (($ $) NIL)) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-2399 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4413))) (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-4140 (($ $ (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-4194 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847))))) (-2904 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3242 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4413)))) (-3543 (($ $ $) 33 (|has| $ (-6 -4413)))) (-3186 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4413)))) (-1617 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 35 (|has| $ (-6 -4413)))) (-3868 ((|#2| $ |#1| |#2|) 52) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-1226 (-564)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "last" (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4413))) (($ $ "rest" $) NIL (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "first" (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "value" (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-2976 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-3576 (((-3 |#2| "failed") |#1| $) 43)) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2063 (($ $ (-768)) NIL) (($ $) 29)) (-2822 (($ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) 55) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4413))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) NIL) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) NIL)) (-1635 (((-112) $) NIL)) (-3303 (((-564) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (((-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) (((-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 20 (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412))) (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 20 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-3564 (($ (-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 ((|#1| $) NIL (|has| |#1| (-847))) (((-564) $) 38 (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-2573 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-3678 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412))) (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-2415 ((|#1| $) NIL (|has| |#1| (-847))) (((-564) $) 40 (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4413))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413))) (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-1929 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2523 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-2120 (((-112) $) NIL)) (-1868 (((-1152) $) 48 (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2541 (($ $ (-768)) NIL) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-1922 (((-641 |#1|) $) 22)) (-1690 (((-112) |#1| $) NIL)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL) (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2455 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 |#1|) $) NIL) (((-641 (-564)) $) NIL)) (-1338 (((-112) |#1| $) NIL) (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2049 ((|#2| $) NIL (|has| |#1| (-847))) (($ $ (-768)) NIL) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 27)) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2791 (((-112) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-4121 (((-641 |#2|) $) NIL) (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 19)) (-2510 (((-112) $) 18)) (-2834 (($) 14)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "first") NIL) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $ "value") NIL)) (-2774 (((-564) $ $) NIL)) (-3372 (($) 13) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-2899 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-1875 (((-112) $) NIL)) (-3554 (($ $) NIL)) (-1911 (($ $) NIL (|has| $ (-6 -4413)))) (-2966 (((-768) $) NIL)) (-3414 (($ $) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-1711 (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL) (($ $ $) NIL)) (-1865 (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL) (($ (-641 $)) NIL) (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 31) (($ $ $) NIL)) (-3714 (((-859) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-2552 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") |#1| $) 50)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1769 (((-112) $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-1746 (((-112) $ $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-847)))) (-2779 (((-768) $) 25 (|has| $ (-6 -4412)))))
(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1094) (-1094)) (T -45))
NIL
(-36 |#1| |#2|)
-((-3101 (((-112) $) 12)) (-2082 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-564)) $) 25) (($ $ (-407 (-564))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3101 ((-112) |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-47 |#2| |#3|) (-1046) (-789)) (T -46))
+((-2961 (((-112) $) 12)) (-2313 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-564)) $) 25) (($ $ (-407 (-564))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2961 ((-112) |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-47 |#2| |#3|) (-1046) (-789)) (T -46))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3101 ((-112) |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1840 (($ $) 55 (|has| |#1| (-556)))) (-4035 (((-112) $) 57 (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-3101 (((-112) $) 65)) (-4145 (($ |#1| |#2|) 64)) (-2082 (($ (-1 |#1| |#1|) $) 66)) (-4311 (($ $) 68)) (-4323 ((|#1| $) 69)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1343 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3344 ((|#2| $) 67)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-1757 ((|#1| $ |#2|) 62)) (-2864 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
+(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2961 ((-112) |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1582 (($ $) 55 (|has| |#1| (-556)))) (-3897 (((-112) $) 57 (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-2961 (((-112) $) 65)) (-4267 (($ |#1| |#2|) 64)) (-2313 (($ (-1 |#1| |#1|) $) 66)) (-1330 (($ $) 68)) (-1345 ((|#1| $) 69)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1347 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3475 ((|#2| $) 67)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3181 ((|#1| $ |#2|) 62)) (-4363 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
(((-47 |#1| |#2|) (-140) (-1046) (-789)) (T -47))
-((-4323 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-4311 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-112)))) (-4145 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-4346 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-1757 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-1793 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-363)))))
-(-13 (-1046) (-111 |t#1| |t#1|) (-10 -8 (-15 -4323 (|t#1| $)) (-15 -4311 ($ $)) (-15 -3344 (|t#2| $)) (-15 -2082 ($ (-1 |t#1| |t#1|) $)) (-15 -3101 ((-112) $)) (-15 -4145 ($ |t#1| |t#2|)) (-15 -4346 ($ $)) (-15 -1757 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -1793 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-556)) (-6 (-556)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-6 (-38 (-407 (-564)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-4186 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-2487 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-3976 (((-112) $) 11)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3853 (((-641 (-610 $)) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2662 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-4019 (($ $) NIL)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-2984 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-3330 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-2013 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2064 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-1387 (($ $ $) NIL)) (-2620 (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1447 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-4367 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-2696 (($ $) NIL) (($ (-641 $)) NIL)) (-2885 (((-641 (-114)) $) NIL)) (-1826 (((-114) (-114)) NIL)) (-2419 (((-112) $) 14)) (-1629 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-1507 (((-1119 (-564) (-610 $)) $) NIL)) (-1935 (($ $ (-564)) NIL)) (-1779 (((-1166 $) (-1166 $) (-610 $)) NIL) (((-1166 $) (-1166 $) (-641 (-610 $))) NIL) (($ $ (-610 $)) NIL) (($ $ (-641 (-610 $))) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2431 (((-1166 $) (-610 $)) NIL (|has| $ (-1046)))) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2082 (($ (-1 $ $) (-610 $)) NIL)) (-4293 (((-3 (-610 $) "failed") $) NIL)) (-2488 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3943 (((-641 (-610 $)) $) NIL)) (-1583 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-3559 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-4272 (($ $) NIL)) (-1813 (((-768) $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1350 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1518 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2407 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3712 (((-768) $) NIL)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-2898 (($ $) NIL) (($ $ $) NIL)) (-3226 (($ $ (-768)) NIL) (($ $) NIL)) (-1517 (((-1119 (-564) (-610 $)) $) NIL)) (-1916 (($ $) NIL (|has| $ (-1046)))) (-2127 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-1765 (((-859) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) NIL)) (-1965 (((-768)) NIL T CONST)) (-1719 (($ $) NIL) (($ (-641 $)) NIL)) (-1573 (((-112) (-114)) NIL)) (-1582 (((-112) $ $) NIL)) (-4317 (($) 7 T CONST)) (-4327 (($) 12 T CONST)) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 16)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL)) (-1783 (($ $ $) 15) (($ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) NIL) (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL)))
-(((-48) (-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -1765 ($ (-1119 (-564) (-610 $)))) (-15 -1507 ((-1119 (-564) (-610 $)) $)) (-15 -1517 ((-1119 (-564) (-610 $)) $)) (-15 -4367 ($ $)) (-15 -1779 ((-1166 $) (-1166 $) (-610 $))) (-15 -1779 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -1779 ($ $ (-610 $))) (-15 -1779 ($ $ (-641 (-610 $))))))) (T -48))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-4367 (*1 *1 *1) (-5 *1 (-48))) (-1779 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) (-1779 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48)))))
-(-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -1765 ($ (-1119 (-564) (-610 $)))) (-15 -1507 ((-1119 (-564) (-610 $)) $)) (-15 -1517 ((-1119 (-564) (-610 $)) $)) (-15 -4367 ($ $)) (-15 -1779 ((-1166 $) (-1166 $) (-610 $))) (-15 -1779 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -1779 ($ $ (-610 $))) (-15 -1779 ($ $ (-641 (-610 $))))))
-((-1754 (((-112) $ $) NIL)) (-4088 (((-641 (-506)) $) 17)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 7)) (-4374 (((-1175) $) 18)) (-1686 (((-112) $ $) NIL)))
-(((-49) (-13 (-1094) (-10 -8 (-15 -4088 ((-641 (-506)) $)) (-15 -4374 ((-1175) $))))) (T -49))
-((-4088 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49)))))
-(-13 (-1094) (-10 -8 (-15 -4088 ((-641 (-506)) $)) (-15 -4374 ((-1175) $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 87)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-3564 (((-112) $) 30)) (-2013 (((-3 |#1| "failed") $) 33)) (-2064 ((|#1| $) 34)) (-4346 (($ $) 40)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-4323 ((|#1| $) 31)) (-2483 (($ $) 76)) (-4202 (((-1152) $) NIL)) (-3632 (((-112) $) 43)) (-3802 (((-1114) $) NIL)) (-1502 (($ (-768)) 74)) (-2152 (($ (-641 (-564))) 75)) (-3344 (((-768) $) 44)) (-1765 (((-859) $) 93) (($ (-564)) 71) (($ |#1|) 69)) (-1757 ((|#1| $ $) 28)) (-1965 (((-768)) 73 T CONST)) (-4317 (($) 45 T CONST)) (-4327 (($) 17 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 66)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
-(((-50 |#1| |#2|) (-13 (-618 |#1|) (-1035 |#1|) (-10 -8 (-15 -4323 (|#1| $)) (-15 -2483 ($ $)) (-15 -4346 ($ $)) (-15 -1757 (|#1| $ $)) (-15 -1502 ($ (-768))) (-15 -2152 ($ (-641 (-564)))) (-15 -3632 ((-112) $)) (-15 -3564 ((-112) $)) (-15 -3344 ((-768) $)) (-15 -2082 ($ (-1 |#1| |#1|) $)))) (-1046) (-641 (-1170))) (T -50))
-((-4323 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) (-4346 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) (-1757 (*1 *2 *1 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-2152 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-50 *3 *4)) (-14 *4 (-641 (-1170))))))
-(-13 (-618 |#1|) (-1035 |#1|) (-10 -8 (-15 -4323 (|#1| $)) (-15 -2483 ($ $)) (-15 -4346 ($ $)) (-15 -1757 (|#1| $ $)) (-15 -1502 ($ (-768))) (-15 -2152 ($ (-641 (-564)))) (-15 -3632 ((-112) $)) (-15 -3564 ((-112) $)) (-15 -3344 ((-768) $)) (-15 -2082 ($ (-1 |#1| |#1|) $))))
-((-3564 (((-112) (-52)) 13)) (-2013 (((-3 |#1| "failed") (-52)) 21)) (-2064 ((|#1| (-52)) 22)) (-1765 (((-52) |#1|) 18)))
-(((-51 |#1|) (-10 -7 (-15 -1765 ((-52) |#1|)) (-15 -2013 ((-3 |#1| "failed") (-52))) (-15 -3564 ((-112) (-52))) (-15 -2064 (|#1| (-52)))) (-1209)) (T -51))
-((-2064 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209)))) (-2013 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-1765 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209)))))
-(-10 -7 (-15 -1765 ((-52) |#1|)) (-15 -2013 ((-3 |#1| "failed") (-52))) (-15 -3564 ((-112) (-52))) (-15 -2064 (|#1| (-52))))
-((-1754 (((-112) $ $) NIL)) (-1562 (((-1152) (-112)) 26)) (-4225 (((-859) $) 25)) (-2892 (((-771) $) 13)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3002 (((-859) $) 17)) (-3646 (((-1098) $) 15)) (-1765 (((-859) $) 35)) (-2397 (($ (-1098) (-771)) 36)) (-1686 (((-112) $ $) 19)))
-(((-52) (-13 (-1094) (-10 -8 (-15 -2397 ($ (-1098) (-771))) (-15 -3002 ((-859) $)) (-15 -4225 ((-859) $)) (-15 -3646 ((-1098) $)) (-15 -2892 ((-771) $)) (-15 -1562 ((-1152) (-112)))))) (T -52))
-((-2397 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-771)) (-5 *1 (-52)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-52)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52)))))
-(-13 (-1094) (-10 -8 (-15 -2397 ($ (-1098) (-771))) (-15 -3002 ((-859) $)) (-15 -4225 ((-859) $)) (-15 -3646 ((-1098) $)) (-15 -2892 ((-771) $)) (-15 -1562 ((-1152) (-112)))))
-((-3021 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3021 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1046) (-644 |#1|) (-849 |#1|)) (T -53))
-((-3021 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1046)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-849 *5)))))
-(-10 -7 (-15 -3021 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-3026 ((|#3| |#3| (-641 (-1170))) 46)) (-2257 ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918)) 32) ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2257 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -2257 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918))) (-15 -3026 (|#3| |#3| (-641 (-1170))))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -54))
-((-3026 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-2257 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-918)) (-4 *5 (-1094)) (-4 *6 (-13 (-1046) (-883 *5) (-847) (-612 (-889 *5)))) (-4 *2 (-13 (-430 *6) (-883 *5) (-612 (-889 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2257 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -2257 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -2257 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918))) (-15 -3026 (|#3| |#3| (-641 (-1170)))))
-((-1754 (((-112) $ $) NIL)) (-2013 (((-3 (-768) "failed") $) 30)) (-2064 (((-768) $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) 13)) (-1765 (((-859) $) 19) (($ (-768)) 25)) (-1647 (($) 11 T CONST)) (-1686 (((-112) $ $) 16)))
-(((-55) (-13 (-1094) (-1035 (-768)) (-10 -8 (-15 -1647 ($) -3246)))) (T -55))
-((-1647 (*1 *1) (-5 *1 (-55))))
-(-13 (-1094) (-1035 (-768)) (-10 -8 (-15 -1647 ($) -3246)))
-((-3263 (((-112) $ (-768)) 27)) (-1470 (($ $ (-564) |#3|) 64)) (-3652 (($ $ (-564) |#4|) 68)) (-2698 ((|#3| $ (-564)) 77)) (-3080 (((-641 |#2|) $) 45)) (-2830 (((-112) $ (-768)) 30)) (-3675 (((-112) |#2| $) 72)) (-3513 (($ (-1 |#2| |#2|) $) 53)) (-2082 (($ (-1 |#2| |#2|) $) 52) (($ (-1 |#2| |#2| |#2|) $ $) 56) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 60)) (-2972 (((-112) $ (-768)) 29)) (-2614 (($ $ |#2|) 50)) (-1467 (((-112) (-1 (-112) |#2|) $) 21)) (-4382 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) 33)) (-3815 (((-768) (-1 (-112) |#2|) $) 39) (((-768) |#2| $) 74)) (-1899 (($ $) 49)) (-1709 ((|#4| $ (-564)) 80)) (-1765 (((-859) $) 86)) (-2237 (((-112) (-1 (-112) |#2|) $) 20)) (-1686 (((-112) $ $) 71)) (-2589 (((-768) $) 31)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2082 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3513 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3652 (|#1| |#1| (-564) |#4|)) (-15 -1470 (|#1| |#1| (-564) |#3|)) (-15 -3080 ((-641 |#2|) |#1|)) (-15 -1709 (|#4| |#1| (-564))) (-15 -2698 (|#3| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564))) (-15 -2614 (|#1| |#1| |#2|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -3675 ((-112) |#2| |#1|)) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2589 ((-768) |#1|)) (-15 -3263 ((-112) |#1| (-768))) (-15 -2830 ((-112) |#1| (-768))) (-15 -2972 ((-112) |#1| (-768))) (-15 -1899 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1209) (-373 |#2|) (-373 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2082 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3513 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3652 (|#1| |#1| (-564) |#4|)) (-15 -1470 (|#1| |#1| (-564) |#3|)) (-15 -3080 ((-641 |#2|) |#1|)) (-15 -1709 (|#4| |#1| (-564))) (-15 -2698 (|#3| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564))) (-15 -2614 (|#1| |#1| |#2|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -3675 ((-112) |#2| |#1|)) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2589 ((-768) |#1|)) (-15 -3263 ((-112) |#1| (-768))) (-15 -2830 ((-112) |#1| (-768))) (-15 -2972 ((-112) |#1| (-768))) (-15 -1899 (|#1| |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-1881 ((|#1| $ (-564) (-564) |#1|) 44)) (-1470 (($ $ (-564) |#2|) 42)) (-3652 (($ $ (-564) |#3|) 41)) (-3760 (($) 7 T CONST)) (-2698 ((|#2| $ (-564)) 46)) (-3528 ((|#1| $ (-564) (-564) |#1|) 43)) (-3455 ((|#1| $ (-564) (-564)) 48)) (-3080 (((-641 |#1|) $) 30)) (-3383 (((-768) $) 51)) (-1633 (($ (-768) (-768) |#1|) 57)) (-3393 (((-768) $) 50)) (-2830 (((-112) $ (-768)) 9)) (-1786 (((-564) $) 55)) (-2810 (((-564) $) 53)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (((-564) $) 54)) (-2104 (((-564) $) 52)) (-3513 (($ (-1 |#1| |#1|) $) 34)) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2614 (($ $ |#1|) 56)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1709 ((|#3| $ (-564)) 45)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-1345 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-1330 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-112)))) (-4267 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-1374 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-3181 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-1841 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-363)))))
+(-13 (-1046) (-111 |t#1| |t#1|) (-10 -8 (-15 -1345 (|t#1| $)) (-15 -1330 ($ $)) (-15 -3475 (|t#2| $)) (-15 -2313 ($ (-1 |t#1| |t#1|) $)) (-15 -2961 ((-112) $)) (-15 -4267 ($ |t#1| |t#2|)) (-15 -1374 ($ $)) (-15 -3181 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -1841 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-556)) (-6 (-556)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-6 (-38 (-407 (-564)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
+((-3702 (((-112) $ $) NIL)) (-1701 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-1815 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-1556 (((-112) $) 11)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4011 (((-641 (-610 $)) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3203 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-4152 (($ $) NIL)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-4248 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-1544 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-2224 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2376 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-1399 (($ $ $) NIL)) (-3613 (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1920 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-1728 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3187 (($ $) NIL) (($ (-641 $)) NIL)) (-1512 (((-641 (-114)) $) NIL)) (-2702 (((-114) (-114)) NIL)) (-2340 (((-112) $) 14)) (-1329 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-1655 (((-1119 (-564) (-610 $)) $) NIL)) (-4342 (($ $ (-564)) NIL)) (-2217 (((-1166 $) (-1166 $) (-610 $)) NIL) (((-1166 $) (-1166 $) (-641 (-610 $))) NIL) (($ $ (-610 $)) NIL) (($ $ (-641 (-610 $))) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2466 (((-1166 $) (-610 $)) NIL (|has| $ (-1046)))) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2313 (($ (-1 $ $) (-610 $)) NIL)) (-1419 (((-3 (-610 $) "failed") $) NIL)) (-2688 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-4090 (((-641 (-610 $)) $) NIL)) (-1736 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-1932 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-1295 (($ $) NIL)) (-3694 (((-768) $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2544 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1542 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2582 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3966 (((-768) $) NIL)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-3444 (($ $) NIL) (($ $ $) NIL)) (-2203 (($ $ (-768)) NIL) (($ $) NIL)) (-1668 (((-1119 (-564) (-610 $)) $) NIL)) (-4180 (($ $) NIL (|has| $ (-1046)))) (-2374 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-3714 (((-859) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) NIL)) (-3379 (((-768)) NIL T CONST)) (-3146 (($ $) NIL) (($ (-641 $)) NIL)) (-2068 (((-112) (-114)) NIL)) (-3979 (((-112) $ $) NIL)) (-4312 (($) 7 T CONST)) (-4323 (($) 12 T CONST)) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 16)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL)) (-1828 (($ $ $) 15) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) NIL) (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL)))
+(((-48) (-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -3714 ($ (-1119 (-564) (-610 $)))) (-15 -1655 ((-1119 (-564) (-610 $)) $)) (-15 -1668 ((-1119 (-564) (-610 $)) $)) (-15 -1728 ($ $)) (-15 -2217 ((-1166 $) (-1166 $) (-610 $))) (-15 -2217 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2217 ($ $ (-610 $))) (-15 -2217 ($ $ (-641 (-610 $))))))) (T -48))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1728 (*1 *1 *1) (-5 *1 (-48))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48)))) (-2217 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) (-2217 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48)))))
+(-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -3714 ($ (-1119 (-564) (-610 $)))) (-15 -1655 ((-1119 (-564) (-610 $)) $)) (-15 -1668 ((-1119 (-564) (-610 $)) $)) (-15 -1728 ($ $)) (-15 -2217 ((-1166 $) (-1166 $) (-610 $))) (-15 -2217 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2217 ($ $ (-610 $))) (-15 -2217 ($ $ (-641 (-610 $))))))
+((-3702 (((-112) $ $) NIL)) (-1461 (((-641 (-506)) $) 17)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 7)) (-4347 (((-1175) $) 18)) (-1720 (((-112) $ $) NIL)))
+(((-49) (-13 (-1094) (-10 -8 (-15 -1461 ((-641 (-506)) $)) (-15 -4347 ((-1175) $))))) (T -49))
+((-1461 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49)))))
+(-13 (-1094) (-10 -8 (-15 -1461 ((-641 (-506)) $)) (-15 -4347 ((-1175) $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 87)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1989 (((-112) $) 30)) (-2224 (((-3 |#1| "failed") $) 33)) (-2376 ((|#1| $) 34)) (-1374 (($ $) 40)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-1345 ((|#1| $) 31)) (-1771 (($ $) 76)) (-1868 (((-1152) $) NIL)) (-1377 (((-112) $) 43)) (-3844 (((-1114) $) NIL)) (-1729 (($ (-768)) 74)) (-4130 (($ (-641 (-564))) 75)) (-3475 (((-768) $) 44)) (-3714 (((-859) $) 93) (($ (-564)) 71) (($ |#1|) 69)) (-3181 ((|#1| $ $) 28)) (-3379 (((-768)) 73 T CONST)) (-4312 (($) 45 T CONST)) (-4323 (($) 17 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 66)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
+(((-50 |#1| |#2|) (-13 (-618 |#1|) (-1035 |#1|) (-10 -8 (-15 -1345 (|#1| $)) (-15 -1771 ($ $)) (-15 -1374 ($ $)) (-15 -3181 (|#1| $ $)) (-15 -1729 ($ (-768))) (-15 -4130 ($ (-641 (-564)))) (-15 -1377 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -3475 ((-768) $)) (-15 -2313 ($ (-1 |#1| |#1|) $)))) (-1046) (-641 (-1170))) (T -50))
+((-1345 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-1771 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) (-1374 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) (-3181 (*1 *2 *1 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-4130 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-50 *3 *4)) (-14 *4 (-641 (-1170))))))
+(-13 (-618 |#1|) (-1035 |#1|) (-10 -8 (-15 -1345 (|#1| $)) (-15 -1771 ($ $)) (-15 -1374 ($ $)) (-15 -3181 (|#1| $ $)) (-15 -1729 ($ (-768))) (-15 -4130 ($ (-641 (-564)))) (-15 -1377 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -3475 ((-768) $)) (-15 -2313 ($ (-1 |#1| |#1|) $))))
+((-1989 (((-112) (-52)) 13)) (-2224 (((-3 |#1| "failed") (-52)) 21)) (-2376 ((|#1| (-52)) 22)) (-3714 (((-52) |#1|) 18)))
+(((-51 |#1|) (-10 -7 (-15 -3714 ((-52) |#1|)) (-15 -2224 ((-3 |#1| "failed") (-52))) (-15 -1989 ((-112) (-52))) (-15 -2376 (|#1| (-52)))) (-1209)) (T -51))
+((-2376 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209)))) (-2224 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209)))))
+(-10 -7 (-15 -3714 ((-52) |#1|)) (-15 -2224 ((-3 |#1| "failed") (-52))) (-15 -1989 ((-112) (-52))) (-15 -2376 (|#1| (-52))))
+((-3702 (((-112) $ $) NIL)) (-1968 (((-1152) (-112)) 26)) (-2078 (((-859) $) 25)) (-3569 (((-771) $) 13)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1310 (((-859) $) 17)) (-2694 (((-1098) $) 15)) (-3714 (((-859) $) 35)) (-3291 (($ (-1098) (-771)) 36)) (-1720 (((-112) $ $) 19)))
+(((-52) (-13 (-1094) (-10 -8 (-15 -3291 ($ (-1098) (-771))) (-15 -1310 ((-859) $)) (-15 -2078 ((-859) $)) (-15 -2694 ((-1098) $)) (-15 -3569 ((-771) $)) (-15 -1968 ((-1152) (-112)))))) (T -52))
+((-3291 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-771)) (-5 *1 (-52)))) (-1310 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-52)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52)))))
+(-13 (-1094) (-10 -8 (-15 -3291 ($ (-1098) (-771))) (-15 -1310 ((-859) $)) (-15 -2078 ((-859) $)) (-15 -2694 ((-1098) $)) (-15 -3569 ((-771) $)) (-15 -1968 ((-1152) (-112)))))
+((-1996 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1996 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1046) (-644 |#1|) (-849 |#1|)) (T -53))
+((-1996 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1046)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-849 *5)))))
+(-10 -7 (-15 -1996 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-3378 ((|#3| |#3| (-641 (-1170))) 46)) (-1409 ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918)) 32) ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1409 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -1409 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918))) (-15 -3378 (|#3| |#3| (-641 (-1170))))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -54))
+((-3378 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-1409 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-918)) (-4 *5 (-1094)) (-4 *6 (-13 (-1046) (-883 *5) (-847) (-612 (-889 *5)))) (-4 *2 (-13 (-430 *6) (-883 *5) (-612 (-889 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1409 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1409 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -1409 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918))) (-15 -3378 (|#3| |#3| (-641 (-1170)))))
+((-3702 (((-112) $ $) NIL)) (-2224 (((-3 (-768) "failed") $) 30)) (-2376 (((-768) $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) 13)) (-3714 (((-859) $) 19) (($ (-768)) 25)) (-3318 (($) 11 T CONST)) (-1720 (((-112) $ $) 16)))
+(((-55) (-13 (-1094) (-1035 (-768)) (-10 -8 (-15 -3318 ($) -2222)))) (T -55))
+((-3318 (*1 *1) (-5 *1 (-55))))
+(-13 (-1094) (-1035 (-768)) (-10 -8 (-15 -3318 ($) -2222)))
+((-2141 (((-112) $ (-768)) 27)) (-2310 (($ $ (-564) |#3|) 64)) (-1571 (($ $ (-564) |#4|) 68)) (-3207 ((|#3| $ (-564)) 77)) (-4244 (((-641 |#2|) $) 45)) (-2173 (((-112) $ (-768)) 30)) (-3601 (((-112) |#2| $) 72)) (-1988 (($ (-1 |#2| |#2|) $) 53)) (-2313 (($ (-1 |#2| |#2|) $) 52) (($ (-1 |#2| |#2| |#2|) $ $) 56) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 60)) (-4144 (((-112) $ (-768)) 29)) (-3538 (($ $ |#2|) 50)) (-2280 (((-112) (-1 (-112) |#2|) $) 21)) (-4382 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) 33)) (-3855 (((-768) (-1 (-112) |#2|) $) 39) (((-768) |#2| $) 74)) (-3890 (($ $) 49)) (-2811 ((|#4| $ (-564)) 80)) (-3714 (((-859) $) 86)) (-4289 (((-112) (-1 (-112) |#2|) $) 20)) (-1720 (((-112) $ $) 71)) (-2779 (((-768) $) 31)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1988 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1571 (|#1| |#1| (-564) |#4|)) (-15 -2310 (|#1| |#1| (-564) |#3|)) (-15 -4244 ((-641 |#2|) |#1|)) (-15 -2811 (|#4| |#1| (-564))) (-15 -3207 (|#3| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564))) (-15 -3538 (|#1| |#1| |#2|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -3601 ((-112) |#2| |#1|)) (-15 -3855 ((-768) |#2| |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2779 ((-768) |#1|)) (-15 -2141 ((-112) |#1| (-768))) (-15 -2173 ((-112) |#1| (-768))) (-15 -4144 ((-112) |#1| (-768))) (-15 -3890 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1209) (-373 |#2|) (-373 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1988 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1571 (|#1| |#1| (-564) |#4|)) (-15 -2310 (|#1| |#1| (-564) |#3|)) (-15 -4244 ((-641 |#2|) |#1|)) (-15 -2811 (|#4| |#1| (-564))) (-15 -3207 (|#3| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564))) (-15 -3538 (|#1| |#1| |#2|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -3601 ((-112) |#2| |#1|)) (-15 -3855 ((-768) |#2| |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2779 ((-768) |#1|)) (-15 -2141 ((-112) |#1| (-768))) (-15 -2173 ((-112) |#1| (-768))) (-15 -4144 ((-112) |#1| (-768))) (-15 -3890 (|#1| |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-3868 ((|#1| $ (-564) (-564) |#1|) 44)) (-2310 (($ $ (-564) |#2|) 42)) (-1571 (($ $ (-564) |#3|) 41)) (-3180 (($) 7 T CONST)) (-3207 ((|#2| $ (-564)) 46)) (-1998 ((|#1| $ (-564) (-564) |#1|) 43)) (-3593 ((|#1| $ (-564) (-564)) 48)) (-4244 (((-641 |#1|) $) 30)) (-3947 (((-768) $) 51)) (-3564 (($ (-768) (-768) |#1|) 57)) (-3956 (((-768) $) 50)) (-2173 (((-112) $ (-768)) 9)) (-2285 (((-564) $) 55)) (-1984 (((-564) $) 53)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2083 (((-564) $) 54)) (-2437 (((-564) $) 52)) (-1988 (($ (-1 |#1| |#1|) $) 34)) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3538 (($ $ |#1|) 56)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2811 ((|#3| $ (-564)) 45)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-57 |#1| |#2| |#3|) (-140) (-1209) (-373 |t#1|) (-373 |t#1|)) (T -57))
-((-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1633 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-768)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2614 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2104 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-768)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-768)))) (-4382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-3455 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2698 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-1709 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 *3)))) (-1881 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-3528 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-1470 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-3652 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2082 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2082 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(-13 (-489 |t#1|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -1633 ($ (-768) (-768) |t#1|)) (-15 -2614 ($ $ |t#1|)) (-15 -1786 ((-564) $)) (-15 -3896 ((-564) $)) (-15 -2810 ((-564) $)) (-15 -2104 ((-564) $)) (-15 -3383 ((-768) $)) (-15 -3393 ((-768) $)) (-15 -4382 (|t#1| $ (-564) (-564))) (-15 -3455 (|t#1| $ (-564) (-564))) (-15 -4382 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2698 (|t#2| $ (-564))) (-15 -1709 (|t#3| $ (-564))) (-15 -3080 ((-641 |t#1|) $)) (-15 -1881 (|t#1| $ (-564) (-564) |t#1|)) (-15 -3528 (|t#1| $ (-564) (-564) |t#1|)) (-15 -1470 ($ $ (-564) |t#2|)) (-15 -3652 ($ $ (-564) |t#3|)) (-15 -2082 ($ (-1 |t#1| |t#1|) $)) (-15 -3513 ($ (-1 |t#1| |t#1|) $)) (-15 -2082 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2082 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-4077 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-4367 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2082 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -4077 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4367 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2082 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1209) (-1209)) (T -58))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-4367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-58 *5 *2)))) (-4077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -4077 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4367 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2082 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-564) |#1|) 20 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1356 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4151 (($ (-641 |#1|)) 21) (($ (-768) |#1|) 22)) (-1633 (($ (-768) |#1|) 18)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3073 ((|#1| $) NIL (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 16)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) NIL)) (-2817 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4151 ($ (-641 |#1|))) (-15 -4151 ($ (-768) |#1|)))) (-1209)) (T -59))
-((-4151 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3)))) (-4151 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-59 *3)) (-4 *3 (-1209)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -4151 ($ (-641 |#1|))) (-15 -4151 ($ (-768) |#1|))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1470 (($ $ (-564) (-59 |#1|)) NIL)) (-3652 (($ $ (-564) (-59 |#1|)) NIL)) (-3760 (($) NIL T CONST)) (-2698 (((-59 |#1|) $ (-564)) NIL)) (-3528 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3455 ((|#1| $ (-564) (-564)) NIL)) (-3080 (((-641 |#1|) $) NIL)) (-3383 (((-768) $) NIL)) (-1633 (($ (-768) (-768) |#1|) NIL)) (-3393 (((-768) $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-1786 (((-564) $) NIL)) (-2810 (((-564) $) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (((-564) $) NIL)) (-2104 (((-564) $) NIL)) (-3513 (($ (-1 |#1| |#1|) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2614 (($ $ |#1|) NIL)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1709 (((-59 |#1|) $ (-564)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4412))) (-1209)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4412)))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 74) (((-3 $ "failed") (-1259 (-316 (-564)))) 63) (((-3 $ "failed") (-1259 (-949 (-379)))) 94) (((-3 $ "failed") (-1259 (-949 (-564)))) 84) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 52) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 39)) (-2064 (($ (-1259 (-316 (-379)))) 70) (($ (-1259 (-316 (-564)))) 59) (($ (-1259 (-949 (-379)))) 90) (($ (-1259 (-949 (-564)))) 80) (($ (-1259 (-407 (-949 (-379))))) 48) (($ (-1259 (-407 (-949 (-564))))) 32)) (-3501 (((-1264) $) 127)) (-1765 (((-859) $) 121) (($ (-641 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 101) (($ (-1259 (-339 (-1776 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1776) (-695)))) 31)))
-(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1776) (-695))))))) (-1170)) (T -61))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1776) (-695)))) (-5 *1 (-61 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1776) (-695)))))))
-((-3501 (((-1264) $) 54) (((-1264)) 55)) (-1765 (((-859) $) 51)))
-(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -3501 ((-1264))))) (-1170)) (T -62))
-((-3501 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170)))))
-(-13 (-395) (-10 -7 (-15 -3501 ((-1264)))))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 154) (((-3 $ "failed") (-1259 (-316 (-564)))) 144) (((-3 $ "failed") (-1259 (-949 (-379)))) 174) (((-3 $ "failed") (-1259 (-949 (-564)))) 164) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 133) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 121)) (-2064 (($ (-1259 (-316 (-379)))) 150) (($ (-1259 (-316 (-564)))) 140) (($ (-1259 (-949 (-379)))) 170) (($ (-1259 (-949 (-564)))) 160) (($ (-1259 (-407 (-949 (-379))))) 129) (($ (-1259 (-407 (-949 (-564))))) 114)) (-3501 (((-1264) $) 107)) (-1765 (((-859) $) 101) (($ (-641 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 33) (($ (-1259 (-339 (-1776) (-1776 (QUOTE XC)) (-695)))) 99)))
-(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776) (-1776 (QUOTE XC)) (-695))))))) (-1170)) (T -63))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776) (-1776 (QUOTE XC)) (-695)))) (-5 *1 (-63 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776) (-1776 (QUOTE XC)) (-695)))))))
-((-2013 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-564))) 46) (((-3 $ "failed") (-949 (-379))) 50) (((-3 $ "failed") (-949 (-564))) 54) (((-3 $ "failed") (-407 (-949 (-379)))) 36) (((-3 $ "failed") (-407 (-949 (-564)))) 29)) (-2064 (($ (-316 (-379))) 39) (($ (-316 (-564))) 44) (($ (-949 (-379))) 48) (($ (-949 (-564))) 52) (($ (-407 (-949 (-379)))) 34) (($ (-407 (-949 (-564)))) 26)) (-3501 (((-1264) $) 76)) (-1765 (((-859) $) 69) (($ (-641 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 64) (($ (-339 (-1776 (QUOTE X)) (-1776) (-695))) 25)))
-(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776 (QUOTE X)) (-1776) (-695)))))) (-1170)) (T -64))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-339 (-1776 (QUOTE X)) (-1776) (-695))) (-5 *1 (-64 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776 (QUOTE X)) (-1776) (-695))))))
-((-2013 (((-3 $ "failed") (-685 (-316 (-379)))) 114) (((-3 $ "failed") (-685 (-316 (-564)))) 102) (((-3 $ "failed") (-685 (-949 (-379)))) 136) (((-3 $ "failed") (-685 (-949 (-564)))) 125) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 90) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 76)) (-2064 (($ (-685 (-316 (-379)))) 110) (($ (-685 (-316 (-564)))) 98) (($ (-685 (-949 (-379)))) 132) (($ (-685 (-949 (-564)))) 121) (($ (-685 (-407 (-949 (-379))))) 86) (($ (-685 (-407 (-949 (-564))))) 69)) (-3501 (((-1264) $) 144)) (-1765 (((-859) $) 138) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 32) (($ (-685 (-339 (-1776) (-1776 (QUOTE X) (QUOTE HESS)) (-695)))) 59)))
-(((-65 |#1|) (-13 (-384) (-614 (-685 (-339 (-1776) (-1776 (QUOTE X) (QUOTE HESS)) (-695))))) (-1170)) (T -65))
-NIL
-(-13 (-384) (-614 (-685 (-339 (-1776) (-1776 (QUOTE X) (QUOTE HESS)) (-695)))))
-((-2013 (((-3 $ "failed") (-316 (-379))) 60) (((-3 $ "failed") (-316 (-564))) 65) (((-3 $ "failed") (-949 (-379))) 69) (((-3 $ "failed") (-949 (-564))) 73) (((-3 $ "failed") (-407 (-949 (-379)))) 55) (((-3 $ "failed") (-407 (-949 (-564)))) 48)) (-2064 (($ (-316 (-379))) 58) (($ (-316 (-564))) 63) (($ (-949 (-379))) 67) (($ (-949 (-564))) 71) (($ (-407 (-949 (-379)))) 53) (($ (-407 (-949 (-564)))) 45)) (-3501 (((-1264) $) 82)) (-1765 (((-859) $) 76) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 32) (($ (-339 (-1776) (-1776 (QUOTE XC)) (-695))) 40)))
-(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776) (-1776 (QUOTE XC)) (-695)))))) (-1170)) (T -66))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-339 (-1776) (-1776 (QUOTE XC)) (-695))) (-5 *1 (-66 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776) (-1776 (QUOTE XC)) (-695))))))
-((-3501 (((-1264) $) 68)) (-1765 (((-859) $) 62) (($ (-685 (-695))) 54) (($ (-641 (-330))) 53) (($ (-330)) 60) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 58)))
+((-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3564 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-768)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3538 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-768)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-768)))) (-4382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-3593 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-3207 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-2811 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 *3)))) (-3868 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-1998 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2310 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-1571 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-1988 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2313 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+(-13 (-489 |t#1|) (-10 -8 (-6 -4413) (-6 -4412) (-15 -3564 ($ (-768) (-768) |t#1|)) (-15 -3538 ($ $ |t#1|)) (-15 -2285 ((-564) $)) (-15 -2083 ((-564) $)) (-15 -1984 ((-564) $)) (-15 -2437 ((-564) $)) (-15 -3947 ((-768) $)) (-15 -3956 ((-768) $)) (-15 -4382 (|t#1| $ (-564) (-564))) (-15 -3593 (|t#1| $ (-564) (-564))) (-15 -4382 (|t#1| $ (-564) (-564) |t#1|)) (-15 -3207 (|t#2| $ (-564))) (-15 -2811 (|t#3| $ (-564))) (-15 -4244 ((-641 |t#1|) $)) (-15 -3868 (|t#1| $ (-564) (-564) |t#1|)) (-15 -1998 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2310 ($ $ (-564) |t#2|)) (-15 -1571 ($ $ (-564) |t#3|)) (-15 -2313 ($ (-1 |t#1| |t#1|) $)) (-15 -1988 ($ (-1 |t#1| |t#1|) $)) (-15 -2313 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2313 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-3092 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-1728 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2313 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -3092 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1728 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2313 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1209) (-1209)) (T -58))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-1728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-58 *5 *2)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -3092 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1728 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2313 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-3303 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-2627 (($ (-641 |#1|)) 11) (($ (-768) |#1|) 14)) (-3564 (($ (-768) |#1|) 13)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2049 ((|#1| $) NIL (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 10)) (-1865 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2627 ($ (-641 |#1|))) (-15 -2627 ($ (-768) |#1|)))) (-1209)) (T -59))
+((-2627 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3)))) (-2627 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-59 *3)) (-4 *3 (-1209)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2627 ($ (-641 |#1|))) (-15 -2627 ($ (-768) |#1|))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2310 (($ $ (-564) (-59 |#1|)) NIL)) (-1571 (($ $ (-564) (-59 |#1|)) NIL)) (-3180 (($) NIL T CONST)) (-3207 (((-59 |#1|) $ (-564)) NIL)) (-1998 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3593 ((|#1| $ (-564) (-564)) NIL)) (-4244 (((-641 |#1|) $) NIL)) (-3947 (((-768) $) NIL)) (-3564 (($ (-768) (-768) |#1|) NIL)) (-3956 (((-768) $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2285 (((-564) $) NIL)) (-1984 (((-564) $) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2083 (((-564) $) NIL)) (-2437 (((-564) $) NIL)) (-1988 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3538 (($ $ |#1|) NIL)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-2811 (((-59 |#1|) $ (-564)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4413))) (-1209)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4413)))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 74) (((-3 $ "failed") (-1259 (-316 (-564)))) 63) (((-3 $ "failed") (-1259 (-949 (-379)))) 94) (((-3 $ "failed") (-1259 (-949 (-564)))) 84) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 52) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 39)) (-2376 (($ (-1259 (-316 (-379)))) 70) (($ (-1259 (-316 (-564)))) 59) (($ (-1259 (-949 (-379)))) 90) (($ (-1259 (-949 (-564)))) 80) (($ (-1259 (-407 (-949 (-379))))) 48) (($ (-1259 (-407 (-949 (-564))))) 32)) (-2263 (((-1264) $) 127)) (-3714 (((-859) $) 121) (($ (-641 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 101) (($ (-1259 (-339 (-3725 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3725) (-695)))) 31)))
+(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3725) (-695))))))) (-1170)) (T -61))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3725) (-695)))) (-5 *1 (-61 *3)) (-14 *3 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3725) (-695)))))))
+((-2263 (((-1264) $) 54) (((-1264)) 55)) (-3714 (((-859) $) 51)))
+(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -2263 ((-1264))))) (-1170)) (T -62))
+((-2263 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170)))))
+(-13 (-395) (-10 -7 (-15 -2263 ((-1264)))))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 154) (((-3 $ "failed") (-1259 (-316 (-564)))) 144) (((-3 $ "failed") (-1259 (-949 (-379)))) 174) (((-3 $ "failed") (-1259 (-949 (-564)))) 164) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 133) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 121)) (-2376 (($ (-1259 (-316 (-379)))) 150) (($ (-1259 (-316 (-564)))) 140) (($ (-1259 (-949 (-379)))) 170) (($ (-1259 (-949 (-564)))) 160) (($ (-1259 (-407 (-949 (-379))))) 129) (($ (-1259 (-407 (-949 (-564))))) 114)) (-2263 (((-1264) $) 107)) (-3714 (((-859) $) 101) (($ (-641 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 33) (($ (-1259 (-339 (-3725) (-3725 (QUOTE XC)) (-695)))) 99)))
+(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725) (-3725 (QUOTE XC)) (-695))))))) (-1170)) (T -63))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725) (-3725 (QUOTE XC)) (-695)))) (-5 *1 (-63 *3)) (-14 *3 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725) (-3725 (QUOTE XC)) (-695)))))))
+((-2224 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-564))) 46) (((-3 $ "failed") (-949 (-379))) 50) (((-3 $ "failed") (-949 (-564))) 54) (((-3 $ "failed") (-407 (-949 (-379)))) 36) (((-3 $ "failed") (-407 (-949 (-564)))) 29)) (-2376 (($ (-316 (-379))) 39) (($ (-316 (-564))) 44) (($ (-949 (-379))) 48) (($ (-949 (-564))) 52) (($ (-407 (-949 (-379)))) 34) (($ (-407 (-949 (-564)))) 26)) (-2263 (((-1264) $) 76)) (-3714 (((-859) $) 69) (($ (-641 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 64) (($ (-339 (-3725 (QUOTE X)) (-3725) (-695))) 25)))
+(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725 (QUOTE X)) (-3725) (-695)))))) (-1170)) (T -64))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-339 (-3725 (QUOTE X)) (-3725) (-695))) (-5 *1 (-64 *3)) (-14 *3 (-1170)))))
+(-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725 (QUOTE X)) (-3725) (-695))))))
+((-2224 (((-3 $ "failed") (-685 (-316 (-379)))) 114) (((-3 $ "failed") (-685 (-316 (-564)))) 102) (((-3 $ "failed") (-685 (-949 (-379)))) 136) (((-3 $ "failed") (-685 (-949 (-564)))) 125) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 90) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 76)) (-2376 (($ (-685 (-316 (-379)))) 110) (($ (-685 (-316 (-564)))) 98) (($ (-685 (-949 (-379)))) 132) (($ (-685 (-949 (-564)))) 121) (($ (-685 (-407 (-949 (-379))))) 86) (($ (-685 (-407 (-949 (-564))))) 69)) (-2263 (((-1264) $) 144)) (-3714 (((-859) $) 138) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 32) (($ (-685 (-339 (-3725) (-3725 (QUOTE X) (QUOTE HESS)) (-695)))) 59)))
+(((-65 |#1|) (-13 (-384) (-614 (-685 (-339 (-3725) (-3725 (QUOTE X) (QUOTE HESS)) (-695))))) (-1170)) (T -65))
+NIL
+(-13 (-384) (-614 (-685 (-339 (-3725) (-3725 (QUOTE X) (QUOTE HESS)) (-695)))))
+((-2224 (((-3 $ "failed") (-316 (-379))) 60) (((-3 $ "failed") (-316 (-564))) 65) (((-3 $ "failed") (-949 (-379))) 69) (((-3 $ "failed") (-949 (-564))) 73) (((-3 $ "failed") (-407 (-949 (-379)))) 55) (((-3 $ "failed") (-407 (-949 (-564)))) 48)) (-2376 (($ (-316 (-379))) 58) (($ (-316 (-564))) 63) (($ (-949 (-379))) 67) (($ (-949 (-564))) 71) (($ (-407 (-949 (-379)))) 53) (($ (-407 (-949 (-564)))) 45)) (-2263 (((-1264) $) 82)) (-3714 (((-859) $) 76) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 32) (($ (-339 (-3725) (-3725 (QUOTE XC)) (-695))) 40)))
+(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725) (-3725 (QUOTE XC)) (-695)))))) (-1170)) (T -66))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-339 (-3725) (-3725 (QUOTE XC)) (-695))) (-5 *1 (-66 *3)) (-14 *3 (-1170)))))
+(-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725) (-3725 (QUOTE XC)) (-695))))))
+((-2263 (((-1264) $) 68)) (-3714 (((-859) $) 62) (($ (-685 (-695))) 54) (($ (-641 (-330))) 53) (($ (-330)) 60) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 58)))
(((-67 |#1|) (-383) (-1170)) (T -67))
NIL
(-383)
-((-3501 (((-1264) $) 69)) (-1765 (((-859) $) 63) (($ (-685 (-695))) 55) (($ (-641 (-330))) 54) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 60)))
+((-2263 (((-1264) $) 69)) (-3714 (((-859) $) 63) (($ (-685 (-695))) 55) (($ (-641 (-330))) 54) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 60)))
(((-68 |#1|) (-383) (-1170)) (T -68))
NIL
(-383)
-((-3501 (((-1264) $) NIL) (((-1264)) 33)) (-1765 (((-859) $) NIL)))
-(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -3501 ((-1264))))) (-1170)) (T -69))
-((-3501 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170)))))
-(-13 (-395) (-10 -7 (-15 -3501 ((-1264)))))
-((-3501 (((-1264) $) 75)) (-1765 (((-859) $) 69) (($ (-685 (-695))) 61) (($ (-641 (-330))) 63) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 60)))
+((-2263 (((-1264) $) NIL) (((-1264)) 33)) (-3714 (((-859) $) NIL)))
+(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -2263 ((-1264))))) (-1170)) (T -69))
+((-2263 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170)))))
+(-13 (-395) (-10 -7 (-15 -2263 ((-1264)))))
+((-2263 (((-1264) $) 75)) (-3714 (((-859) $) 69) (($ (-685 (-695))) 61) (($ (-641 (-330))) 63) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 60)))
(((-70 |#1|) (-383) (-1170)) (T -70))
NIL
(-383)
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 111) (((-3 $ "failed") (-1259 (-316 (-564)))) 100) (((-3 $ "failed") (-1259 (-949 (-379)))) 131) (((-3 $ "failed") (-1259 (-949 (-564)))) 121) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 89) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 76)) (-2064 (($ (-1259 (-316 (-379)))) 107) (($ (-1259 (-316 (-564)))) 96) (($ (-1259 (-949 (-379)))) 127) (($ (-1259 (-949 (-564)))) 117) (($ (-1259 (-407 (-949 (-379))))) 85) (($ (-1259 (-407 (-949 (-564))))) 69)) (-3501 (((-1264) $) 144)) (-1765 (((-859) $) 138) (($ (-641 (-330))) 133) (($ (-330)) 136) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 61) (($ (-1259 (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695)))) 62)))
-(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695))))))) (-1170)) (T -71))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695)))) (-5 *1 (-71 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695)))))))
-((-3501 (((-1264) $) 33) (((-1264)) 32)) (-1765 (((-859) $) 36)))
-(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -3501 ((-1264))))) (-1170)) (T -72))
-((-3501 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170)))))
-(-13 (-395) (-10 -7 (-15 -3501 ((-1264)))))
-((-3501 (((-1264) $) 65)) (-1765 (((-859) $) 59) (($ (-685 (-695))) 51) (($ (-641 (-330))) 53) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 50)))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 111) (((-3 $ "failed") (-1259 (-316 (-564)))) 100) (((-3 $ "failed") (-1259 (-949 (-379)))) 131) (((-3 $ "failed") (-1259 (-949 (-564)))) 121) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 89) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 76)) (-2376 (($ (-1259 (-316 (-379)))) 107) (($ (-1259 (-316 (-564)))) 96) (($ (-1259 (-949 (-379)))) 127) (($ (-1259 (-949 (-564)))) 117) (($ (-1259 (-407 (-949 (-379))))) 85) (($ (-1259 (-407 (-949 (-564))))) 69)) (-2263 (((-1264) $) 144)) (-3714 (((-859) $) 138) (($ (-641 (-330))) 133) (($ (-330)) 136) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 61) (($ (-1259 (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695)))) 62)))
+(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695))))))) (-1170)) (T -71))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695)))) (-5 *1 (-71 *3)) (-14 *3 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695)))))))
+((-2263 (((-1264) $) 33) (((-1264)) 32)) (-3714 (((-859) $) 36)))
+(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -2263 ((-1264))))) (-1170)) (T -72))
+((-2263 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170)))))
+(-13 (-395) (-10 -7 (-15 -2263 ((-1264)))))
+((-2263 (((-1264) $) 65)) (-3714 (((-859) $) 59) (($ (-685 (-695))) 51) (($ (-641 (-330))) 53) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 50)))
(((-73 |#1|) (-383) (-1170)) (T -73))
NIL
(-383)
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 130) (((-3 $ "failed") (-1259 (-316 (-564)))) 120) (((-3 $ "failed") (-1259 (-949 (-379)))) 150) (((-3 $ "failed") (-1259 (-949 (-564)))) 140) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 110) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 98)) (-2064 (($ (-1259 (-316 (-379)))) 126) (($ (-1259 (-316 (-564)))) 116) (($ (-1259 (-949 (-379)))) 146) (($ (-1259 (-949 (-564)))) 136) (($ (-1259 (-407 (-949 (-379))))) 106) (($ (-1259 (-407 (-949 (-564))))) 91)) (-3501 (((-1264) $) 83)) (-1765 (((-859) $) 28) (($ (-641 (-330))) 73) (($ (-330)) 69) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 76) (($ (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695)))) 70)))
-(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695))))))) (-1170)) (T -74))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695)))) (-5 *1 (-74 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695)))))))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 135) (((-3 $ "failed") (-1259 (-316 (-564)))) 124) (((-3 $ "failed") (-1259 (-949 (-379)))) 155) (((-3 $ "failed") (-1259 (-949 (-564)))) 145) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 113) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 100)) (-2064 (($ (-1259 (-316 (-379)))) 131) (($ (-1259 (-316 (-564)))) 120) (($ (-1259 (-949 (-379)))) 151) (($ (-1259 (-949 (-564)))) 141) (($ (-1259 (-407 (-949 (-379))))) 109) (($ (-1259 (-407 (-949 (-564))))) 93)) (-3501 (((-1264) $) 85)) (-1765 (((-859) $) 77) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) NIL) (($ (-1259 (-339 (-1776 (QUOTE X) (QUOTE EPS)) (-1776 (QUOTE -4203)) (-695)))) 72)))
-(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X) (QUOTE EPS)) (-1776 (QUOTE -4203)) (-695))))))) (-1170) (-1170) (-1170)) (T -75))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776 (QUOTE X) (QUOTE EPS)) (-1776 (QUOTE -4203)) (-695)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X) (QUOTE EPS)) (-1776 (QUOTE -4203)) (-695)))))))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 141) (((-3 $ "failed") (-1259 (-316 (-564)))) 130) (((-3 $ "failed") (-1259 (-949 (-379)))) 161) (((-3 $ "failed") (-1259 (-949 (-564)))) 151) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 119) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 106)) (-2064 (($ (-1259 (-316 (-379)))) 137) (($ (-1259 (-316 (-564)))) 126) (($ (-1259 (-949 (-379)))) 157) (($ (-1259 (-949 (-564)))) 147) (($ (-1259 (-407 (-949 (-379))))) 115) (($ (-1259 (-407 (-949 (-564))))) 99)) (-3501 (((-1264) $) 91)) (-1765 (((-859) $) 83) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) NIL) (($ (-1259 (-339 (-1776 (QUOTE EPS)) (-1776 (QUOTE YA) (QUOTE YB)) (-695)))) 78)))
-(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE EPS)) (-1776 (QUOTE YA) (QUOTE YB)) (-695))))))) (-1170) (-1170) (-1170)) (T -76))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776 (QUOTE EPS)) (-1776 (QUOTE YA) (QUOTE YB)) (-695)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE EPS)) (-1776 (QUOTE YA) (QUOTE YB)) (-695)))))))
-((-2013 (((-3 $ "failed") (-316 (-379))) 83) (((-3 $ "failed") (-316 (-564))) 88) (((-3 $ "failed") (-949 (-379))) 92) (((-3 $ "failed") (-949 (-564))) 96) (((-3 $ "failed") (-407 (-949 (-379)))) 78) (((-3 $ "failed") (-407 (-949 (-564)))) 71)) (-2064 (($ (-316 (-379))) 81) (($ (-316 (-564))) 86) (($ (-949 (-379))) 90) (($ (-949 (-564))) 94) (($ (-407 (-949 (-379)))) 76) (($ (-407 (-949 (-564)))) 68)) (-3501 (((-1264) $) 63)) (-1765 (((-859) $) 51) (($ (-641 (-330))) 47) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 55) (($ (-339 (-1776) (-1776 (QUOTE X)) (-695))) 48)))
-(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776) (-1776 (QUOTE X)) (-695)))))) (-1170)) (T -77))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-339 (-1776) (-1776 (QUOTE X)) (-695))) (-5 *1 (-77 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776) (-1776 (QUOTE X)) (-695))))))
-((-2013 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-564))) 52) (((-3 $ "failed") (-949 (-379))) 56) (((-3 $ "failed") (-949 (-564))) 60) (((-3 $ "failed") (-407 (-949 (-379)))) 42) (((-3 $ "failed") (-407 (-949 (-564)))) 35)) (-2064 (($ (-316 (-379))) 45) (($ (-316 (-564))) 50) (($ (-949 (-379))) 54) (($ (-949 (-564))) 58) (($ (-407 (-949 (-379)))) 40) (($ (-407 (-949 (-564)))) 32)) (-3501 (((-1264) $) 81)) (-1765 (((-859) $) 75) (($ (-641 (-330))) 67) (($ (-330)) 72) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 70) (($ (-339 (-1776) (-1776 (QUOTE X)) (-695))) 31)))
-(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776) (-1776 (QUOTE X)) (-695)))))) (-1170)) (T -78))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-339 (-1776) (-1776 (QUOTE X)) (-695))) (-5 *1 (-78 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776) (-1776 (QUOTE X)) (-695))))))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 90) (((-3 $ "failed") (-1259 (-316 (-564)))) 79) (((-3 $ "failed") (-1259 (-949 (-379)))) 110) (((-3 $ "failed") (-1259 (-949 (-564)))) 100) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 68) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 55)) (-2064 (($ (-1259 (-316 (-379)))) 86) (($ (-1259 (-316 (-564)))) 75) (($ (-1259 (-949 (-379)))) 106) (($ (-1259 (-949 (-564)))) 96) (($ (-1259 (-407 (-949 (-379))))) 64) (($ (-1259 (-407 (-949 (-564))))) 48)) (-3501 (((-1264) $) 126)) (-1765 (((-859) $) 120) (($ (-641 (-330))) 113) (($ (-330)) 38) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 116) (($ (-1259 (-339 (-1776) (-1776 (QUOTE XC)) (-695)))) 39)))
-(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776) (-1776 (QUOTE XC)) (-695))))))) (-1170)) (T -79))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776) (-1776 (QUOTE XC)) (-695)))) (-5 *1 (-79 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776) (-1776 (QUOTE XC)) (-695)))))))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 158) (((-3 $ "failed") (-1259 (-316 (-564)))) 148) (((-3 $ "failed") (-1259 (-949 (-379)))) 178) (((-3 $ "failed") (-1259 (-949 (-564)))) 168) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 138) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 126)) (-2064 (($ (-1259 (-316 (-379)))) 154) (($ (-1259 (-316 (-564)))) 144) (($ (-1259 (-949 (-379)))) 174) (($ (-1259 (-949 (-564)))) 164) (($ (-1259 (-407 (-949 (-379))))) 134) (($ (-1259 (-407 (-949 (-564))))) 119)) (-3501 (((-1264) $) 112)) (-1765 (((-859) $) 106) (($ (-641 (-330))) 97) (($ (-330)) 104) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 102) (($ (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695)))) 98)))
-(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695))))))) (-1170)) (T -80))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695)))) (-5 *1 (-80 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695)))))))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 79) (((-3 $ "failed") (-1259 (-316 (-564)))) 68) (((-3 $ "failed") (-1259 (-949 (-379)))) 99) (((-3 $ "failed") (-1259 (-949 (-564)))) 89) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 57) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 44)) (-2064 (($ (-1259 (-316 (-379)))) 75) (($ (-1259 (-316 (-564)))) 64) (($ (-1259 (-949 (-379)))) 95) (($ (-1259 (-949 (-564)))) 85) (($ (-1259 (-407 (-949 (-379))))) 53) (($ (-1259 (-407 (-949 (-564))))) 37)) (-3501 (((-1264) $) 125)) (-1765 (((-859) $) 119) (($ (-641 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 114) (($ (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695)))) 36)))
-(((-81 |#1|) (-13 (-441) (-614 (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695))))) (-1170)) (T -81))
-NIL
-(-13 (-441) (-614 (-1259 (-339 (-1776) (-1776 (QUOTE X)) (-695)))))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 98) (((-3 $ "failed") (-1259 (-316 (-564)))) 87) (((-3 $ "failed") (-1259 (-949 (-379)))) 118) (((-3 $ "failed") (-1259 (-949 (-564)))) 108) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 76) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 63)) (-2064 (($ (-1259 (-316 (-379)))) 94) (($ (-1259 (-316 (-564)))) 83) (($ (-1259 (-949 (-379)))) 114) (($ (-1259 (-949 (-564)))) 104) (($ (-1259 (-407 (-949 (-379))))) 72) (($ (-1259 (-407 (-949 (-564))))) 56)) (-3501 (((-1264) $) 48)) (-1765 (((-859) $) 42) (($ (-641 (-330))) 32) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 38) (($ (-1259 (-339 (-1776 (QUOTE X) (QUOTE -4203)) (-1776) (-695)))) 33)))
-(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X) (QUOTE -4203)) (-1776) (-695))))))) (-1170)) (T -82))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776 (QUOTE X) (QUOTE -4203)) (-1776) (-695)))) (-5 *1 (-82 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X) (QUOTE -4203)) (-1776) (-695)))))))
-((-2013 (((-3 $ "failed") (-685 (-316 (-379)))) 118) (((-3 $ "failed") (-685 (-316 (-564)))) 107) (((-3 $ "failed") (-685 (-949 (-379)))) 140) (((-3 $ "failed") (-685 (-949 (-564)))) 129) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 96) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 83)) (-2064 (($ (-685 (-316 (-379)))) 114) (($ (-685 (-316 (-564)))) 103) (($ (-685 (-949 (-379)))) 136) (($ (-685 (-949 (-564)))) 125) (($ (-685 (-407 (-949 (-379))))) 92) (($ (-685 (-407 (-949 (-564))))) 76)) (-3501 (((-1264) $) 66)) (-1765 (((-859) $) 53) (($ (-641 (-330))) 60) (($ (-330)) 49) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 58) (($ (-685 (-339 (-1776 (QUOTE X) (QUOTE -4203)) (-1776) (-695)))) 50)))
-(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -1765 ($ (-685 (-339 (-1776 (QUOTE X) (QUOTE -4203)) (-1776) (-695))))))) (-1170)) (T -83))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-1776 (QUOTE X) (QUOTE -4203)) (-1776) (-695)))) (-5 *1 (-83 *3)) (-14 *3 (-1170)))))
-(-13 (-384) (-10 -8 (-15 -1765 ($ (-685 (-339 (-1776 (QUOTE X) (QUOTE -4203)) (-1776) (-695)))))))
-((-2013 (((-3 $ "failed") (-685 (-316 (-379)))) 113) (((-3 $ "failed") (-685 (-316 (-564)))) 101) (((-3 $ "failed") (-685 (-949 (-379)))) 135) (((-3 $ "failed") (-685 (-949 (-564)))) 124) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 89) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 75)) (-2064 (($ (-685 (-316 (-379)))) 109) (($ (-685 (-316 (-564)))) 97) (($ (-685 (-949 (-379)))) 131) (($ (-685 (-949 (-564)))) 120) (($ (-685 (-407 (-949 (-379))))) 85) (($ (-685 (-407 (-949 (-564))))) 68)) (-3501 (((-1264) $) 60)) (-1765 (((-859) $) 54) (($ (-641 (-330))) 48) (($ (-330)) 51) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 45) (($ (-685 (-339 (-1776 (QUOTE X)) (-1776) (-695)))) 46)))
-(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -1765 ($ (-685 (-339 (-1776 (QUOTE X)) (-1776) (-695))))))) (-1170)) (T -84))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-1776 (QUOTE X)) (-1776) (-695)))) (-5 *1 (-84 *3)) (-14 *3 (-1170)))))
-(-13 (-384) (-10 -8 (-15 -1765 ($ (-685 (-339 (-1776 (QUOTE X)) (-1776) (-695)))))))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 105) (((-3 $ "failed") (-1259 (-316 (-564)))) 94) (((-3 $ "failed") (-1259 (-949 (-379)))) 125) (((-3 $ "failed") (-1259 (-949 (-564)))) 115) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 83) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 70)) (-2064 (($ (-1259 (-316 (-379)))) 101) (($ (-1259 (-316 (-564)))) 90) (($ (-1259 (-949 (-379)))) 121) (($ (-1259 (-949 (-564)))) 111) (($ (-1259 (-407 (-949 (-379))))) 79) (($ (-1259 (-407 (-949 (-564))))) 63)) (-3501 (((-1264) $) 47)) (-1765 (((-859) $) 41) (($ (-641 (-330))) 50) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 53) (($ (-1259 (-339 (-1776 (QUOTE X)) (-1776) (-695)))) 38)))
-(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X)) (-1776) (-695))))))) (-1170)) (T -85))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776 (QUOTE X)) (-1776) (-695)))) (-5 *1 (-85 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X)) (-1776) (-695)))))))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 80) (((-3 $ "failed") (-1259 (-316 (-564)))) 69) (((-3 $ "failed") (-1259 (-949 (-379)))) 100) (((-3 $ "failed") (-1259 (-949 (-564)))) 90) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 58) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 45)) (-2064 (($ (-1259 (-316 (-379)))) 76) (($ (-1259 (-316 (-564)))) 65) (($ (-1259 (-949 (-379)))) 96) (($ (-1259 (-949 (-564)))) 86) (($ (-1259 (-407 (-949 (-379))))) 54) (($ (-1259 (-407 (-949 (-564))))) 38)) (-3501 (((-1264) $) 126)) (-1765 (((-859) $) 120) (($ (-641 (-330))) 111) (($ (-330)) 117) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 115) (($ (-1259 (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695)))) 37)))
-(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695))))))) (-1170)) (T -86))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695)))) (-5 *1 (-86 *3)) (-14 *3 (-1170)))))
-(-13 (-441) (-10 -8 (-15 -1765 ($ (-1259 (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695)))))))
-((-2013 (((-3 $ "failed") (-685 (-316 (-379)))) 117) (((-3 $ "failed") (-685 (-316 (-564)))) 105) (((-3 $ "failed") (-685 (-949 (-379)))) 139) (((-3 $ "failed") (-685 (-949 (-564)))) 128) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 93) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 79)) (-2064 (($ (-685 (-316 (-379)))) 113) (($ (-685 (-316 (-564)))) 101) (($ (-685 (-949 (-379)))) 135) (($ (-685 (-949 (-564)))) 124) (($ (-685 (-407 (-949 (-379))))) 89) (($ (-685 (-407 (-949 (-564))))) 72)) (-3501 (((-1264) $) 63)) (-1765 (((-859) $) 57) (($ (-641 (-330))) 47) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 52) (($ (-685 (-339 (-1776 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1776) (-695)))) 48)))
-(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -1765 ($ (-685 (-339 (-1776 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1776) (-695))))))) (-1170)) (T -87))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-1776 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1776) (-695)))) (-5 *1 (-87 *3)) (-14 *3 (-1170)))))
-(-13 (-384) (-10 -8 (-15 -1765 ($ (-685 (-339 (-1776 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1776) (-695)))))))
-((-3501 (((-1264) $) 45)) (-1765 (((-859) $) 39) (($ (-1259 (-695))) 101) (($ (-641 (-330))) 31) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 34)))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 130) (((-3 $ "failed") (-1259 (-316 (-564)))) 120) (((-3 $ "failed") (-1259 (-949 (-379)))) 150) (((-3 $ "failed") (-1259 (-949 (-564)))) 140) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 110) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 98)) (-2376 (($ (-1259 (-316 (-379)))) 126) (($ (-1259 (-316 (-564)))) 116) (($ (-1259 (-949 (-379)))) 146) (($ (-1259 (-949 (-564)))) 136) (($ (-1259 (-407 (-949 (-379))))) 106) (($ (-1259 (-407 (-949 (-564))))) 91)) (-2263 (((-1264) $) 83)) (-3714 (((-859) $) 28) (($ (-641 (-330))) 73) (($ (-330)) 69) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 76) (($ (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695)))) 70)))
+(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695))))))) (-1170)) (T -74))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695)))) (-5 *1 (-74 *3)) (-14 *3 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695)))))))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 135) (((-3 $ "failed") (-1259 (-316 (-564)))) 124) (((-3 $ "failed") (-1259 (-949 (-379)))) 155) (((-3 $ "failed") (-1259 (-949 (-564)))) 145) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 113) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 100)) (-2376 (($ (-1259 (-316 (-379)))) 131) (($ (-1259 (-316 (-564)))) 120) (($ (-1259 (-949 (-379)))) 151) (($ (-1259 (-949 (-564)))) 141) (($ (-1259 (-407 (-949 (-379))))) 109) (($ (-1259 (-407 (-949 (-564))))) 93)) (-2263 (((-1264) $) 85)) (-3714 (((-859) $) 77) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) NIL) (($ (-1259 (-339 (-3725 (QUOTE X) (QUOTE EPS)) (-3725 (QUOTE -4192)) (-695)))) 72)))
+(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X) (QUOTE EPS)) (-3725 (QUOTE -4192)) (-695))))))) (-1170) (-1170) (-1170)) (T -75))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725 (QUOTE X) (QUOTE EPS)) (-3725 (QUOTE -4192)) (-695)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X) (QUOTE EPS)) (-3725 (QUOTE -4192)) (-695)))))))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 141) (((-3 $ "failed") (-1259 (-316 (-564)))) 130) (((-3 $ "failed") (-1259 (-949 (-379)))) 161) (((-3 $ "failed") (-1259 (-949 (-564)))) 151) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 119) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 106)) (-2376 (($ (-1259 (-316 (-379)))) 137) (($ (-1259 (-316 (-564)))) 126) (($ (-1259 (-949 (-379)))) 157) (($ (-1259 (-949 (-564)))) 147) (($ (-1259 (-407 (-949 (-379))))) 115) (($ (-1259 (-407 (-949 (-564))))) 99)) (-2263 (((-1264) $) 91)) (-3714 (((-859) $) 83) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) NIL) (($ (-1259 (-339 (-3725 (QUOTE EPS)) (-3725 (QUOTE YA) (QUOTE YB)) (-695)))) 78)))
+(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE EPS)) (-3725 (QUOTE YA) (QUOTE YB)) (-695))))))) (-1170) (-1170) (-1170)) (T -76))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725 (QUOTE EPS)) (-3725 (QUOTE YA) (QUOTE YB)) (-695)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE EPS)) (-3725 (QUOTE YA) (QUOTE YB)) (-695)))))))
+((-2224 (((-3 $ "failed") (-316 (-379))) 83) (((-3 $ "failed") (-316 (-564))) 88) (((-3 $ "failed") (-949 (-379))) 92) (((-3 $ "failed") (-949 (-564))) 96) (((-3 $ "failed") (-407 (-949 (-379)))) 78) (((-3 $ "failed") (-407 (-949 (-564)))) 71)) (-2376 (($ (-316 (-379))) 81) (($ (-316 (-564))) 86) (($ (-949 (-379))) 90) (($ (-949 (-564))) 94) (($ (-407 (-949 (-379)))) 76) (($ (-407 (-949 (-564)))) 68)) (-2263 (((-1264) $) 63)) (-3714 (((-859) $) 51) (($ (-641 (-330))) 47) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 55) (($ (-339 (-3725) (-3725 (QUOTE X)) (-695))) 48)))
+(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725) (-3725 (QUOTE X)) (-695)))))) (-1170)) (T -77))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-339 (-3725) (-3725 (QUOTE X)) (-695))) (-5 *1 (-77 *3)) (-14 *3 (-1170)))))
+(-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725) (-3725 (QUOTE X)) (-695))))))
+((-2224 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-564))) 52) (((-3 $ "failed") (-949 (-379))) 56) (((-3 $ "failed") (-949 (-564))) 60) (((-3 $ "failed") (-407 (-949 (-379)))) 42) (((-3 $ "failed") (-407 (-949 (-564)))) 35)) (-2376 (($ (-316 (-379))) 45) (($ (-316 (-564))) 50) (($ (-949 (-379))) 54) (($ (-949 (-564))) 58) (($ (-407 (-949 (-379)))) 40) (($ (-407 (-949 (-564)))) 32)) (-2263 (((-1264) $) 81)) (-3714 (((-859) $) 75) (($ (-641 (-330))) 67) (($ (-330)) 72) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 70) (($ (-339 (-3725) (-3725 (QUOTE X)) (-695))) 31)))
+(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725) (-3725 (QUOTE X)) (-695)))))) (-1170)) (T -78))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-339 (-3725) (-3725 (QUOTE X)) (-695))) (-5 *1 (-78 *3)) (-14 *3 (-1170)))))
+(-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725) (-3725 (QUOTE X)) (-695))))))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 90) (((-3 $ "failed") (-1259 (-316 (-564)))) 79) (((-3 $ "failed") (-1259 (-949 (-379)))) 110) (((-3 $ "failed") (-1259 (-949 (-564)))) 100) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 68) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 55)) (-2376 (($ (-1259 (-316 (-379)))) 86) (($ (-1259 (-316 (-564)))) 75) (($ (-1259 (-949 (-379)))) 106) (($ (-1259 (-949 (-564)))) 96) (($ (-1259 (-407 (-949 (-379))))) 64) (($ (-1259 (-407 (-949 (-564))))) 48)) (-2263 (((-1264) $) 126)) (-3714 (((-859) $) 120) (($ (-641 (-330))) 113) (($ (-330)) 38) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 116) (($ (-1259 (-339 (-3725) (-3725 (QUOTE XC)) (-695)))) 39)))
+(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725) (-3725 (QUOTE XC)) (-695))))))) (-1170)) (T -79))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725) (-3725 (QUOTE XC)) (-695)))) (-5 *1 (-79 *3)) (-14 *3 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725) (-3725 (QUOTE XC)) (-695)))))))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 158) (((-3 $ "failed") (-1259 (-316 (-564)))) 148) (((-3 $ "failed") (-1259 (-949 (-379)))) 178) (((-3 $ "failed") (-1259 (-949 (-564)))) 168) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 138) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 126)) (-2376 (($ (-1259 (-316 (-379)))) 154) (($ (-1259 (-316 (-564)))) 144) (($ (-1259 (-949 (-379)))) 174) (($ (-1259 (-949 (-564)))) 164) (($ (-1259 (-407 (-949 (-379))))) 134) (($ (-1259 (-407 (-949 (-564))))) 119)) (-2263 (((-1264) $) 112)) (-3714 (((-859) $) 106) (($ (-641 (-330))) 97) (($ (-330)) 104) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 102) (($ (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695)))) 98)))
+(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695))))))) (-1170)) (T -80))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695)))) (-5 *1 (-80 *3)) (-14 *3 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695)))))))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 79) (((-3 $ "failed") (-1259 (-316 (-564)))) 68) (((-3 $ "failed") (-1259 (-949 (-379)))) 99) (((-3 $ "failed") (-1259 (-949 (-564)))) 89) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 57) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 44)) (-2376 (($ (-1259 (-316 (-379)))) 75) (($ (-1259 (-316 (-564)))) 64) (($ (-1259 (-949 (-379)))) 95) (($ (-1259 (-949 (-564)))) 85) (($ (-1259 (-407 (-949 (-379))))) 53) (($ (-1259 (-407 (-949 (-564))))) 37)) (-2263 (((-1264) $) 125)) (-3714 (((-859) $) 119) (($ (-641 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 114) (($ (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695)))) 36)))
+(((-81 |#1|) (-13 (-441) (-614 (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695))))) (-1170)) (T -81))
+NIL
+(-13 (-441) (-614 (-1259 (-339 (-3725) (-3725 (QUOTE X)) (-695)))))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 98) (((-3 $ "failed") (-1259 (-316 (-564)))) 87) (((-3 $ "failed") (-1259 (-949 (-379)))) 118) (((-3 $ "failed") (-1259 (-949 (-564)))) 108) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 76) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 63)) (-2376 (($ (-1259 (-316 (-379)))) 94) (($ (-1259 (-316 (-564)))) 83) (($ (-1259 (-949 (-379)))) 114) (($ (-1259 (-949 (-564)))) 104) (($ (-1259 (-407 (-949 (-379))))) 72) (($ (-1259 (-407 (-949 (-564))))) 56)) (-2263 (((-1264) $) 48)) (-3714 (((-859) $) 42) (($ (-641 (-330))) 32) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 38) (($ (-1259 (-339 (-3725 (QUOTE X) (QUOTE -4192)) (-3725) (-695)))) 33)))
+(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X) (QUOTE -4192)) (-3725) (-695))))))) (-1170)) (T -82))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725 (QUOTE X) (QUOTE -4192)) (-3725) (-695)))) (-5 *1 (-82 *3)) (-14 *3 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X) (QUOTE -4192)) (-3725) (-695)))))))
+((-2224 (((-3 $ "failed") (-685 (-316 (-379)))) 118) (((-3 $ "failed") (-685 (-316 (-564)))) 107) (((-3 $ "failed") (-685 (-949 (-379)))) 140) (((-3 $ "failed") (-685 (-949 (-564)))) 129) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 96) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 83)) (-2376 (($ (-685 (-316 (-379)))) 114) (($ (-685 (-316 (-564)))) 103) (($ (-685 (-949 (-379)))) 136) (($ (-685 (-949 (-564)))) 125) (($ (-685 (-407 (-949 (-379))))) 92) (($ (-685 (-407 (-949 (-564))))) 76)) (-2263 (((-1264) $) 66)) (-3714 (((-859) $) 53) (($ (-641 (-330))) 60) (($ (-330)) 49) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 58) (($ (-685 (-339 (-3725 (QUOTE X) (QUOTE -4192)) (-3725) (-695)))) 50)))
+(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -3714 ($ (-685 (-339 (-3725 (QUOTE X) (QUOTE -4192)) (-3725) (-695))))))) (-1170)) (T -83))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-3725 (QUOTE X) (QUOTE -4192)) (-3725) (-695)))) (-5 *1 (-83 *3)) (-14 *3 (-1170)))))
+(-13 (-384) (-10 -8 (-15 -3714 ($ (-685 (-339 (-3725 (QUOTE X) (QUOTE -4192)) (-3725) (-695)))))))
+((-2224 (((-3 $ "failed") (-685 (-316 (-379)))) 113) (((-3 $ "failed") (-685 (-316 (-564)))) 101) (((-3 $ "failed") (-685 (-949 (-379)))) 135) (((-3 $ "failed") (-685 (-949 (-564)))) 124) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 89) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 75)) (-2376 (($ (-685 (-316 (-379)))) 109) (($ (-685 (-316 (-564)))) 97) (($ (-685 (-949 (-379)))) 131) (($ (-685 (-949 (-564)))) 120) (($ (-685 (-407 (-949 (-379))))) 85) (($ (-685 (-407 (-949 (-564))))) 68)) (-2263 (((-1264) $) 60)) (-3714 (((-859) $) 54) (($ (-641 (-330))) 48) (($ (-330)) 51) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 45) (($ (-685 (-339 (-3725 (QUOTE X)) (-3725) (-695)))) 46)))
+(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -3714 ($ (-685 (-339 (-3725 (QUOTE X)) (-3725) (-695))))))) (-1170)) (T -84))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-3725 (QUOTE X)) (-3725) (-695)))) (-5 *1 (-84 *3)) (-14 *3 (-1170)))))
+(-13 (-384) (-10 -8 (-15 -3714 ($ (-685 (-339 (-3725 (QUOTE X)) (-3725) (-695)))))))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 105) (((-3 $ "failed") (-1259 (-316 (-564)))) 94) (((-3 $ "failed") (-1259 (-949 (-379)))) 125) (((-3 $ "failed") (-1259 (-949 (-564)))) 115) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 83) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 70)) (-2376 (($ (-1259 (-316 (-379)))) 101) (($ (-1259 (-316 (-564)))) 90) (($ (-1259 (-949 (-379)))) 121) (($ (-1259 (-949 (-564)))) 111) (($ (-1259 (-407 (-949 (-379))))) 79) (($ (-1259 (-407 (-949 (-564))))) 63)) (-2263 (((-1264) $) 47)) (-3714 (((-859) $) 41) (($ (-641 (-330))) 50) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 53) (($ (-1259 (-339 (-3725 (QUOTE X)) (-3725) (-695)))) 38)))
+(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X)) (-3725) (-695))))))) (-1170)) (T -85))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725 (QUOTE X)) (-3725) (-695)))) (-5 *1 (-85 *3)) (-14 *3 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X)) (-3725) (-695)))))))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 80) (((-3 $ "failed") (-1259 (-316 (-564)))) 69) (((-3 $ "failed") (-1259 (-949 (-379)))) 100) (((-3 $ "failed") (-1259 (-949 (-564)))) 90) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 58) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 45)) (-2376 (($ (-1259 (-316 (-379)))) 76) (($ (-1259 (-316 (-564)))) 65) (($ (-1259 (-949 (-379)))) 96) (($ (-1259 (-949 (-564)))) 86) (($ (-1259 (-407 (-949 (-379))))) 54) (($ (-1259 (-407 (-949 (-564))))) 38)) (-2263 (((-1264) $) 126)) (-3714 (((-859) $) 120) (($ (-641 (-330))) 111) (($ (-330)) 117) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 115) (($ (-1259 (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695)))) 37)))
+(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695))))))) (-1170)) (T -86))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695)))) (-5 *1 (-86 *3)) (-14 *3 (-1170)))))
+(-13 (-441) (-10 -8 (-15 -3714 ($ (-1259 (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695)))))))
+((-2224 (((-3 $ "failed") (-685 (-316 (-379)))) 117) (((-3 $ "failed") (-685 (-316 (-564)))) 105) (((-3 $ "failed") (-685 (-949 (-379)))) 139) (((-3 $ "failed") (-685 (-949 (-564)))) 128) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 93) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 79)) (-2376 (($ (-685 (-316 (-379)))) 113) (($ (-685 (-316 (-564)))) 101) (($ (-685 (-949 (-379)))) 135) (($ (-685 (-949 (-564)))) 124) (($ (-685 (-407 (-949 (-379))))) 89) (($ (-685 (-407 (-949 (-564))))) 72)) (-2263 (((-1264) $) 63)) (-3714 (((-859) $) 57) (($ (-641 (-330))) 47) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 52) (($ (-685 (-339 (-3725 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3725) (-695)))) 48)))
+(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -3714 ($ (-685 (-339 (-3725 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3725) (-695))))))) (-1170)) (T -87))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-3725 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3725) (-695)))) (-5 *1 (-87 *3)) (-14 *3 (-1170)))))
+(-13 (-384) (-10 -8 (-15 -3714 ($ (-685 (-339 (-3725 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3725) (-695)))))))
+((-2263 (((-1264) $) 45)) (-3714 (((-859) $) 39) (($ (-1259 (-695))) 101) (($ (-641 (-330))) 31) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 34)))
(((-88 |#1|) (-440) (-1170)) (T -88))
NIL
(-440)
-((-2013 (((-3 $ "failed") (-316 (-379))) 48) (((-3 $ "failed") (-316 (-564))) 53) (((-3 $ "failed") (-949 (-379))) 57) (((-3 $ "failed") (-949 (-564))) 61) (((-3 $ "failed") (-407 (-949 (-379)))) 43) (((-3 $ "failed") (-407 (-949 (-564)))) 36)) (-2064 (($ (-316 (-379))) 46) (($ (-316 (-564))) 51) (($ (-949 (-379))) 55) (($ (-949 (-564))) 59) (($ (-407 (-949 (-379)))) 41) (($ (-407 (-949 (-564)))) 33)) (-3501 (((-1264) $) 91)) (-1765 (((-859) $) 85) (($ (-641 (-330))) 79) (($ (-330)) 82) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 77) (($ (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695))) 32)))
-(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695)))))) (-1170)) (T -89))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695))) (-5 *1 (-89 *3)) (-14 *3 (-1170)))))
-(-13 (-396) (-10 -8 (-15 -1765 ($ (-339 (-1776 (QUOTE X)) (-1776 (QUOTE -4203)) (-695))))))
-((-1682 (((-1259 (-685 |#1|)) (-685 |#1|)) 65)) (-1764 (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918)) 54)) (-3152 (((-2 (|:| |minor| (-641 (-918))) (|:| -2076 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918)) 76 (|has| |#1| (-363)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -1764 ((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918))) (-15 -1682 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -3152 ((-2 (|:| |minor| (-641 (-918))) (|:| -2076 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918))) |%noBranch|)) (-556) (-652 |#1|)) (T -90))
-((-3152 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |minor| (-641 (-918))) (|:| -2076 *3) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))) (-1682 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-685 *4)) (-4 *5 (-652 *4)))) (-1764 (*1 *2 *3 *4) (-12 (-4 *5 (-556)) (-5 *2 (-2 (|:| -1447 (-685 *5)) (|:| |vec| (-1259 (-641 (-918)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))))
-(-10 -7 (-15 -1764 ((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918))) (-15 -1682 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -3152 ((-2 (|:| |minor| (-641 (-918))) (|:| -2076 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918))) |%noBranch|))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1417 ((|#1| $) 42)) (-3263 (((-112) $ (-768)) NIL)) (-3760 (($) NIL T CONST)) (-2998 ((|#1| |#1| $) 37)) (-3507 ((|#1| $) 35)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1833 ((|#1| $) NIL)) (-2098 (($ |#1| $) 38)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3389 ((|#1| $) 36)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 18)) (-3845 (($) 46)) (-2057 (((-768) $) 33)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) 17)) (-1765 (((-859) $) 32 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) NIL)) (-3790 (($ (-641 |#1|)) 44)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 15 (|has| |#1| (-1094)))) (-2589 (((-768) $) 12 (|has| $ (-6 -4411)))))
-(((-91 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -3790 ($ (-641 |#1|))))) (-1094)) (T -91))
-((-3790 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3)))))
-(-13 (-1115 |#1|) (-10 -8 (-15 -3790 ($ (-641 |#1|)))))
-((-1765 (((-859) $) 13) (($ (-1175)) 9) (((-1175) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -1765 ((-1175) |#1|)) (-15 -1765 (|#1| (-1175))) (-15 -1765 ((-859) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -1765 ((-1175) |#1|)) (-15 -1765 (|#1| (-1175))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-1686 (((-112) $ $) 6)))
+((-2224 (((-3 $ "failed") (-316 (-379))) 48) (((-3 $ "failed") (-316 (-564))) 53) (((-3 $ "failed") (-949 (-379))) 57) (((-3 $ "failed") (-949 (-564))) 61) (((-3 $ "failed") (-407 (-949 (-379)))) 43) (((-3 $ "failed") (-407 (-949 (-564)))) 36)) (-2376 (($ (-316 (-379))) 46) (($ (-316 (-564))) 51) (($ (-949 (-379))) 55) (($ (-949 (-564))) 59) (($ (-407 (-949 (-379)))) 41) (($ (-407 (-949 (-564)))) 33)) (-2263 (((-1264) $) 91)) (-3714 (((-859) $) 85) (($ (-641 (-330))) 79) (($ (-330)) 82) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 77) (($ (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695))) 32)))
+(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695)))))) (-1170)) (T -89))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695))) (-5 *1 (-89 *3)) (-14 *3 (-1170)))))
+(-13 (-396) (-10 -8 (-15 -3714 ($ (-339 (-3725 (QUOTE X)) (-3725 (QUOTE -4192)) (-695))))))
+((-3653 (((-1259 (-685 |#1|)) (-685 |#1|)) 65)) (-3236 (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918)) 54)) (-2279 (((-2 (|:| |minor| (-641 (-918))) (|:| -4035 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918)) 76 (|has| |#1| (-363)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -3236 ((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918))) (-15 -3653 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -2279 ((-2 (|:| |minor| (-641 (-918))) (|:| -4035 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918))) |%noBranch|)) (-556) (-652 |#1|)) (T -90))
+((-2279 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |minor| (-641 (-918))) (|:| -4035 *3) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))) (-3653 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-685 *4)) (-4 *5 (-652 *4)))) (-3236 (*1 *2 *3 *4) (-12 (-4 *5 (-556)) (-5 *2 (-2 (|:| -1920 (-685 *5)) (|:| |vec| (-1259 (-641 (-918)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))))
+(-10 -7 (-15 -3236 ((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918))) (-15 -3653 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -2279 ((-2 (|:| |minor| (-641 (-918))) (|:| -4035 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918))) |%noBranch|))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2667 ((|#1| $) 42)) (-2141 (((-112) $ (-768)) NIL)) (-3180 (($) NIL T CONST)) (-4377 ((|#1| |#1| $) 37)) (-2691 ((|#1| $) 35)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2775 ((|#1| $) NIL)) (-2373 (($ |#1| $) 38)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3950 ((|#1| $) 36)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 18)) (-2834 (($) 46)) (-3735 (((-768) $) 33)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) 17)) (-3714 (((-859) $) 32 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) NIL)) (-2302 (($ (-641 |#1|)) 44)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 15 (|has| |#1| (-1094)))) (-2779 (((-768) $) 12 (|has| $ (-6 -4412)))))
+(((-91 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -2302 ($ (-641 |#1|))))) (-1094)) (T -91))
+((-2302 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3)))))
+(-13 (-1115 |#1|) (-10 -8 (-15 -2302 ($ (-641 |#1|)))))
+((-3714 (((-859) $) 13) (($ (-1175)) 9) (((-1175) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -3714 ((-1175) |#1|)) (-15 -3714 (|#1| (-1175))) (-15 -3714 ((-859) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -3714 ((-1175) |#1|)) (-15 -3714 (|#1| (-1175))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-1720 (((-112) $ $) 6)))
(((-93) (-140)) (T -93))
NIL
(-13 (-1094) (-490 (-1175)))
(((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T))
-((-3854 (($ $) 10)) (-3867 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -3867 (|#1| |#1|)) (-15 -3854 (|#1| |#1|))) (-95)) (T -94))
+((-2615 (($ $) 10)) (-2626 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -2626 (|#1| |#1|)) (-15 -2615 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -3867 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)))
-((-3827 (($ $) 11)) (-3801 (($ $) 10)) (-3854 (($ $) 9)) (-3867 (($ $) 8)) (-3840 (($ $) 7)) (-3814 (($ $) 6)))
+(-10 -8 (-15 -2626 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)))
+((-2595 (($ $) 11)) (-2566 (($ $) 10)) (-2615 (($ $) 9)) (-2626 (($ $) 8)) (-2605 (($ $) 7)) (-2577 (($ $) 6)))
(((-95) (-140)) (T -95))
-((-3827 (*1 *1 *1) (-4 *1 (-95))) (-3801 (*1 *1 *1) (-4 *1 (-95))) (-3854 (*1 *1 *1) (-4 *1 (-95))) (-3867 (*1 *1 *1) (-4 *1 (-95))) (-3840 (*1 *1 *1) (-4 *1 (-95))) (-3814 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -3814 ($ $)) (-15 -3840 ($ $)) (-15 -3867 ($ $)) (-15 -3854 ($ $)) (-15 -3801 ($ $)) (-15 -3827 ($ $))))
-((-1754 (((-112) $ $) NIL)) (-4363 (((-1129) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-96) (-13 (-1077) (-10 -8 (-15 -4363 ((-1129) $))))) (T -96))
-((-4363 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96)))))
-(-13 (-1077) (-10 -8 (-15 -4363 ((-1129) $))))
-((-1754 (((-112) $ $) NIL)) (-2207 (((-379) (-1152) (-379)) 45) (((-379) (-1152) (-1152) (-379)) 43)) (-2454 (((-379) (-379)) 35)) (-3004 (((-1264)) 38)) (-4202 (((-1152) $) NIL)) (-3343 (((-379) (-1152) (-1152)) 49) (((-379) (-1152)) 51)) (-3802 (((-1114) $) NIL)) (-4126 (((-379) (-1152) (-1152)) 50)) (-1986 (((-379) (-1152) (-1152)) 52) (((-379) (-1152)) 53)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-97) (-13 (-1094) (-10 -7 (-15 -3343 ((-379) (-1152) (-1152))) (-15 -3343 ((-379) (-1152))) (-15 -1986 ((-379) (-1152) (-1152))) (-15 -1986 ((-379) (-1152))) (-15 -4126 ((-379) (-1152) (-1152))) (-15 -3004 ((-1264))) (-15 -2454 ((-379) (-379))) (-15 -2207 ((-379) (-1152) (-379))) (-15 -2207 ((-379) (-1152) (-1152) (-379))) (-6 -4411)))) (T -97))
-((-3343 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1986 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-4126 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3004 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97)))) (-2454 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-2207 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))) (-2207 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))))
-(-13 (-1094) (-10 -7 (-15 -3343 ((-379) (-1152) (-1152))) (-15 -3343 ((-379) (-1152))) (-15 -1986 ((-379) (-1152) (-1152))) (-15 -1986 ((-379) (-1152))) (-15 -4126 ((-379) (-1152) (-1152))) (-15 -3004 ((-1264))) (-15 -2454 ((-379) (-379))) (-15 -2207 ((-379) (-1152) (-379))) (-15 -2207 ((-379) (-1152) (-1152) (-379))) (-6 -4411)))
+((-2595 (*1 *1 *1) (-4 *1 (-95))) (-2566 (*1 *1 *1) (-4 *1 (-95))) (-2615 (*1 *1 *1) (-4 *1 (-95))) (-2626 (*1 *1 *1) (-4 *1 (-95))) (-2605 (*1 *1 *1) (-4 *1 (-95))) (-2577 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -2577 ($ $)) (-15 -2605 ($ $)) (-15 -2626 ($ $)) (-15 -2615 ($ $)) (-15 -2566 ($ $)) (-15 -2595 ($ $))))
+((-3702 (((-112) $ $) NIL)) (-4337 (((-1129) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-96) (-13 (-1077) (-10 -8 (-15 -4337 ((-1129) $))))) (T -96))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96)))))
+(-13 (-1077) (-10 -8 (-15 -4337 ((-1129) $))))
+((-3702 (((-112) $ $) NIL)) (-4008 (((-379) (-1152) (-379)) 45) (((-379) (-1152) (-1152) (-379)) 43)) (-2723 (((-379) (-379)) 35)) (-1335 (((-1264)) 38)) (-1868 (((-1152) $) NIL)) (-3460 (((-379) (-1152) (-1152)) 49) (((-379) (-1152)) 51)) (-3844 (((-1114) $) NIL)) (-2380 (((-379) (-1152) (-1152)) 50)) (-3598 (((-379) (-1152) (-1152)) 52) (((-379) (-1152)) 53)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-97) (-13 (-1094) (-10 -7 (-15 -3460 ((-379) (-1152) (-1152))) (-15 -3460 ((-379) (-1152))) (-15 -3598 ((-379) (-1152) (-1152))) (-15 -3598 ((-379) (-1152))) (-15 -2380 ((-379) (-1152) (-1152))) (-15 -1335 ((-1264))) (-15 -2723 ((-379) (-379))) (-15 -4008 ((-379) (-1152) (-379))) (-15 -4008 ((-379) (-1152) (-1152) (-379))) (-6 -4412)))) (T -97))
+((-3460 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3598 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2380 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1335 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97)))) (-2723 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-4008 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))) (-4008 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))))
+(-13 (-1094) (-10 -7 (-15 -3460 ((-379) (-1152) (-1152))) (-15 -3460 ((-379) (-1152))) (-15 -3598 ((-379) (-1152) (-1152))) (-15 -3598 ((-379) (-1152))) (-15 -2380 ((-379) (-1152) (-1152))) (-15 -1335 ((-1264))) (-15 -2723 ((-379) (-379))) (-15 -4008 ((-379) (-1152) (-379))) (-15 -4008 ((-379) (-1152) (-1152) (-379))) (-6 -4412)))
NIL
(((-98) (-140)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4411) (-6 (-4413 "*")) (-6 -4412) (-6 -4408) (-6 -4406) (-6 -4405) (-6 -4404) (-6 -4409) (-6 -4403) (-6 -4402) (-6 -4401) (-6 -4400) (-6 -4399) (-6 -4407) (-6 -4410) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4398)))
-((-1754 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2543 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-564))) 24)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 16)) (-3802 (((-1114) $) NIL)) (-4382 ((|#1| $ |#1|) 13)) (-2502 (($ $ $) NIL)) (-1762 (($ $ $) NIL)) (-1765 (((-859) $) 22)) (-4327 (($) 8 T CONST)) (-1686 (((-112) $ $) 10)) (-1793 (($ $ $) NIL)) (** (($ $ (-918)) 34) (($ $ (-768)) NIL) (($ $ (-564)) 18)) (* (($ $ $) 35)))
-(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -2543 ($ (-1 |#1| |#1|))) (-15 -2543 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2543 ($ (-1 |#1| |#1| (-564)))))) (-1046)) (T -99))
-((-2543 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) (-2543 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) (-2543 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-99 *3)))))
-(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -2543 ($ (-1 |#1| |#1|))) (-15 -2543 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2543 ($ (-1 |#1| |#1| (-564))))))
-((-2266 (((-418 |#2|) |#2| (-641 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -2266 ((-418 |#2|) |#2| |#2|)) (-15 -2266 ((-418 |#2|) |#2| (-641 |#2|)))) (-13 (-452) (-147)) (-1235 |#1|)) (T -100))
-((-2266 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-2266 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -2266 ((-418 |#2|) |#2| |#2|)) (-15 -2266 ((-418 |#2|) |#2| (-641 |#2|))))
-((-1754 (((-112) $ $) 9)))
-(((-101 |#1|) (-10 -8 (-15 -1754 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -1754 ((-112) |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-1686 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4412) (-6 (-4414 "*")) (-6 -4413) (-6 -4409) (-6 -4407) (-6 -4406) (-6 -4405) (-6 -4410) (-6 -4404) (-6 -4403) (-6 -4402) (-6 -4401) (-6 -4400) (-6 -4408) (-6 -4411) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4399)))
+((-3702 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-4120 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-564))) 24)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 16)) (-3844 (((-1114) $) NIL)) (-4382 ((|#1| $ |#1|) 13)) (-1953 (($ $ $) NIL)) (-3217 (($ $ $) NIL)) (-3714 (((-859) $) 22)) (-4323 (($) 8 T CONST)) (-1720 (((-112) $ $) 10)) (-1841 (($ $ $) NIL)) (** (($ $ (-918)) 34) (($ $ (-768)) NIL) (($ $ (-564)) 18)) (* (($ $ $) 35)))
+(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4120 ($ (-1 |#1| |#1|))) (-15 -4120 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4120 ($ (-1 |#1| |#1| (-564)))))) (-1046)) (T -99))
+((-4120 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) (-4120 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) (-4120 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-99 *3)))))
+(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4120 ($ (-1 |#1| |#1|))) (-15 -4120 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4120 ($ (-1 |#1| |#1| (-564))))))
+((-1498 (((-418 |#2|) |#2| (-641 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -1498 ((-418 |#2|) |#2| |#2|)) (-15 -1498 ((-418 |#2|) |#2| (-641 |#2|)))) (-13 (-452) (-147)) (-1235 |#1|)) (T -100))
+((-1498 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-1498 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -1498 ((-418 |#2|) |#2| |#2|)) (-15 -1498 ((-418 |#2|) |#2| (-641 |#2|))))
+((-3702 (((-112) $ $) 9)))
+(((-101 |#1|) (-10 -8 (-15 -3702 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -3702 ((-112) |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1720 (((-112) $ $) 6)))
(((-102) (-140)) (T -102))
-((-1754 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1686 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -1686 ((-112) $ $)) (-15 -1754 ((-112) $ $))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-3768 ((|#1| $ |#1|) 24 (|has| $ (-6 -4412)))) (-1887 (($ $ $) NIL (|has| $ (-6 -4412)))) (-3345 (($ $ $) NIL (|has| $ (-6 -4412)))) (-1673 (($ $ (-641 |#1|)) 34)) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-3549 (($ $) 12)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3395 (($ $ |#1| $) 36)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3942 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3047 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|)) 53)) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3538 (($ $) 11)) (-3848 (((-641 |#1|) $) NIL)) (-2200 (((-112) $) 13)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 9)) (-3845 (($) 35)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3837 (((-564) $ $) NIL)) (-1867 (((-112) $) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1843 (($ (-768) |#1|) 37)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -1843 ($ (-768) |#1|)) (-15 -1673 ($ $ (-641 |#1|))) (-15 -3942 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3942 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3047 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3047 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|))))) (-1094)) (T -103))
-((-1843 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))) (-1673 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))) (-3942 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-3047 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))) (-3047 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -1843 ($ (-768) |#1|)) (-15 -1673 ($ $ (-641 |#1|))) (-15 -3942 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3942 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3047 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3047 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|)))))
-((-3168 ((|#3| |#2| |#2|) 35)) (-3822 ((|#1| |#2| |#2|) 52 (|has| |#1| (-6 (-4413 "*"))))) (-2565 ((|#3| |#2| |#2|) 37)) (-3532 ((|#1| |#2|) 57 (|has| |#1| (-6 (-4413 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3168 (|#3| |#2| |#2|)) (-15 -2565 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4413 "*"))) (PROGN (-15 -3822 (|#1| |#2| |#2|)) (-15 -3532 (|#1| |#2|))) |%noBranch|)) (-1046) (-1235 |#1|) (-683 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104))
-((-3532 (*1 *2 *3) (-12 (|has| *2 (-6 (-4413 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-3822 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4413 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-2565 (*1 *2 *3 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-3168 (*1 *2 *3 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))))
-(-10 -7 (-15 -3168 (|#3| |#2| |#2|)) (-15 -2565 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4413 "*"))) (PROGN (-15 -3822 (|#1| |#2| |#2|)) (-15 -3532 (|#1| |#2|))) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4175 (((-641 (-1170))) 37)) (-3687 (((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170)) 39)) (-1686 (((-112) $ $) NIL)))
-(((-105) (-13 (-1094) (-10 -7 (-15 -4175 ((-641 (-1170)))) (-15 -3687 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4411)))) (T -105))
-((-4175 (*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105)))) (-3687 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225))))) (-5 *1 (-105)))))
-(-13 (-1094) (-10 -7 (-15 -4175 ((-641 (-1170)))) (-15 -3687 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4411)))
-((-2652 (($ (-641 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -2652 (|#1| (-641 |#2|)))) (-107 |#2|) (-1209)) (T -106))
-NIL
-(-10 -8 (-15 -2652 (|#1| (-641 |#2|))))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-3760 (($) 7 T CONST)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) 42)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1720 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -1720 ((-112) $ $)) (-15 -3702 ((-112) $ $))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3242 ((|#1| $ |#1|) 24 (|has| $ (-6 -4413)))) (-2064 (($ $ $) NIL (|has| $ (-6 -4413)))) (-3485 (($ $ $) NIL (|has| $ (-6 -4413)))) (-3551 (($ $ (-641 |#1|)) 34)) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413))) (($ $ "left" $) NIL (|has| $ (-6 -4413))) (($ $ "right" $) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2592 (($ $) 12)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2362 (($ $ |#1| $) 36)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4351 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3599 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|)) 53)) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2578 (($ $) 11)) (-2523 (((-641 |#1|) $) NIL)) (-2120 (((-112) $) 13)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 9)) (-2834 (($) 35)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2774 (((-564) $ $) NIL)) (-1875 (((-112) $) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1612 (($ (-768) |#1|) 37)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4412) (-6 -4413) (-15 -1612 ($ (-768) |#1|)) (-15 -3551 ($ $ (-641 |#1|))) (-15 -4351 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4351 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3599 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3599 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|))))) (-1094)) (T -103))
+((-1612 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))) (-3551 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-4351 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))) (-4351 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-3599 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))) (-3599 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4412) (-6 -4413) (-15 -1612 ($ (-768) |#1|)) (-15 -3551 ($ $ (-641 |#1|))) (-15 -4351 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4351 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3599 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3599 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|)))))
+((-2449 ((|#3| |#2| |#2|) 35)) (-2631 ((|#1| |#2| |#2|) 52 (|has| |#1| (-6 (-4414 "*"))))) (-4343 ((|#3| |#2| |#2|) 37)) (-1653 ((|#1| |#2|) 57 (|has| |#1| (-6 (-4414 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2449 (|#3| |#2| |#2|)) (-15 -4343 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4414 "*"))) (PROGN (-15 -2631 (|#1| |#2| |#2|)) (-15 -1653 (|#1| |#2|))) |%noBranch|)) (-1046) (-1235 |#1|) (-683 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104))
+((-1653 (*1 *2 *3) (-12 (|has| *2 (-6 (-4414 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-2631 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4414 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-4343 (*1 *2 *3 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-2449 (*1 *2 *3 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))))
+(-10 -7 (-15 -2449 (|#3| |#2| |#2|)) (-15 -4343 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4414 "*"))) (PROGN (-15 -2631 (|#1| |#2| |#2|)) (-15 -1653 (|#1| |#2|))) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-2830 (((-641 (-1170))) 37)) (-3715 (((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170)) 39)) (-1720 (((-112) $ $) NIL)))
+(((-105) (-13 (-1094) (-10 -7 (-15 -2830 ((-641 (-1170)))) (-15 -3715 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4412)))) (T -105))
+((-2830 (*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225))))) (-5 *1 (-105)))))
+(-13 (-1094) (-10 -7 (-15 -2830 ((-641 (-1170)))) (-15 -3715 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4412)))
+((-3976 (($ (-641 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -3976 (|#1| (-641 |#2|)))) (-107 |#2|) (-1209)) (T -106))
+NIL
+(-10 -8 (-15 -3976 (|#1| (-641 |#2|))))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-3180 (($) 7 T CONST)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) 42)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-107 |#1|) (-140) (-1209)) (T -107))
-((-2652 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-2098 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))))
-(-13 (-489 |t#1|) (-10 -8 (-6 -4412) (-15 -2652 ($ (-641 |t#1|))) (-15 -3389 (|t#1| $)) (-15 -2098 ($ |t#1| $)) (-15 -1833 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 (((-564) $) NIL (|has| (-564) (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL (|has| (-564) (-817)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2064 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-564) (-545)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1751 (((-112) $) NIL (|has| (-564) (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-1507 (((-564) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2506 (((-112) $) NIL (|has| (-564) (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| (-564) (-847)))) (-2082 (($ (-1 (-564) (-564)) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-564) (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2677 (((-564) $) NIL (|has| (-564) (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2407 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3712 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3762 (($ $) NIL)) (-1517 (((-564) $) NIL)) (-2127 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 2) $) 10)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-1965 (((-768)) NIL T CONST)) (-2991 (((-564) $) NIL (|has| (-564) (-545)))) (-3973 (($ (-407 (-564))) 9)) (-1582 (((-112) $ $) NIL)) (-2016 (($ $) NIL (|has| (-564) (-817)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1738 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1705 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1793 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
-(((-108) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 2)) (-10 -8 (-15 -2002 ((-407 (-564)) $)) (-15 -3973 ($ (-407 (-564))))))) (T -108))
-((-2002 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))))
-(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 2)) (-10 -8 (-15 -2002 ((-407 (-564)) $)) (-15 -3973 ($ (-407 (-564))))))
-((-3068 (((-641 (-962)) $) 14)) (-4363 (((-1170) $) 10)) (-1765 (((-859) $) 23)) (-3920 (($ (-1170) (-641 (-962))) 15)))
-(((-109) (-13 (-611 (-859)) (-10 -8 (-15 -4363 ((-1170) $)) (-15 -3068 ((-641 (-962)) $)) (-15 -3920 ($ (-1170) (-641 (-962))))))) (T -109))
-((-4363 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-109)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-641 (-962))) (-5 *1 (-109)))) (-3920 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-109)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -4363 ((-1170) $)) (-15 -3068 ((-641 (-962)) $)) (-15 -3920 ($ (-1170) (-641 (-962))))))
-((-1754 (((-112) $ $) NIL)) (-1569 (($ $) NIL)) (-4291 (($ $ $) NIL)) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) $) NIL (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-847)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2494 (($ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-1881 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4412))) (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-2359 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-4367 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-3528 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4412)))) (-3455 (((-112) $ (-564)) NIL)) (-1356 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-3080 (((-641 (-112)) $) NIL (|has| $ (-6 -4411)))) (-4277 (($ $ $) NIL)) (-4254 (($ $) NIL)) (-1580 (($ $ $) NIL)) (-1633 (($ (-768) (-112)) 10)) (-1902 (($ $ $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL)) (-4012 (($ $ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3817 (((-641 (-112)) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL)) (-3513 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-3412 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 (((-112) $) NIL (|has| (-564) (-847)))) (-2343 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2614 (($ $ (-112)) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-3599 (((-641 (-112)) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) NIL) (((-112) $ (-564) (-112)) NIL)) (-2008 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3815 (((-768) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094)))) (((-768) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-1776 (($ (-641 (-112))) NIL)) (-2817 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1765 (((-859) $) NIL)) (-2941 (($ (-768) (-112)) 11)) (-2237 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-4266 (($ $ $) NIL)) (-3306 (($ $ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3295 (($ $ $) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -2941 ($ (-768) (-112)))))) (T -110))
-((-2941 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -2941 ($ (-768) (-112)))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+((-3976 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-2373 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))))
+(-13 (-489 |t#1|) (-10 -8 (-6 -4413) (-15 -3976 ($ (-641 |t#1|))) (-15 -3950 (|t#1| $)) (-15 -2373 ($ |t#1| $)) (-15 -2775 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 (((-564) $) NIL (|has| (-564) (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL (|has| (-564) (-817)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2376 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-564) (-545)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-564) (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL)) (-1655 (((-564) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2001 (((-112) $) NIL (|has| (-564) (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| (-564) (-847)))) (-2313 (($ (-1 (-564) (-564)) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-564) (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-3034 (((-564) $) NIL (|has| (-564) (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2582 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3966 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3197 (($ $) NIL)) (-1668 (((-564) $) NIL)) (-2374 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 2) $) 10)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-3379 (((-768)) NIL T CONST)) (-4296 (((-564) $) NIL (|has| (-564) (-545)))) (-1521 (($ (-407 (-564))) 9)) (-3979 (((-112) $ $) NIL)) (-3920 (($ $) NIL (|has| (-564) (-817)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1746 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1841 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
+(((-108) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 2)) (-10 -8 (-15 -3782 ((-407 (-564)) $)) (-15 -1521 ($ (-407 (-564))))))) (T -108))
+((-3782 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))))
+(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 2)) (-10 -8 (-15 -3782 ((-407 (-564)) $)) (-15 -1521 ($ (-407 (-564))))))
+((-2056 (((-641 (-962)) $) 14)) (-4337 (((-1170) $) 10)) (-3714 (((-859) $) 23)) (-4116 (($ (-1170) (-641 (-962))) 15)))
+(((-109) (-13 (-611 (-859)) (-10 -8 (-15 -4337 ((-1170) $)) (-15 -2056 ((-641 (-962)) $)) (-15 -4116 ($ (-1170) (-641 (-962))))))) (T -109))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-109)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-641 (-962))) (-5 *1 (-109)))) (-4116 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-109)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -4337 ((-1170) $)) (-15 -2056 ((-641 (-962)) $)) (-15 -4116 ($ (-1170) (-641 (-962))))))
+((-3702 (((-112) $ $) NIL)) (-1703 (($ $) NIL)) (-4288 (($ $ $) NIL)) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) $) NIL (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4194 (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| (-112) (-847)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4413)))) (-2904 (($ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3868 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4413))) (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-2514 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-1728 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-1998 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4413)))) (-3593 (((-112) $ (-564)) NIL)) (-3303 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-4244 (((-641 (-112)) $) NIL (|has| $ (-6 -4412)))) (-4276 (($ $ $) NIL)) (-4253 (($ $) NIL)) (-3958 (($ $ $) NIL)) (-3564 (($ (-768) (-112)) 10)) (-4026 (($ $ $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL)) (-3678 (($ $ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2572 (((-641 (-112)) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL)) (-1988 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-2455 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 (((-112) $) NIL (|has| (-564) (-847)))) (-2905 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3538 (($ $ (-112)) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-4121 (((-641 (-112)) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) NIL) (((-112) $ (-564) (-112)) NIL)) (-2090 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3855 (((-768) (-112) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094)))) (((-768) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-3725 (($ (-641 (-112))) NIL)) (-1865 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3714 (((-859) $) NIL)) (-3929 (($ (-768) (-112)) 11)) (-4289 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-4264 (($ $ $) NIL)) (-2284 (($ $ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-2271 (($ $ $) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -3929 ($ (-768) (-112)))))) (T -110))
+((-3929 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -3929 ($ (-768) (-112)))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
(((-111 |#1| |#2|) (-140) (-1046) (-1046)) (T -111))
NIL
-(-13 (-644 |t#1|) (-1052 |t#2|) (-10 -7 (-6 -4406) (-6 -4405)))
+(-13 (-644 |t#1|) (-1052 |t#2|) (-10 -7 (-6 -4407) (-6 -4406)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-1052 |#2|) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-1569 (($ $) 13)) (-4291 (($ $ $) 18)) (-3773 (($) 7 T CONST)) (-3965 (($ $) 6)) (-3042 (((-768)) 26)) (-2542 (($) 34)) (-4277 (($ $ $) 16)) (-4254 (($ $) 9)) (-1580 (($ $ $) 19)) (-1902 (($ $ $) 20)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) 32)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) 30)) (-3885 (($ $ $) 22)) (-3802 (((-1114) $) NIL)) (-2538 (($) 8 T CONST)) (-4058 (($ $ $) 23)) (-2127 (((-536) $) 36)) (-1765 (((-859) $) 38)) (-4266 (($ $ $) 14)) (-3306 (($ $ $) 17)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 21)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 24)) (-3295 (($ $ $) 15)))
-(((-112) (-13 (-841) (-657) (-964) (-612 (-536)) (-10 -8 (-15 -3773 ($) -3246) (-15 -2538 ($) -3246) (-15 -4291 ($ $ $)) (-15 -1902 ($ $ $)) (-15 -1580 ($ $ $)) (-15 -3965 ($ $))))) (T -112))
-((-3773 (*1 *1) (-5 *1 (-112))) (-2538 (*1 *1) (-5 *1 (-112))) (-4291 (*1 *1 *1 *1) (-5 *1 (-112))) (-1902 (*1 *1 *1 *1) (-5 *1 (-112))) (-1580 (*1 *1 *1 *1) (-5 *1 (-112))) (-3965 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-841) (-657) (-964) (-612 (-536)) (-10 -8 (-15 -3773 ($) -3246) (-15 -2538 ($) -3246) (-15 -4291 ($ $ $)) (-15 -1902 ($ $ $)) (-15 -1580 ($ $ $)) (-15 -3965 ($ $))))
-((-1984 (((-3 (-1 |#1| (-641 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-641 |#1|))) 11) (((-3 |#1| "failed") (-114) (-641 |#1|)) 21)) (-2973 (((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-641 (-1 |#1| (-641 |#1|)))) 26)) (-1836 (((-114) |#1|) 56 (|has| |#1| (-847)))) (-4261 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-847)))))
-(((-113 |#1|) (-10 -7 (-15 -1984 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -1984 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -1984 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1984 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -2973 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2973 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2973 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-847)) (PROGN (-15 -1836 ((-114) |#1|)) (-15 -4261 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1094)) (T -113))
-((-4261 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-847)) (-5 *1 (-113 *2)))) (-1836 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))) (-2973 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-2973 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-2973 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-1984 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-1984 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1094)))))
-(-10 -7 (-15 -1984 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -1984 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -1984 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1984 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -2973 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2973 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2973 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-847)) (PROGN (-15 -1836 ((-114) |#1|)) (-15 -4261 ((-3 |#1| "failed") (-114)))) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-3703 (((-768) $) 83) (($ $ (-768)) 33)) (-1797 (((-112) $) 37)) (-1717 (($ $ (-1152) (-771)) 29)) (-1838 (($ $ (-45 (-1152) (-771))) 16)) (-2277 (((-3 (-771) "failed") $ (-1152)) 28)) (-3068 (((-45 (-1152) (-771)) $) 15)) (-1826 (($ (-1170)) 21) (($ (-1170) (-768)) 25)) (-1854 (((-112) $) 35)) (-2295 (((-112) $) 39)) (-4363 (((-1170) $) 8)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3559 (((-112) $ (-1170)) 11)) (-3523 (($ $ (-1 (-536) (-641 (-536)))) 58) (((-3 (-1 (-536) (-641 (-536))) "failed") $) 62)) (-3802 (((-1114) $) NIL)) (-3972 (((-112) $ (-1152)) 32)) (-3156 (($ $ (-1 (-112) $ $)) 41)) (-3463 (((-3 (-1 (-859) (-641 (-859))) "failed") $) 60) (($ $ (-1 (-859) (-641 (-859)))) 47) (($ $ (-1 (-859) (-859))) 49)) (-2445 (($ $ (-1152)) 51)) (-1899 (($ $) 71)) (-2458 (($ $ (-1 (-112) $ $)) 42)) (-1765 (((-859) $) 54)) (-1934 (($ $ (-1152)) 30)) (-2189 (((-3 (-768) "failed") $) 66)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 81)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 94)))
-(((-114) (-13 (-847) (-10 -8 (-15 -4363 ((-1170) $)) (-15 -3068 ((-45 (-1152) (-771)) $)) (-15 -1899 ($ $)) (-15 -1826 ($ (-1170))) (-15 -1826 ($ (-1170) (-768))) (-15 -2189 ((-3 (-768) "failed") $)) (-15 -1854 ((-112) $)) (-15 -1797 ((-112) $)) (-15 -2295 ((-112) $)) (-15 -3703 ((-768) $)) (-15 -3703 ($ $ (-768))) (-15 -3156 ($ $ (-1 (-112) $ $))) (-15 -2458 ($ $ (-1 (-112) $ $))) (-15 -3463 ((-3 (-1 (-859) (-641 (-859))) "failed") $)) (-15 -3463 ($ $ (-1 (-859) (-641 (-859))))) (-15 -3463 ($ $ (-1 (-859) (-859)))) (-15 -3523 ($ $ (-1 (-536) (-641 (-536))))) (-15 -3523 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -3559 ((-112) $ (-1170))) (-15 -3972 ((-112) $ (-1152))) (-15 -1934 ($ $ (-1152))) (-15 -2445 ($ $ (-1152))) (-15 -2277 ((-3 (-771) "failed") $ (-1152))) (-15 -1717 ($ $ (-1152) (-771))) (-15 -1838 ($ $ (-45 (-1152) (-771))))))) (T -114))
-((-4363 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))) (-1899 (*1 *1 *1) (-5 *1 (-114))) (-1826 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) (-1826 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *1 (-114)))) (-2189 (*1 *2 *1) (|partial| -12 (-5 *2 (-768)) (-5 *1 (-114)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2458 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3463 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) (-3463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) (-3463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-114)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-3523 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-3559 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3972 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-2445 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-2277 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-771)) (-5 *1 (-114)))) (-1717 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-771)) (-5 *1 (-114)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))))
-(-13 (-847) (-10 -8 (-15 -4363 ((-1170) $)) (-15 -3068 ((-45 (-1152) (-771)) $)) (-15 -1899 ($ $)) (-15 -1826 ($ (-1170))) (-15 -1826 ($ (-1170) (-768))) (-15 -2189 ((-3 (-768) "failed") $)) (-15 -1854 ((-112) $)) (-15 -1797 ((-112) $)) (-15 -2295 ((-112) $)) (-15 -3703 ((-768) $)) (-15 -3703 ($ $ (-768))) (-15 -3156 ($ $ (-1 (-112) $ $))) (-15 -2458 ($ $ (-1 (-112) $ $))) (-15 -3463 ((-3 (-1 (-859) (-641 (-859))) "failed") $)) (-15 -3463 ($ $ (-1 (-859) (-641 (-859))))) (-15 -3463 ($ $ (-1 (-859) (-859)))) (-15 -3523 ($ $ (-1 (-536) (-641 (-536))))) (-15 -3523 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -3559 ((-112) $ (-1170))) (-15 -3972 ((-112) $ (-1152))) (-15 -1934 ($ $ (-1152))) (-15 -2445 ($ $ (-1152))) (-15 -2277 ((-3 (-771) "failed") $ (-1152))) (-15 -1717 ($ $ (-1152) (-771))) (-15 -1838 ($ $ (-45 (-1152) (-771))))))
-((-3488 (((-564) |#2|) 41)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -3488 ((-564) |#2|))) (-13 (-363) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -115))
-((-3488 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1035 (-407 *2)))) (-5 *2 (-564)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -3488 ((-564) |#2|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-4019 (($ $ (-564)) NIL)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-2806 (($ (-1166 (-564)) (-564)) NIL)) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1798 (($ $) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-2261 (((-768) $) NIL)) (-2419 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4022 (((-564)) NIL)) (-2942 (((-564) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2678 (($ $ (-564)) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1824 (((-1150 (-564)) $) NIL)) (-3204 (($ $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-1965 (((-768)) NIL T CONST)) (-1582 (((-112) $ $) NIL)) (-2299 (((-564) $ (-564)) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1703 (($ $) 13)) (-4288 (($ $ $) 18)) (-3803 (($) 7 T CONST)) (-2870 (($ $) 6)) (-2018 (((-768)) 26)) (-2939 (($) 34)) (-4276 (($ $ $) 16)) (-4253 (($ $) 9)) (-3958 (($ $ $) 19)) (-4026 (($ $ $) 20)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) 32)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) 30)) (-1972 (($ $ $) 22)) (-3844 (((-1114) $) NIL)) (-2736 (($) 8 T CONST)) (-2951 (($ $ $) 23)) (-2374 (((-536) $) 36)) (-3714 (((-859) $) 38)) (-4264 (($ $ $) 14)) (-2284 (($ $ $) 17)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 21)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 24)) (-2271 (($ $ $) 15)))
+(((-112) (-13 (-841) (-657) (-964) (-612 (-536)) (-10 -8 (-15 -3803 ($) -2222) (-15 -2736 ($) -2222) (-15 -4288 ($ $ $)) (-15 -4026 ($ $ $)) (-15 -3958 ($ $ $)) (-15 -2870 ($ $))))) (T -112))
+((-3803 (*1 *1) (-5 *1 (-112))) (-2736 (*1 *1) (-5 *1 (-112))) (-4288 (*1 *1 *1 *1) (-5 *1 (-112))) (-4026 (*1 *1 *1 *1) (-5 *1 (-112))) (-3958 (*1 *1 *1 *1) (-5 *1 (-112))) (-2870 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-841) (-657) (-964) (-612 (-536)) (-10 -8 (-15 -3803 ($) -2222) (-15 -2736 ($) -2222) (-15 -4288 ($ $ $)) (-15 -4026 ($ $ $)) (-15 -3958 ($ $ $)) (-15 -2870 ($ $))))
+((-3571 (((-3 (-1 |#1| (-641 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-641 |#1|))) 11) (((-3 |#1| "failed") (-114) (-641 |#1|)) 21)) (-4155 (((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-641 (-1 |#1| (-641 |#1|)))) 26)) (-1547 (((-114) |#1|) 56 (|has| |#1| (-847)))) (-4216 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-847)))))
+(((-113 |#1|) (-10 -7 (-15 -3571 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -3571 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -3571 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3571 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -4155 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -4155 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4155 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-847)) (PROGN (-15 -1547 ((-114) |#1|)) (-15 -4216 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1094)) (T -113))
+((-4216 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-847)) (-5 *1 (-113 *2)))) (-1547 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))) (-4155 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-4155 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-4155 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3571 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-3571 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3571 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1094)))))
+(-10 -7 (-15 -3571 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -3571 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -3571 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3571 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -4155 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -4155 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4155 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-847)) (PROGN (-15 -1547 ((-114) |#1|)) (-15 -4216 ((-3 |#1| "failed") (-114)))) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-3879 (((-768) $) 90) (($ $ (-768)) 38)) (-2398 (((-112) $) 42)) (-2871 (($ $ (-1152) (-771)) 34) (($ $ (-506) (-771)) 59)) (-1570 (($ $ (-45 (-1152) (-771))) 16)) (-4359 (((-3 (-771) "failed") $ (-1152)) 28) (((-687 (-771)) $ (-506)) 33)) (-2056 (((-45 (-1152) (-771)) $) 15)) (-2702 (($ (-1170)) 21) (($ (-1170) (-768)) 25)) (-1735 (((-112) $) 40)) (-3562 (((-112) $) 44)) (-4337 (((-1170) $) 8)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-1932 (((-112) $ (-1170)) 11)) (-3568 (($ $ (-1 (-536) (-641 (-536)))) 65) (((-3 (-1 (-536) (-641 (-536))) "failed") $) 69)) (-3844 (((-1114) $) NIL)) (-1511 (((-112) $ (-1152)) 37)) (-2322 (($ $ (-1 (-112) $ $)) 46)) (-3512 (((-3 (-1 (-859) (-641 (-859))) "failed") $) 67) (($ $ (-1 (-859) (-641 (-859)))) 52) (($ $ (-1 (-859) (-859))) 54)) (-2623 (($ $ (-1152)) 56) (($ $ (-506)) 57)) (-3890 (($ $) 78)) (-2766 (($ $ (-1 (-112) $ $)) 47)) (-3714 (((-859) $) 61)) (-2011 (($ $ (-1152)) 35)) (-2004 (((-3 (-768) "failed") $) 73)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 88)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 101)))
+(((-114) (-13 (-847) (-10 -8 (-15 -4337 ((-1170) $)) (-15 -2056 ((-45 (-1152) (-771)) $)) (-15 -3890 ($ $)) (-15 -2702 ($ (-1170))) (-15 -2702 ($ (-1170) (-768))) (-15 -2004 ((-3 (-768) "failed") $)) (-15 -1735 ((-112) $)) (-15 -2398 ((-112) $)) (-15 -3562 ((-112) $)) (-15 -3879 ((-768) $)) (-15 -3879 ($ $ (-768))) (-15 -2322 ($ $ (-1 (-112) $ $))) (-15 -2766 ($ $ (-1 (-112) $ $))) (-15 -3512 ((-3 (-1 (-859) (-641 (-859))) "failed") $)) (-15 -3512 ($ $ (-1 (-859) (-641 (-859))))) (-15 -3512 ($ $ (-1 (-859) (-859)))) (-15 -3568 ($ $ (-1 (-536) (-641 (-536))))) (-15 -3568 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -1932 ((-112) $ (-1170))) (-15 -1511 ((-112) $ (-1152))) (-15 -2011 ($ $ (-1152))) (-15 -2623 ($ $ (-1152))) (-15 -2623 ($ $ (-506))) (-15 -4359 ((-3 (-771) "failed") $ (-1152))) (-15 -4359 ((-687 (-771)) $ (-506))) (-15 -2871 ($ $ (-1152) (-771))) (-15 -2871 ($ $ (-506) (-771))) (-15 -1570 ($ $ (-45 (-1152) (-771))))))) (T -114))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))) (-3890 (*1 *1 *1) (-5 *1 (-114))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) (-2702 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *1 (-114)))) (-2004 (*1 *2 *1) (|partial| -12 (-5 *2 (-768)) (-5 *1 (-114)))) (-1735 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) (-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2766 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3512 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-114)))) (-3568 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-3568 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1511 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2011 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-2623 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-2623 (*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114)))) (-4359 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-771)) (-5 *1 (-114)))) (-4359 (*1 *2 *1 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-771))) (-5 *1 (-114)))) (-2871 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-771)) (-5 *1 (-114)))) (-2871 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-771)) (-5 *1 (-114)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))))
+(-13 (-847) (-10 -8 (-15 -4337 ((-1170) $)) (-15 -2056 ((-45 (-1152) (-771)) $)) (-15 -3890 ($ $)) (-15 -2702 ($ (-1170))) (-15 -2702 ($ (-1170) (-768))) (-15 -2004 ((-3 (-768) "failed") $)) (-15 -1735 ((-112) $)) (-15 -2398 ((-112) $)) (-15 -3562 ((-112) $)) (-15 -3879 ((-768) $)) (-15 -3879 ($ $ (-768))) (-15 -2322 ($ $ (-1 (-112) $ $))) (-15 -2766 ($ $ (-1 (-112) $ $))) (-15 -3512 ((-3 (-1 (-859) (-641 (-859))) "failed") $)) (-15 -3512 ($ $ (-1 (-859) (-641 (-859))))) (-15 -3512 ($ $ (-1 (-859) (-859)))) (-15 -3568 ($ $ (-1 (-536) (-641 (-536))))) (-15 -3568 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -1932 ((-112) $ (-1170))) (-15 -1511 ((-112) $ (-1152))) (-15 -2011 ($ $ (-1152))) (-15 -2623 ($ $ (-1152))) (-15 -2623 ($ $ (-506))) (-15 -4359 ((-3 (-771) "failed") $ (-1152))) (-15 -4359 ((-687 (-771)) $ (-506))) (-15 -2871 ($ $ (-1152) (-771))) (-15 -2871 ($ $ (-506) (-771))) (-15 -1570 ($ $ (-45 (-1152) (-771))))))
+((-2511 (((-564) |#2|) 41)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -2511 ((-564) |#2|))) (-13 (-363) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -115))
+((-2511 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1035 (-407 *2)))) (-5 *2 (-564)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -2511 ((-564) |#2|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-4152 (($ $ (-564)) NIL)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-1939 (($ (-1166 (-564)) (-564)) NIL)) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2409 (($ $) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1454 (((-768) $) NIL)) (-2340 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3756 (((-564)) NIL)) (-3941 (((-564) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3042 (($ $ (-564)) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2678 (((-1150 (-564)) $) NIL)) (-2807 (($ $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3379 (((-768)) NIL T CONST)) (-3979 (((-112) $ $) NIL)) (-2441 (((-564) $ (-564)) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
(((-116 |#1|) (-866 |#1|) (-564)) (T -116))
NIL
(-866 |#1|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL (|has| (-116 |#1|) (-817)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-564))))) (-2064 (((-116 |#1|) $) NIL) (((-1170) $) NIL (|has| (-116 |#1|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-116 |#1|) (-1035 (-564)))) (((-564) $) NIL (|has| (-116 |#1|) (-1035 (-564))))) (-3881 (($ $) NIL) (($ (-564) $) NIL)) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-116 |#1|))) (|:| |vec| (-1259 (-116 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-116 |#1|)) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-116 |#1|) (-545)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1751 (((-112) $) NIL (|has| (-116 |#1|) (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-116 |#1|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-116 |#1|) (-883 (-379))))) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-1507 (((-116 |#1|) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1145)))) (-2506 (((-112) $) NIL (|has| (-116 |#1|) (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL (|has| (-116 |#1|) (-847)))) (-1547 (($ $ $) NIL (|has| (-116 |#1|) (-847)))) (-2082 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-116 |#1|) (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-2677 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2407 (($ $ (-641 (-116 |#1|)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-1170)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|)))) (($ $ (-1170) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|))))) (-3712 (((-768) $) NIL)) (-4382 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-768)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3762 (($ $) NIL)) (-1517 (((-116 |#1|) $) NIL)) (-2127 (((-889 (-564)) $) NIL (|has| (-116 |#1|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-116 |#1|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1019))) (((-225) $) NIL (|has| (-116 |#1|) (-1019)))) (-3028 (((-174 (-407 (-564))) $) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-116 |#1|)) NIL) (($ (-1170)) NIL (|has| (-116 |#1|) (-1035 (-1170))))) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))) (|has| (-116 |#1|) (-145))))) (-1965 (((-768)) NIL T CONST)) (-2991 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-1582 (((-112) $ $) NIL)) (-2299 (((-407 (-564)) $ (-564)) NIL)) (-2016 (($ $) NIL (|has| (-116 |#1|) (-817)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-768)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1738 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1705 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1793 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-989 (-116 |#1|)) (-10 -8 (-15 -2299 ((-407 (-564)) $ (-564))) (-15 -3028 ((-174 (-407 (-564))) $)) (-15 -3881 ($ $)) (-15 -3881 ($ (-564) $)))) (-564)) (T -117))
-((-2299 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) (-3881 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) (-3881 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-989 (-116 |#1|)) (-10 -8 (-15 -2299 ((-407 (-564)) $ (-564))) (-15 -3028 ((-174 (-407 (-564))) $)) (-15 -3881 ($ $)) (-15 -3881 ($ (-564) $))))
-((-1881 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 60) (($ $ "right" $) 62)) (-4321 (((-641 $) $) 31)) (-2272 (((-112) $ $) 36)) (-3675 (((-112) |#2| $) 40)) (-3848 (((-641 |#2|) $) 25)) (-2200 (((-112) $) 18)) (-4382 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1867 (((-112) $) 57)) (-1765 (((-859) $) 47)) (-3706 (((-641 $) $) 32)) (-1686 (((-112) $ $) 38)) (-2589 (((-768) $) 50)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -1881 (|#1| |#1| "right" |#1|)) (-15 -1881 (|#1| |#1| "left" |#1|)) (-15 -4382 (|#1| |#1| "right")) (-15 -4382 (|#1| |#1| "left")) (-15 -1881 (|#2| |#1| "value" |#2|)) (-15 -2272 ((-112) |#1| |#1|)) (-15 -3848 ((-641 |#2|) |#1|)) (-15 -1867 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -2200 ((-112) |#1|)) (-15 -4321 ((-641 |#1|) |#1|)) (-15 -3706 ((-641 |#1|) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -3675 ((-112) |#2| |#1|)) (-15 -2589 ((-768) |#1|))) (-119 |#2|) (-1209)) (T -118))
-NIL
-(-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -1881 (|#1| |#1| "right" |#1|)) (-15 -1881 (|#1| |#1| "left" |#1|)) (-15 -4382 (|#1| |#1| "right")) (-15 -4382 (|#1| |#1| "left")) (-15 -1881 (|#2| |#1| "value" |#2|)) (-15 -2272 ((-112) |#1| |#1|)) (-15 -3848 ((-641 |#2|) |#1|)) (-15 -1867 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -2200 ((-112) |#1|)) (-15 -4321 ((-641 |#1|) |#1|)) (-15 -3706 ((-641 |#1|) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -3675 ((-112) |#2| |#1|)) (-15 -2589 ((-768) |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1451 ((|#1| $) 48)) (-3263 (((-112) $ (-768)) 8)) (-3768 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-1887 (($ $ $) 52 (|has| $ (-6 -4412)))) (-3345 (($ $ $) 54 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) (($ $ "left" $) 55 (|has| $ (-6 -4412))) (($ $ "right" $) 53 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-3760 (($) 7 T CONST)) (-3549 (($ $) 57)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 50)) (-2272 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-3538 (($ $) 59)) (-3848 (((-641 |#1|) $) 45)) (-2200 (((-112) $) 49)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3837 (((-564) $ $) 44)) (-1867 (((-112) $) 46)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) 51)) (-1740 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL (|has| (-116 |#1|) (-817)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-564))))) (-2376 (((-116 |#1|) $) NIL) (((-1170) $) NIL (|has| (-116 |#1|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-116 |#1|) (-1035 (-564)))) (((-564) $) NIL (|has| (-116 |#1|) (-1035 (-564))))) (-1928 (($ $) NIL) (($ (-564) $) NIL)) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-116 |#1|))) (|:| |vec| (-1259 (-116 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-116 |#1|)) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-116 |#1|) (-545)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-116 |#1|) (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-116 |#1|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-116 |#1|) (-883 (-379))))) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL)) (-1655 (((-116 |#1|) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1145)))) (-2001 (((-112) $) NIL (|has| (-116 |#1|) (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL (|has| (-116 |#1|) (-847)))) (-3413 (($ $ $) NIL (|has| (-116 |#1|) (-847)))) (-2313 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-116 |#1|) (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-3034 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2582 (($ $ (-641 (-116 |#1|)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-1170)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|)))) (($ $ (-1170) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|))))) (-3966 (((-768) $) NIL)) (-4382 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-768)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3197 (($ $) NIL)) (-1668 (((-116 |#1|) $) NIL)) (-2374 (((-889 (-564)) $) NIL (|has| (-116 |#1|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-116 |#1|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1019))) (((-225) $) NIL (|has| (-116 |#1|) (-1019)))) (-3399 (((-174 (-407 (-564))) $) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-116 |#1|)) NIL) (($ (-1170)) NIL (|has| (-116 |#1|) (-1035 (-1170))))) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))) (|has| (-116 |#1|) (-145))))) (-3379 (((-768)) NIL T CONST)) (-4296 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-3979 (((-112) $ $) NIL)) (-2441 (((-407 (-564)) $ (-564)) NIL)) (-3920 (($ $) NIL (|has| (-116 |#1|) (-817)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-768)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1746 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1841 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-989 (-116 |#1|)) (-10 -8 (-15 -2441 ((-407 (-564)) $ (-564))) (-15 -3399 ((-174 (-407 (-564))) $)) (-15 -1928 ($ $)) (-15 -1928 ($ (-564) $)))) (-564)) (T -117))
+((-2441 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) (-1928 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) (-1928 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-989 (-116 |#1|)) (-10 -8 (-15 -2441 ((-407 (-564)) $ (-564))) (-15 -3399 ((-174 (-407 (-564))) $)) (-15 -1928 ($ $)) (-15 -1928 ($ (-564) $))))
+((-3868 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 60) (($ $ "right" $) 62)) (-1647 (((-641 $) $) 31)) (-1543 (((-112) $ $) 36)) (-3601 (((-112) |#2| $) 40)) (-2523 (((-641 |#2|) $) 25)) (-2120 (((-112) $) 18)) (-4382 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1875 (((-112) $) 57)) (-3714 (((-859) $) 47)) (-3914 (((-641 $) $) 32)) (-1720 (((-112) $ $) 38)) (-2779 (((-768) $) 50)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -3868 (|#1| |#1| "right" |#1|)) (-15 -3868 (|#1| |#1| "left" |#1|)) (-15 -4382 (|#1| |#1| "right")) (-15 -4382 (|#1| |#1| "left")) (-15 -3868 (|#2| |#1| "value" |#2|)) (-15 -1543 ((-112) |#1| |#1|)) (-15 -2523 ((-641 |#2|) |#1|)) (-15 -1875 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -2120 ((-112) |#1|)) (-15 -1647 ((-641 |#1|) |#1|)) (-15 -3914 ((-641 |#1|) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -3601 ((-112) |#2| |#1|)) (-15 -2779 ((-768) |#1|))) (-119 |#2|) (-1209)) (T -118))
+NIL
+(-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -3868 (|#1| |#1| "right" |#1|)) (-15 -3868 (|#1| |#1| "left" |#1|)) (-15 -4382 (|#1| |#1| "right")) (-15 -4382 (|#1| |#1| "left")) (-15 -3868 (|#2| |#1| "value" |#2|)) (-15 -1543 ((-112) |#1| |#1|)) (-15 -2523 ((-641 |#2|) |#1|)) (-15 -1875 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -2120 ((-112) |#1|)) (-15 -1647 ((-641 |#1|) |#1|)) (-15 -3914 ((-641 |#1|) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -3601 ((-112) |#2| |#1|)) (-15 -2779 ((-768) |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3387 ((|#1| $) 48)) (-2141 (((-112) $ (-768)) 8)) (-3242 ((|#1| $ |#1|) 39 (|has| $ (-6 -4413)))) (-2064 (($ $ $) 52 (|has| $ (-6 -4413)))) (-3485 (($ $ $) 54 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4413))) (($ $ "left" $) 55 (|has| $ (-6 -4413))) (($ $ "right" $) 53 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 41 (|has| $ (-6 -4413)))) (-3180 (($) 7 T CONST)) (-2592 (($ $) 57)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 50)) (-1543 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-2578 (($ $) 59)) (-2523 (((-641 |#1|) $) 45)) (-2120 (((-112) $) 49)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2774 (((-564) $ $) 44)) (-1875 (((-112) $) 46)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) 51)) (-3036 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-119 |#1|) (-140) (-1209)) (T -119))
-((-3538 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-3549 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-1881 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4412)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-3345 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-1881 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4412)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-1887 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))))
-(-13 (-1007 |t#1|) (-10 -8 (-15 -3538 ($ $)) (-15 -4382 ($ $ "left")) (-15 -3549 ($ $)) (-15 -4382 ($ $ "right")) (IF (|has| $ (-6 -4412)) (PROGN (-15 -1881 ($ $ "left" $)) (-15 -3345 ($ $ $)) (-15 -1881 ($ $ "right" $)) (-15 -1887 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-1311 (((-112) |#1|) 29)) (-2945 (((-768) (-768)) 28) (((-768)) 27)) (-3922 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-120 |#1|) (-10 -7 (-15 -3922 ((-112) |#1|)) (-15 -3922 ((-112) |#1| (-112))) (-15 -2945 ((-768))) (-15 -2945 ((-768) (-768))) (-15 -1311 ((-112) |#1|))) (-1235 (-564))) (T -120))
-((-1311 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-2945 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3922 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3922 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
-(-10 -7 (-15 -3922 ((-112) |#1|)) (-15 -3922 ((-112) |#1| (-112))) (-15 -2945 ((-768))) (-15 -2945 ((-768) (-768))) (-15 -1311 ((-112) |#1|)))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) 18)) (-1654 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 25)) (-3263 (((-112) $ (-768)) NIL)) (-3768 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-1887 (($ $ $) 21 (|has| $ (-6 -4412)))) (-3345 (($ $ $) 23 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-3549 (($ $) 20)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3395 (($ $ |#1| $) 26)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3538 (($ $) 22)) (-3848 (((-641 |#1|) $) NIL)) (-2200 (((-112) $) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2903 (($ |#1| $) 27)) (-2098 (($ |#1| $) 15)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 17)) (-3845 (($) 11)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3837 (((-564) $ $) NIL)) (-1867 (((-112) $) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3407 (($ (-641 |#1|)) 16)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -3407 ($ (-641 |#1|))) (-15 -2098 ($ |#1| $)) (-15 -2903 ($ |#1| $)) (-15 -1654 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-847)) (T -121))
-((-3407 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-121 *3)))) (-2098 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) (-2903 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) (-1654 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-847)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -3407 ($ (-641 |#1|))) (-15 -2098 ($ |#1| $)) (-15 -2903 ($ |#1| $)) (-15 -1654 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-1569 (($ $) 12)) (-4254 (($ $) 10)) (-1580 (($ $ $) 22)) (-1902 (($ $ $) 20)) (-3306 (($ $ $) 18)) (-3295 (($ $ $) 16)))
-(((-122 |#1|) (-10 -8 (-15 -1580 (|#1| |#1| |#1|)) (-15 -1902 (|#1| |#1| |#1|)) (-15 -4254 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3295 (|#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -1580 (|#1| |#1| |#1|)) (-15 -1902 (|#1| |#1| |#1|)) (-15 -4254 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3295 (|#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-1569 (($ $) 103)) (-4291 (($ $ $) 25)) (-3476 (((-1264) $ (-564) (-564)) 66 (|has| $ (-6 -4412)))) (-4310 (((-112) $) 98 (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3606 (($ $) 102 (-12 (|has| (-112) (-847)) (|has| $ (-6 -4412)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4412)))) (-2494 (($ $) 97 (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3263 (((-112) $ (-768)) 37)) (-1881 (((-112) $ (-1226 (-564)) (-112)) 88 (|has| $ (-6 -4412))) (((-112) $ (-564) (-112)) 54 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4411)))) (-3760 (($) 38 T CONST)) (-3852 (($ $) 100 (|has| $ (-6 -4412)))) (-3716 (($ $) 90)) (-3104 (($ $) 68 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4411))) (($ (-112) $) 69 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411))))) (-4367 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411))))) (-3528 (((-112) $ (-564) (-112)) 53 (|has| $ (-6 -4412)))) (-3455 (((-112) $ (-564)) 55)) (-1356 (((-564) (-112) $ (-564)) 95 (|has| (-112) (-1094))) (((-564) (-112) $) 94 (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) 93)) (-3080 (((-641 (-112)) $) 45 (|has| $ (-6 -4411)))) (-4277 (($ $ $) 26)) (-4254 (($ $) 30)) (-1580 (($ $ $) 28)) (-1633 (($ (-768) (-112)) 77)) (-1902 (($ $ $) 29)) (-2830 (((-112) $ (-768)) 36)) (-4065 (((-564) $) 63 (|has| (-564) (-847)))) (-3571 (($ $ $) 13)) (-4012 (($ $ $) 96 (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3817 (((-641 (-112)) $) 46 (|has| $ (-6 -4411)))) (-3675 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 62 (|has| (-564) (-847)))) (-1547 (($ $ $) 14)) (-3513 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-2972 (((-112) $ (-768)) 35)) (-4202 (((-1152) $) 9)) (-3412 (($ $ $ (-564)) 87) (($ (-112) $ (-564)) 86)) (-1371 (((-641 (-564)) $) 60)) (-3629 (((-112) (-564) $) 59)) (-3802 (((-1114) $) 10)) (-3073 (((-112) $) 64 (|has| (-564) (-847)))) (-2343 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2614 (($ $ (-112)) 65 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-112)) (-641 (-112))) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) 49 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-2606 (((-112) $ $) 31)) (-3471 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-3599 (((-641 (-112)) $) 58)) (-2742 (((-112) $) 34)) (-3845 (($) 33)) (-4382 (($ $ (-1226 (-564))) 83) (((-112) $ (-564)) 57) (((-112) $ (-564) (-112)) 56)) (-2008 (($ $ (-1226 (-564))) 85) (($ $ (-564)) 84)) (-3815 (((-768) (-112) $) 47 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4411)))) (-2286 (($ $ $ (-564)) 99 (|has| $ (-6 -4412)))) (-1899 (($ $) 32)) (-2127 (((-536) $) 67 (|has| (-112) (-612 (-536))))) (-1776 (($ (-641 (-112))) 76)) (-2817 (($ (-641 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-1765 (((-859) $) 11)) (-2237 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4411)))) (-4266 (($ $ $) 27)) (-3306 (($ $ $) 105)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-3295 (($ $ $) 104)) (-2589 (((-768) $) 39 (|has| $ (-6 -4411)))))
+((-2578 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-2592 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-3868 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4413)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-3485 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-3868 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4413)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-2064 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))))
+(-13 (-1007 |t#1|) (-10 -8 (-15 -2578 ($ $)) (-15 -4382 ($ $ "left")) (-15 -2592 ($ $)) (-15 -4382 ($ $ "right")) (IF (|has| $ (-6 -4413)) (PROGN (-15 -3868 ($ $ "left" $)) (-15 -3485 ($ $ $)) (-15 -3868 ($ $ "right" $)) (-15 -2064 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-2155 (((-112) |#1|) 29)) (-3972 (((-768) (-768)) 28) (((-768)) 27)) (-4141 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-120 |#1|) (-10 -7 (-15 -4141 ((-112) |#1|)) (-15 -4141 ((-112) |#1| (-112))) (-15 -3972 ((-768))) (-15 -3972 ((-768) (-768))) (-15 -2155 ((-112) |#1|))) (-1235 (-564))) (T -120))
+((-2155 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3972 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3972 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-4141 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-4141 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
+(-10 -7 (-15 -4141 ((-112) |#1|)) (-15 -4141 ((-112) |#1| (-112))) (-15 -3972 ((-768))) (-15 -3972 ((-768) (-768))) (-15 -2155 ((-112) |#1|)))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) 18)) (-3374 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 25)) (-2141 (((-112) $ (-768)) NIL)) (-3242 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-2064 (($ $ $) 21 (|has| $ (-6 -4413)))) (-3485 (($ $ $) 23 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413))) (($ $ "left" $) NIL (|has| $ (-6 -4413))) (($ $ "right" $) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2592 (($ $) 20)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2362 (($ $ |#1| $) 26)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2578 (($ $) 22)) (-2523 (((-641 |#1|) $) NIL)) (-2120 (((-112) $) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3495 (($ |#1| $) 27)) (-2373 (($ |#1| $) 15)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 17)) (-2834 (($) 11)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2774 (((-564) $ $) NIL)) (-1875 (((-112) $) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2957 (($ (-641 |#1|)) 16)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4413) (-6 -4412) (-15 -2957 ($ (-641 |#1|))) (-15 -2373 ($ |#1| $)) (-15 -3495 ($ |#1| $)) (-15 -3374 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-847)) (T -121))
+((-2957 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-121 *3)))) (-2373 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) (-3495 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) (-3374 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-847)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4413) (-6 -4412) (-15 -2957 ($ (-641 |#1|))) (-15 -2373 ($ |#1| $)) (-15 -3495 ($ |#1| $)) (-15 -3374 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-1703 (($ $) 12)) (-4253 (($ $) 10)) (-3958 (($ $ $) 22)) (-4026 (($ $ $) 20)) (-2284 (($ $ $) 18)) (-2271 (($ $ $) 16)))
+(((-122 |#1|) (-10 -8 (-15 -3958 (|#1| |#1| |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4253 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -2271 (|#1| |#1| |#1|)) (-15 -2284 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -3958 (|#1| |#1| |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 -4253 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -2271 (|#1| |#1| |#1|)) (-15 -2284 (|#1| |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1703 (($ $) 103)) (-4288 (($ $ $) 25)) (-2399 (((-1264) $ (-564) (-564)) 66 (|has| $ (-6 -4413)))) (-1562 (((-112) $) 98 (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-4194 (($ $) 102 (-12 (|has| (-112) (-847)) (|has| $ (-6 -4413)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4413)))) (-2904 (($ $) 97 (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2141 (((-112) $ (-768)) 37)) (-3868 (((-112) $ (-1226 (-564)) (-112)) 88 (|has| $ (-6 -4413))) (((-112) $ (-564) (-112)) 54 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4412)))) (-3180 (($) 38 T CONST)) (-1651 (($ $) 100 (|has| $ (-6 -4413)))) (-1923 (($ $) 90)) (-2084 (($ $) 68 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4412))) (($ (-112) $) 69 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4412))))) (-1728 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4412))))) (-1998 (((-112) $ (-564) (-112)) 53 (|has| $ (-6 -4413)))) (-3593 (((-112) $ (-564)) 55)) (-3303 (((-564) (-112) $ (-564)) 95 (|has| (-112) (-1094))) (((-564) (-112) $) 94 (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) 93)) (-4244 (((-641 (-112)) $) 45 (|has| $ (-6 -4412)))) (-4276 (($ $ $) 26)) (-4253 (($ $) 30)) (-3958 (($ $ $) 28)) (-3564 (($ (-768) (-112)) 77)) (-4026 (($ $ $) 29)) (-2173 (((-112) $ (-768)) 36)) (-2994 (((-564) $) 63 (|has| (-564) (-847)))) (-3428 (($ $ $) 13)) (-3678 (($ $ $) 96 (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2572 (((-641 (-112)) $) 46 (|has| $ (-6 -4412)))) (-3601 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 62 (|has| (-564) (-847)))) (-3413 (($ $ $) 14)) (-1988 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4144 (((-112) $ (-768)) 35)) (-1868 (((-1152) $) 9)) (-2455 (($ $ $ (-564)) 87) (($ (-112) $ (-564)) 86)) (-3127 (((-641 (-564)) $) 60)) (-1338 (((-112) (-564) $) 59)) (-3844 (((-1114) $) 10)) (-2049 (((-112) $) 64 (|has| (-564) (-847)))) (-2905 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3538 (($ $ (-112)) 65 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-112)) (-641 (-112))) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) 49 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3447 (((-112) $ $) 31)) (-2338 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-4121 (((-641 (-112)) $) 58)) (-2510 (((-112) $) 34)) (-2834 (($) 33)) (-4382 (($ $ (-1226 (-564))) 83) (((-112) $ (-564)) 57) (((-112) $ (-564) (-112)) 56)) (-2090 (($ $ (-1226 (-564))) 85) (($ $ (-564)) 84)) (-3855 (((-768) (-112) $) 47 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4412)))) (-3474 (($ $ $ (-564)) 99 (|has| $ (-6 -4413)))) (-3890 (($ $) 32)) (-2374 (((-536) $) 67 (|has| (-112) (-612 (-536))))) (-3725 (($ (-641 (-112))) 76)) (-1865 (($ (-641 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3714 (((-859) $) 11)) (-4289 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4412)))) (-4264 (($ $ $) 27)) (-2284 (($ $ $) 105)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-2271 (($ $ $) 104)) (-2779 (((-768) $) 39 (|has| $ (-6 -4412)))))
(((-123) (-140)) (T -123))
-((-4254 (*1 *1 *1) (-4 *1 (-123))) (-1902 (*1 *1 *1 *1) (-4 *1 (-123))) (-1580 (*1 *1 *1 *1) (-4 *1 (-123))) (-4266 (*1 *1 *1 *1) (-4 *1 (-123))) (-4277 (*1 *1 *1 *1) (-4 *1 (-123))) (-4291 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-847) (-657) (-19 (-112)) (-10 -8 (-15 -4254 ($ $)) (-15 -1902 ($ $ $)) (-15 -1580 ($ $ $)) (-15 -4266 ($ $ $)) (-15 -4277 ($ $ $)) (-15 -4291 ($ $ $))))
+((-4253 (*1 *1 *1) (-4 *1 (-123))) (-4026 (*1 *1 *1 *1) (-4 *1 (-123))) (-3958 (*1 *1 *1 *1) (-4 *1 (-123))) (-4264 (*1 *1 *1 *1) (-4 *1 (-123))) (-4276 (*1 *1 *1 *1) (-4 *1 (-123))) (-4288 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-847) (-657) (-19 (-112)) (-10 -8 (-15 -4253 ($ $)) (-15 -4026 ($ $ $)) (-15 -3958 ($ $ $)) (-15 -4264 ($ $ $)) (-15 -4276 ($ $ $)) (-15 -4288 ($ $ $))))
(((-34) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 #0=(-112)) . T) ((-612 (-536)) |has| (-112) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-647 #0#) . T) ((-657) . T) ((-19 #0#) . T) ((-847) . T) ((-1094) . T) ((-1209) . T))
-((-3513 (($ (-1 |#2| |#2|) $) 22)) (-1899 (($ $) 16)) (-2589 (((-768) $) 25)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -3513 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2589 ((-768) |#1|)) (-15 -1899 (|#1| |#1|))) (-125 |#2|) (-1094)) (T -124))
+((-1988 (($ (-1 |#2| |#2|) $) 22)) (-3890 (($ $) 16)) (-2779 (((-768) $) 25)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -1988 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2779 ((-768) |#1|)) (-15 -3890 (|#1| |#1|))) (-125 |#2|) (-1094)) (T -124))
NIL
-(-10 -8 (-15 -3513 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2589 ((-768) |#1|)) (-15 -1899 (|#1| |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1451 ((|#1| $) 48)) (-3263 (((-112) $ (-768)) 8)) (-3768 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-1887 (($ $ $) 52 (|has| $ (-6 -4412)))) (-3345 (($ $ $) 54 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) (($ $ "left" $) 55 (|has| $ (-6 -4412))) (($ $ "right" $) 53 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-3760 (($) 7 T CONST)) (-3549 (($ $) 57)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 50)) (-2272 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3395 (($ $ |#1| $) 60)) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-3538 (($ $) 59)) (-3848 (((-641 |#1|) $) 45)) (-2200 (((-112) $) 49)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3837 (((-564) $ $) 44)) (-1867 (((-112) $) 46)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) 51)) (-1740 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+(-10 -8 (-15 -1988 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2779 ((-768) |#1|)) (-15 -3890 (|#1| |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3387 ((|#1| $) 48)) (-2141 (((-112) $ (-768)) 8)) (-3242 ((|#1| $ |#1|) 39 (|has| $ (-6 -4413)))) (-2064 (($ $ $) 52 (|has| $ (-6 -4413)))) (-3485 (($ $ $) 54 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4413))) (($ $ "left" $) 55 (|has| $ (-6 -4413))) (($ $ "right" $) 53 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 41 (|has| $ (-6 -4413)))) (-3180 (($) 7 T CONST)) (-2592 (($ $) 57)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 50)) (-1543 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2362 (($ $ |#1| $) 60)) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-2578 (($ $) 59)) (-2523 (((-641 |#1|) $) 45)) (-2120 (((-112) $) 49)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2774 (((-564) $ $) 44)) (-1875 (((-112) $) 46)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) 51)) (-3036 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-125 |#1|) (-140) (-1094)) (T -125))
-((-3395 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -3395 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-119 |#1|) . T) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) 18)) (-3263 (((-112) $ (-768)) NIL)) (-3768 ((|#1| $ |#1|) 22 (|has| $ (-6 -4412)))) (-1887 (($ $ $) 23 (|has| $ (-6 -4412)))) (-3345 (($ $ $) 21 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-3549 (($ $) 24)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3395 (($ $ |#1| $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3538 (($ $) NIL)) (-3848 (((-641 |#1|) $) NIL)) (-2200 (((-112) $) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2098 (($ |#1| $) 15)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 17)) (-3845 (($) 11)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3837 (((-564) $ $) NIL)) (-1867 (((-112) $) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) 20)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2622 (($ (-641 |#1|)) 16)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4412) (-15 -2622 ($ (-641 |#1|))) (-15 -2098 ($ |#1| $)))) (-847)) (T -126))
-((-2622 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-126 *3)))) (-2098 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-847)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4412) (-15 -2622 ($ (-641 |#1|))) (-15 -2098 ($ |#1| $))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) 30)) (-3263 (((-112) $ (-768)) NIL)) (-3768 ((|#1| $ |#1|) 32 (|has| $ (-6 -4412)))) (-1887 (($ $ $) 36 (|has| $ (-6 -4412)))) (-3345 (($ $ $) 34 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-3549 (($ $) 23)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3395 (($ $ |#1| $) 16)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3538 (($ $) 22)) (-3848 (((-641 |#1|) $) NIL)) (-2200 (((-112) $) 25)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 20)) (-3845 (($) 11)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3837 (((-564) $ $) NIL)) (-1867 (((-112) $) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2921 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 10 (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2921 ($ |#1|)) (-15 -2921 ($ $ |#1| $)))) (-1094)) (T -127))
-((-2921 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) (-2921 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -2921 ($ |#1|)) (-15 -2921 ($ $ |#1| $))))
-((-1754 (((-112) $ $) NIL (|has| (-129) (-1094)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-847)))) (-3606 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-129) (-847))))) (-2494 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 (((-129) $ (-564) (-129)) 26 (|has| $ (-6 -4412))) (((-129) $ (-1226 (-564)) (-129)) NIL (|has| $ (-6 -4412)))) (-3056 (((-768) $ (-768)) 34)) (-2164 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094))))) (-2359 (($ (-129) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4411))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4411)))) (-3528 (((-129) $ (-564) (-129)) 25 (|has| $ (-6 -4412)))) (-3455 (((-129) $ (-564)) 20)) (-1356 (((-564) (-1 (-112) (-129)) $) NIL) (((-564) (-129) $) NIL (|has| (-129) (-1094))) (((-564) (-129) $ (-564)) NIL (|has| (-129) (-1094)))) (-3080 (((-641 (-129)) $) NIL (|has| $ (-6 -4411)))) (-1633 (($ (-768) (-129)) 14)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) 27 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| (-129) (-847)))) (-4012 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-847)))) (-3817 (((-641 (-129)) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094))))) (-1479 (((-564) $) 30 (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| (-129) (-847)))) (-3513 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| (-129) (-1094)))) (-3412 (($ (-129) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| (-129) (-1094)))) (-3073 (((-129) $) NIL (|has| (-564) (-847)))) (-2343 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2614 (($ $ (-129)) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-641 (-129)) (-641 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094))))) (-3599 (((-641 (-129)) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 12)) (-4382 (((-129) $ (-564) (-129)) NIL) (((-129) $ (-564)) 23) (($ $ (-1226 (-564))) NIL)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3815 (((-768) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411))) (((-768) (-129) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-129) (-612 (-536))))) (-1776 (($ (-641 (-129))) 47)) (-2817 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-641 $)) NIL)) (-1765 (((-955 (-129)) $) 35) (((-1152) $) 44) (((-859) $) NIL (|has| (-129) (-611 (-859))))) (-3024 (((-768) $) 18)) (-2705 (($ (-768)) 8)) (-2237 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1686 (((-112) $ $) 32 (|has| (-129) (-1094)))) (-1728 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1705 (((-112) $ $) NIL (|has| (-129) (-847)))) (-2589 (((-768) $) 15 (|has| $ (-6 -4411)))))
-(((-128) (-13 (-19 (-129)) (-611 (-955 (-129))) (-611 (-1152)) (-10 -8 (-15 -2705 ($ (-768))) (-15 -3024 ((-768) $)) (-15 -3056 ((-768) $ (-768))) (-6 -4411)))) (T -128))
-((-2705 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-128)))) (-3056 (*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))))
-(-13 (-19 (-129)) (-611 (-955 (-129))) (-611 (-1152)) (-10 -8 (-15 -2705 ($ (-768))) (-15 -3024 ((-768) $)) (-15 -3056 ((-768) $ (-768))) (-6 -4411)))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) 12 T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) 22 T CONST)) (-1547 (($ $ $) NIL) (($) 23 T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-1377 (($ (-768)) 8)) (-4096 (($ $ $) 25)) (-4080 (($ $ $) 24)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 19)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 20)))
-(((-129) (-13 (-841) (-490 (-144)) (-10 -8 (-15 -1377 ($ (-768))) (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))) (T -129))
-((-1377 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-129)))) (-4080 (*1 *1 *1 *1) (-5 *1 (-129))) (-4096 (*1 *1 *1 *1) (-5 *1 (-129))) (-3760 (*1 *1) (-5 *1 (-129))))
-(-13 (-841) (-490 (-144)) (-10 -8 (-15 -1377 ($ (-768))) (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))
+((-2362 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4413) (-6 -4412) (-15 -2362 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-119 |#1|) . T) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) 18)) (-2141 (((-112) $ (-768)) NIL)) (-3242 ((|#1| $ |#1|) 22 (|has| $ (-6 -4413)))) (-2064 (($ $ $) 23 (|has| $ (-6 -4413)))) (-3485 (($ $ $) 21 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413))) (($ $ "left" $) NIL (|has| $ (-6 -4413))) (($ $ "right" $) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2592 (($ $) 24)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2362 (($ $ |#1| $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2578 (($ $) NIL)) (-2523 (((-641 |#1|) $) NIL)) (-2120 (((-112) $) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2373 (($ |#1| $) 15)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 17)) (-2834 (($) 11)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2774 (((-564) $ $) NIL)) (-1875 (((-112) $) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) 20)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3634 (($ (-641 |#1|)) 16)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4413) (-15 -3634 ($ (-641 |#1|))) (-15 -2373 ($ |#1| $)))) (-847)) (T -126))
+((-3634 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-126 *3)))) (-2373 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-847)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4413) (-15 -3634 ($ (-641 |#1|))) (-15 -2373 ($ |#1| $))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) 30)) (-2141 (((-112) $ (-768)) NIL)) (-3242 ((|#1| $ |#1|) 32 (|has| $ (-6 -4413)))) (-2064 (($ $ $) 36 (|has| $ (-6 -4413)))) (-3485 (($ $ $) 34 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413))) (($ $ "left" $) NIL (|has| $ (-6 -4413))) (($ $ "right" $) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2592 (($ $) 23)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2362 (($ $ |#1| $) 16)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2578 (($ $) 22)) (-2523 (((-641 |#1|) $) NIL)) (-2120 (((-112) $) 25)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 20)) (-2834 (($) 11)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2774 (((-564) $ $) NIL)) (-1875 (((-112) $) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3698 (($ |#1|) 18) (($ $ |#1| $) 17)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 10 (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3698 ($ |#1|)) (-15 -3698 ($ $ |#1| $)))) (-1094)) (T -127))
+((-3698 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) (-3698 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -3698 ($ |#1|)) (-15 -3698 ($ $ |#1| $))))
+((-3702 (((-112) $ $) NIL (|has| (-129) (-1094)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-847)))) (-4194 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| (-129) (-847))))) (-2904 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 (((-129) $ (-564) (-129)) 26 (|has| $ (-6 -4413))) (((-129) $ (-1226 (-564)) (-129)) NIL (|has| $ (-6 -4413)))) (-3689 (((-768) $ (-768)) 34)) (-4148 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-129) (-1094))))) (-2514 (($ (-129) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-129) (-1094)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4412)) (|has| (-129) (-1094)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4412))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4412)))) (-1998 (((-129) $ (-564) (-129)) 25 (|has| $ (-6 -4413)))) (-3593 (((-129) $ (-564)) 20)) (-3303 (((-564) (-1 (-112) (-129)) $) NIL) (((-564) (-129) $) NIL (|has| (-129) (-1094))) (((-564) (-129) $ (-564)) NIL (|has| (-129) (-1094)))) (-4244 (((-641 (-129)) $) NIL (|has| $ (-6 -4412)))) (-3564 (($ (-768) (-129)) 14)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) 27 (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| (-129) (-847)))) (-3678 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-847)))) (-2572 (((-641 (-129)) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-129) (-1094))))) (-2415 (((-564) $) 30 (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| (-129) (-847)))) (-1988 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| (-129) (-1094)))) (-2455 (($ (-129) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| (-129) (-1094)))) (-2049 (((-129) $) NIL (|has| (-564) (-847)))) (-2905 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3538 (($ $ (-129)) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-641 (-129)) (-641 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-129) (-1094))))) (-4121 (((-641 (-129)) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) 12)) (-4382 (((-129) $ (-564) (-129)) NIL) (((-129) $ (-564)) 23) (($ $ (-1226 (-564))) NIL)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3855 (((-768) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4412))) (((-768) (-129) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-129) (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-129) (-612 (-536))))) (-3725 (($ (-641 (-129))) 47)) (-1865 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-641 $)) NIL)) (-3714 (((-955 (-129)) $) 35) (((-1152) $) 44) (((-859) $) NIL (|has| (-129) (-611 (-859))))) (-3355 (((-768) $) 18)) (-3272 (($ (-768)) 8)) (-4289 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1720 (((-112) $ $) 32 (|has| (-129) (-1094)))) (-1769 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1746 (((-112) $ $) NIL (|has| (-129) (-847)))) (-2779 (((-768) $) 15 (|has| $ (-6 -4412)))))
+(((-128) (-13 (-19 (-129)) (-611 (-955 (-129))) (-611 (-1152)) (-10 -8 (-15 -3272 ($ (-768))) (-15 -3355 ((-768) $)) (-15 -3689 ((-768) $ (-768))) (-6 -4412)))) (T -128))
+((-3272 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-128)))) (-3689 (*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))))
+(-13 (-19 (-129)) (-611 (-955 (-129))) (-611 (-1152)) (-10 -8 (-15 -3272 ($ (-768))) (-15 -3355 ((-768) $)) (-15 -3689 ((-768) $ (-768))) (-6 -4412)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) 12 T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) 22 T CONST)) (-3413 (($ $ $) NIL) (($) 23 T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-1858 (($ (-768)) 8)) (-4072 (($ $ $) 25)) (-4058 (($ $ $) 24)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 19)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 20)))
+(((-129) (-13 (-841) (-490 (-144)) (-10 -8 (-15 -1858 ($ (-768))) (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))) (T -129))
+((-1858 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-129)))) (-4058 (*1 *1 *1 *1) (-5 *1 (-129))) (-4072 (*1 *1 *1 *1) (-5 *1 (-129))) (-3180 (*1 *1) (-5 *1 (-129))))
+(-13 (-841) (-490 (-144)) (-10 -8 (-15 -1858 ($ (-768))) (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))
((|NonNegativeInteger|) (< |#1| 256))
-((-1754 (((-112) $ $) NIL)) (-2425 (($) 6 T CONST)) (-2290 (($) 7 T CONST)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 14)) (-2555 (($) 8 T CONST)) (-1686 (((-112) $ $) 10)))
-(((-130) (-13 (-1094) (-10 -8 (-15 -2290 ($) -3246) (-15 -2555 ($) -3246) (-15 -2425 ($) -3246)))) (T -130))
-((-2290 (*1 *1) (-5 *1 (-130))) (-2555 (*1 *1) (-5 *1 (-130))) (-2425 (*1 *1) (-5 *1 (-130))))
-(-13 (-1094) (-10 -8 (-15 -2290 ($) -3246) (-15 -2555 ($) -3246) (-15 -2425 ($) -3246)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15)))
+((-3702 (((-112) $ $) NIL)) (-2410 (($) 6 T CONST)) (-3519 (($) 7 T CONST)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 14)) (-4250 (($) 8 T CONST)) (-1720 (((-112) $ $) 10)))
+(((-130) (-13 (-1094) (-10 -8 (-15 -3519 ($) -2222) (-15 -4250 ($) -2222) (-15 -2410 ($) -2222)))) (T -130))
+((-3519 (*1 *1) (-5 *1 (-130))) (-4250 (*1 *1) (-5 *1 (-130))) (-2410 (*1 *1) (-5 *1 (-130))))
+(-13 (-1094) (-10 -8 (-15 -3519 ($) -2222) (-15 -4250 ($) -2222) (-15 -2410 ($) -2222)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15)))
(((-131) (-140)) (T -131))
-((-3936 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(-13 (-23) (-10 -8 (-15 -3936 ((-3 $ "failed") $ $))))
+((-4281 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(-13 (-23) (-10 -8 (-15 -4281 ((-3 $ "failed") $ $))))
(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 7)) (-1436 (((-1264) $ (-768)) 19)) (-1356 (((-768) $) 20)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+((-3702 (((-112) $ $) 7)) (-1806 (((-1264) $ (-768)) 19)) (-3303 (((-768) $) 20)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
(((-132) (-140)) (T -132))
-((-1356 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-768)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-768)) (-5 *2 (-1264)))))
-(-13 (-847) (-10 -8 (-15 -1356 ((-768) $)) (-15 -1436 ((-1264) $ (-768)))))
+((-3303 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-768)))) (-1806 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-768)) (-5 *2 (-1264)))))
+(-13 (-847) (-10 -8 (-15 -3303 ((-768) $)) (-15 -1806 ((-1264) $ (-768)))))
(((-102) . T) ((-611 (-859)) . T) ((-847) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-641 (-1129)) $) 10)) (-1686 (((-112) $ $) NIL)))
-(((-133) (-13 (-1077) (-10 -8 (-15 -4374 ((-641 (-1129)) $))))) (T -133))
-((-4374 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133)))))
-(-13 (-1077) (-10 -8 (-15 -4374 ((-641 (-1129)) $))))
-((-1754 (((-112) $ $) 47)) (-3976 (((-112) $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-768) "failed") $) 56)) (-2064 (((-768) $) 54)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) 36)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3054 (((-112)) 57)) (-2771 (((-112) (-112)) 59)) (-3386 (((-112) $) 30)) (-4171 (((-112) $) 53)) (-1765 (((-859) $) 28) (($ (-768)) 20)) (-4317 (($) 18 T CONST)) (-4327 (($) 19 T CONST)) (-3034 (($ (-768)) 21)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 32)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 34)) (-1783 (((-3 $ "failed") $ $) 40)) (-1771 (($ $ $) 37)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL) (($ $ $) 52)) (* (($ (-768) $) 46) (($ (-918) $) NIL) (($ $ $) 43)))
-(((-134) (-13 (-847) (-23) (-723) (-1035 (-768)) (-10 -8 (-6 (-4413 "*")) (-15 -1783 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3034 ($ (-768))) (-15 -3386 ((-112) $)) (-15 -4171 ((-112) $)) (-15 -3054 ((-112))) (-15 -2771 ((-112) (-112)))))) (T -134))
-((-1783 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-3034 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-134)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3054 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(-13 (-847) (-23) (-723) (-1035 (-768)) (-10 -8 (-6 (-4413 "*")) (-15 -1783 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3034 ($ (-768))) (-15 -3386 ((-112) $)) (-15 -4171 ((-112) $)) (-15 -3054 ((-112))) (-15 -2771 ((-112) (-112)))))
-((-4356 (((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2082 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
-(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4356 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2082 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-564) (-768) (-172) (-172)) (T -135))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-4356 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4356 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2082 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
-((-1754 (((-112) $ $) NIL)) (-1595 (($ (-641 |#3|)) 63)) (-3659 (($ $) 125) (($ $ (-564) (-564)) 124)) (-3760 (($) 20)) (-2013 (((-3 |#3| "failed") $) 85)) (-2064 ((|#3| $) NIL)) (-2352 (($ $ (-641 (-564))) 126)) (-4345 (((-641 |#3|) $) 58)) (-4224 (((-768) $) 68)) (-3123 (($ $ $) 119)) (-4007 (($) 67)) (-4202 (((-1152) $) NIL)) (-4341 (($) 19)) (-3802 (((-1114) $) NIL)) (-4382 ((|#3| $) 70) ((|#3| $ (-564)) 71) ((|#3| $ (-564) (-564)) 72) ((|#3| $ (-564) (-564) (-564)) 73) ((|#3| $ (-564) (-564) (-564) (-564)) 74) ((|#3| $ (-641 (-564))) 75)) (-3344 (((-768) $) 69)) (-2121 (($ $ (-564) $ (-564)) 120) (($ $ (-564) (-564)) 122)) (-1765 (((-859) $) 93) (($ |#3|) 94) (($ (-240 |#2| |#3|)) 101) (($ (-1136 |#2| |#3|)) 104) (($ (-641 |#3|)) 76) (($ (-641 $)) 82)) (-4317 (($) 95 T CONST)) (-4327 (($) 96 T CONST)) (-1686 (((-112) $ $) 106)) (-1783 (($ $) 112) (($ $ $) 110)) (-1771 (($ $ $) 108)) (* (($ |#3| $) 117) (($ $ |#3|) 118) (($ $ (-564)) 115) (($ (-564) $) 114) (($ $ $) 121)))
-(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-768)) (-470 (-564) (-768)) (-10 -8 (-15 -1765 ($ (-240 |#2| |#3|))) (-15 -1765 ($ (-1136 |#2| |#3|))) (-15 -1765 ($ (-641 |#3|))) (-15 -1765 ($ (-641 $))) (-15 -4224 ((-768) $)) (-15 -4382 (|#3| $)) (-15 -4382 (|#3| $ (-564))) (-15 -4382 (|#3| $ (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-641 (-564)))) (-15 -3123 ($ $ $)) (-15 * ($ $ $)) (-15 -2121 ($ $ (-564) $ (-564))) (-15 -2121 ($ $ (-564) (-564))) (-15 -3659 ($ $)) (-15 -3659 ($ $ (-564) (-564))) (-15 -2352 ($ $ (-641 (-564)))) (-15 -4341 ($)) (-15 -4007 ($)) (-15 -4345 ((-641 |#3|) $)) (-15 -1595 ($ (-641 |#3|))) (-15 -3760 ($)))) (-564) (-768) (-172)) (T -136))
-((-3123 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 *2) (-4 *5 (-172)))) (-4382 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) (-14 *4 (-768)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-564)) (-14 *5 (-768)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-2121 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2121 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-3659 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-3659 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-4341 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-4007 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-1595 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)))) (-3760 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))))
-(-13 (-465 |#3| (-768)) (-470 (-564) (-768)) (-10 -8 (-15 -1765 ($ (-240 |#2| |#3|))) (-15 -1765 ($ (-1136 |#2| |#3|))) (-15 -1765 ($ (-641 |#3|))) (-15 -1765 ($ (-641 $))) (-15 -4224 ((-768) $)) (-15 -4382 (|#3| $)) (-15 -4382 (|#3| $ (-564))) (-15 -4382 (|#3| $ (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-641 (-564)))) (-15 -3123 ($ $ $)) (-15 * ($ $ $)) (-15 -2121 ($ $ (-564) $ (-564))) (-15 -2121 ($ $ (-564) (-564))) (-15 -3659 ($ $)) (-15 -3659 ($ $ (-564) (-564))) (-15 -2352 ($ $ (-641 (-564)))) (-15 -4341 ($)) (-15 -4007 ($)) (-15 -4345 ((-641 |#3|) $)) (-15 -1595 ($ (-641 |#3|))) (-15 -3760 ($))))
-((-1754 (((-112) $ $) NIL)) (-4324 (((-1129) $) 11)) (-4312 (((-1129) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-137) (-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1129) $))))) (T -137))
-((-4312 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))))
-(-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1129) $))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3339 (((-186) $) 10)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-641 (-1129)) $) 13)) (-1686 (((-112) $ $) NIL)))
-(((-138) (-13 (-1077) (-10 -8 (-15 -3339 ((-186) $)) (-15 -4374 ((-641 (-1129)) $))))) (T -138))
-((-3339 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138)))))
-(-13 (-1077) (-10 -8 (-15 -3339 ((-186) $)) (-15 -4374 ((-641 (-1129)) $))))
-((-1754 (((-112) $ $) NIL)) (-1632 (((-641 (-862)) $) NIL)) (-4363 (((-506) $) NIL)) (-4202 (((-1152) $) NIL)) (-3339 (((-186) $) NIL)) (-3802 (((-1114) $) NIL)) (-2751 (((-641 (-112)) $) NIL)) (-1765 (((-859) $) NIL) (((-187) $) 6)) (-2189 (((-55) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-641 (-1129)) $) 10)) (-1720 (((-112) $ $) NIL)))
+(((-133) (-13 (-1077) (-10 -8 (-15 -4347 ((-641 (-1129)) $))))) (T -133))
+((-4347 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133)))))
+(-13 (-1077) (-10 -8 (-15 -4347 ((-641 (-1129)) $))))
+((-3702 (((-112) $ $) 47)) (-1556 (((-112) $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-768) "failed") $) 56)) (-2376 (((-768) $) 54)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) 36)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3669 (((-112)) 57)) (-2800 (((-112) (-112)) 59)) (-3916 (((-112) $) 30)) (-2797 (((-112) $) 53)) (-3714 (((-859) $) 28) (($ (-768)) 20)) (-4312 (($) 18 T CONST)) (-4323 (($) 19 T CONST)) (-3456 (($ (-768)) 21)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 32)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 34)) (-1828 (((-3 $ "failed") $ $) 40)) (-1814 (($ $ $) 37)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL) (($ $ $) 52)) (* (($ (-768) $) 46) (($ (-918) $) NIL) (($ $ $) 43)))
+(((-134) (-13 (-847) (-23) (-723) (-1035 (-768)) (-10 -8 (-6 (-4414 "*")) (-15 -1828 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3456 ($ (-768))) (-15 -3916 ((-112) $)) (-15 -2797 ((-112) $)) (-15 -3669 ((-112))) (-15 -2800 ((-112) (-112)))))) (T -134))
+((-1828 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-134)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3669 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(-13 (-847) (-23) (-723) (-1035 (-768)) (-10 -8 (-6 (-4414 "*")) (-15 -1828 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3456 ($ (-768))) (-15 -3916 ((-112) $)) (-15 -2797 ((-112) $)) (-15 -3669 ((-112))) (-15 -2800 ((-112) (-112)))))
+((-3210 (((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2313 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
+(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3210 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2313 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-564) (-768) (-172) (-172)) (T -135))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3210 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2313 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
+((-3702 (((-112) $ $) NIL)) (-4089 (($ (-641 |#3|)) 63)) (-3437 (($ $) 125) (($ $ (-564) (-564)) 124)) (-3180 (($) 20)) (-2224 (((-3 |#3| "failed") $) 85)) (-2376 ((|#3| $) NIL)) (-2958 (($ $ (-641 (-564))) 126)) (-3198 (((-641 |#3|) $) 58)) (-1595 (((-768) $) 68)) (-3142 (($ $ $) 119)) (-3620 (($) 67)) (-1868 (((-1152) $) NIL)) (-3627 (($) 19)) (-3844 (((-1114) $) NIL)) (-4382 ((|#3| $) 70) ((|#3| $ (-564)) 71) ((|#3| $ (-564) (-564)) 72) ((|#3| $ (-564) (-564) (-564)) 73) ((|#3| $ (-564) (-564) (-564) (-564)) 74) ((|#3| $ (-641 (-564))) 75)) (-3475 (((-768) $) 69)) (-2630 (($ $ (-564) $ (-564)) 120) (($ $ (-564) (-564)) 122)) (-3714 (((-859) $) 93) (($ |#3|) 94) (($ (-240 |#2| |#3|)) 101) (($ (-1136 |#2| |#3|)) 104) (($ (-641 |#3|)) 76) (($ (-641 $)) 82)) (-4312 (($) 95 T CONST)) (-4323 (($) 96 T CONST)) (-1720 (((-112) $ $) 106)) (-1828 (($ $) 112) (($ $ $) 110)) (-1814 (($ $ $) 108)) (* (($ |#3| $) 117) (($ $ |#3|) 118) (($ $ (-564)) 115) (($ (-564) $) 114) (($ $ $) 121)))
+(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-768)) (-470 (-564) (-768)) (-10 -8 (-15 -3714 ($ (-240 |#2| |#3|))) (-15 -3714 ($ (-1136 |#2| |#3|))) (-15 -3714 ($ (-641 |#3|))) (-15 -3714 ($ (-641 $))) (-15 -1595 ((-768) $)) (-15 -4382 (|#3| $)) (-15 -4382 (|#3| $ (-564))) (-15 -4382 (|#3| $ (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-641 (-564)))) (-15 -3142 ($ $ $)) (-15 * ($ $ $)) (-15 -2630 ($ $ (-564) $ (-564))) (-15 -2630 ($ $ (-564) (-564))) (-15 -3437 ($ $)) (-15 -3437 ($ $ (-564) (-564))) (-15 -2958 ($ $ (-641 (-564)))) (-15 -3627 ($)) (-15 -3620 ($)) (-15 -3198 ((-641 |#3|) $)) (-15 -4089 ($ (-641 |#3|))) (-15 -3180 ($)))) (-564) (-768) (-172)) (T -136))
+((-3142 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 *2) (-4 *5 (-172)))) (-4382 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) (-14 *4 (-768)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-564)) (-14 *5 (-768)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-2630 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2630 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-3437 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2958 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-3627 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-3620 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-4089 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)))) (-3180 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))))
+(-13 (-465 |#3| (-768)) (-470 (-564) (-768)) (-10 -8 (-15 -3714 ($ (-240 |#2| |#3|))) (-15 -3714 ($ (-1136 |#2| |#3|))) (-15 -3714 ($ (-641 |#3|))) (-15 -3714 ($ (-641 $))) (-15 -1595 ((-768) $)) (-15 -4382 (|#3| $)) (-15 -4382 (|#3| $ (-564))) (-15 -4382 (|#3| $ (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-641 (-564)))) (-15 -3142 ($ $ $)) (-15 * ($ $ $)) (-15 -2630 ($ $ (-564) $ (-564))) (-15 -2630 ($ $ (-564) (-564))) (-15 -3437 ($ $)) (-15 -3437 ($ $ (-564) (-564))) (-15 -2958 ($ $ (-641 (-564)))) (-15 -3627 ($)) (-15 -3620 ($)) (-15 -3198 ((-641 |#3|) $)) (-15 -4089 ($ (-641 |#3|))) (-15 -3180 ($))))
+((-3702 (((-112) $ $) NIL)) (-3119 (((-1129) $) 11)) (-3109 (((-1129) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-137) (-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1129) $))))) (T -137))
+((-3109 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))))
+(-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1129) $))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3383 (((-186) $) 10)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-641 (-1129)) $) 13)) (-1720 (((-112) $ $) NIL)))
+(((-138) (-13 (-1077) (-10 -8 (-15 -3383 ((-186) $)) (-15 -4347 ((-641 (-1129)) $))))) (T -138))
+((-3383 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138)))))
+(-13 (-1077) (-10 -8 (-15 -3383 ((-186) $)) (-15 -4347 ((-641 (-1129)) $))))
+((-3702 (((-112) $ $) NIL)) (-1775 (((-641 (-862)) $) NIL)) (-4337 (((-506) $) NIL)) (-1868 (((-1152) $) NIL)) (-3383 (((-186) $) NIL)) (-3844 (((-1114) $) NIL)) (-2610 (((-641 (-112)) $) NIL)) (-3714 (((-859) $) NIL) (((-187) $) 6)) (-2004 (((-55) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-139) (-13 (-185) (-611 (-187)))) (T -139))
NIL
(-13 (-185) (-611 (-187)))
-((-3527 (((-641 (-183)) $) 13)) (-2834 (((-641 (-183)) $) 14)) (-3937 (((-641 (-835)) $) 10)) (-3836 (((-139) $) 7)) (-1765 (((-859) $) 16)))
-(((-140) (-13 (-611 (-859)) (-10 -8 (-15 -3836 ((-139) $)) (-15 -3937 ((-641 (-835)) $)) (-15 -3527 ((-641 (-183)) $)) (-15 -2834 ((-641 (-183)) $))))) (T -140))
-((-3836 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-641 (-835))) (-5 *1 (-140)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -3836 ((-139) $)) (-15 -3937 ((-641 (-835)) $)) (-15 -3527 ((-641 (-183)) $)) (-15 -2834 ((-641 (-183)) $))))
-((-1754 (((-112) $ $) NIL)) (-2851 (($) 17 T CONST)) (-2010 (($) NIL (|has| (-144) (-368)))) (-3423 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2032 (($ $ $) NIL)) (-2723 (((-112) $ $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-3042 (((-768)) NIL (|has| (-144) (-368)))) (-3581 (($) NIL) (($ (-641 (-144))) NIL)) (-4194 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-1907 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411))) (($ (-144) $) 61 (|has| $ (-6 -4411)))) (-2359 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-4367 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2542 (($) NIL (|has| (-144) (-368)))) (-3080 (((-641 (-144)) $) 70 (|has| $ (-6 -4411)))) (-2081 (((-112) $ $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-3571 (((-144) $) NIL (|has| (-144) (-847)))) (-3817 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-1547 (((-144) $) NIL (|has| (-144) (-847)))) (-3513 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-144) (-144)) $) 65)) (-1816 (($) 18 T CONST)) (-2209 (((-918) $) NIL (|has| (-144) (-368)))) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-1617 (($ $ $) 30)) (-1833 (((-144) $) 62)) (-2098 (($ (-144) $) 60)) (-1403 (($ (-918)) NIL (|has| (-144) (-368)))) (-1574 (($) 16 T CONST)) (-3802 (((-1114) $) NIL)) (-2343 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3389 (((-144) $) 63)) (-1467 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 58)) (-2338 (($) 15 T CONST)) (-2003 (($ $ $) 32) (($ $ (-144)) NIL)) (-3784 (($ (-641 (-144))) NIL) (($) NIL)) (-3815 (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-1152) $) 37) (((-536) $) NIL (|has| (-144) (-612 (-536)))) (((-641 (-144)) $) 35)) (-1776 (($ (-641 (-144))) NIL)) (-3481 (($ $) 33 (|has| (-144) (-368)))) (-1765 (((-859) $) 55)) (-1483 (($ (-1152)) 14) (($ (-641 (-144))) 52)) (-2165 (((-768) $) NIL)) (-4086 (($) 59) (($ (-641 (-144))) NIL)) (-2652 (($ (-641 (-144))) NIL)) (-2237 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2879 (($) 21 T CONST)) (-2598 (($) 20 T CONST)) (-1686 (((-112) $ $) 24)) (-2589 (((-768) $) 57 (|has| $ (-6 -4411)))))
-(((-141) (-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -1483 ($ (-1152))) (-15 -1483 ($ (-641 (-144)))) (-15 -2338 ($) -3246) (-15 -1574 ($) -3246) (-15 -2851 ($) -3246) (-15 -1816 ($) -3246) (-15 -2598 ($) -3246) (-15 -2879 ($) -3246)))) (T -141))
-((-1483 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141)))) (-2338 (*1 *1) (-5 *1 (-141))) (-1574 (*1 *1) (-5 *1 (-141))) (-2851 (*1 *1) (-5 *1 (-141))) (-1816 (*1 *1) (-5 *1 (-141))) (-2598 (*1 *1) (-5 *1 (-141))) (-2879 (*1 *1) (-5 *1 (-141))))
-(-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -1483 ($ (-1152))) (-15 -1483 ($ (-641 (-144)))) (-15 -2338 ($) -3246) (-15 -1574 ($) -3246) (-15 -2851 ($) -3246) (-15 -1816 ($) -3246) (-15 -2598 ($) -3246) (-15 -2879 ($) -3246)))
-((-3470 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3946 ((|#1| |#3|) 9)) (-4149 ((|#3| |#3|) 15)))
-(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3946 (|#1| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -3470 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-989 |#1|) (-373 |#2|)) (T -142))
-((-3470 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4)))))
-(-10 -7 (-15 -3946 (|#1| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -3470 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2314 (($ $ $) 8)) (-1613 (($ $) 7)) (-1939 (($ $ $) 6)))
+((-1613 (((-641 (-183)) $) 13)) (-3158 (((-641 (-183)) $) 14)) (-4293 (((-641 (-835)) $) 10)) (-2844 (((-139) $) 7)) (-3714 (((-859) $) 16)))
+(((-140) (-13 (-611 (-859)) (-10 -8 (-15 -2844 ((-139) $)) (-15 -4293 ((-641 (-835)) $)) (-15 -1613 ((-641 (-183)) $)) (-15 -3158 ((-641 (-183)) $))))) (T -140))
+((-2844 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-641 (-835))) (-5 *1 (-140)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))) (-3158 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -2844 ((-139) $)) (-15 -4293 ((-641 (-835)) $)) (-15 -1613 ((-641 (-183)) $)) (-15 -3158 ((-641 (-183)) $))))
+((-3702 (((-112) $ $) NIL)) (-4225 (($) 17 T CONST)) (-3866 (($) NIL (|has| (-144) (-368)))) (-3452 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2935 (($ $ $) NIL)) (-2303 (((-112) $ $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-2018 (((-768)) NIL (|has| (-144) (-368)))) (-3633 (($) NIL) (($ (-641 (-144))) NIL)) (-1773 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-4074 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412))) (($ (-144) $) 61 (|has| $ (-6 -4412)))) (-2514 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-1728 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4412))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4412))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-2939 (($) NIL (|has| (-144) (-368)))) (-4244 (((-641 (-144)) $) 70 (|has| $ (-6 -4412)))) (-2214 (((-112) $ $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-3428 (((-144) $) NIL (|has| (-144) (-847)))) (-2572 (((-641 (-144)) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-3413 (((-144) $) NIL (|has| (-144) (-847)))) (-1988 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-144) (-144)) $) 65)) (-2603 (($) 18 T CONST)) (-4031 (((-918) $) NIL (|has| (-144) (-368)))) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-4302 (($ $ $) 30)) (-2775 (((-144) $) 62)) (-2373 (($ (-144) $) 60)) (-3338 (($ (-918)) NIL (|has| (-144) (-368)))) (-2079 (($) 16 T CONST)) (-3844 (((-1114) $) NIL)) (-2905 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3950 (((-144) $) 63)) (-2280 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) 58)) (-2863 (($) 15 T CONST)) (-3796 (($ $ $) 32) (($ $ (-144)) NIL)) (-3372 (($ (-641 (-144))) NIL) (($) NIL)) (-3855 (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094)))) (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-1152) $) 37) (((-536) $) NIL (|has| (-144) (-612 (-536)))) (((-641 (-144)) $) 35)) (-3725 (($ (-641 (-144))) NIL)) (-2432 (($ $) 33 (|has| (-144) (-368)))) (-3714 (((-859) $) 55)) (-2460 (($ (-1152)) 14) (($ (-641 (-144))) 52)) (-1754 (((-768) $) NIL)) (-4208 (($) 59) (($ (-641 (-144))) NIL)) (-3976 (($ (-641 (-144))) NIL)) (-4289 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-1440 (($) 21 T CONST)) (-1572 (($) 20 T CONST)) (-1720 (((-112) $ $) 24)) (-2779 (((-768) $) 57 (|has| $ (-6 -4412)))))
+(((-141) (-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -2460 ($ (-1152))) (-15 -2460 ($ (-641 (-144)))) (-15 -2863 ($) -2222) (-15 -2079 ($) -2222) (-15 -4225 ($) -2222) (-15 -2603 ($) -2222) (-15 -1572 ($) -2222) (-15 -1440 ($) -2222)))) (T -141))
+((-2460 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141)))) (-2863 (*1 *1) (-5 *1 (-141))) (-2079 (*1 *1) (-5 *1 (-141))) (-4225 (*1 *1) (-5 *1 (-141))) (-2603 (*1 *1) (-5 *1 (-141))) (-1572 (*1 *1) (-5 *1 (-141))) (-1440 (*1 *1) (-5 *1 (-141))))
+(-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -2460 ($ (-1152))) (-15 -2460 ($ (-641 (-144)))) (-15 -2863 ($) -2222) (-15 -2079 ($) -2222) (-15 -4225 ($) -2222) (-15 -2603 ($) -2222) (-15 -1572 ($) -2222) (-15 -1440 ($) -2222)))
+((-2328 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4376 ((|#1| |#3|) 9)) (-2606 ((|#3| |#3|) 15)))
+(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4376 (|#1| |#3|)) (-15 -2606 (|#3| |#3|)) (-15 -2328 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-989 |#1|) (-373 |#2|)) (T -142))
+((-2328 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-2606 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4)))))
+(-10 -7 (-15 -4376 (|#1| |#3|)) (-15 -2606 (|#3| |#3|)) (-15 -2328 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3742 (($ $ $) 8)) (-4265 (($ $) 7)) (-4389 (($ $ $) 6)))
(((-143) (-140)) (T -143))
-((-2314 (*1 *1 *1 *1) (-4 *1 (-143))) (-1613 (*1 *1 *1) (-4 *1 (-143))) (-1939 (*1 *1 *1 *1) (-4 *1 (-143))))
-(-13 (-10 -8 (-15 -1939 ($ $ $)) (-15 -1613 ($ $)) (-15 -2314 ($ $ $))))
-((-1754 (((-112) $ $) NIL)) (-2919 (((-112) $) 36)) (-2851 (($ $) 52)) (-4230 (($) 23)) (-3042 (((-768)) 10)) (-2542 (($) 22)) (-2956 (($) 24)) (-1360 (((-768) $) 18)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-3539 (((-112) $) 38)) (-1816 (($ $) 53)) (-2209 (((-918) $) 20)) (-4202 (((-1152) $) 46)) (-1403 (($ (-918)) 17)) (-3102 (((-112) $) 34)) (-3802 (((-1114) $) NIL)) (-2809 (($) 25)) (-2034 (((-112) $) 32)) (-1765 (((-859) $) 27)) (-3259 (($ (-768)) 16) (($ (-1152)) 51)) (-2893 (((-112) $) 42)) (-3594 (((-112) $) 40)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 7)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 8)))
-(((-144) (-13 (-841) (-10 -8 (-15 -1360 ((-768) $)) (-15 -3259 ($ (-768))) (-15 -3259 ($ (-1152))) (-15 -4230 ($)) (-15 -2956 ($)) (-15 -2809 ($)) (-15 -2851 ($ $)) (-15 -1816 ($ $)) (-15 -2034 ((-112) $)) (-15 -3102 ((-112) $)) (-15 -3594 ((-112) $)) (-15 -2919 ((-112) $)) (-15 -3539 ((-112) $)) (-15 -2893 ((-112) $))))) (T -144))
-((-1360 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-144)))) (-3259 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-144)))) (-3259 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144)))) (-4230 (*1 *1) (-5 *1 (-144))) (-2956 (*1 *1) (-5 *1 (-144))) (-2809 (*1 *1) (-5 *1 (-144))) (-2851 (*1 *1 *1) (-5 *1 (-144))) (-1816 (*1 *1 *1) (-5 *1 (-144))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2919 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(-13 (-841) (-10 -8 (-15 -1360 ((-768) $)) (-15 -3259 ($ (-768))) (-15 -3259 ($ (-1152))) (-15 -4230 ($)) (-15 -2956 ($)) (-15 -2809 ($)) (-15 -2851 ($ $)) (-15 -1816 ($ $)) (-15 -2034 ((-112) $)) (-15 -3102 ((-112) $)) (-15 -3594 ((-112) $)) (-15 -2919 ((-112) $)) (-15 -3539 ((-112) $)) (-15 -2893 ((-112) $))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-2864 (((-3 $ "failed") $) 35)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3742 (*1 *1 *1 *1) (-4 *1 (-143))) (-4265 (*1 *1 *1) (-4 *1 (-143))) (-4389 (*1 *1 *1 *1) (-4 *1 (-143))))
+(-13 (-10 -8 (-15 -4389 ($ $ $)) (-15 -4265 ($ $)) (-15 -3742 ($ $ $))))
+((-3702 (((-112) $ $) NIL)) (-3677 (((-112) $) 36)) (-4225 (($ $) 52)) (-2117 (($) 23)) (-2018 (((-768)) 10)) (-2939 (($) 22)) (-3975 (($) 24)) (-4156 (((-768) $) 18)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-1710 (((-112) $) 38)) (-2603 (($ $) 53)) (-4031 (((-918) $) 20)) (-1868 (((-1152) $) 46)) (-3338 (($ (-918)) 17)) (-2969 (((-112) $) 34)) (-3844 (((-1114) $) NIL)) (-1971 (($) 25)) (-3778 (((-112) $) 32)) (-3714 (((-859) $) 27)) (-3319 (($ (-768)) 16) (($ (-1152)) 51)) (-1591 (((-112) $) 42)) (-4075 (((-112) $) 40)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 7)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 8)))
+(((-144) (-13 (-841) (-10 -8 (-15 -4156 ((-768) $)) (-15 -3319 ($ (-768))) (-15 -3319 ($ (-1152))) (-15 -2117 ($)) (-15 -3975 ($)) (-15 -1971 ($)) (-15 -4225 ($ $)) (-15 -2603 ($ $)) (-15 -3778 ((-112) $)) (-15 -2969 ((-112) $)) (-15 -4075 ((-112) $)) (-15 -3677 ((-112) $)) (-15 -1710 ((-112) $)) (-15 -1591 ((-112) $))))) (T -144))
+((-4156 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-144)))) (-3319 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-144)))) (-3319 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144)))) (-2117 (*1 *1) (-5 *1 (-144))) (-3975 (*1 *1) (-5 *1 (-144))) (-1971 (*1 *1) (-5 *1 (-144))) (-4225 (*1 *1 *1) (-5 *1 (-144))) (-2603 (*1 *1 *1) (-5 *1 (-144))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(-13 (-841) (-10 -8 (-15 -4156 ((-768) $)) (-15 -3319 ($ (-768))) (-15 -3319 ($ (-1152))) (-15 -2117 ($)) (-15 -3975 ($)) (-15 -1971 ($)) (-15 -4225 ($ $)) (-15 -2603 ($ $)) (-15 -3778 ((-112) $)) (-15 -2969 ((-112) $)) (-15 -4075 ((-112) $)) (-15 -3677 ((-112) $)) (-15 -1710 ((-112) $)) (-15 -1591 ((-112) $))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-4363 (((-3 $ "failed") $) 35)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-145) (-140)) (T -145))
-((-2864 (*1 *1 *1) (|partial| -4 *1 (-145))))
-(-13 (-1046) (-10 -8 (-15 -2864 ((-3 $ "failed") $))))
+((-4363 (*1 *1 *1) (|partial| -4 *1 (-145))))
+(-13 (-1046) (-10 -8 (-15 -4363 ((-3 $ "failed") $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-3216 ((|#1| (-685 |#1|) |#1|) 23)))
-(((-146 |#1|) (-10 -7 (-15 -3216 (|#1| (-685 |#1|) |#1|))) (-172)) (T -146))
-((-3216 (*1 *2 *3 *2) (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
-(-10 -7 (-15 -3216 (|#1| (-685 |#1|) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-1650 ((|#1| (-685 |#1|) |#1|) 23)))
+(((-146 |#1|) (-10 -7 (-15 -1650 (|#1| (-685 |#1|) |#1|))) (-172)) (T -146))
+((-1650 (*1 *2 *3 *2) (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
+(-10 -7 (-15 -1650 (|#1| (-685 |#1|) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-147) (-140)) (T -147))
NIL
(-13 (-1046))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-3237 (((-2 (|:| -3747 (-768)) (|:| -1662 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768)) 75)) (-1985 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|) 55)) (-2895 (((-2 (|:| -1662 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 40)) (-2552 ((|#1| |#3| |#3|) 43)) (-2407 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 20)) (-4329 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|) 52)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2895 ((-2 (|:| -1662 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1985 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|)) (-15 -3237 ((-2 (|:| -3747 (-768)) (|:| -1662 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768))) (-15 -2552 (|#1| |#3| |#3|)) (-15 -2407 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -4329 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|))) (T -148))
-((-4329 (*1 *2 *3 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-768)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-2407 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3)))) (-2552 (*1 *2 *3 *3) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-3237 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-768)) (-4 *7 (-1235 *3)))) (-1985 (*1 *2 *3) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-768)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-2895 (*1 *2 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -1662 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
-(-10 -7 (-15 -2895 ((-2 (|:| -1662 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1985 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|)) (-15 -3237 ((-2 (|:| -3747 (-768)) (|:| -1662 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768))) (-15 -2552 (|#1| |#3| |#3|)) (-15 -2407 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -4329 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|)))
-((-2111 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 34)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -2111 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)))) (-545) (-166 |#1|)) (T -149))
-((-2111 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))))
-(-10 -7 (-15 -2111 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))))
-((-2164 (($ (-1 (-112) |#2|) $) 35)) (-3104 (($ $) 42)) (-2359 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-4367 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-2343 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-1467 (((-112) (-1 (-112) |#2|) $) 22)) (-3815 (((-768) (-1 (-112) |#2|) $) 18) (((-768) |#2| $) NIL)) (-2237 (((-112) (-1 (-112) |#2|) $) 21)) (-2589 (((-768) $) 12)))
-(((-150 |#1| |#2|) (-10 -8 (-15 -3104 (|#1| |#1|)) (-15 -2359 (|#1| |#2| |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2359 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2343 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2589 ((-768) |#1|))) (-151 |#2|) (-1209)) (T -150))
-NIL
-(-10 -8 (-15 -3104 (|#1| |#1|)) (-15 -2359 (|#1| |#2| |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2359 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2343 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2589 ((-768) |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-2164 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3104 (($ $) 41 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411))) (($ |#1| $) 42 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 40 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 49)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-1881 (((-2 (|:| -3078 (-768)) (|:| -1817 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768)) 75)) (-3583 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|) 55)) (-1610 (((-2 (|:| -1817 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 40)) (-4214 ((|#1| |#3| |#3|) 43)) (-2582 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 20)) (-3506 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|) 52)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1610 ((-2 (|:| -1817 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3583 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|)) (-15 -1881 ((-2 (|:| -3078 (-768)) (|:| -1817 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768))) (-15 -4214 (|#1| |#3| |#3|)) (-15 -2582 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -3506 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|))) (T -148))
+((-3506 (*1 *2 *3 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-768)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-2582 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3)))) (-4214 (*1 *2 *3 *3) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-768)) (-4 *7 (-1235 *3)))) (-3583 (*1 *2 *3) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-768)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -1817 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
+(-10 -7 (-15 -1610 ((-2 (|:| -1817 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3583 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|)) (-15 -1881 ((-2 (|:| -3078 (-768)) (|:| -1817 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768))) (-15 -4214 (|#1| |#3| |#3|)) (-15 -2582 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -3506 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|)))
+((-2508 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 34)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -2508 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)))) (-545) (-166 |#1|)) (T -149))
+((-2508 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))))
+(-10 -7 (-15 -2508 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))))
+((-4148 (($ (-1 (-112) |#2|) $) 35)) (-2084 (($ $) 42)) (-2514 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-1728 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-2905 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2280 (((-112) (-1 (-112) |#2|) $) 22)) (-3855 (((-768) (-1 (-112) |#2|) $) 18) (((-768) |#2| $) NIL)) (-4289 (((-112) (-1 (-112) |#2|) $) 21)) (-2779 (((-768) $) 12)))
+(((-150 |#1| |#2|) (-10 -8 (-15 -2084 (|#1| |#1|)) (-15 -2514 (|#1| |#2| |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4148 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2514 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2905 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3855 ((-768) |#2| |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2779 ((-768) |#1|))) (-151 |#2|) (-1209)) (T -150))
+NIL
+(-10 -8 (-15 -2084 (|#1| |#1|)) (-15 -2514 (|#1| |#2| |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4148 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2514 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2905 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3855 ((-768) |#2| |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2779 ((-768) |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-4148 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2084 (($ $) 41 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4412))) (($ |#1| $) 42 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 40 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 49)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-151 |#1|) (-140) (-1209)) (T -151))
-((-1776 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3)))) (-2343 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-4367 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-4367 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2359 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-4367 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2359 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-3104 (*1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))))
-(-13 (-489 |t#1|) (-10 -8 (-15 -1776 ($ (-641 |t#1|))) (-15 -2343 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4411)) (PROGN (-15 -4367 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4367 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2359 ($ (-1 (-112) |t#1|) $)) (-15 -2164 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -4367 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2359 ($ |t#1| $)) (-15 -3104 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) 113)) (-2419 (((-112) $) NIL)) (-4145 (($ |#2| (-641 (-918))) 73)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3745 (($ (-918)) 61)) (-3850 (((-134)) 26)) (-1765 (((-859) $) 88) (($ (-564)) 57) (($ |#2|) 58)) (-1757 ((|#2| $ (-641 (-918))) 76)) (-1965 (((-768)) 23 T CONST)) (-4317 (($) 51 T CONST)) (-4327 (($) 55 T CONST)) (-1686 (((-112) $ $) 37)) (-1793 (($ $ |#2|) NIL)) (-1783 (($ $) 46) (($ $ $) 44)) (-1771 (($ $ $) 42)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL)))
-(((-152 |#1| |#2| |#3|) (-13 (-1046) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -3745 ($ (-918))) (-15 -4145 ($ |#2| (-641 (-918)))) (-15 -1757 (|#2| $ (-641 (-918)))) (-15 -1926 ((-3 $ "failed") $)))) (-918) (-363) (-990 |#1| |#2|)) (T -152))
-((-1926 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-918)) (-4 *3 (-363)) (-14 *4 (-990 *2 *3)))) (-3745 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-990 *3 *4)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-918))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) (-4 *2 (-363)) (-14 *5 (-990 *4 *2)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-918))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) (-14 *5 (-990 *4 *2)))))
-(-13 (-1046) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -3745 ($ (-918))) (-15 -4145 ($ |#2| (-641 (-918)))) (-15 -1757 (|#2| $ (-641 (-918)))) (-15 -1926 ((-3 $ "failed") $))))
-((-1400 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225)) 60)) (-1437 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564))) 97) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924)) 98)) (-1817 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225))))) 101) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225)))) 100) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564))) 93) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924)) 94)))
-(((-153) (-10 -7 (-15 -1817 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -1817 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -1437 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -1437 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -1400 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1817 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225))))) (-15 -1817 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))))))) (T -153))
-((-1817 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 (-225))))))) (-1817 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-940 (-225)))))) (-1400 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 *4)))) (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4)))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 *4)))))) (-1437 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-1817 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))))
-(-10 -7 (-15 -1817 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -1817 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -1437 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -1437 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -1400 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1817 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225))))) (-15 -1817 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3669 (((-641 (-1129)) $) 20)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-1129) $) 9)) (-1686 (((-112) $ $) NIL)))
-(((-154) (-13 (-1077) (-10 -8 (-15 -3669 ((-641 (-1129)) $)) (-15 -4374 ((-1129) $))))) (T -154))
-((-3669 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))))
-(-13 (-1077) (-10 -8 (-15 -3669 ((-641 (-1129)) $)) (-15 -4374 ((-1129) $))))
-((-2125 (((-641 (-169 |#2|)) |#1| |#2|) 50)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -2125 ((-641 (-169 |#2|)) |#1| |#2|))) (-1235 (-169 (-564))) (-13 (-363) (-845))) (T -155))
-((-2125 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-845))))))
-(-10 -7 (-15 -2125 ((-641 (-169 |#2|)) |#1| |#2|)))
-((-1754 (((-112) $ $) NIL)) (-4324 (((-1208) $) 12)) (-4312 (((-1129) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-156) (-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1208) $))))) (T -156))
-((-4312 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156)))))
-(-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1208) $))))
-((-1754 (((-112) $ $) NIL)) (-1723 (($) 40)) (-3865 (($) 39)) (-3710 (((-918)) 45)) (-4202 (((-1152) $) NIL)) (-3955 (((-564) $) 43)) (-3802 (((-1114) $) NIL)) (-4140 (($) 41)) (-3309 (($ (-564)) 46)) (-1765 (((-859) $) 52)) (-3275 (($) 42)) (-1686 (((-112) $ $) 37)) (-1771 (($ $ $) 34)) (* (($ (-918) $) 44) (($ (-225) $) 11)))
-(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-918) $)) (-15 * ($ (-225) $)) (-15 -1771 ($ $ $)) (-15 -3865 ($)) (-15 -1723 ($)) (-15 -4140 ($)) (-15 -3275 ($)) (-15 -3955 ((-564) $)) (-15 -3710 ((-918))) (-15 -3309 ($ (-564)))))) (T -157))
-((-1771 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3865 (*1 *1) (-5 *1 (-157))) (-1723 (*1 *1) (-5 *1 (-157))) (-4140 (*1 *1) (-5 *1 (-157))) (-3275 (*1 *1) (-5 *1 (-157))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) (-3710 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) (-3309 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-918) $)) (-15 * ($ (-225) $)) (-15 -1771 ($ $ $)) (-15 -3865 ($)) (-15 -1723 ($)) (-15 -4140 ($)) (-15 -3275 ($)) (-15 -3955 ((-564) $)) (-15 -3710 ((-918))) (-15 -3309 ($ (-564)))))
-((-2750 ((|#2| |#2| (-1086 |#2|)) 98) ((|#2| |#2| (-1170)) 75)) (-3123 ((|#2| |#2| (-1086 |#2|)) 97) ((|#2| |#2| (-1170)) 74)) (-2314 ((|#2| |#2| |#2|) 25)) (-1826 (((-114) (-114)) 111)) (-2211 ((|#2| (-641 |#2|)) 130)) (-1494 ((|#2| (-641 |#2|)) 151)) (-1963 ((|#2| (-641 |#2|)) 138)) (-2976 ((|#2| |#2|) 136)) (-2156 ((|#2| (-641 |#2|)) 124)) (-3114 ((|#2| (-641 |#2|)) 125)) (-3266 ((|#2| (-641 |#2|)) 149)) (-2071 ((|#2| |#2| (-1170)) 63) ((|#2| |#2|) 62)) (-1613 ((|#2| |#2|) 21)) (-1939 ((|#2| |#2| |#2|) 24)) (-1573 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1939 (|#2| |#2| |#2|)) (-15 -2314 (|#2| |#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -2071 (|#2| |#2|)) (-15 -2071 (|#2| |#2| (-1170))) (-15 -2750 (|#2| |#2| (-1170))) (-15 -2750 (|#2| |#2| (-1086 |#2|))) (-15 -3123 (|#2| |#2| (-1170))) (-15 -3123 (|#2| |#2| (-1086 |#2|))) (-15 -2976 (|#2| |#2|)) (-15 -3266 (|#2| (-641 |#2|))) (-15 -1963 (|#2| (-641 |#2|))) (-15 -1494 (|#2| (-641 |#2|))) (-15 -2156 (|#2| (-641 |#2|))) (-15 -3114 (|#2| (-641 |#2|))) (-15 -2211 (|#2| (-641 |#2|)))) (-13 (-847) (-556)) (-430 |#1|)) (T -158))
-((-2211 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3123 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)))) (-3123 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2750 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)))) (-2750 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2071 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2071 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2314 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1939 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))))
-(-10 -7 (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1939 (|#2| |#2| |#2|)) (-15 -2314 (|#2| |#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -2071 (|#2| |#2|)) (-15 -2071 (|#2| |#2| (-1170))) (-15 -2750 (|#2| |#2| (-1170))) (-15 -2750 (|#2| |#2| (-1086 |#2|))) (-15 -3123 (|#2| |#2| (-1170))) (-15 -3123 (|#2| |#2| (-1086 |#2|))) (-15 -2976 (|#2| |#2|)) (-15 -3266 (|#2| (-641 |#2|))) (-15 -1963 (|#2| (-641 |#2|))) (-15 -1494 (|#2| (-641 |#2|))) (-15 -2156 (|#2| (-641 |#2|))) (-15 -3114 (|#2| (-641 |#2|))) (-15 -2211 (|#2| (-641 |#2|))))
-((-2173 ((|#1| |#1| |#1|) 65)) (-1883 ((|#1| |#1| |#1|) 62)) (-2314 ((|#1| |#1| |#1|) 56)) (-1381 ((|#1| |#1|) 45)) (-2392 ((|#1| |#1| (-641 |#1|)) 53)) (-1613 ((|#1| |#1|) 47)) (-1939 ((|#1| |#1| |#1|) 50)))
-(((-159 |#1|) (-10 -7 (-15 -1939 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -2392 (|#1| |#1| (-641 |#1|))) (-15 -1381 (|#1| |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 -1883 (|#1| |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|))) (-545)) (T -159))
-((-2173 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1883 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2314 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1381 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2392 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-1613 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1939 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(-10 -7 (-15 -1939 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -2392 (|#1| |#1| (-641 |#1|))) (-15 -1381 (|#1| |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 -1883 (|#1| |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|)))
-((-2750 (($ $ (-1170)) 12) (($ $ (-1086 $)) 11)) (-3123 (($ $ (-1170)) 10) (($ $ (-1086 $)) 9)) (-2314 (($ $ $) 8)) (-2071 (($ $) 14) (($ $ (-1170)) 13)) (-1613 (($ $) 7)) (-1939 (($ $ $) 6)))
+((-3725 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3)))) (-2905 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-1728 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4412)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-1728 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4412)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4412)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-4148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4412)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-1728 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4412)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2514 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-2084 (*1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))))
+(-13 (-489 |t#1|) (-10 -8 (-15 -3725 ($ (-641 |t#1|))) (-15 -2905 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4412)) (PROGN (-15 -1728 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1728 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2514 ($ (-1 (-112) |t#1|) $)) (-15 -4148 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -1728 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2514 ($ |t#1| $)) (-15 -2084 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) 113)) (-2340 (((-112) $) NIL)) (-4267 (($ |#2| (-641 (-918))) 73)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2781 (($ (-918)) 61)) (-2869 (((-134)) 26)) (-3714 (((-859) $) 88) (($ (-564)) 57) (($ |#2|) 58)) (-3181 ((|#2| $ (-641 (-918))) 76)) (-3379 (((-768)) 23 T CONST)) (-4312 (($) 51 T CONST)) (-4323 (($) 55 T CONST)) (-1720 (((-112) $ $) 37)) (-1841 (($ $ |#2|) NIL)) (-1828 (($ $) 46) (($ $ $) 44)) (-1814 (($ $ $) 42)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL)))
+(((-152 |#1| |#2| |#3|) (-13 (-1046) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -2781 ($ (-918))) (-15 -4267 ($ |#2| (-641 (-918)))) (-15 -3181 (|#2| $ (-641 (-918)))) (-15 -4272 ((-3 $ "failed") $)))) (-918) (-363) (-990 |#1| |#2|)) (T -152))
+((-4272 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-918)) (-4 *3 (-363)) (-14 *4 (-990 *2 *3)))) (-2781 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-990 *3 *4)))) (-4267 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-918))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) (-4 *2 (-363)) (-14 *5 (-990 *4 *2)))) (-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-918))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) (-14 *5 (-990 *4 *2)))))
+(-13 (-1046) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -2781 ($ (-918))) (-15 -4267 ($ |#2| (-641 (-918)))) (-15 -3181 (|#2| $ (-641 (-918)))) (-15 -4272 ((-3 $ "failed") $))))
+((-1808 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225)) 60)) (-1820 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564))) 97) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924)) 98)) (-2612 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225))))) 101) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225)))) 100) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564))) 93) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924)) 94)))
+(((-153) (-10 -7 (-15 -2612 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -2612 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -1820 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -1820 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -1808 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2612 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225))))) (-15 -2612 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))))))) (T -153))
+((-2612 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 (-225))))))) (-2612 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-940 (-225)))))) (-1808 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 *4)))) (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4)))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 *4)))))) (-1820 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-2612 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-2612 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))))
+(-10 -7 (-15 -2612 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -2612 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -1820 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -1820 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -1808 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2612 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225))))) (-15 -2612 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3843 (((-641 (-1129)) $) 20)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-1129) $) 9)) (-1720 (((-112) $ $) NIL)))
+(((-154) (-13 (-1077) (-10 -8 (-15 -3843 ((-641 (-1129)) $)) (-15 -4347 ((-1129) $))))) (T -154))
+((-3843 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))))
+(-13 (-1077) (-10 -8 (-15 -3843 ((-641 (-1129)) $)) (-15 -4347 ((-1129) $))))
+((-2660 (((-641 (-169 |#2|)) |#1| |#2|) 50)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -2660 ((-641 (-169 |#2|)) |#1| |#2|))) (-1235 (-169 (-564))) (-13 (-363) (-845))) (T -155))
+((-2660 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-845))))))
+(-10 -7 (-15 -2660 ((-641 (-169 |#2|)) |#1| |#2|)))
+((-3702 (((-112) $ $) NIL)) (-3119 (((-1208) $) 12)) (-3109 (((-1129) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-156) (-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1208) $))))) (T -156))
+((-3109 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156)))))
+(-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1208) $))))
+((-3702 (((-112) $ $) NIL)) (-2906 (($) 40)) (-1768 (($) 39)) (-3943 (((-918)) 45)) (-1868 (((-1152) $) NIL)) (-1346 (((-564) $) 43)) (-3844 (((-1114) $) NIL)) (-2518 (($) 41)) (-1307 (($ (-564)) 46)) (-3714 (((-859) $) 52)) (-4081 (($) 42)) (-1720 (((-112) $ $) 37)) (-1814 (($ $ $) 34)) (* (($ (-918) $) 44) (($ (-225) $) 11)))
+(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-918) $)) (-15 * ($ (-225) $)) (-15 -1814 ($ $ $)) (-15 -1768 ($)) (-15 -2906 ($)) (-15 -2518 ($)) (-15 -4081 ($)) (-15 -1346 ((-564) $)) (-15 -3943 ((-918))) (-15 -1307 ($ (-564)))))) (T -157))
+((-1814 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-1768 (*1 *1) (-5 *1 (-157))) (-2906 (*1 *1) (-5 *1 (-157))) (-2518 (*1 *1) (-5 *1 (-157))) (-4081 (*1 *1) (-5 *1 (-157))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) (-3943 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-918) $)) (-15 * ($ (-225) $)) (-15 -1814 ($ $ $)) (-15 -1768 ($)) (-15 -2906 ($)) (-15 -2518 ($)) (-15 -4081 ($)) (-15 -1346 ((-564) $)) (-15 -3943 ((-918))) (-15 -1307 ($ (-564)))))
+((-2600 ((|#2| |#2| (-1086 |#2|)) 98) ((|#2| |#2| (-1170)) 75)) (-3142 ((|#2| |#2| (-1086 |#2|)) 97) ((|#2| |#2| (-1170)) 74)) (-3742 ((|#2| |#2| |#2|) 25)) (-2702 (((-114) (-114)) 111)) (-4053 ((|#2| (-641 |#2|)) 130)) (-2569 ((|#2| (-641 |#2|)) 151)) (-3356 ((|#2| (-641 |#2|)) 138)) (-4179 ((|#2| |#2|) 136)) (-1659 ((|#2| (-641 |#2|)) 124)) (-3057 ((|#2| (-641 |#2|)) 125)) (-2160 ((|#2| (-641 |#2|)) 149)) (-3259 ((|#2| |#2| (-1170)) 63) ((|#2| |#2|) 62)) (-4265 ((|#2| |#2|) 21)) (-4389 ((|#2| |#2| |#2|) 24)) (-2068 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-158 |#1| |#2|) (-10 -7 (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -4389 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -4265 (|#2| |#2|)) (-15 -3259 (|#2| |#2|)) (-15 -3259 (|#2| |#2| (-1170))) (-15 -2600 (|#2| |#2| (-1170))) (-15 -2600 (|#2| |#2| (-1086 |#2|))) (-15 -3142 (|#2| |#2| (-1170))) (-15 -3142 (|#2| |#2| (-1086 |#2|))) (-15 -4179 (|#2| |#2|)) (-15 -2160 (|#2| (-641 |#2|))) (-15 -3356 (|#2| (-641 |#2|))) (-15 -2569 (|#2| (-641 |#2|))) (-15 -1659 (|#2| (-641 |#2|))) (-15 -3057 (|#2| (-641 |#2|))) (-15 -4053 (|#2| (-641 |#2|)))) (-13 (-847) (-556)) (-430 |#1|)) (T -158))
+((-4053 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3142 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)))) (-3142 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2600 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)))) (-2600 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3259 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3259 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-4265 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3742 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-4389 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2702 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))))
+(-10 -7 (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -4389 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -4265 (|#2| |#2|)) (-15 -3259 (|#2| |#2|)) (-15 -3259 (|#2| |#2| (-1170))) (-15 -2600 (|#2| |#2| (-1170))) (-15 -2600 (|#2| |#2| (-1086 |#2|))) (-15 -3142 (|#2| |#2| (-1170))) (-15 -3142 (|#2| |#2| (-1086 |#2|))) (-15 -4179 (|#2| |#2|)) (-15 -2160 (|#2| (-641 |#2|))) (-15 -3356 (|#2| (-641 |#2|))) (-15 -2569 (|#2| (-641 |#2|))) (-15 -1659 (|#2| (-641 |#2|))) (-15 -3057 (|#2| (-641 |#2|))) (-15 -4053 (|#2| (-641 |#2|))))
+((-1837 ((|#1| |#1| |#1|) 65)) (-2019 ((|#1| |#1| |#1|) 62)) (-3742 ((|#1| |#1| |#1|) 56)) (-4040 ((|#1| |#1|) 45)) (-3228 ((|#1| |#1| (-641 |#1|)) 53)) (-4265 ((|#1| |#1|) 47)) (-4389 ((|#1| |#1| |#1|) 50)))
+(((-159 |#1|) (-10 -7 (-15 -4389 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 -3228 (|#1| |#1| (-641 |#1|))) (-15 -4040 (|#1| |#1|)) (-15 -3742 (|#1| |#1| |#1|)) (-15 -2019 (|#1| |#1| |#1|)) (-15 -1837 (|#1| |#1| |#1|))) (-545)) (T -159))
+((-1837 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2019 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3742 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-4040 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3228 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-4265 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-4389 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(-10 -7 (-15 -4389 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 -3228 (|#1| |#1| (-641 |#1|))) (-15 -4040 (|#1| |#1|)) (-15 -3742 (|#1| |#1| |#1|)) (-15 -2019 (|#1| |#1| |#1|)) (-15 -1837 (|#1| |#1| |#1|)))
+((-2600 (($ $ (-1170)) 12) (($ $ (-1086 $)) 11)) (-3142 (($ $ (-1170)) 10) (($ $ (-1086 $)) 9)) (-3742 (($ $ $) 8)) (-3259 (($ $) 14) (($ $ (-1170)) 13)) (-4265 (($ $) 7)) (-4389 (($ $ $) 6)))
(((-160) (-140)) (T -160))
-((-2071 (*1 *1 *1) (-4 *1 (-160))) (-2071 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-2750 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-2750 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) (-3123 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-3123 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))))
-(-13 (-143) (-10 -8 (-15 -2071 ($ $)) (-15 -2071 ($ $ (-1170))) (-15 -2750 ($ $ (-1170))) (-15 -2750 ($ $ (-1086 $))) (-15 -3123 ($ $ (-1170))) (-15 -3123 ($ $ (-1086 $)))))
+((-3259 (*1 *1 *1) (-4 *1 (-160))) (-3259 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-2600 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-2600 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) (-3142 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-3142 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))))
+(-13 (-143) (-10 -8 (-15 -3259 ($ $)) (-15 -3259 ($ $ (-1170))) (-15 -2600 ($ $ (-1170))) (-15 -2600 ($ $ (-1086 $))) (-15 -3142 ($ $ (-1170))) (-15 -3142 ($ $ (-1086 $)))))
(((-143) . T))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-641 (-1129)) $) 10)) (-1686 (((-112) $ $) NIL)))
-(((-161) (-13 (-1077) (-10 -8 (-15 -4374 ((-641 (-1129)) $))))) (T -161))
-((-4374 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161)))))
-(-13 (-1077) (-10 -8 (-15 -4374 ((-641 (-1129)) $))))
-((-1754 (((-112) $ $) NIL)) (-1585 (($ (-564)) 14) (($ $ $) 15)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 18)) (-1686 (((-112) $ $) 9)))
-(((-162) (-13 (-1094) (-10 -8 (-15 -1585 ($ (-564))) (-15 -1585 ($ $ $))))) (T -162))
-((-1585 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))) (-1585 (*1 *1 *1 *1) (-5 *1 (-162))))
-(-13 (-1094) (-10 -8 (-15 -1585 ($ (-564))) (-15 -1585 ($ $ $))))
-((-1826 (((-114) (-1170)) 99)))
-(((-163) (-10 -7 (-15 -1826 ((-114) (-1170))))) (T -163))
-((-1826 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163)))))
-(-10 -7 (-15 -1826 ((-114) (-1170))))
-((-2040 ((|#3| |#3|) 19)))
-(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2040 (|#3| |#3|))) (-1046) (-1235 |#1|) (-1235 |#2|)) (T -164))
-((-2040 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1235 *4)))))
-(-10 -7 (-15 -2040 (|#3| |#3|)))
-((-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 225)) (-3715 ((|#2| $) 102)) (-3904 (($ $) 256)) (-3752 (($ $) 250)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-3879 (($ $) 254)) (-3727 (($ $) 248)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 147)) (-2064 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 145)) (-1387 (($ $ $) 231)) (-2620 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 161) (((-685 |#2|) (-685 $)) 155)) (-4367 (($ (-1166 |#2|)) 126) (((-3 $ "failed") (-407 (-1166 |#2|))) NIL)) (-1926 (((-3 $ "failed") $) 217)) (-1978 (((-3 (-407 (-564)) "failed") $) 207)) (-2709 (((-112) $) 202)) (-3424 (((-407 (-564)) $) 205)) (-4224 (((-918)) 95)) (-1366 (($ $ $) 233)) (-2476 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-1539 (($) 245)) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 194) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 199)) (-1779 ((|#2| $) 100)) (-2513 (((-1166 |#2|) $) 128)) (-2082 (($ (-1 |#2| |#2|) $) 108)) (-2186 (($ $) 247)) (-4358 (((-1166 |#2|) $) 127)) (-4272 (($ $) 210)) (-3889 (($) 103)) (-3113 (((-418 (-1166 $)) (-1166 $)) 94)) (-1761 (((-418 (-1166 $)) (-1166 $)) 59)) (-1343 (((-3 $ "failed") $ |#2|) 212) (((-3 $ "failed") $ $) 215)) (-2152 (($ $) 246)) (-3712 (((-768) $) 228)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 238)) (-1938 ((|#2| (-1259 $)) NIL) ((|#2|) 97)) (-3226 (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-1916 (((-1166 |#2|)) 121)) (-3891 (($ $) 255)) (-3739 (($ $) 249)) (-3072 (((-1259 |#2|) $ (-1259 $)) 137) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 117) (((-685 |#2|) (-1259 $)) NIL)) (-2127 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) (((-889 (-564)) $) 185) (((-889 (-379)) $) 189) (((-169 (-379)) $) 173) (((-169 (-225)) $) 168) (((-536) $) 181)) (-2502 (($ $) 104)) (-1765 (((-859) $) 144) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-407 (-564))) NIL) (($ $) NIL)) (-3216 (((-1166 |#2|) $) 26)) (-1965 (((-768)) 106)) (-3991 (($ $) 259)) (-3827 (($ $) 253)) (-3963 (($ $) 257)) (-3801 (($ $) 251)) (-2377 ((|#2| $) 242)) (-3977 (($ $) 258)) (-3814 (($ $) 252)) (-2016 (($ $) 163)) (-1686 (((-112) $ $) 111)) (-1705 (((-112) $ $) 201)) (-1783 (($ $) 113) (($ $ $) NIL)) (-1771 (($ $ $) 112)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-407 (-564))) 277) (($ $ $) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 119) (($ $ $) 148) (($ $ |#2|) NIL) (($ |#2| $) 115) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL)))
-(((-165 |#1| |#2|) (-10 -8 (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -1765 (|#1| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3584 ((-2 (|:| -1950 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3712 ((-768) |#1|)) (-15 -1959 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -1366 (|#1| |#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -2127 ((-169 (-225)) |#1|)) (-15 -2127 ((-169 (-379)) |#1|)) (-15 -3752 (|#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3977 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1539 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -1761 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3113 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2111 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -2476 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2377 (|#2| |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2502 (|#1| |#1|)) (-15 -3889 (|#1|)) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2549 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4367 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -4358 ((-1166 |#2|) |#1|)) (-15 -2127 (|#1| (-1166 |#2|))) (-15 -4367 (|#1| (-1166 |#2|))) (-15 -1916 ((-1166 |#2|))) (-15 -2620 ((-685 |#2|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2127 ((-1166 |#2|) |#1|)) (-15 -1938 (|#2|)) (-15 -2127 (|#1| (-1259 |#2|))) (-15 -2127 ((-1259 |#2|) |#1|)) (-15 -3072 ((-685 |#2|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1|)) (-15 -2513 ((-1166 |#2|) |#1|)) (-15 -3216 ((-1166 |#2|) |#1|)) (-15 -1938 (|#2| (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1779 (|#2| |#1|)) (-15 -3715 (|#2| |#1|)) (-15 -4224 ((-918))) (-15 -1765 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 -1926 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
-((-1965 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4224 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-918)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1938 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-1916 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
-(-10 -8 (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -1765 (|#1| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3584 ((-2 (|:| -1950 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3712 ((-768) |#1|)) (-15 -1959 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -1366 (|#1| |#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -2127 ((-169 (-225)) |#1|)) (-15 -2127 ((-169 (-379)) |#1|)) (-15 -3752 (|#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3977 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1539 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -1761 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3113 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2111 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -2476 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2377 (|#2| |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2502 (|#1| |#1|)) (-15 -3889 (|#1|)) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2549 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4367 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -4358 ((-1166 |#2|) |#1|)) (-15 -2127 (|#1| (-1166 |#2|))) (-15 -4367 (|#1| (-1166 |#2|))) (-15 -1916 ((-1166 |#2|))) (-15 -2620 ((-685 |#2|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2127 ((-1166 |#2|) |#1|)) (-15 -1938 (|#2|)) (-15 -2127 (|#1| (-1259 |#2|))) (-15 -2127 ((-1259 |#2|) |#1|)) (-15 -3072 ((-685 |#2|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1|)) (-15 -2513 ((-1166 |#2|) |#1|)) (-15 -3216 ((-1166 |#2|) |#1|)) (-15 -1938 (|#2| (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1779 (|#2| |#1|)) (-15 -3715 (|#2| |#1|)) (-15 -4224 ((-918))) (-15 -1765 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 -1926 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 93 (-4002 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1840 (($ $) 94 (-4002 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-4035 (((-112) $) 96 (-4002 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3124 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3715 ((|#1| $) 53)) (-3904 (($ $) 227 (|has| |#1| (-1194)))) (-3752 (($ $) 210 (|has| |#1| (-1194)))) (-2590 (((-1182 (-918) (-768)) (-564)) 146 (|has| |#1| (-349)))) (-3936 (((-3 $ "failed") $ $) 19)) (-1871 (((-418 (-1166 $)) (-1166 $)) 241 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-1368 (($ $) 113 (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3981 (((-418 $) $) 114 (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4019 (($ $) 240 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3385 (((-112) $ $) 104 (|has| |#1| (-307)))) (-3042 (((-768)) 87 (|has| |#1| (-368)))) (-3879 (($ $) 226 (|has| |#1| (-1194)))) (-3727 (($ $) 211 (|has| |#1| (-1194)))) (-3933 (($ $) 225 (|has| |#1| (-1194)))) (-3778 (($ $) 212 (|has| |#1| (-1194)))) (-3760 (($) 17 T CONST)) (-2013 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-2064 (((-564) $) 168 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 165)) (-2910 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-1387 (($ $ $) 108 (|has| |#1| (-307)))) (-1663 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-2620 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-4367 (($ (-1166 |#1|)) 157) (((-3 $ "failed") (-407 (-1166 |#1|))) 154 (|has| |#1| (-363)))) (-1926 (((-3 $ "failed") $) 33)) (-4032 ((|#1| $) 252)) (-1978 (((-3 (-407 (-564)) "failed") $) 245 (|has| |#1| (-545)))) (-2709 (((-112) $) 247 (|has| |#1| (-545)))) (-3424 (((-407 (-564)) $) 246 (|has| |#1| (-545)))) (-4224 (((-918)) 55)) (-2542 (($) 90 (|has| |#1| (-368)))) (-1366 (($ $ $) 107 (|has| |#1| (-307)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 102 (|has| |#1| (-307)))) (-1990 (($) 148 (|has| |#1| (-349)))) (-3242 (((-112) $) 149 (|has| |#1| (-349)))) (-2184 (($ $ (-768)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-3241 (((-112) $) 115 (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-2476 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1194))))) (-1539 (($) 237 (|has| |#1| (-1194)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 260 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 259 (|has| |#1| (-883 (-379))))) (-2261 (((-918) $) 151 (|has| |#1| (-349))) (((-830 (-918)) $) 137 (|has| |#1| (-349)))) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 239 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-1779 ((|#1| $) 52)) (-3374 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-307)))) (-2513 (((-1166 |#1|) $) 45 (|has| |#1| (-363)))) (-3571 (($ $ $) 206 (|has| |#1| (-847)))) (-1547 (($ $ $) 205 (|has| |#1| (-847)))) (-2082 (($ (-1 |#1| |#1|) $) 261)) (-2209 (((-918) $) 89 (|has| |#1| (-368)))) (-2186 (($ $) 234 (|has| |#1| (-1194)))) (-4358 (((-1166 |#1|) $) 155)) (-2488 (($ (-641 $)) 100 (-4002 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 99 (-4002 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-4202 (((-1152) $) 9)) (-4272 (($ $) 116 (|has| |#1| (-363)))) (-1611 (($) 142 (|has| |#1| (-349)) CONST)) (-1403 (($ (-918)) 88 (|has| |#1| (-368)))) (-3889 (($) 256)) (-4045 ((|#1| $) 253)) (-3802 (((-1114) $) 10)) (-1502 (($) 159)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 101 (-4002 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2527 (($ (-641 $)) 98 (-4002 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 97 (-4002 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) 145 (|has| |#1| (-349)))) (-3113 (((-418 (-1166 $)) (-1166 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-1761 (((-418 (-1166 $)) (-1166 $)) 242 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4006 (((-418 $) $) 112 (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 109 (|has| |#1| (-307)))) (-1343 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 92 (-4002 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-307)))) (-2152 (($ $) 235 (|has| |#1| (-1194)))) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 265 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 264 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 263 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 262 (|has| |#1| (-514 (-1170) |#1|)))) (-3712 (((-768) $) 105 (|has| |#1| (-307)))) (-4382 (($ $ |#1|) 268 (|has| |#1| (-286 |#1| |#1|)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 106 (|has| |#1| (-307)))) (-1938 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-1504 (((-768) $) 150 (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) 138 (|has| |#1| (-349)))) (-3226 (($ $ (-1 |#1| |#1|) (-768)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-641 (-1170)) (-641 (-768))) 129 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 130 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 131 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 132 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 134 (-4002 (-4266 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4266 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-4002 (-4266 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4266 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2836 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-1916 (((-1166 |#1|)) 158)) (-3949 (($ $) 224 (|has| |#1| (-1194)))) (-3789 (($ $) 213 (|has| |#1| (-1194)))) (-3726 (($) 147 (|has| |#1| (-349)))) (-3918 (($ $) 223 (|has| |#1| (-1194)))) (-3765 (($ $) 214 (|has| |#1| (-1194)))) (-3891 (($ $) 222 (|has| |#1| (-1194)))) (-3739 (($ $) 215 (|has| |#1| (-1194)))) (-3072 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2127 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) (((-1166 |#1|) $) 170) (($ (-1166 |#1|)) 156) (((-889 (-564)) $) 258 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 257 (|has| |#1| (-612 (-889 (-379))))) (((-169 (-379)) $) 209 (|has| |#1| (-1019))) (((-169 (-225)) $) 208 (|has| |#1| (-1019))) (((-536) $) 207 (|has| |#1| (-612 (-536))))) (-2502 (($ $) 255)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 144 (-4002 (-4266 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-349))))) (-2305 (($ |#1| |#1|) 254)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 86 (-4002 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) 91 (-4002 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2864 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-4002 (-4266 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-145))))) (-3216 (((-1166 |#1|) $) 46)) (-1965 (((-768)) 28 T CONST)) (-3941 (((-1259 $)) 68)) (-3991 (($ $) 233 (|has| |#1| (-1194)))) (-3827 (($ $) 221 (|has| |#1| (-1194)))) (-1582 (((-112) $ $) 95 (-4002 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3963 (($ $) 232 (|has| |#1| (-1194)))) (-3801 (($ $) 220 (|has| |#1| (-1194)))) (-4020 (($ $) 231 (|has| |#1| (-1194)))) (-3854 (($ $) 219 (|has| |#1| (-1194)))) (-2377 ((|#1| $) 249 (|has| |#1| (-1194)))) (-3586 (($ $) 230 (|has| |#1| (-1194)))) (-3867 (($ $) 218 (|has| |#1| (-1194)))) (-4005 (($ $) 229 (|has| |#1| (-1194)))) (-3840 (($ $) 217 (|has| |#1| (-1194)))) (-3977 (($ $) 228 (|has| |#1| (-1194)))) (-3814 (($ $) 216 (|has| |#1| (-1194)))) (-2016 (($ $) 250 (|has| |#1| (-1055)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-1 |#1| |#1|) (-768)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-641 (-1170)) (-641 (-768))) 125 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 126 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 127 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 128 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 133 (-4002 (-4266 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4266 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 135 (-4002 (-4266 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4266 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-1738 (((-112) $ $) 203 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 202 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 204 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 201 (|has| |#1| (-847)))) (-1793 (($ $ $) 120 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-407 (-564))) 238 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194)))) (($ $ $) 236 (|has| |#1| (-1194))) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363)))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-641 (-1129)) $) 10)) (-1720 (((-112) $ $) NIL)))
+(((-161) (-13 (-1077) (-10 -8 (-15 -4347 ((-641 (-1129)) $))))) (T -161))
+((-4347 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161)))))
+(-13 (-1077) (-10 -8 (-15 -4347 ((-641 (-1129)) $))))
+((-3702 (((-112) $ $) NIL)) (-3997 (($ (-564)) 14) (($ $ $) 15)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 18)) (-1720 (((-112) $ $) 9)))
+(((-162) (-13 (-1094) (-10 -8 (-15 -3997 ($ (-564))) (-15 -3997 ($ $ $))))) (T -162))
+((-3997 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))) (-3997 (*1 *1 *1 *1) (-5 *1 (-162))))
+(-13 (-1094) (-10 -8 (-15 -3997 ($ (-564))) (-15 -3997 ($ $ $))))
+((-2702 (((-114) (-1170)) 99)))
+(((-163) (-10 -7 (-15 -2702 ((-114) (-1170))))) (T -163))
+((-2702 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163)))))
+(-10 -7 (-15 -2702 ((-114) (-1170))))
+((-2997 ((|#3| |#3|) 19)))
+(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2997 (|#3| |#3|))) (-1046) (-1235 |#1|) (-1235 |#2|)) (T -164))
+((-2997 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1235 *4)))))
+(-10 -7 (-15 -2997 (|#3| |#3|)))
+((-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 225)) (-3767 ((|#2| $) 102)) (-2657 (($ $) 256)) (-2516 (($ $) 250)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-2635 (($ $) 254)) (-2491 (($ $) 248)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 147)) (-2376 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 145)) (-1399 (($ $ $) 231)) (-3613 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 161) (((-685 |#2|) (-685 $)) 155)) (-1728 (($ (-1166 |#2|)) 126) (((-3 $ "failed") (-407 (-1166 |#2|))) NIL)) (-4272 (((-3 $ "failed") $) 217)) (-3502 (((-3 (-407 (-564)) "failed") $) 207)) (-3309 (((-112) $) 202)) (-3074 (((-407 (-564)) $) 205)) (-1595 (((-918)) 95)) (-1371 (($ $ $) 233)) (-1685 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-1688 (($) 245)) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 194) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 199)) (-2217 ((|#2| $) 100)) (-2041 (((-1166 |#2|) $) 128)) (-2313 (($ (-1 |#2| |#2|) $) 108)) (-2305 (($ $) 247)) (-1714 (((-1166 |#2|) $) 127)) (-1295 (($ $) 210)) (-2016 (($) 103)) (-3048 (((-418 (-1166 $)) (-1166 $)) 94)) (-3209 (((-418 (-1166 $)) (-1166 $)) 59)) (-1347 (((-3 $ "failed") $ |#2|) 212) (((-3 $ "failed") $ $) 215)) (-4130 (($ $) 246)) (-3966 (((-768) $) 228)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 238)) (-4378 ((|#2| (-1259 $)) NIL) ((|#2|) 97)) (-2203 (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-4180 (((-1166 |#2|)) 121)) (-2647 (($ $) 255)) (-2502 (($ $) 249)) (-3867 (((-1259 |#2|) $ (-1259 $)) 137) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 117) (((-685 |#2|) (-1259 $)) NIL)) (-2374 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) (((-889 (-564)) $) 185) (((-889 (-379)) $) 189) (((-169 (-379)) $) 173) (((-169 (-225)) $) 168) (((-536) $) 181)) (-1953 (($ $) 104)) (-3714 (((-859) $) 144) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-407 (-564))) NIL) (($ $) NIL)) (-1650 (((-1166 |#2|) $) 26)) (-3379 (((-768)) 106)) (-2728 (($ $) 259)) (-2595 (($ $) 253)) (-2704 (($ $) 257)) (-2566 (($ $) 251)) (-3130 ((|#2| $) 242)) (-2716 (($ $) 258)) (-2577 (($ $) 252)) (-3920 (($ $) 163)) (-1720 (((-112) $ $) 111)) (-1746 (((-112) $ $) 201)) (-1828 (($ $) 113) (($ $ $) NIL)) (-1814 (($ $ $) 112)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-407 (-564))) 277) (($ $ $) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 119) (($ $ $) 148) (($ $ |#2|) NIL) (($ |#2| $) 115) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL)))
+(((-165 |#1| |#2|) (-10 -8 (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -3714 (|#1| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2156 ((-2 (|:| -1425 |#1|) (|:| -4399 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3966 ((-768) |#1|)) (-15 -3329 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1399 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -1746 ((-112) |#1| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -2374 ((-169 (-225)) |#1|)) (-15 -2374 ((-169 (-379)) |#1|)) (-15 -2516 (|#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2657 (|#1| |#1|)) (-15 -2716 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2728 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1688 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3048 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2508 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -1685 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3130 (|#2| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1953 (|#1| |#1|)) (-15 -2016 (|#1|)) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -4181 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -1728 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -1714 ((-1166 |#2|) |#1|)) (-15 -2374 (|#1| (-1166 |#2|))) (-15 -1728 (|#1| (-1166 |#2|))) (-15 -4180 ((-1166 |#2|))) (-15 -3613 ((-685 |#2|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2374 ((-1166 |#2|) |#1|)) (-15 -4378 (|#2|)) (-15 -2374 (|#1| (-1259 |#2|))) (-15 -2374 ((-1259 |#2|) |#1|)) (-15 -3867 ((-685 |#2|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1|)) (-15 -2041 ((-1166 |#2|) |#1|)) (-15 -1650 ((-1166 |#2|) |#1|)) (-15 -4378 (|#2| (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2217 (|#2| |#1|)) (-15 -3767 (|#2| |#1|)) (-15 -1595 ((-918))) (-15 -3714 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 -4272 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
+((-3379 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1595 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-918)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4378 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-4180 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
+(-10 -8 (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -3714 (|#1| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2156 ((-2 (|:| -1425 |#1|) (|:| -4399 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3966 ((-768) |#1|)) (-15 -3329 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1399 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -1746 ((-112) |#1| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -2374 ((-169 (-225)) |#1|)) (-15 -2374 ((-169 (-379)) |#1|)) (-15 -2516 (|#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2657 (|#1| |#1|)) (-15 -2716 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2728 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1688 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3048 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2508 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -1685 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3130 (|#2| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1953 (|#1| |#1|)) (-15 -2016 (|#1|)) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -4181 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -1728 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -1714 ((-1166 |#2|) |#1|)) (-15 -2374 (|#1| (-1166 |#2|))) (-15 -1728 (|#1| (-1166 |#2|))) (-15 -4180 ((-1166 |#2|))) (-15 -3613 ((-685 |#2|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2374 ((-1166 |#2|) |#1|)) (-15 -4378 (|#2|)) (-15 -2374 (|#1| (-1259 |#2|))) (-15 -2374 ((-1259 |#2|) |#1|)) (-15 -3867 ((-685 |#2|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1|)) (-15 -2041 ((-1166 |#2|) |#1|)) (-15 -1650 ((-1166 |#2|) |#1|)) (-15 -4378 (|#2| (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2217 (|#2| |#1|)) (-15 -3767 (|#2| |#1|)) (-15 -1595 ((-918))) (-15 -3714 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 -4272 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 93 (-4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1582 (($ $) 94 (-4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3897 (((-112) $) 96 (-4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3150 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3767 ((|#1| $) 53)) (-2657 (($ $) 227 (|has| |#1| (-1194)))) (-2516 (($ $) 210 (|has| |#1| (-1194)))) (-1494 (((-1182 (-918) (-768)) (-564)) 146 (|has| |#1| (-349)))) (-4281 (((-3 $ "failed") $ $) 19)) (-1917 (((-418 (-1166 $)) (-1166 $)) 241 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-1328 (($ $) 113 (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1592 (((-418 $) $) 114 (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4152 (($ $) 240 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3907 (((-112) $ $) 104 (|has| |#1| (-307)))) (-2018 (((-768)) 87 (|has| |#1| (-368)))) (-2635 (($ $) 226 (|has| |#1| (-1194)))) (-2491 (($ $) 211 (|has| |#1| (-1194)))) (-2679 (($ $) 225 (|has| |#1| (-1194)))) (-2542 (($ $) 212 (|has| |#1| (-1194)))) (-3180 (($) 17 T CONST)) (-2224 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-2376 (((-564) $) 168 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 165)) (-3566 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-1399 (($ $ $) 108 (|has| |#1| (-307)))) (-3439 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-3613 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-1728 (($ (-1166 |#1|)) 157) (((-3 $ "failed") (-407 (-1166 |#1|))) 154 (|has| |#1| (-363)))) (-4272 (((-3 $ "failed") $) 33)) (-4164 ((|#1| $) 252)) (-3502 (((-3 (-407 (-564)) "failed") $) 245 (|has| |#1| (-545)))) (-3309 (((-112) $) 247 (|has| |#1| (-545)))) (-3074 (((-407 (-564)) $) 246 (|has| |#1| (-545)))) (-1595 (((-918)) 55)) (-2939 (($) 90 (|has| |#1| (-368)))) (-1371 (($ $ $) 107 (|has| |#1| (-307)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 102 (|has| |#1| (-307)))) (-3648 (($) 148 (|has| |#1| (-349)))) (-1937 (((-112) $) 149 (|has| |#1| (-349)))) (-1957 (($ $ (-768)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-1926 (((-112) $) 115 (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1685 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1194))))) (-1688 (($) 237 (|has| |#1| (-1194)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 260 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 259 (|has| |#1| (-883 (-379))))) (-1454 (((-918) $) 151 (|has| |#1| (-349))) (((-830 (-918)) $) 137 (|has| |#1| (-349)))) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 239 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-2217 ((|#1| $) 52)) (-3804 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-307)))) (-2041 (((-1166 |#1|) $) 45 (|has| |#1| (-363)))) (-3428 (($ $ $) 206 (|has| |#1| (-847)))) (-3413 (($ $ $) 205 (|has| |#1| (-847)))) (-2313 (($ (-1 |#1| |#1|) $) 261)) (-4031 (((-918) $) 89 (|has| |#1| (-368)))) (-2305 (($ $) 234 (|has| |#1| (-1194)))) (-1714 (((-1166 |#1|) $) 155)) (-2688 (($ (-641 $)) 100 (-4012 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 99 (-4012 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1868 (((-1152) $) 9)) (-1295 (($ $) 116 (|has| |#1| (-363)))) (-3304 (($) 142 (|has| |#1| (-349)) CONST)) (-3338 (($ (-918)) 88 (|has| |#1| (-368)))) (-2016 (($) 256)) (-4175 ((|#1| $) 253)) (-3844 (((-1114) $) 10)) (-1729 (($) 159)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 101 (-4012 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2727 (($ (-641 $)) 98 (-4012 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 97 (-4012 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) 145 (|has| |#1| (-349)))) (-3048 (((-418 (-1166 $)) (-1166 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3209 (((-418 (-1166 $)) (-1166 $)) 242 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4139 (((-418 $) $) 112 (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 109 (|has| |#1| (-307)))) (-1347 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 92 (-4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-307)))) (-4130 (($ $) 235 (|has| |#1| (-1194)))) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 265 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 264 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 263 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 262 (|has| |#1| (-514 (-1170) |#1|)))) (-3966 (((-768) $) 105 (|has| |#1| (-307)))) (-4382 (($ $ |#1|) 268 (|has| |#1| (-286 |#1| |#1|)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 106 (|has| |#1| (-307)))) (-4378 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-2671 (((-768) $) 150 (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) 138 (|has| |#1| (-349)))) (-2203 (($ $ (-1 |#1| |#1|) (-768)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-641 (-1170)) (-641 (-768))) 129 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 130 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 131 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 132 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 134 (-4012 (-4264 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4264 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-4012 (-4264 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4264 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2227 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-4180 (((-1166 |#1|)) 158)) (-2692 (($ $) 224 (|has| |#1| (-1194)))) (-2557 (($ $) 213 (|has| |#1| (-1194)))) (-2927 (($) 147 (|has| |#1| (-349)))) (-2669 (($ $) 223 (|has| |#1| (-1194)))) (-2529 (($ $) 214 (|has| |#1| (-1194)))) (-2647 (($ $) 222 (|has| |#1| (-1194)))) (-2502 (($ $) 215 (|has| |#1| (-1194)))) (-3867 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2374 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) (((-1166 |#1|) $) 170) (($ (-1166 |#1|)) 156) (((-889 (-564)) $) 258 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 257 (|has| |#1| (-612 (-889 (-379))))) (((-169 (-379)) $) 209 (|has| |#1| (-1019))) (((-169 (-225)) $) 208 (|has| |#1| (-1019))) (((-536) $) 207 (|has| |#1| (-612 (-536))))) (-1953 (($ $) 255)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 144 (-4012 (-4264 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-349))))) (-2453 (($ |#1| |#1|) 254)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 86 (-4012 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) 91 (-4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-4363 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-4012 (-4264 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-145))))) (-1650 (((-1166 |#1|) $) 46)) (-3379 (((-768)) 28 T CONST)) (-4339 (((-1259 $)) 68)) (-2728 (($ $) 233 (|has| |#1| (-1194)))) (-2595 (($ $) 221 (|has| |#1| (-1194)))) (-3979 (((-112) $ $) 95 (-4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2704 (($ $) 232 (|has| |#1| (-1194)))) (-2566 (($ $) 220 (|has| |#1| (-1194)))) (-2751 (($ $) 231 (|has| |#1| (-1194)))) (-2615 (($ $) 219 (|has| |#1| (-1194)))) (-3130 ((|#1| $) 249 (|has| |#1| (-1194)))) (-2053 (($ $) 230 (|has| |#1| (-1194)))) (-2626 (($ $) 218 (|has| |#1| (-1194)))) (-2740 (($ $) 229 (|has| |#1| (-1194)))) (-2605 (($ $) 217 (|has| |#1| (-1194)))) (-2716 (($ $) 228 (|has| |#1| (-1194)))) (-2577 (($ $) 216 (|has| |#1| (-1194)))) (-3920 (($ $) 250 (|has| |#1| (-1055)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-1 |#1| |#1|) (-768)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-641 (-1170)) (-641 (-768))) 125 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 126 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 127 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 128 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 133 (-4012 (-4264 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4264 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 135 (-4012 (-4264 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4264 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-1781 (((-112) $ $) 203 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 202 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 204 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 201 (|has| |#1| (-847)))) (-1841 (($ $ $) 120 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-407 (-564))) 238 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194)))) (($ $ $) 236 (|has| |#1| (-1194))) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363)))))
(((-166 |#1|) (-140) (-172)) (T -166))
-((-1779 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3889 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2502 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2305 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4045 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1343 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2016 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194)))) (-2476 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1055)) (-4 *3 (-1194)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-1978 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))))
-(-13 (-721 |t#1| (-1166 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-881 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -2305) (-15 -3889 ($)) (-15 -2502 ($ $)) (-15 -2305 ($ |t#1| |t#1|)) (-15 -4045 (|t#1| $)) (-15 -4032 (|t#1| $)) (-15 -1779 (|t#1| $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-556)) (-15 -1343 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4410)) (-6 -4410) |%noBranch|) (IF (|has| |t#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1019)) (PROGN (-6 (-612 (-169 (-225)))) (-6 (-612 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -2016 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1194)) (PROGN (-6 (-1194)) (-15 -2377 (|t#1| $)) (IF (|has| |t#1| (-999)) (-6 (-999)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -2476 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-906)) (IF (|has| |t#1| (-307)) (-6 (-906)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1194)) ((-95) |has| |#1| (-1194)) ((-102) . T) ((-111 #0# #0#) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4002 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-611 (-859)) . T) ((-172) . T) ((-612 (-169 (-225))) |has| |#1| (-1019)) ((-612 (-169 (-379))) |has| |#1| (-1019)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-612 #1=(-1166 |#1|)) . T) ((-231 |#1|) . T) ((-233) -4002 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1194)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4002 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -4002 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4002 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -4002 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1194)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) -4002 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-644 #0#) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-714 |#1|) . T) ((-714 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-721 |#1| #1#) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-906) -12 (|has| |#1| (-307)) (|has| |#1| (-906))) ((-917) -4002 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-999) -12 (|has| |#1| (-999)) (|has| |#1| (-1194))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1194) |has| |#1| (-1194)) ((-1197) |has| |#1| (-1194)) ((-1209) . T) ((-1213) -4002 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))
-((-4006 (((-418 |#2|) |#2|) 69)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -4006 ((-418 |#2|) |#2|))) (-307) (-1235 (-169 |#1|))) (T -167))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(-10 -7 (-15 -4006 ((-418 |#2|) |#2|)))
-((-2082 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -2082 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))))
-(-10 -7 (-15 -2082 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 34)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-1840 (($ $) NIL (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-4035 (((-112) $) NIL (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3124 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3715 ((|#1| $) NIL)) (-3904 (($ $) NIL (|has| |#1| (-1194)))) (-3752 (($ $) NIL (|has| |#1| (-1194)))) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-349)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-1368 (($ $) NIL (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3981 (((-418 $) $) NIL (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4019 (($ $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3385 (((-112) $ $) NIL (|has| |#1| (-307)))) (-3042 (((-768)) NIL (|has| |#1| (-368)))) (-3879 (($ $) NIL (|has| |#1| (-1194)))) (-3727 (($ $) NIL (|has| |#1| (-1194)))) (-3933 (($ $) NIL (|has| |#1| (-1194)))) (-3778 (($ $) NIL (|has| |#1| (-1194)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-2910 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-1387 (($ $ $) NIL (|has| |#1| (-307)))) (-1663 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4367 (($ (-1166 |#1|)) NIL) (((-3 $ "failed") (-407 (-1166 |#1|))) NIL (|has| |#1| (-363)))) (-1926 (((-3 $ "failed") $) NIL)) (-4032 ((|#1| $) 13)) (-1978 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2709 (((-112) $) NIL (|has| |#1| (-545)))) (-3424 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-4224 (((-918)) NIL)) (-2542 (($) NIL (|has| |#1| (-368)))) (-1366 (($ $ $) NIL (|has| |#1| (-307)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-307)))) (-1990 (($) NIL (|has| |#1| (-349)))) (-3242 (((-112) $) NIL (|has| |#1| (-349)))) (-2184 (($ $ (-768)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-3241 (((-112) $) NIL (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-2476 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1055)) (|has| |#1| (-1194))))) (-1539 (($) NIL (|has| |#1| (-1194)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#1| (-883 (-379))))) (-2261 (((-918) $) NIL (|has| |#1| (-349))) (((-830 (-918)) $) NIL (|has| |#1| (-349)))) (-2419 (((-112) $) 36)) (-1935 (($ $ (-564)) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-1779 ((|#1| $) 47)) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-2513 (((-1166 |#1|) $) NIL (|has| |#1| (-363)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2209 (((-918) $) NIL (|has| |#1| (-368)))) (-2186 (($ $) NIL (|has| |#1| (-1194)))) (-4358 (((-1166 |#1|) $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-1611 (($) NIL (|has| |#1| (-349)) CONST)) (-1403 (($ (-918)) NIL (|has| |#1| (-368)))) (-3889 (($) NIL)) (-4045 ((|#1| $) 15)) (-3802 (((-1114) $) NIL)) (-1502 (($) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-307)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| |#1| (-349)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4006 (((-418 $) $) NIL (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-307)))) (-1343 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 48 (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-2152 (($ $) NIL (|has| |#1| (-1194)))) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-3712 (((-768) $) NIL (|has| |#1| (-307)))) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-307)))) (-1938 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-1504 (((-768) $) NIL (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) NIL (|has| |#1| (-349)))) (-3226 (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2836 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1916 (((-1166 |#1|)) NIL)) (-3949 (($ $) NIL (|has| |#1| (-1194)))) (-3789 (($ $) NIL (|has| |#1| (-1194)))) (-3726 (($) NIL (|has| |#1| (-349)))) (-3918 (($ $) NIL (|has| |#1| (-1194)))) (-3765 (($ $) NIL (|has| |#1| (-1194)))) (-3891 (($ $) NIL (|has| |#1| (-1194)))) (-3739 (($ $) NIL (|has| |#1| (-1194)))) (-3072 (((-1259 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2127 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1019))) (((-169 (-225)) $) NIL (|has| |#1| (-1019))) (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2502 (($ $) 46)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-349))))) (-2305 (($ |#1| |#1|) 38)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) 37) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-2864 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3216 (((-1166 |#1|) $) NIL)) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) NIL)) (-3991 (($ $) NIL (|has| |#1| (-1194)))) (-3827 (($ $) NIL (|has| |#1| (-1194)))) (-1582 (((-112) $ $) NIL (-4002 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3963 (($ $) NIL (|has| |#1| (-1194)))) (-3801 (($ $) NIL (|has| |#1| (-1194)))) (-4020 (($ $) NIL (|has| |#1| (-1194)))) (-3854 (($ $) NIL (|has| |#1| (-1194)))) (-2377 ((|#1| $) NIL (|has| |#1| (-1194)))) (-3586 (($ $) NIL (|has| |#1| (-1194)))) (-3867 (($ $) NIL (|has| |#1| (-1194)))) (-4005 (($ $) NIL (|has| |#1| (-1194)))) (-3840 (($ $) NIL (|has| |#1| (-1194)))) (-3977 (($ $) NIL (|has| |#1| (-1194)))) (-3814 (($ $) NIL (|has| |#1| (-1194)))) (-2016 (($ $) NIL (|has| |#1| (-1055)))) (-4317 (($) 28 T CONST)) (-4327 (($) 30 T CONST)) (-3886 (((-1152) $) 23 (|has| |#1| (-825))) (((-1152) $ (-112)) 25 (|has| |#1| (-825))) (((-1264) (-819) $) 26 (|has| |#1| (-825))) (((-1264) (-819) $ (-112)) 27 (|has| |#1| (-825)))) (-3190 (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ $) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 40)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-407 (-564))) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194)))) (($ $ $) NIL (|has| |#1| (-1194))) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363)))))
+((-2217 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2016 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1953 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2453 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1347 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3920 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194)))) (-1685 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1055)) (-4 *3 (-1194)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3502 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))))
+(-13 (-721 |t#1| (-1166 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-881 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -2453) (-15 -2016 ($)) (-15 -1953 ($ $)) (-15 -2453 ($ |t#1| |t#1|)) (-15 -4175 (|t#1| $)) (-15 -4164 (|t#1| $)) (-15 -2217 (|t#1| $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-556)) (-15 -1347 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |t#1| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1019)) (PROGN (-6 (-612 (-169 (-225)))) (-6 (-612 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -3920 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1194)) (PROGN (-6 (-1194)) (-15 -3130 (|t#1| $)) (IF (|has| |t#1| (-999)) (-6 (-999)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -1685 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-906)) (IF (|has| |t#1| (-307)) (-6 (-906)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1194)) ((-95) |has| |#1| (-1194)) ((-102) . T) ((-111 #0# #0#) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4012 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-611 (-859)) . T) ((-172) . T) ((-612 (-169 (-225))) |has| |#1| (-1019)) ((-612 (-169 (-379))) |has| |#1| (-1019)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-612 #1=(-1166 |#1|)) . T) ((-231 |#1|) . T) ((-233) -4012 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1194)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4012 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -4012 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4012 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -4012 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1194)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) -4012 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-644 #0#) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-714 |#1|) . T) ((-714 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-721 |#1| #1#) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-906) -12 (|has| |#1| (-307)) (|has| |#1| (-906))) ((-917) -4012 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-999) -12 (|has| |#1| (-999)) (|has| |#1| (-1194))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1194) |has| |#1| (-1194)) ((-1197) |has| |#1| (-1194)) ((-1209) . T) ((-1213) -4012 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))
+((-4139 (((-418 |#2|) |#2|) 69)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -4139 ((-418 |#2|) |#2|))) (-307) (-1235 (-169 |#1|))) (T -167))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
+(-10 -7 (-15 -4139 ((-418 |#2|) |#2|)))
+((-2313 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -2313 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))))
+(-10 -7 (-15 -2313 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 34)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-1582 (($ $) NIL (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3897 (((-112) $) NIL (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3150 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3767 ((|#1| $) NIL)) (-2657 (($ $) NIL (|has| |#1| (-1194)))) (-2516 (($ $) NIL (|has| |#1| (-1194)))) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-349)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-1328 (($ $) NIL (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1592 (((-418 $) $) NIL (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4152 (($ $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3907 (((-112) $ $) NIL (|has| |#1| (-307)))) (-2018 (((-768)) NIL (|has| |#1| (-368)))) (-2635 (($ $) NIL (|has| |#1| (-1194)))) (-2491 (($ $) NIL (|has| |#1| (-1194)))) (-2679 (($ $) NIL (|has| |#1| (-1194)))) (-2542 (($ $) NIL (|has| |#1| (-1194)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3566 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-1399 (($ $ $) NIL (|has| |#1| (-307)))) (-3439 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1728 (($ (-1166 |#1|)) NIL) (((-3 $ "failed") (-407 (-1166 |#1|))) NIL (|has| |#1| (-363)))) (-4272 (((-3 $ "failed") $) NIL)) (-4164 ((|#1| $) 13)) (-3502 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-3309 (((-112) $) NIL (|has| |#1| (-545)))) (-3074 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-1595 (((-918)) NIL)) (-2939 (($) NIL (|has| |#1| (-368)))) (-1371 (($ $ $) NIL (|has| |#1| (-307)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-307)))) (-3648 (($) NIL (|has| |#1| (-349)))) (-1937 (((-112) $) NIL (|has| |#1| (-349)))) (-1957 (($ $ (-768)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-1926 (((-112) $) NIL (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1685 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1055)) (|has| |#1| (-1194))))) (-1688 (($) NIL (|has| |#1| (-1194)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#1| (-883 (-379))))) (-1454 (((-918) $) NIL (|has| |#1| (-349))) (((-830 (-918)) $) NIL (|has| |#1| (-349)))) (-2340 (((-112) $) 36)) (-4342 (($ $ (-564)) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-2217 ((|#1| $) 47)) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-2041 (((-1166 |#1|) $) NIL (|has| |#1| (-363)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4031 (((-918) $) NIL (|has| |#1| (-368)))) (-2305 (($ $) NIL (|has| |#1| (-1194)))) (-1714 (((-1166 |#1|) $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-3304 (($) NIL (|has| |#1| (-349)) CONST)) (-3338 (($ (-918)) NIL (|has| |#1| (-368)))) (-2016 (($) NIL)) (-4175 ((|#1| $) 15)) (-3844 (((-1114) $) NIL)) (-1729 (($) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-307)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| |#1| (-349)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4139 (((-418 $) $) NIL (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-307)))) (-1347 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 48 (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-4130 (($ $) NIL (|has| |#1| (-1194)))) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-3966 (((-768) $) NIL (|has| |#1| (-307)))) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-307)))) (-4378 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-2671 (((-768) $) NIL (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) NIL (|has| |#1| (-349)))) (-2203 (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2227 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-4180 (((-1166 |#1|)) NIL)) (-2692 (($ $) NIL (|has| |#1| (-1194)))) (-2557 (($ $) NIL (|has| |#1| (-1194)))) (-2927 (($) NIL (|has| |#1| (-349)))) (-2669 (($ $) NIL (|has| |#1| (-1194)))) (-2529 (($ $) NIL (|has| |#1| (-1194)))) (-2647 (($ $) NIL (|has| |#1| (-1194)))) (-2502 (($ $) NIL (|has| |#1| (-1194)))) (-3867 (((-1259 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2374 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1019))) (((-169 (-225)) $) NIL (|has| |#1| (-1019))) (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1953 (($ $) 46)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-349))))) (-2453 (($ |#1| |#1|) 38)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) 37) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-4363 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1650 (((-1166 |#1|) $) NIL)) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) NIL)) (-2728 (($ $) NIL (|has| |#1| (-1194)))) (-2595 (($ $) NIL (|has| |#1| (-1194)))) (-3979 (((-112) $ $) NIL (-4012 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-2704 (($ $) NIL (|has| |#1| (-1194)))) (-2566 (($ $) NIL (|has| |#1| (-1194)))) (-2751 (($ $) NIL (|has| |#1| (-1194)))) (-2615 (($ $) NIL (|has| |#1| (-1194)))) (-3130 ((|#1| $) NIL (|has| |#1| (-1194)))) (-2053 (($ $) NIL (|has| |#1| (-1194)))) (-2626 (($ $) NIL (|has| |#1| (-1194)))) (-2740 (($ $) NIL (|has| |#1| (-1194)))) (-2605 (($ $) NIL (|has| |#1| (-1194)))) (-2716 (($ $) NIL (|has| |#1| (-1194)))) (-2577 (($ $) NIL (|has| |#1| (-1194)))) (-3920 (($ $) NIL (|has| |#1| (-1055)))) (-4312 (($) 28 T CONST)) (-4323 (($) 30 T CONST)) (-1983 (((-1152) $) 23 (|has| |#1| (-825))) (((-1152) $ (-112)) 25 (|has| |#1| (-825))) (((-1264) (-819) $) 26 (|has| |#1| (-825))) (((-1264) (-819) $ (-112)) 27 (|has| |#1| (-825)))) (-2238 (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ $) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 40)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-407 (-564))) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194)))) (($ $ $) NIL (|has| |#1| (-1194))) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363)))))
(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-172)) (T -169))
NIL
(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|)))
-((-2127 (((-889 |#1|) |#3|) 22)))
-(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -2127 ((-889 |#1|) |#3|))) (-1094) (-13 (-612 (-889 |#1|)) (-172)) (-166 |#2|)) (T -170))
-((-2127 (*1 *2 *3) (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-889 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5)))))
-(-10 -7 (-15 -2127 ((-889 |#1|) |#3|)))
-((-1754 (((-112) $ $) NIL)) (-3268 (((-112) $) 9)) (-3736 (((-112) $ (-112)) 11)) (-1633 (($) 13)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1899 (($ $) 14)) (-1765 (((-859) $) 18)) (-3037 (((-112) $) 8)) (-3439 (((-112) $ (-112)) 10)) (-1686 (((-112) $ $) NIL)))
-(((-171) (-13 (-1094) (-10 -8 (-15 -1633 ($)) (-15 -3037 ((-112) $)) (-15 -3268 ((-112) $)) (-15 -3439 ((-112) $ (-112))) (-15 -3736 ((-112) $ (-112))) (-15 -1899 ($ $))))) (T -171))
-((-1633 (*1 *1) (-5 *1 (-171))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3439 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3736 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1899 (*1 *1 *1) (-5 *1 (-171))))
-(-13 (-1094) (-10 -8 (-15 -1633 ($)) (-15 -3037 ((-112) $)) (-15 -3268 ((-112) $)) (-15 -3439 ((-112) $ (-112))) (-15 -3736 ((-112) $ (-112))) (-15 -1899 ($ $))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-2374 (((-889 |#1|) |#3|) 22)))
+(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -2374 ((-889 |#1|) |#3|))) (-1094) (-13 (-612 (-889 |#1|)) (-172)) (-166 |#2|)) (T -170))
+((-2374 (*1 *2 *3) (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-889 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5)))))
+(-10 -7 (-15 -2374 ((-889 |#1|) |#3|)))
+((-3702 (((-112) $ $) NIL)) (-3998 (((-112) $) 9)) (-3009 (((-112) $ (-112)) 11)) (-3564 (($) 13)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3890 (($ $) 14)) (-3714 (((-859) $) 18)) (-3491 (((-112) $) 8)) (-3489 (((-112) $ (-112)) 10)) (-1720 (((-112) $ $) NIL)))
+(((-171) (-13 (-1094) (-10 -8 (-15 -3564 ($)) (-15 -3491 ((-112) $)) (-15 -3998 ((-112) $)) (-15 -3489 ((-112) $ (-112))) (-15 -3009 ((-112) $ (-112))) (-15 -3890 ($ $))))) (T -171))
+((-3564 (*1 *1) (-5 *1 (-171))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3489 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3009 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3890 (*1 *1 *1) (-5 *1 (-171))))
+(-13 (-1094) (-10 -8 (-15 -3564 ($)) (-15 -3491 ((-112) $)) (-15 -3998 ((-112) $)) (-15 -3489 ((-112) $ (-112))) (-15 -3009 ((-112) $ (-112))) (-15 -3890 ($ $))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-172) (-140)) (T -172))
NIL
-(-13 (-1046) (-111 $ $) (-10 -7 (-6 (-4413 "*"))))
+(-13 (-1046) (-111 $ $) (-10 -7 (-6 (-4414 "*"))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-3713 (($ $) 6)))
+((-3977 (($ $) 6)))
(((-173) (-140)) (T -173))
-((-3713 (*1 *1 *1) (-4 *1 (-173))))
-(-13 (-10 -8 (-15 -3713 ($ $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 ((|#1| $) 80)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-1387 (($ $ $) NIL)) (-1322 (($ $) 21)) (-2301 (($ |#1| (-1150 |#1|)) 49)) (-1926 (((-3 $ "failed") $) 122)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-3321 (((-1150 |#1|) $) 87)) (-3565 (((-1150 |#1|) $) 84)) (-3987 (((-1150 |#1|) $) 85)) (-2419 (((-112) $) NIL)) (-1453 (((-1150 |#1|) $) 93)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2488 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL)) (-2678 (($ $ (-564)) 96)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3794 (((-1150 |#1|) $) 94)) (-2957 (((-1150 (-407 |#1|)) $) 14)) (-3028 (($ (-407 |#1|)) 17) (($ |#1| (-1150 |#1|) (-1150 |#1|)) 39)) (-3204 (($ $) 98)) (-1765 (((-859) $) 139) (($ (-564)) 52) (($ |#1|) 53) (($ (-407 |#1|)) 37) (($ (-407 (-564))) NIL) (($ $) NIL)) (-1965 (((-768)) 69 T CONST)) (-1582 (((-112) $ $) NIL)) (-2161 (((-1150 (-407 |#1|)) $) 20)) (-4317 (($) 27 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 36)) (-1793 (($ $ $) 120)) (-1783 (($ $) 111) (($ $ $) 108)) (-1771 (($ $ $) 106)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 118) (($ $ $) 113) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-407 |#1|) $) 116) (($ $ (-407 |#1|)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL)))
-(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3028 ($ (-407 |#1|))) (-15 -3028 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -2301 ($ |#1| (-1150 |#1|))) (-15 -3565 ((-1150 |#1|) $)) (-15 -3987 ((-1150 |#1|) $)) (-15 -3321 ((-1150 |#1|) $)) (-15 -4328 (|#1| $)) (-15 -1322 ($ $)) (-15 -2161 ((-1150 (-407 |#1|)) $)) (-15 -2957 ((-1150 (-407 |#1|)) $)) (-15 -1453 ((-1150 |#1|) $)) (-15 -3794 ((-1150 |#1|) $)) (-15 -2678 ($ $ (-564))) (-15 -3204 ($ $)))) (-307)) (T -174))
-((-3028 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-3028 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-2301 (*1 *1 *2 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4328 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-1322 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-2161 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2678 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3204 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
-(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3028 ($ (-407 |#1|))) (-15 -3028 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -2301 ($ |#1| (-1150 |#1|))) (-15 -3565 ((-1150 |#1|) $)) (-15 -3987 ((-1150 |#1|) $)) (-15 -3321 ((-1150 |#1|) $)) (-15 -4328 (|#1| $)) (-15 -1322 ($ $)) (-15 -2161 ((-1150 (-407 |#1|)) $)) (-15 -2957 ((-1150 (-407 |#1|)) $)) (-15 -1453 ((-1150 |#1|) $)) (-15 -3794 ((-1150 |#1|) $)) (-15 -2678 ($ $ (-564))) (-15 -3204 ($ $))))
-((-2105 (($ (-109) $) 15)) (-3146 (((-687 (-109)) (-1170) $) 14)) (-1765 (((-859) $) 18)) (-3421 (((-641 (-109)) $) 8)))
-(((-175) (-13 (-611 (-859)) (-10 -8 (-15 -3421 ((-641 (-109)) $)) (-15 -2105 ($ (-109) $)) (-15 -3146 ((-687 (-109)) (-1170) $))))) (T -175))
-((-3421 (*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175)))) (-2105 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-3146 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -3421 ((-641 (-109)) $)) (-15 -2105 ($ (-109) $)) (-15 -3146 ((-687 (-109)) (-1170) $))))
-((-2825 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 40)) (-3108 (((-940 |#1|) (-940 |#1|)) 24)) (-3486 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 36)) (-4182 (((-940 |#1|) (-940 |#1|)) 22)) (-1372 (((-940 |#1|) (-940 |#1|)) 30)) (-1980 (((-940 |#1|) (-940 |#1|)) 29)) (-1982 (((-940 |#1|) (-940 |#1|)) 28)) (-3898 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 37)) (-4302 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 35)) (-1664 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 34)) (-1565 (((-940 |#1|) (-940 |#1|)) 23)) (-2747 (((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|) 43)) (-4163 (((-940 |#1|) (-940 |#1|)) 8)) (-3005 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 39)) (-3252 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 38)))
-(((-176 |#1|) (-10 -7 (-15 -4163 ((-940 |#1|) (-940 |#1|))) (-15 -4182 ((-940 |#1|) (-940 |#1|))) (-15 -1565 ((-940 |#1|) (-940 |#1|))) (-15 -3108 ((-940 |#1|) (-940 |#1|))) (-15 -1982 ((-940 |#1|) (-940 |#1|))) (-15 -1980 ((-940 |#1|) (-940 |#1|))) (-15 -1372 ((-940 |#1|) (-940 |#1|))) (-15 -1664 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -4302 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3486 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3898 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3252 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3005 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2825 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2747 ((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|))) (-13 (-363) (-1194) (-999))) (T -176))
-((-2747 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2825 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3005 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3252 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3898 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3486 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-4302 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-1664 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-1372 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-1565 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))))
-(-10 -7 (-15 -4163 ((-940 |#1|) (-940 |#1|))) (-15 -4182 ((-940 |#1|) (-940 |#1|))) (-15 -1565 ((-940 |#1|) (-940 |#1|))) (-15 -3108 ((-940 |#1|) (-940 |#1|))) (-15 -1982 ((-940 |#1|) (-940 |#1|))) (-15 -1980 ((-940 |#1|) (-940 |#1|))) (-15 -1372 ((-940 |#1|) (-940 |#1|))) (-15 -1664 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -4302 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3486 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3898 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3252 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3005 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2825 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2747 ((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|)))
-((-3216 ((|#2| |#3|) 28)))
-(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -3216 (|#2| |#3|))) (-172) (-1235 |#1|) (-721 |#1| |#2|)) (T -177))
-((-3216 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-721 *4 *2)))))
-(-10 -7 (-15 -3216 (|#2| |#3|)))
-((-2549 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 49 (|has| (-949 |#2|) (-883 |#1|)))))
-(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-949 |#2|) (-883 |#1|)) (-15 -2549 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) |%noBranch|)) (-1094) (-13 (-883 |#1|) (-172)) (-166 |#2|)) (T -178))
-((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *3 (-166 *6)) (-4 (-949 *6) (-883 *5)) (-4 *6 (-13 (-883 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-949 |#2|) (-883 |#1|)) (-15 -2549 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) |%noBranch|))
-((-3986 (((-641 |#1|) (-641 |#1|) |#1|) 41)) (-3868 (((-641 |#1|) |#1| (-641 |#1|)) 20)) (-4178 (((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|)) 36) ((|#1| (-641 |#1|) (-641 |#1|)) 32)))
-(((-179 |#1|) (-10 -7 (-15 -3868 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -4178 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -4178 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -3986 ((-641 |#1|) (-641 |#1|) |#1|))) (-307)) (T -179))
-((-3986 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-4178 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-4178 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-3868 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
-(-10 -7 (-15 -3868 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -4178 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -4178 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -3986 ((-641 |#1|) (-641 |#1|) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-4284 (((-1208) $) 13)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3678 (((-1129) $) 10)) (-1765 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-180) (-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $)) (-15 -4284 ((-1208) $))))) (T -180))
-((-3678 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180)))))
-(-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $)) (-15 -4284 ((-1208) $))))
-((-1452 (((-2 (|:| |start| |#2|) (|:| -2362 (-418 |#2|))) |#2|) 66)) (-2671 ((|#1| |#1|) 58)) (-3066 (((-169 |#1|) |#2|) 91)) (-3998 ((|#1| |#2|) 145) ((|#1| |#2| |#1|) 89)) (-1639 ((|#2| |#2|) 90)) (-3872 (((-418 |#2|) |#2| |#1|) 128) (((-418 |#2|) |#2| |#1| (-112)) 87)) (-1779 ((|#1| |#2|) 127)) (-1697 ((|#2| |#2|) 140)) (-4006 (((-418 |#2|) |#2|) 162) (((-418 |#2|) |#2| |#1|) 33) (((-418 |#2|) |#2| |#1| (-112)) 161)) (-3841 (((-641 (-2 (|:| -2362 (-641 |#2|)) (|:| -1919 |#1|))) |#2| |#2|) 160) (((-641 (-2 (|:| -2362 (-641 |#2|)) (|:| -1919 |#1|))) |#2| |#2| (-112)) 81)) (-2125 (((-641 (-169 |#1|)) |#2| |#1|) 42) (((-641 (-169 |#1|)) |#2|) 43)))
-(((-181 |#1| |#2|) (-10 -7 (-15 -2125 ((-641 (-169 |#1|)) |#2|)) (-15 -2125 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -3841 ((-641 (-2 (|:| -2362 (-641 |#2|)) (|:| -1919 |#1|))) |#2| |#2| (-112))) (-15 -3841 ((-641 (-2 (|:| -2362 (-641 |#2|)) (|:| -1919 |#1|))) |#2| |#2|)) (-15 -4006 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4006 ((-418 |#2|) |#2| |#1|)) (-15 -4006 ((-418 |#2|) |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1779 (|#1| |#2|)) (-15 -3872 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3872 ((-418 |#2|) |#2| |#1|)) (-15 -1639 (|#2| |#2|)) (-15 -3998 (|#1| |#2| |#1|)) (-15 -3998 (|#1| |#2|)) (-15 -3066 ((-169 |#1|) |#2|)) (-15 -2671 (|#1| |#1|)) (-15 -1452 ((-2 (|:| |start| |#2|) (|:| -2362 (-418 |#2|))) |#2|))) (-13 (-363) (-845)) (-1235 (-169 |#1|))) (T -181))
-((-1452 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-2 (|:| |start| *3) (|:| -2362 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2671 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-3066 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-845))) (-4 *3 (-1235 *2)))) (-3998 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-3998 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-1639 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-3872 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3872 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-1779 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-4006 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-4006 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3841 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-2 (|:| -2362 (-641 *3)) (|:| -1919 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3841 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-845))) (-5 *2 (-641 (-2 (|:| -2362 (-641 *3)) (|:| -1919 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5))))) (-2125 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2125 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(-10 -7 (-15 -2125 ((-641 (-169 |#1|)) |#2|)) (-15 -2125 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -3841 ((-641 (-2 (|:| -2362 (-641 |#2|)) (|:| -1919 |#1|))) |#2| |#2| (-112))) (-15 -3841 ((-641 (-2 (|:| -2362 (-641 |#2|)) (|:| -1919 |#1|))) |#2| |#2|)) (-15 -4006 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4006 ((-418 |#2|) |#2| |#1|)) (-15 -4006 ((-418 |#2|) |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1779 (|#1| |#2|)) (-15 -3872 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3872 ((-418 |#2|) |#2| |#1|)) (-15 -1639 (|#2| |#2|)) (-15 -3998 (|#1| |#2| |#1|)) (-15 -3998 (|#1| |#2|)) (-15 -3066 ((-169 |#1|) |#2|)) (-15 -2671 (|#1| |#1|)) (-15 -1452 ((-2 (|:| |start| |#2|) (|:| -2362 (-418 |#2|))) |#2|)))
-((-3368 (((-3 |#2| "failed") |#2|) 20)) (-3772 (((-768) |#2|) 23)) (-3140 ((|#2| |#2| |#2|) 25)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -3368 ((-3 |#2| "failed") |#2|)) (-15 -3772 ((-768) |#2|)) (-15 -3140 (|#2| |#2| |#2|))) (-1209) (-670 |#1|)) (T -182))
-((-3140 (*1 *2 *2 *2) (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))) (-3772 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-5 *2 (-768)) (-5 *1 (-182 *4 *3)) (-4 *3 (-670 *4)))) (-3368 (*1 *2 *2) (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))))
-(-10 -7 (-15 -3368 ((-3 |#2| "failed") |#2|)) (-15 -3772 ((-768) |#2|)) (-15 -3140 (|#2| |#2| |#2|)))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3836 (((-187) $) 7)) (-1765 (((-859) $) 14)) (-4229 (((-641 (-1175)) $) 10)) (-1686 (((-112) $ $) 12)))
-(((-183) (-13 (-1094) (-10 -8 (-15 -3836 ((-187) $)) (-15 -4229 ((-641 (-1175)) $))))) (T -183))
-((-3836 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183)))))
-(-13 (-1094) (-10 -8 (-15 -3836 ((-187) $)) (-15 -4229 ((-641 (-1175)) $))))
-((-1632 (((-641 (-862)) $) 16)) (-3339 (((-186) $) 8)) (-2751 (((-641 (-112)) $) 13)) (-2189 (((-55) $) 10)))
-(((-184 |#1|) (-10 -8 (-15 -1632 ((-641 (-862)) |#1|)) (-15 -2751 ((-641 (-112)) |#1|)) (-15 -3339 ((-186) |#1|)) (-15 -2189 ((-55) |#1|))) (-185)) (T -184))
-NIL
-(-10 -8 (-15 -1632 ((-641 (-862)) |#1|)) (-15 -2751 ((-641 (-112)) |#1|)) (-15 -3339 ((-186) |#1|)) (-15 -2189 ((-55) |#1|)))
-((-1754 (((-112) $ $) 7)) (-1632 (((-641 (-862)) $) 17)) (-4363 (((-506) $) 14)) (-4202 (((-1152) $) 9)) (-3339 (((-186) $) 19)) (-3802 (((-1114) $) 10)) (-2751 (((-641 (-112)) $) 18)) (-1765 (((-859) $) 11)) (-2189 (((-55) $) 13)) (-1686 (((-112) $ $) 6)))
+((-3977 (*1 *1 *1) (-4 *1 (-173))))
+(-13 (-10 -8 (-15 -3977 ($ $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 ((|#1| $) 80)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-1399 (($ $ $) NIL)) (-2277 (($ $) 21)) (-3629 (($ |#1| (-1150 |#1|)) 49)) (-4272 (((-3 $ "failed") $) 122)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-1442 (((-1150 |#1|) $) 87)) (-1997 (((-1150 |#1|) $) 84)) (-3454 (((-1150 |#1|) $) 85)) (-2340 (((-112) $) NIL)) (-2140 (((-1150 |#1|) $) 93)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2688 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL)) (-3042 (($ $ (-564)) 96)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2349 (((-1150 |#1|) $) 94)) (-3984 (((-1150 (-407 |#1|)) $) 14)) (-3399 (($ (-407 |#1|)) 17) (($ |#1| (-1150 |#1|) (-1150 |#1|)) 39)) (-2807 (($ $) 98)) (-3714 (((-859) $) 139) (($ (-564)) 52) (($ |#1|) 53) (($ (-407 |#1|)) 37) (($ (-407 (-564))) NIL) (($ $) NIL)) (-3379 (((-768)) 69 T CONST)) (-3979 (((-112) $ $) NIL)) (-1716 (((-1150 (-407 |#1|)) $) 20)) (-4312 (($) 27 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 36)) (-1841 (($ $ $) 120)) (-1828 (($ $) 111) (($ $ $) 108)) (-1814 (($ $ $) 106)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 118) (($ $ $) 113) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-407 |#1|) $) 116) (($ $ (-407 |#1|)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL)))
+(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3399 ($ (-407 |#1|))) (-15 -3399 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -3629 ($ |#1| (-1150 |#1|))) (-15 -1997 ((-1150 |#1|) $)) (-15 -3454 ((-1150 |#1|) $)) (-15 -1442 ((-1150 |#1|) $)) (-15 -3494 (|#1| $)) (-15 -2277 ($ $)) (-15 -1716 ((-1150 (-407 |#1|)) $)) (-15 -3984 ((-1150 (-407 |#1|)) $)) (-15 -2140 ((-1150 |#1|) $)) (-15 -2349 ((-1150 |#1|) $)) (-15 -3042 ($ $ (-564))) (-15 -2807 ($ $)))) (-307)) (T -174))
+((-3399 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-3399 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-3629 (*1 *1 *2 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3494 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2807 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
+(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -3399 ($ (-407 |#1|))) (-15 -3399 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -3629 ($ |#1| (-1150 |#1|))) (-15 -1997 ((-1150 |#1|) $)) (-15 -3454 ((-1150 |#1|) $)) (-15 -1442 ((-1150 |#1|) $)) (-15 -3494 (|#1| $)) (-15 -2277 ($ $)) (-15 -1716 ((-1150 (-407 |#1|)) $)) (-15 -3984 ((-1150 (-407 |#1|)) $)) (-15 -2140 ((-1150 |#1|) $)) (-15 -2349 ((-1150 |#1|) $)) (-15 -3042 ($ $ (-564))) (-15 -2807 ($ $))))
+((-2450 (($ (-109) $) 15)) (-2213 (((-687 (-109)) (-1170) $) 14)) (-3714 (((-859) $) 18)) (-3054 (((-641 (-109)) $) 8)))
+(((-175) (-13 (-611 (-859)) (-10 -8 (-15 -3054 ((-641 (-109)) $)) (-15 -2450 ($ (-109) $)) (-15 -2213 ((-687 (-109)) (-1170) $))))) (T -175))
+((-3054 (*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175)))) (-2450 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2213 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -3054 ((-641 (-109)) $)) (-15 -2450 ($ (-109) $)) (-15 -2213 ((-687 (-109)) (-1170) $))))
+((-2121 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 40)) (-3007 (((-940 |#1|) (-940 |#1|)) 24)) (-2487 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 36)) (-2889 (((-940 |#1|) (-940 |#1|)) 22)) (-4100 (((-940 |#1|) (-940 |#1|)) 30)) (-3523 (((-940 |#1|) (-940 |#1|)) 29)) (-3546 (((-940 |#1|) (-940 |#1|)) 28)) (-2103 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 37)) (-1483 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 35)) (-3449 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 34)) (-1991 (((-940 |#1|) (-940 |#1|)) 23)) (-2562 (((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|) 43)) (-2741 (((-940 |#1|) (-940 |#1|)) 8)) (-1348 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 39)) (-2035 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 38)))
+(((-176 |#1|) (-10 -7 (-15 -2741 ((-940 |#1|) (-940 |#1|))) (-15 -2889 ((-940 |#1|) (-940 |#1|))) (-15 -1991 ((-940 |#1|) (-940 |#1|))) (-15 -3007 ((-940 |#1|) (-940 |#1|))) (-15 -3546 ((-940 |#1|) (-940 |#1|))) (-15 -3523 ((-940 |#1|) (-940 |#1|))) (-15 -4100 ((-940 |#1|) (-940 |#1|))) (-15 -3449 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1483 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2487 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2103 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2035 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1348 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2121 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2562 ((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|))) (-13 (-363) (-1194) (-999))) (T -176))
+((-2562 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-1348 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2035 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2103 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2487 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-1483 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3449 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-4100 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-3546 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-3007 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-2889 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-2741 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))))
+(-10 -7 (-15 -2741 ((-940 |#1|) (-940 |#1|))) (-15 -2889 ((-940 |#1|) (-940 |#1|))) (-15 -1991 ((-940 |#1|) (-940 |#1|))) (-15 -3007 ((-940 |#1|) (-940 |#1|))) (-15 -3546 ((-940 |#1|) (-940 |#1|))) (-15 -3523 ((-940 |#1|) (-940 |#1|))) (-15 -4100 ((-940 |#1|) (-940 |#1|))) (-15 -3449 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1483 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2487 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2103 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2035 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1348 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2121 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2562 ((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|)))
+((-1650 ((|#2| |#3|) 28)))
+(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -1650 (|#2| |#3|))) (-172) (-1235 |#1|) (-721 |#1| |#2|)) (T -177))
+((-1650 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-721 *4 *2)))))
+(-10 -7 (-15 -1650 (|#2| |#3|)))
+((-4181 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 49 (|has| (-949 |#2|) (-883 |#1|)))))
+(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-949 |#2|) (-883 |#1|)) (-15 -4181 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) |%noBranch|)) (-1094) (-13 (-883 |#1|) (-172)) (-166 |#2|)) (T -178))
+((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *3 (-166 *6)) (-4 (-949 *6) (-883 *5)) (-4 *6 (-13 (-883 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-949 |#2|) (-883 |#1|)) (-15 -4181 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) |%noBranch|))
+((-3443 (((-641 |#1|) (-641 |#1|) |#1|) 41)) (-1790 (((-641 |#1|) |#1| (-641 |#1|)) 20)) (-2855 (((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|)) 36) ((|#1| (-641 |#1|) (-641 |#1|)) 32)))
+(((-179 |#1|) (-10 -7 (-15 -1790 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -2855 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -2855 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -3443 ((-641 |#1|) (-641 |#1|) |#1|))) (-307)) (T -179))
+((-3443 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-2855 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-2855 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-1790 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
+(-10 -7 (-15 -1790 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -2855 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -2855 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -3443 ((-641 |#1|) (-641 |#1|) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-3155 (((-1208) $) 13)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2726 (((-1129) $) 10)) (-3714 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-180) (-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $)) (-15 -3155 ((-1208) $))))) (T -180))
+((-2726 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180)))))
+(-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $)) (-15 -3155 ((-1208) $))))
+((-2129 (((-2 (|:| |start| |#2|) (|:| -3020 (-418 |#2|))) |#2|) 66)) (-2980 ((|#1| |#1|) 58)) (-3807 (((-169 |#1|) |#2|) 91)) (-3555 ((|#1| |#2|) 145) ((|#1| |#2| |#1|) 89)) (-1420 ((|#2| |#2|) 90)) (-1839 (((-418 |#2|) |#2| |#1|) 128) (((-418 |#2|) |#2| |#1| (-112)) 87)) (-2217 ((|#1| |#2|) 127)) (-3815 ((|#2| |#2|) 140)) (-4139 (((-418 |#2|) |#2|) 162) (((-418 |#2|) |#2| |#1|) 33) (((-418 |#2|) |#2| |#1| (-112)) 161)) (-2801 (((-641 (-2 (|:| -3020 (-641 |#2|)) (|:| -2000 |#1|))) |#2| |#2|) 160) (((-641 (-2 (|:| -3020 (-641 |#2|)) (|:| -2000 |#1|))) |#2| |#2| (-112)) 81)) (-2660 (((-641 (-169 |#1|)) |#2| |#1|) 42) (((-641 (-169 |#1|)) |#2|) 43)))
+(((-181 |#1| |#2|) (-10 -7 (-15 -2660 ((-641 (-169 |#1|)) |#2|)) (-15 -2660 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -2801 ((-641 (-2 (|:| -3020 (-641 |#2|)) (|:| -2000 |#1|))) |#2| |#2| (-112))) (-15 -2801 ((-641 (-2 (|:| -3020 (-641 |#2|)) (|:| -2000 |#1|))) |#2| |#2|)) (-15 -4139 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4139 ((-418 |#2|) |#2| |#1|)) (-15 -4139 ((-418 |#2|) |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -2217 (|#1| |#2|)) (-15 -1839 ((-418 |#2|) |#2| |#1| (-112))) (-15 -1839 ((-418 |#2|) |#2| |#1|)) (-15 -1420 (|#2| |#2|)) (-15 -3555 (|#1| |#2| |#1|)) (-15 -3555 (|#1| |#2|)) (-15 -3807 ((-169 |#1|) |#2|)) (-15 -2980 (|#1| |#1|)) (-15 -2129 ((-2 (|:| |start| |#2|) (|:| -3020 (-418 |#2|))) |#2|))) (-13 (-363) (-845)) (-1235 (-169 |#1|))) (T -181))
+((-2129 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-2 (|:| |start| *3) (|:| -3020 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2980 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-3807 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-845))) (-4 *3 (-1235 *2)))) (-3555 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-3555 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-1420 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-1839 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-1839 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2217 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-4139 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2801 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-2 (|:| -3020 (-641 *3)) (|:| -2000 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2801 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-845))) (-5 *2 (-641 (-2 (|:| -3020 (-641 *3)) (|:| -2000 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5))))) (-2660 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2660 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
+(-10 -7 (-15 -2660 ((-641 (-169 |#1|)) |#2|)) (-15 -2660 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -2801 ((-641 (-2 (|:| -3020 (-641 |#2|)) (|:| -2000 |#1|))) |#2| |#2| (-112))) (-15 -2801 ((-641 (-2 (|:| -3020 (-641 |#2|)) (|:| -2000 |#1|))) |#2| |#2|)) (-15 -4139 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4139 ((-418 |#2|) |#2| |#1|)) (-15 -4139 ((-418 |#2|) |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -2217 (|#1| |#2|)) (-15 -1839 ((-418 |#2|) |#2| |#1| (-112))) (-15 -1839 ((-418 |#2|) |#2| |#1|)) (-15 -1420 (|#2| |#2|)) (-15 -3555 (|#1| |#2| |#1|)) (-15 -3555 (|#1| |#2|)) (-15 -3807 ((-169 |#1|) |#2|)) (-15 -2980 (|#1| |#1|)) (-15 -2129 ((-2 (|:| |start| |#2|) (|:| -3020 (-418 |#2|))) |#2|)))
+((-3743 (((-3 |#2| "failed") |#2|) 20)) (-3280 (((-768) |#2|) 23)) (-3286 ((|#2| |#2| |#2|) 25)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3743 ((-3 |#2| "failed") |#2|)) (-15 -3280 ((-768) |#2|)) (-15 -3286 (|#2| |#2| |#2|))) (-1209) (-670 |#1|)) (T -182))
+((-3286 (*1 *2 *2 *2) (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))) (-3280 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-5 *2 (-768)) (-5 *1 (-182 *4 *3)) (-4 *3 (-670 *4)))) (-3743 (*1 *2 *2) (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))))
+(-10 -7 (-15 -3743 ((-3 |#2| "failed") |#2|)) (-15 -3280 ((-768) |#2|)) (-15 -3286 (|#2| |#2| |#2|)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2844 (((-187) $) 7)) (-3714 (((-859) $) 14)) (-2841 (((-641 (-1175)) $) 10)) (-1720 (((-112) $ $) 12)))
+(((-183) (-13 (-1094) (-10 -8 (-15 -2844 ((-187) $)) (-15 -2841 ((-641 (-1175)) $))))) (T -183))
+((-2844 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183)))))
+(-13 (-1094) (-10 -8 (-15 -2844 ((-187) $)) (-15 -2841 ((-641 (-1175)) $))))
+((-1775 (((-641 (-862)) $) 16)) (-3383 (((-186) $) 8)) (-2610 (((-641 (-112)) $) 13)) (-2004 (((-55) $) 10)))
+(((-184 |#1|) (-10 -8 (-15 -1775 ((-641 (-862)) |#1|)) (-15 -2610 ((-641 (-112)) |#1|)) (-15 -3383 ((-186) |#1|)) (-15 -2004 ((-55) |#1|))) (-185)) (T -184))
+NIL
+(-10 -8 (-15 -1775 ((-641 (-862)) |#1|)) (-15 -2610 ((-641 (-112)) |#1|)) (-15 -3383 ((-186) |#1|)) (-15 -2004 ((-55) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1775 (((-641 (-862)) $) 17)) (-4337 (((-506) $) 14)) (-1868 (((-1152) $) 9)) (-3383 (((-186) $) 19)) (-3844 (((-1114) $) 10)) (-2610 (((-641 (-112)) $) 18)) (-3714 (((-859) $) 11)) (-2004 (((-55) $) 13)) (-1720 (((-112) $ $) 6)))
(((-185) (-140)) (T -185))
-((-3339 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112))))) (-1632 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-862))))))
-(-13 (-832 (-506)) (-10 -8 (-15 -3339 ((-186) $)) (-15 -2751 ((-641 (-112)) $)) (-15 -1632 ((-641 (-862)) $))))
+((-3383 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112))))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-862))))))
+(-13 (-832 (-506)) (-10 -8 (-15 -3383 ((-186) $)) (-15 -2610 ((-641 (-112)) $)) (-15 -1775 ((-641 (-862)) $))))
(((-102) . T) ((-611 (-859)) . T) ((-832 (-506)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-8 (($) 7 T CONST)) (-1765 (((-859) $) 12)) (-9 (($) 6 T CONST)) (-1686 (((-112) $ $) 10)))
-(((-186) (-13 (-1094) (-10 -8 (-15 -9 ($) -3246) (-15 -8 ($) -3246) (-15 -7 ($) -3246)))) (T -186))
+((-3702 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-8 (($) 7 T CONST)) (-3714 (((-859) $) 12)) (-9 (($) 6 T CONST)) (-1720 (((-112) $ $) 10)))
+(((-186) (-13 (-1094) (-10 -8 (-15 -9 ($) -2222) (-15 -8 ($) -2222) (-15 -7 ($) -2222)))) (T -186))
((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186))))
-(-13 (-1094) (-10 -8 (-15 -9 ($) -3246) (-15 -8 ($) -3246) (-15 -7 ($) -3246)))
-((-1754 (((-112) $ $) NIL)) (-1632 (((-641 (-862)) $) NIL)) (-4363 (((-506) $) 8)) (-4202 (((-1152) $) NIL)) (-3339 (((-186) $) 10)) (-3802 (((-1114) $) NIL)) (-3458 (((-687 $) (-1170)) 18)) (-2751 (((-641 (-112)) $) NIL)) (-1765 (((-859) $) NIL)) (-2189 (((-55) $) 12)) (-1686 (((-112) $ $) NIL)))
-(((-187) (-13 (-185) (-10 -8 (-15 -3458 ((-687 $) (-1170)))))) (T -187))
-((-3458 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-187))) (-5 *1 (-187)))))
-(-13 (-185) (-10 -8 (-15 -3458 ((-687 $) (-1170)))))
-((-3811 ((|#2| |#2|) 28)) (-4122 (((-112) |#2|) 19)) (-4032 (((-316 |#1|) |#2|) 12)) (-4045 (((-316 |#1|) |#2|) 14)) (-3459 ((|#2| |#2| (-1170)) 70) ((|#2| |#2|) 71)) (-2853 (((-169 (-316 |#1|)) |#2|) 10)) (-1832 ((|#2| |#2| (-1170)) 67) ((|#2| |#2|) 61)))
-(((-188 |#1| |#2|) (-10 -7 (-15 -3459 (|#2| |#2|)) (-15 -3459 (|#2| |#2| (-1170))) (-15 -1832 (|#2| |#2|)) (-15 -1832 (|#2| |#2| (-1170))) (-15 -4032 ((-316 |#1|) |#2|)) (-15 -4045 ((-316 |#1|) |#2|)) (-15 -4122 ((-112) |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -2853 ((-169 (-316 |#1|)) |#2|))) (-13 (-556) (-847) (-1035 (-564))) (-13 (-27) (-1194) (-430 (-169 |#1|)))) (T -188))
-((-2853 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-4122 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-4045 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-4032 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-1832 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-1832 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-3459 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))))
-(-10 -7 (-15 -3459 (|#2| |#2|)) (-15 -3459 (|#2| |#2| (-1170))) (-15 -1832 (|#2| |#2|)) (-15 -1832 (|#2| |#2| (-1170))) (-15 -4032 ((-316 |#1|) |#2|)) (-15 -4045 ((-316 |#1|) |#2|)) (-15 -4122 ((-112) |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -2853 ((-169 (-316 |#1|)) |#2|)))
-((-2094 (((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|))) 26)) (-1765 (((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))) 37)))
-(((-189 |#1|) (-10 -7 (-15 -2094 ((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|)))) (-15 -1765 ((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))))) (-172)) (T -189))
-((-1765 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-407 (-949 *4))))) (-5 *1 (-189 *4)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-949 *4)))) (-5 *1 (-189 *4)))))
-(-10 -7 (-15 -2094 ((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|)))) (-15 -1765 ((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|)))))
-((-3661 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 89)) (-1683 (((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564))) 99)) (-2285 (((-1172 (-407 (-564))) (-564)) 56)) (-2631 (((-1172 (-407 (-564))) (-564)) 75)) (-2407 (((-407 (-564)) (-1172 (-407 (-564)))) 85)) (-3641 (((-1172 (-407 (-564))) (-564)) 37)) (-1358 (((-1172 (-407 (-564))) (-564)) 68)) (-3062 (((-1172 (-407 (-564))) (-564)) 62)) (-3892 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 83)) (-3204 (((-1172 (-407 (-564))) (-564)) 29)) (-4275 (((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 87)) (-2675 (((-1172 (-407 (-564))) (-564)) 35)) (-2182 (((-1172 (-407 (-564))) (-641 (-564))) 96)))
-(((-190) (-10 -7 (-15 -3204 ((-1172 (-407 (-564))) (-564))) (-15 -2285 ((-1172 (-407 (-564))) (-564))) (-15 -3641 ((-1172 (-407 (-564))) (-564))) (-15 -2675 ((-1172 (-407 (-564))) (-564))) (-15 -3062 ((-1172 (-407 (-564))) (-564))) (-15 -1358 ((-1172 (-407 (-564))) (-564))) (-15 -2631 ((-1172 (-407 (-564))) (-564))) (-15 -4275 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3892 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2407 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -3661 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2182 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -1683 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564)))))) (T -190))
-((-1683 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-3661 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-3892 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-4275 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-2631 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-1358 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3062 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2675 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3641 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2285 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(-10 -7 (-15 -3204 ((-1172 (-407 (-564))) (-564))) (-15 -2285 ((-1172 (-407 (-564))) (-564))) (-15 -3641 ((-1172 (-407 (-564))) (-564))) (-15 -2675 ((-1172 (-407 (-564))) (-564))) (-15 -3062 ((-1172 (-407 (-564))) (-564))) (-15 -1358 ((-1172 (-407 (-564))) (-564))) (-15 -2631 ((-1172 (-407 (-564))) (-564))) (-15 -4275 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3892 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2407 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -3661 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2182 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -1683 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564)))))
-((-4211 (((-418 (-1166 (-564))) (-564)) 38)) (-2639 (((-641 (-1166 (-564))) (-564)) 33)) (-2871 (((-1166 (-564)) (-564)) 28)))
-(((-191) (-10 -7 (-15 -2639 ((-641 (-1166 (-564))) (-564))) (-15 -2871 ((-1166 (-564)) (-564))) (-15 -4211 ((-418 (-1166 (-564))) (-564))))) (T -191))
-((-4211 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))) (-2871 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) (-2639 (*1 *2 *3) (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
-(-10 -7 (-15 -2639 ((-641 (-1166 (-564))) (-564))) (-15 -2871 ((-1166 (-564)) (-564))) (-15 -4211 ((-418 (-1166 (-564))) (-564))))
-((-1348 (((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-3446 (((-641 (-1152)) (-1150 (-225))) NIL)) (-1473 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-3785 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225)))) NIL)) (-4084 (((-641 (-1152)) (-641 (-225))) NIL)) (-2481 (((-225) (-1088 (-840 (-225)))) 31)) (-3908 (((-225) (-1088 (-840 (-225)))) 32)) (-4160 (((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-2201 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-1401 (((-1152) (-225)) NIL)) (-2029 (((-1152) (-641 (-1152))) 27)) (-2500 (((-1032) (-1170) (-1170) (-1032)) 13)))
-(((-192) (-10 -7 (-15 -1473 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2201 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2481 ((-225) (-1088 (-840 (-225))))) (-15 -3908 ((-225) (-1088 (-840 (-225))))) (-15 -4160 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3785 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -1348 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1401 ((-1152) (-225))) (-15 -4084 ((-641 (-1152)) (-641 (-225)))) (-15 -3446 ((-641 (-1152)) (-1150 (-225)))) (-15 -2029 ((-1152) (-641 (-1152)))) (-15 -2500 ((-1032) (-1170) (-1170) (-1032))))) (T -192))
-((-2500 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-192)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-192)))) (-3785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
-(-10 -7 (-15 -1473 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2201 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2481 ((-225) (-1088 (-840 (-225))))) (-15 -3908 ((-225) (-1088 (-840 (-225))))) (-15 -4160 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3785 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -1348 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1401 ((-1152) (-225))) (-15 -4084 ((-641 (-1152)) (-641 (-225)))) (-15 -3446 ((-641 (-1152)) (-1150 (-225)))) (-15 -2029 ((-1152) (-641 (-1152)))) (-15 -2500 ((-1032) (-1170) (-1170) (-1032))))
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 61) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+(-13 (-1094) (-10 -8 (-15 -9 ($) -2222) (-15 -8 ($) -2222) (-15 -7 ($) -2222)))
+((-3702 (((-112) $ $) NIL)) (-1775 (((-641 (-862)) $) NIL)) (-4337 (((-506) $) 8)) (-1868 (((-1152) $) NIL)) (-3383 (((-186) $) 10)) (-3844 (((-1114) $) NIL)) (-3345 (((-687 $) (-506)) 17)) (-2610 (((-641 (-112)) $) NIL)) (-3714 (((-859) $) NIL)) (-2004 (((-55) $) 12)) (-1720 (((-112) $ $) NIL)))
+(((-187) (-13 (-185) (-10 -8 (-15 -3345 ((-687 $) (-506)))))) (T -187))
+((-3345 (*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-187))) (-5 *1 (-187)))))
+(-13 (-185) (-10 -8 (-15 -3345 ((-687 $) (-506)))))
+((-2525 ((|#2| |#2|) 28)) (-2330 (((-112) |#2|) 19)) (-4164 (((-316 |#1|) |#2|) 12)) (-4175 (((-316 |#1|) |#2|) 14)) (-2232 ((|#2| |#2| (-1170)) 70) ((|#2| |#2|) 71)) (-4247 (((-169 (-316 |#1|)) |#2|) 10)) (-2767 ((|#2| |#2| (-1170)) 67) ((|#2| |#2|) 61)))
+(((-188 |#1| |#2|) (-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1170))) (-15 -2767 (|#2| |#2|)) (-15 -2767 (|#2| |#2| (-1170))) (-15 -4164 ((-316 |#1|) |#2|)) (-15 -4175 ((-316 |#1|) |#2|)) (-15 -2330 ((-112) |#2|)) (-15 -2525 (|#2| |#2|)) (-15 -4247 ((-169 (-316 |#1|)) |#2|))) (-13 (-556) (-847) (-1035 (-564))) (-13 (-27) (-1194) (-430 (-169 |#1|)))) (T -188))
+((-4247 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2525 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-2330 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-4175 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2767 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2767 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))))
+(-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1170))) (-15 -2767 (|#2| |#2|)) (-15 -2767 (|#2| |#2| (-1170))) (-15 -4164 ((-316 |#1|) |#2|)) (-15 -4175 ((-316 |#1|) |#2|)) (-15 -2330 ((-112) |#2|)) (-15 -2525 (|#2| |#2|)) (-15 -4247 ((-169 (-316 |#1|)) |#2|)))
+((-2323 (((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|))) 26)) (-3714 (((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))) 37)))
+(((-189 |#1|) (-10 -7 (-15 -2323 ((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|)))) (-15 -3714 ((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))))) (-172)) (T -189))
+((-3714 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-407 (-949 *4))))) (-5 *1 (-189 *4)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-949 *4)))) (-5 *1 (-189 *4)))))
+(-10 -7 (-15 -2323 ((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|)))) (-15 -3714 ((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|)))))
+((-3458 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 89)) (-3664 (((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564))) 99)) (-3461 (((-1172 (-407 (-564))) (-564)) 56)) (-3739 (((-1172 (-407 (-564))) (-564)) 75)) (-2582 (((-407 (-564)) (-1172 (-407 (-564)))) 85)) (-1471 (((-1172 (-407 (-564))) (-564)) 37)) (-3799 (((-1172 (-407 (-564))) (-564)) 68)) (-3757 (((-1172 (-407 (-564))) (-564)) 62)) (-2037 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 83)) (-2807 (((-1172 (-407 (-564))) (-564)) 29)) (-4357 (((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 87)) (-3017 (((-1172 (-407 (-564))) (-564)) 35)) (-1936 (((-1172 (-407 (-564))) (-641 (-564))) 96)))
+(((-190) (-10 -7 (-15 -2807 ((-1172 (-407 (-564))) (-564))) (-15 -3461 ((-1172 (-407 (-564))) (-564))) (-15 -1471 ((-1172 (-407 (-564))) (-564))) (-15 -3017 ((-1172 (-407 (-564))) (-564))) (-15 -3757 ((-1172 (-407 (-564))) (-564))) (-15 -3799 ((-1172 (-407 (-564))) (-564))) (-15 -3739 ((-1172 (-407 (-564))) (-564))) (-15 -4357 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2037 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2582 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -3458 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -1936 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -3664 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564)))))) (T -190))
+((-3664 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-1936 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-3458 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-2037 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-4357 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3799 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3757 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3017 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-1471 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3461 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2807 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(-10 -7 (-15 -2807 ((-1172 (-407 (-564))) (-564))) (-15 -3461 ((-1172 (-407 (-564))) (-564))) (-15 -1471 ((-1172 (-407 (-564))) (-564))) (-15 -3017 ((-1172 (-407 (-564))) (-564))) (-15 -3757 ((-1172 (-407 (-564))) (-564))) (-15 -3799 ((-1172 (-407 (-564))) (-564))) (-15 -3739 ((-1172 (-407 (-564))) (-564))) (-15 -4357 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2037 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2582 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -3458 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -1936 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -3664 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564)))))
+((-1955 (((-418 (-1166 (-564))) (-564)) 38)) (-3835 (((-641 (-1166 (-564))) (-564)) 33)) (-1343 (((-1166 (-564)) (-564)) 28)))
+(((-191) (-10 -7 (-15 -3835 ((-641 (-1166 (-564))) (-564))) (-15 -1343 ((-1166 (-564)) (-564))) (-15 -1955 ((-418 (-1166 (-564))) (-564))))) (T -191))
+((-1955 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))) (-1343 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) (-3835 (*1 *2 *3) (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
+(-10 -7 (-15 -3835 ((-641 (-1166 (-564))) (-564))) (-15 -1343 ((-1166 (-564)) (-564))) (-15 -1955 ((-418 (-1166 (-564))) (-564))))
+((-2517 (((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-3245 (((-641 (-1152)) (-1150 (-225))) NIL)) (-2344 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-3381 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225)))) NIL)) (-3149 (((-641 (-1152)) (-641 (-225))) NIL)) (-1749 (((-225) (-1088 (-840 (-225)))) 31)) (-2192 (((-225) (-1088 (-840 (-225)))) 32)) (-2705 (((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-2130 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-1822 (((-1152) (-225)) NIL)) (-2909 (((-1152) (-641 (-1152))) 27)) (-1931 (((-1032) (-1170) (-1170) (-1032)) 13)))
+(((-192) (-10 -7 (-15 -2344 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2130 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1749 ((-225) (-1088 (-840 (-225))))) (-15 -2192 ((-225) (-1088 (-840 (-225))))) (-15 -2705 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3381 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -2517 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1822 ((-1152) (-225))) (-15 -3149 ((-641 (-1152)) (-641 (-225)))) (-15 -3245 ((-641 (-1152)) (-1150 (-225)))) (-15 -2909 ((-1152) (-641 (-1152)))) (-15 -1931 ((-1032) (-1170) (-1170) (-1032))))) (T -192))
+((-1931 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-192)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-192)))) (-3381 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
+(-10 -7 (-15 -2344 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2130 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1749 ((-225) (-1088 (-840 (-225))))) (-15 -2192 ((-225) (-1088 (-840 (-225))))) (-15 -2705 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3381 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -2517 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1822 ((-1152) (-225))) (-15 -3149 ((-641 (-1152)) (-641 (-225)))) (-15 -3245 ((-641 (-1152)) (-1150 (-225)))) (-15 -2909 ((-1152) (-641 (-1152)))) (-15 -1931 ((-1032) (-1170) (-1170) (-1032))))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 61) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-193) (-784)) (T -193))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 66) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 66) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-194) (-784)) (T -194))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 81) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 81) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-195) (-784)) (T -195))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 63) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 63) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-196) (-784)) (T -196))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 75) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 75) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-197) (-784)) (T -197))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 90) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 90) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-198) (-784)) (T -198))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 90) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 90) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-199) (-784)) (T -199))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 77) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 77) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-200) (-784)) (T -200))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 78)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 78)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-201) (-784)) (T -201))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 79)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 79)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-202) (-784)) (T -202))
NIL
(-784)
-((-1754 (((-112) $ $) NIL)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 105) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 105) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-203) (-784)) (T -203))
NIL
(-784)
-((-2348 (((-3 (-2 (|:| -3351 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-2861 (((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-2464 (((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92)))
-(((-204) (-10 -7 (-15 -2348 ((-3 (-2 (|:| -3351 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2464 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2861 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
-((-2861 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-564)) (-5 *1 (-204)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-204)))) (-2348 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3351 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
-(-10 -7 (-15 -2348 ((-3 (-2 (|:| -3351 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2464 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2861 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-2350 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-1476 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 157)) (-3269 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225)))) 109)) (-2135 (((-379) (-685 (-316 (-225)))) 137)) (-2146 (((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170))) 133)) (-1480 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-1431 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2407 (((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225)))) 122)) (-1471 (((-379) (-379) (-641 (-379))) 130) (((-379) (-379) (-379)) 125)) (-3364 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45)))
-(((-205) (-10 -7 (-15 -1471 ((-379) (-379) (-379))) (-15 -1471 ((-379) (-379) (-641 (-379)))) (-15 -2135 ((-379) (-685 (-316 (-225))))) (-15 -2146 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -2407 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -3269 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -1476 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2350 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1431 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3364 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1480 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
-((-1480 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-2407 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170))) (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1471 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1471 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))))
-(-10 -7 (-15 -1471 ((-379) (-379) (-379))) (-15 -1471 ((-379) (-379) (-641 (-379)))) (-15 -2135 ((-379) (-685 (-316 (-225))))) (-15 -2146 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -2407 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -3269 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -1476 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2350 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1431 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3364 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1480 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-1754 (((-112) $ $) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4129 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-1686 (((-112) $ $) NIL)))
+((-2931 (((-3 (-2 (|:| -3395 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-4328 (((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-2819 (((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92)))
+(((-204) (-10 -7 (-15 -2931 ((-3 (-2 (|:| -3395 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2819 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4328 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
+((-4328 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-564)) (-5 *1 (-204)))) (-2819 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-204)))) (-2931 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3395 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
+(-10 -7 (-15 -2931 ((-3 (-2 (|:| -3395 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2819 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4328 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-2949 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-2382 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 157)) (-4010 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225)))) 109)) (-2753 (((-379) (-685 (-316 (-225)))) 137)) (-1576 (((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170))) 133)) (-2425 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-1762 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2582 (((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225)))) 122)) (-2321 (((-379) (-379) (-641 (-379))) 130) (((-379) (-379) (-379)) 125)) (-3696 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45)))
+(((-205) (-10 -7 (-15 -2321 ((-379) (-379) (-379))) (-15 -2321 ((-379) (-379) (-641 (-379)))) (-15 -2753 ((-379) (-685 (-316 (-225))))) (-15 -1576 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -2582 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -4010 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -2382 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2949 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1762 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3696 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2425 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
+((-2425 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-2582 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170))) (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2321 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2321 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))))
+(-10 -7 (-15 -2321 ((-379) (-379) (-379))) (-15 -2321 ((-379) (-379) (-641 (-379)))) (-15 -2753 ((-379) (-685 (-316 (-225))))) (-15 -1576 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -2582 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -4010 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -2382 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2949 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1762 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3696 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2425 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-3702 (((-112) $ $) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-2413 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-1720 (((-112) $ $) NIL)))
(((-206) (-797)) (T -206))
NIL
(-797)
-((-1754 (((-112) $ $) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4129 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-2413 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-1720 (((-112) $ $) NIL)))
(((-207) (-797)) (T -207))
NIL
(-797)
-((-1754 (((-112) $ $) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4129 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-2413 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-1720 (((-112) $ $) NIL)))
(((-208) (-797)) (T -208))
NIL
(-797)
-((-1754 (((-112) $ $) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4129 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-2413 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-1720 (((-112) $ $) NIL)))
(((-209) (-797)) (T -209))
NIL
(-797)
-((-3265 (((-641 (-1170)) (-1170) (-768)) 24)) (-3183 (((-316 (-225)) (-316 (-225))) 33)) (-2035 (((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 88)) (-2258 (((-112) (-225) (-225) (-641 (-316 (-225)))) 48)))
-(((-210) (-10 -7 (-15 -3265 ((-641 (-1170)) (-1170) (-768))) (-15 -3183 ((-316 (-225)) (-316 (-225)))) (-15 -2258 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -2035 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))) (T -210))
-((-2035 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2258 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-210)) (-5 *3 (-1170)))))
-(-10 -7 (-15 -3265 ((-641 (-1170)) (-1170) (-768))) (-15 -3183 ((-316 (-225)) (-316 (-225)))) (-15 -2258 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -2035 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))
-((-1754 (((-112) $ $) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 28)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-3961 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 70)) (-1686 (((-112) $ $) NIL)))
+((-3441 (((-641 (-1170)) (-1170) (-768)) 24)) (-2608 (((-316 (-225)) (-316 (-225))) 33)) (-2952 (((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 88)) (-1421 (((-112) (-225) (-225) (-641 (-316 (-225)))) 48)))
+(((-210) (-10 -7 (-15 -3441 ((-641 (-1170)) (-1170) (-768))) (-15 -2608 ((-316 (-225)) (-316 (-225)))) (-15 -1421 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -2952 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))) (T -210))
+((-2952 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-1421 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-2608 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-210)) (-5 *3 (-1170)))))
+(-10 -7 (-15 -3441 ((-641 (-1170)) (-1170) (-768))) (-15 -2608 ((-316 (-225)) (-316 (-225)))) (-15 -1421 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -2952 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))
+((-3702 (((-112) $ $) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 28)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1424 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 70)) (-1720 (((-112) $ $) NIL)))
(((-211) (-892)) (T -211))
NIL
(-892)
-((-1754 (((-112) $ $) NIL)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 24)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-3961 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 24)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1424 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) NIL)) (-1720 (((-112) $ $) NIL)))
(((-212) (-892)) (T -212))
NIL
(-892)
-((-1754 (((-112) $ $) NIL)) (-3464 ((|#2| $ (-768) |#2|) 11)) (-3455 ((|#2| $ (-768)) 10)) (-1633 (($) 8)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 26)) (-1686 (((-112) $ $) 13)))
-(((-213 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1633 ($)) (-15 -3455 (|#2| $ (-768))) (-15 -3464 (|#2| $ (-768) |#2|)))) (-918) (-1094)) (T -213))
-((-1633 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1094)))) (-3455 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)))) (-3464 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)) (-4 *2 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -1633 ($)) (-15 -3455 (|#2| $ (-768))) (-15 -3464 (|#2| $ (-768) |#2|))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3092 (((-1264) $) 37) (((-1264) $ (-918) (-918)) 44)) (-4382 (($ $ (-986)) 19) (((-245 (-1152)) $ (-1170)) 15)) (-3463 (((-1264) $) 35)) (-1765 (((-859) $) 32) (($ (-641 |#1|)) 8)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $ $) 27)) (-1771 (($ $ $) 22)))
-(((-214 |#1|) (-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4382 ($ $ (-986))) (-15 -4382 ((-245 (-1152)) $ (-1170))) (-15 -1771 ($ $ $)) (-15 -1783 ($ $ $)) (-15 -3463 ((-1264) $)) (-15 -3092 ((-1264) $)) (-15 -3092 ((-1264) $ (-918) (-918))))) (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 ((-1264) $)) (-15 -3092 ((-1264) $))))) (T -214))
-((-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-986)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 ((-1264) $)) (-15 -3092 ((-1264) $))))))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ *3)) (-15 -3463 ((-1264) $)) (-15 -3092 ((-1264) $))))))) (-1771 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 ((-1264) $)) (-15 -3092 ((-1264) $))))))) (-1783 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 ((-1264) $)) (-15 -3092 ((-1264) $))))))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 (*2 $)) (-15 -3092 (*2 $))))))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 (*2 $)) (-15 -3092 (*2 $))))))) (-3092 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 (*2 $)) (-15 -3092 (*2 $))))))))
-(-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4382 ($ $ (-986))) (-15 -4382 ((-245 (-1152)) $ (-1170))) (-15 -1771 ($ $ $)) (-15 -1783 ($ $ $)) (-15 -3463 ((-1264) $)) (-15 -3092 ((-1264) $)) (-15 -3092 ((-1264) $ (-918) (-918)))))
-((-3905 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3905 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215))
-((-3905 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6)))))
-(-10 -7 (-15 -3905 (|#2| |#4| (-1 |#2| |#2|))))
-((-3543 ((|#2| |#2| (-768) |#2|) 58)) (-2306 ((|#2| |#2| (-768) |#2|) 54)) (-2344 (((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -2085 |#2|)))) 81)) (-2641 (((-641 (-2 (|:| |deg| (-768)) (|:| -2085 |#2|))) |#2|) 75)) (-3906 (((-112) |#2|) 73)) (-2708 (((-418 |#2|) |#2|) 101)) (-4006 (((-418 |#2|) |#2|) 100)) (-3317 ((|#2| |#2| (-768) |#2|) 52)) (-2688 (((-2 (|:| |cont| |#1|) (|:| -2362 (-641 (-2 (|:| |irr| |#2|) (|:| -1490 (-564)))))) |#2| (-112)) 93)))
-(((-216 |#1| |#2|) (-10 -7 (-15 -4006 ((-418 |#2|) |#2|)) (-15 -2708 ((-418 |#2|) |#2|)) (-15 -2688 ((-2 (|:| |cont| |#1|) (|:| -2362 (-641 (-2 (|:| |irr| |#2|) (|:| -1490 (-564)))))) |#2| (-112))) (-15 -2641 ((-641 (-2 (|:| |deg| (-768)) (|:| -2085 |#2|))) |#2|)) (-15 -2344 ((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -2085 |#2|))))) (-15 -3317 (|#2| |#2| (-768) |#2|)) (-15 -2306 (|#2| |#2| (-768) |#2|)) (-15 -3543 (|#2| |#2| (-768) |#2|)) (-15 -3906 ((-112) |#2|))) (-349) (-1235 |#1|)) (T -216))
-((-3906 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-3543 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-2306 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-3317 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |deg| (-768)) (|:| -2085 *5)))) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5)) (-5 *1 (-216 *4 *5)))) (-2641 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -2085 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2362 (-641 (-2 (|:| |irr| *3) (|:| -1490 (-564))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5)))) (-2708 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -4006 ((-418 |#2|) |#2|)) (-15 -2708 ((-418 |#2|) |#2|)) (-15 -2688 ((-2 (|:| |cont| |#1|) (|:| -2362 (-641 (-2 (|:| |irr| |#2|) (|:| -1490 (-564)))))) |#2| (-112))) (-15 -2641 ((-641 (-2 (|:| |deg| (-768)) (|:| -2085 |#2|))) |#2|)) (-15 -2344 ((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -2085 |#2|))))) (-15 -3317 (|#2| |#2| (-768) |#2|)) (-15 -2306 (|#2| |#2| (-768) |#2|)) (-15 -3543 (|#2| |#2| (-768) |#2|)) (-15 -3906 ((-112) |#2|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 (((-564) $) NIL (|has| (-564) (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL (|has| (-564) (-817)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2064 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-564) (-545)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1751 (((-112) $) NIL (|has| (-564) (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-1507 (((-564) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2506 (((-112) $) NIL (|has| (-564) (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| (-564) (-847)))) (-2082 (($ (-1 (-564) (-564)) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-564) (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2677 (((-564) $) NIL (|has| (-564) (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2407 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3712 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3762 (($ $) NIL)) (-1517 (((-564) $) NIL)) (-3702 (($ (-407 (-564))) 9)) (-2127 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 10) $) 10)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-1965 (((-768)) NIL T CONST)) (-2991 (((-564) $) NIL (|has| (-564) (-545)))) (-1582 (((-112) $ $) NIL)) (-2016 (($ $) NIL (|has| (-564) (-817)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1738 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1705 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1793 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
-(((-217) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 10)) (-10 -8 (-15 -2002 ((-407 (-564)) $)) (-15 -3702 ($ (-407 (-564))))))) (T -217))
-((-2002 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))))
-(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 10)) (-10 -8 (-15 -2002 ((-407 (-564)) $)) (-15 -3702 ($ (-407 (-564))))))
-((-1754 (((-112) $ $) NIL)) (-4187 (((-1112) $) 13)) (-4202 (((-1152) $) NIL)) (-1821 (((-483) $) 10)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 23) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-1129) $) 15)) (-1686 (((-112) $ $) NIL)))
-(((-218) (-13 (-1077) (-10 -8 (-15 -1821 ((-483) $)) (-15 -4187 ((-1112) $)) (-15 -4374 ((-1129) $))))) (T -218))
-((-1821 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218)))))
-(-13 (-1077) (-10 -8 (-15 -1821 ((-483) $)) (-15 -4187 ((-1112) $)) (-15 -4374 ((-1129) $))))
-((-3591 (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152)) 29) (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|))) 25)) (-3810 (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)) 17)))
-(((-219 |#1| |#2|) (-10 -7 (-15 -3591 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)))) (-15 -3591 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152))) (-15 -3810 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -219))
-((-3810 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1170)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-1194) (-956) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-840 *3)))) (-3591 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-840 *3))) (-5 *5 (-1152)) (-4 *3 (-13 (-1194) (-956) (-29 *6))) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-840 *3))) (-4 *3 (-13 (-1194) (-956) (-29 *5))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))))
-(-10 -7 (-15 -3591 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)))) (-15 -3591 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152))) (-15 -3810 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112))))
-((-3591 (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)) 49) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|))))) 46) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152)) 50) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|)))) 22)))
-(((-220 |#1|) (-10 -7 (-15 -3591 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))))) (-15 -3591 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152))) (-15 -3591 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))))) (-15 -3591 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (T -220))
-((-3591 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-840 (-407 (-949 *6))))) (-5 *5 (-1152)) (-5 *3 (-407 (-949 *6))) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-840 (-407 (-949 *5))))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-3591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1086 (-840 (-316 *6)))) (-5 *5 (-1152)) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1086 (-840 (-316 *5)))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))))
-(-10 -7 (-15 -3591 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))))) (-15 -3591 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152))) (-15 -3591 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))))) (-15 -3591 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152))))
-((-4367 (((-2 (|:| -3808 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|)) 26)) (-2134 (((-641 (-316 |#2|)) (-316 |#2|) (-918)) 54)))
-(((-221 |#1| |#2|) (-10 -7 (-15 -4367 ((-2 (|:| -3808 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|))) (-15 -2134 ((-641 (-316 |#2|)) (-316 |#2|) (-918)))) (-1046) (-13 (-556) (-847))) (T -221))
-((-2134 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *6 (-13 (-556) (-847))) (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1046)))) (-4367 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-2 (|:| -3808 (-1166 *4)) (|:| |deg| (-918)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-847))))))
-(-10 -7 (-15 -4367 ((-2 (|:| -3808 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|))) (-15 -2134 ((-641 (-316 |#2|)) (-316 |#2|) (-918))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2999 ((|#1| $) NIL)) (-1417 ((|#1| $) 30)) (-3263 (((-112) $ (-768)) NIL)) (-3760 (($) NIL T CONST)) (-2798 (($ $) NIL)) (-3852 (($ $) 39)) (-2998 ((|#1| |#1| $) NIL)) (-3507 ((|#1| $) NIL)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-2564 (((-768) $) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1833 ((|#1| $) NIL)) (-3347 ((|#1| |#1| $) 35)) (-2629 ((|#1| |#1| $) 37)) (-2098 (($ |#1| $) NIL)) (-1813 (((-768) $) 33)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3466 ((|#1| $) NIL)) (-1804 ((|#1| $) 31)) (-4109 ((|#1| $) 29)) (-3389 ((|#1| $) NIL)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-1623 ((|#1| |#1| $) NIL)) (-2742 (((-112) $) 9)) (-3845 (($) NIL)) (-2223 ((|#1| $) NIL)) (-3274 (($) NIL) (($ (-641 |#1|)) 16)) (-2057 (((-768) $) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3921 ((|#1| $) 13)) (-2652 (($ (-641 |#1|)) NIL)) (-3353 ((|#1| $) NIL)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -3274 ($ (-641 |#1|))))) (-1094)) (T -222))
-((-3274 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3)))))
-(-13 (-254 |#1|) (-10 -8 (-15 -3274 ($ (-641 |#1|)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-1866 (($ (-316 |#1|)) 27)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-3564 (((-112) $) NIL)) (-2013 (((-3 (-316 |#1|) "failed") $) NIL)) (-2064 (((-316 |#1|) $) NIL)) (-4346 (($ $) 35)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2082 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-4323 (((-316 |#1|) $) NIL)) (-2483 (($ $) 34)) (-4202 (((-1152) $) NIL)) (-3632 (((-112) $) NIL)) (-3802 (((-1114) $) NIL)) (-1502 (($ (-768)) NIL)) (-2728 (($ $) 36)) (-3344 (((-564) $) NIL)) (-1765 (((-859) $) 68) (($ (-564)) NIL) (($ (-316 |#1|)) NIL)) (-1757 (((-316 |#1|) $ $) NIL)) (-1965 (((-768)) NIL T CONST)) (-4317 (($) 29 T CONST)) (-4327 (($) NIL T CONST)) (-1686 (((-112) $ $) 32)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 23)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22)))
-(((-223 |#1| |#2|) (-13 (-618 (-316 |#1|)) (-1035 (-316 |#1|)) (-10 -8 (-15 -4323 ((-316 |#1|) $)) (-15 -2483 ($ $)) (-15 -4346 ($ $)) (-15 -1757 ((-316 |#1|) $ $)) (-15 -1502 ($ (-768))) (-15 -3632 ((-112) $)) (-15 -3564 ((-112) $)) (-15 -3344 ((-564) $)) (-15 -2082 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1866 ($ (-316 |#1|))) (-15 -2728 ($ $)))) (-13 (-1046) (-847)) (-641 (-1170))) (T -223))
-((-4323 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))) (-4346 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))) (-1757 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1046) (-847))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1046) (-847))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-2728 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))))
-(-13 (-618 (-316 |#1|)) (-1035 (-316 |#1|)) (-10 -8 (-15 -4323 ((-316 |#1|) $)) (-15 -2483 ($ $)) (-15 -4346 ($ $)) (-15 -1757 ((-316 |#1|) $ $)) (-15 -1502 ($ (-768))) (-15 -3632 ((-112) $)) (-15 -3564 ((-112) $)) (-15 -3344 ((-564) $)) (-15 -2082 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1866 ($ (-316 |#1|))) (-15 -2728 ($ $))))
-((-3118 (((-112) (-1152)) 25)) (-1392 (((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112)) 35)) (-1842 (((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)) 84) (((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112)) 85)))
-(((-224 |#1| |#2|) (-10 -7 (-15 -3118 ((-112) (-1152))) (-15 -1392 ((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112))) (-15 -1842 ((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112))) (-15 -1842 ((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -224))
-((-1842 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-840 *6)) (-4 *6 (-13 (-1194) (-29 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-224 *5 *6)))) (-1842 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1170)) (-5 *5 (-840 *7)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-1392 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-840 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1194) (-29 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-224 *6 *4)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4))))))
-(-10 -7 (-15 -3118 ((-112) (-1152))) (-15 -1392 ((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112))) (-15 -1842 ((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112))) (-15 -1842 ((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 96)) (-4328 (((-564) $) 36)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3742 (($ $) NIL)) (-3904 (($ $) 85)) (-3752 (($ $) 73)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-4019 (($ $) 64)) (-3385 (((-112) $ $) NIL)) (-3879 (($ $) 83)) (-3727 (($ $) 71)) (-3438 (((-564) $) 126)) (-3933 (($ $) 88)) (-3778 (($ $) 75)) (-3760 (($) NIL T CONST)) (-3039 (($ $) NIL)) (-2013 (((-3 (-564) "failed") $) 125) (((-3 (-407 (-564)) "failed") $) 122)) (-2064 (((-564) $) 123) (((-407 (-564)) $) 120)) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) 101)) (-3192 (((-407 (-564)) $ (-768)) 115) (((-407 (-564)) $ (-768) (-768)) 114)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-2269 (((-918)) 29) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-1751 (((-112) $) NIL)) (-1539 (($) 47)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-2261 (((-564) $) 43)) (-2419 (((-112) $) 97)) (-1935 (($ $ (-564)) NIL)) (-1779 (($ $) NIL)) (-2506 (((-112) $) 95)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) 61) (($) 39 (-12 (-4254 (|has| $ (-6 -4394))) (-4254 (|has| $ (-6 -4402)))))) (-1547 (($ $ $) 60) (($) 38 (-12 (-4254 (|has| $ (-6 -4394))) (-4254 (|has| $ (-6 -4402)))))) (-2137 (((-564) $) 27)) (-3639 (($ $) 34)) (-4069 (($ $) 65)) (-2186 (($ $) 70)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-3913 (((-918) (-564)) NIL (|has| $ (-6 -4402)))) (-3802 (((-1114) $) 99)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL)) (-2677 (($ $) NIL)) (-2139 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-918)) 108)) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3747 (((-564) $) 28)) (-3825 (($) 46)) (-2152 (($ $) 69)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1824 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-3226 (($ $ (-768)) NIL) (($ $) 102)) (-3807 (((-918) (-564)) NIL (|has| $ (-6 -4402)))) (-3949 (($ $) 86)) (-3789 (($ $) 76)) (-3918 (($ $) 87)) (-3765 (($ $) 74)) (-3891 (($ $) 84)) (-3739 (($ $) 72)) (-2127 (((-379) $) 111) (((-225) $) 14) (((-889 (-379)) $) NIL) (((-536) $) 53)) (-1765 (((-859) $) 50) (($ (-564)) 68) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 68) (($ (-407 (-564))) NIL)) (-1965 (((-768)) NIL T CONST)) (-2991 (($ $) NIL)) (-2941 (((-918)) 37) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-2743 (((-918)) 25)) (-3991 (($ $) 91)) (-3827 (($ $) 79) (($ $ $) 118)) (-1582 (((-112) $ $) NIL)) (-3963 (($ $) 89)) (-3801 (($ $) 77)) (-4020 (($ $) 94)) (-3854 (($ $) 82)) (-3586 (($ $) 92)) (-3867 (($ $) 80)) (-4005 (($ $) 93)) (-3840 (($ $) 81)) (-3977 (($ $) 90)) (-3814 (($ $) 78)) (-2016 (($ $) 117)) (-4317 (($) 23 T CONST)) (-4327 (($) 44 T CONST)) (-3886 (((-1152) $) 18) (((-1152) $ (-112)) 20) (((-1264) (-819) $) 21) (((-1264) (-819) $ (-112)) 22)) (-3376 (($ $) 105)) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-2837 (($ $ $) 107)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 62)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 54)) (-1793 (($ $ $) 45) (($ $ (-564)) 63)) (-1783 (($ $) 55) (($ $ $) 57)) (-1771 (($ $ $) 56)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 66) (($ $ (-407 (-564))) 149) (($ $ $) 67)) (* (($ (-918) $) 35) (($ (-768) $) NIL) (($ (-564) $) 59) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-225) (-13 (-404) (-233) (-825) (-1194) (-612 (-536)) (-10 -8 (-15 -1793 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -3825 ($)) (-15 -3639 ($ $)) (-15 -4069 ($ $)) (-15 -3827 ($ $ $)) (-15 -3376 ($ $)) (-15 -2837 ($ $ $)) (-15 -3192 ((-407 (-564)) $ (-768))) (-15 -3192 ((-407 (-564)) $ (-768) (-768)))))) (T -225))
-((** (*1 *1 *1 *1) (-5 *1 (-225))) (-1793 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) (-3825 (*1 *1) (-5 *1 (-225))) (-3639 (*1 *1 *1) (-5 *1 (-225))) (-4069 (*1 *1 *1) (-5 *1 (-225))) (-3827 (*1 *1 *1 *1) (-5 *1 (-225))) (-3376 (*1 *1 *1) (-5 *1 (-225))) (-2837 (*1 *1 *1 *1) (-5 *1 (-225))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) (-3192 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))))
-(-13 (-404) (-233) (-825) (-1194) (-612 (-536)) (-10 -8 (-15 -1793 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -3825 ($)) (-15 -3639 ($ $)) (-15 -4069 ($ $)) (-15 -3827 ($ $ $)) (-15 -3376 ($ $)) (-15 -2837 ($ $ $)) (-15 -3192 ((-407 (-564)) $ (-768))) (-15 -3192 ((-407 (-564)) $ (-768) (-768)))))
-((-3007 (((-169 (-225)) (-768) (-169 (-225))) 11) (((-225) (-768) (-225)) 12)) (-2102 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3434 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-2784 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-1958 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3311 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-1475 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-2642 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-2648 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-4066 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-3376 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2837 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31)))
-(((-226) (-10 -7 (-15 -3376 ((-225) (-225))) (-15 -3376 ((-169 (-225)) (-169 (-225)))) (-15 -2837 ((-225) (-225) (-225))) (-15 -2837 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2102 ((-225) (-225))) (-15 -2102 ((-169 (-225)) (-169 (-225)))) (-15 -2784 ((-225) (-225))) (-15 -2784 ((-169 (-225)) (-169 (-225)))) (-15 -3007 ((-225) (-768) (-225))) (-15 -3007 ((-169 (-225)) (-768) (-169 (-225)))) (-15 -1475 ((-225) (-225) (-225))) (-15 -1475 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1958 ((-225) (-225) (-225))) (-15 -1958 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2642 ((-225) (-225) (-225))) (-15 -2642 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3311 ((-225) (-225) (-225))) (-15 -3311 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4066 ((-169 (-225)) (-169 (-225)))) (-15 -4066 ((-225) (-225))) (-15 -2648 ((-225) (-225))) (-15 -2648 ((-169 (-225)) (-169 (-225)))) (-15 -3434 ((-225) (-225) (-225))) (-15 -3434 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226))
-((-3434 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3434 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3311 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3311 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2642 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2642 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1475 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1475 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3007 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-768)) (-5 *1 (-226)))) (-3007 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-768)) (-5 *1 (-226)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2837 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2837 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
-(-10 -7 (-15 -3376 ((-225) (-225))) (-15 -3376 ((-169 (-225)) (-169 (-225)))) (-15 -2837 ((-225) (-225) (-225))) (-15 -2837 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2102 ((-225) (-225))) (-15 -2102 ((-169 (-225)) (-169 (-225)))) (-15 -2784 ((-225) (-225))) (-15 -2784 ((-169 (-225)) (-169 (-225)))) (-15 -3007 ((-225) (-768) (-225))) (-15 -3007 ((-169 (-225)) (-768) (-169 (-225)))) (-15 -1475 ((-225) (-225) (-225))) (-15 -1475 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1958 ((-225) (-225) (-225))) (-15 -1958 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2642 ((-225) (-225) (-225))) (-15 -2642 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3311 ((-225) (-225) (-225))) (-15 -3311 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4066 ((-169 (-225)) (-169 (-225)))) (-15 -4066 ((-225) (-225))) (-15 -2648 ((-225) (-225))) (-15 -2648 ((-169 (-225)) (-169 (-225)))) (-15 -3434 ((-225) (-225) (-225))) (-15 -3434 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1398 (($ (-768) (-768)) NIL)) (-4093 (($ $ $) NIL)) (-3659 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-3082 (($ |#1| |#1| |#1|) 33)) (-2741 (((-112) $) NIL)) (-3578 (($ $ (-564) (-564)) NIL)) (-3871 (($ $ (-564) (-564)) NIL)) (-2577 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-2963 (($ $) NIL)) (-2832 (((-112) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2683 (($ $ (-564) (-564) $) NIL)) (-1881 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-1470 (($ $ (-564) (-1259 |#1|)) NIL)) (-3652 (($ $ (-564) (-1259 |#1|)) NIL)) (-3427 (($ |#1| |#1| |#1|) 32)) (-2460 (($ (-768) |#1|) NIL)) (-3760 (($) NIL T CONST)) (-1364 (($ $) NIL (|has| |#1| (-307)))) (-2698 (((-1259 |#1|) $ (-564)) NIL)) (-4033 (($ |#1|) 31)) (-2521 (($ |#1|) 30)) (-1787 (($ |#1|) 29)) (-4224 (((-768) $) NIL (|has| |#1| (-556)))) (-3528 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3455 ((|#1| $ (-564) (-564)) NIL)) (-3080 (((-641 |#1|) $) NIL)) (-4227 (((-768) $) NIL (|has| |#1| (-556)))) (-3798 (((-641 (-1259 |#1|)) $) NIL (|has| |#1| (-556)))) (-3383 (((-768) $) NIL)) (-1633 (($ (-768) (-768) |#1|) NIL)) (-3393 (((-768) $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-1893 ((|#1| $) NIL (|has| |#1| (-6 (-4413 "*"))))) (-1786 (((-564) $) NIL)) (-2810 (((-564) $) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (((-564) $) NIL)) (-2104 (((-564) $) NIL)) (-1605 (($ (-641 (-641 |#1|))) 11)) (-3513 (($ (-1 |#1| |#1|) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3671 (((-641 (-641 |#1|)) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1898 (($) 12)) (-2624 (($ $ $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2614 (($ $ |#1|) NIL)) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-3530 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-3883 (((-112) $) NIL)) (-2672 ((|#1| $) NIL (|has| |#1| (-6 (-4413 "*"))))) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1709 (((-1259 |#1|) $ (-564)) NIL)) (-1765 (($ (-1259 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1509 (((-112) $) NIL)) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $ $) NIL) (($ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) 15) (((-1259 |#1|) (-1259 |#1|) $) NIL) (((-940 |#1|) $ (-940 |#1|)) 21)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-227 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-940 |#1|) $ (-940 |#1|))) (-15 -1898 ($)) (-15 -1787 ($ |#1|)) (-15 -2521 ($ |#1|)) (-15 -4033 ($ |#1|)) (-15 -3427 ($ |#1| |#1| |#1|)) (-15 -3082 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1194))) (T -227))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194))) (-5 *1 (-227 *3)))) (-1898 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-1787 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-2521 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-4033 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3427 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3082 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
-(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-940 |#1|) $ (-940 |#1|))) (-15 -1898 ($)) (-15 -1787 ($ |#1|)) (-15 -2521 ($ |#1|)) (-15 -4033 ($ |#1|)) (-15 -3427 ($ |#1| |#1| |#1|)) (-15 -3082 ($ |#1| |#1| |#1|))))
-((-4194 (($ (-1 (-112) |#2|) $) 15)) (-1907 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 26)) (-3784 (($) NIL) (($ (-641 |#2|)) 11)) (-1686 (((-112) $ $) 24)))
-(((-228 |#1| |#2|) (-10 -8 (-15 -4194 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1907 (|#1| |#2| |#1|)) (-15 -3784 (|#1| (-641 |#2|))) (-15 -3784 (|#1|)) (-15 -1686 ((-112) |#1| |#1|))) (-229 |#2|) (-1094)) (T -228))
-NIL
-(-10 -8 (-15 -4194 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1907 (|#1| |#2| |#1|)) (-15 -3784 (|#1| (-641 |#2|))) (-15 -3784 (|#1|)) (-15 -1686 ((-112) |#1| |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-4194 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3104 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2359 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-3784 (($) 49) (($ (-641 |#1|)) 48)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 50)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) 42)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-3603 ((|#2| $ (-768) |#2|) 11)) (-3593 ((|#2| $ (-768)) 10)) (-3564 (($) 8)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 26)) (-1720 (((-112) $ $) 13)))
+(((-213 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3564 ($)) (-15 -3593 (|#2| $ (-768))) (-15 -3603 (|#2| $ (-768) |#2|)))) (-918) (-1094)) (T -213))
+((-3564 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1094)))) (-3593 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)))) (-3603 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)) (-4 *2 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -3564 ($)) (-15 -3593 (|#2| $ (-768))) (-15 -3603 (|#2| $ (-768) |#2|))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2890 (((-1264) $) 37) (((-1264) $ (-918) (-918)) 44)) (-4382 (($ $ (-986)) 19) (((-245 (-1152)) $ (-1170)) 15)) (-3512 (((-1264) $) 35)) (-3714 (((-859) $) 32) (($ (-641 |#1|)) 8)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $ $) 27)) (-1814 (($ $ $) 22)))
+(((-214 |#1|) (-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4382 ($ $ (-986))) (-15 -4382 ((-245 (-1152)) $ (-1170))) (-15 -1814 ($ $ $)) (-15 -1828 ($ $ $)) (-15 -3512 ((-1264) $)) (-15 -2890 ((-1264) $)) (-15 -2890 ((-1264) $ (-918) (-918))))) (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 ((-1264) $)) (-15 -2890 ((-1264) $))))) (T -214))
+((-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-986)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 ((-1264) $)) (-15 -2890 ((-1264) $))))))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ *3)) (-15 -3512 ((-1264) $)) (-15 -2890 ((-1264) $))))))) (-1814 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 ((-1264) $)) (-15 -2890 ((-1264) $))))))) (-1828 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 ((-1264) $)) (-15 -2890 ((-1264) $))))))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 (*2 $)) (-15 -2890 (*2 $))))))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 (*2 $)) (-15 -2890 (*2 $))))))) (-2890 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 (*2 $)) (-15 -2890 (*2 $))))))))
+(-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4382 ($ $ (-986))) (-15 -4382 ((-245 (-1152)) $ (-1170))) (-15 -1814 ($ $ $)) (-15 -1828 ($ $ $)) (-15 -3512 ((-1264) $)) (-15 -2890 ((-1264) $)) (-15 -2890 ((-1264) $ (-918) (-918)))))
+((-2162 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2162 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215))
+((-2162 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6)))))
+(-10 -7 (-15 -2162 (|#2| |#4| (-1 |#2| |#2|))))
+((-1760 ((|#2| |#2| (-768) |#2|) 58)) (-3675 ((|#2| |#2| (-768) |#2|) 54)) (-2915 (((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -2248 |#2|)))) 81)) (-3858 (((-641 (-2 (|:| |deg| (-768)) (|:| -2248 |#2|))) |#2|) 75)) (-2172 (((-112) |#2|) 73)) (-3299 (((-418 |#2|) |#2|) 101)) (-4139 (((-418 |#2|) |#2|) 100)) (-1397 ((|#2| |#2| (-768) |#2|) 52)) (-3134 (((-2 (|:| |cont| |#1|) (|:| -3020 (-641 (-2 (|:| |irr| |#2|) (|:| -2534 (-564)))))) |#2| (-112)) 93)))
+(((-216 |#1| |#2|) (-10 -7 (-15 -4139 ((-418 |#2|) |#2|)) (-15 -3299 ((-418 |#2|) |#2|)) (-15 -3134 ((-2 (|:| |cont| |#1|) (|:| -3020 (-641 (-2 (|:| |irr| |#2|) (|:| -2534 (-564)))))) |#2| (-112))) (-15 -3858 ((-641 (-2 (|:| |deg| (-768)) (|:| -2248 |#2|))) |#2|)) (-15 -2915 ((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -2248 |#2|))))) (-15 -1397 (|#2| |#2| (-768) |#2|)) (-15 -3675 (|#2| |#2| (-768) |#2|)) (-15 -1760 (|#2| |#2| (-768) |#2|)) (-15 -2172 ((-112) |#2|))) (-349) (-1235 |#1|)) (T -216))
+((-2172 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-1760 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-3675 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-1397 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |deg| (-768)) (|:| -2248 *5)))) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5)) (-5 *1 (-216 *4 *5)))) (-3858 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -2248 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-3134 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3020 (-641 (-2 (|:| |irr| *3) (|:| -2534 (-564))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5)))) (-3299 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -4139 ((-418 |#2|) |#2|)) (-15 -3299 ((-418 |#2|) |#2|)) (-15 -3134 ((-2 (|:| |cont| |#1|) (|:| -3020 (-641 (-2 (|:| |irr| |#2|) (|:| -2534 (-564)))))) |#2| (-112))) (-15 -3858 ((-641 (-2 (|:| |deg| (-768)) (|:| -2248 |#2|))) |#2|)) (-15 -2915 ((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -2248 |#2|))))) (-15 -1397 (|#2| |#2| (-768) |#2|)) (-15 -3675 (|#2| |#2| (-768) |#2|)) (-15 -1760 (|#2| |#2| (-768) |#2|)) (-15 -2172 ((-112) |#2|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 (((-564) $) NIL (|has| (-564) (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL (|has| (-564) (-817)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2376 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-564) (-545)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-564) (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL)) (-1655 (((-564) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2001 (((-112) $) NIL (|has| (-564) (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| (-564) (-847)))) (-2313 (($ (-1 (-564) (-564)) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-564) (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-3034 (((-564) $) NIL (|has| (-564) (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2582 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3966 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3197 (($ $) NIL)) (-1668 (((-564) $) NIL)) (-3869 (($ (-407 (-564))) 9)) (-2374 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 10) $) 10)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-3379 (((-768)) NIL T CONST)) (-4296 (((-564) $) NIL (|has| (-564) (-545)))) (-3979 (((-112) $ $) NIL)) (-3920 (($ $) NIL (|has| (-564) (-817)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1746 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1841 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
+(((-217) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 10)) (-10 -8 (-15 -3782 ((-407 (-564)) $)) (-15 -3869 ($ (-407 (-564))))))) (T -217))
+((-3782 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))))
+(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 10)) (-10 -8 (-15 -3782 ((-407 (-564)) $)) (-15 -3869 ($ (-407 (-564))))))
+((-3702 (((-112) $ $) NIL)) (-4299 (((-1112) $) 13)) (-1868 (((-1152) $) NIL)) (-2655 (((-483) $) 10)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 23) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-1129) $) 15)) (-1720 (((-112) $ $) NIL)))
+(((-218) (-13 (-1077) (-10 -8 (-15 -2655 ((-483) $)) (-15 -4299 ((-1112) $)) (-15 -4347 ((-1129) $))))) (T -218))
+((-2655 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218)))))
+(-13 (-1077) (-10 -8 (-15 -2655 ((-483) $)) (-15 -4299 ((-1112) $)) (-15 -4347 ((-1129) $))))
+((-4039 (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152)) 29) (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|))) 25)) (-2505 (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)) 17)))
+(((-219 |#1| |#2|) (-10 -7 (-15 -4039 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)))) (-15 -4039 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152))) (-15 -2505 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -219))
+((-2505 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1170)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-1194) (-956) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-840 *3)))) (-4039 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-840 *3))) (-5 *5 (-1152)) (-4 *3 (-13 (-1194) (-956) (-29 *6))) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-840 *3))) (-4 *3 (-13 (-1194) (-956) (-29 *5))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))))
+(-10 -7 (-15 -4039 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)))) (-15 -4039 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152))) (-15 -2505 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112))))
+((-4039 (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)) 49) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|))))) 46) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152)) 50) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|)))) 22)))
+(((-220 |#1|) (-10 -7 (-15 -4039 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))))) (-15 -4039 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152))) (-15 -4039 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))))) (-15 -4039 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (T -220))
+((-4039 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-840 (-407 (-949 *6))))) (-5 *5 (-1152)) (-5 *3 (-407 (-949 *6))) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-840 (-407 (-949 *5))))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-4039 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1086 (-840 (-316 *6)))) (-5 *5 (-1152)) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1086 (-840 (-316 *5)))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))))
+(-10 -7 (-15 -4039 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))))) (-15 -4039 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152))) (-15 -4039 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))))) (-15 -4039 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152))))
+((-1728 (((-2 (|:| -2485 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|)) 26)) (-4111 (((-641 (-316 |#2|)) (-316 |#2|) (-918)) 54)))
+(((-221 |#1| |#2|) (-10 -7 (-15 -1728 ((-2 (|:| -2485 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|))) (-15 -4111 ((-641 (-316 |#2|)) (-316 |#2|) (-918)))) (-1046) (-13 (-556) (-847))) (T -221))
+((-4111 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *6 (-13 (-556) (-847))) (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1046)))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-2 (|:| -2485 (-1166 *4)) (|:| |deg| (-918)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-847))))))
+(-10 -7 (-15 -1728 ((-2 (|:| -2485 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|))) (-15 -4111 ((-641 (-316 |#2|)) (-316 |#2|) (-918))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4388 ((|#1| $) NIL)) (-2667 ((|#1| $) 30)) (-2141 (((-112) $ (-768)) NIL)) (-3180 (($) NIL T CONST)) (-1851 (($ $) NIL)) (-1651 (($ $) 39)) (-4377 ((|#1| |#1| $) NIL)) (-2691 ((|#1| $) NIL)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-3451 (((-768) $) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2775 ((|#1| $) NIL)) (-3508 ((|#1| |#1| $) 35)) (-3716 ((|#1| |#1| $) 37)) (-2373 (($ |#1| $) NIL)) (-3694 (((-768) $) 33)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2287 ((|#1| $) NIL)) (-2476 ((|#1| $) 31)) (-3322 ((|#1| $) 29)) (-3950 ((|#1| $) NIL)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-4360 ((|#1| |#1| $) NIL)) (-2510 (((-112) $) 9)) (-2834 (($) NIL)) (-4151 ((|#1| $) NIL)) (-4067 (($) NIL) (($ (-641 |#1|)) 16)) (-3735 (((-768) $) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4124 ((|#1| $) 13)) (-3976 (($ (-641 |#1|)) NIL)) (-3565 ((|#1| $) NIL)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -4067 ($ (-641 |#1|))))) (-1094)) (T -222))
+((-4067 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3)))))
+(-13 (-254 |#1|) (-10 -8 (-15 -4067 ($ (-641 |#1|)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1864 (($ (-316 |#1|)) 27)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1989 (((-112) $) NIL)) (-2224 (((-3 (-316 |#1|) "failed") $) NIL)) (-2376 (((-316 |#1|) $) NIL)) (-1374 (($ $) 35)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-2313 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-1345 (((-316 |#1|) $) NIL)) (-1771 (($ $) 34)) (-1868 (((-1152) $) NIL)) (-1377 (((-112) $) NIL)) (-3844 (((-1114) $) NIL)) (-1729 (($ (-768)) NIL)) (-2360 (($ $) 36)) (-3475 (((-564) $) NIL)) (-3714 (((-859) $) 68) (($ (-564)) NIL) (($ (-316 |#1|)) NIL)) (-3181 (((-316 |#1|) $ $) NIL)) (-3379 (((-768)) NIL T CONST)) (-4312 (($) 29 T CONST)) (-4323 (($) NIL T CONST)) (-1720 (((-112) $ $) 32)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 23)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22)))
+(((-223 |#1| |#2|) (-13 (-618 (-316 |#1|)) (-1035 (-316 |#1|)) (-10 -8 (-15 -1345 ((-316 |#1|) $)) (-15 -1771 ($ $)) (-15 -1374 ($ $)) (-15 -3181 ((-316 |#1|) $ $)) (-15 -1729 ($ (-768))) (-15 -1377 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -3475 ((-564) $)) (-15 -2313 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1864 ($ (-316 |#1|))) (-15 -2360 ($ $)))) (-13 (-1046) (-847)) (-641 (-1170))) (T -223))
+((-1345 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1771 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))) (-1374 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))) (-3181 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1046) (-847))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-1864 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1046) (-847))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-2360 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))))
+(-13 (-618 (-316 |#1|)) (-1035 (-316 |#1|)) (-10 -8 (-15 -1345 ((-316 |#1|) $)) (-15 -1771 ($ $)) (-15 -1374 ($ $)) (-15 -3181 ((-316 |#1|) $ $)) (-15 -1729 ($ (-768))) (-15 -1377 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -3475 ((-564) $)) (-15 -2313 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1864 ($ (-316 |#1|))) (-15 -2360 ($ $))))
+((-3093 (((-112) (-1152)) 25)) (-2020 (((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112)) 35)) (-1602 (((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)) 84) (((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112)) 85)))
+(((-224 |#1| |#2|) (-10 -7 (-15 -3093 ((-112) (-1152))) (-15 -2020 ((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112))) (-15 -1602 ((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112))) (-15 -1602 ((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -224))
+((-1602 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-840 *6)) (-4 *6 (-13 (-1194) (-29 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-224 *5 *6)))) (-1602 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1170)) (-5 *5 (-840 *7)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-2020 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-840 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1194) (-29 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-224 *6 *4)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4))))))
+(-10 -7 (-15 -3093 ((-112) (-1152))) (-15 -2020 ((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112))) (-15 -1602 ((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112))) (-15 -1602 ((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 96)) (-3494 (((-564) $) 36)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-3043 (($ $) NIL)) (-2657 (($ $) 85)) (-2516 (($ $) 73)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-4152 (($ $) 64)) (-3907 (((-112) $ $) NIL)) (-2635 (($ $) 83)) (-2491 (($ $) 71)) (-3191 (((-564) $) 126)) (-2679 (($ $) 88)) (-2542 (($ $) 75)) (-3180 (($) NIL T CONST)) (-3513 (($ $) NIL)) (-2224 (((-3 (-564) "failed") $) 125) (((-3 (-407 (-564)) "failed") $) 122)) (-2376 (((-564) $) 123) (((-407 (-564)) $) 120)) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) 101)) (-2695 (((-407 (-564)) $ (-768)) 115) (((-407 (-564)) $ (-768) (-768)) 114)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3173 (((-918)) 29) (((-918) (-918)) NIL (|has| $ (-6 -4403)))) (-3137 (((-112) $) NIL)) (-1688 (($) 47)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-1454 (((-564) $) 43)) (-2340 (((-112) $) 97)) (-4342 (($ $ (-564)) NIL)) (-2217 (($ $) NIL)) (-2001 (((-112) $) 95)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) 61) (($) 39 (-12 (-4253 (|has| $ (-6 -4395))) (-4253 (|has| $ (-6 -4403)))))) (-3413 (($ $ $) 60) (($) 38 (-12 (-4253 (|has| $ (-6 -4395))) (-4253 (|has| $ (-6 -4403)))))) (-2371 (((-564) $) 27)) (-1448 (($ $) 34)) (-4042 (($ $) 65)) (-2305 (($ $) 70)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-2250 (((-918) (-564)) NIL (|has| $ (-6 -4403)))) (-3844 (((-1114) $) 99)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL)) (-3034 (($ $) NIL)) (-2244 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-918)) 108)) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3078 (((-564) $) 28)) (-2662 (($) 46)) (-4130 (($ $) 69)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2678 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4403)))) (-2203 (($ $ (-768)) NIL) (($ $) 102)) (-2474 (((-918) (-564)) NIL (|has| $ (-6 -4403)))) (-2692 (($ $) 86)) (-2557 (($ $) 76)) (-2669 (($ $) 87)) (-2529 (($ $) 74)) (-2647 (($ $) 84)) (-2502 (($ $) 72)) (-2374 (((-379) $) 111) (((-225) $) 14) (((-889 (-379)) $) NIL) (((-536) $) 53)) (-3714 (((-859) $) 50) (($ (-564)) 68) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 68) (($ (-407 (-564))) NIL)) (-3379 (((-768)) NIL T CONST)) (-4296 (($ $) NIL)) (-3929 (((-918)) 37) (((-918) (-918)) NIL (|has| $ (-6 -4403)))) (-3270 (((-918)) 25)) (-2728 (($ $) 91)) (-2595 (($ $) 79) (($ $ $) 118)) (-3979 (((-112) $ $) NIL)) (-2704 (($ $) 89)) (-2566 (($ $) 77)) (-2751 (($ $) 94)) (-2615 (($ $) 82)) (-2053 (($ $) 92)) (-2626 (($ $) 80)) (-2740 (($ $) 93)) (-2605 (($ $) 81)) (-2716 (($ $) 90)) (-2577 (($ $) 78)) (-3920 (($ $) 117)) (-4312 (($) 23 T CONST)) (-4323 (($) 44 T CONST)) (-1983 (((-1152) $) 18) (((-1152) $ (-112)) 20) (((-1264) (-819) $) 21) (((-1264) (-819) $ (-112)) 22)) (-3829 (($ $) 105)) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-2240 (($ $ $) 107)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 62)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 54)) (-1841 (($ $ $) 45) (($ $ (-564)) 63)) (-1828 (($ $) 55) (($ $ $) 57)) (-1814 (($ $ $) 56)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 66) (($ $ (-407 (-564))) 149) (($ $ $) 67)) (* (($ (-918) $) 35) (($ (-768) $) NIL) (($ (-564) $) 59) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-225) (-13 (-404) (-233) (-825) (-1194) (-612 (-536)) (-10 -8 (-15 -1841 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2662 ($)) (-15 -1448 ($ $)) (-15 -4042 ($ $)) (-15 -2595 ($ $ $)) (-15 -3829 ($ $)) (-15 -2240 ($ $ $)) (-15 -2695 ((-407 (-564)) $ (-768))) (-15 -2695 ((-407 (-564)) $ (-768) (-768)))))) (T -225))
+((** (*1 *1 *1 *1) (-5 *1 (-225))) (-1841 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) (-2662 (*1 *1) (-5 *1 (-225))) (-1448 (*1 *1 *1) (-5 *1 (-225))) (-4042 (*1 *1 *1) (-5 *1 (-225))) (-2595 (*1 *1 *1 *1) (-5 *1 (-225))) (-3829 (*1 *1 *1) (-5 *1 (-225))) (-2240 (*1 *1 *1 *1) (-5 *1 (-225))) (-2695 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) (-2695 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))))
+(-13 (-404) (-233) (-825) (-1194) (-612 (-536)) (-10 -8 (-15 -1841 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2662 ($)) (-15 -1448 ($ $)) (-15 -4042 ($ $)) (-15 -2595 ($ $ $)) (-15 -3829 ($ $)) (-15 -2240 ($ $ $)) (-15 -2695 ((-407 (-564)) $ (-768))) (-15 -2695 ((-407 (-564)) $ (-768) (-768)))))
+((-1380 (((-169 (-225)) (-768) (-169 (-225))) 11) (((-225) (-768) (-225)) 12)) (-2414 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3156 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-1684 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-1504 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-1332 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-2372 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-3870 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3936 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-3005 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-3829 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2240 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31)))
+(((-226) (-10 -7 (-15 -3829 ((-225) (-225))) (-15 -3829 ((-169 (-225)) (-169 (-225)))) (-15 -2240 ((-225) (-225) (-225))) (-15 -2240 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2414 ((-225) (-225))) (-15 -2414 ((-169 (-225)) (-169 (-225)))) (-15 -1684 ((-225) (-225))) (-15 -1684 ((-169 (-225)) (-169 (-225)))) (-15 -1380 ((-225) (-768) (-225))) (-15 -1380 ((-169 (-225)) (-768) (-169 (-225)))) (-15 -2372 ((-225) (-225) (-225))) (-15 -2372 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1504 ((-225) (-225) (-225))) (-15 -1504 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3870 ((-225) (-225) (-225))) (-15 -3870 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1332 ((-225) (-225) (-225))) (-15 -1332 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3005 ((-169 (-225)) (-169 (-225)))) (-15 -3005 ((-225) (-225))) (-15 -3936 ((-225) (-225))) (-15 -3936 ((-169 (-225)) (-169 (-225)))) (-15 -3156 ((-225) (-225) (-225))) (-15 -3156 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226))
+((-3156 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3156 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1332 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1332 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3870 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3870 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1504 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1504 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2372 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2372 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1380 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-768)) (-5 *1 (-226)))) (-1380 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-768)) (-5 *1 (-226)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2240 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2240 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
+(-10 -7 (-15 -3829 ((-225) (-225))) (-15 -3829 ((-169 (-225)) (-169 (-225)))) (-15 -2240 ((-225) (-225) (-225))) (-15 -2240 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2414 ((-225) (-225))) (-15 -2414 ((-169 (-225)) (-169 (-225)))) (-15 -1684 ((-225) (-225))) (-15 -1684 ((-169 (-225)) (-169 (-225)))) (-15 -1380 ((-225) (-768) (-225))) (-15 -1380 ((-169 (-225)) (-768) (-169 (-225)))) (-15 -2372 ((-225) (-225) (-225))) (-15 -2372 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1504 ((-225) (-225) (-225))) (-15 -1504 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3870 ((-225) (-225) (-225))) (-15 -3870 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1332 ((-225) (-225) (-225))) (-15 -1332 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3005 ((-169 (-225)) (-169 (-225)))) (-15 -3005 ((-225) (-225))) (-15 -3936 ((-225) (-225))) (-15 -3936 ((-169 (-225)) (-169 (-225)))) (-15 -3156 ((-225) (-225) (-225))) (-15 -3156 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1532 (($ (-768) (-768)) NIL)) (-3202 (($ $ $) NIL)) (-3437 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-2069 (($ |#1| |#1| |#1|) 33)) (-2497 (((-112) $) NIL)) (-2113 (($ $ (-564) (-564)) NIL)) (-1826 (($ $ (-564) (-564)) NIL)) (-1379 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-4050 (($ $) NIL)) (-2193 (((-112) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3088 (($ $ (-564) (-564) $) NIL)) (-3868 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-2310 (($ $ (-564) (-1259 |#1|)) NIL)) (-1571 (($ $ (-564) (-1259 |#1|)) NIL)) (-3099 (($ |#1| |#1| |#1|) 32)) (-2787 (($ (-768) |#1|) NIL)) (-3180 (($) NIL T CONST)) (-3781 (($ $) NIL (|has| |#1| (-307)))) (-3207 (((-1259 |#1|) $ (-564)) NIL)) (-3875 (($ |#1|) 31)) (-2106 (($ |#1|) 30)) (-2295 (($ |#1|) 29)) (-1595 (((-768) $) NIL (|has| |#1| (-556)))) (-1998 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3593 ((|#1| $ (-564) (-564)) NIL)) (-4244 (((-641 |#1|) $) NIL)) (-2099 (((-768) $) NIL (|has| |#1| (-556)))) (-2397 (((-641 (-1259 |#1|)) $) NIL (|has| |#1| (-556)))) (-3947 (((-768) $) NIL)) (-3564 (($ (-768) (-768) |#1|) NIL)) (-3956 (((-768) $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2125 ((|#1| $) NIL (|has| |#1| (-6 (-4414 "*"))))) (-2285 (((-564) $) NIL)) (-1984 (((-564) $) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2083 (((-564) $) NIL)) (-2437 (((-564) $) NIL)) (-3469 (($ (-641 (-641 |#1|))) 11)) (-1988 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3549 (((-641 (-641 |#1|)) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3577 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3992 (($) 12)) (-3661 (($ $ $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3538 (($ $ |#1|) NIL)) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-1634 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-1950 (((-112) $) NIL)) (-2990 ((|#1| $) NIL (|has| |#1| (-6 (-4414 "*"))))) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-2811 (((-1259 |#1|) $ (-564)) NIL)) (-3714 (($ (-1259 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2718 (((-112) $) NIL)) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) 15) (((-1259 |#1|) (-1259 |#1|) $) NIL) (((-940 |#1|) $ (-940 |#1|)) 21)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-227 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-940 |#1|) $ (-940 |#1|))) (-15 -3992 ($)) (-15 -2295 ($ |#1|)) (-15 -2106 ($ |#1|)) (-15 -3875 ($ |#1|)) (-15 -3099 ($ |#1| |#1| |#1|)) (-15 -2069 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1194))) (T -227))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194))) (-5 *1 (-227 *3)))) (-3992 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-2295 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-2106 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3875 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3099 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-2069 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
+(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-940 |#1|) $ (-940 |#1|))) (-15 -3992 ($)) (-15 -2295 ($ |#1|)) (-15 -2106 ($ |#1|)) (-15 -3875 ($ |#1|)) (-15 -3099 ($ |#1| |#1| |#1|)) (-15 -2069 ($ |#1| |#1| |#1|))))
+((-1773 (($ (-1 (-112) |#2|) $) 15)) (-4074 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 26)) (-3372 (($) NIL) (($ (-641 |#2|)) 11)) (-1720 (((-112) $ $) 24)))
+(((-228 |#1| |#2|) (-10 -8 (-15 -1773 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4074 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4074 (|#1| |#2| |#1|)) (-15 -3372 (|#1| (-641 |#2|))) (-15 -3372 (|#1|)) (-15 -1720 ((-112) |#1| |#1|))) (-229 |#2|) (-1094)) (T -228))
+NIL
+(-10 -8 (-15 -1773 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4074 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4074 (|#1| |#2| |#1|)) (-15 -3372 (|#1| (-641 |#2|))) (-15 -3372 (|#1|)) (-15 -1720 ((-112) |#1| |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-1773 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2084 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ |#1| $) 47 (|has| $ (-6 -4412))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4412)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4412)))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3372 (($) 49) (($ (-641 |#1|)) 48)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 50)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) 42)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-229 |#1|) (-140) (-1094)) (T -229))
NIL
(-13 (-235 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3226 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) 14) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 22) (($ $ (-768)) NIL) (($ $) 19)) (-3190 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-768)) 17) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -3226 (|#1| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3190 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3190 (|#1| |#1| (-1170))) (-15 -3190 (|#1| |#1| (-641 (-1170)))) (-15 -3190 (|#1| |#1| (-1170) (-768))) (-15 -3190 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3190 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3190 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1046)) (T -230))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-2203 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) 14) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 22) (($ $ (-768)) NIL) (($ $) 19)) (-2238 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-768)) 17) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -2203 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2238 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2238 (|#1| |#1| (-1170))) (-15 -2238 (|#1| |#1| (-641 (-1170)))) (-15 -2238 (|#1| |#1| (-1170) (-768))) (-15 -2238 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2238 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1046)) (T -230))
NIL
-(-10 -8 (-15 -3226 (|#1| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3190 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3190 (|#1| |#1| (-1170))) (-15 -3190 (|#1| |#1| (-641 (-1170)))) (-15 -3190 (|#1| |#1| (-1170) (-768))) (-15 -3190 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3190 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3190 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3226 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-768)) 51) (($ $ (-641 (-1170)) (-641 (-768))) 44 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 43 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 41 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 39 (|has| |#1| (-233))) (($ $) 37 (|has| |#1| (-233)))) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-768)) 49) (($ $ (-641 (-1170)) (-641 (-768))) 48 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 47 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 45 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -2203 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2238 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2238 (|#1| |#1| (-1170))) (-15 -2238 (|#1| |#1| (-641 (-1170)))) (-15 -2238 (|#1| |#1| (-1170) (-768))) (-15 -2238 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2238 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2238 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-2203 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-768)) 51) (($ $ (-641 (-1170)) (-641 (-768))) 44 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 43 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 41 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 39 (|has| |#1| (-233))) (($ $) 37 (|has| |#1| (-233)))) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-768)) 49) (($ $ (-641 (-1170)) (-641 (-768))) 48 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 47 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 45 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-231 |#1|) (-140) (-1046)) (T -231))
-((-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) (-4 *4 (-1046)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) (-3190 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) (-4 *4 (-1046)))))
-(-13 (-1046) (-10 -8 (-15 -3226 ($ $ (-1 |t#1| |t#1|))) (-15 -3226 ($ $ (-1 |t#1| |t#1|) (-768))) (-15 -3190 ($ $ (-1 |t#1| |t#1|))) (-15 -3190 ($ $ (-1 |t#1| |t#1|) (-768))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|)))
+((-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) (-2203 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) (-4 *4 (-1046)))) (-2238 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) (-2238 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) (-4 *4 (-1046)))))
+(-13 (-1046) (-10 -8 (-15 -2203 ($ $ (-1 |t#1| |t#1|))) (-15 -2203 ($ $ (-1 |t#1| |t#1|) (-768))) (-15 -2238 ($ $ (-1 |t#1| |t#1|))) (-15 -2238 ($ $ (-1 |t#1| |t#1|) (-768))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-233) |has| |#1| (-233)) ((-644 $) . T) ((-723) . T) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-3226 (($ $) NIL) (($ $ (-768)) 13)) (-3190 (($ $) 8) (($ $ (-768)) 15)))
-(((-232 |#1|) (-10 -8 (-15 -3190 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-768))) (-15 -3190 (|#1| |#1|)) (-15 -3226 (|#1| |#1|))) (-233)) (T -232))
+((-2203 (($ $) NIL) (($ $ (-768)) 13)) (-2238 (($ $) 8) (($ $ (-768)) 15)))
+(((-232 |#1|) (-10 -8 (-15 -2238 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-768))) (-15 -2238 (|#1| |#1|)) (-15 -2203 (|#1| |#1|))) (-233)) (T -232))
NIL
-(-10 -8 (-15 -3190 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-768))) (-15 -3190 (|#1| |#1|)) (-15 -3226 (|#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3226 (($ $) 38) (($ $ (-768)) 36)) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $) 37) (($ $ (-768)) 35)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -2238 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-768))) (-15 -2238 (|#1| |#1|)) (-15 -2203 (|#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-2203 (($ $) 38) (($ $ (-768)) 36)) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $) 37) (($ $ (-768)) 35)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-233) (-140)) (T -233))
-((-3226 (*1 *1 *1) (-4 *1 (-233))) (-3190 (*1 *1 *1) (-4 *1 (-233))) (-3226 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))) (-3190 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))))
-(-13 (-1046) (-10 -8 (-15 -3226 ($ $)) (-15 -3190 ($ $)) (-15 -3226 ($ $ (-768))) (-15 -3190 ($ $ (-768)))))
+((-2203 (*1 *1 *1) (-4 *1 (-233))) (-2238 (*1 *1 *1) (-4 *1 (-233))) (-2203 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))) (-2238 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))))
+(-13 (-1046) (-10 -8 (-15 -2203 ($ $)) (-15 -2238 ($ $)) (-15 -2203 ($ $ (-768))) (-15 -2238 ($ $ (-768)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-3784 (($) 12) (($ (-641 |#2|)) NIL)) (-1899 (($ $) 14)) (-1776 (($ (-641 |#2|)) 10)) (-1765 (((-859) $) 21)))
-(((-234 |#1| |#2|) (-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -3784 (|#1| (-641 |#2|))) (-15 -3784 (|#1|)) (-15 -1776 (|#1| (-641 |#2|))) (-15 -1899 (|#1| |#1|))) (-235 |#2|) (-1094)) (T -234))
+((-3372 (($) 12) (($ (-641 |#2|)) NIL)) (-3890 (($ $) 14)) (-3725 (($ (-641 |#2|)) 10)) (-3714 (((-859) $) 21)))
+(((-234 |#1| |#2|) (-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -3372 (|#1| (-641 |#2|))) (-15 -3372 (|#1|)) (-15 -3725 (|#1| (-641 |#2|))) (-15 -3890 (|#1| |#1|))) (-235 |#2|) (-1094)) (T -234))
NIL
-(-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -3784 (|#1| (-641 |#2|))) (-15 -3784 (|#1|)) (-15 -1776 (|#1| (-641 |#2|))) (-15 -1899 (|#1| |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-4194 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3104 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2359 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-3784 (($) 49) (($ (-641 |#1|)) 48)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 50)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) 42)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+(-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -3372 (|#1| (-641 |#2|))) (-15 -3372 (|#1|)) (-15 -3725 (|#1| (-641 |#2|))) (-15 -3890 (|#1| |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-1773 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2084 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ |#1| $) 47 (|has| $ (-6 -4412))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4412)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4412)))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3372 (($) 49) (($ (-641 |#1|)) 48)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 50)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) 42)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-235 |#1|) (-140) (-1094)) (T -235))
-((-3784 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-3784 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) (-1907 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-1907 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))) (-4194 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))))
-(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3784 ($)) (-15 -3784 ($ (-641 |t#1|))) (IF (|has| $ (-6 -4411)) (PROGN (-15 -1907 ($ |t#1| $)) (-15 -1907 ($ (-1 (-112) |t#1|) $)) (-15 -4194 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3198 (((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564)))) 42)))
-(((-236) (-10 -7 (-15 -3198 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564))))))) (T -236))
-((-3198 (*1 *2 *3) (-12 (-5 *3 (-294 (-949 (-564)))) (-5 *2 (-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768)))))) (-5 *1 (-236)))))
-(-10 -7 (-15 -3198 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564))))))
-((-3042 (((-768)) 56)) (-2620 (((-2 (|:| -1447 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 53) (((-685 |#3|) (-685 $)) 44) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3850 (((-134)) 62)) (-3226 (($ $ (-1 |#3| |#3|) (-768)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-1765 (((-1259 |#3|) $) NIL) (($ |#3|) NIL) (((-859) $) NIL) (($ (-564)) 12) (($ (-407 (-564))) NIL)) (-1965 (((-768)) 15)) (-1793 (($ $ |#3|) 59)))
-(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)) (-15 -1965 ((-768))) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -1765 (|#1| |#3|)) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -2620 ((-685 |#3|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -3042 ((-768))) (-15 -1793 (|#1| |#1| |#3|)) (-15 -3850 ((-134))) (-15 -1765 ((-1259 |#3|) |#1|))) (-238 |#2| |#3|) (-768) (-1209)) (T -237))
-((-3850 (*1 *2) (-12 (-14 *4 (-768)) (-4 *5 (-1209)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3042 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-1965 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
-(-10 -8 (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)) (-15 -1965 ((-768))) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -1765 (|#1| |#3|)) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -2620 ((-685 |#3|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -3042 ((-768))) (-15 -1793 (|#1| |#1| |#3|)) (-15 -3850 ((-134))) (-15 -1765 ((-1259 |#3|) |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-3976 (((-112) $) 72 (|has| |#2| (-131)))) (-3473 (($ (-918)) 125 (|has| |#2| (-1046)))) (-3476 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-3382 (($ $ $) 121 (|has| |#2| (-790)))) (-3936 (((-3 $ "failed") $ $) 74 (|has| |#2| (-131)))) (-3263 (((-112) $ (-768)) 8)) (-3042 (((-768)) 107 (|has| |#2| (-368)))) (-3438 (((-564) $) 119 (|has| |#2| (-845)))) (-1881 ((|#2| $ (-564) |#2|) 52 (|has| $ (-6 -4412)))) (-3760 (($) 7 T CONST)) (-2013 (((-3 (-564) "failed") $) 67 (-4266 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) 64 (-4266 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1094)))) (-2064 (((-564) $) 66 (-4266 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) 63 (-4266 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 62 (|has| |#2| (-1094)))) (-2620 (((-685 (-564)) (-685 $)) 106 (-4266 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 105 (-4266 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 104 (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) 103 (|has| |#2| (-1046)))) (-1926 (((-3 $ "failed") $) 79 (|has| |#2| (-723)))) (-2542 (($) 110 (|has| |#2| (-368)))) (-3528 ((|#2| $ (-564) |#2|) 53 (|has| $ (-6 -4412)))) (-3455 ((|#2| $ (-564)) 51)) (-1751 (((-112) $) 117 (|has| |#2| (-845)))) (-3080 (((-641 |#2|) $) 30 (|has| $ (-6 -4411)))) (-2419 (((-112) $) 81 (|has| |#2| (-723)))) (-2506 (((-112) $) 118 (|has| |#2| (-845)))) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 43 (|has| (-564) (-847)))) (-3571 (($ $ $) 116 (-4002 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-3817 (((-641 |#2|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 44 (|has| (-564) (-847)))) (-1547 (($ $ $) 115 (-4002 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-3513 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#2| |#2|) $) 35)) (-2209 (((-918) $) 109 (|has| |#2| (-368)))) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#2| (-1094)))) (-1371 (((-641 (-564)) $) 46)) (-3629 (((-112) (-564) $) 47)) (-1403 (($ (-918)) 108 (|has| |#2| (-368)))) (-3802 (((-1114) $) 21 (|has| |#2| (-1094)))) (-3073 ((|#2| $) 42 (|has| (-564) (-847)))) (-2614 (($ $ |#2|) 41 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#2| $ (-564) |#2|) 50) ((|#2| $ (-564)) 49)) (-4158 ((|#2| $ $) 124 (|has| |#2| (-1046)))) (-4059 (($ (-1259 |#2|)) 126)) (-3850 (((-134)) 123 (|has| |#2| (-363)))) (-3226 (($ $) 98 (-4266 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) 96 (-4266 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) 94 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) 93 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) 92 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) 91 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) 84 (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1046)))) (-3815 (((-768) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4411))) (((-768) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-1259 |#2|) $) 127) (($ (-564)) 68 (-4002 (-4266 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) 65 (-4266 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 60 (|has| |#2| (-1094))) (((-859) $) 18 (|has| |#2| (-611 (-859))))) (-1965 (((-768)) 102 (|has| |#2| (-1046)) CONST)) (-2237 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4411)))) (-2016 (($ $) 120 (|has| |#2| (-845)))) (-4317 (($) 71 (|has| |#2| (-131)) CONST)) (-4327 (($) 82 (|has| |#2| (-723)) CONST)) (-3190 (($ $) 97 (-4266 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) 95 (-4266 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) 90 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) 89 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) 88 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) 87 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) 86 (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1046)))) (-1738 (((-112) $ $) 113 (-4002 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1715 (((-112) $ $) 112 (-4002 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1686 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-1728 (((-112) $ $) 114 (-4002 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1705 (((-112) $ $) 111 (-4002 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1793 (($ $ |#2|) 122 (|has| |#2| (-363)))) (-1783 (($ $ $) 100 (|has| |#2| (-1046))) (($ $) 99 (|has| |#2| (-1046)))) (-1771 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-768)) 80 (|has| |#2| (-723))) (($ $ (-918)) 77 (|has| |#2| (-723)))) (* (($ (-564) $) 101 (|has| |#2| (-1046))) (($ $ $) 78 (|has| |#2| (-723))) (($ $ |#2|) 76 (|has| |#2| (-723))) (($ |#2| $) 75 (|has| |#2| (-723))) (($ (-768) $) 73 (|has| |#2| (-131))) (($ (-918) $) 70 (|has| |#2| (-25)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3372 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) (-4074 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-4074 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4412)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))) (-1773 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4412)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))))
+(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3372 ($)) (-15 -3372 ($ (-641 |t#1|))) (IF (|has| $ (-6 -4412)) (PROGN (-15 -4074 ($ |t#1| $)) (-15 -4074 ($ (-1 (-112) |t#1|) $)) (-15 -1773 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-2762 (((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564)))) 42)))
+(((-236) (-10 -7 (-15 -2762 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564))))))) (T -236))
+((-2762 (*1 *2 *3) (-12 (-5 *3 (-294 (-949 (-564)))) (-5 *2 (-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768)))))) (-5 *1 (-236)))))
+(-10 -7 (-15 -2762 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564))))))
+((-2018 (((-768)) 56)) (-3613 (((-2 (|:| -1920 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 53) (((-685 |#3|) (-685 $)) 44) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-2869 (((-134)) 62)) (-2203 (($ $ (-1 |#3| |#3|) (-768)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-3714 (((-1259 |#3|) $) NIL) (($ |#3|) NIL) (((-859) $) NIL) (($ (-564)) 12) (($ (-407 (-564))) NIL)) (-3379 (((-768)) 15)) (-1841 (($ $ |#3|) 59)))
+(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)) (-15 -3379 ((-768))) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3714 (|#1| |#3|)) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -3613 ((-685 |#3|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -2018 ((-768))) (-15 -1841 (|#1| |#1| |#3|)) (-15 -2869 ((-134))) (-15 -3714 ((-1259 |#3|) |#1|))) (-238 |#2| |#3|) (-768) (-1209)) (T -237))
+((-2869 (*1 *2) (-12 (-14 *4 (-768)) (-4 *5 (-1209)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2018 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3379 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
+(-10 -8 (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)) (-15 -3379 ((-768))) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3714 (|#1| |#3|)) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -3613 ((-685 |#3|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -2018 ((-768))) (-15 -1841 (|#1| |#1| |#3|)) (-15 -2869 ((-134))) (-15 -3714 ((-1259 |#3|) |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-1556 (((-112) $) 72 (|has| |#2| (-131)))) (-2366 (($ (-918)) 125 (|has| |#2| (-1046)))) (-2399 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4413)))) (-3884 (($ $ $) 121 (|has| |#2| (-790)))) (-4281 (((-3 $ "failed") $ $) 74 (|has| |#2| (-131)))) (-2141 (((-112) $ (-768)) 8)) (-2018 (((-768)) 107 (|has| |#2| (-368)))) (-3191 (((-564) $) 119 (|has| |#2| (-845)))) (-3868 ((|#2| $ (-564) |#2|) 52 (|has| $ (-6 -4413)))) (-3180 (($) 7 T CONST)) (-2224 (((-3 (-564) "failed") $) 67 (-4264 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) 64 (-4264 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1094)))) (-2376 (((-564) $) 66 (-4264 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) 63 (-4264 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 62 (|has| |#2| (-1094)))) (-3613 (((-685 (-564)) (-685 $)) 106 (-4264 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 105 (-4264 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 104 (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) 103 (|has| |#2| (-1046)))) (-4272 (((-3 $ "failed") $) 79 (|has| |#2| (-723)))) (-2939 (($) 110 (|has| |#2| (-368)))) (-1998 ((|#2| $ (-564) |#2|) 53 (|has| $ (-6 -4413)))) (-3593 ((|#2| $ (-564)) 51)) (-3137 (((-112) $) 117 (|has| |#2| (-845)))) (-4244 (((-641 |#2|) $) 30 (|has| $ (-6 -4412)))) (-2340 (((-112) $) 81 (|has| |#2| (-723)))) (-2001 (((-112) $) 118 (|has| |#2| (-845)))) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 43 (|has| (-564) (-847)))) (-3428 (($ $ $) 116 (-4012 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-2572 (((-641 |#2|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-3413 (($ $ $) 115 (-4012 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1988 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#2| |#2|) $) 35)) (-4031 (((-918) $) 109 (|has| |#2| (-368)))) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#2| (-1094)))) (-3127 (((-641 (-564)) $) 46)) (-1338 (((-112) (-564) $) 47)) (-3338 (($ (-918)) 108 (|has| |#2| (-368)))) (-3844 (((-1114) $) 21 (|has| |#2| (-1094)))) (-2049 ((|#2| $) 42 (|has| (-564) (-847)))) (-3538 (($ $ |#2|) 41 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#2| $ (-564) |#2|) 50) ((|#2| $ (-564)) 49)) (-2681 ((|#2| $ $) 124 (|has| |#2| (-1046)))) (-4184 (($ (-1259 |#2|)) 126)) (-2869 (((-134)) 123 (|has| |#2| (-363)))) (-2203 (($ $) 98 (-4264 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) 96 (-4264 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) 94 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) 93 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) 92 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) 91 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) 84 (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1046)))) (-3855 (((-768) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4412))) (((-768) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-1259 |#2|) $) 127) (($ (-564)) 68 (-4012 (-4264 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) 65 (-4264 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 60 (|has| |#2| (-1094))) (((-859) $) 18 (|has| |#2| (-611 (-859))))) (-3379 (((-768)) 102 (|has| |#2| (-1046)) CONST)) (-4289 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4412)))) (-3920 (($ $) 120 (|has| |#2| (-845)))) (-4312 (($) 71 (|has| |#2| (-131)) CONST)) (-4323 (($) 82 (|has| |#2| (-723)) CONST)) (-2238 (($ $) 97 (-4264 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) 95 (-4264 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) 90 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) 89 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) 88 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) 87 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) 86 (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1046)))) (-1781 (((-112) $ $) 113 (-4012 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1758 (((-112) $ $) 112 (-4012 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1720 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-1769 (((-112) $ $) 114 (-4012 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1746 (((-112) $ $) 111 (-4012 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1841 (($ $ |#2|) 122 (|has| |#2| (-363)))) (-1828 (($ $ $) 100 (|has| |#2| (-1046))) (($ $) 99 (|has| |#2| (-1046)))) (-1814 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-768)) 80 (|has| |#2| (-723))) (($ $ (-918)) 77 (|has| |#2| (-723)))) (* (($ (-564) $) 101 (|has| |#2| (-1046))) (($ $ $) 78 (|has| |#2| (-723))) (($ $ |#2|) 76 (|has| |#2| (-723))) (($ |#2| $) 75 (|has| |#2| (-723))) (($ (-768) $) 73 (|has| |#2| (-131))) (($ (-918) $) 70 (|has| |#2| (-25)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-238 |#1| |#2|) (-140) (-768) (-1209)) (T -238))
-((-4059 (*1 *1 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1046)) (-4 *4 (-1209)))) (-4158 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))))
-(-13 (-602 (-564) |t#2|) (-611 (-1259 |t#2|)) (-10 -8 (-6 -4411) (-15 -4059 ($ (-1259 |t#2|))) (IF (|has| |t#2| (-1094)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1046)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -3473 ($ (-918))) (-15 -4158 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-723)) (PROGN (-6 (-723)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |t#2| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#2| (-790)) (-6 (-790)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1266 |t#2|)) |%noBranch|)))
-(((-21) -4002 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -4002 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -4002 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -4002 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4002 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -4002 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-614 #0=(-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))) ((-614 (-564)) -4002 (|has| |#2| (-1046)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-614 |#2|) -4002 (|has| |#2| (-1094)) (|has| |#2| (-172))) ((-611 (-859)) -4002 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-611 (-859))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-611 (-1259 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1046)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1046))) ((-286 #1=(-564) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1046)) ((-411 |#2|) |has| |#2| (-1094)) ((-489 |#2|) . T) ((-602 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) -4002 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 $) -4002 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-637 (-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046))) ((-637 |#2|) |has| |#2| (-1046)) ((-714 |#2|) -4002 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-723) -4002 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-723)) (|has| |#2| (-172))) ((-788) |has| |#2| (-845)) ((-789) -4002 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-790) |has| |#2| (-790)) ((-791) -4002 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-792) -4002 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-845) |has| |#2| (-845)) ((-847) -4002 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-897 (-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046))) ((-1035 #0#) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))) ((-1035 (-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) ((-1035 |#2|) |has| |#2| (-1094)) ((-1052 |#2|) -4002 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1052 $) |has| |#2| (-172)) ((-1046) -4002 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-1053) -4002 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-1106) -4002 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-723)) (|has| |#2| (-172))) ((-1094) -4002 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1209) . T) ((-1266 |#2|) |has| |#2| (-363)))
-((-4077 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-4367 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2082 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
-(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -4077 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4367 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2082 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-768) (-1209) (-1209)) (T -239))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-4367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2)))) (-4077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-768)) (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
-(-10 -7 (-15 -4077 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4367 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2082 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
-((-1754 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3976 (((-112) $) NIL (|has| |#2| (-131)))) (-3473 (($ (-918)) 65 (|has| |#2| (-1046)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3382 (($ $ $) 69 (|has| |#2| (-790)))) (-3936 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-3263 (((-112) $ (-768)) 17)) (-3042 (((-768)) NIL (|has| |#2| (-368)))) (-3438 (((-564) $) NIL (|has| |#2| (-845)))) (-1881 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1094)))) (-2064 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 32 (|has| |#2| (-1094)))) (-2620 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-1926 (((-3 $ "failed") $) 61 (|has| |#2| (-723)))) (-2542 (($) NIL (|has| |#2| (-368)))) (-3528 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ (-564)) 59)) (-1751 (((-112) $) NIL (|has| |#2| (-845)))) (-3080 (((-641 |#2|) $) 15 (|has| $ (-6 -4411)))) (-2419 (((-112) $) NIL (|has| |#2| (-723)))) (-2506 (((-112) $) NIL (|has| |#2| (-845)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) 20 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-3817 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1479 (((-564) $) 58 (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-3513 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#2| |#2|) $) 47)) (-2209 (((-918) $) NIL (|has| |#2| (-368)))) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#2| (-1094)))) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-1403 (($ (-918)) NIL (|has| |#2| (-368)))) (-3802 (((-1114) $) NIL (|has| |#2| (-1094)))) (-3073 ((|#2| $) NIL (|has| (-564) (-847)))) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) 21)) (-4158 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-4059 (($ (-1259 |#2|)) 18)) (-3850 (((-134)) NIL (|has| |#2| (-363)))) (-3226 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-3815 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-1259 |#2|) $) 10) (($ (-564)) NIL (-4002 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 13 (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-1965 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-2237 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2016 (($ $) NIL (|has| |#2| (-845)))) (-4317 (($) 40 (|has| |#2| (-131)) CONST)) (-4327 (($) 44 (|has| |#2| (-723)) CONST)) (-3190 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1738 (((-112) $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1715 (((-112) $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1686 (((-112) $ $) 31 (|has| |#2| (-1094)))) (-1728 (((-112) $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1705 (((-112) $ $) 67 (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1771 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) 50 (|has| |#2| (-723))) (($ $ |#2|) 48 (|has| |#2| (-723))) (($ |#2| $) 49 (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-4184 (*1 *1 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1046)) (-4 *4 (-1209)))) (-2681 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))))
+(-13 (-602 (-564) |t#2|) (-611 (-1259 |t#2|)) (-10 -8 (-6 -4412) (-15 -4184 ($ (-1259 |t#2|))) (IF (|has| |t#2| (-1094)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1046)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -2366 ($ (-918))) (-15 -2681 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-723)) (PROGN (-6 (-723)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4409)) (-6 -4409) |%noBranch|) (IF (|has| |t#2| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#2| (-790)) (-6 (-790)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1266 |t#2|)) |%noBranch|)))
+(((-21) -4012 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -4012 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -4012 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -4012 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4012 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -4012 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-614 #0=(-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))) ((-614 (-564)) -4012 (|has| |#2| (-1046)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-614 |#2|) -4012 (|has| |#2| (-1094)) (|has| |#2| (-172))) ((-611 (-859)) -4012 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-611 (-859))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-611 (-1259 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1046)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1046))) ((-286 #1=(-564) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1046)) ((-411 |#2|) |has| |#2| (-1094)) ((-489 |#2|) . T) ((-602 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) -4012 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 $) -4012 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-637 (-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046))) ((-637 |#2|) |has| |#2| (-1046)) ((-714 |#2|) -4012 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-723) -4012 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-723)) (|has| |#2| (-172))) ((-788) |has| |#2| (-845)) ((-789) -4012 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-790) |has| |#2| (-790)) ((-791) -4012 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-792) -4012 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-845) |has| |#2| (-845)) ((-847) -4012 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-897 (-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046))) ((-1035 #0#) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))) ((-1035 (-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) ((-1035 |#2|) |has| |#2| (-1094)) ((-1052 |#2|) -4012 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1052 $) |has| |#2| (-172)) ((-1046) -4012 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-1053) -4012 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-1106) -4012 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-723)) (|has| |#2| (-172))) ((-1094) -4012 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1209) . T) ((-1266 |#2|) |has| |#2| (-363)))
+((-3092 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-1728 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2313 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
+(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -3092 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1728 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2313 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-768) (-1209) (-1209)) (T -239))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-1728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-768)) (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
+(-10 -7 (-15 -3092 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1728 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2313 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
+((-3702 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1556 (((-112) $) NIL (|has| |#2| (-131)))) (-2366 (($ (-918)) 65 (|has| |#2| (-1046)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-3884 (($ $ $) 69 (|has| |#2| (-790)))) (-4281 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-2141 (((-112) $ (-768)) 17)) (-2018 (((-768)) NIL (|has| |#2| (-368)))) (-3191 (((-564) $) NIL (|has| |#2| (-845)))) (-3868 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1094)))) (-2376 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 32 (|has| |#2| (-1094)))) (-3613 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-4272 (((-3 $ "failed") $) 61 (|has| |#2| (-723)))) (-2939 (($) NIL (|has| |#2| (-368)))) (-1998 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ (-564)) 59)) (-3137 (((-112) $) NIL (|has| |#2| (-845)))) (-4244 (((-641 |#2|) $) 15 (|has| $ (-6 -4412)))) (-2340 (((-112) $) NIL (|has| |#2| (-723)))) (-2001 (((-112) $) NIL (|has| |#2| (-845)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) 20 (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2572 (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2415 (((-564) $) 58 (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1988 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#2| |#2|) $) 47)) (-4031 (((-918) $) NIL (|has| |#2| (-368)))) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3338 (($ (-918)) NIL (|has| |#2| (-368)))) (-3844 (((-1114) $) NIL (|has| |#2| (-1094)))) (-2049 ((|#2| $) NIL (|has| (-564) (-847)))) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) 21)) (-2681 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-4184 (($ (-1259 |#2|)) 18)) (-2869 (((-134)) NIL (|has| |#2| (-363)))) (-2203 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-3855 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-1259 |#2|) $) 10) (($ (-564)) NIL (-4012 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 13 (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-3379 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-4289 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-3920 (($ $) NIL (|has| |#2| (-845)))) (-4312 (($) 40 (|has| |#2| (-131)) CONST)) (-4323 (($) 44 (|has| |#2| (-723)) CONST)) (-2238 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1781 (((-112) $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1758 (((-112) $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1720 (((-112) $ $) 31 (|has| |#2| (-1094)))) (-1769 (((-112) $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1746 (((-112) $ $) 67 (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1814 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) 50 (|has| |#2| (-723))) (($ $ |#2|) 48 (|has| |#2| (-723))) (($ |#2| $) 49 (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-240 |#1| |#2|) (-238 |#1| |#2|) (-768) (-1209)) (T -240))
NIL
(-238 |#1| |#2|)
-((-1884 (((-564) (-641 (-1152))) 34) (((-564) (-1152)) 28)) (-3106 (((-1264) (-641 (-1152))) 39) (((-1264) (-1152)) 38)) (-1823 (((-1152)) 16)) (-1809 (((-1152) (-564) (-1152)) 23)) (-3415 (((-641 (-1152)) (-641 (-1152)) (-564) (-1152)) 35) (((-1152) (-1152) (-564) (-1152)) 33)) (-1857 (((-641 (-1152)) (-641 (-1152))) 15) (((-641 (-1152)) (-1152)) 11)))
-(((-241) (-10 -7 (-15 -1857 ((-641 (-1152)) (-1152))) (-15 -1857 ((-641 (-1152)) (-641 (-1152)))) (-15 -1823 ((-1152))) (-15 -1809 ((-1152) (-564) (-1152))) (-15 -3415 ((-1152) (-1152) (-564) (-1152))) (-15 -3415 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -3106 ((-1264) (-1152))) (-15 -3106 ((-1264) (-641 (-1152)))) (-15 -1884 ((-564) (-1152))) (-15 -1884 ((-564) (-641 (-1152)))))) (T -241))
-((-1884 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241)))) (-3415 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *1 (-241)))) (-3415 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-1809 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-1823 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241)))) (-1857 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152)))))
-(-10 -7 (-15 -1857 ((-641 (-1152)) (-1152))) (-15 -1857 ((-641 (-1152)) (-641 (-1152)))) (-15 -1823 ((-1152))) (-15 -1809 ((-1152) (-564) (-1152))) (-15 -3415 ((-1152) (-1152) (-564) (-1152))) (-15 -3415 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -3106 ((-1264) (-1152))) (-15 -3106 ((-1264) (-641 (-1152)))) (-15 -1884 ((-564) (-1152))) (-15 -1884 ((-564) (-641 (-1152)))))
+((-2030 (((-564) (-641 (-1152))) 34) (((-564) (-1152)) 28)) (-2089 (((-1264) (-641 (-1152))) 39) (((-1264) (-1152)) 38)) (-2664 (((-1152)) 16)) (-2526 (((-1152) (-564) (-1152)) 23)) (-2390 (((-641 (-1152)) (-641 (-1152)) (-564) (-1152)) 35) (((-1152) (-1152) (-564) (-1152)) 33)) (-1903 (((-641 (-1152)) (-641 (-1152))) 15) (((-641 (-1152)) (-1152)) 11)))
+(((-241) (-10 -7 (-15 -1903 ((-641 (-1152)) (-1152))) (-15 -1903 ((-641 (-1152)) (-641 (-1152)))) (-15 -2664 ((-1152))) (-15 -2526 ((-1152) (-564) (-1152))) (-15 -2390 ((-1152) (-1152) (-564) (-1152))) (-15 -2390 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -2089 ((-1264) (-1152))) (-15 -2089 ((-1264) (-641 (-1152)))) (-15 -2030 ((-564) (-1152))) (-15 -2030 ((-564) (-641 (-1152)))))) (T -241))
+((-2030 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241)))) (-2390 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *1 (-241)))) (-2390 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-2526 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-2664 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241)))) (-1903 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)))) (-1903 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152)))))
+(-10 -7 (-15 -1903 ((-641 (-1152)) (-1152))) (-15 -1903 ((-641 (-1152)) (-641 (-1152)))) (-15 -2664 ((-1152))) (-15 -2526 ((-1152) (-564) (-1152))) (-15 -2390 ((-1152) (-1152) (-564) (-1152))) (-15 -2390 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -2089 ((-1264) (-1152))) (-15 -2089 ((-1264) (-641 (-1152)))) (-15 -2030 ((-564) (-1152))) (-15 -2030 ((-564) (-641 (-1152)))))
((** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 20)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) NIL)))
(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-243)) (T -242))
NIL
(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 40)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 44)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 41)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 43) (($ $ (-407 (-564))) 42)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 40)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 44)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 41)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 43) (($ $ (-407 (-564))) 42)))
(((-243) (-140)) (T -243))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) (-4272 (*1 *1 *1) (-4 *1 (-243))))
-(-13 (-290) (-38 (-407 (-564))) (-10 -8 (-15 ** ($ $ (-564))) (-15 -4272 ($ $))))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) (-1295 (*1 *1 *1) (-4 *1 (-243))))
+(-13 (-290) (-38 (-407 (-564))) (-10 -8 (-15 ** ($ $ (-564))) (-15 -1295 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-290) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-723) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1451 ((|#1| $) 48)) (-1882 (($ $) 57)) (-3263 (((-112) $ (-768)) 8)) (-3768 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-2153 (($ $ $) 53 (|has| $ (-6 -4412)))) (-4011 (($ $ $) 52 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-3760 (($) 7 T CONST)) (-2855 (($ $) 56)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 50)) (-2272 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3738 (($ $) 55)) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-3848 (((-641 |#1|) $) 45)) (-2200 (((-112) $) 49)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2376 ((|#1| $) 59)) (-1821 (($ $) 58)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ "value") 47)) (-3837 (((-564) $ $) 44)) (-1867 (((-112) $) 46)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2478 (($ $ $) 54 (|has| $ (-6 -4412)))) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) 51)) (-1740 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3387 ((|#1| $) 48)) (-3794 (($ $) 57)) (-2141 (((-112) $ (-768)) 8)) (-3242 ((|#1| $ |#1|) 39 (|has| $ (-6 -4413)))) (-1637 (($ $ $) 53 (|has| $ (-6 -4413)))) (-3667 (($ $ $) 52 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 41 (|has| $ (-6 -4413)))) (-3180 (($) 7 T CONST)) (-3371 (($ $) 56)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 50)) (-1543 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3905 (($ $) 55)) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-2523 (((-641 |#1|) $) 45)) (-2120 (((-112) $) 49)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2541 ((|#1| $) 59)) (-2655 (($ $) 58)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ "value") 47)) (-2774 (((-564) $ $) 44)) (-1875 (((-112) $) 46)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-1711 (($ $ $) 54 (|has| $ (-6 -4413)))) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) 51)) (-3036 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-244 |#1|) (-140) (-1209)) (T -244))
-((-2376 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-1821 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-1882 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-2855 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3738 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-2478 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-2153 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-4011 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
-(-13 (-1007 |t#1|) (-10 -8 (-15 -2376 (|t#1| $)) (-15 -1821 ($ $)) (-15 -1882 ($ $)) (-15 -2855 ($ $)) (-15 -3738 ($ $)) (IF (|has| $ (-6 -4412)) (PROGN (-15 -2478 ($ $ $)) (-15 -2153 ($ $ $)) (-15 -4011 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) NIL)) (-2722 ((|#1| $) NIL)) (-1882 (($ $) NIL)) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3280 (($ $ (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2494 (($ $) 10 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-3768 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-2293 (($ $ $) NIL (|has| $ (-6 -4412)))) (-3129 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-4318 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "rest" $) NIL (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-4194 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2711 ((|#1| $) NIL)) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3086 (($ $) NIL) (($ $ (-768)) NIL)) (-3083 (($ $) NIL (|has| |#1| (-1094)))) (-3104 (($ $) 7 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1907 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2359 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1418 (((-112) $) NIL)) (-1356 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1633 (($ (-768) |#1|) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1397 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4012 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2953 (($ |#1|) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3848 (((-641 |#1|) $) NIL)) (-2200 (((-112) $) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2376 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2098 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3412 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3073 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-2141 (((-112) $) NIL)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-768) $ "count") 16)) (-3837 (((-564) $ $) NIL)) (-4183 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2008 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2221 (($ (-641 |#1|)) 22)) (-1867 (((-112) $) NIL)) (-2294 (($ $) NIL)) (-4207 (($ $) NIL (|has| $ (-6 -4412)))) (-2355 (((-768) $) NIL)) (-4119 (($ $) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) NIL)) (-2478 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2817 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-1765 (($ (-641 |#1|)) 17) (((-641 |#1|) $) 18) (((-859) $) 21 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2589 (((-768) $) 14 (|has| $ (-6 -4411)))))
-(((-245 |#1|) (-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -2221 ($ (-641 |#1|))) (-15 -4382 ($ $ "unique")) (-15 -4382 ($ $ "sort")) (-15 -4382 ((-768) $ "count")))) (-847)) (T -245))
-((-2221 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-245 *3)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-847)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-847)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-768)) (-5 *1 (-245 *4)) (-4 *4 (-847)))))
-(-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -2221 ($ (-641 |#1|))) (-15 -4382 ($ $ "unique")) (-15 -4382 ($ $ "sort")) (-15 -4382 ((-768) $ "count"))))
-((-3404 (((-3 (-768) "failed") |#1| |#1| (-768)) 42)))
-(((-246 |#1|) (-10 -7 (-15 -3404 ((-3 (-768) "failed") |#1| |#1| (-768)))) (-13 (-723) (-368) (-10 -7 (-15 ** (|#1| |#1| (-564)))))) (T -246))
-((-3404 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-768)) (-4 *3 (-13 (-723) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) (-5 *1 (-246 *3)))))
-(-10 -7 (-15 -3404 ((-3 (-768) "failed") |#1| |#1| (-768))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-861 |#1|)) $) NIL)) (-3964 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1840 (($ $) NIL (|has| |#2| (-556)))) (-4035 (((-112) $) NIL (|has| |#2| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1368 (($ $) NIL (|has| |#2| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2064 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-4267 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-1666 (($ $ (-641 (-564))) NIL)) (-4346 (($ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#2| (-906)))) (-2877 (($ $ |#2| (-240 (-2589 |#1|) (-768)) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-4157 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#2| (-240 (-2589 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-861 |#1|)) NIL)) (-3829 (((-240 (-2589 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-3571 (($ $ $) NIL (|has| |#2| (-847)))) (-1547 (($ $ $) NIL (|has| |#2| (-847)))) (-2964 (($ (-1 (-240 (-2589 |#1|) (-768)) (-240 (-2589 |#1|) (-768))) $) NIL)) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2022 (((-3 (-861 |#1|) "failed") $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#2| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-4202 (((-1152) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -3747 (-768))) "failed") $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#2| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1343 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-1938 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3226 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-3344 (((-240 (-2589 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2712 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ (-407 (-564))) NIL (-4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-4264 (((-641 |#2|) $) NIL)) (-1757 ((|#2| $ (-240 (-2589 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1738 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-247 |#1| |#2|) (-13 (-946 |#2| (-240 (-2589 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -1666 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046)) (T -247))
-((-1666 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1046)))))
-(-13 (-946 |#2| (-240 (-2589 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -1666 ($ $ (-641 (-564))))))
-((-1754 (((-112) $ $) NIL)) (-2429 (((-1264) $) 17)) (-1733 (((-183) $) 11)) (-2327 (($ (-183)) 12)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3836 (((-249) $) 7)) (-1765 (((-859) $) 9)) (-1686 (((-112) $ $) 15)))
-(((-248) (-13 (-1094) (-10 -8 (-15 -3836 ((-249) $)) (-15 -1733 ((-183) $)) (-15 -2327 ($ (-183))) (-15 -2429 ((-1264) $))))) (T -248))
-((-3836 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248)))))
-(-13 (-1094) (-10 -8 (-15 -3836 ((-249) $)) (-15 -1733 ((-183) $)) (-15 -2327 ($ (-183))) (-15 -2429 ((-1264) $))))
-((-1754 (((-112) $ $) NIL)) (-1632 (((-641 (-862)) $) NIL)) (-4363 (((-506) $) NIL)) (-4202 (((-1152) $) NIL)) (-3339 (((-186) $) NIL)) (-3802 (((-1114) $) NIL)) (-2751 (((-641 (-112)) $) NIL)) (-1765 (((-859) $) NIL) (((-187) $) 6)) (-2189 (((-55) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-2541 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-2655 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3371 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3905 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-1711 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-1637 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3667 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
+(-13 (-1007 |t#1|) (-10 -8 (-15 -2541 (|t#1| $)) (-15 -2655 ($ $)) (-15 -3794 ($ $)) (-15 -3371 ($ $)) (-15 -3905 ($ $)) (IF (|has| $ (-6 -4413)) (PROGN (-15 -1711 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -3667 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) NIL)) (-2985 ((|#1| $) NIL)) (-3794 (($ $) NIL)) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-4140 (($ $ (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4194 (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2904 (($ $) 10 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3242 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-3543 (($ $ $) NIL (|has| $ (-6 -4413)))) (-3186 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-1617 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4413))) (($ $ "rest" $) NIL (|has| $ (-6 -4413))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-1773 (($ (-1 (-112) |#1|) $) NIL)) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2976 ((|#1| $) NIL)) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2063 (($ $) NIL) (($ $ (-768)) NIL)) (-2822 (($ $) NIL (|has| |#1| (-1094)))) (-2084 (($ $) 7 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4074 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2514 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-1635 (((-112) $) NIL)) (-3303 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3564 (($ (-768) |#1|) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-2573 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3678 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1929 (($ |#1|) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2523 (((-641 |#1|) $) NIL)) (-2120 (((-112) $) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2541 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2373 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2455 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2049 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-2791 (((-112) $) NIL)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-768) $ "count") 16)) (-2774 (((-564) $ $) NIL)) (-2899 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2090 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3705 (($ (-641 |#1|)) 22)) (-1875 (((-112) $) NIL)) (-3554 (($ $) NIL)) (-1911 (($ $) NIL (|has| $ (-6 -4413)))) (-2966 (((-768) $) NIL)) (-3414 (($ $) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) NIL)) (-1711 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1865 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-3714 (($ (-641 |#1|)) 17) (((-641 |#1|) $) 18) (((-859) $) 21 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2779 (((-768) $) 14 (|has| $ (-6 -4412)))))
+(((-245 |#1|) (-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -3705 ($ (-641 |#1|))) (-15 -4382 ($ $ "unique")) (-15 -4382 ($ $ "sort")) (-15 -4382 ((-768) $ "count")))) (-847)) (T -245))
+((-3705 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-245 *3)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-847)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-847)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-768)) (-5 *1 (-245 *4)) (-4 *4 (-847)))))
+(-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -3705 ($ (-641 |#1|))) (-15 -4382 ($ $ "unique")) (-15 -4382 ($ $ "sort")) (-15 -4382 ((-768) $ "count"))))
+((-2932 (((-3 (-768) "failed") |#1| |#1| (-768)) 42)))
+(((-246 |#1|) (-10 -7 (-15 -2932 ((-3 (-768) "failed") |#1| |#1| (-768)))) (-13 (-723) (-368) (-10 -7 (-15 ** (|#1| |#1| (-564)))))) (T -246))
+((-2932 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-768)) (-4 *3 (-13 (-723) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) (-5 *1 (-246 *3)))))
+(-10 -7 (-15 -2932 ((-3 (-768) "failed") |#1| |#1| (-768))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-861 |#1|)) $) NIL)) (-4103 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1582 (($ $) NIL (|has| |#2| (-556)))) (-3897 (((-112) $) NIL (|has| |#2| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1328 (($ $) NIL (|has| |#2| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2376 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-4275 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3473 (($ $ (-641 (-564))) NIL)) (-1374 (($ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#2| (-906)))) (-1423 (($ $ |#2| (-240 (-2779 |#1|) (-768)) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-4279 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#2| (-240 (-2779 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-861 |#1|)) NIL)) (-2700 (((-240 (-2779 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-3428 (($ $ $) NIL (|has| |#2| (-847)))) (-3413 (($ $ $) NIL (|has| |#2| (-847)))) (-4062 (($ (-1 (-240 (-2779 |#1|) (-768)) (-240 (-2779 |#1|) (-768))) $) NIL)) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-2848 (((-3 (-861 |#1|) "failed") $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#2| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1868 (((-1152) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -3078 (-768))) "failed") $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#2| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1347 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-4378 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-2203 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-3475 (((-240 (-2779 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3324 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ (-407 (-564))) NIL (-4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-4252 (((-641 |#2|) $) NIL)) (-3181 ((|#2| $ (-240 (-2779 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-247 |#1| |#2|) (-13 (-946 |#2| (-240 (-2779 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -3473 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046)) (T -247))
+((-3473 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1046)))))
+(-13 (-946 |#2| (-240 (-2779 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -3473 ($ $ (-641 (-564))))))
+((-3702 (((-112) $ $) NIL)) (-1451 (((-1264) $) 17)) (-2982 (((-183) $) 11)) (-3883 (($ (-183)) 12)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2844 (((-249) $) 7)) (-3714 (((-859) $) 9)) (-1720 (((-112) $ $) 15)))
+(((-248) (-13 (-1094) (-10 -8 (-15 -2844 ((-249) $)) (-15 -2982 ((-183) $)) (-15 -3883 ($ (-183))) (-15 -1451 ((-1264) $))))) (T -248))
+((-2844 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248)))))
+(-13 (-1094) (-10 -8 (-15 -2844 ((-249) $)) (-15 -2982 ((-183) $)) (-15 -3883 ($ (-183))) (-15 -1451 ((-1264) $))))
+((-3702 (((-112) $ $) NIL)) (-1775 (((-641 (-862)) $) NIL)) (-4337 (((-506) $) NIL)) (-1868 (((-1152) $) NIL)) (-3383 (((-186) $) NIL)) (-3844 (((-1114) $) NIL)) (-2610 (((-641 (-112)) $) NIL)) (-3714 (((-859) $) NIL) (((-187) $) 6)) (-2004 (((-55) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-249) (-13 (-185) (-611 (-187)))) (T -249))
NIL
(-13 (-185) (-611 (-187)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3473 (($ (-918)) NIL (|has| |#4| (-1046)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3382 (($ $ $) NIL (|has| |#4| (-790)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-3042 (((-768)) NIL (|has| |#4| (-368)))) (-3438 (((-564) $) NIL (|has| |#4| (-845)))) (-1881 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-2064 ((|#4| $) NIL (|has| |#4| (-1094))) (((-564) $) NIL (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-2620 (((-2 (|:| -1447 (-685 |#4|)) (|:| |vec| (-1259 |#4|))) (-685 $) (-1259 $)) NIL (|has| |#4| (-1046))) (((-685 |#4|) (-685 $)) NIL (|has| |#4| (-1046))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))))) (-1926 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2542 (($) NIL (|has| |#4| (-368)))) (-3528 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#4| $ (-564)) NIL)) (-1751 (((-112) $) NIL (|has| |#4| (-845)))) (-3080 (((-641 |#4|) $) NIL (|has| $ (-6 -4411)))) (-2419 (((-112) $) NIL (-4002 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2506 (((-112) $) NIL (|has| |#4| (-845)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (-4002 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-3817 (((-641 |#4|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (-4002 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-3513 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) NIL)) (-2209 (((-918) $) NIL (|has| |#4| (-368)))) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-1403 (($ (-918)) NIL (|has| |#4| (-368)))) (-3802 (((-1114) $) NIL)) (-3073 ((|#4| $) NIL (|has| (-564) (-847)))) (-2614 (($ $ |#4|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-3599 (((-641 |#4|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#4| $ (-564) |#4|) NIL) ((|#4| $ (-564)) 16)) (-4158 ((|#4| $ $) NIL (|has| |#4| (-1046)))) (-4059 (($ (-1259 |#4|)) NIL)) (-3850 (((-134)) NIL (|has| |#4| (-363)))) (-3226 (($ $ (-1 |#4| |#4|) (-768)) NIL (|has| |#4| (-1046))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))))) (-3815 (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-1259 |#4|) $) NIL) (((-859) $) NIL) (($ |#4|) NIL (|has| |#4| (-1094))) (($ (-564)) NIL (-4002 (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-1965 (((-768)) NIL (|has| |#4| (-1046)) CONST)) (-2237 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2016 (($ $) NIL (|has| |#4| (-845)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL (-4002 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) CONST)) (-3190 (($ $ (-1 |#4| |#4|) (-768)) NIL (|has| |#4| (-1046))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))))) (-1738 (((-112) $ $) NIL (-4002 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1715 (((-112) $ $) NIL (-4002 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (-4002 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1705 (((-112) $ $) NIL (-4002 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1793 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-1783 (($ $ $) NIL) (($ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-768)) NIL (-4002 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046))))) (($ $ (-918)) NIL (-4002 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (* (($ |#2| $) 18) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-723))) (($ |#4| $) NIL (|has| |#4| (-723))) (($ $ $) NIL (-4002 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2366 (($ (-918)) NIL (|has| |#4| (-1046)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-3884 (($ $ $) NIL (|has| |#4| (-790)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-2018 (((-768)) NIL (|has| |#4| (-368)))) (-3191 (((-564) $) NIL (|has| |#4| (-845)))) (-3868 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-2376 ((|#4| $) NIL (|has| |#4| (-1094))) (((-564) $) NIL (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-3613 (((-2 (|:| -1920 (-685 |#4|)) (|:| |vec| (-1259 |#4|))) (-685 $) (-1259 $)) NIL (|has| |#4| (-1046))) (((-685 |#4|) (-685 $)) NIL (|has| |#4| (-1046))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))))) (-4272 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2939 (($) NIL (|has| |#4| (-368)))) (-1998 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#4| $ (-564)) NIL)) (-3137 (((-112) $) NIL (|has| |#4| (-845)))) (-4244 (((-641 |#4|) $) NIL (|has| $ (-6 -4412)))) (-2340 (((-112) $) NIL (-4012 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2001 (((-112) $) NIL (|has| |#4| (-845)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (-4012 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-2572 (((-641 |#4|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (-4012 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1988 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) NIL)) (-4031 (((-918) $) NIL (|has| |#4| (-368)))) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3338 (($ (-918)) NIL (|has| |#4| (-368)))) (-3844 (((-1114) $) NIL)) (-2049 ((|#4| $) NIL (|has| (-564) (-847)))) (-3538 (($ $ |#4|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-4121 (((-641 |#4|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#4| $ (-564) |#4|) NIL) ((|#4| $ (-564)) 16)) (-2681 ((|#4| $ $) NIL (|has| |#4| (-1046)))) (-4184 (($ (-1259 |#4|)) NIL)) (-2869 (((-134)) NIL (|has| |#4| (-363)))) (-2203 (($ $ (-1 |#4| |#4|) (-768)) NIL (|has| |#4| (-1046))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))))) (-3855 (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412))) (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-1259 |#4|) $) NIL) (((-859) $) NIL) (($ |#4|) NIL (|has| |#4| (-1094))) (($ (-564)) NIL (-4012 (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-3379 (((-768)) NIL (|has| |#4| (-1046)) CONST)) (-4289 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3920 (($ $) NIL (|has| |#4| (-845)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL (-4012 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) CONST)) (-2238 (($ $ (-1 |#4| |#4|) (-768)) NIL (|has| |#4| (-1046))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))))) (-1781 (((-112) $ $) NIL (-4012 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1758 (((-112) $ $) NIL (-4012 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (-4012 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1746 (((-112) $ $) NIL (-4012 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1841 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-1828 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-768)) NIL (-4012 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046))))) (($ $ (-918)) NIL (-4012 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (* (($ |#2| $) 18) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-723))) (($ |#4| $) NIL (|has| |#4| (-723))) (($ $ $) NIL (-4012 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-644 |#2|) (-644 |#3|)) (-918) (-1046) (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-644 |#2|)) (T -250))
NIL
(-13 (-238 |#1| |#4|) (-644 |#2|) (-644 |#3|))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3473 (($ (-918)) NIL (|has| |#3| (-1046)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3382 (($ $ $) NIL (|has| |#3| (-790)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-3042 (((-768)) NIL (|has| |#3| (-368)))) (-3438 (((-564) $) NIL (|has| |#3| (-845)))) (-1881 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-2064 ((|#3| $) NIL (|has| |#3| (-1094))) (((-564) $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-2620 (((-2 (|:| -1447 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1046))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1046))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))))) (-1926 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2542 (($) NIL (|has| |#3| (-368)))) (-3528 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#3| $ (-564)) NIL)) (-1751 (((-112) $) NIL (|has| |#3| (-845)))) (-3080 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-2419 (((-112) $) NIL (-4002 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2506 (((-112) $) NIL (|has| |#3| (-845)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-3817 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-3513 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#3| |#3|) $) NIL)) (-2209 (((-918) $) NIL (|has| |#3| (-368)))) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-1403 (($ (-918)) NIL (|has| |#3| (-368)))) (-3802 (((-1114) $) NIL)) (-3073 ((|#3| $) NIL (|has| (-564) (-847)))) (-2614 (($ $ |#3|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-3599 (((-641 |#3|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) 15)) (-4158 ((|#3| $ $) NIL (|has| |#3| (-1046)))) (-4059 (($ (-1259 |#3|)) NIL)) (-3850 (((-134)) NIL (|has| |#3| (-363)))) (-3226 (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))))) (-3815 (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411))) (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-1259 |#3|) $) NIL) (((-859) $) NIL) (($ |#3|) NIL (|has| |#3| (-1094))) (($ (-564)) NIL (-4002 (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-1965 (((-768)) NIL (|has| |#3| (-1046)) CONST)) (-2237 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2016 (($ $) NIL (|has| |#3| (-845)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL (-4002 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) CONST)) (-3190 (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))))) (-1738 (((-112) $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1715 (((-112) $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1705 (((-112) $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1793 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1783 (($ $ $) NIL) (($ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-768)) NIL (-4002 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046))))) (($ $ (-918)) NIL (-4002 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (* (($ |#2| $) 17) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-723))) (($ |#3| $) NIL (|has| |#3| (-723))) (($ $ $) NIL (-4002 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2366 (($ (-918)) NIL (|has| |#3| (-1046)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-3884 (($ $ $) NIL (|has| |#3| (-790)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-2018 (((-768)) NIL (|has| |#3| (-368)))) (-3191 (((-564) $) NIL (|has| |#3| (-845)))) (-3868 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-2376 ((|#3| $) NIL (|has| |#3| (-1094))) (((-564) $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-3613 (((-2 (|:| -1920 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1046))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1046))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))))) (-4272 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2939 (($) NIL (|has| |#3| (-368)))) (-1998 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#3| $ (-564)) NIL)) (-3137 (((-112) $) NIL (|has| |#3| (-845)))) (-4244 (((-641 |#3|) $) NIL (|has| $ (-6 -4412)))) (-2340 (((-112) $) NIL (-4012 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2001 (((-112) $) NIL (|has| |#3| (-845)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-2572 (((-641 |#3|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#3| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1988 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#3| |#3|) $) NIL)) (-4031 (((-918) $) NIL (|has| |#3| (-368)))) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3338 (($ (-918)) NIL (|has| |#3| (-368)))) (-3844 (((-1114) $) NIL)) (-2049 ((|#3| $) NIL (|has| (-564) (-847)))) (-3538 (($ $ |#3|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#3| (-1094))))) (-4121 (((-641 |#3|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) 15)) (-2681 ((|#3| $ $) NIL (|has| |#3| (-1046)))) (-4184 (($ (-1259 |#3|)) NIL)) (-2869 (((-134)) NIL (|has| |#3| (-363)))) (-2203 (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))))) (-3855 (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4412))) (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#3| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-1259 |#3|) $) NIL) (((-859) $) NIL) (($ |#3|) NIL (|has| |#3| (-1094))) (($ (-564)) NIL (-4012 (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-3379 (((-768)) NIL (|has| |#3| (-1046)) CONST)) (-4289 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4412)))) (-3920 (($ $) NIL (|has| |#3| (-845)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL (-4012 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) CONST)) (-2238 (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))))) (-1781 (((-112) $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1758 (((-112) $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1746 (((-112) $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1841 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1828 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-768)) NIL (-4012 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046))))) (($ $ (-918)) NIL (-4012 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (* (($ |#2| $) 17) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-723))) (($ |#3| $) NIL (|has| |#3| (-723))) (($ $ $) NIL (-4012 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-644 |#2|)) (-768) (-1046) (-644 |#2|)) (T -251))
NIL
(-13 (-238 |#1| |#3|) (-644 |#2|))
-((-2703 (((-641 (-768)) $) 56) (((-641 (-768)) $ |#3|) 59)) (-3703 (((-768) $) 58) (((-768) $ |#3|) 61)) (-2647 (($ $) 76)) (-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2261 (((-768) $ |#3|) 43) (((-768) $) 38)) (-2753 (((-1 $ (-768)) |#3|) 15) (((-1 $ (-768)) $) 88)) (-1370 ((|#4| $) 69)) (-2757 (((-112) $) 67)) (-2345 (($ $) 75)) (-2407 (($ $ (-641 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-641 |#3|) (-641 |#2|)) 100)) (-3226 (($ $ |#4|) NIL) (($ $ (-641 |#4|)) NIL) (($ $ |#4| (-768)) NIL) (($ $ (-641 |#4|) (-641 (-768))) NIL) (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3013 (((-641 |#3|) $) 86)) (-3344 ((|#5| $) NIL) (((-768) $ |#4|) NIL) (((-641 (-768)) $ (-641 |#4|)) NIL) (((-768) $ |#3|) 49)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-407 (-564))) NIL) (($ $) NIL)))
-(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1765 (|#1| |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2407 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#3| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#3| |#1|)) (-15 -2753 ((-1 |#1| (-768)) |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2345 (|#1| |#1|)) (-15 -1370 (|#4| |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -3703 ((-768) |#1| |#3|)) (-15 -2703 ((-641 (-768)) |#1| |#3|)) (-15 -3703 ((-768) |#1|)) (-15 -2703 ((-641 (-768)) |#1|)) (-15 -3344 ((-768) |#1| |#3|)) (-15 -2261 ((-768) |#1|)) (-15 -2261 ((-768) |#1| |#3|)) (-15 -3013 ((-641 |#3|) |#1|)) (-15 -2753 ((-1 |#1| (-768)) |#3|)) (-15 -1765 (|#1| |#3|)) (-15 -2013 ((-3 |#3| "failed") |#1|)) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1|)) (-15 -3344 ((-641 (-768)) |#1| (-641 |#4|))) (-15 -3344 ((-768) |#1| |#4|)) (-15 -1765 (|#1| |#4|)) (-15 -2013 ((-3 |#4| "failed") |#1|)) (-15 -2407 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#4| |#1|)) (-15 -2407 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#4| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3344 (|#5| |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -3226 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -3226 (|#1| |#1| |#4| (-768))) (-15 -3226 (|#1| |#1| (-641 |#4|))) (-15 -3226 (|#1| |#1| |#4|)) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1046) (-847) (-266 |#3|) (-790)) (T -252))
+((-3250 (((-641 (-768)) $) 56) (((-641 (-768)) $ |#3|) 59)) (-3879 (((-768) $) 58) (((-768) $ |#3|) 61)) (-3923 (($ $) 76)) (-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-1454 (((-768) $ |#3|) 43) (((-768) $) 38)) (-2632 (((-1 $ (-768)) |#3|) 15) (((-1 $ (-768)) $) 88)) (-3258 ((|#4| $) 69)) (-2674 (((-112) $) 67)) (-4370 (($ $) 75)) (-2582 (($ $ (-641 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-641 |#3|) (-641 |#2|)) 100)) (-2203 (($ $ |#4|) NIL) (($ $ (-641 |#4|)) NIL) (($ $ |#4| (-768)) NIL) (($ $ (-641 |#4|) (-641 (-768))) NIL) (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1435 (((-641 |#3|) $) 86)) (-3475 ((|#5| $) NIL) (((-768) $ |#4|) NIL) (((-641 (-768)) $ (-641 |#4|)) NIL) (((-768) $ |#3|) 49)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-407 (-564))) NIL) (($ $) NIL)))
+(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3714 (|#1| |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2582 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#3| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#3| |#1|)) (-15 -2632 ((-1 |#1| (-768)) |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -4370 (|#1| |#1|)) (-15 -3258 (|#4| |#1|)) (-15 -2674 ((-112) |#1|)) (-15 -3879 ((-768) |#1| |#3|)) (-15 -3250 ((-641 (-768)) |#1| |#3|)) (-15 -3879 ((-768) |#1|)) (-15 -3250 ((-641 (-768)) |#1|)) (-15 -3475 ((-768) |#1| |#3|)) (-15 -1454 ((-768) |#1|)) (-15 -1454 ((-768) |#1| |#3|)) (-15 -1435 ((-641 |#3|) |#1|)) (-15 -2632 ((-1 |#1| (-768)) |#3|)) (-15 -3714 (|#1| |#3|)) (-15 -2224 ((-3 |#3| "failed") |#1|)) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1|)) (-15 -3475 ((-641 (-768)) |#1| (-641 |#4|))) (-15 -3475 ((-768) |#1| |#4|)) (-15 -3714 (|#1| |#4|)) (-15 -2224 ((-3 |#4| "failed") |#1|)) (-15 -2582 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#4| |#1|)) (-15 -2582 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#4| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3475 (|#5| |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2203 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -2203 (|#1| |#1| |#4| (-768))) (-15 -2203 (|#1| |#1| (-641 |#4|))) (-15 -2203 (|#1| |#1| |#4|)) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1046) (-847) (-266 |#3|) (-790)) (T -252))
NIL
-(-10 -8 (-15 -1765 (|#1| |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2407 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#3| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#3| |#1|)) (-15 -2753 ((-1 |#1| (-768)) |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2345 (|#1| |#1|)) (-15 -1370 (|#4| |#1|)) (-15 -2757 ((-112) |#1|)) (-15 -3703 ((-768) |#1| |#3|)) (-15 -2703 ((-641 (-768)) |#1| |#3|)) (-15 -3703 ((-768) |#1|)) (-15 -2703 ((-641 (-768)) |#1|)) (-15 -3344 ((-768) |#1| |#3|)) (-15 -2261 ((-768) |#1|)) (-15 -2261 ((-768) |#1| |#3|)) (-15 -3013 ((-641 |#3|) |#1|)) (-15 -2753 ((-1 |#1| (-768)) |#3|)) (-15 -1765 (|#1| |#3|)) (-15 -2013 ((-3 |#3| "failed") |#1|)) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1|)) (-15 -3344 ((-641 (-768)) |#1| (-641 |#4|))) (-15 -3344 ((-768) |#1| |#4|)) (-15 -1765 (|#1| |#4|)) (-15 -2013 ((-3 |#4| "failed") |#1|)) (-15 -2407 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#4| |#1|)) (-15 -2407 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#4| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3344 (|#5| |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -3226 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -3226 (|#1| |#1| |#4| (-768))) (-15 -3226 (|#1| |#1| (-641 |#4|))) (-15 -3226 (|#1| |#1| |#4|)) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-2703 (((-641 (-768)) $) 214) (((-641 (-768)) $ |#2|) 212)) (-3703 (((-768) $) 213) (((-768) $ |#2|) 211)) (-4170 (((-641 |#3|) $) 110)) (-3964 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1840 (($ $) 88 (|has| |#1| (-556)))) (-4035 (((-112) $) 90 (|has| |#1| (-556)))) (-2831 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-3936 (((-3 $ "failed") $ $) 19)) (-1871 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-1368 (($ $) 98 (|has| |#1| (-452)))) (-3981 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-2647 (($ $) 207)) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2064 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137) ((|#2| $) 222)) (-4267 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-4346 (($ $) 154)) (-2620 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-1926 (((-3 $ "failed") $) 33)) (-2190 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-4334 (((-641 $) $) 109)) (-3241 (((-112) $) 96 (|has| |#1| (-906)))) (-2877 (($ $ |#1| |#4| $) 172)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2261 (((-768) $ |#2|) 217) (((-768) $) 216)) (-2419 (((-112) $) 31)) (-3107 (((-768) $) 169)) (-4157 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-2791 (((-641 $) $) 126)) (-3101 (((-112) $) 152)) (-4145 (($ |#1| |#4|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ |#3|) 120)) (-3829 ((|#4| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-3571 (($ $ $) 79 (|has| |#1| (-847)))) (-1547 (($ $ $) 78 (|has| |#1| (-847)))) (-2964 (($ (-1 |#4| |#4|) $) 171)) (-2082 (($ (-1 |#1| |#1|) $) 151)) (-2753 (((-1 $ (-768)) |#2|) 219) (((-1 $ (-768)) $) 206 (|has| |#1| (-233)))) (-2022 (((-3 |#3| "failed") $) 123)) (-4311 (($ $) 149)) (-4323 ((|#1| $) 148)) (-1370 ((|#3| $) 209)) (-2488 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-4202 (((-1152) $) 9)) (-2757 (((-112) $) 210)) (-1964 (((-3 (-641 $) "failed") $) 114)) (-1295 (((-3 (-641 $) "failed") $) 115)) (-1691 (((-3 (-2 (|:| |var| |#3|) (|:| -3747 (-768))) "failed") $) 113)) (-2345 (($ $) 208)) (-3802 (((-1114) $) 10)) (-4285 (((-112) $) 166)) (-4298 ((|#1| $) 167)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2527 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4006 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1343 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2407 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) 204 (|has| |#1| (-233))) (($ $ |#2| |#1|) 203 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) 202 (|has| |#1| (-233)))) (-1938 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-3226 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39) (($ $) 238 (|has| |#1| (-233))) (($ $ (-768)) 236 (|has| |#1| (-233))) (($ $ (-1170)) 234 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 233 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 232 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 231 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3013 (((-641 |#2|) $) 218)) (-3344 ((|#4| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129) (((-768) $ |#2|) 215)) (-2127 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2712 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4266 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-407 (-564))) 72 (-4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) 168)) (-1757 ((|#1| $ |#4|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-2864 (((-3 $ "failed") $) 73 (-4002 (-4266 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) 28 T CONST)) (-2958 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-1582 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35) (($ $) 237 (|has| |#1| (-233))) (($ $ (-768)) 235 (|has| |#1| (-233))) (($ $ (-1170)) 230 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 229 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 228 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 227 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1738 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1793 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(-10 -8 (-15 -3714 (|#1| |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2582 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#3| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#3| |#1|)) (-15 -2632 ((-1 |#1| (-768)) |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -4370 (|#1| |#1|)) (-15 -3258 (|#4| |#1|)) (-15 -2674 ((-112) |#1|)) (-15 -3879 ((-768) |#1| |#3|)) (-15 -3250 ((-641 (-768)) |#1| |#3|)) (-15 -3879 ((-768) |#1|)) (-15 -3250 ((-641 (-768)) |#1|)) (-15 -3475 ((-768) |#1| |#3|)) (-15 -1454 ((-768) |#1|)) (-15 -1454 ((-768) |#1| |#3|)) (-15 -1435 ((-641 |#3|) |#1|)) (-15 -2632 ((-1 |#1| (-768)) |#3|)) (-15 -3714 (|#1| |#3|)) (-15 -2224 ((-3 |#3| "failed") |#1|)) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1|)) (-15 -3475 ((-641 (-768)) |#1| (-641 |#4|))) (-15 -3475 ((-768) |#1| |#4|)) (-15 -3714 (|#1| |#4|)) (-15 -2224 ((-3 |#4| "failed") |#1|)) (-15 -2582 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#4| |#1|)) (-15 -2582 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#4| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3475 (|#5| |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2203 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -2203 (|#1| |#1| |#4| (-768))) (-15 -2203 (|#1| |#1| (-641 |#4|))) (-15 -2203 (|#1| |#1| |#4|)) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3250 (((-641 (-768)) $) 214) (((-641 (-768)) $ |#2|) 212)) (-3879 (((-768) $) 213) (((-768) $ |#2|) 211)) (-4292 (((-641 |#3|) $) 110)) (-4103 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1582 (($ $) 88 (|has| |#1| (-556)))) (-3897 (((-112) $) 90 (|has| |#1| (-556)))) (-2181 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-4281 (((-3 $ "failed") $ $) 19)) (-1917 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-1328 (($ $) 98 (|has| |#1| (-452)))) (-1592 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-3923 (($ $) 207)) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2376 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137) ((|#2| $) 222)) (-4275 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-1374 (($ $) 154)) (-3613 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-4272 (((-3 $ "failed") $) 33)) (-2015 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-1359 (((-641 $) $) 109)) (-1926 (((-112) $) 96 (|has| |#1| (-906)))) (-1423 (($ $ |#1| |#4| $) 172)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1454 (((-768) $ |#2|) 217) (((-768) $) 216)) (-2340 (((-112) $) 31)) (-2998 (((-768) $) 169)) (-4279 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-1767 (((-641 $) $) 126)) (-2961 (((-112) $) 152)) (-4267 (($ |#1| |#4|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ |#3|) 120)) (-2700 ((|#4| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-3428 (($ $ $) 79 (|has| |#1| (-847)))) (-3413 (($ $ $) 78 (|has| |#1| (-847)))) (-4062 (($ (-1 |#4| |#4|) $) 171)) (-2313 (($ (-1 |#1| |#1|) $) 151)) (-2632 (((-1 $ (-768)) |#2|) 219) (((-1 $ (-768)) $) 206 (|has| |#1| (-233)))) (-2848 (((-3 |#3| "failed") $) 123)) (-1330 (($ $) 149)) (-1345 ((|#1| $) 148)) (-3258 ((|#3| $) 209)) (-2688 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1868 (((-1152) $) 9)) (-2674 (((-112) $) 210)) (-3370 (((-3 (-641 $) "failed") $) 114)) (-3591 (((-3 (-641 $) "failed") $) 115)) (-3741 (((-3 (-2 (|:| |var| |#3|) (|:| -3078 (-768))) "failed") $) 113)) (-4370 (($ $) 208)) (-3844 (((-1114) $) 10)) (-1304 (((-112) $) 166)) (-1316 ((|#1| $) 167)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2727 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4139 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1347 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2582 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) 204 (|has| |#1| (-233))) (($ $ |#2| |#1|) 203 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) 202 (|has| |#1| (-233)))) (-4378 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-2203 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39) (($ $) 238 (|has| |#1| (-233))) (($ $ (-768)) 236 (|has| |#1| (-233))) (($ $ (-1170)) 234 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 233 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 232 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 231 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1435 (((-641 |#2|) $) 218)) (-3475 ((|#4| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129) (((-768) $ |#2|) 215)) (-2374 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3324 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4264 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-407 (-564))) 72 (-4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) 168)) (-3181 ((|#1| $ |#4|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-4363 (((-3 $ "failed") $) 73 (-4012 (-4264 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) 28 T CONST)) (-3993 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3979 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35) (($ $) 237 (|has| |#1| (-233))) (($ $ (-768)) 235 (|has| |#1| (-233))) (($ $ (-1170)) 230 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 229 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 228 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 227 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1781 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1841 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-253 |#1| |#2| |#3| |#4|) (-140) (-1046) (-847) (-266 |t#2|) (-790)) (T -253))
-((-2753 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *4 *3 *5 *6)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 *4)))) (-2261 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) (-3344 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2703 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) (-3703 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-112)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-790)) (-4 *2 (-266 *4)))) (-2345 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-266 *3)) (-4 *5 (-790)))) (-2647 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-266 *3)) (-4 *5 (-790)))) (-2753 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *3 *4 *5 *6)))))
-(-13 (-946 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1035 |t#2|) (-10 -8 (-15 -2753 ((-1 $ (-768)) |t#2|)) (-15 -3013 ((-641 |t#2|) $)) (-15 -2261 ((-768) $ |t#2|)) (-15 -2261 ((-768) $)) (-15 -3344 ((-768) $ |t#2|)) (-15 -2703 ((-641 (-768)) $)) (-15 -3703 ((-768) $)) (-15 -2703 ((-641 (-768)) $ |t#2|)) (-15 -3703 ((-768) $ |t#2|)) (-15 -2757 ((-112) $)) (-15 -1370 (|t#3| $)) (-15 -2345 ($ $)) (-15 -2647 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -2753 ((-1 $ (-768)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4002 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-946 |#1| |#4| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#2|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2999 ((|#1| $) 54)) (-1417 ((|#1| $) 44)) (-3263 (((-112) $ (-768)) 8)) (-3760 (($) 7 T CONST)) (-2798 (($ $) 60)) (-3852 (($ $) 48)) (-2998 ((|#1| |#1| $) 46)) (-3507 ((|#1| $) 45)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-2564 (((-768) $) 61)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1833 ((|#1| $) 39)) (-3347 ((|#1| |#1| $) 52)) (-2629 ((|#1| |#1| $) 51)) (-2098 (($ |#1| $) 40)) (-1813 (((-768) $) 55)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3466 ((|#1| $) 62)) (-1804 ((|#1| $) 50)) (-4109 ((|#1| $) 49)) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-1623 ((|#1| |#1| $) 58)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-2223 ((|#1| $) 59)) (-3274 (($) 57) (($ (-641 |#1|)) 56)) (-2057 (((-768) $) 43)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3921 ((|#1| $) 53)) (-2652 (($ (-641 |#1|)) 42)) (-3353 ((|#1| $) 63)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-2632 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *4 *3 *5 *6)))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 *4)))) (-1454 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) (-3475 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) (-3250 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) (-3879 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-112)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-790)) (-4 *2 (-266 *4)))) (-4370 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-266 *3)) (-4 *5 (-790)))) (-3923 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-266 *3)) (-4 *5 (-790)))) (-2632 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *3 *4 *5 *6)))))
+(-13 (-946 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1035 |t#2|) (-10 -8 (-15 -2632 ((-1 $ (-768)) |t#2|)) (-15 -1435 ((-641 |t#2|) $)) (-15 -1454 ((-768) $ |t#2|)) (-15 -1454 ((-768) $)) (-15 -3475 ((-768) $ |t#2|)) (-15 -3250 ((-641 (-768)) $)) (-15 -3879 ((-768) $)) (-15 -3250 ((-641 (-768)) $ |t#2|)) (-15 -3879 ((-768) $ |t#2|)) (-15 -2674 ((-112) $)) (-15 -3258 (|t#3| $)) (-15 -4370 ($ $)) (-15 -3923 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -2632 ((-1 $ (-768)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4012 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-946 |#1| |#4| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#2|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-4388 ((|#1| $) 54)) (-2667 ((|#1| $) 44)) (-2141 (((-112) $ (-768)) 8)) (-3180 (($) 7 T CONST)) (-1851 (($ $) 60)) (-1651 (($ $) 48)) (-4377 ((|#1| |#1| $) 46)) (-2691 ((|#1| $) 45)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-3451 (((-768) $) 61)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2775 ((|#1| $) 39)) (-3508 ((|#1| |#1| $) 52)) (-3716 ((|#1| |#1| $) 51)) (-2373 (($ |#1| $) 40)) (-3694 (((-768) $) 55)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2287 ((|#1| $) 62)) (-2476 ((|#1| $) 50)) (-3322 ((|#1| $) 49)) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-4360 ((|#1| |#1| $) 58)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4151 ((|#1| $) 59)) (-4067 (($) 57) (($ (-641 |#1|)) 56)) (-3735 (((-768) $) 43)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4124 ((|#1| $) 53)) (-3976 (($ (-641 |#1|)) 42)) (-3565 ((|#1| $) 63)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-254 |#1|) (-140) (-1209)) (T -254))
-((-3274 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3274 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3347 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2629 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3852 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(-13 (-1115 |t#1|) (-992 |t#1|) (-10 -8 (-15 -3274 ($)) (-15 -3274 ($ (-641 |t#1|))) (-15 -1813 ((-768) $)) (-15 -2999 (|t#1| $)) (-15 -3921 (|t#1| $)) (-15 -3347 (|t#1| |t#1| $)) (-15 -2629 (|t#1| |t#1| $)) (-15 -1804 (|t#1| $)) (-15 -4109 (|t#1| $)) (-15 -3852 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-992 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1115 |#1|) . T) ((-1209) . T))
-((-3816 (((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 152)) (-1638 (((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 172) (((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 170) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 175) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 171) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 163) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 162) (((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379))) 144) (((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 142) (((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379))) 143) (((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 140)) (-1594 (((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 174) (((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 173) (((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 177) (((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 176) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 165) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 164) (((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379))) 150) (((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 149) (((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379))) 148) (((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 147) (((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379))) 112) (((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 111) (((-1260) (-1 (-225) (-225)) (-1088 (-379))) 106) (((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263))) 104)))
-(((-255) (-10 -7 (-15 -1594 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -1594 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1594 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1594 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1594 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1594 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1594 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -3816 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255))
-((-3816 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))))
-(-10 -7 (-15 -1594 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -1594 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1594 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1594 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1594 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1594 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1594 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -1638 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -3816 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-1594 (((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))) 101)))
-(((-256 |#1| |#2|) (-10 -7 (-15 -1594 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))))) (-13 (-556) (-847) (-1035 (-564))) (-430 |#1|)) (T -256))
-((-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-1260)) (-5 *1 (-256 *6 *7)))))
-(-10 -7 (-15 -1594 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263)))))
-((-2462 (((-564) (-564)) 73)) (-1708 (((-564) (-564)) 74)) (-3887 (((-225) (-225)) 75)) (-2281 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225))) 72)) (-1952 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112)) 70)))
-(((-257) (-10 -7 (-15 -1952 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -2281 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2462 ((-564) (-564))) (-15 -1708 ((-564) (-564))) (-15 -3887 ((-225) (-225))))) (T -257))
-((-3887 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-2281 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *2 (-1261)) (-5 *1 (-257)))) (-1952 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257)))))
-(-10 -7 (-15 -1952 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -2281 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2462 ((-564) (-564))) (-15 -1708 ((-564) (-564))) (-15 -3887 ((-225) (-225))))
-((-1765 (((-1086 (-379)) (-1086 (-316 |#1|))) 16)))
-(((-258 |#1|) (-10 -7 (-15 -1765 ((-1086 (-379)) (-1086 (-316 |#1|))))) (-13 (-847) (-556) (-612 (-379)))) (T -258))
-((-1765 (*1 *2 *3) (-12 (-5 *3 (-1086 (-316 *4))) (-4 *4 (-13 (-847) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379))) (-5 *1 (-258 *4)))))
-(-10 -7 (-15 -1765 ((-1086 (-379)) (-1086 (-316 |#1|)))))
-((-1638 (((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))) 75) (((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 74) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379))) 65) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 64) (((-1127 (-225)) (-876 |#1|) (-1086 (-379))) 56) (((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263))) 55)) (-1594 (((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379))) 78) (((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 77) (((-1261) |#1| (-1086 (-379)) (-1086 (-379))) 68) (((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 67) (((-1261) (-876 |#1|) (-1086 (-379))) 60) (((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263))) 59) (((-1260) (-874 |#1|) (-1086 (-379))) 47) (((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263))) 46) (((-1260) |#1| (-1086 (-379))) 38) (((-1260) |#1| (-1086 (-379)) (-641 (-263))) 36)))
-(((-259 |#1|) (-10 -7 (-15 -1594 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1260) |#1| (-1086 (-379)))) (-15 -1594 ((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1260) (-874 |#1|) (-1086 (-379)))) (-15 -1594 ((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-876 |#1|) (-1086 (-379)))) (-15 -1638 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)))) (-15 -1594 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1638 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1594 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -1638 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))))) (-13 (-612 (-536)) (-1094))) (T -259))
-((-1638 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-1638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-1638 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1638 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1594 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1594 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-1638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *5)))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *6)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1594 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))))
-(-10 -7 (-15 -1594 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1260) |#1| (-1086 (-379)))) (-15 -1594 ((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1260) (-874 |#1|) (-1086 (-379)))) (-15 -1594 ((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-876 |#1|) (-1086 (-379)))) (-15 -1638 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)))) (-15 -1594 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1638 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1594 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1594 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -1638 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1638 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))))
-((-1594 (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263))) 23) (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225))) 24) (((-1260) (-641 (-940 (-225))) (-641 (-263))) 16) (((-1260) (-641 (-940 (-225)))) 17) (((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263))) 20) (((-1260) (-641 (-225)) (-641 (-225))) 21)))
-(((-260) (-10 -7 (-15 -1594 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -1594 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -1594 ((-1260) (-641 (-940 (-225))))) (-15 -1594 ((-1260) (-641 (-940 (-225))) (-641 (-263)))) (-15 -1594 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -1594 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263)))))) (T -260))
-((-1594 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-1594 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1594 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1594 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260)))))
-(-10 -7 (-15 -1594 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -1594 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -1594 ((-1260) (-641 (-940 (-225))))) (-15 -1594 ((-1260) (-641 (-940 (-225))) (-641 (-263)))) (-15 -1594 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -1594 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263)))))
-((-3239 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-3650 (((-918) (-641 (-263)) (-918)) 52)) (-3373 (((-918) (-641 (-263)) (-918)) 51)) (-2310 (((-641 (-379)) (-641 (-263)) (-641 (-379))) 68)) (-1875 (((-379) (-641 (-263)) (-379)) 57)) (-3172 (((-918) (-641 (-263)) (-918)) 53)) (-2322 (((-112) (-641 (-263)) (-112)) 27)) (-3708 (((-1152) (-641 (-263)) (-1152)) 19)) (-1915 (((-1152) (-641 (-263)) (-1152)) 26)) (-4230 (((-1127 (-225)) (-641 (-263))) 46)) (-3791 (((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379)))) 40)) (-2264 (((-871) (-641 (-263)) (-871)) 32)) (-1428 (((-871) (-641 (-263)) (-871)) 33)) (-2023 (((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225)))) 63)) (-2297 (((-112) (-641 (-263)) (-112)) 14)) (-3323 (((-112) (-641 (-263)) (-112)) 13)))
-(((-261) (-10 -7 (-15 -3323 ((-112) (-641 (-263)) (-112))) (-15 -2297 ((-112) (-641 (-263)) (-112))) (-15 -3239 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3708 ((-1152) (-641 (-263)) (-1152))) (-15 -1915 ((-1152) (-641 (-263)) (-1152))) (-15 -2322 ((-112) (-641 (-263)) (-112))) (-15 -2264 ((-871) (-641 (-263)) (-871))) (-15 -1428 ((-871) (-641 (-263)) (-871))) (-15 -3791 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3373 ((-918) (-641 (-263)) (-918))) (-15 -3650 ((-918) (-641 (-263)) (-918))) (-15 -4230 ((-1127 (-225)) (-641 (-263)))) (-15 -3172 ((-918) (-641 (-263)) (-918))) (-15 -1875 ((-379) (-641 (-263)) (-379))) (-15 -2023 ((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225))))) (-15 -2310 ((-641 (-379)) (-641 (-263)) (-641 (-379)))))) (T -261))
-((-2310 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2023 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1875 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3172 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261)))) (-3650 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3373 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3791 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1428 (*1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2264 (*1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2322 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1915 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3708 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3239 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2297 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3323 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
-(-10 -7 (-15 -3323 ((-112) (-641 (-263)) (-112))) (-15 -2297 ((-112) (-641 (-263)) (-112))) (-15 -3239 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3708 ((-1152) (-641 (-263)) (-1152))) (-15 -1915 ((-1152) (-641 (-263)) (-1152))) (-15 -2322 ((-112) (-641 (-263)) (-112))) (-15 -2264 ((-871) (-641 (-263)) (-871))) (-15 -1428 ((-871) (-641 (-263)) (-871))) (-15 -3791 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3373 ((-918) (-641 (-263)) (-918))) (-15 -3650 ((-918) (-641 (-263)) (-918))) (-15 -4230 ((-1127 (-225)) (-641 (-263)))) (-15 -3172 ((-918) (-641 (-263)) (-918))) (-15 -1875 ((-379) (-641 (-263)) (-379))) (-15 -2023 ((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225))))) (-15 -2310 ((-641 (-379)) (-641 (-263)) (-641 (-379)))))
-((-3855 (((-3 |#1| "failed") (-641 (-263)) (-1170)) 17)))
-(((-262 |#1|) (-10 -7 (-15 -3855 ((-3 |#1| "failed") (-641 (-263)) (-1170)))) (-1209)) (T -262))
-((-3855 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *1 (-262 *2)) (-4 *2 (-1209)))))
-(-10 -7 (-15 -3855 ((-3 |#1| "failed") (-641 (-263)) (-1170))))
-((-1754 (((-112) $ $) NIL)) (-3239 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-3650 (($ (-918)) 80)) (-3373 (($ (-918)) 79)) (-1950 (($ (-641 (-379))) 86)) (-1875 (($ (-379)) 66)) (-3172 (($ (-918)) 81)) (-2322 (($ (-112)) 33)) (-3708 (($ (-1152)) 28)) (-1915 (($ (-1152)) 29)) (-4230 (($ (-1127 (-225))) 75)) (-3791 (($ (-641 (-1088 (-379)))) 71)) (-1361 (($ (-641 (-1088 (-379)))) 67) (($ (-641 (-1088 (-407 (-564))))) 70)) (-2219 (($ (-379)) 38) (($ (-871)) 42)) (-2149 (((-112) (-641 $) (-1170)) 99)) (-3855 (((-3 (-52) "failed") (-641 $) (-1170)) 101)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2734 (($ (-379)) 43) (($ (-871)) 44)) (-3072 (($ (-1 (-940 (-225)) (-940 (-225)))) 65)) (-2023 (($ (-1 (-940 (-225)) (-940 (-225)))) 82)) (-2289 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-1765 (((-859) $) 92)) (-1817 (($ (-112)) 34) (($ (-641 (-1088 (-379)))) 60)) (-3323 (($ (-112)) 35)) (-1686 (((-112) $ $) 96)))
-(((-263) (-13 (-1094) (-10 -8 (-15 -3323 ($ (-112))) (-15 -1817 ($ (-112))) (-15 -3239 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3708 ($ (-1152))) (-15 -1915 ($ (-1152))) (-15 -2322 ($ (-112))) (-15 -1817 ($ (-641 (-1088 (-379))))) (-15 -3072 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -2219 ($ (-379))) (-15 -2219 ($ (-871))) (-15 -2734 ($ (-379))) (-15 -2734 ($ (-871))) (-15 -2289 ($ (-1 (-225) (-225)))) (-15 -2289 ($ (-1 (-225) (-225) (-225)))) (-15 -2289 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1875 ($ (-379))) (-15 -1361 ($ (-641 (-1088 (-379))))) (-15 -1361 ($ (-641 (-1088 (-407 (-564)))))) (-15 -3791 ($ (-641 (-1088 (-379))))) (-15 -4230 ($ (-1127 (-225)))) (-15 -3373 ($ (-918))) (-15 -3650 ($ (-918))) (-15 -3172 ($ (-918))) (-15 -2023 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -1950 ($ (-641 (-379)))) (-15 -3855 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -2149 ((-112) (-641 $) (-1170)))))) (T -263))
-((-3323 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1817 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-3708 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-1915 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1817 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) (-2734 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2734 (*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-1875 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-1361 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-1361 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-4230 (*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263)))) (-3373 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-3650 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-2023 (*1 *1 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) (-1950 (*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263)))) (-3855 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52)) (-5 *1 (-263)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112)) (-5 *1 (-263)))))
-(-13 (-1094) (-10 -8 (-15 -3323 ($ (-112))) (-15 -1817 ($ (-112))) (-15 -3239 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3708 ($ (-1152))) (-15 -1915 ($ (-1152))) (-15 -2322 ($ (-112))) (-15 -1817 ($ (-641 (-1088 (-379))))) (-15 -3072 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -2219 ($ (-379))) (-15 -2219 ($ (-871))) (-15 -2734 ($ (-379))) (-15 -2734 ($ (-871))) (-15 -2289 ($ (-1 (-225) (-225)))) (-15 -2289 ($ (-1 (-225) (-225) (-225)))) (-15 -2289 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1875 ($ (-379))) (-15 -1361 ($ (-641 (-1088 (-379))))) (-15 -1361 ($ (-641 (-1088 (-407 (-564)))))) (-15 -3791 ($ (-641 (-1088 (-379))))) (-15 -4230 ($ (-1127 (-225)))) (-15 -3373 ($ (-918))) (-15 -3650 ($ (-918))) (-15 -3172 ($ (-918))) (-15 -2023 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -1950 ($ (-641 (-379)))) (-15 -3855 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -2149 ((-112) (-641 $) (-1170)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-2703 (((-641 (-768)) $) NIL) (((-641 (-768)) $ |#2|) NIL)) (-3703 (((-768) $) NIL) (((-768) $ |#2|) NIL)) (-4170 (((-641 |#3|) $) NIL)) (-3964 (((-1166 $) $ |#3|) NIL) (((-1166 |#1|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 |#3|)) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1368 (($ $) NIL (|has| |#1| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2647 (($ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1119 |#1| |#2|) "failed") $) 23)) (-2064 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1119 |#1| |#2|) $) NIL)) (-4267 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-4346 (($ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#1| (-906)))) (-2877 (($ $ |#1| (-531 |#3|) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))))) (-2261 (((-768) $ |#2|) NIL) (((-768) $) 10)) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-4157 (($ (-1166 |#1|) |#3|) NIL) (($ (-1166 $) |#3|) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ |#3|) NIL)) (-3829 (((-531 |#3|) $) NIL) (((-768) $ |#3|) NIL) (((-641 (-768)) $ (-641 |#3|)) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2964 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2753 (((-1 $ (-768)) |#2|) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-2022 (((-3 |#3| "failed") $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-1370 ((|#3| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4202 (((-1152) $) NIL)) (-2757 (((-112) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| |#3|) (|:| -3747 (-768))) "failed") $) NIL)) (-2345 (($ $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#1| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-641 |#3|) (-641 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-1938 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-3226 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3013 (((-641 |#2|) $) NIL)) (-3344 (((-531 |#3|) $) NIL) (((-768) $ |#3|) NIL) (((-641 (-768)) $ (-641 |#3|)) NIL) (((-768) $ |#2|) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))) (-2712 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1119 |#1| |#2|)) 32) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-4067 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-4067 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-4388 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3508 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3716 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2476 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-1651 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
+(-13 (-1115 |t#1|) (-992 |t#1|) (-10 -8 (-15 -4067 ($)) (-15 -4067 ($ (-641 |t#1|))) (-15 -3694 ((-768) $)) (-15 -4388 (|t#1| $)) (-15 -4124 (|t#1| $)) (-15 -3508 (|t#1| |t#1| $)) (-15 -3716 (|t#1| |t#1| $)) (-15 -2476 (|t#1| $)) (-15 -3322 (|t#1| $)) (-15 -1651 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-992 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1115 |#1|) . T) ((-1209) . T))
+((-2563 (((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 152)) (-1792 (((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 172) (((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 170) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 175) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 171) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 163) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 162) (((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379))) 144) (((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 142) (((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379))) 143) (((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 140)) (-1747 (((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 174) (((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 173) (((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 177) (((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 176) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 165) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 164) (((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379))) 150) (((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 149) (((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379))) 148) (((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 147) (((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379))) 112) (((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 111) (((-1260) (-1 (-225) (-225)) (-1088 (-379))) 106) (((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263))) 104)))
+(((-255) (-10 -7 (-15 -1747 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -1747 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1747 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1747 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1747 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1747 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1747 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -2563 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255))
+((-2563 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1792 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))))
+(-10 -7 (-15 -1747 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -1747 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1747 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1747 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1747 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1747 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1747 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -1792 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -2563 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-1747 (((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))) 101)))
+(((-256 |#1| |#2|) (-10 -7 (-15 -1747 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))))) (-13 (-556) (-847) (-1035 (-564))) (-430 |#1|)) (T -256))
+((-1747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-1260)) (-5 *1 (-256 *6 *7)))))
+(-10 -7 (-15 -1747 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263)))))
+((-2803 (((-564) (-564)) 73)) (-2802 (((-564) (-564)) 74)) (-1994 (((-225) (-225)) 75)) (-3421 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225))) 72)) (-1446 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112)) 70)))
+(((-257) (-10 -7 (-15 -1446 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -3421 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2803 ((-564) (-564))) (-15 -2802 ((-564) (-564))) (-15 -1994 ((-225) (-225))))) (T -257))
+((-1994 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-3421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *2 (-1261)) (-5 *1 (-257)))) (-1446 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257)))))
+(-10 -7 (-15 -1446 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -3421 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2803 ((-564) (-564))) (-15 -2802 ((-564) (-564))) (-15 -1994 ((-225) (-225))))
+((-3714 (((-1086 (-379)) (-1086 (-316 |#1|))) 16)))
+(((-258 |#1|) (-10 -7 (-15 -3714 ((-1086 (-379)) (-1086 (-316 |#1|))))) (-13 (-847) (-556) (-612 (-379)))) (T -258))
+((-3714 (*1 *2 *3) (-12 (-5 *3 (-1086 (-316 *4))) (-4 *4 (-13 (-847) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379))) (-5 *1 (-258 *4)))))
+(-10 -7 (-15 -3714 ((-1086 (-379)) (-1086 (-316 |#1|)))))
+((-1792 (((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))) 75) (((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 74) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379))) 65) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 64) (((-1127 (-225)) (-876 |#1|) (-1086 (-379))) 56) (((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263))) 55)) (-1747 (((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379))) 78) (((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 77) (((-1261) |#1| (-1086 (-379)) (-1086 (-379))) 68) (((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 67) (((-1261) (-876 |#1|) (-1086 (-379))) 60) (((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263))) 59) (((-1260) (-874 |#1|) (-1086 (-379))) 47) (((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263))) 46) (((-1260) |#1| (-1086 (-379))) 38) (((-1260) |#1| (-1086 (-379)) (-641 (-263))) 36)))
+(((-259 |#1|) (-10 -7 (-15 -1747 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1260) |#1| (-1086 (-379)))) (-15 -1747 ((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1260) (-874 |#1|) (-1086 (-379)))) (-15 -1747 ((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-876 |#1|) (-1086 (-379)))) (-15 -1792 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)))) (-15 -1747 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1792 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1747 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -1792 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))))) (-13 (-612 (-536)) (-1094))) (T -259))
+((-1792 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-1792 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-1747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-1747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-1792 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1792 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1747 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-1792 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *5)))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *6)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1747 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))))
+(-10 -7 (-15 -1747 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1260) |#1| (-1086 (-379)))) (-15 -1747 ((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1260) (-874 |#1|) (-1086 (-379)))) (-15 -1747 ((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-876 |#1|) (-1086 (-379)))) (-15 -1792 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)))) (-15 -1747 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1792 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1747 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1747 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -1792 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1792 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))))
+((-1747 (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263))) 23) (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225))) 24) (((-1260) (-641 (-940 (-225))) (-641 (-263))) 16) (((-1260) (-641 (-940 (-225)))) 17) (((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263))) 20) (((-1260) (-641 (-225)) (-641 (-225))) 21)))
+(((-260) (-10 -7 (-15 -1747 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -1747 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -1747 ((-1260) (-641 (-940 (-225))))) (-15 -1747 ((-1260) (-641 (-940 (-225))) (-641 (-263)))) (-15 -1747 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -1747 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263)))))) (T -260))
+((-1747 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-1747 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1747 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1747 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260)))))
+(-10 -7 (-15 -1747 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -1747 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -1747 ((-1260) (-641 (-940 (-225))))) (-15 -1747 ((-1260) (-641 (-940 (-225))) (-641 (-263)))) (-15 -1747 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -1747 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263)))))
+((-1904 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-1559 (((-918) (-641 (-263)) (-918)) 52)) (-3788 (((-918) (-641 (-263)) (-918)) 51)) (-1294 (((-641 (-379)) (-641 (-263)) (-641 (-379))) 68)) (-1952 (((-379) (-641 (-263)) (-379)) 57)) (-2495 (((-918) (-641 (-263)) (-918)) 53)) (-3839 (((-112) (-641 (-263)) (-112)) 27)) (-2755 (((-1152) (-641 (-263)) (-1152)) 19)) (-4168 (((-1152) (-641 (-263)) (-1152)) 26)) (-2117 (((-1127 (-225)) (-641 (-263))) 46)) (-2314 (((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379)))) 40)) (-1474 (((-871) (-641 (-263)) (-871)) 32)) (-1739 (((-871) (-641 (-263)) (-871)) 33)) (-2858 (((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225)))) 63)) (-3589 (((-112) (-641 (-263)) (-112)) 14)) (-1465 (((-112) (-641 (-263)) (-112)) 13)))
+(((-261) (-10 -7 (-15 -1465 ((-112) (-641 (-263)) (-112))) (-15 -3589 ((-112) (-641 (-263)) (-112))) (-15 -1904 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2755 ((-1152) (-641 (-263)) (-1152))) (-15 -4168 ((-1152) (-641 (-263)) (-1152))) (-15 -3839 ((-112) (-641 (-263)) (-112))) (-15 -1474 ((-871) (-641 (-263)) (-871))) (-15 -1739 ((-871) (-641 (-263)) (-871))) (-15 -2314 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3788 ((-918) (-641 (-263)) (-918))) (-15 -1559 ((-918) (-641 (-263)) (-918))) (-15 -2117 ((-1127 (-225)) (-641 (-263)))) (-15 -2495 ((-918) (-641 (-263)) (-918))) (-15 -1952 ((-379) (-641 (-263)) (-379))) (-15 -2858 ((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225))))) (-15 -1294 ((-641 (-379)) (-641 (-263)) (-641 (-379)))))) (T -261))
+((-1294 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2858 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1952 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2495 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261)))) (-1559 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3788 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2314 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1739 (*1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1474 (*1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3839 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2755 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1904 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3589 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1465 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
+(-10 -7 (-15 -1465 ((-112) (-641 (-263)) (-112))) (-15 -3589 ((-112) (-641 (-263)) (-112))) (-15 -1904 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2755 ((-1152) (-641 (-263)) (-1152))) (-15 -4168 ((-1152) (-641 (-263)) (-1152))) (-15 -3839 ((-112) (-641 (-263)) (-112))) (-15 -1474 ((-871) (-641 (-263)) (-871))) (-15 -1739 ((-871) (-641 (-263)) (-871))) (-15 -2314 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3788 ((-918) (-641 (-263)) (-918))) (-15 -1559 ((-918) (-641 (-263)) (-918))) (-15 -2117 ((-1127 (-225)) (-641 (-263)))) (-15 -2495 ((-918) (-641 (-263)) (-918))) (-15 -1952 ((-379) (-641 (-263)) (-379))) (-15 -2858 ((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225))))) (-15 -1294 ((-641 (-379)) (-641 (-263)) (-641 (-379)))))
+((-2856 (((-3 |#1| "failed") (-641 (-263)) (-1170)) 17)))
+(((-262 |#1|) (-10 -7 (-15 -2856 ((-3 |#1| "failed") (-641 (-263)) (-1170)))) (-1209)) (T -262))
+((-2856 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *1 (-262 *2)) (-4 *2 (-1209)))))
+(-10 -7 (-15 -2856 ((-3 |#1| "failed") (-641 (-263)) (-1170))))
+((-3702 (((-112) $ $) NIL)) (-1904 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-1559 (($ (-918)) 80)) (-3788 (($ (-918)) 79)) (-1425 (($ (-641 (-379))) 86)) (-1952 (($ (-379)) 66)) (-2495 (($ (-918)) 81)) (-3839 (($ (-112)) 33)) (-2755 (($ (-1152)) 28)) (-4168 (($ (-1152)) 29)) (-2117 (($ (-1127 (-225))) 75)) (-2314 (($ (-641 (-1088 (-379)))) 71)) (-4167 (($ (-641 (-1088 (-379)))) 67) (($ (-641 (-1088 (-407 (-564))))) 70)) (-4126 (($ (-379)) 38) (($ (-871)) 42)) (-1608 (((-112) (-641 $) (-1170)) 99)) (-2856 (((-3 (-52) "failed") (-641 $) (-1170)) 101)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2416 (($ (-379)) 43) (($ (-871)) 44)) (-3867 (($ (-1 (-940 (-225)) (-940 (-225)))) 65)) (-2858 (($ (-1 (-940 (-225)) (-940 (-225)))) 82)) (-3509 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-3714 (((-859) $) 92)) (-2612 (($ (-112)) 34) (($ (-641 (-1088 (-379)))) 60)) (-1465 (($ (-112)) 35)) (-1720 (((-112) $ $) 96)))
+(((-263) (-13 (-1094) (-10 -8 (-15 -1465 ($ (-112))) (-15 -2612 ($ (-112))) (-15 -1904 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2755 ($ (-1152))) (-15 -4168 ($ (-1152))) (-15 -3839 ($ (-112))) (-15 -2612 ($ (-641 (-1088 (-379))))) (-15 -3867 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -4126 ($ (-379))) (-15 -4126 ($ (-871))) (-15 -2416 ($ (-379))) (-15 -2416 ($ (-871))) (-15 -3509 ($ (-1 (-225) (-225)))) (-15 -3509 ($ (-1 (-225) (-225) (-225)))) (-15 -3509 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1952 ($ (-379))) (-15 -4167 ($ (-641 (-1088 (-379))))) (-15 -4167 ($ (-641 (-1088 (-407 (-564)))))) (-15 -2314 ($ (-641 (-1088 (-379))))) (-15 -2117 ($ (-1127 (-225)))) (-15 -3788 ($ (-918))) (-15 -1559 ($ (-918))) (-15 -2495 ($ (-918))) (-15 -2858 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -1425 ($ (-641 (-379)))) (-15 -2856 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -1608 ((-112) (-641 $) (-1170)))))) (T -263))
+((-1465 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-2755 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-4168 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) (-2416 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2416 (*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-1952 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-4167 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-4167 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263)))) (-2314 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263)))) (-3788 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-2495 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263)))) (-2856 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52)) (-5 *1 (-263)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112)) (-5 *1 (-263)))))
+(-13 (-1094) (-10 -8 (-15 -1465 ($ (-112))) (-15 -2612 ($ (-112))) (-15 -1904 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2755 ($ (-1152))) (-15 -4168 ($ (-1152))) (-15 -3839 ($ (-112))) (-15 -2612 ($ (-641 (-1088 (-379))))) (-15 -3867 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -4126 ($ (-379))) (-15 -4126 ($ (-871))) (-15 -2416 ($ (-379))) (-15 -2416 ($ (-871))) (-15 -3509 ($ (-1 (-225) (-225)))) (-15 -3509 ($ (-1 (-225) (-225) (-225)))) (-15 -3509 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1952 ($ (-379))) (-15 -4167 ($ (-641 (-1088 (-379))))) (-15 -4167 ($ (-641 (-1088 (-407 (-564)))))) (-15 -2314 ($ (-641 (-1088 (-379))))) (-15 -2117 ($ (-1127 (-225)))) (-15 -3788 ($ (-918))) (-15 -1559 ($ (-918))) (-15 -2495 ($ (-918))) (-15 -2858 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -1425 ($ (-641 (-379)))) (-15 -2856 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -1608 ((-112) (-641 $) (-1170)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3250 (((-641 (-768)) $) NIL) (((-641 (-768)) $ |#2|) NIL)) (-3879 (((-768) $) NIL) (((-768) $ |#2|) NIL)) (-4292 (((-641 |#3|) $) NIL)) (-4103 (((-1166 $) $ |#3|) NIL) (((-1166 |#1|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 |#3|)) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1328 (($ $) NIL (|has| |#1| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3923 (($ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1119 |#1| |#2|) "failed") $) 23)) (-2376 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1119 |#1| |#2|) $) NIL)) (-4275 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-1374 (($ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#1| (-906)))) (-1423 (($ $ |#1| (-531 |#3|) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))))) (-1454 (((-768) $ |#2|) NIL) (((-768) $) 10)) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-4279 (($ (-1166 |#1|) |#3|) NIL) (($ (-1166 $) |#3|) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ |#3|) NIL)) (-2700 (((-531 |#3|) $) NIL) (((-768) $ |#3|) NIL) (((-641 (-768)) $ (-641 |#3|)) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-4062 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2632 (((-1 $ (-768)) |#2|) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-2848 (((-3 |#3| "failed") $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-3258 ((|#3| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1868 (((-1152) $) NIL)) (-2674 (((-112) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| |#3|) (|:| -3078 (-768))) "failed") $) NIL)) (-4370 (($ $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#1| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-641 |#3|) (-641 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-4378 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-2203 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1435 (((-641 |#2|) $) NIL)) (-3475 (((-531 |#3|) $) NIL) (((-768) $ |#3|) NIL) (((-641 (-768)) $ (-641 |#3|)) NIL) (((-768) $ |#2|) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))) (-3324 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1119 |#1| |#2|)) 32) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1035 (-1119 |#1| |#2|))) (-1046) (-847) (-266 |#2|)) (T -264))
NIL
(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1035 (-1119 |#1| |#2|)))
-((-3703 (((-768) $) 37)) (-2013 (((-3 |#2| "failed") $) 22)) (-2064 ((|#2| $) 33)) (-3226 (($ $) 14) (($ $ (-768)) 18)) (-1765 (((-859) $) 32) (($ |#2|) 11)) (-1686 (((-112) $ $) 26)) (-1705 (((-112) $ $) 36)))
-(((-265 |#1| |#2|) (-10 -8 (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1|)) (-15 -3703 ((-768) |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|))) (-266 |#2|) (-847)) (T -265))
+((-3879 (((-768) $) 37)) (-2224 (((-3 |#2| "failed") $) 22)) (-2376 ((|#2| $) 33)) (-2203 (($ $) 14) (($ $ (-768)) 18)) (-3714 (((-859) $) 32) (($ |#2|) 11)) (-1720 (((-112) $ $) 26)) (-1746 (((-112) $ $) 36)))
+(((-265 |#1| |#2|) (-10 -8 (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1|)) (-15 -3879 ((-768) |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|))) (-266 |#2|) (-847)) (T -265))
NIL
-(-10 -8 (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1|)) (-15 -3703 ((-768) |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3703 (((-768) $) 22)) (-3657 ((|#1| $) 23)) (-2013 (((-3 |#1| "failed") $) 27)) (-2064 ((|#1| $) 28)) (-2261 (((-768) $) 24)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-2753 (($ |#1| (-768)) 25)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3226 (($ $) 21) (($ $ (-768)) 20)) (-1765 (((-859) $) 11) (($ |#1|) 26)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+(-10 -8 (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1|)) (-15 -3879 ((-768) |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-3879 (((-768) $) 22)) (-3832 ((|#1| $) 23)) (-2224 (((-3 |#1| "failed") $) 27)) (-2376 ((|#1| $) 28)) (-1454 (((-768) $) 24)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-2632 (($ |#1| (-768)) 25)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-2203 (($ $) 21) (($ $ (-768)) 20)) (-3714 (((-859) $) 11) (($ |#1|) 26)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
(((-266 |#1|) (-140) (-847)) (T -266))
-((-1765 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-2753 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3226 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-266 *3)) (-4 *3 (-847)))))
-(-13 (-847) (-1035 |t#1|) (-10 -8 (-15 -2753 ($ |t#1| (-768))) (-15 -2261 ((-768) $)) (-15 -3657 (|t#1| $)) (-15 -3703 ((-768) $)) (-15 -3226 ($ $)) (-15 -3226 ($ $ (-768))) (-15 -1765 ($ |t#1|))))
+((-3714 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-2632 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) (-2203 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-266 *3)) (-4 *3 (-847)))))
+(-13 (-847) (-1035 |t#1|) (-10 -8 (-15 -2632 ($ |t#1| (-768))) (-15 -1454 ((-768) $)) (-15 -3832 (|t#1| $)) (-15 -3879 ((-768) $)) (-15 -2203 ($ $)) (-15 -2203 ($ $ (-768))) (-15 -3714 ($ |t#1|))))
(((-102) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-847) . T) ((-1035 |#1|) . T) ((-1094) . T))
-((-4170 (((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) 54)) (-3265 (((-641 (-1170)) (-316 (-225)) (-768)) 96)) (-3045 (((-3 (-316 (-225)) "failed") (-316 (-225))) 64)) (-3025 (((-316 (-225)) (-316 (-225))) 82)) (-1969 (((-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 39)) (-1626 (((-112) (-641 (-316 (-225)))) 106)) (-2119 (((-112) (-316 (-225))) 37)) (-3636 (((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))))) 133)) (-2383 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 109)) (-1698 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 108)) (-2175 (((-685 (-225)) (-641 (-316 (-225))) (-768)) 121)) (-2916 (((-112) (-316 (-225))) 32) (((-112) (-641 (-316 (-225)))) 107)) (-3258 (((-641 (-225)) (-641 (-840 (-225))) (-225)) 15)) (-2319 (((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) 127)) (-3812 (((-1032) (-1170) (-1032)) 47)))
-(((-267) (-10 -7 (-15 -3258 ((-641 (-225)) (-641 (-840 (-225))) (-225))) (-15 -1969 ((-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3045 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3025 ((-316 (-225)) (-316 (-225)))) (-15 -1626 ((-112) (-641 (-316 (-225))))) (-15 -2916 ((-112) (-641 (-316 (-225))))) (-15 -2916 ((-112) (-316 (-225)))) (-15 -2175 ((-685 (-225)) (-641 (-316 (-225))) (-768))) (-15 -1698 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -2383 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -2119 ((-112) (-316 (-225)))) (-15 -4170 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) (-15 -3265 ((-641 (-1170)) (-316 (-225)) (-768))) (-15 -3812 ((-1032) (-1170) (-1032))) (-15 -2319 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) (-15 -3636 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))))))) (T -267))
-((-3636 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))))) (-5 *2 (-641 (-1152))) (-5 *1 (-267)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-3812 (*1 *2 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-267)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2383 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) (-5 *1 (-267)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3045 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *1 (-267)))) (-3258 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-840 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4)) (-5 *1 (-267)))))
-(-10 -7 (-15 -3258 ((-641 (-225)) (-641 (-840 (-225))) (-225))) (-15 -1969 ((-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3045 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3025 ((-316 (-225)) (-316 (-225)))) (-15 -1626 ((-112) (-641 (-316 (-225))))) (-15 -2916 ((-112) (-641 (-316 (-225))))) (-15 -2916 ((-112) (-316 (-225)))) (-15 -2175 ((-685 (-225)) (-641 (-316 (-225))) (-768))) (-15 -1698 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -2383 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -2119 ((-112) (-316 (-225)))) (-15 -4170 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) (-15 -3265 ((-641 (-1170)) (-316 (-225)) (-768))) (-15 -3812 ((-1032) (-1170) (-1032))) (-15 -2319 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) (-15 -3636 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))))))
-((-1754 (((-112) $ $) NIL)) (-2373 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 56)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 32) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-4292 (((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) 54)) (-3441 (((-641 (-1170)) (-316 (-225)) (-768)) 96)) (-3570 (((-3 (-316 (-225)) "failed") (-316 (-225))) 64)) (-3368 (((-316 (-225)) (-316 (-225))) 82)) (-3406 (((-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 39)) (-1292 (((-112) (-641 (-316 (-225)))) 106)) (-2609 (((-112) (-316 (-225))) 37)) (-1417 (((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))))) 133)) (-3174 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 109)) (-3827 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 108)) (-1860 (((-685 (-225)) (-641 (-316 (-225))) (-768)) 121)) (-3646 (((-112) (-316 (-225))) 32) (((-112) (-641 (-316 (-225)))) 107)) (-2101 (((-641 (-225)) (-641 (-840 (-225))) (-225)) 15)) (-3801 (((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) 127)) (-2533 (((-1032) (-1170) (-1032)) 47)))
+(((-267) (-10 -7 (-15 -2101 ((-641 (-225)) (-641 (-840 (-225))) (-225))) (-15 -3406 ((-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3570 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3368 ((-316 (-225)) (-316 (-225)))) (-15 -1292 ((-112) (-641 (-316 (-225))))) (-15 -3646 ((-112) (-641 (-316 (-225))))) (-15 -3646 ((-112) (-316 (-225)))) (-15 -1860 ((-685 (-225)) (-641 (-316 (-225))) (-768))) (-15 -3827 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -3174 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -2609 ((-112) (-316 (-225)))) (-15 -4292 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) (-15 -3441 ((-641 (-1170)) (-316 (-225)) (-768))) (-15 -2533 ((-1032) (-1170) (-1032))) (-15 -3801 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) (-15 -1417 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))))))) (T -267))
+((-1417 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))))) (-5 *2 (-641 (-1152))) (-5 *1 (-267)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-2533 (*1 *2 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-267)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) (-5 *1 (-267)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3570 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3406 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *1 (-267)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-840 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4)) (-5 *1 (-267)))))
+(-10 -7 (-15 -2101 ((-641 (-225)) (-641 (-840 (-225))) (-225))) (-15 -3406 ((-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3570 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3368 ((-316 (-225)) (-316 (-225)))) (-15 -1292 ((-112) (-641 (-316 (-225))))) (-15 -3646 ((-112) (-641 (-316 (-225))))) (-15 -3646 ((-112) (-316 (-225)))) (-15 -1860 ((-685 (-225)) (-641 (-316 (-225))) (-768))) (-15 -3827 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -3174 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -2609 ((-112) (-316 (-225)))) (-15 -4292 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) (-15 -3441 ((-641 (-1170)) (-316 (-225)) (-768))) (-15 -2533 ((-1032) (-1170) (-1032))) (-15 -3801 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) (-15 -1417 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))))))
+((-3702 (((-112) $ $) NIL)) (-3098 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 56)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 32) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-268) (-836)) (T -268))
NIL
(-836)
-((-1754 (((-112) $ $) NIL)) (-2373 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) 75) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 66)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 45) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) 47)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3098 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) 75) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 66)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 45) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) 47)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-269) (-836)) (T -269))
NIL
(-836)
-((-1754 (((-112) $ $) NIL)) (-2373 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) 91) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 86)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 56) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) 67)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3098 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) 91) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 86)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 56) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) 67)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-270) (-836)) (T -270))
NIL
(-836)
-((-1754 (((-112) $ $) NIL)) (-2373 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 73)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 45) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3098 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 73)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 45) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-271) (-836)) (T -271))
NIL
(-836)
-((-1754 (((-112) $ $) NIL)) (-2373 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 65)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 31) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3098 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 65)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 31) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-272) (-836)) (T -272))
NIL
(-836)
-((-1754 (((-112) $ $) NIL)) (-2373 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 90)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 33) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3098 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 90)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 33) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-273) (-836)) (T -273))
NIL
(-836)
-((-1754 (((-112) $ $) NIL)) (-2373 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 95)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 32) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3098 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 95)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 32) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-274) (-836)) (T -274))
NIL
(-836)
-((-1754 (((-112) $ $) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-4256 (((-641 (-564)) $) 28)) (-3344 (((-768) $) 26)) (-1765 (((-859) $) 35) (($ (-641 (-564))) 22)) (-2582 (($ (-768)) 32)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 9)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 16)))
-(((-275) (-13 (-847) (-10 -8 (-15 -1765 ($ (-641 (-564)))) (-15 -3344 ((-768) $)) (-15 -4256 ((-641 (-564)) $)) (-15 -2582 ($ (-768)))))) (T -275))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-275)))) (-4256 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-275)))))
-(-13 (-847) (-10 -8 (-15 -1765 ($ (-641 (-564)))) (-15 -3344 ((-768) $)) (-15 -4256 ((-641 (-564)) $)) (-15 -2582 ($ (-768)))))
-((-3904 ((|#2| |#2|) 77)) (-3752 ((|#2| |#2|) 65)) (-3519 (((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3879 ((|#2| |#2|) 75)) (-3727 ((|#2| |#2|) 63)) (-3933 ((|#2| |#2|) 79)) (-3778 ((|#2| |#2|) 67)) (-1539 ((|#2|) 46)) (-1826 (((-114) (-114)) 100)) (-2186 ((|#2| |#2|) 61)) (-2339 (((-112) |#2|) 147)) (-4136 ((|#2| |#2|) 195)) (-2960 ((|#2| |#2|) 171)) (-1571 ((|#2|) 59)) (-1732 ((|#2|) 58)) (-4087 ((|#2| |#2|) 191)) (-4351 ((|#2| |#2|) 167)) (-2785 ((|#2| |#2|) 199)) (-3912 ((|#2| |#2|) 175)) (-2928 ((|#2| |#2|) 163)) (-2987 ((|#2| |#2|) 165)) (-2428 ((|#2| |#2|) 201)) (-1718 ((|#2| |#2|) 177)) (-3803 ((|#2| |#2|) 197)) (-2761 ((|#2| |#2|) 173)) (-2986 ((|#2| |#2|) 193)) (-3496 ((|#2| |#2|) 169)) (-2216 ((|#2| |#2|) 207)) (-2962 ((|#2| |#2|) 183)) (-2031 ((|#2| |#2|) 203)) (-1422 ((|#2| |#2|) 179)) (-2157 ((|#2| |#2|) 211)) (-2388 ((|#2| |#2|) 187)) (-2777 ((|#2| |#2|) 213)) (-3966 ((|#2| |#2|) 189)) (-2499 ((|#2| |#2|) 209)) (-3787 ((|#2| |#2|) 185)) (-2007 ((|#2| |#2|) 205)) (-3349 ((|#2| |#2|) 181)) (-2152 ((|#2| |#2|) 62)) (-3949 ((|#2| |#2|) 80)) (-3789 ((|#2| |#2|) 68)) (-3918 ((|#2| |#2|) 78)) (-3765 ((|#2| |#2|) 66)) (-3891 ((|#2| |#2|) 76)) (-3739 ((|#2| |#2|) 64)) (-1573 (((-112) (-114)) 98)) (-3991 ((|#2| |#2|) 83)) (-3827 ((|#2| |#2|) 71)) (-3963 ((|#2| |#2|) 81)) (-3801 ((|#2| |#2|) 69)) (-4020 ((|#2| |#2|) 85)) (-3854 ((|#2| |#2|) 73)) (-3586 ((|#2| |#2|) 86)) (-3867 ((|#2| |#2|) 74)) (-4005 ((|#2| |#2|) 84)) (-3840 ((|#2| |#2|) 72)) (-3977 ((|#2| |#2|) 82)) (-3814 ((|#2| |#2|) 70)))
-(((-276 |#1| |#2|) (-10 -7 (-15 -2152 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3752 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3867 (|#2| |#2|)) (-15 -3879 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3963 (|#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -3586 (|#2| |#2|)) (-15 -1539 (|#2|)) (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -1732 (|#2|)) (-15 -1571 (|#2|)) (-15 -2987 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -4351 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -2960 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -1718 (|#2| |#2|)) (-15 -1422 (|#2| |#2|)) (-15 -3349 (|#2| |#2|)) (-15 -2962 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -2986 (|#2| |#2|)) (-15 -4136 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2031 (|#2| |#2|)) (-15 -2007 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -2499 (|#2| |#2|)) (-15 -2157 (|#2| |#2|)) (-15 -2777 (|#2| |#2|)) (-15 -3519 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2339 ((-112) |#2|))) (-13 (-847) (-556)) (-13 (-430 |#1|) (-999))) (T -276))
-((-2339 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-999))))) (-3519 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-999))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-276 *4 *2)))) (-2777 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2157 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2499 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2007 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2031 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4136 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2986 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2962 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3349 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1422 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1718 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2960 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4351 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1571 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-1732 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-999))))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-999))))) (-1539 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3879 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3867 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3752 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2152 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))))
-(-10 -7 (-15 -2152 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3752 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3867 (|#2| |#2|)) (-15 -3879 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3963 (|#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -3586 (|#2| |#2|)) (-15 -1539 (|#2|)) (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -1732 (|#2|)) (-15 -1571 (|#2|)) (-15 -2987 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -4351 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -2960 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -1718 (|#2| |#2|)) (-15 -1422 (|#2| |#2|)) (-15 -3349 (|#2| |#2|)) (-15 -2962 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -2986 (|#2| |#2|)) (-15 -4136 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2031 (|#2| |#2|)) (-15 -2007 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -2499 (|#2| |#2|)) (-15 -2157 (|#2| |#2|)) (-15 -2777 (|#2| |#2|)) (-15 -3519 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2339 ((-112) |#2|)))
-((-3018 (((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170)) 154)) (-3358 ((|#2| (-407 (-564)) |#2|) 51)) (-3448 ((|#2| |#2| (-610 |#2|)) 147)) (-1724 (((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170)) 146)) (-1538 ((|#2| |#2| (-1170)) 20) ((|#2| |#2|) 23)) (-4168 ((|#2| |#2| (-1170)) 160) ((|#2| |#2|) 158)))
-(((-277 |#1| |#2|) (-10 -7 (-15 -4168 (|#2| |#2|)) (-15 -4168 (|#2| |#2| (-1170))) (-15 -1724 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -1538 (|#2| |#2|)) (-15 -1538 (|#2| |#2| (-1170))) (-15 -3018 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -3448 (|#2| |#2| (-610 |#2|))) (-15 -3358 (|#2| (-407 (-564)) |#2|))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -277))
-((-3358 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-3448 (*1 *2 *2 *3) (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)))) (-3018 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *5 *2)))) (-1538 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3))) (|:| |vals| (-641 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4168 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-4168 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
-(-10 -7 (-15 -4168 (|#2| |#2|)) (-15 -4168 (|#2| |#2| (-1170))) (-15 -1724 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -1538 (|#2| |#2|)) (-15 -1538 (|#2| |#2| (-1170))) (-15 -3018 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -3448 (|#2| |#2| (-610 |#2|))) (-15 -3358 (|#2| (-407 (-564)) |#2|)))
-((-3542 (((-3 |#3| "failed") |#3|) 121)) (-3904 ((|#3| |#3|) 143)) (-2740 (((-3 |#3| "failed") |#3|) 89)) (-3752 ((|#3| |#3|) 133)) (-4365 (((-3 |#3| "failed") |#3|) 65)) (-3879 ((|#3| |#3|) 141)) (-3461 (((-3 |#3| "failed") |#3|) 53)) (-3727 ((|#3| |#3|) 131)) (-4370 (((-3 |#3| "failed") |#3|) 123)) (-3933 ((|#3| |#3|) 145)) (-2143 (((-3 |#3| "failed") |#3|) 91)) (-3778 ((|#3| |#3|) 135)) (-2596 (((-3 |#3| "failed") |#3| (-768)) 41)) (-2914 (((-3 |#3| "failed") |#3|) 81)) (-2186 ((|#3| |#3|) 130)) (-2646 (((-3 |#3| "failed") |#3|) 51)) (-2152 ((|#3| |#3|) 129)) (-4040 (((-3 |#3| "failed") |#3|) 124)) (-3949 ((|#3| |#3|) 146)) (-2479 (((-3 |#3| "failed") |#3|) 92)) (-3789 ((|#3| |#3|) 136)) (-2967 (((-3 |#3| "failed") |#3|) 122)) (-3918 ((|#3| |#3|) 144)) (-2850 (((-3 |#3| "failed") |#3|) 90)) (-3765 ((|#3| |#3|) 134)) (-3665 (((-3 |#3| "failed") |#3|) 67)) (-3891 ((|#3| |#3|) 142)) (-4155 (((-3 |#3| "failed") |#3|) 55)) (-3739 ((|#3| |#3|) 132)) (-1942 (((-3 |#3| "failed") |#3|) 73)) (-3991 ((|#3| |#3|) 149)) (-3980 (((-3 |#3| "failed") |#3|) 115)) (-3827 ((|#3| |#3|) 155)) (-3238 (((-3 |#3| "failed") |#3|) 69)) (-3963 ((|#3| |#3|) 147)) (-3695 (((-3 |#3| "failed") |#3|) 57)) (-3801 ((|#3| |#3|) 137)) (-3844 (((-3 |#3| "failed") |#3|) 77)) (-4020 ((|#3| |#3|) 151)) (-3805 (((-3 |#3| "failed") |#3|) 61)) (-3854 ((|#3| |#3|) 139)) (-2749 (((-3 |#3| "failed") |#3|) 79)) (-3586 ((|#3| |#3|) 152)) (-2845 (((-3 |#3| "failed") |#3|) 63)) (-3867 ((|#3| |#3|) 140)) (-4189 (((-3 |#3| "failed") |#3|) 75)) (-4005 ((|#3| |#3|) 150)) (-2626 (((-3 |#3| "failed") |#3|) 118)) (-3840 ((|#3| |#3|) 156)) (-1349 (((-3 |#3| "failed") |#3|) 71)) (-3977 ((|#3| |#3|) 148)) (-1669 (((-3 |#3| "failed") |#3|) 59)) (-3814 ((|#3| |#3|) 138)) (** ((|#3| |#3| (-407 (-564))) 47 (|has| |#1| (-363)))))
-(((-278 |#1| |#2| |#3|) (-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -2152 (|#3| |#3|)) (-15 -2186 (|#3| |#3|)) (-15 -3727 (|#3| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3752 (|#3| |#3|)) (-15 -3765 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3867 (|#3| |#3|)) (-15 -3879 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3977 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4020 (|#3| |#3|)) (-15 -3586 (|#3| |#3|)))) (-38 (-407 (-564))) (-1250 |#1|) (-1221 |#1| |#2|)) (T -278))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5)))) (-2152 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3752 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3867 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3879 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))))
-(-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -2152 (|#3| |#3|)) (-15 -2186 (|#3| |#3|)) (-15 -3727 (|#3| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3752 (|#3| |#3|)) (-15 -3765 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3867 (|#3| |#3|)) (-15 -3879 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3977 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4020 (|#3| |#3|)) (-15 -3586 (|#3| |#3|))))
-((-3542 (((-3 |#3| "failed") |#3|) 70)) (-3904 ((|#3| |#3|) 137)) (-2740 (((-3 |#3| "failed") |#3|) 54)) (-3752 ((|#3| |#3|) 125)) (-4365 (((-3 |#3| "failed") |#3|) 66)) (-3879 ((|#3| |#3|) 135)) (-3461 (((-3 |#3| "failed") |#3|) 50)) (-3727 ((|#3| |#3|) 123)) (-4370 (((-3 |#3| "failed") |#3|) 74)) (-3933 ((|#3| |#3|) 139)) (-2143 (((-3 |#3| "failed") |#3|) 58)) (-3778 ((|#3| |#3|) 127)) (-2596 (((-3 |#3| "failed") |#3| (-768)) 38)) (-2914 (((-3 |#3| "failed") |#3|) 48)) (-2186 ((|#3| |#3|) 111)) (-2646 (((-3 |#3| "failed") |#3|) 46)) (-2152 ((|#3| |#3|) 122)) (-4040 (((-3 |#3| "failed") |#3|) 76)) (-3949 ((|#3| |#3|) 140)) (-2479 (((-3 |#3| "failed") |#3|) 60)) (-3789 ((|#3| |#3|) 128)) (-2967 (((-3 |#3| "failed") |#3|) 72)) (-3918 ((|#3| |#3|) 138)) (-2850 (((-3 |#3| "failed") |#3|) 56)) (-3765 ((|#3| |#3|) 126)) (-3665 (((-3 |#3| "failed") |#3|) 68)) (-3891 ((|#3| |#3|) 136)) (-4155 (((-3 |#3| "failed") |#3|) 52)) (-3739 ((|#3| |#3|) 124)) (-1942 (((-3 |#3| "failed") |#3|) 78)) (-3991 ((|#3| |#3|) 143)) (-3980 (((-3 |#3| "failed") |#3|) 62)) (-3827 ((|#3| |#3|) 131)) (-3238 (((-3 |#3| "failed") |#3|) 112)) (-3963 ((|#3| |#3|) 141)) (-3695 (((-3 |#3| "failed") |#3|) 100)) (-3801 ((|#3| |#3|) 129)) (-3844 (((-3 |#3| "failed") |#3|) 116)) (-4020 ((|#3| |#3|) 145)) (-3805 (((-3 |#3| "failed") |#3|) 107)) (-3854 ((|#3| |#3|) 133)) (-2749 (((-3 |#3| "failed") |#3|) 117)) (-3586 ((|#3| |#3|) 146)) (-2845 (((-3 |#3| "failed") |#3|) 109)) (-3867 ((|#3| |#3|) 134)) (-4189 (((-3 |#3| "failed") |#3|) 80)) (-4005 ((|#3| |#3|) 144)) (-2626 (((-3 |#3| "failed") |#3|) 64)) (-3840 ((|#3| |#3|) 132)) (-1349 (((-3 |#3| "failed") |#3|) 113)) (-3977 ((|#3| |#3|) 142)) (-1669 (((-3 |#3| "failed") |#3|) 103)) (-3814 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-407 (-564))) 44 (|has| |#1| (-363)))))
-(((-279 |#1| |#2| |#3| |#4|) (-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -2152 (|#3| |#3|)) (-15 -2186 (|#3| |#3|)) (-15 -3727 (|#3| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3752 (|#3| |#3|)) (-15 -3765 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3867 (|#3| |#3|)) (-15 -3879 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3977 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4020 (|#3| |#3|)) (-15 -3586 (|#3| |#3|)))) (-38 (-407 (-564))) (-1219 |#1|) (-1242 |#1| |#2|) (-980 |#2|)) (T -279))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5)) (-4 *6 (-980 *5)))) (-2152 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3752 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3867 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3879 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))))
-(-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -2152 (|#3| |#3|)) (-15 -2186 (|#3| |#3|)) (-15 -3727 (|#3| |#3|)) (-15 -3739 (|#3| |#3|)) (-15 -3752 (|#3| |#3|)) (-15 -3765 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3814 (|#3| |#3|)) (-15 -3827 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3867 (|#3| |#3|)) (-15 -3879 (|#3| |#3|)) (-15 -3891 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3977 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -4005 (|#3| |#3|)) (-15 -4020 (|#3| |#3|)) (-15 -3586 (|#3| |#3|))))
-((-1707 (((-112) $) 19)) (-1616 (((-183) $) 7)) (-1967 (((-3 (-506) "failed") $) 14)) (-3482 (((-3 (-641 $) "failed") $) NIL)) (-1744 (((-3 (-506) "failed") $) 20)) (-2769 (((-3 (-1098) "failed") $) 18)) (-2813 (((-112) $) 16)) (-1765 (((-859) $) NIL)) (-2995 (((-112) $) 9)))
-(((-280) (-13 (-611 (-859)) (-10 -8 (-15 -1616 ((-183) $)) (-15 -2813 ((-112) $)) (-15 -2769 ((-3 (-1098) "failed") $)) (-15 -1707 ((-112) $)) (-15 -1744 ((-3 (-506) "failed") $)) (-15 -2995 ((-112) $)) (-15 -1967 ((-3 (-506) "failed") $)) (-15 -3482 ((-3 (-641 $) "failed") $))))) (T -280))
-((-1616 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2769 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-1744 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-1967 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-3482 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -1616 ((-183) $)) (-15 -2813 ((-112) $)) (-15 -2769 ((-3 (-1098) "failed") $)) (-15 -1707 ((-112) $)) (-15 -1744 ((-3 (-506) "failed") $)) (-15 -2995 ((-112) $)) (-15 -1967 ((-3 (-506) "failed") $)) (-15 -3482 ((-3 (-641 $) "failed") $))))
-((-2164 (($ (-1 (-112) |#2|) $) 24)) (-3104 (($ $) 38)) (-1907 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2359 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-1397 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-3412 (($ |#2| $ (-564)) 20) (($ $ $ (-564)) 22)) (-2008 (($ $ (-564)) 11) (($ $ (-1226 (-564))) 14)) (-2478 (($ $ |#2|) 32) (($ $ $) NIL)) (-2817 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-641 $)) NIL)))
-(((-281 |#1| |#2|) (-10 -8 (-15 -1397 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#2| |#1|)) (-15 -1397 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2478 (|#1| |#1| |#1|)) (-15 -2478 (|#1| |#1| |#2|)) (-15 -3412 (|#1| |#1| |#1| (-564))) (-15 -3412 (|#1| |#2| |#1| (-564))) (-15 -2008 (|#1| |#1| (-1226 (-564)))) (-15 -2008 (|#1| |#1| (-564))) (-15 -2817 (|#1| (-641 |#1|))) (-15 -2817 (|#1| |#1| |#1|)) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#2|)) (-15 -2359 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2359 (|#1| |#2| |#1|)) (-15 -3104 (|#1| |#1|))) (-282 |#2|) (-1209)) (T -281))
-NIL
-(-10 -8 (-15 -1397 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#2| |#1|)) (-15 -1397 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2478 (|#1| |#1| |#1|)) (-15 -2478 (|#1| |#1| |#2|)) (-15 -3412 (|#1| |#1| |#1| (-564))) (-15 -3412 (|#1| |#2| |#1| (-564))) (-15 -2008 (|#1| |#1| (-1226 (-564)))) (-15 -2008 (|#1| |#1| (-564))) (-15 -2817 (|#1| (-641 |#1|))) (-15 -2817 (|#1| |#1| |#1|)) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#2|)) (-15 -2359 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2359 (|#1| |#2| |#1|)) (-15 -3104 (|#1| |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3476 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) 8)) (-1881 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-4194 (($ (-1 (-112) |#1|) $) 85)) (-2164 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3083 (($ $) 83 (|has| |#1| (-1094)))) (-3104 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1094)))) (-2359 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 51)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-1633 (($ (-768) |#1|) 69)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 43 (|has| (-564) (-847)))) (-1397 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 44 (|has| (-564) (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2098 (($ |#1| $ (-564)) 88) (($ $ $ (-564)) 87)) (-3412 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-1371 (((-641 (-564)) $) 46)) (-3629 (((-112) (-564) $) 47)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3073 ((|#1| $) 42 (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2614 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-4183 (($ $ (-564)) 91) (($ $ (-1226 (-564))) 90)) (-2008 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 70)) (-2478 (($ $ |#1|) 93) (($ $ $) 92)) (-2817 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4172 (((-641 (-564)) $) 28)) (-3475 (((-768) $) 26)) (-3714 (((-859) $) 35) (($ (-641 (-564))) 22)) (-1427 (($ (-768)) 32)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 9)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 16)))
+(((-275) (-13 (-847) (-10 -8 (-15 -3714 ($ (-641 (-564)))) (-15 -3475 ((-768) $)) (-15 -4172 ((-641 (-564)) $)) (-15 -1427 ($ (-768)))))) (T -275))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-275)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-275)))))
+(-13 (-847) (-10 -8 (-15 -3714 ($ (-641 (-564)))) (-15 -3475 ((-768) $)) (-15 -4172 ((-641 (-564)) $)) (-15 -1427 ($ (-768)))))
+((-2657 ((|#2| |#2|) 77)) (-2516 ((|#2| |#2|) 65)) (-2804 (((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2635 ((|#2| |#2|) 75)) (-2491 ((|#2| |#2|) 63)) (-2679 ((|#2| |#2|) 79)) (-2542 ((|#2| |#2|) 67)) (-1688 ((|#2|) 46)) (-2702 (((-114) (-114)) 100)) (-2305 ((|#2| |#2|) 61)) (-2872 (((-112) |#2|) 147)) (-2468 ((|#2| |#2|) 195)) (-4015 ((|#2| |#2|) 171)) (-2044 ((|#2|) 59)) (-2973 ((|#2|) 58)) (-3167 ((|#2| |#2|) 191)) (-3717 ((|#2| |#2|) 167)) (-1695 ((|#2| |#2|) 199)) (-2239 ((|#2| |#2|) 175)) (-3776 ((|#2| |#2|) 163)) (-4271 ((|#2| |#2|) 165)) (-2440 ((|#2| |#2|) 201)) (-2877 ((|#2| |#2|) 177)) (-2428 ((|#2| |#2|) 197)) (-2709 ((|#2| |#2|) 173)) (-4259 ((|#2| |#2|) 193)) (-2590 ((|#2| |#2|) 169)) (-4101 ((|#2| |#2|) 207)) (-4036 ((|#2| |#2|) 183)) (-2925 ((|#2| |#2|) 203)) (-1669 ((|#2| |#2|) 179)) (-1671 ((|#2| |#2|) 211)) (-3200 ((|#2| |#2|) 187)) (-2850 ((|#2| |#2|) 213)) (-1444 ((|#2| |#2|) 189)) (-1918 ((|#2| |#2|) 209)) (-2281 ((|#2| |#2|) 185)) (-3845 ((|#2| |#2|) 205)) (-3529 ((|#2| |#2|) 181)) (-4130 ((|#2| |#2|) 62)) (-2692 ((|#2| |#2|) 80)) (-2557 ((|#2| |#2|) 68)) (-2669 ((|#2| |#2|) 78)) (-2529 ((|#2| |#2|) 66)) (-2647 ((|#2| |#2|) 76)) (-2502 ((|#2| |#2|) 64)) (-2068 (((-112) (-114)) 98)) (-2728 ((|#2| |#2|) 83)) (-2595 ((|#2| |#2|) 71)) (-2704 ((|#2| |#2|) 81)) (-2566 ((|#2| |#2|) 69)) (-2751 ((|#2| |#2|) 85)) (-2615 ((|#2| |#2|) 73)) (-2053 ((|#2| |#2|) 86)) (-2626 ((|#2| |#2|) 74)) (-2740 ((|#2| |#2|) 84)) (-2605 ((|#2| |#2|) 72)) (-2716 ((|#2| |#2|) 82)) (-2577 ((|#2| |#2|) 70)))
+(((-276 |#1| |#2|) (-10 -7 (-15 -4130 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2491 (|#2| |#2|)) (-15 -2502 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2529 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -2566 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -2595 (|#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -2615 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -2679 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -2728 (|#2| |#2|)) (-15 -2740 (|#2| |#2|)) (-15 -2751 (|#2| |#2|)) (-15 -2053 (|#2| |#2|)) (-15 -1688 (|#2|)) (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -2973 (|#2|)) (-15 -2044 (|#2|)) (-15 -4271 (|#2| |#2|)) (-15 -3776 (|#2| |#2|)) (-15 -3717 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -2239 (|#2| |#2|)) (-15 -2877 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -3529 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -3200 (|#2| |#2|)) (-15 -1444 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -2440 (|#2| |#2|)) (-15 -2925 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -2850 (|#2| |#2|)) (-15 -2804 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2872 ((-112) |#2|))) (-13 (-847) (-556)) (-13 (-430 |#1|) (-999))) (T -276))
+((-2872 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-999))))) (-2804 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-999))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-276 *4 *2)))) (-2850 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2925 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2440 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4259 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3167 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1444 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3529 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2877 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2239 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2709 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3717 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4271 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2044 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-2973 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-2702 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-999))))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-999))))) (-1688 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-2053 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2751 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2740 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2728 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2716 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2679 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2657 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2615 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2595 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2577 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2557 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2542 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2529 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2502 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2491 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))))
+(-10 -7 (-15 -4130 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2491 (|#2| |#2|)) (-15 -2502 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2529 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -2566 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -2595 (|#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -2615 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -2679 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -2728 (|#2| |#2|)) (-15 -2740 (|#2| |#2|)) (-15 -2751 (|#2| |#2|)) (-15 -2053 (|#2| |#2|)) (-15 -1688 (|#2|)) (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -2973 (|#2|)) (-15 -2044 (|#2|)) (-15 -4271 (|#2| |#2|)) (-15 -3776 (|#2| |#2|)) (-15 -3717 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -2239 (|#2| |#2|)) (-15 -2877 (|#2| |#2|)) (-15 -1669 (|#2| |#2|)) (-15 -3529 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -3200 (|#2| |#2|)) (-15 -1444 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -2440 (|#2| |#2|)) (-15 -2925 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -2850 (|#2| |#2|)) (-15 -2804 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2872 ((-112) |#2|)))
+((-1491 (((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170)) 154)) (-3630 ((|#2| (-407 (-564)) |#2|) 51)) (-3265 ((|#2| |#2| (-610 |#2|)) 147)) (-2913 (((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170)) 146)) (-1741 ((|#2| |#2| (-1170)) 20) ((|#2| |#2|) 23)) (-2780 ((|#2| |#2| (-1170)) 160) ((|#2| |#2|) 158)))
+(((-277 |#1| |#2|) (-10 -7 (-15 -2780 (|#2| |#2|)) (-15 -2780 (|#2| |#2| (-1170))) (-15 -2913 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -1741 (|#2| |#2|)) (-15 -1741 (|#2| |#2| (-1170))) (-15 -1491 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -3265 (|#2| |#2| (-610 |#2|))) (-15 -3630 (|#2| (-407 (-564)) |#2|))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -277))
+((-3630 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-3265 (*1 *2 *2 *3) (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)))) (-1491 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *5 *2)))) (-1741 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1741 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2913 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3))) (|:| |vals| (-641 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2780 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
+(-10 -7 (-15 -2780 (|#2| |#2|)) (-15 -2780 (|#2| |#2| (-1170))) (-15 -2913 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -1741 (|#2| |#2|)) (-15 -1741 (|#2| |#2| (-1170))) (-15 -1491 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -3265 (|#2| |#2| (-610 |#2|))) (-15 -3630 (|#2| (-407 (-564)) |#2|)))
+((-1750 (((-3 |#3| "failed") |#3|) 121)) (-2657 ((|#3| |#3|) 143)) (-2486 (((-3 |#3| "failed") |#3|) 89)) (-2516 ((|#3| |#3|) 133)) (-3849 (((-3 |#3| "failed") |#3|) 65)) (-2635 ((|#3| |#3|) 141)) (-2254 (((-3 |#3| "failed") |#3|) 53)) (-2491 ((|#3| |#3|) 131)) (-3893 (((-3 |#3| "failed") |#3|) 123)) (-2679 ((|#3| |#3|) 145)) (-2808 (((-3 |#3| "failed") |#3|) 91)) (-2542 ((|#3| |#3|) 135)) (-1549 (((-3 |#3| "failed") |#3| (-768)) 41)) (-3621 (((-3 |#3| "failed") |#3|) 81)) (-2305 ((|#3| |#3|) 130)) (-3913 (((-3 |#3| "failed") |#3|) 51)) (-4130 ((|#3| |#3|) 129)) (-3942 (((-3 |#3| "failed") |#3|) 124)) (-2692 ((|#3| |#3|) 146)) (-1724 (((-3 |#3| "failed") |#3|) 92)) (-2557 ((|#3| |#3|) 136)) (-4086 (((-3 |#3| "failed") |#3|) 122)) (-2669 ((|#3| |#3|) 144)) (-4211 (((-3 |#3| "failed") |#3|) 90)) (-2529 ((|#3| |#3|) 134)) (-3493 (((-3 |#3| "failed") |#3|) 67)) (-2647 ((|#3| |#3|) 142)) (-2670 (((-3 |#3| "failed") |#3|) 55)) (-2502 ((|#3| |#3|) 132)) (-1324 (((-3 |#3| "failed") |#3|) 73)) (-2728 ((|#3| |#3|) 149)) (-1581 (((-3 |#3| "failed") |#3|) 115)) (-2595 ((|#3| |#3|) 155)) (-1892 (((-3 |#3| "failed") |#3|) 69)) (-2704 ((|#3| |#3|) 147)) (-3785 (((-3 |#3| "failed") |#3|) 57)) (-2566 ((|#3| |#3|) 137)) (-2825 (((-3 |#3| "failed") |#3|) 77)) (-2751 ((|#3| |#3|) 151)) (-2451 (((-3 |#3| "failed") |#3|) 61)) (-2615 ((|#3| |#3|) 139)) (-2588 (((-3 |#3| "failed") |#3|) 79)) (-2053 ((|#3| |#3|) 152)) (-4154 (((-3 |#3| "failed") |#3|) 63)) (-2626 ((|#3| |#3|) 140)) (-1725 (((-3 |#3| "failed") |#3|) 75)) (-2740 ((|#3| |#3|) 150)) (-3682 (((-3 |#3| "failed") |#3|) 118)) (-2605 ((|#3| |#3|) 156)) (-2532 (((-3 |#3| "failed") |#3|) 71)) (-2716 ((|#3| |#3|) 148)) (-3507 (((-3 |#3| "failed") |#3|) 59)) (-2577 ((|#3| |#3|) 138)) (** ((|#3| |#3| (-407 (-564))) 47 (|has| |#1| (-363)))))
+(((-278 |#1| |#2| |#3|) (-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4130 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2491 (|#3| |#3|)) (-15 -2502 (|#3| |#3|)) (-15 -2516 (|#3| |#3|)) (-15 -2529 (|#3| |#3|)) (-15 -2542 (|#3| |#3|)) (-15 -2557 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2577 (|#3| |#3|)) (-15 -2595 (|#3| |#3|)) (-15 -2605 (|#3| |#3|)) (-15 -2615 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2657 (|#3| |#3|)) (-15 -2669 (|#3| |#3|)) (-15 -2679 (|#3| |#3|)) (-15 -2692 (|#3| |#3|)) (-15 -2704 (|#3| |#3|)) (-15 -2716 (|#3| |#3|)) (-15 -2728 (|#3| |#3|)) (-15 -2740 (|#3| |#3|)) (-15 -2751 (|#3| |#3|)) (-15 -2053 (|#3| |#3|)))) (-38 (-407 (-564))) (-1250 |#1|) (-1221 |#1| |#2|)) (T -278))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5)))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2491 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2502 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2529 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2542 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2557 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2577 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2595 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2615 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2657 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2679 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2716 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2728 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2740 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2751 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2053 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))))
+(-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4130 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2491 (|#3| |#3|)) (-15 -2502 (|#3| |#3|)) (-15 -2516 (|#3| |#3|)) (-15 -2529 (|#3| |#3|)) (-15 -2542 (|#3| |#3|)) (-15 -2557 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2577 (|#3| |#3|)) (-15 -2595 (|#3| |#3|)) (-15 -2605 (|#3| |#3|)) (-15 -2615 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2657 (|#3| |#3|)) (-15 -2669 (|#3| |#3|)) (-15 -2679 (|#3| |#3|)) (-15 -2692 (|#3| |#3|)) (-15 -2704 (|#3| |#3|)) (-15 -2716 (|#3| |#3|)) (-15 -2728 (|#3| |#3|)) (-15 -2740 (|#3| |#3|)) (-15 -2751 (|#3| |#3|)) (-15 -2053 (|#3| |#3|))))
+((-1750 (((-3 |#3| "failed") |#3|) 70)) (-2657 ((|#3| |#3|) 137)) (-2486 (((-3 |#3| "failed") |#3|) 54)) (-2516 ((|#3| |#3|) 125)) (-3849 (((-3 |#3| "failed") |#3|) 66)) (-2635 ((|#3| |#3|) 135)) (-2254 (((-3 |#3| "failed") |#3|) 50)) (-2491 ((|#3| |#3|) 123)) (-3893 (((-3 |#3| "failed") |#3|) 74)) (-2679 ((|#3| |#3|) 139)) (-2808 (((-3 |#3| "failed") |#3|) 58)) (-2542 ((|#3| |#3|) 127)) (-1549 (((-3 |#3| "failed") |#3| (-768)) 38)) (-3621 (((-3 |#3| "failed") |#3|) 48)) (-2305 ((|#3| |#3|) 111)) (-3913 (((-3 |#3| "failed") |#3|) 46)) (-4130 ((|#3| |#3|) 122)) (-3942 (((-3 |#3| "failed") |#3|) 76)) (-2692 ((|#3| |#3|) 140)) (-1724 (((-3 |#3| "failed") |#3|) 60)) (-2557 ((|#3| |#3|) 128)) (-4086 (((-3 |#3| "failed") |#3|) 72)) (-2669 ((|#3| |#3|) 138)) (-4211 (((-3 |#3| "failed") |#3|) 56)) (-2529 ((|#3| |#3|) 126)) (-3493 (((-3 |#3| "failed") |#3|) 68)) (-2647 ((|#3| |#3|) 136)) (-2670 (((-3 |#3| "failed") |#3|) 52)) (-2502 ((|#3| |#3|) 124)) (-1324 (((-3 |#3| "failed") |#3|) 78)) (-2728 ((|#3| |#3|) 143)) (-1581 (((-3 |#3| "failed") |#3|) 62)) (-2595 ((|#3| |#3|) 131)) (-1892 (((-3 |#3| "failed") |#3|) 112)) (-2704 ((|#3| |#3|) 141)) (-3785 (((-3 |#3| "failed") |#3|) 100)) (-2566 ((|#3| |#3|) 129)) (-2825 (((-3 |#3| "failed") |#3|) 116)) (-2751 ((|#3| |#3|) 145)) (-2451 (((-3 |#3| "failed") |#3|) 107)) (-2615 ((|#3| |#3|) 133)) (-2588 (((-3 |#3| "failed") |#3|) 117)) (-2053 ((|#3| |#3|) 146)) (-4154 (((-3 |#3| "failed") |#3|) 109)) (-2626 ((|#3| |#3|) 134)) (-1725 (((-3 |#3| "failed") |#3|) 80)) (-2740 ((|#3| |#3|) 144)) (-3682 (((-3 |#3| "failed") |#3|) 64)) (-2605 ((|#3| |#3|) 132)) (-2532 (((-3 |#3| "failed") |#3|) 113)) (-2716 ((|#3| |#3|) 142)) (-3507 (((-3 |#3| "failed") |#3|) 103)) (-2577 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-407 (-564))) 44 (|has| |#1| (-363)))))
+(((-279 |#1| |#2| |#3| |#4|) (-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4130 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2491 (|#3| |#3|)) (-15 -2502 (|#3| |#3|)) (-15 -2516 (|#3| |#3|)) (-15 -2529 (|#3| |#3|)) (-15 -2542 (|#3| |#3|)) (-15 -2557 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2577 (|#3| |#3|)) (-15 -2595 (|#3| |#3|)) (-15 -2605 (|#3| |#3|)) (-15 -2615 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2657 (|#3| |#3|)) (-15 -2669 (|#3| |#3|)) (-15 -2679 (|#3| |#3|)) (-15 -2692 (|#3| |#3|)) (-15 -2704 (|#3| |#3|)) (-15 -2716 (|#3| |#3|)) (-15 -2728 (|#3| |#3|)) (-15 -2740 (|#3| |#3|)) (-15 -2751 (|#3| |#3|)) (-15 -2053 (|#3| |#3|)))) (-38 (-407 (-564))) (-1219 |#1|) (-1242 |#1| |#2|) (-980 |#2|)) (T -279))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5)) (-4 *6 (-980 *5)))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2491 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2502 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2529 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2542 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2557 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2577 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2595 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2615 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2657 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2679 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2716 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2728 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2740 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2751 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2053 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))))
+(-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4130 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2491 (|#3| |#3|)) (-15 -2502 (|#3| |#3|)) (-15 -2516 (|#3| |#3|)) (-15 -2529 (|#3| |#3|)) (-15 -2542 (|#3| |#3|)) (-15 -2557 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2577 (|#3| |#3|)) (-15 -2595 (|#3| |#3|)) (-15 -2605 (|#3| |#3|)) (-15 -2615 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2657 (|#3| |#3|)) (-15 -2669 (|#3| |#3|)) (-15 -2679 (|#3| |#3|)) (-15 -2692 (|#3| |#3|)) (-15 -2704 (|#3| |#3|)) (-15 -2716 (|#3| |#3|)) (-15 -2728 (|#3| |#3|)) (-15 -2740 (|#3| |#3|)) (-15 -2751 (|#3| |#3|)) (-15 -2053 (|#3| |#3|))))
+((-2794 (((-112) $) 19)) (-1639 (((-183) $) 7)) (-3390 (((-3 (-506) "failed") $) 14)) (-2445 (((-3 (-641 $) "failed") $) NIL)) (-3071 (((-3 (-506) "failed") $) 20)) (-2784 (((-3 (-1098) "failed") $) 18)) (-2017 (((-112) $) 16)) (-3714 (((-859) $) NIL)) (-4341 (((-112) $) 9)))
+(((-280) (-13 (-611 (-859)) (-10 -8 (-15 -1639 ((-183) $)) (-15 -2017 ((-112) $)) (-15 -2784 ((-3 (-1098) "failed") $)) (-15 -2794 ((-112) $)) (-15 -3071 ((-3 (-506) "failed") $)) (-15 -4341 ((-112) $)) (-15 -3390 ((-3 (-506) "failed") $)) (-15 -2445 ((-3 (-641 $) "failed") $))))) (T -280))
+((-1639 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2784 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3071 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3390 (*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))) (-2445 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -1639 ((-183) $)) (-15 -2017 ((-112) $)) (-15 -2784 ((-3 (-1098) "failed") $)) (-15 -2794 ((-112) $)) (-15 -3071 ((-3 (-506) "failed") $)) (-15 -4341 ((-112) $)) (-15 -3390 ((-3 (-506) "failed") $)) (-15 -2445 ((-3 (-641 $) "failed") $))))
+((-4148 (($ (-1 (-112) |#2|) $) 24)) (-2084 (($ $) 38)) (-4074 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2514 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2573 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2455 (($ |#2| $ (-564)) 20) (($ $ $ (-564)) 22)) (-2090 (($ $ (-564)) 11) (($ $ (-1226 (-564))) 14)) (-1711 (($ $ |#2|) 32) (($ $ $) NIL)) (-1865 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-641 $)) NIL)))
+(((-281 |#1| |#2|) (-10 -8 (-15 -2573 (|#1| |#1| |#1|)) (-15 -4074 (|#1| |#2| |#1|)) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4074 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1| |#2|)) (-15 -2455 (|#1| |#1| |#1| (-564))) (-15 -2455 (|#1| |#2| |#1| (-564))) (-15 -2090 (|#1| |#1| (-1226 (-564)))) (-15 -2090 (|#1| |#1| (-564))) (-15 -1865 (|#1| (-641 |#1|))) (-15 -1865 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#2|)) (-15 -2514 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4148 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2514 (|#1| |#2| |#1|)) (-15 -2084 (|#1| |#1|))) (-282 |#2|) (-1209)) (T -281))
+NIL
+(-10 -8 (-15 -2573 (|#1| |#1| |#1|)) (-15 -4074 (|#1| |#2| |#1|)) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4074 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1| |#2|)) (-15 -2455 (|#1| |#1| |#1| (-564))) (-15 -2455 (|#1| |#2| |#1| (-564))) (-15 -2090 (|#1| |#1| (-1226 (-564)))) (-15 -2090 (|#1| |#1| (-564))) (-15 -1865 (|#1| (-641 |#1|))) (-15 -1865 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#2|)) (-15 -2514 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4148 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2514 (|#1| |#2| |#1|)) (-15 -2084 (|#1| |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2399 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) 8)) (-3868 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4413)))) (-1773 (($ (-1 (-112) |#1|) $) 85)) (-4148 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2822 (($ $) 83 (|has| |#1| (-1094)))) (-2084 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1094)))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 51)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-3564 (($ (-768) |#1|) 69)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 43 (|has| (-564) (-847)))) (-2573 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2373 (($ |#1| $ (-564)) 88) (($ $ $ (-564)) 87)) (-2455 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3127 (((-641 (-564)) $) 46)) (-1338 (((-112) (-564) $) 47)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2049 ((|#1| $) 42 (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3538 (($ $ |#1|) 41 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2899 (($ $ (-564)) 91) (($ $ (-1226 (-564))) 90)) (-2090 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 70)) (-1711 (($ $ |#1|) 93) (($ $ $) 92)) (-1865 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-282 |#1|) (-140) (-1209)) (T -282))
-((-2478 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2478 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-1907 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2098 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2098 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-1397 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-4194 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-1907 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-3083 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-1397 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))))
-(-13 (-647 |t#1|) (-10 -8 (-6 -4412) (-15 -2478 ($ $ |t#1|)) (-15 -2478 ($ $ $)) (-15 -4183 ($ $ (-564))) (-15 -4183 ($ $ (-1226 (-564)))) (-15 -1907 ($ (-1 (-112) |t#1|) $)) (-15 -2098 ($ |t#1| $ (-564))) (-15 -2098 ($ $ $ (-564))) (-15 -1397 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4194 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -1907 ($ |t#1| $)) (-15 -3083 ($ $))) |%noBranch|) (IF (|has| |t#1| (-847)) (-15 -1397 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-1711 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-1711 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2899 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2899 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-4074 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2373 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2373 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2573 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-1773 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-4074 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-2822 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-2573 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))))
+(-13 (-647 |t#1|) (-10 -8 (-6 -4413) (-15 -1711 ($ $ |t#1|)) (-15 -1711 ($ $ $)) (-15 -2899 ($ $ (-564))) (-15 -2899 ($ $ (-1226 (-564)))) (-15 -4074 ($ (-1 (-112) |t#1|) $)) (-15 -2373 ($ |t#1| $ (-564))) (-15 -2373 ($ $ $ (-564))) (-15 -2573 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1773 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -4074 ($ |t#1| $)) (-15 -2822 ($ $))) |%noBranch|) (IF (|has| |t#1| (-847)) (-15 -2573 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
((** (($ $ $) 10)))
(((-283 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-284)) (T -283))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-2186 (($ $) 6)) (-2152 (($ $) 7)) (** (($ $ $) 8)))
+((-2305 (($ $) 6)) (-4130 (($ $) 7)) (** (($ $ $) 8)))
(((-284) (-140)) (T -284))
-((** (*1 *1 *1 *1) (-4 *1 (-284))) (-2152 (*1 *1 *1) (-4 *1 (-284))) (-2186 (*1 *1 *1) (-4 *1 (-284))))
-(-13 (-10 -8 (-15 -2186 ($ $)) (-15 -2152 ($ $)) (-15 ** ($ $ $))))
-((-2846 (((-641 (-1150 |#1|)) (-1150 |#1|) |#1|) 35)) (-1876 ((|#2| |#2| |#1|) 39)) (-3208 ((|#2| |#2| |#1|) 41)) (-3616 ((|#2| |#2| |#1|) 40)))
-(((-285 |#1| |#2|) (-10 -7 (-15 -1876 (|#2| |#2| |#1|)) (-15 -3616 (|#2| |#2| |#1|)) (-15 -3208 (|#2| |#2| |#1|)) (-15 -2846 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|))) (-363) (-1250 |#1|)) (T -285))
-((-2846 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4)))) (-3208 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-3616 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-1876 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
-(-10 -7 (-15 -1876 (|#2| |#2| |#1|)) (-15 -3616 (|#2| |#2| |#1|)) (-15 -3208 (|#2| |#2| |#1|)) (-15 -2846 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|)))
+((** (*1 *1 *1 *1) (-4 *1 (-284))) (-4130 (*1 *1 *1) (-4 *1 (-284))) (-2305 (*1 *1 *1) (-4 *1 (-284))))
+(-13 (-10 -8 (-15 -2305 ($ $)) (-15 -4130 ($ $)) (-15 ** ($ $ $))))
+((-4165 (((-641 (-1150 |#1|)) (-1150 |#1|) |#1|) 35)) (-1962 ((|#2| |#2| |#1|) 39)) (-1587 ((|#2| |#2| |#1|) 41)) (-2591 ((|#2| |#2| |#1|) 40)))
+(((-285 |#1| |#2|) (-10 -7 (-15 -1962 (|#2| |#2| |#1|)) (-15 -2591 (|#2| |#2| |#1|)) (-15 -1587 (|#2| |#2| |#1|)) (-15 -4165 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|))) (-363) (-1250 |#1|)) (T -285))
+((-4165 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4)))) (-1587 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-2591 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-1962 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
+(-10 -7 (-15 -1962 (|#2| |#2| |#1|)) (-15 -2591 (|#2| |#2| |#1|)) (-15 -1587 (|#2| |#2| |#1|)) (-15 -4165 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|)))
((-4382 ((|#2| $ |#1|) 6)))
(((-286 |#1| |#2|) (-140) (-1094) (-1209)) (T -286))
((-4382 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))))
(-13 (-10 -8 (-15 -4382 (|t#2| $ |t#1|))))
-((-3528 ((|#3| $ |#2| |#3|) 12)) (-3455 ((|#3| $ |#2|) 10)))
-(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -3528 (|#3| |#1| |#2| |#3|)) (-15 -3455 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1094) (-1209)) (T -287))
+((-1998 ((|#3| $ |#2| |#3|) 12)) (-3593 ((|#3| $ |#2|) 10)))
+(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -1998 (|#3| |#1| |#2| |#3|)) (-15 -3593 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1094) (-1209)) (T -287))
NIL
-(-10 -8 (-15 -3528 (|#3| |#1| |#2| |#3|)) (-15 -3455 (|#3| |#1| |#2|)))
-((-1881 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4412)))) (-3528 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) 11)) (-4382 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(-10 -8 (-15 -1998 (|#3| |#1| |#2| |#3|)) (-15 -3593 (|#3| |#1| |#2|)))
+((-3868 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4413)))) (-1998 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) 11)) (-4382 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
(((-288 |#1| |#2|) (-140) (-1094) (-1209)) (T -288))
-((-4382 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-3455 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-1881 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-3528 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))))
-(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -4382 (|t#2| $ |t#1| |t#2|)) (-15 -3455 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4412)) (PROGN (-15 -1881 (|t#2| $ |t#1| |t#2|)) (-15 -3528 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((-4382 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-3593 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-3868 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-1998 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))))
+(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -4382 (|t#2| $ |t#1| |t#2|)) (-15 -3593 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4413)) (PROGN (-15 -3868 (|t#2| $ |t#1| |t#2|)) (-15 -1998 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-286 |#1| |#2|) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 37)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 44)) (-1840 (($ $) 41)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-1387 (($ $ $) 35)) (-4367 (($ |#2| |#3|) 18)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-2419 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4022 ((|#3| $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 19)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3712 (((-768) $) 36)) (-4382 ((|#2| $ |#2|) 46)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 23)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1965 (((-768)) NIL T CONST)) (-1582 (((-112) $ $) NIL)) (-4317 (($) 31 T CONST)) (-4327 (($) 39 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 40)))
-(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -4022 (|#3| $)) (-15 -1765 (|#2| $)) (-15 -4367 ($ |#2| |#3|)) (-15 -3174 ((-3 $ "failed") $ $)) (-15 -1926 ((-3 $ "failed") $)) (-15 -4272 ($ $)) (-15 -4382 (|#2| $ |#2|)))) (-172) (-1235 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289))
-((-1926 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4022 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1765 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-4367 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3174 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4272 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4382 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-307) (-10 -8 (-15 -4022 (|#3| $)) (-15 -1765 (|#2| $)) (-15 -4367 ($ |#2| |#3|)) (-15 -3174 ((-3 $ "failed") $ $)) (-15 -1926 ((-3 $ "failed") $)) (-15 -4272 ($ $)) (-15 -4382 (|#2| $ |#2|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 37)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 44)) (-1582 (($ $) 41)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-1399 (($ $ $) 35)) (-1728 (($ |#2| |#3|) 18)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-2340 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3756 ((|#3| $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 19)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2519 (((-3 $ "failed") $ $) NIL)) (-3966 (((-768) $) 36)) (-4382 ((|#2| $ |#2|) 46)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 23)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3379 (((-768)) NIL T CONST)) (-3979 (((-112) $ $) NIL)) (-4312 (($) 31 T CONST)) (-4323 (($) 39 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 40)))
+(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -3756 (|#3| $)) (-15 -3714 (|#2| $)) (-15 -1728 ($ |#2| |#3|)) (-15 -2519 ((-3 $ "failed") $ $)) (-15 -4272 ((-3 $ "failed") $)) (-15 -1295 ($ $)) (-15 -4382 (|#2| $ |#2|)))) (-172) (-1235 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289))
+((-4272 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3756 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3714 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1728 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2519 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1295 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4382 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-307) (-10 -8 (-15 -3756 (|#3| $)) (-15 -3714 (|#2| $)) (-15 -1728 ($ |#2| |#3|)) (-15 -2519 ((-3 $ "failed") $ $)) (-15 -4272 ((-3 $ "failed") $)) (-15 -1295 ($ $)) (-15 -4382 (|#2| $ |#2|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-290) (-140)) (T -290))
NIL
-(-13 (-1046) (-111 $ $) (-10 -7 (-6 -4404)))
+(-13 (-1046) (-111 $ $) (-10 -7 (-6 -4405)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2863 (($ (-1170) (-1170) (-1098) $) 19)) (-2349 (($ (-1170) (-641 (-962)) $) 23)) (-3011 (((-641 (-1079)) $) 10)) (-1885 (($) 25)) (-3185 (((-687 (-1098)) (-1170) (-1170) $) 18)) (-1309 (((-641 (-962)) (-1170) $) 22)) (-3845 (($) 7)) (-1904 (($) 24)) (-1765 (((-859) $) 29)) (-3160 (($) 26)))
-(((-291) (-13 (-611 (-859)) (-10 -8 (-15 -3845 ($)) (-15 -3011 ((-641 (-1079)) $)) (-15 -3185 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -2863 ($ (-1170) (-1170) (-1098) $)) (-15 -1309 ((-641 (-962)) (-1170) $)) (-15 -2349 ($ (-1170) (-641 (-962)) $)) (-15 -1904 ($)) (-15 -1885 ($)) (-15 -3160 ($))))) (T -291))
-((-3845 (*1 *1) (-5 *1 (-291))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291)))) (-3185 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291)))) (-2863 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291)))) (-1309 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-962))) (-5 *1 (-291)))) (-2349 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-291)))) (-1904 (*1 *1) (-5 *1 (-291))) (-1885 (*1 *1) (-5 *1 (-291))) (-3160 (*1 *1) (-5 *1 (-291))))
-(-13 (-611 (-859)) (-10 -8 (-15 -3845 ($)) (-15 -3011 ((-641 (-1079)) $)) (-15 -3185 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -2863 ($ (-1170) (-1170) (-1098) $)) (-15 -1309 ((-641 (-962)) (-1170) $)) (-15 -2349 ($ (-1170) (-641 (-962)) $)) (-15 -1904 ($)) (-15 -1885 ($)) (-15 -3160 ($))))
-((-2501 (((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))) 105)) (-3040 (((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|)))) 100) (((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768)) 41)) (-3408 (((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))) 102)) (-1851 (((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|)))) 77)) (-3319 (((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|)))) 76)) (-3216 (((-949 |#1|) (-685 (-407 (-949 |#1|)))) 57) (((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170)) 58)))
-(((-292 |#1|) (-10 -7 (-15 -3216 ((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170))) (-15 -3216 ((-949 |#1|) (-685 (-407 (-949 |#1|))))) (-15 -3319 ((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|))))) (-15 -1851 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))))) (-15 -3040 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768))) (-15 -3040 ((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|))))) (-15 -2501 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))) (-15 -3408 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))))) (-452)) (T -292))
-((-3408 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))) (-2501 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 *4)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))) (-3040 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-949 *6)) (-1159 (-1170) (-949 *6)))) (-5 *5 (-768)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-949 *6)))))) (-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))) (-3319 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-4 *4 (-452)) (-5 *2 (-641 (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))) (-5 *1 (-292 *4)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-5 *2 (-949 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-949 *5)))) (-5 *4 (-1170)) (-5 *2 (-949 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))))
-(-10 -7 (-15 -3216 ((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170))) (-15 -3216 ((-949 |#1|) (-685 (-407 (-949 |#1|))))) (-15 -3319 ((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|))))) (-15 -1851 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))))) (-15 -3040 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768))) (-15 -3040 ((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|))))) (-15 -2501 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))) (-15 -3408 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))))
-((-2082 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14)))
-(((-293 |#1| |#2|) (-10 -7 (-15 -2082 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1209) (-1209)) (T -293))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6)))))
-(-10 -7 (-15 -2082 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3976 (((-112) $) NIL (|has| |#1| (-21)))) (-2040 (($ $) 12)) (-3936 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2662 (($ $ $) 95 (|has| |#1| (-302)))) (-3760 (($) NIL (-4002 (|has| |#1| (-21)) (|has| |#1| (-723))) CONST)) (-2059 (($ $) 51 (|has| |#1| (-21)))) (-1609 (((-3 $ "failed") $) 62 (|has| |#1| (-723)))) (-4324 ((|#1| $) 11)) (-1926 (((-3 $ "failed") $) 60 (|has| |#1| (-723)))) (-2419 (((-112) $) NIL (|has| |#1| (-723)))) (-2082 (($ (-1 |#1| |#1|) $) 14)) (-4312 ((|#1| $) 10)) (-3320 (($ $) 50 (|has| |#1| (-21)))) (-2037 (((-3 $ "failed") $) 61 (|has| |#1| (-723)))) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4272 (($ $) 64 (-4002 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2550 (((-641 $) $) 85 (|has| |#1| (-556)))) (-2407 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 21 (|has| |#1| (-514 (-1170) |#1|)))) (-3566 (($ |#1| |#1|) 9)) (-3850 (((-134)) 90 (|has| |#1| (-363)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 87 (|has| |#1| (-897 (-1170))))) (-2502 (($ $ $) NIL (|has| |#1| (-473)))) (-1762 (($ $ $) NIL (|has| |#1| (-473)))) (-1765 (($ (-564)) NIL (|has| |#1| (-1046))) (((-112) $) 37 (|has| |#1| (-1094))) (((-859) $) 36 (|has| |#1| (-1094)))) (-1965 (((-768)) 67 (|has| |#1| (-1046)) CONST)) (-4317 (($) 47 (|has| |#1| (-21)) CONST)) (-4327 (($) 57 (|has| |#1| (-723)) CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170))))) (-1686 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1094)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (-4002 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-1783 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-1771 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-564)) NIL (|has| |#1| (-473))) (($ $ (-768)) NIL (|has| |#1| (-723))) (($ $ (-918)) NIL (|has| |#1| (-1106)))) (* (($ $ |#1|) 55 (|has| |#1| (-1106))) (($ |#1| $) 54 (|has| |#1| (-1106))) (($ $ $) 53 (|has| |#1| (-1106))) (($ (-564) $) 70 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-25)))))
-(((-294 |#1|) (-13 (-1209) (-10 -8 (-15 -1686 ($ |#1| |#1|)) (-15 -3566 ($ |#1| |#1|)) (-15 -2040 ($ $)) (-15 -4312 (|#1| $)) (-15 -4324 (|#1| $)) (-15 -2082 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -2407 ($ $ $)) (-15 -2407 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1771 ($ |#1| $)) (-15 -1771 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3320 ($ $)) (-15 -2059 ($ $)) (-15 -1783 ($ |#1| $)) (-15 -1783 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-723)) (PROGN (-6 (-723)) (-15 -2037 ((-3 $ "failed") $)) (-15 -1609 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2037 ((-3 $ "failed") $)) (-15 -1609 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2550 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -1793 ($ $ $)) (-15 -4272 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2662 ($ $ $)) |%noBranch|))) (-1209)) (T -294))
-((-1686 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3566 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2040 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-4312 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-4324 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-2407 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)) (-5 *1 (-294 *2)))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-1771 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-1771 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-3320 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-2059 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-1783 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-2037 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))) (-1609 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) (-4 *3 (-1209)))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (-1793 (*1 *1 *1 *1) (-4002 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) (-4272 (*1 *1 *1) (-4002 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))))
-(-13 (-1209) (-10 -8 (-15 -1686 ($ |#1| |#1|)) (-15 -3566 ($ |#1| |#1|)) (-15 -2040 ($ $)) (-15 -4312 (|#1| $)) (-15 -4324 (|#1| $)) (-15 -2082 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -2407 ($ $ $)) (-15 -2407 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1771 ($ |#1| $)) (-15 -1771 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3320 ($ $)) (-15 -2059 ($ $)) (-15 -1783 ($ |#1| $)) (-15 -1783 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-723)) (PROGN (-6 (-723)) (-15 -2037 ((-3 $ "failed") $)) (-15 -1609 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2037 ((-3 $ "failed") $)) (-15 -1609 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2550 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -1793 ($ $ $)) (-15 -4272 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2662 ($ $ $)) |%noBranch|)))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3476 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#2| $ |#1| |#2|) NIL)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 |#2| "failed") |#1| $) NIL)) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) NIL)) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) NIL)) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 ((|#1| $) NIL (|has| |#1| (-847)))) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1479 ((|#1| $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3211 (((-641 |#1|) $) NIL)) (-4185 (((-112) |#1| $) NIL)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1371 (((-641 |#1|) $) NIL)) (-3629 (((-112) |#1| $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3073 ((|#2| $) NIL (|has| |#1| (-847)))) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-1765 (((-859) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-295 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) (-1094) (-1094)) (T -295))
-NIL
-(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411)))
-((-1919 (((-312) (-1152) (-641 (-1152))) 17) (((-312) (-1152) (-1152)) 16) (((-312) (-641 (-1152))) 15) (((-312) (-1152)) 14)))
-(((-296) (-10 -7 (-15 -1919 ((-312) (-1152))) (-15 -1919 ((-312) (-641 (-1152)))) (-15 -1919 ((-312) (-1152) (-1152))) (-15 -1919 ((-312) (-1152) (-641 (-1152)))))) (T -296))
-((-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1919 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))))
-(-10 -7 (-15 -1919 ((-312) (-1152))) (-15 -1919 ((-312) (-641 (-1152)))) (-15 -1919 ((-312) (-1152) (-1152))) (-15 -1919 ((-312) (-1152) (-641 (-1152)))))
-((-2082 ((|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)) 18)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -2082 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)))) (-302) (-1209)) (T -297))
-((-2082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1152)) (-5 *5 (-610 *6)) (-4 *6 (-302)) (-4 *2 (-1209)) (-5 *1 (-297 *6 *2)))))
-(-10 -7 (-15 -2082 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|))))
-((-2082 ((|#2| (-1 |#2| |#1|) (-610 |#1|)) 17)))
-(((-298 |#1| |#2|) (-10 -7 (-15 -2082 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) (-302) (-302)) (T -298))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2)))))
-(-10 -7 (-15 -2082 (|#2| (-1 |#2| |#1|) (-610 |#1|))))
-((-2485 (((-112) (-225)) 12)))
-(((-299 |#1| |#2|) (-10 -7 (-15 -2485 ((-112) (-225)))) (-225) (-225)) (T -299))
-((-2485 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2485 ((-112) (-225))))
-((-4186 (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225)))) 118)) (-1348 (((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225)))) 135) (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225)))) 72)) (-3446 (((-641 (-1152)) (-1150 (-225))) NIL)) (-3785 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225)))) 69)) (-1701 (((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225)))) 59)) (-4084 (((-641 (-1152)) (-641 (-225))) NIL)) (-2481 (((-225) (-1088 (-840 (-225)))) 29)) (-3908 (((-225) (-1088 (-840 (-225)))) 30)) (-1614 (((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-1401 (((-1152) (-225)) NIL)))
-(((-300) (-10 -7 (-15 -2481 ((-225) (-1088 (-840 (-225))))) (-15 -3908 ((-225) (-1088 (-840 (-225))))) (-15 -1614 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3785 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -4186 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -1348 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -1348 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -1701 ((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225))))) (-15 -1401 ((-1152) (-225))) (-15 -4084 ((-641 (-1152)) (-641 (-225)))) (-15 -3446 ((-641 (-1152)) (-1150 (-225)))))) (T -300))
-((-3446 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300)))) (-1701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-1348 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-1348 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-4186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-3785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))))
-(-10 -7 (-15 -2481 ((-225) (-1088 (-840 (-225))))) (-15 -3908 ((-225) (-1088 (-840 (-225))))) (-15 -1614 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3785 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -4186 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -1348 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -1348 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -1701 ((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225))))) (-15 -1401 ((-1152) (-225))) (-15 -4084 ((-641 (-1152)) (-641 (-225)))) (-15 -3446 ((-641 (-1152)) (-1150 (-225)))))
-((-3853 (((-641 (-610 $)) $) 31)) (-2662 (($ $ (-294 $)) 82) (($ $ (-641 (-294 $))) 136) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2013 (((-3 (-610 $) "failed") $) 124)) (-2064 (((-610 $) $) 123)) (-2696 (($ $) 19) (($ (-641 $)) 57)) (-2885 (((-641 (-114)) $) 39)) (-1826 (((-114) (-114)) 92)) (-1629 (((-112) $) 147)) (-2082 (($ (-1 $ $) (-610 $)) 90)) (-4293 (((-3 (-610 $) "failed") $) 98)) (-1583 (($ (-114) $) 62) (($ (-114) (-641 $)) 109)) (-3559 (((-112) $ (-114)) 129) (((-112) $ (-1170)) 128)) (-1813 (((-768) $) 48)) (-1350 (((-112) $ $) 60) (((-112) $ (-1170)) 52)) (-1518 (((-112) $) 145)) (-2407 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) 134) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 85) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) 70) (($ $ (-1170) (-1 $ $)) 76) (($ $ (-641 (-114)) (-641 (-1 $ $))) 84) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 86) (($ $ (-114) (-1 $ (-641 $))) 72) (($ $ (-114) (-1 $ $)) 78)) (-4382 (($ (-114) $) 63) (($ (-114) $ $) 64) (($ (-114) $ $ $) 65) (($ (-114) $ $ $ $) 66) (($ (-114) (-641 $)) 120)) (-2898 (($ $) 54) (($ $ $) 132)) (-1719 (($ $) 17) (($ (-641 $)) 56)) (-1573 (((-112) (-114)) 23)))
-(((-301 |#1|) (-10 -8 (-15 -1629 ((-112) |#1|)) (-15 -1518 ((-112) |#1|)) (-15 -2407 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2407 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1350 ((-112) |#1| (-1170))) (-15 -1350 ((-112) |#1| |#1|)) (-15 -2082 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -1583 (|#1| (-114) (-641 |#1|))) (-15 -1583 (|#1| (-114) |#1|)) (-15 -3559 ((-112) |#1| (-1170))) (-15 -3559 ((-112) |#1| (-114))) (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -2885 ((-641 (-114)) |#1|)) (-15 -3853 ((-641 (-610 |#1|)) |#1|)) (-15 -4293 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1813 ((-768) |#1|)) (-15 -2898 (|#1| |#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2696 (|#1| (-641 |#1|))) (-15 -2696 (|#1| |#1|)) (-15 -1719 (|#1| (-641 |#1|))) (-15 -1719 (|#1| |#1|)) (-15 -2662 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2662 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2662 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2407 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2013 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2064 ((-610 |#1|) |#1|))) (-302)) (T -301))
-((-1826 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))))
-(-10 -8 (-15 -1629 ((-112) |#1|)) (-15 -1518 ((-112) |#1|)) (-15 -2407 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2407 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1350 ((-112) |#1| (-1170))) (-15 -1350 ((-112) |#1| |#1|)) (-15 -2082 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -1583 (|#1| (-114) (-641 |#1|))) (-15 -1583 (|#1| (-114) |#1|)) (-15 -3559 ((-112) |#1| (-1170))) (-15 -3559 ((-112) |#1| (-114))) (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -2885 ((-641 (-114)) |#1|)) (-15 -3853 ((-641 (-610 |#1|)) |#1|)) (-15 -4293 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -1813 ((-768) |#1|)) (-15 -2898 (|#1| |#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2696 (|#1| (-641 |#1|))) (-15 -2696 (|#1| |#1|)) (-15 -1719 (|#1| (-641 |#1|))) (-15 -1719 (|#1| |#1|)) (-15 -2662 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2662 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2662 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2407 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2013 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2064 ((-610 |#1|) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3853 (((-641 (-610 $)) $) 44)) (-2662 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-2013 (((-3 (-610 $) "failed") $) 69)) (-2064 (((-610 $) $) 70)) (-2696 (($ $) 51) (($ (-641 $)) 50)) (-2885 (((-641 (-114)) $) 43)) (-1826 (((-114) (-114)) 42)) (-1629 (((-112) $) 22 (|has| $ (-1035 (-564))))) (-2431 (((-1166 $) (-610 $)) 25 (|has| $ (-1046)))) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-2082 (($ (-1 $ $) (-610 $)) 36)) (-4293 (((-3 (-610 $) "failed") $) 46)) (-4202 (((-1152) $) 9)) (-3943 (((-641 (-610 $)) $) 45)) (-1583 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-3559 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-1813 (((-768) $) 47)) (-3802 (((-1114) $) 10)) (-1350 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-1518 (((-112) $) 23 (|has| $ (-1035 (-564))))) (-2407 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-4382 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-2898 (($ $) 49) (($ $ $) 48)) (-1916 (($ $) 24 (|has| $ (-1046)))) (-1765 (((-859) $) 11) (($ (-610 $)) 68)) (-1719 (($ $) 53) (($ (-641 $)) 52)) (-1573 (((-112) (-114)) 41)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+((-4352 (($ (-1170) (-1170) (-1098) $) 19)) (-2941 (($ (-1170) (-641 (-962)) $) 23)) (-1415 (((-641 (-1079)) $) 10)) (-2039 (($) 25)) (-2629 (((-687 (-1098)) (-1170) (-1170) $) 18)) (-2134 (((-641 (-962)) (-1170) $) 22)) (-2834 (($) 7)) (-1821 (($) 24)) (-3714 (((-859) $) 29)) (-2369 (($) 26)))
+(((-291) (-13 (-611 (-859)) (-10 -8 (-15 -2834 ($)) (-15 -1415 ((-641 (-1079)) $)) (-15 -2629 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -4352 ($ (-1170) (-1170) (-1098) $)) (-15 -2134 ((-641 (-962)) (-1170) $)) (-15 -2941 ($ (-1170) (-641 (-962)) $)) (-15 -1821 ($)) (-15 -2039 ($)) (-15 -2369 ($))))) (T -291))
+((-2834 (*1 *1) (-5 *1 (-291))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291)))) (-2629 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291)))) (-4352 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291)))) (-2134 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-962))) (-5 *1 (-291)))) (-2941 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-291)))) (-1821 (*1 *1) (-5 *1 (-291))) (-2039 (*1 *1) (-5 *1 (-291))) (-2369 (*1 *1) (-5 *1 (-291))))
+(-13 (-611 (-859)) (-10 -8 (-15 -2834 ($)) (-15 -1415 ((-641 (-1079)) $)) (-15 -2629 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -4352 ($ (-1170) (-1170) (-1098) $)) (-15 -2134 ((-641 (-962)) (-1170) $)) (-15 -2941 ($ (-1170) (-641 (-962)) $)) (-15 -1821 ($)) (-15 -2039 ($)) (-15 -2369 ($))))
+((-1942 (((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))) 105)) (-3524 (((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|)))) 100) (((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768)) 41)) (-2965 (((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))) 102)) (-1697 (((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|)))) 77)) (-1422 (((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|)))) 76)) (-1650 (((-949 |#1|) (-685 (-407 (-949 |#1|)))) 57) (((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170)) 58)))
+(((-292 |#1|) (-10 -7 (-15 -1650 ((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170))) (-15 -1650 ((-949 |#1|) (-685 (-407 (-949 |#1|))))) (-15 -1422 ((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|))))) (-15 -1697 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))))) (-15 -3524 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768))) (-15 -3524 ((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|))))) (-15 -1942 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))) (-15 -2965 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))))) (-452)) (T -292))
+((-2965 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))) (-1942 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))) (-3524 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 *4)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))) (-3524 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-949 *6)) (-1159 (-1170) (-949 *6)))) (-5 *5 (-768)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-949 *6)))))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-4 *4 (-452)) (-5 *2 (-641 (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))) (-5 *1 (-292 *4)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-5 *2 (-949 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-1650 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-949 *5)))) (-5 *4 (-1170)) (-5 *2 (-949 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))))
+(-10 -7 (-15 -1650 ((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170))) (-15 -1650 ((-949 |#1|) (-685 (-407 (-949 |#1|))))) (-15 -1422 ((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|))))) (-15 -1697 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))))) (-15 -3524 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768))) (-15 -3524 ((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|))))) (-15 -1942 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))) (-15 -2965 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))))
+((-2313 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14)))
+(((-293 |#1| |#2|) (-10 -7 (-15 -2313 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1209) (-1209)) (T -293))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6)))))
+(-10 -7 (-15 -2313 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1556 (((-112) $) NIL (|has| |#1| (-21)))) (-2997 (($ $) 12)) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3203 (($ $ $) 95 (|has| |#1| (-302)))) (-3180 (($) NIL (-4012 (|has| |#1| (-21)) (|has| |#1| (-723))) CONST)) (-3160 (($ $) 51 (|has| |#1| (-21)))) (-4231 (((-3 $ "failed") $) 62 (|has| |#1| (-723)))) (-3119 ((|#1| $) 11)) (-4272 (((-3 $ "failed") $) 60 (|has| |#1| (-723)))) (-2340 (((-112) $) NIL (|has| |#1| (-723)))) (-2313 (($ (-1 |#1| |#1|) $) 14)) (-3109 ((|#1| $) 10)) (-1431 (($ $) 50 (|has| |#1| (-21)))) (-2970 (((-3 $ "failed") $) 61 (|has| |#1| (-723)))) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1295 (($ $) 64 (-4012 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4193 (((-641 $) $) 85 (|has| |#1| (-556)))) (-2582 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 21 (|has| |#1| (-514 (-1170) |#1|)))) (-2538 (($ |#1| |#1|) 9)) (-2869 (((-134)) 90 (|has| |#1| (-363)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 87 (|has| |#1| (-897 (-1170))))) (-1953 (($ $ $) NIL (|has| |#1| (-473)))) (-3217 (($ $ $) NIL (|has| |#1| (-473)))) (-3714 (($ (-564)) NIL (|has| |#1| (-1046))) (((-112) $) 37 (|has| |#1| (-1094))) (((-859) $) 36 (|has| |#1| (-1094)))) (-3379 (((-768)) 67 (|has| |#1| (-1046)) CONST)) (-4312 (($) 47 (|has| |#1| (-21)) CONST)) (-4323 (($) 57 (|has| |#1| (-723)) CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170))))) (-1720 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1094)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (-4012 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-1828 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-1814 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-564)) NIL (|has| |#1| (-473))) (($ $ (-768)) NIL (|has| |#1| (-723))) (($ $ (-918)) NIL (|has| |#1| (-1106)))) (* (($ $ |#1|) 55 (|has| |#1| (-1106))) (($ |#1| $) 54 (|has| |#1| (-1106))) (($ $ $) 53 (|has| |#1| (-1106))) (($ (-564) $) 70 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-25)))))
+(((-294 |#1|) (-13 (-1209) (-10 -8 (-15 -1720 ($ |#1| |#1|)) (-15 -2538 ($ |#1| |#1|)) (-15 -2997 ($ $)) (-15 -3109 (|#1| $)) (-15 -3119 (|#1| $)) (-15 -2313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -2582 ($ $ $)) (-15 -2582 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1814 ($ |#1| $)) (-15 -1814 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1431 ($ $)) (-15 -3160 ($ $)) (-15 -1828 ($ |#1| $)) (-15 -1828 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-723)) (PROGN (-6 (-723)) (-15 -2970 ((-3 $ "failed") $)) (-15 -4231 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2970 ((-3 $ "failed") $)) (-15 -4231 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -4193 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -1841 ($ $ $)) (-15 -1295 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -3203 ($ $ $)) |%noBranch|))) (-1209)) (T -294))
+((-1720 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2538 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2997 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3109 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3119 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-2582 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)) (-5 *1 (-294 *2)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-1814 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-1814 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-1431 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-3160 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-1828 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-1828 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-2970 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))) (-4231 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) (-4 *3 (-1209)))) (-3203 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (-1841 (*1 *1 *1 *1) (-4012 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) (-1295 (*1 *1 *1) (-4012 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))))
+(-13 (-1209) (-10 -8 (-15 -1720 ($ |#1| |#1|)) (-15 -2538 ($ |#1| |#1|)) (-15 -2997 ($ $)) (-15 -3109 (|#1| $)) (-15 -3119 (|#1| $)) (-15 -2313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -2582 ($ $ $)) (-15 -2582 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1814 ($ |#1| $)) (-15 -1814 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1431 ($ $)) (-15 -3160 ($ $)) (-15 -1828 ($ |#1| $)) (-15 -1828 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-723)) (PROGN (-6 (-723)) (-15 -2970 ((-3 $ "failed") $)) (-15 -4231 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -2970 ((-3 $ "failed") $)) (-15 -4231 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -4193 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -1841 ($ $ $)) (-15 -1295 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -3203 ($ $ $)) |%noBranch|)))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-2399 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#2| $ |#1| |#2|) NIL)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 |#2| "failed") |#1| $) NIL)) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) NIL)) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) NIL)) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 ((|#1| $) NIL (|has| |#1| (-847)))) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2415 ((|#1| $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4413))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1922 (((-641 |#1|) $) NIL)) (-1690 (((-112) |#1| $) NIL)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-3127 (((-641 |#1|) $) NIL)) (-1338 (((-112) |#1| $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2049 ((|#2| $) NIL (|has| |#1| (-847)))) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3714 (((-859) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-295 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4412))) (-1094) (-1094)) (T -295))
+NIL
+(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4412)))
+((-2000 (((-312) (-1152) (-641 (-1152))) 17) (((-312) (-1152) (-1152)) 16) (((-312) (-641 (-1152))) 15) (((-312) (-1152)) 14)))
+(((-296) (-10 -7 (-15 -2000 ((-312) (-1152))) (-15 -2000 ((-312) (-641 (-1152)))) (-15 -2000 ((-312) (-1152) (-1152))) (-15 -2000 ((-312) (-1152) (-641 (-1152)))))) (T -296))
+((-2000 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-2000 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))))
+(-10 -7 (-15 -2000 ((-312) (-1152))) (-15 -2000 ((-312) (-641 (-1152)))) (-15 -2000 ((-312) (-1152) (-1152))) (-15 -2000 ((-312) (-1152) (-641 (-1152)))))
+((-2313 ((|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)) 18)))
+(((-297 |#1| |#2|) (-10 -7 (-15 -2313 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)))) (-302) (-1209)) (T -297))
+((-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1152)) (-5 *5 (-610 *6)) (-4 *6 (-302)) (-4 *2 (-1209)) (-5 *1 (-297 *6 *2)))))
+(-10 -7 (-15 -2313 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|))))
+((-2313 ((|#2| (-1 |#2| |#1|) (-610 |#1|)) 17)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -2313 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) (-302) (-302)) (T -298))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2)))))
+(-10 -7 (-15 -2313 (|#2| (-1 |#2| |#1|) (-610 |#1|))))
+((-1794 (((-112) (-225)) 12)))
+(((-299 |#1| |#2|) (-10 -7 (-15 -1794 ((-112) (-225)))) (-225) (-225)) (T -299))
+((-1794 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1794 ((-112) (-225))))
+((-1701 (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225)))) 118)) (-2517 (((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225)))) 135) (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225)))) 72)) (-3245 (((-641 (-1152)) (-1150 (-225))) NIL)) (-3381 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225)))) 69)) (-3861 (((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225)))) 59)) (-3149 (((-641 (-1152)) (-641 (-225))) NIL)) (-1749 (((-225) (-1088 (-840 (-225)))) 29)) (-2192 (((-225) (-1088 (-840 (-225)))) 30)) (-4277 (((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-1822 (((-1152) (-225)) NIL)))
+(((-300) (-10 -7 (-15 -1749 ((-225) (-1088 (-840 (-225))))) (-15 -2192 ((-225) (-1088 (-840 (-225))))) (-15 -4277 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3381 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -1701 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2517 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2517 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -3861 ((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225))))) (-15 -1822 ((-1152) (-225))) (-15 -3149 ((-641 (-1152)) (-641 (-225)))) (-15 -3245 ((-641 (-1152)) (-1150 (-225)))))) (T -300))
+((-3245 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300)))) (-3861 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-2517 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-2517 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-1701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-3381 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-4277 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))))
+(-10 -7 (-15 -1749 ((-225) (-1088 (-840 (-225))))) (-15 -2192 ((-225) (-1088 (-840 (-225))))) (-15 -4277 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3381 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -1701 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2517 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2517 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -3861 ((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225))))) (-15 -1822 ((-1152) (-225))) (-15 -3149 ((-641 (-1152)) (-641 (-225)))) (-15 -3245 ((-641 (-1152)) (-1150 (-225)))))
+((-4011 (((-641 (-610 $)) $) 31)) (-3203 (($ $ (-294 $)) 82) (($ $ (-641 (-294 $))) 136) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2224 (((-3 (-610 $) "failed") $) 124)) (-2376 (((-610 $) $) 123)) (-3187 (($ $) 19) (($ (-641 $)) 57)) (-1512 (((-641 (-114)) $) 39)) (-2702 (((-114) (-114)) 92)) (-1329 (((-112) $) 147)) (-2313 (($ (-1 $ $) (-610 $)) 90)) (-1419 (((-3 (-610 $) "failed") $) 98)) (-1736 (($ (-114) $) 62) (($ (-114) (-641 $)) 109)) (-1932 (((-112) $ (-114)) 129) (((-112) $ (-1170)) 128)) (-3694 (((-768) $) 48)) (-2544 (((-112) $ $) 60) (((-112) $ (-1170)) 52)) (-1542 (((-112) $) 145)) (-2582 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) 134) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 85) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) 70) (($ $ (-1170) (-1 $ $)) 76) (($ $ (-641 (-114)) (-641 (-1 $ $))) 84) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 86) (($ $ (-114) (-1 $ (-641 $))) 72) (($ $ (-114) (-1 $ $)) 78)) (-4382 (($ (-114) $) 63) (($ (-114) $ $) 64) (($ (-114) $ $ $) 65) (($ (-114) $ $ $ $) 66) (($ (-114) (-641 $)) 120)) (-3444 (($ $) 54) (($ $ $) 132)) (-3146 (($ $) 17) (($ (-641 $)) 56)) (-2068 (((-112) (-114)) 23)))
+(((-301 |#1|) (-10 -8 (-15 -1329 ((-112) |#1|)) (-15 -1542 ((-112) |#1|)) (-15 -2582 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2582 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -2544 ((-112) |#1| (-1170))) (-15 -2544 ((-112) |#1| |#1|)) (-15 -2313 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -1736 (|#1| (-114) (-641 |#1|))) (-15 -1736 (|#1| (-114) |#1|)) (-15 -1932 ((-112) |#1| (-1170))) (-15 -1932 ((-112) |#1| (-114))) (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -1512 ((-641 (-114)) |#1|)) (-15 -4011 ((-641 (-610 |#1|)) |#1|)) (-15 -1419 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3694 ((-768) |#1|)) (-15 -3444 (|#1| |#1| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3187 (|#1| (-641 |#1|))) (-15 -3187 (|#1| |#1|)) (-15 -3146 (|#1| (-641 |#1|))) (-15 -3146 (|#1| |#1|)) (-15 -3203 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3203 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3203 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2582 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2224 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2376 ((-610 |#1|) |#1|))) (-302)) (T -301))
+((-2702 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))))
+(-10 -8 (-15 -1329 ((-112) |#1|)) (-15 -1542 ((-112) |#1|)) (-15 -2582 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2582 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -2544 ((-112) |#1| (-1170))) (-15 -2544 ((-112) |#1| |#1|)) (-15 -2313 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -1736 (|#1| (-114) (-641 |#1|))) (-15 -1736 (|#1| (-114) |#1|)) (-15 -1932 ((-112) |#1| (-1170))) (-15 -1932 ((-112) |#1| (-114))) (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -1512 ((-641 (-114)) |#1|)) (-15 -4011 ((-641 (-610 |#1|)) |#1|)) (-15 -1419 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3694 ((-768) |#1|)) (-15 -3444 (|#1| |#1| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3187 (|#1| (-641 |#1|))) (-15 -3187 (|#1| |#1|)) (-15 -3146 (|#1| (-641 |#1|))) (-15 -3146 (|#1| |#1|)) (-15 -3203 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3203 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3203 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2582 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2224 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2376 ((-610 |#1|) |#1|)))
+((-3702 (((-112) $ $) 7)) (-4011 (((-641 (-610 $)) $) 44)) (-3203 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-2224 (((-3 (-610 $) "failed") $) 69)) (-2376 (((-610 $) $) 70)) (-3187 (($ $) 51) (($ (-641 $)) 50)) (-1512 (((-641 (-114)) $) 43)) (-2702 (((-114) (-114)) 42)) (-1329 (((-112) $) 22 (|has| $ (-1035 (-564))))) (-2466 (((-1166 $) (-610 $)) 25 (|has| $ (-1046)))) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-2313 (($ (-1 $ $) (-610 $)) 36)) (-1419 (((-3 (-610 $) "failed") $) 46)) (-1868 (((-1152) $) 9)) (-4090 (((-641 (-610 $)) $) 45)) (-1736 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-1932 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-3694 (((-768) $) 47)) (-3844 (((-1114) $) 10)) (-2544 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-1542 (((-112) $) 23 (|has| $ (-1035 (-564))))) (-2582 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-4382 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-3444 (($ $) 49) (($ $ $) 48)) (-4180 (($ $) 24 (|has| $ (-1046)))) (-3714 (((-859) $) 11) (($ (-610 $)) 68)) (-3146 (($ $) 53) (($ (-641 $)) 52)) (-2068 (((-112) (-114)) 41)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
(((-302) (-140)) (T -302))
-((-4382 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302)))) (-2662 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-1719 (*1 *1 *1) (-4 *1 (-302))) (-1719 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-2696 (*1 *1 *1) (-4 *1 (-302))) (-2696 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-2898 (*1 *1 *1) (-4 *1 (-302))) (-2898 (*1 *1 *1 *1) (-4 *1 (-302))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-768)))) (-4293 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114))))) (-1826 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1573 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3559 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3559 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-1583 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1583 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-2082 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) (-1350 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-1350 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-1046)) (-4 *1 (-302)) (-5 *2 (-1166 *1)))) (-1916 (*1 *1 *1) (-12 (-4 *1 (-1046)) (-4 *1 (-302)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))))
-(-13 (-847) (-1035 (-610 $)) (-514 (-610 $) $) (-309 $) (-10 -8 (-15 -4382 ($ (-114) $)) (-15 -4382 ($ (-114) $ $)) (-15 -4382 ($ (-114) $ $ $)) (-15 -4382 ($ (-114) $ $ $ $)) (-15 -4382 ($ (-114) (-641 $))) (-15 -2662 ($ $ (-294 $))) (-15 -2662 ($ $ (-641 (-294 $)))) (-15 -2662 ($ $ (-641 (-610 $)) (-641 $))) (-15 -1719 ($ $)) (-15 -1719 ($ (-641 $))) (-15 -2696 ($ $)) (-15 -2696 ($ (-641 $))) (-15 -2898 ($ $)) (-15 -2898 ($ $ $)) (-15 -1813 ((-768) $)) (-15 -4293 ((-3 (-610 $) "failed") $)) (-15 -3943 ((-641 (-610 $)) $)) (-15 -3853 ((-641 (-610 $)) $)) (-15 -2885 ((-641 (-114)) $)) (-15 -1826 ((-114) (-114))) (-15 -1573 ((-112) (-114))) (-15 -3559 ((-112) $ (-114))) (-15 -3559 ((-112) $ (-1170))) (-15 -1583 ($ (-114) $)) (-15 -1583 ($ (-114) (-641 $))) (-15 -2082 ($ (-1 $ $) (-610 $))) (-15 -1350 ((-112) $ $)) (-15 -1350 ((-112) $ (-1170))) (-15 -2407 ($ $ (-641 (-1170)) (-641 (-1 $ $)))) (-15 -2407 ($ $ (-641 (-1170)) (-641 (-1 $ (-641 $))))) (-15 -2407 ($ $ (-1170) (-1 $ (-641 $)))) (-15 -2407 ($ $ (-1170) (-1 $ $))) (-15 -2407 ($ $ (-641 (-114)) (-641 (-1 $ $)))) (-15 -2407 ($ $ (-641 (-114)) (-641 (-1 $ (-641 $))))) (-15 -2407 ($ $ (-114) (-1 $ (-641 $)))) (-15 -2407 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1046)) (PROGN (-15 -2431 ((-1166 $) (-610 $))) (-15 -1916 ($ $))) |%noBranch|) (IF (|has| $ (-1035 (-564))) (PROGN (-15 -1518 ((-112) $)) (-15 -1629 ((-112) $))) |%noBranch|)))
+((-4382 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-3203 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-3203 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302)))) (-3203 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-3146 (*1 *1 *1) (-4 *1 (-302))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-3187 (*1 *1 *1) (-4 *1 (-302))) (-3187 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-3444 (*1 *1 *1) (-4 *1 (-302))) (-3444 (*1 *1 *1 *1) (-4 *1 (-302))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-768)))) (-1419 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114))))) (-2702 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2068 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1932 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1932 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-1736 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1736 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-2313 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) (-2544 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2544 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-1046)) (-4 *1 (-302)) (-5 *2 (-1166 *1)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-1046)) (-4 *1 (-302)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) (-1329 (*1 *2 *1) (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))))
+(-13 (-847) (-1035 (-610 $)) (-514 (-610 $) $) (-309 $) (-10 -8 (-15 -4382 ($ (-114) $)) (-15 -4382 ($ (-114) $ $)) (-15 -4382 ($ (-114) $ $ $)) (-15 -4382 ($ (-114) $ $ $ $)) (-15 -4382 ($ (-114) (-641 $))) (-15 -3203 ($ $ (-294 $))) (-15 -3203 ($ $ (-641 (-294 $)))) (-15 -3203 ($ $ (-641 (-610 $)) (-641 $))) (-15 -3146 ($ $)) (-15 -3146 ($ (-641 $))) (-15 -3187 ($ $)) (-15 -3187 ($ (-641 $))) (-15 -3444 ($ $)) (-15 -3444 ($ $ $)) (-15 -3694 ((-768) $)) (-15 -1419 ((-3 (-610 $) "failed") $)) (-15 -4090 ((-641 (-610 $)) $)) (-15 -4011 ((-641 (-610 $)) $)) (-15 -1512 ((-641 (-114)) $)) (-15 -2702 ((-114) (-114))) (-15 -2068 ((-112) (-114))) (-15 -1932 ((-112) $ (-114))) (-15 -1932 ((-112) $ (-1170))) (-15 -1736 ($ (-114) $)) (-15 -1736 ($ (-114) (-641 $))) (-15 -2313 ($ (-1 $ $) (-610 $))) (-15 -2544 ((-112) $ $)) (-15 -2544 ((-112) $ (-1170))) (-15 -2582 ($ $ (-641 (-1170)) (-641 (-1 $ $)))) (-15 -2582 ($ $ (-641 (-1170)) (-641 (-1 $ (-641 $))))) (-15 -2582 ($ $ (-1170) (-1 $ (-641 $)))) (-15 -2582 ($ $ (-1170) (-1 $ $))) (-15 -2582 ($ $ (-641 (-114)) (-641 (-1 $ $)))) (-15 -2582 ($ $ (-641 (-114)) (-641 (-1 $ (-641 $))))) (-15 -2582 ($ $ (-114) (-1 $ (-641 $)))) (-15 -2582 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1046)) (PROGN (-15 -2466 ((-1166 $) (-610 $))) (-15 -4180 ($ $))) |%noBranch|) (IF (|has| $ (-1035 (-564))) (PROGN (-15 -1542 ((-112) $)) (-15 -1329 ((-112) $))) |%noBranch|)))
(((-102) . T) ((-614 #0=(-610 $)) . T) ((-611 (-859)) . T) ((-309 $) . T) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-847) . T) ((-1035 #0#) . T) ((-1094) . T))
-((-4231 (((-641 |#1|) (-641 |#1|)) 10)))
-(((-303 |#1|) (-10 -7 (-15 -4231 ((-641 |#1|) (-641 |#1|)))) (-845)) (T -303))
-((-4231 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-845)) (-5 *1 (-303 *3)))))
-(-10 -7 (-15 -4231 ((-641 |#1|) (-641 |#1|))))
-((-2082 (((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)) 17)))
-(((-304 |#1| |#2|) (-10 -7 (-15 -2082 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)))) (-1046) (-1046)) (T -304))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6)))))
-(-10 -7 (-15 -2082 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|))))
-((-2812 (((-1259 (-316 (-379))) (-1259 (-316 (-225)))) 112)) (-1540 (((-1088 (-840 (-225))) (-1088 (-840 (-379)))) 45)) (-3446 (((-641 (-1152)) (-1150 (-225))) 94)) (-2360 (((-316 (-379)) (-949 (-225))) 55)) (-4335 (((-225) (-949 (-225))) 51)) (-2051 (((-1152) (-379)) 196)) (-3452 (((-840 (-225)) (-840 (-379))) 39)) (-2730 (((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225)))) 165)) (-2937 (((-1032) (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) 208) (((-1032) (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))))) 206)) (-1447 (((-685 (-225)) (-641 (-225)) (-768)) 21)) (-3173 (((-1259 (-695)) (-641 (-225))) 101)) (-4084 (((-641 (-1152)) (-641 (-225))) 81)) (-1760 (((-3 (-316 (-225)) "failed") (-316 (-225))) 129)) (-2485 (((-112) (-225) (-1088 (-840 (-225)))) 118)) (-3396 (((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 225)) (-2481 (((-225) (-1088 (-840 (-225)))) 114)) (-3908 (((-225) (-1088 (-840 (-225)))) 115)) (-1711 (((-225) (-407 (-564))) 33)) (-1338 (((-1152) (-379)) 79)) (-3087 (((-225) (-379)) 24)) (-2319 (((-379) (-1259 (-316 (-225)))) 178)) (-3740 (((-316 (-225)) (-316 (-379))) 30)) (-3409 (((-407 (-564)) (-316 (-225))) 58)) (-3329 (((-316 (-407 (-564))) (-316 (-225))) 75)) (-1702 (((-316 (-379)) (-316 (-225))) 105)) (-2939 (((-225) (-316 (-225))) 59)) (-2411 (((-641 (-225)) (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) 70)) (-2623 (((-1088 (-840 (-225))) (-1088 (-840 (-225)))) 67)) (-1401 (((-1152) (-225)) 78)) (-1805 (((-695) (-225)) 97)) (-1618 (((-407 (-564)) (-225)) 60)) (-3435 (((-316 (-379)) (-225)) 54)) (-2127 (((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379))))) 48)) (-2817 (((-1032) (-641 (-1032))) 192) (((-1032) (-1032) (-1032)) 186)) (-2336 (((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 222)))
-(((-305) (-10 -7 (-15 -3087 ((-225) (-379))) (-15 -3740 ((-316 (-225)) (-316 (-379)))) (-15 -3452 ((-840 (-225)) (-840 (-379)))) (-15 -1540 ((-1088 (-840 (-225))) (-1088 (-840 (-379))))) (-15 -2127 ((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379)))))) (-15 -1618 ((-407 (-564)) (-225))) (-15 -3409 ((-407 (-564)) (-316 (-225)))) (-15 -2939 ((-225) (-316 (-225)))) (-15 -1760 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2319 ((-379) (-1259 (-316 (-225))))) (-15 -2730 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -3329 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -2623 ((-1088 (-840 (-225))) (-1088 (-840 (-225))))) (-15 -2411 ((-641 (-225)) (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))) (-15 -1805 ((-695) (-225))) (-15 -3173 ((-1259 (-695)) (-641 (-225)))) (-15 -1702 ((-316 (-379)) (-316 (-225)))) (-15 -2812 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -2485 ((-112) (-225) (-1088 (-840 (-225))))) (-15 -1401 ((-1152) (-225))) (-15 -1338 ((-1152) (-379))) (-15 -4084 ((-641 (-1152)) (-641 (-225)))) (-15 -3446 ((-641 (-1152)) (-1150 (-225)))) (-15 -2481 ((-225) (-1088 (-840 (-225))))) (-15 -3908 ((-225) (-1088 (-840 (-225))))) (-15 -2817 ((-1032) (-1032) (-1032))) (-15 -2817 ((-1032) (-641 (-1032)))) (-15 -2051 ((-1152) (-379))) (-15 -2937 ((-1032) (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -2937 ((-1032) (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))) (-15 -2336 ((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3396 ((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -2360 ((-316 (-379)) (-949 (-225)))) (-15 -4335 ((-225) (-949 (-225)))) (-15 -3435 ((-316 (-379)) (-225))) (-15 -1711 ((-225) (-407 (-564)))) (-15 -1447 ((-685 (-225)) (-641 (-225)) (-768))))) (T -305))
-((-1447 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) (-5 *1 (-305)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-4335 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-641 (-1032))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-2817 (*1 *2 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *4 (-1088 (-840 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379)))) (-5 *1 (-305)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-5 *2 (-641 (-225))) (-5 *1 (-305)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) (-5 *1 (-305)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) (-5 *1 (-305)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-1760 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-641 (-1088 (-840 (-379))))) (-5 *2 (-641 (-1088 (-840 (-225))))) (-5 *1 (-305)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-379)))) (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-840 (-379))) (-5 *2 (-840 (-225))) (-5 *1 (-305)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
-(-10 -7 (-15 -3087 ((-225) (-379))) (-15 -3740 ((-316 (-225)) (-316 (-379)))) (-15 -3452 ((-840 (-225)) (-840 (-379)))) (-15 -1540 ((-1088 (-840 (-225))) (-1088 (-840 (-379))))) (-15 -2127 ((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379)))))) (-15 -1618 ((-407 (-564)) (-225))) (-15 -3409 ((-407 (-564)) (-316 (-225)))) (-15 -2939 ((-225) (-316 (-225)))) (-15 -1760 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2319 ((-379) (-1259 (-316 (-225))))) (-15 -2730 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -3329 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -2623 ((-1088 (-840 (-225))) (-1088 (-840 (-225))))) (-15 -2411 ((-641 (-225)) (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))) (-15 -1805 ((-695) (-225))) (-15 -3173 ((-1259 (-695)) (-641 (-225)))) (-15 -1702 ((-316 (-379)) (-316 (-225)))) (-15 -2812 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -2485 ((-112) (-225) (-1088 (-840 (-225))))) (-15 -1401 ((-1152) (-225))) (-15 -1338 ((-1152) (-379))) (-15 -4084 ((-641 (-1152)) (-641 (-225)))) (-15 -3446 ((-641 (-1152)) (-1150 (-225)))) (-15 -2481 ((-225) (-1088 (-840 (-225))))) (-15 -3908 ((-225) (-1088 (-840 (-225))))) (-15 -2817 ((-1032) (-1032) (-1032))) (-15 -2817 ((-1032) (-641 (-1032)))) (-15 -2051 ((-1152) (-379))) (-15 -2937 ((-1032) (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -2937 ((-1032) (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))) (-15 -2336 ((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3396 ((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -2360 ((-316 (-379)) (-949 (-225)))) (-15 -4335 ((-225) (-949 (-225)))) (-15 -3435 ((-316 (-379)) (-225))) (-15 -1711 ((-225) (-407 (-564)))) (-15 -1447 ((-685 (-225)) (-641 (-225)) (-768))))
-((-3385 (((-112) $ $) 14)) (-1387 (($ $ $) 18)) (-1366 (($ $ $) 17)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 49)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 64)) (-2527 (($ $ $) 24) (($ (-641 $)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 34) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 39)) (-1343 (((-3 $ "failed") $ $) 21)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 52)))
-(((-306 |#1|) (-10 -8 (-15 -1953 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -2887 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2887 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1502 |#1|)) |#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1| |#1|)) (-15 -3385 ((-112) |#1| |#1|)) (-15 -2001 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3508 ((-2 (|:| -1662 (-641 |#1|)) (|:| -1502 |#1|)) (-641 |#1|))) (-15 -2527 (|#1| (-641 |#1|))) (-15 -2527 (|#1| |#1| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306))
-NIL
-(-10 -8 (-15 -1953 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -2887 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2887 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1502 |#1|)) |#1| |#1|)) (-15 -1387 (|#1| |#1| |#1|)) (-15 -1366 (|#1| |#1| |#1|)) (-15 -3385 ((-112) |#1| |#1|)) (-15 -2001 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -3508 ((-2 (|:| -1662 (-641 |#1|)) (|:| -1502 |#1|)) (-641 |#1|))) (-15 -2527 (|#1| (-641 |#1|))) (-15 -2527 (|#1| |#1| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-3385 (((-112) $ $) 60)) (-3760 (($) 17 T CONST)) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-2419 (((-112) $) 31)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-2128 (((-641 |#1|) (-641 |#1|)) 10)))
+(((-303 |#1|) (-10 -7 (-15 -2128 ((-641 |#1|) (-641 |#1|)))) (-845)) (T -303))
+((-2128 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-845)) (-5 *1 (-303 *3)))))
+(-10 -7 (-15 -2128 ((-641 |#1|) (-641 |#1|))))
+((-2313 (((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)) 17)))
+(((-304 |#1| |#2|) (-10 -7 (-15 -2313 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)))) (-1046) (-1046)) (T -304))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6)))))
+(-10 -7 (-15 -2313 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|))))
+((-2006 (((-1259 (-316 (-379))) (-1259 (-316 (-225)))) 112)) (-1753 (((-1088 (-840 (-225))) (-1088 (-840 (-379)))) 45)) (-3245 (((-641 (-1152)) (-1150 (-225))) 94)) (-3002 (((-316 (-379)) (-949 (-225))) 55)) (-3561 (((-225) (-949 (-225))) 51)) (-3094 (((-1152) (-379)) 196)) (-3301 (((-840 (-225)) (-840 (-379))) 39)) (-2385 (((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225)))) 165)) (-3885 (((-1032) (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) 208) (((-1032) (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))))) 206)) (-1920 (((-685 (-225)) (-641 (-225)) (-768)) 21)) (-2507 (((-1259 (-695)) (-641 (-225))) 101)) (-3149 (((-641 (-1152)) (-641 (-225))) 81)) (-3641 (((-3 (-316 (-225)) "failed") (-316 (-225))) 129)) (-1794 (((-112) (-225) (-1088 (-840 (-225)))) 118)) (-2864 (((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 225)) (-1749 (((-225) (-1088 (-840 (-225)))) 114)) (-2192 (((-225) (-1088 (-840 (-225)))) 115)) (-2826 (((-225) (-407 (-564))) 33)) (-2412 (((-1152) (-379)) 79)) (-2847 (((-225) (-379)) 24)) (-3801 (((-379) (-1259 (-316 (-225)))) 178)) (-3025 (((-316 (-225)) (-316 (-379))) 30)) (-2974 (((-407 (-564)) (-316 (-225))) 58)) (-1530 (((-316 (-407 (-564))) (-316 (-225))) 75)) (-3872 (((-316 (-379)) (-316 (-225))) 105)) (-3909 (((-225) (-316 (-225))) 59)) (-2253 (((-641 (-225)) (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) 70)) (-3650 (((-1088 (-840 (-225))) (-1088 (-840 (-225)))) 67)) (-1822 (((-1152) (-225)) 78)) (-2488 (((-695) (-225)) 97)) (-4313 (((-407 (-564)) (-225)) 60)) (-3165 (((-316 (-379)) (-225)) 54)) (-2374 (((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379))))) 48)) (-1865 (((-1032) (-641 (-1032))) 192) (((-1032) (-1032) (-1032)) 186)) (-3980 (((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 222)))
+(((-305) (-10 -7 (-15 -2847 ((-225) (-379))) (-15 -3025 ((-316 (-225)) (-316 (-379)))) (-15 -3301 ((-840 (-225)) (-840 (-379)))) (-15 -1753 ((-1088 (-840 (-225))) (-1088 (-840 (-379))))) (-15 -2374 ((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379)))))) (-15 -4313 ((-407 (-564)) (-225))) (-15 -2974 ((-407 (-564)) (-316 (-225)))) (-15 -3909 ((-225) (-316 (-225)))) (-15 -3641 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3801 ((-379) (-1259 (-316 (-225))))) (-15 -2385 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -1530 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -3650 ((-1088 (-840 (-225))) (-1088 (-840 (-225))))) (-15 -2253 ((-641 (-225)) (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))) (-15 -2488 ((-695) (-225))) (-15 -2507 ((-1259 (-695)) (-641 (-225)))) (-15 -3872 ((-316 (-379)) (-316 (-225)))) (-15 -2006 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -1794 ((-112) (-225) (-1088 (-840 (-225))))) (-15 -1822 ((-1152) (-225))) (-15 -2412 ((-1152) (-379))) (-15 -3149 ((-641 (-1152)) (-641 (-225)))) (-15 -3245 ((-641 (-1152)) (-1150 (-225)))) (-15 -1749 ((-225) (-1088 (-840 (-225))))) (-15 -2192 ((-225) (-1088 (-840 (-225))))) (-15 -1865 ((-1032) (-1032) (-1032))) (-15 -1865 ((-1032) (-641 (-1032)))) (-15 -3094 ((-1152) (-379))) (-15 -3885 ((-1032) (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -3885 ((-1032) (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))) (-15 -3980 ((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2864 ((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3002 ((-316 (-379)) (-949 (-225)))) (-15 -3561 ((-225) (-949 (-225)))) (-15 -3165 ((-316 (-379)) (-225))) (-15 -2826 ((-225) (-407 (-564)))) (-15 -1920 ((-685 (-225)) (-641 (-225)) (-768))))) (T -305))
+((-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) (-5 *1 (-305)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-641 (-1032))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-1865 (*1 *2 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-1794 (*1 *2 *3 *4) (-12 (-5 *4 (-1088 (-840 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379)))) (-5 *1 (-305)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305)))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-5 *2 (-641 (-225))) (-5 *1 (-305)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) (-5 *1 (-305)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) (-5 *1 (-305)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-3641 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-641 (-1088 (-840 (-379))))) (-5 *2 (-641 (-1088 (-840 (-225))))) (-5 *1 (-305)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-379)))) (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-840 (-379))) (-5 *2 (-840 (-225))) (-5 *1 (-305)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
+(-10 -7 (-15 -2847 ((-225) (-379))) (-15 -3025 ((-316 (-225)) (-316 (-379)))) (-15 -3301 ((-840 (-225)) (-840 (-379)))) (-15 -1753 ((-1088 (-840 (-225))) (-1088 (-840 (-379))))) (-15 -2374 ((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379)))))) (-15 -4313 ((-407 (-564)) (-225))) (-15 -2974 ((-407 (-564)) (-316 (-225)))) (-15 -3909 ((-225) (-316 (-225)))) (-15 -3641 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -3801 ((-379) (-1259 (-316 (-225))))) (-15 -2385 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -1530 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -3650 ((-1088 (-840 (-225))) (-1088 (-840 (-225))))) (-15 -2253 ((-641 (-225)) (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))) (-15 -2488 ((-695) (-225))) (-15 -2507 ((-1259 (-695)) (-641 (-225)))) (-15 -3872 ((-316 (-379)) (-316 (-225)))) (-15 -2006 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -1794 ((-112) (-225) (-1088 (-840 (-225))))) (-15 -1822 ((-1152) (-225))) (-15 -2412 ((-1152) (-379))) (-15 -3149 ((-641 (-1152)) (-641 (-225)))) (-15 -3245 ((-641 (-1152)) (-1150 (-225)))) (-15 -1749 ((-225) (-1088 (-840 (-225))))) (-15 -2192 ((-225) (-1088 (-840 (-225))))) (-15 -1865 ((-1032) (-1032) (-1032))) (-15 -1865 ((-1032) (-641 (-1032)))) (-15 -3094 ((-1152) (-379))) (-15 -3885 ((-1032) (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -3885 ((-1032) (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))) (-15 -3980 ((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2864 ((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3002 ((-316 (-379)) (-949 (-225)))) (-15 -3561 ((-225) (-949 (-225)))) (-15 -3165 ((-316 (-379)) (-225))) (-15 -2826 ((-225) (-407 (-564)))) (-15 -1920 ((-685 (-225)) (-641 (-225)) (-768))))
+((-3907 (((-112) $ $) 14)) (-1399 (($ $ $) 18)) (-1371 (($ $ $) 17)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 49)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 64)) (-2727 (($ $ $) 24) (($ (-641 $)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 34) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 39)) (-1347 (((-3 $ "failed") $ $) 21)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 52)))
+(((-306 |#1|) (-10 -8 (-15 -1457 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -1534 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1534 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1729 |#1|)) |#1| |#1|)) (-15 -1399 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -3907 ((-112) |#1| |#1|)) (-15 -3768 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -2701 ((-2 (|:| -1817 (-641 |#1|)) (|:| -1729 |#1|)) (-641 |#1|))) (-15 -2727 (|#1| (-641 |#1|))) (-15 -2727 (|#1| |#1| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306))
+NIL
+(-10 -8 (-15 -1457 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -1534 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1534 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1729 |#1|)) |#1| |#1|)) (-15 -1399 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -3907 ((-112) |#1| |#1|)) (-15 -3768 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -2701 ((-2 (|:| -1817 (-641 |#1|)) (|:| -1729 |#1|)) (-641 |#1|))) (-15 -2727 (|#1| (-641 |#1|))) (-15 -2727 (|#1| |#1| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-3907 (((-112) $ $) 60)) (-3180 (($) 17 T CONST)) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-2340 (((-112) $) 31)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-307) (-140)) (T -307))
-((-3385 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-768)))) (-1959 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-307)))) (-1366 (*1 *1 *1 *1) (-4 *1 (-307))) (-1387 (*1 *1 *1 *1) (-4 *1 (-307))) (-2887 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1502 *1))) (-4 *1 (-307)))) (-2887 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-1953 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307)))))
-(-13 (-917) (-10 -8 (-15 -3385 ((-112) $ $)) (-15 -3712 ((-768) $)) (-15 -1959 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -1366 ($ $ $)) (-15 -1387 ($ $ $)) (-15 -2887 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $)) (-15 -2887 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1953 ((-3 (-641 $) "failed") (-641 $) $))))
+((-3907 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-768)))) (-3329 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-307)))) (-1371 (*1 *1 *1 *1) (-4 *1 (-307))) (-1399 (*1 *1 *1 *1) (-4 *1 (-307))) (-1534 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1729 *1))) (-4 *1 (-307)))) (-1534 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-1457 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307)))))
+(-13 (-917) (-10 -8 (-15 -3907 ((-112) $ $)) (-15 -3966 ((-768) $)) (-15 -3329 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -1371 ($ $ $)) (-15 -1399 ($ $ $)) (-15 -1534 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $)) (-15 -1534 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1457 ((-3 (-641 $) "failed") (-641 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2407 (($ $ (-641 |#2|) (-641 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-641 (-294 |#2|))) NIL)))
-(((-308 |#1| |#2|) (-10 -8 (-15 -2407 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2407 (|#1| |#1| (-294 |#2|))) (-15 -2407 (|#1| |#1| |#2| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#2|) (-641 |#2|)))) (-309 |#2|) (-1094)) (T -308))
+((-2582 (($ $ (-641 |#2|) (-641 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-641 (-294 |#2|))) NIL)))
+(((-308 |#1| |#2|) (-10 -8 (-15 -2582 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2582 (|#1| |#1| (-294 |#2|))) (-15 -2582 (|#1| |#1| |#2| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#2|) (-641 |#2|)))) (-309 |#2|) (-1094)) (T -308))
NIL
-(-10 -8 (-15 -2407 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2407 (|#1| |#1| (-294 |#2|))) (-15 -2407 (|#1| |#1| |#2| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#2|) (-641 |#2|))))
-((-2407 (($ $ (-641 |#1|) (-641 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-641 (-294 |#1|))) 10)))
+(-10 -8 (-15 -2582 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2582 (|#1| |#1| (-294 |#2|))) (-15 -2582 (|#1| |#1| |#2| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#2|) (-641 |#2|))))
+((-2582 (($ $ (-641 |#1|) (-641 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-641 (-294 |#1|))) 10)))
(((-309 |#1|) (-140) (-1094)) (T -309))
-((-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094)))))
-(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -2407 ($ $ (-294 |t#1|))) (-15 -2407 ($ $ (-641 (-294 |t#1|))))))
+((-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094)))))
+(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -2582 ($ $ (-294 |t#1|))) (-15 -2582 ($ $ (-641 (-294 |t#1|))))))
(((-514 |#1| |#1|) . T))
-((-2407 ((|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))) 25)))
-(((-310 |#1|) (-10 -7 (-15 -2407 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))))) (-38 (-407 (-564)))) (T -310))
-((-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564)))))))
-(-10 -7 (-15 -2407 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564))))))
-((-1754 (((-112) $ $) NIL)) (-3299 (((-564) $) 12)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3678 (((-1129) $) 9)) (-1765 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-311) (-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $)) (-15 -3299 ((-564) $))))) (T -311))
-((-3678 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311)))))
-(-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $)) (-15 -3299 ((-564) $))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 7)) (-1686 (((-112) $ $) 9)))
+((-2582 ((|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))) 25)))
+(((-310 |#1|) (-10 -7 (-15 -2582 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))))) (-38 (-407 (-564)))) (T -310))
+((-2582 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564)))))))
+(-10 -7 (-15 -2582 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564))))))
+((-3702 (((-112) $ $) NIL)) (-2273 (((-564) $) 12)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2726 (((-1129) $) 9)) (-3714 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-311) (-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $)) (-15 -2273 ((-564) $))))) (T -311))
+((-2726 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311)))))
+(-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $)) (-15 -2273 ((-564) $))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 7)) (-1720 (((-112) $ $) 9)))
(((-312) (-1094)) (T -312))
NIL
(-1094)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 67)) (-4328 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-1245 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 26)) (-2064 (((-1245 |#1| |#2| |#3| |#4|) $) NIL) (((-1170) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-1245 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1259 (-1245 |#1| |#2| |#3| |#4|)))) (-685 $) (-1259 $)) NIL) (((-685 (-1245 |#1| |#2| |#3| |#4|)) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1751 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-883 (-379))))) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-1507 (((-1245 |#1| |#2| |#3| |#4|) $) 22)) (-3374 (((-3 $ "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)))) (-2506 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1547 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-2082 (($ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) $) NIL)) (-2150 (((-3 (-840 |#2|) "failed") $) 87)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-2677 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2407 (($ $ (-641 (-1245 |#1| |#2| |#3| |#4|)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-294 (-1245 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-1170)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1170) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|))))) (-3712 (((-768) $) NIL)) (-4382 (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-286 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-768)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-3762 (($ $) NIL)) (-1517 (((-1245 |#1| |#2| |#3| |#4|) $) 19)) (-2127 (((-889 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-536)))) (((-379) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1019))) (((-225) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1019)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-1245 |#1| |#2| |#3| |#4|)) 30) (($ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (($ (-1244 |#2| |#3| |#4|)) 37)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-906))) (|has| (-1245 |#1| |#2| |#3| |#4|) (-145))))) (-1965 (((-768)) NIL T CONST)) (-2991 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-1582 (((-112) $ $) NIL)) (-2016 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-4317 (($) 42 T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-768)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-1738 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1705 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1793 (($ $ $) 35) (($ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) 32)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-1245 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL)))
-(((-313 |#1| |#2| |#3| |#4|) (-13 (-989 (-1245 |#1| |#2| |#3| |#4|)) (-1035 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -2150 ((-3 (-840 |#2|) "failed") $)) (-15 -1765 ($ (-1244 |#2| |#3| |#4|))))) (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -313))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4) (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-2150 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-840 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))))
-(-13 (-989 (-1245 |#1| |#2| |#3| |#4|)) (-1035 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -2150 ((-3 (-840 |#2|) "failed") $)) (-15 -1765 ($ (-1244 |#2| |#3| |#4|)))))
-((-2082 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13)))
-(((-314 |#1| |#2|) (-10 -7 (-15 -2082 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-847) (-847)) (T -314))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))))
-(-10 -7 (-15 -2082 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|))))
-((-4223 (((-52) |#2| (-294 |#2|) (-768)) 40) (((-52) |#2| (-294 |#2|)) 32) (((-52) |#2| (-768)) 35) (((-52) |#2|) 33) (((-52) (-1170)) 26)) (-3526 (((-52) |#2| (-294 |#2|) (-407 (-564))) 59) (((-52) |#2| (-294 |#2|)) 56) (((-52) |#2| (-407 (-564))) 58) (((-52) |#2|) 57) (((-52) (-1170)) 55)) (-4248 (((-52) |#2| (-294 |#2|) (-407 (-564))) 54) (((-52) |#2| (-294 |#2|)) 51) (((-52) |#2| (-407 (-564))) 53) (((-52) |#2|) 52) (((-52) (-1170)) 50)) (-4235 (((-52) |#2| (-294 |#2|) (-564)) 47) (((-52) |#2| (-294 |#2|)) 44) (((-52) |#2| (-564)) 46) (((-52) |#2|) 45) (((-52) (-1170)) 43)))
-(((-315 |#1| |#2|) (-10 -7 (-15 -4223 ((-52) (-1170))) (-15 -4223 ((-52) |#2|)) (-15 -4223 ((-52) |#2| (-768))) (-15 -4223 ((-52) |#2| (-294 |#2|))) (-15 -4223 ((-52) |#2| (-294 |#2|) (-768))) (-15 -4235 ((-52) (-1170))) (-15 -4235 ((-52) |#2|)) (-15 -4235 ((-52) |#2| (-564))) (-15 -4235 ((-52) |#2| (-294 |#2|))) (-15 -4235 ((-52) |#2| (-294 |#2|) (-564))) (-15 -4248 ((-52) (-1170))) (-15 -4248 ((-52) |#2|)) (-15 -4248 ((-52) |#2| (-407 (-564)))) (-15 -4248 ((-52) |#2| (-294 |#2|))) (-15 -4248 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -3526 ((-52) (-1170))) (-15 -3526 ((-52) |#2|)) (-15 -3526 ((-52) |#2| (-407 (-564)))) (-15 -3526 ((-52) |#2| (-294 |#2|))) (-15 -3526 ((-52) |#2| (-294 |#2|) (-407 (-564))))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -315))
-((-3526 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3526 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-4235 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 *5) (-637 *5))) (-5 *5 (-564)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-4235 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-4235 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-847) (-1035 *4) (-637 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4235 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-4223 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-768)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4223 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))))
-(-10 -7 (-15 -4223 ((-52) (-1170))) (-15 -4223 ((-52) |#2|)) (-15 -4223 ((-52) |#2| (-768))) (-15 -4223 ((-52) |#2| (-294 |#2|))) (-15 -4223 ((-52) |#2| (-294 |#2|) (-768))) (-15 -4235 ((-52) (-1170))) (-15 -4235 ((-52) |#2|)) (-15 -4235 ((-52) |#2| (-564))) (-15 -4235 ((-52) |#2| (-294 |#2|))) (-15 -4235 ((-52) |#2| (-294 |#2|) (-564))) (-15 -4248 ((-52) (-1170))) (-15 -4248 ((-52) |#2|)) (-15 -4248 ((-52) |#2| (-407 (-564)))) (-15 -4248 ((-52) |#2| (-294 |#2|))) (-15 -4248 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -3526 ((-52) (-1170))) (-15 -3526 ((-52) |#2|)) (-15 -3526 ((-52) |#2| (-407 (-564)))) (-15 -3526 ((-52) |#2| (-294 |#2|))) (-15 -3526 ((-52) |#2| (-294 |#2|) (-407 (-564)))))
-((-1754 (((-112) $ $) NIL)) (-4186 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-949 $)) NIL (|has| |#1| (-556)))) (-2487 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-949 $)) NIL (|has| |#1| (-556)))) (-3976 (((-112) $) 27 (-4002 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-4170 (((-641 (-1170)) $) 368)) (-3964 (((-407 (-1166 $)) $ (-610 $)) NIL (|has| |#1| (-556)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3853 (((-641 (-610 $)) $) NIL)) (-3904 (($ $) 171 (|has| |#1| (-556)))) (-3752 (($ $) 147 (|has| |#1| (-556)))) (-2750 (($ $ (-1086 $)) 232 (|has| |#1| (-556))) (($ $ (-1170)) 228 (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) NIL (-4002 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-2662 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) 386) (($ $ (-641 (-610 $)) (-641 $)) 430)) (-1871 (((-418 (-1166 $)) (-1166 $)) 309 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-1368 (($ $) NIL (|has| |#1| (-556)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-556)))) (-4019 (($ $) NIL (|has| |#1| (-556)))) (-3385 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3879 (($ $) 167 (|has| |#1| (-556)))) (-3727 (($ $) 143 (|has| |#1| (-556)))) (-1937 (($ $ (-564)) 73 (|has| |#1| (-556)))) (-3933 (($ $) 175 (|has| |#1| (-556)))) (-3778 (($ $) 151 (|has| |#1| (-556)))) (-3760 (($) NIL (-4002 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))) CONST)) (-2984 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-949 $)) NIL (|has| |#1| (-556)))) (-3330 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) 134 (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-949 $)) NIL (|has| |#1| (-556)))) (-2013 (((-3 (-610 $) "failed") $) 18) (((-3 (-1170) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 337 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-949 |#1|)) "failed") $) NIL (|has| |#1| (-556))) (((-3 (-949 |#1|) "failed") $) NIL (|has| |#1| (-1046))) (((-3 (-407 (-564)) "failed") $) 46 (-4002 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-2064 (((-610 $) $) 12) (((-1170) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-949 |#1|)) $) NIL (|has| |#1| (-556))) (((-949 |#1|) $) NIL (|has| |#1| (-1046))) (((-407 (-564)) $) 320 (-4002 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-1387 (($ $ $) NIL (|has| |#1| (-556)))) (-2620 (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 125 (|has| |#1| (-1046))) (((-685 |#1|) (-685 $)) 115 (|has| |#1| (-1046))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (-4367 (($ $) 96 (|has| |#1| (-556)))) (-1926 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (-1366 (($ $ $) NIL (|has| |#1| (-556)))) (-3123 (($ $ (-1086 $)) 236 (|has| |#1| (-556))) (($ $ (-1170)) 234 (|has| |#1| (-556)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-556)))) (-3241 (((-112) $) NIL (|has| |#1| (-556)))) (-3007 (($ $ $) 202 (|has| |#1| (-556)))) (-1539 (($) 137 (|has| |#1| (-556)))) (-2314 (($ $ $) 222 (|has| |#1| (-556)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 392 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 399 (|has| |#1| (-883 (-379))))) (-2696 (($ $) NIL) (($ (-641 $)) NIL)) (-2885 (((-641 (-114)) $) NIL)) (-1826 (((-114) (-114)) 277)) (-2419 (((-112) $) 25 (-4002 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (-1629 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-1957 (($ $) 72 (|has| |#1| (-1046)))) (-1507 (((-1119 |#1| (-610 $)) $) 91 (|has| |#1| (-1046)))) (-4115 (((-112) $) 62 (|has| |#1| (-556)))) (-1935 (($ $ (-564)) NIL (|has| |#1| (-556)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-2431 (((-1166 $) (-610 $)) 278 (|has| $ (-1046)))) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2082 (($ (-1 $ $) (-610 $)) 426)) (-4293 (((-3 (-610 $) "failed") $) NIL)) (-2186 (($ $) 141 (|has| |#1| (-556)))) (-1954 (($ $) 247 (|has| |#1| (-556)))) (-2488 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-4202 (((-1152) $) NIL)) (-3943 (((-641 (-610 $)) $) 49)) (-1583 (($ (-114) $) NIL) (($ (-114) (-641 $)) 431)) (-1964 (((-3 (-641 $) "failed") $) NIL (|has| |#1| (-1106)))) (-3221 (((-3 (-2 (|:| |val| $) (|:| -3747 (-564))) "failed") $) NIL (|has| |#1| (-1046)))) (-1295 (((-3 (-641 $) "failed") $) 436 (|has| |#1| (-25)))) (-2375 (((-3 (-2 (|:| -1662 (-564)) (|:| |var| (-610 $))) "failed") $) 440 (|has| |#1| (-25)))) (-1691 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $) NIL (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-114)) NIL (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-1170)) NIL (|has| |#1| (-1046)))) (-3559 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) 51)) (-4272 (($ $) NIL (-4002 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3504 (($ $ (-1170)) 251 (|has| |#1| (-556))) (($ $ (-1086 $)) 253 (|has| |#1| (-556)))) (-1813 (((-768) $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) 43)) (-4298 ((|#1| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 302 (|has| |#1| (-556)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-1350 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-2071 (($ $ (-1170)) 226 (|has| |#1| (-556))) (($ $) 224 (|has| |#1| (-556)))) (-1613 (($ $) 218 (|has| |#1| (-556)))) (-1761 (((-418 (-1166 $)) (-1166 $)) 307 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-4006 (((-418 $) $) NIL (|has| |#1| (-556)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-556)))) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-2152 (($ $) 139 (|has| |#1| (-556)))) (-1518 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2407 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 425) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) 379) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) NIL (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-612 (-536)))) (($ $) NIL (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 366 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 365 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ $)) NIL (|has| |#1| (-1046)))) (-3712 (((-768) $) NIL (|has| |#1| (-556)))) (-3677 (($ $) 239 (|has| |#1| (-556)))) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-556)))) (-2898 (($ $) NIL) (($ $ $) NIL)) (-3714 (($ $) 249 (|has| |#1| (-556)))) (-2784 (($ $) 200 (|has| |#1| (-556)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1046))) (($ $ (-1170)) NIL (|has| |#1| (-1046)))) (-3762 (($ $) 74 (|has| |#1| (-556)))) (-1517 (((-1119 |#1| (-610 $)) $) 93 (|has| |#1| (-556)))) (-1916 (($ $) 318 (|has| $ (-1046)))) (-3949 (($ $) 177 (|has| |#1| (-556)))) (-3789 (($ $) 153 (|has| |#1| (-556)))) (-3918 (($ $) 173 (|has| |#1| (-556)))) (-3765 (($ $) 149 (|has| |#1| (-556)))) (-3891 (($ $) 169 (|has| |#1| (-556)))) (-3739 (($ $) 145 (|has| |#1| (-556)))) (-2127 (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-556))) (((-536) $) 363 (|has| |#1| (-612 (-536))))) (-2502 (($ $ $) NIL (|has| |#1| (-473)))) (-1762 (($ $ $) NIL (|has| |#1| (-473)))) (-1765 (((-859) $) 424) (($ (-610 $)) 415) (($ (-1170)) 381) (($ |#1|) 338) (($ $) NIL (|has| |#1| (-556))) (($ (-48)) 313 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (($ (-1119 |#1| (-610 $))) 95 (|has| |#1| (-1046))) (($ (-407 |#1|)) NIL (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) NIL (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) NIL (|has| |#1| (-556))) (($ (-407 (-949 |#1|))) NIL (|has| |#1| (-556))) (($ (-949 |#1|)) NIL (|has| |#1| (-1046))) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-556)) (|has| |#1| (-1035 (-407 (-564)))))) (($ (-564)) 34 (-4002 (|has| |#1| (-1035 (-564))) (|has| |#1| (-1046))))) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL (|has| |#1| (-1046)) CONST)) (-1719 (($ $) NIL) (($ (-641 $)) NIL)) (-1939 (($ $ $) 220 (|has| |#1| (-556)))) (-1958 (($ $ $) 206 (|has| |#1| (-556)))) (-3311 (($ $ $) 210 (|has| |#1| (-556)))) (-1475 (($ $ $) 204 (|has| |#1| (-556)))) (-2642 (($ $ $) 208 (|has| |#1| (-556)))) (-1573 (((-112) (-114)) 10)) (-3991 (($ $) 183 (|has| |#1| (-556)))) (-3827 (($ $) 159 (|has| |#1| (-556)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) 179 (|has| |#1| (-556)))) (-3801 (($ $) 155 (|has| |#1| (-556)))) (-4020 (($ $) 187 (|has| |#1| (-556)))) (-3854 (($ $) 163 (|has| |#1| (-556)))) (-4060 (($ (-1170) $) NIL) (($ (-1170) $ $) NIL) (($ (-1170) $ $ $) NIL) (($ (-1170) $ $ $ $) NIL) (($ (-1170) (-641 $)) NIL)) (-2648 (($ $) 214 (|has| |#1| (-556)))) (-4066 (($ $) 212 (|has| |#1| (-556)))) (-3586 (($ $) 189 (|has| |#1| (-556)))) (-3867 (($ $) 165 (|has| |#1| (-556)))) (-4005 (($ $) 185 (|has| |#1| (-556)))) (-3840 (($ $) 161 (|has| |#1| (-556)))) (-3977 (($ $) 181 (|has| |#1| (-556)))) (-3814 (($ $) 157 (|has| |#1| (-556)))) (-2016 (($ $) 192 (|has| |#1| (-556)))) (-4317 (($) 21 (-4002 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) CONST)) (-3377 (($ $) 243 (|has| |#1| (-556)))) (-4327 (($) 23 (-4002 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))) CONST)) (-3376 (($ $) 194 (|has| |#1| (-556))) (($ $ $) 196 (|has| |#1| (-556)))) (-4024 (($ $) 241 (|has| |#1| (-556)))) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1046))) (($ $ (-1170)) NIL (|has| |#1| (-1046)))) (-2451 (($ $) 245 (|has| |#1| (-556)))) (-2837 (($ $ $) 198 (|has| |#1| (-556)))) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 88)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 86)) (-1793 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 106 (|has| |#1| (-556))) (($ $ $) 42 (-4002 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1783 (($ $ $) 40 (-4002 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ $) 29 (-4002 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-1771 (($ $ $) 38 (-4002 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (** (($ $ $) 64 (|has| |#1| (-556))) (($ $ (-407 (-564))) 315 (|has| |#1| (-556))) (($ $ (-564)) 80 (-4002 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-768)) 75 (-4002 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106)))) (($ $ (-918)) 84 (-4002 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (* (($ (-407 (-564)) $) NIL (|has| |#1| (-556))) (($ $ (-407 (-564))) NIL (|has| |#1| (-556))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-4002 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106)))) (($ (-564) $) 32 (-4002 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ (-768) $) NIL (-4002 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ (-918) $) NIL (-4002 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))))
-(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -4367 ($ $)) (-15 -4115 ((-112) $)) (-15 -1937 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -1761 ((-418 (-1166 $)) (-1166 $))) (-15 -1871 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1035 (-564))) (-6 (-1035 (-48))) |%noBranch|)) |%noBranch|))) (-847)) (T -316))
-((-4367 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-847)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-1761 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))) (-1871 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))))
-(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -4367 ($ $)) (-15 -4115 ((-112) $)) (-15 -1937 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -1761 ((-418 (-1166 $)) (-1166 $))) (-15 -1871 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1035 (-564))) (-6 (-1035 (-48))) |%noBranch|)) |%noBranch|)))
-((-4195 (((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)) 94) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 90) (((-52) |#2| (-114) (-294 |#2|) |#2|) 92) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 93) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 86) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 88) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 89) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 87) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 95) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 91)))
-(((-317 |#1| |#2|) (-10 -7 (-15 -4195 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -4195 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -4195 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -4195 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -4195 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -4195 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -4195 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -4195 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -4195 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -4195 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-847) (-556) (-612 (-536))) (-430 |#1|)) (T -317))
-((-4195 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-4195 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-4195 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-4195 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-4195 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-4195 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-4195 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-641 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-4195 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-4195 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-4195 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6)))))
-(-10 -7 (-15 -4195 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -4195 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -4195 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -4195 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -4195 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -4195 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -4195 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -4195 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -4195 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -4195 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|))))
-((-4048 (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152)) 67) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564)) 68) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152)) 64) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564)) 65)) (-3254 (((-1 (-225) (-225)) (-225)) 66)))
-(((-318) (-10 -7 (-15 -3254 ((-1 (-225) (-225)) (-225))) (-15 -4048 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -4048 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -4048 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -4048 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152))))) (T -318))
-((-4048 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-4048 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-4048 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-4048 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-3254 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
-(-10 -7 (-15 -3254 ((-1 (-225) (-225)) (-225))) (-15 -4048 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -4048 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -4048 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -4048 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 26)) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3742 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-3219 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 20)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3879 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) 34)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3241 (((-112) $) NIL (|has| |#1| (-363)))) (-1459 (((-112) $) NIL)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) 16)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-3591 (($ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-2678 (($ $ (-407 (-564))) NIL)) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2052 (((-407 (-564)) $) 17)) (-3935 (($ (-1244 |#1| |#2| |#3|)) 11)) (-3747 (((-1244 |#1| |#2| |#3|) $) 12)) (-2152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3344 (((-407 (-564)) $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) 10)) (-1765 (((-859) $) 40) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-1757 ((|#1| $ (-407 (-564))) 32)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-3415 ((|#1| $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 28)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 35)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-319 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-789) (-10 -8 (-15 -3935 ($ (-1244 |#1| |#2| |#3|))) (-15 -3747 ((-1244 |#1| |#2| |#3|) $)) (-15 -2052 ((-407 (-564)) $)))) (-13 (-363) (-847)) (-1170) |#1|) (T -319))
-((-3935 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))))
-(-13 (-1240 |#1|) (-789) (-10 -8 (-15 -3935 ($ (-1244 |#1| |#2| |#3|))) (-15 -3747 ((-1244 |#1| |#2| |#3|) $)) (-15 -2052 ((-407 (-564)) $))))
-((-1935 (((-2 (|:| -3747 (-768)) (|:| -1662 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768)) 35)) (-2186 (((-641 (-2 (|:| -1662 (-768)) (|:| |logand| |#1|))) (-418 |#1|)) 40)))
-(((-320 |#1|) (-10 -7 (-15 -1935 ((-2 (|:| -3747 (-768)) (|:| -1662 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768))) (-15 -2186 ((-641 (-2 (|:| -1662 (-768)) (|:| |logand| |#1|))) (-418 |#1|)))) (-556)) (T -320))
-((-2186 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) (-5 *2 (-641 (-2 (|:| -1662 (-768)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *5) (|:| |radicand| (-641 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-768)))))
-(-10 -7 (-15 -1935 ((-2 (|:| -3747 (-768)) (|:| -1662 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768))) (-15 -2186 ((-641 (-2 (|:| -1662 (-768)) (|:| |logand| |#1|))) (-418 |#1|))))
-((-4170 (((-641 |#2|) (-1166 |#4|)) 44)) (-1962 ((|#3| (-564)) 47)) (-2553 (((-1166 |#4|) (-1166 |#3|)) 30)) (-4249 (((-1166 |#4|) (-1166 |#4|) (-564)) 64)) (-4176 (((-1166 |#3|) (-1166 |#4|)) 21)) (-3344 (((-641 (-768)) (-1166 |#4|) (-641 |#2|)) 41)) (-2282 (((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|)) 35)))
-(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2282 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -3344 ((-641 (-768)) (-1166 |#4|) (-641 |#2|))) (-15 -4170 ((-641 |#2|) (-1166 |#4|))) (-15 -4176 ((-1166 |#3|) (-1166 |#4|))) (-15 -2553 ((-1166 |#4|) (-1166 |#3|))) (-15 -4249 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -1962 (|#3| (-564)))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|)) (T -321))
-((-1962 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1046)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5)))) (-4249 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-641 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-847)) (-4 *8 (-946 *7 *5 *6)) (-4 *5 (-790)) (-4 *7 (-1046)) (-5 *2 (-641 (-768))) (-5 *1 (-321 *5 *6 *7 *8)))) (-2282 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8)) (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2282 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -3344 ((-641 (-768)) (-1166 |#4|) (-641 |#2|))) (-15 -4170 ((-641 |#2|) (-1166 |#4|))) (-15 -4176 ((-1166 |#3|) (-1166 |#4|))) (-15 -2553 ((-1166 |#4|) (-1166 |#3|))) (-15 -4249 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -1962 (|#3| (-564))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 19)) (-3219 (((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-564)))) $) 23)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3042 (((-768) $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-2902 ((|#1| $ (-564)) NIL)) (-2012 (((-564) $ (-564)) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2093 (($ (-1 |#1| |#1|) $) NIL)) (-2132 (($ (-1 (-564) (-564)) $) 11)) (-4202 (((-1152) $) NIL)) (-4055 (($ $ $) NIL (|has| (-564) (-789)))) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL) (($ |#1|) NIL)) (-1757 (((-564) |#1| $) NIL)) (-4317 (($) 21 T CONST)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) 28 (|has| |#1| (-847)))) (-1783 (($ $) 12) (($ $ $) 27)) (-1771 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL) (($ (-564) |#1|) 26)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 67)) (-3494 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-1245 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 26)) (-2376 (((-1245 |#1| |#2| |#3| |#4|) $) NIL) (((-1170) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-1245 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1259 (-1245 |#1| |#2| |#3| |#4|)))) (-685 $) (-1259 $)) NIL) (((-685 (-1245 |#1| |#2| |#3| |#4|)) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-883 (-379))))) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL)) (-1655 (((-1245 |#1| |#2| |#3| |#4|) $) 22)) (-3804 (((-3 $ "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)))) (-2001 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-3413 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-2313 (($ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) $) NIL)) (-1620 (((-3 (-840 |#2|) "failed") $) 87)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-3034 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2582 (($ $ (-641 (-1245 |#1| |#2| |#3| |#4|)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-294 (-1245 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-1170)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1170) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|))))) (-3966 (((-768) $) NIL)) (-4382 (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-286 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-768)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-3197 (($ $) NIL)) (-1668 (((-1245 |#1| |#2| |#3| |#4|) $) 19)) (-2374 (((-889 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-536)))) (((-379) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1019))) (((-225) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1019)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-1245 |#1| |#2| |#3| |#4|)) 30) (($ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (($ (-1244 |#2| |#3| |#4|)) 37)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-906))) (|has| (-1245 |#1| |#2| |#3| |#4|) (-145))))) (-3379 (((-768)) NIL T CONST)) (-4296 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-3979 (((-112) $ $) NIL)) (-3920 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-4312 (($) 42 T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-768)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1746 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1841 (($ $ $) 35) (($ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) 32)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-1245 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL)))
+(((-313 |#1| |#2| |#3| |#4|) (-13 (-989 (-1245 |#1| |#2| |#3| |#4|)) (-1035 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -1620 ((-3 (-840 |#2|) "failed") $)) (-15 -3714 ($ (-1244 |#2| |#3| |#4|))))) (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -313))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4) (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-1620 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-840 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))))
+(-13 (-989 (-1245 |#1| |#2| |#3| |#4|)) (-1035 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -1620 ((-3 (-840 |#2|) "failed") $)) (-15 -3714 ($ (-1244 |#2| |#3| |#4|)))))
+((-2313 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13)))
+(((-314 |#1| |#2|) (-10 -7 (-15 -2313 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-847) (-847)) (T -314))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))))
+(-10 -7 (-15 -2313 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|))))
+((-4350 (((-52) |#2| (-294 |#2|) (-768)) 40) (((-52) |#2| (-294 |#2|)) 32) (((-52) |#2| (-768)) 35) (((-52) |#2|) 33) (((-52) (-1170)) 26)) (-3392 (((-52) |#2| (-294 |#2|) (-407 (-564))) 59) (((-52) |#2| (-294 |#2|)) 56) (((-52) |#2| (-407 (-564))) 58) (((-52) |#2|) 57) (((-52) (-1170)) 55)) (-4374 (((-52) |#2| (-294 |#2|) (-407 (-564))) 54) (((-52) |#2| (-294 |#2|)) 51) (((-52) |#2| (-407 (-564))) 53) (((-52) |#2|) 52) (((-52) (-1170)) 50)) (-4362 (((-52) |#2| (-294 |#2|) (-564)) 47) (((-52) |#2| (-294 |#2|)) 44) (((-52) |#2| (-564)) 46) (((-52) |#2|) 45) (((-52) (-1170)) 43)))
+(((-315 |#1| |#2|) (-10 -7 (-15 -4350 ((-52) (-1170))) (-15 -4350 ((-52) |#2|)) (-15 -4350 ((-52) |#2| (-768))) (-15 -4350 ((-52) |#2| (-294 |#2|))) (-15 -4350 ((-52) |#2| (-294 |#2|) (-768))) (-15 -4362 ((-52) (-1170))) (-15 -4362 ((-52) |#2|)) (-15 -4362 ((-52) |#2| (-564))) (-15 -4362 ((-52) |#2| (-294 |#2|))) (-15 -4362 ((-52) |#2| (-294 |#2|) (-564))) (-15 -4374 ((-52) (-1170))) (-15 -4374 ((-52) |#2|)) (-15 -4374 ((-52) |#2| (-407 (-564)))) (-15 -4374 ((-52) |#2| (-294 |#2|))) (-15 -4374 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -3392 ((-52) (-1170))) (-15 -3392 ((-52) |#2|)) (-15 -3392 ((-52) |#2| (-407 (-564)))) (-15 -3392 ((-52) |#2| (-294 |#2|))) (-15 -3392 ((-52) |#2| (-294 |#2|) (-407 (-564))))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -315))
+((-3392 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3392 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-4374 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-4374 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-4374 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4374 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-4362 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 *5) (-637 *5))) (-5 *5 (-564)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-847) (-1035 *4) (-637 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4362 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-4350 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-768)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4350 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))))
+(-10 -7 (-15 -4350 ((-52) (-1170))) (-15 -4350 ((-52) |#2|)) (-15 -4350 ((-52) |#2| (-768))) (-15 -4350 ((-52) |#2| (-294 |#2|))) (-15 -4350 ((-52) |#2| (-294 |#2|) (-768))) (-15 -4362 ((-52) (-1170))) (-15 -4362 ((-52) |#2|)) (-15 -4362 ((-52) |#2| (-564))) (-15 -4362 ((-52) |#2| (-294 |#2|))) (-15 -4362 ((-52) |#2| (-294 |#2|) (-564))) (-15 -4374 ((-52) (-1170))) (-15 -4374 ((-52) |#2|)) (-15 -4374 ((-52) |#2| (-407 (-564)))) (-15 -4374 ((-52) |#2| (-294 |#2|))) (-15 -4374 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -3392 ((-52) (-1170))) (-15 -3392 ((-52) |#2|)) (-15 -3392 ((-52) |#2| (-407 (-564)))) (-15 -3392 ((-52) |#2| (-294 |#2|))) (-15 -3392 ((-52) |#2| (-294 |#2|) (-407 (-564)))))
+((-3702 (((-112) $ $) NIL)) (-1701 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-949 $)) NIL (|has| |#1| (-556)))) (-1815 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-949 $)) NIL (|has| |#1| (-556)))) (-1556 (((-112) $) 27 (-4012 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-4292 (((-641 (-1170)) $) 368)) (-4103 (((-407 (-1166 $)) $ (-610 $)) NIL (|has| |#1| (-556)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-4011 (((-641 (-610 $)) $) NIL)) (-2657 (($ $) 171 (|has| |#1| (-556)))) (-2516 (($ $) 147 (|has| |#1| (-556)))) (-2600 (($ $ (-1086 $)) 232 (|has| |#1| (-556))) (($ $ (-1170)) 228 (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) NIL (-4012 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-3203 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) 386) (($ $ (-641 (-610 $)) (-641 $)) 430)) (-1917 (((-418 (-1166 $)) (-1166 $)) 309 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-1328 (($ $) NIL (|has| |#1| (-556)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-556)))) (-4152 (($ $) NIL (|has| |#1| (-556)))) (-3907 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2635 (($ $) 167 (|has| |#1| (-556)))) (-2491 (($ $) 143 (|has| |#1| (-556)))) (-4365 (($ $ (-564)) 73 (|has| |#1| (-556)))) (-2679 (($ $) 175 (|has| |#1| (-556)))) (-2542 (($ $) 151 (|has| |#1| (-556)))) (-3180 (($) NIL (-4012 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))) CONST)) (-4248 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-949 $)) NIL (|has| |#1| (-556)))) (-1544 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) 134 (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-949 $)) NIL (|has| |#1| (-556)))) (-2224 (((-3 (-610 $) "failed") $) 18) (((-3 (-1170) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 337 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-949 |#1|)) "failed") $) NIL (|has| |#1| (-556))) (((-3 (-949 |#1|) "failed") $) NIL (|has| |#1| (-1046))) (((-3 (-407 (-564)) "failed") $) 46 (-4012 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-2376 (((-610 $) $) 12) (((-1170) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-949 |#1|)) $) NIL (|has| |#1| (-556))) (((-949 |#1|) $) NIL (|has| |#1| (-1046))) (((-407 (-564)) $) 320 (-4012 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-1399 (($ $ $) NIL (|has| |#1| (-556)))) (-3613 (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 125 (|has| |#1| (-1046))) (((-685 |#1|) (-685 $)) 115 (|has| |#1| (-1046))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (-1728 (($ $) 96 (|has| |#1| (-556)))) (-4272 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (-1371 (($ $ $) NIL (|has| |#1| (-556)))) (-3142 (($ $ (-1086 $)) 236 (|has| |#1| (-556))) (($ $ (-1170)) 234 (|has| |#1| (-556)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-556)))) (-1926 (((-112) $) NIL (|has| |#1| (-556)))) (-1380 (($ $ $) 202 (|has| |#1| (-556)))) (-1688 (($) 137 (|has| |#1| (-556)))) (-3742 (($ $ $) 222 (|has| |#1| (-556)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 392 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 399 (|has| |#1| (-883 (-379))))) (-3187 (($ $) NIL) (($ (-641 $)) NIL)) (-1512 (((-641 (-114)) $) NIL)) (-2702 (((-114) (-114)) 277)) (-2340 (((-112) $) 25 (-4012 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (-1329 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-1492 (($ $) 72 (|has| |#1| (-1046)))) (-1655 (((-1119 |#1| (-610 $)) $) 91 (|has| |#1| (-1046)))) (-3377 (((-112) $) 62 (|has| |#1| (-556)))) (-4342 (($ $ (-564)) NIL (|has| |#1| (-556)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-2466 (((-1166 $) (-610 $)) 278 (|has| $ (-1046)))) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2313 (($ (-1 $ $) (-610 $)) 426)) (-1419 (((-3 (-610 $) "failed") $) NIL)) (-2305 (($ $) 141 (|has| |#1| (-556)))) (-3891 (($ $) 247 (|has| |#1| (-556)))) (-2688 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-1868 (((-1152) $) NIL)) (-4090 (((-641 (-610 $)) $) 49)) (-1736 (($ (-114) $) NIL) (($ (-114) (-641 $)) 431)) (-3370 (((-3 (-641 $) "failed") $) NIL (|has| |#1| (-1106)))) (-1705 (((-3 (-2 (|:| |val| $) (|:| -3078 (-564))) "failed") $) NIL (|has| |#1| (-1046)))) (-3591 (((-3 (-641 $) "failed") $) 436 (|has| |#1| (-25)))) (-3120 (((-3 (-2 (|:| -1817 (-564)) (|:| |var| (-610 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3741 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $) NIL (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-114)) NIL (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-1170)) NIL (|has| |#1| (-1046)))) (-1932 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) 51)) (-1295 (($ $) NIL (-4012 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-2668 (($ $ (-1170)) 251 (|has| |#1| (-556))) (($ $ (-1086 $)) 253 (|has| |#1| (-556)))) (-3694 (((-768) $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) 43)) (-1316 ((|#1| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 302 (|has| |#1| (-556)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2544 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-3259 (($ $ (-1170)) 226 (|has| |#1| (-556))) (($ $) 224 (|has| |#1| (-556)))) (-4265 (($ $) 218 (|has| |#1| (-556)))) (-3209 (((-418 (-1166 $)) (-1166 $)) 307 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-4139 (((-418 $) $) NIL (|has| |#1| (-556)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-556)))) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-4130 (($ $) 139 (|has| |#1| (-556)))) (-1542 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2582 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 425) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) 379) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) NIL (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-612 (-536)))) (($ $) NIL (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 366 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 365 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ $)) NIL (|has| |#1| (-1046)))) (-3966 (((-768) $) NIL (|has| |#1| (-556)))) (-2444 (($ $) 239 (|has| |#1| (-556)))) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-556)))) (-3444 (($ $) NIL) (($ $ $) NIL)) (-2478 (($ $) 249 (|has| |#1| (-556)))) (-1684 (($ $) 200 (|has| |#1| (-556)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1046))) (($ $ (-1170)) NIL (|has| |#1| (-1046)))) (-3197 (($ $) 74 (|has| |#1| (-556)))) (-1668 (((-1119 |#1| (-610 $)) $) 93 (|has| |#1| (-556)))) (-4180 (($ $) 318 (|has| $ (-1046)))) (-2692 (($ $) 177 (|has| |#1| (-556)))) (-2557 (($ $) 153 (|has| |#1| (-556)))) (-2669 (($ $) 173 (|has| |#1| (-556)))) (-2529 (($ $) 149 (|has| |#1| (-556)))) (-2647 (($ $) 169 (|has| |#1| (-556)))) (-2502 (($ $) 145 (|has| |#1| (-556)))) (-2374 (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-556))) (((-536) $) 363 (|has| |#1| (-612 (-536))))) (-1953 (($ $ $) NIL (|has| |#1| (-473)))) (-3217 (($ $ $) NIL (|has| |#1| (-473)))) (-3714 (((-859) $) 424) (($ (-610 $)) 415) (($ (-1170)) 381) (($ |#1|) 338) (($ $) NIL (|has| |#1| (-556))) (($ (-48)) 313 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (($ (-1119 |#1| (-610 $))) 95 (|has| |#1| (-1046))) (($ (-407 |#1|)) NIL (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) NIL (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) NIL (|has| |#1| (-556))) (($ (-407 (-949 |#1|))) NIL (|has| |#1| (-556))) (($ (-949 |#1|)) NIL (|has| |#1| (-1046))) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-556)) (|has| |#1| (-1035 (-407 (-564)))))) (($ (-564)) 34 (-4012 (|has| |#1| (-1035 (-564))) (|has| |#1| (-1046))))) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL (|has| |#1| (-1046)) CONST)) (-3146 (($ $) NIL) (($ (-641 $)) NIL)) (-4389 (($ $ $) 220 (|has| |#1| (-556)))) (-1504 (($ $ $) 206 (|has| |#1| (-556)))) (-1332 (($ $ $) 210 (|has| |#1| (-556)))) (-2372 (($ $ $) 204 (|has| |#1| (-556)))) (-3870 (($ $ $) 208 (|has| |#1| (-556)))) (-2068 (((-112) (-114)) 10)) (-2728 (($ $) 183 (|has| |#1| (-556)))) (-2595 (($ $) 159 (|has| |#1| (-556)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) 179 (|has| |#1| (-556)))) (-2566 (($ $) 155 (|has| |#1| (-556)))) (-2751 (($ $) 187 (|has| |#1| (-556)))) (-2615 (($ $) 163 (|has| |#1| (-556)))) (-2776 (($ (-1170) $) NIL) (($ (-1170) $ $) NIL) (($ (-1170) $ $ $) NIL) (($ (-1170) $ $ $ $) NIL) (($ (-1170) (-641 $)) NIL)) (-3936 (($ $) 214 (|has| |#1| (-556)))) (-3005 (($ $) 212 (|has| |#1| (-556)))) (-2053 (($ $) 189 (|has| |#1| (-556)))) (-2626 (($ $) 165 (|has| |#1| (-556)))) (-2740 (($ $) 185 (|has| |#1| (-556)))) (-2605 (($ $) 161 (|has| |#1| (-556)))) (-2716 (($ $) 181 (|has| |#1| (-556)))) (-2577 (($ $) 157 (|has| |#1| (-556)))) (-3920 (($ $) 192 (|has| |#1| (-556)))) (-4312 (($) 21 (-4012 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) CONST)) (-3840 (($ $) 243 (|has| |#1| (-556)))) (-4323 (($) 23 (-4012 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))) CONST)) (-3829 (($ $) 194 (|has| |#1| (-556))) (($ $ $) 196 (|has| |#1| (-556)))) (-3777 (($ $) 241 (|has| |#1| (-556)))) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1046))) (($ $ (-1170)) NIL (|has| |#1| (-1046)))) (-2689 (($ $) 245 (|has| |#1| (-556)))) (-2240 (($ $ $) 198 (|has| |#1| (-556)))) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 88)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 86)) (-1841 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 106 (|has| |#1| (-556))) (($ $ $) 42 (-4012 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1828 (($ $ $) 40 (-4012 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ $) 29 (-4012 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-1814 (($ $ $) 38 (-4012 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (** (($ $ $) 64 (|has| |#1| (-556))) (($ $ (-407 (-564))) 315 (|has| |#1| (-556))) (($ $ (-564)) 80 (-4012 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-768)) 75 (-4012 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106)))) (($ $ (-918)) 84 (-4012 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (* (($ (-407 (-564)) $) NIL (|has| |#1| (-556))) (($ $ (-407 (-564))) NIL (|has| |#1| (-556))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-4012 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106)))) (($ (-564) $) 32 (-4012 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ (-768) $) NIL (-4012 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ (-918) $) NIL (-4012 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))))
+(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -1728 ($ $)) (-15 -3377 ((-112) $)) (-15 -4365 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -3209 ((-418 (-1166 $)) (-1166 $))) (-15 -1917 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1035 (-564))) (-6 (-1035 (-48))) |%noBranch|)) |%noBranch|))) (-847)) (T -316))
+((-1728 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-847)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-4365 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-3209 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))) (-1917 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))))
+(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -1728 ($ $)) (-15 -3377 ((-112) $)) (-15 -4365 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -3209 ((-418 (-1166 $)) (-1166 $))) (-15 -1917 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1035 (-564))) (-6 (-1035 (-48))) |%noBranch|)) |%noBranch|)))
+((-1785 (((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)) 94) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 90) (((-52) |#2| (-114) (-294 |#2|) |#2|) 92) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 93) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 86) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 88) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 89) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 87) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 95) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 91)))
+(((-317 |#1| |#2|) (-10 -7 (-15 -1785 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -1785 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -1785 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -1785 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -1785 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -1785 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -1785 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -1785 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -1785 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -1785 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-847) (-556) (-612 (-536))) (-430 |#1|)) (T -317))
+((-1785 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-1785 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-1785 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-1785 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-1785 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-1785 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-1785 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-641 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-1785 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-1785 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-1785 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6)))))
+(-10 -7 (-15 -1785 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -1785 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -1785 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -1785 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -1785 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -1785 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -1785 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -1785 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -1785 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -1785 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|))))
+((-4001 (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152)) 67) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564)) 68) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152)) 64) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564)) 65)) (-2057 (((-1 (-225) (-225)) (-225)) 66)))
+(((-318) (-10 -7 (-15 -2057 ((-1 (-225) (-225)) (-225))) (-15 -4001 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -4001 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -4001 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -4001 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152))))) (T -318))
+((-4001 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-4001 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-4001 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-4001 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-2057 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
+(-10 -7 (-15 -2057 ((-1 (-225) (-225)) (-225))) (-15 -4001 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -4001 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -4001 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -4001 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 26)) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-3043 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-1681 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 20)) (-2657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2635 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-2679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) 34)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1926 (((-112) $) NIL (|has| |#1| (-363)))) (-2200 (((-112) $) NIL)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) 16)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2305 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-4039 (($ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-3042 (($ $ (-407 (-564))) NIL)) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-407 (-564)) $) 17)) (-4269 (($ (-1244 |#1| |#2| |#3|)) 11)) (-3078 (((-1244 |#1| |#2| |#3|) $) 12)) (-4130 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3475 (((-407 (-564)) $) NIL)) (-2692 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) 10)) (-3714 (((-859) $) 40) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3181 ((|#1| $ (-407 (-564))) 32)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-2390 ((|#1| $) NIL)) (-2728 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 28)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 35)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-319 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-789) (-10 -8 (-15 -4269 ($ (-1244 |#1| |#2| |#3|))) (-15 -3078 ((-1244 |#1| |#2| |#3|) $)) (-15 -3101 ((-407 (-564)) $)))) (-13 (-363) (-847)) (-1170) |#1|) (T -319))
+((-4269 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))))
+(-13 (-1240 |#1|) (-789) (-10 -8 (-15 -4269 ($ (-1244 |#1| |#2| |#3|))) (-15 -3078 ((-1244 |#1| |#2| |#3|) $)) (-15 -3101 ((-407 (-564)) $))))
+((-4342 (((-2 (|:| -3078 (-768)) (|:| -1817 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768)) 35)) (-2305 (((-641 (-2 (|:| -1817 (-768)) (|:| |logand| |#1|))) (-418 |#1|)) 40)))
+(((-320 |#1|) (-10 -7 (-15 -4342 ((-2 (|:| -3078 (-768)) (|:| -1817 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768))) (-15 -2305 ((-641 (-2 (|:| -1817 (-768)) (|:| |logand| |#1|))) (-418 |#1|)))) (-556)) (T -320))
+((-2305 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) (-5 *2 (-641 (-2 (|:| -1817 (-768)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-4342 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *5) (|:| |radicand| (-641 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-768)))))
+(-10 -7 (-15 -4342 ((-2 (|:| -3078 (-768)) (|:| -1817 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768))) (-15 -2305 ((-641 (-2 (|:| -1817 (-768)) (|:| |logand| |#1|))) (-418 |#1|))))
+((-4292 (((-641 |#2|) (-1166 |#4|)) 44)) (-3348 ((|#3| (-564)) 47)) (-4228 (((-1166 |#4|) (-1166 |#3|)) 30)) (-2278 (((-1166 |#4|) (-1166 |#4|) (-564)) 64)) (-2838 (((-1166 |#3|) (-1166 |#4|)) 21)) (-3475 (((-641 (-768)) (-1166 |#4|) (-641 |#2|)) 41)) (-3430 (((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|)) 35)))
+(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3430 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -3475 ((-641 (-768)) (-1166 |#4|) (-641 |#2|))) (-15 -4292 ((-641 |#2|) (-1166 |#4|))) (-15 -2838 ((-1166 |#3|) (-1166 |#4|))) (-15 -4228 ((-1166 |#4|) (-1166 |#3|))) (-15 -2278 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -3348 (|#3| (-564)))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|)) (T -321))
+((-3348 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1046)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5)))) (-2278 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *1 (-321 *4 *5 *6 *7)))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-641 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-847)) (-4 *8 (-946 *7 *5 *6)) (-4 *5 (-790)) (-4 *7 (-1046)) (-5 *2 (-641 (-768))) (-5 *1 (-321 *5 *6 *7 *8)))) (-3430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8)) (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3430 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -3475 ((-641 (-768)) (-1166 |#4|) (-641 |#2|))) (-15 -4292 ((-641 |#2|) (-1166 |#4|))) (-15 -2838 ((-1166 |#3|) (-1166 |#4|))) (-15 -4228 ((-1166 |#4|) (-1166 |#3|))) (-15 -2278 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -3348 (|#3| (-564))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 19)) (-1681 (((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-564)))) $) 23)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2018 (((-768) $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-3488 ((|#1| $ (-564)) NIL)) (-3887 (((-564) $ (-564)) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-2312 (($ (-1 |#1| |#1|) $) NIL)) (-2731 (($ (-1 (-564) (-564)) $) 11)) (-1868 (((-1152) $) NIL)) (-2924 (($ $ $) NIL (|has| (-564) (-789)))) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL) (($ |#1|) NIL)) (-3181 (((-564) |#1| $) NIL)) (-4312 (($) 21 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) 28 (|has| |#1| (-847)))) (-1828 (($ $) 12) (($ $ $) 27)) (-1814 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL) (($ (-564) |#1|) 26)))
(((-322 |#1|) (-13 (-21) (-714 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) (-1094)) (T -322))
NIL
(-13 (-21) (-714 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3219 (((-641 (-2 (|:| |gen| |#1|) (|:| -2152 |#2|))) $) 27)) (-3936 (((-3 $ "failed") $ $) 19)) (-3042 (((-768) $) 28)) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#1| "failed") $) 32)) (-2064 ((|#1| $) 33)) (-2902 ((|#1| $ (-564)) 25)) (-2012 ((|#2| $ (-564)) 26)) (-2093 (($ (-1 |#1| |#1|) $) 22)) (-2132 (($ (-1 |#2| |#2|) $) 23)) (-4202 (((-1152) $) 9)) (-4055 (($ $ $) 21 (|has| |#2| (-789)))) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ |#1|) 31)) (-1757 ((|#2| |#1| $) 24)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1771 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ |#2| |#1|) 29)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-1681 (((-641 (-2 (|:| |gen| |#1|) (|:| -4130 |#2|))) $) 27)) (-4281 (((-3 $ "failed") $ $) 19)) (-2018 (((-768) $) 28)) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#1| "failed") $) 32)) (-2376 ((|#1| $) 33)) (-3488 ((|#1| $ (-564)) 25)) (-3887 ((|#2| $ (-564)) 26)) (-2312 (($ (-1 |#1| |#1|) $) 22)) (-2731 (($ (-1 |#2| |#2|) $) 23)) (-1868 (((-1152) $) 9)) (-2924 (($ $ $) 21 (|has| |#2| (-789)))) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ |#1|) 31)) (-3181 ((|#2| |#1| $) 24)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1814 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ |#2| |#1|) 29)))
(((-323 |#1| |#2|) (-140) (-1094) (-131)) (T -323))
-((-1771 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-768)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 *4)))))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) (-4 *2 (-131)))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1094)))) (-1757 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-2132 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-2093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-4055 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) (-4 *3 (-789)))))
-(-13 (-131) (-1035 |t#1|) (-10 -8 (-15 -1771 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3042 ((-768) $)) (-15 -3219 ((-641 (-2 (|:| |gen| |t#1|) (|:| -2152 |t#2|))) $)) (-15 -2012 (|t#2| $ (-564))) (-15 -2902 (|t#1| $ (-564))) (-15 -1757 (|t#2| |t#1| $)) (-15 -2132 ($ (-1 |t#2| |t#2|) $)) (-15 -2093 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-789)) (-15 -4055 ($ $ $)) |%noBranch|)))
+((-1814 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-768)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 *4)))))) (-3887 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) (-4 *2 (-131)))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1094)))) (-3181 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-2731 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-2312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-2924 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) (-4 *3 (-789)))))
+(-13 (-131) (-1035 |t#1|) (-10 -8 (-15 -1814 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2018 ((-768) $)) (-15 -1681 ((-641 (-2 (|:| |gen| |t#1|) (|:| -4130 |t#2|))) $)) (-15 -3887 (|t#2| $ (-564))) (-15 -3488 (|t#1| $ (-564))) (-15 -3181 (|t#2| |t#1| $)) (-15 -2731 ($ (-1 |t#2| |t#2|) $)) (-15 -2312 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-789)) (-15 -2924 ($ $ $)) |%noBranch|)))
(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-1035 |#1|) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3219 (((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-768)))) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3042 (((-768) $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-2902 ((|#1| $ (-564)) NIL)) (-2012 (((-768) $ (-564)) NIL)) (-2093 (($ (-1 |#1| |#1|) $) NIL)) (-2132 (($ (-1 (-768) (-768)) $) NIL)) (-4202 (((-1152) $) NIL)) (-4055 (($ $ $) NIL (|has| (-768) (-789)))) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL) (($ |#1|) NIL)) (-1757 (((-768) |#1| $) NIL)) (-4317 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1771 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-768) |#1|) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1681 (((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-768)))) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2018 (((-768) $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-3488 ((|#1| $ (-564)) NIL)) (-3887 (((-768) $ (-564)) NIL)) (-2312 (($ (-1 |#1| |#1|) $) NIL)) (-2731 (($ (-1 (-768) (-768)) $) NIL)) (-1868 (((-1152) $) NIL)) (-2924 (($ $ $) NIL (|has| (-768) (-789)))) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL) (($ |#1|) NIL)) (-3181 (((-768) |#1| $) NIL)) (-4312 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-768) |#1|) NIL)))
(((-324 |#1|) (-323 |#1| (-768)) (-1094)) (T -324))
NIL
(-323 |#1| (-768))
-((-2190 (($ $) 71)) (-2877 (($ $ |#2| |#3| $) 14)) (-2964 (($ (-1 |#3| |#3|) $) 51)) (-4285 (((-112) $) 42)) (-4298 ((|#2| $) 44)) (-1343 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 63)) (-2712 ((|#2| $) 67)) (-4264 (((-641 |#2|) $) 56)) (-2958 (($ $ $ (-768)) 37)) (-1793 (($ $ |#2|) 60)))
-(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -2190 (|#1| |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2958 (|#1| |#1| |#1| (-768))) (-15 -2877 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2964 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4264 ((-641 |#2|) |#1|)) (-15 -4298 (|#2| |#1|)) (-15 -4285 ((-112) |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1793 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1046) (-789)) (T -325))
+((-2015 (($ $) 71)) (-1423 (($ $ |#2| |#3| $) 14)) (-4062 (($ (-1 |#3| |#3|) $) 51)) (-1304 (((-112) $) 42)) (-1316 ((|#2| $) 44)) (-1347 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 63)) (-3324 ((|#2| $) 67)) (-4252 (((-641 |#2|) $) 56)) (-3993 (($ $ $ (-768)) 37)) (-1841 (($ $ |#2|) 60)))
+(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -2015 (|#1| |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3993 (|#1| |#1| |#1| (-768))) (-15 -1423 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4062 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4252 ((-641 |#2|) |#1|)) (-15 -1316 (|#2| |#1|)) (-15 -1304 ((-112) |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1841 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1046) (-789)) (T -325))
NIL
-(-10 -8 (-15 -2190 (|#1| |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2958 (|#1| |#1| |#1| (-768))) (-15 -2877 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2964 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4264 ((-641 |#2|) |#1|)) (-15 -4298 (|#2| |#1|)) (-15 -4285 ((-112) |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1793 (|#1| |#1| |#2|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1840 (($ $) 55 (|has| |#1| (-556)))) (-4035 (((-112) $) 57 (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2013 (((-3 (-564) "failed") $) 91 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 89 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 86)) (-2064 (((-564) $) 90 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 88 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 87)) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-2190 (($ $) 75 (|has| |#1| (-452)))) (-2877 (($ $ |#1| |#2| $) 79)) (-2419 (((-112) $) 31)) (-3107 (((-768) $) 82)) (-3101 (((-112) $) 65)) (-4145 (($ |#1| |#2|) 64)) (-3829 ((|#2| $) 81)) (-2964 (($ (-1 |#2| |#2|) $) 80)) (-2082 (($ (-1 |#1| |#1|) $) 66)) (-4311 (($ $) 68)) (-4323 ((|#1| $) 69)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-4285 (((-112) $) 85)) (-4298 ((|#1| $) 84)) (-1343 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-556)))) (-3344 ((|#2| $) 67)) (-2712 ((|#1| $) 76 (|has| |#1| (-452)))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50) (($ (-407 (-564))) 60 (-4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-4264 (((-641 |#1|) $) 83)) (-1757 ((|#1| $ |#2|) 62)) (-2864 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-2958 (($ $ $ (-768)) 78 (|has| |#1| (-172)))) (-1582 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
+(-10 -8 (-15 -2015 (|#1| |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3993 (|#1| |#1| |#1| (-768))) (-15 -1423 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4062 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4252 ((-641 |#2|) |#1|)) (-15 -1316 (|#2| |#1|)) (-15 -1304 ((-112) |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1841 (|#1| |#1| |#2|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1582 (($ $) 55 (|has| |#1| (-556)))) (-3897 (((-112) $) 57 (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-2224 (((-3 (-564) "failed") $) 91 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 89 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 86)) (-2376 (((-564) $) 90 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 88 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 87)) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-2015 (($ $) 75 (|has| |#1| (-452)))) (-1423 (($ $ |#1| |#2| $) 79)) (-2340 (((-112) $) 31)) (-2998 (((-768) $) 82)) (-2961 (((-112) $) 65)) (-4267 (($ |#1| |#2|) 64)) (-2700 ((|#2| $) 81)) (-4062 (($ (-1 |#2| |#2|) $) 80)) (-2313 (($ (-1 |#1| |#1|) $) 66)) (-1330 (($ $) 68)) (-1345 ((|#1| $) 69)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1304 (((-112) $) 85)) (-1316 ((|#1| $) 84)) (-1347 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-556)))) (-3475 ((|#2| $) 67)) (-3324 ((|#1| $) 76 (|has| |#1| (-452)))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50) (($ (-407 (-564))) 60 (-4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-4252 (((-641 |#1|) $) 83)) (-3181 ((|#1| $ |#2|) 62)) (-4363 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-3993 (($ $ $ (-768)) 78 (|has| |#1| (-172)))) (-3979 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
(((-326 |#1| |#2|) (-140) (-1046) (-789)) (T -326))
-((-4285 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-112)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-641 *3)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-768)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2964 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-2877 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-2958 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *3 (-172)))) (-1343 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-556)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-2190 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-452)))))
-(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -4285 ((-112) $)) (-15 -4298 (|t#1| $)) (-15 -4264 ((-641 |t#1|) $)) (-15 -3107 ((-768) $)) (-15 -3829 (|t#2| $)) (-15 -2964 ($ (-1 |t#2| |t#2|) $)) (-15 -2877 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -2958 ($ $ $ (-768))) |%noBranch|) (IF (|has| |t#1| (-556)) (-15 -1343 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2712 (|t#1| $)) (-15 -2190 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-411 |#1|) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-2783 (((-112) (-112)) NIL)) (-1881 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-4194 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3083 (($ $) NIL (|has| |#1| (-1094)))) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1907 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1356 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-4281 (($ $ (-564)) NIL)) (-2356 (((-768) $) NIL)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-1633 (($ (-768) |#1|) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1397 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2098 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3412 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1345 (($ (-641 |#1|)) NIL)) (-3073 ((|#1| $) NIL (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4183 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) NIL)) (-2478 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2817 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1345 ($ (-641 |#1|))) (-15 -2356 ((-768) $)) (-15 -4281 ($ $ (-564))) (-15 -2783 ((-112) (-112))))) (-1209)) (T -327))
-((-1345 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))))
-(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1345 ($ (-641 |#1|))) (-15 -2356 ((-768) $)) (-15 -4281 ($ $ (-564))) (-15 -2783 ((-112) (-112)))))
-((-2868 (((-112) $) 50)) (-1743 (((-768)) 26)) (-3715 ((|#2| $) 54) (($ $ (-918)) 123)) (-3042 (((-768)) 124)) (-2910 (($ (-1259 |#2|)) 23)) (-2805 (((-112) $) 139)) (-1779 ((|#2| $) 56) (($ $ (-918)) 120)) (-2513 (((-1166 |#2|) $) NIL) (((-1166 $) $ (-918)) 111)) (-3645 (((-1166 |#2|) $) 98)) (-3135 (((-1166 |#2|) $) 94) (((-3 (-1166 |#2|) "failed") $ $) 91)) (-3325 (($ $ (-1166 |#2|)) 62)) (-1369 (((-830 (-918))) 33) (((-918)) 51)) (-3850 (((-134)) 30)) (-3344 (((-830 (-918)) $) 35) (((-918) $) 142)) (-3387 (($) 132)) (-3072 (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $)) 45)) (-2864 (($ $) NIL) (((-3 $ "failed") $) 101)) (-3623 (((-112) $) 48)))
-(((-328 |#1| |#2|) (-10 -8 (-15 -2864 ((-3 |#1| "failed") |#1|)) (-15 -3042 ((-768))) (-15 -2864 (|#1| |#1|)) (-15 -3135 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -3135 ((-1166 |#2|) |#1|)) (-15 -3645 ((-1166 |#2|) |#1|)) (-15 -3325 (|#1| |#1| (-1166 |#2|))) (-15 -2805 ((-112) |#1|)) (-15 -3387 (|#1|)) (-15 -3715 (|#1| |#1| (-918))) (-15 -1779 (|#1| |#1| (-918))) (-15 -2513 ((-1166 |#1|) |#1| (-918))) (-15 -3715 (|#2| |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -3344 ((-918) |#1|)) (-15 -1369 ((-918))) (-15 -2513 ((-1166 |#2|) |#1|)) (-15 -2910 (|#1| (-1259 |#2|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1|)) (-15 -1743 ((-768))) (-15 -1369 ((-830 (-918)))) (-15 -3344 ((-830 (-918)) |#1|)) (-15 -2868 ((-112) |#1|)) (-15 -3623 ((-112) |#1|)) (-15 -3850 ((-134)))) (-329 |#2|) (-363)) (T -328))
-((-3850 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1369 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-830 (-918))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1743 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1369 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-918)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3042 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))))
-(-10 -8 (-15 -2864 ((-3 |#1| "failed") |#1|)) (-15 -3042 ((-768))) (-15 -2864 (|#1| |#1|)) (-15 -3135 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -3135 ((-1166 |#2|) |#1|)) (-15 -3645 ((-1166 |#2|) |#1|)) (-15 -3325 (|#1| |#1| (-1166 |#2|))) (-15 -2805 ((-112) |#1|)) (-15 -3387 (|#1|)) (-15 -3715 (|#1| |#1| (-918))) (-15 -1779 (|#1| |#1| (-918))) (-15 -2513 ((-1166 |#1|) |#1| (-918))) (-15 -3715 (|#2| |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -3344 ((-918) |#1|)) (-15 -1369 ((-918))) (-15 -2513 ((-1166 |#2|) |#1|)) (-15 -2910 (|#1| (-1259 |#2|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1|)) (-15 -1743 ((-768))) (-15 -1369 ((-830 (-918)))) (-15 -3344 ((-830 (-918)) |#1|)) (-15 -2868 ((-112) |#1|)) (-15 -3623 ((-112) |#1|)) (-15 -3850 ((-134))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-2868 (((-112) $) 95)) (-1743 (((-768)) 91)) (-3715 ((|#1| $) 141) (($ $ (-918)) 138 (|has| |#1| (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) 123 (|has| |#1| (-368)))) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-3385 (((-112) $ $) 60)) (-3042 (((-768)) 113 (|has| |#1| (-368)))) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#1| "failed") $) 102)) (-2064 ((|#1| $) 103)) (-2910 (($ (-1259 |#1|)) 147)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-368)))) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-2542 (($) 110 (|has| |#1| (-368)))) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-1990 (($) 125 (|has| |#1| (-368)))) (-3242 (((-112) $) 126 (|has| |#1| (-368)))) (-2184 (($ $ (-768)) 88 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3241 (((-112) $) 72)) (-2261 (((-918) $) 128 (|has| |#1| (-368))) (((-830 (-918)) $) 85 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2419 (((-112) $) 31)) (-1650 (($) 136 (|has| |#1| (-368)))) (-2805 (((-112) $) 135 (|has| |#1| (-368)))) (-1779 ((|#1| $) 142) (($ $ (-918)) 139 (|has| |#1| (-368)))) (-3374 (((-3 $ "failed") $) 114 (|has| |#1| (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2513 (((-1166 |#1|) $) 146) (((-1166 $) $ (-918)) 140 (|has| |#1| (-368)))) (-2209 (((-918) $) 111 (|has| |#1| (-368)))) (-3645 (((-1166 |#1|) $) 132 (|has| |#1| (-368)))) (-3135 (((-1166 |#1|) $) 131 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 130 (|has| |#1| (-368)))) (-3325 (($ $ (-1166 |#1|)) 133 (|has| |#1| (-368)))) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71)) (-1611 (($) 115 (|has| |#1| (-368)) CONST)) (-1403 (($ (-918)) 112 (|has| |#1| (-368)))) (-4120 (((-112) $) 94)) (-3802 (((-1114) $) 10)) (-1502 (($) 134 (|has| |#1| (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) 122 (|has| |#1| (-368)))) (-4006 (((-418 $) $) 75)) (-1369 (((-830 (-918))) 92) (((-918)) 144)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-1504 (((-768) $) 127 (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) 86 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3850 (((-134)) 100)) (-3226 (($ $) 119 (|has| |#1| (-368))) (($ $ (-768)) 117 (|has| |#1| (-368)))) (-3344 (((-830 (-918)) $) 93) (((-918) $) 143)) (-1916 (((-1166 |#1|)) 145)) (-3726 (($) 124 (|has| |#1| (-368)))) (-3387 (($) 137 (|has| |#1| (-368)))) (-3072 (((-1259 |#1|) $) 149) (((-685 |#1|) (-1259 $)) 148)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 121 (|has| |#1| (-368)))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-2864 (($ $) 120 (|has| |#1| (-368))) (((-3 $ "failed") $) 84 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1965 (((-768)) 28 T CONST)) (-3941 (((-1259 $)) 151) (((-1259 $) (-918)) 150)) (-1582 (((-112) $ $) 40)) (-3623 (((-112) $) 96)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1560 (($ $) 90 (|has| |#1| (-368))) (($ $ (-768)) 89 (|has| |#1| (-368)))) (-3190 (($ $) 118 (|has| |#1| (-368))) (($ $ (-768)) 116 (|has| |#1| (-368)))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ $) 66) (($ $ |#1|) 99)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+((-1304 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-112)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-641 *3)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-768)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-4062 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-1423 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-3993 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *3 (-172)))) (-1347 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-556)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-2015 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-452)))))
+(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -1304 ((-112) $)) (-15 -1316 (|t#1| $)) (-15 -4252 ((-641 |t#1|) $)) (-15 -2998 ((-768) $)) (-15 -2700 (|t#2| $)) (-15 -4062 ($ (-1 |t#2| |t#2|) $)) (-15 -1423 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -3993 ($ $ $ (-768))) |%noBranch|) (IF (|has| |t#1| (-556)) (-15 -1347 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3324 (|t#1| $)) (-15 -2015 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-411 |#1|) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-1673 (((-112) (-112)) NIL)) (-3868 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413)))) (-1773 (($ (-1 (-112) |#1|) $) NIL)) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2822 (($ $) NIL (|has| |#1| (-1094)))) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4074 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-3303 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-1314 (($ $ (-564)) NIL)) (-2975 (((-768) $) NIL)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3564 (($ (-768) |#1|) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-2573 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2373 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2455 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2480 (($ (-641 |#1|)) NIL)) (-2049 ((|#1| $) NIL (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2899 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) NIL)) (-1711 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1865 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2480 ($ (-641 |#1|))) (-15 -2975 ((-768) $)) (-15 -1314 ($ $ (-564))) (-15 -1673 ((-112) (-112))))) (-1209)) (T -327))
+((-2480 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))))
+(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2480 ($ (-641 |#1|))) (-15 -2975 ((-768) $)) (-15 -1314 ($ $ (-564))) (-15 -1673 ((-112) (-112)))))
+((-1309 (((-112) $) 50)) (-3062 (((-768)) 26)) (-3767 ((|#2| $) 54) (($ $ (-918)) 123)) (-2018 (((-768)) 124)) (-3566 (($ (-1259 |#2|)) 23)) (-1927 (((-112) $) 139)) (-2217 ((|#2| $) 56) (($ $ (-918)) 120)) (-2041 (((-1166 |#2|) $) NIL) (((-1166 $) $ (-918)) 111)) (-1513 (((-1166 |#2|) $) 98)) (-3240 (((-1166 |#2|) $) 94) (((-3 (-1166 |#2|) "failed") $ $) 91)) (-1486 (($ $ (-1166 |#2|)) 62)) (-3117 (((-830 (-918))) 33) (((-918)) 51)) (-2869 (((-134)) 30)) (-3475 (((-830 (-918)) $) 35) (((-918) $) 142)) (-3927 (($) 132)) (-3867 (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $)) 45)) (-4363 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4368 (((-112) $) 48)))
+(((-328 |#1| |#2|) (-10 -8 (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -2018 ((-768))) (-15 -4363 (|#1| |#1|)) (-15 -3240 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -3240 ((-1166 |#2|) |#1|)) (-15 -1513 ((-1166 |#2|) |#1|)) (-15 -1486 (|#1| |#1| (-1166 |#2|))) (-15 -1927 ((-112) |#1|)) (-15 -3927 (|#1|)) (-15 -3767 (|#1| |#1| (-918))) (-15 -2217 (|#1| |#1| (-918))) (-15 -2041 ((-1166 |#1|) |#1| (-918))) (-15 -3767 (|#2| |#1|)) (-15 -2217 (|#2| |#1|)) (-15 -3475 ((-918) |#1|)) (-15 -3117 ((-918))) (-15 -2041 ((-1166 |#2|) |#1|)) (-15 -3566 (|#1| (-1259 |#2|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1|)) (-15 -3062 ((-768))) (-15 -3117 ((-830 (-918)))) (-15 -3475 ((-830 (-918)) |#1|)) (-15 -1309 ((-112) |#1|)) (-15 -4368 ((-112) |#1|)) (-15 -2869 ((-134)))) (-329 |#2|) (-363)) (T -328))
+((-2869 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3117 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-830 (-918))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3062 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3117 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-918)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-2018 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))))
+(-10 -8 (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -2018 ((-768))) (-15 -4363 (|#1| |#1|)) (-15 -3240 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -3240 ((-1166 |#2|) |#1|)) (-15 -1513 ((-1166 |#2|) |#1|)) (-15 -1486 (|#1| |#1| (-1166 |#2|))) (-15 -1927 ((-112) |#1|)) (-15 -3927 (|#1|)) (-15 -3767 (|#1| |#1| (-918))) (-15 -2217 (|#1| |#1| (-918))) (-15 -2041 ((-1166 |#1|) |#1| (-918))) (-15 -3767 (|#2| |#1|)) (-15 -2217 (|#2| |#1|)) (-15 -3475 ((-918) |#1|)) (-15 -3117 ((-918))) (-15 -2041 ((-1166 |#2|) |#1|)) (-15 -3566 (|#1| (-1259 |#2|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1|)) (-15 -3062 ((-768))) (-15 -3117 ((-830 (-918)))) (-15 -3475 ((-830 (-918)) |#1|)) (-15 -1309 ((-112) |#1|)) (-15 -4368 ((-112) |#1|)) (-15 -2869 ((-134))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-1309 (((-112) $) 95)) (-3062 (((-768)) 91)) (-3767 ((|#1| $) 141) (($ $ (-918)) 138 (|has| |#1| (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) 123 (|has| |#1| (-368)))) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-3907 (((-112) $ $) 60)) (-2018 (((-768)) 113 (|has| |#1| (-368)))) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#1| "failed") $) 102)) (-2376 ((|#1| $) 103)) (-3566 (($ (-1259 |#1|)) 147)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-368)))) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-2939 (($) 110 (|has| |#1| (-368)))) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-3648 (($) 125 (|has| |#1| (-368)))) (-1937 (((-112) $) 126 (|has| |#1| (-368)))) (-1957 (($ $ (-768)) 88 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1926 (((-112) $) 72)) (-1454 (((-918) $) 128 (|has| |#1| (-368))) (((-830 (-918)) $) 85 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2340 (((-112) $) 31)) (-3344 (($) 136 (|has| |#1| (-368)))) (-1927 (((-112) $) 135 (|has| |#1| (-368)))) (-2217 ((|#1| $) 142) (($ $ (-918)) 139 (|has| |#1| (-368)))) (-3804 (((-3 $ "failed") $) 114 (|has| |#1| (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2041 (((-1166 |#1|) $) 146) (((-1166 $) $ (-918)) 140 (|has| |#1| (-368)))) (-4031 (((-918) $) 111 (|has| |#1| (-368)))) (-1513 (((-1166 |#1|) $) 132 (|has| |#1| (-368)))) (-3240 (((-1166 |#1|) $) 131 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 130 (|has| |#1| (-368)))) (-1486 (($ $ (-1166 |#1|)) 133 (|has| |#1| (-368)))) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71)) (-3304 (($) 115 (|has| |#1| (-368)) CONST)) (-3338 (($ (-918)) 112 (|has| |#1| (-368)))) (-2309 (((-112) $) 94)) (-3844 (((-1114) $) 10)) (-1729 (($) 134 (|has| |#1| (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) 122 (|has| |#1| (-368)))) (-4139 (((-418 $) $) 75)) (-3117 (((-830 (-918))) 92) (((-918)) 144)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-2671 (((-768) $) 127 (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) 86 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2869 (((-134)) 100)) (-2203 (($ $) 119 (|has| |#1| (-368))) (($ $ (-768)) 117 (|has| |#1| (-368)))) (-3475 (((-830 (-918)) $) 93) (((-918) $) 143)) (-4180 (((-1166 |#1|)) 145)) (-2927 (($) 124 (|has| |#1| (-368)))) (-3927 (($) 137 (|has| |#1| (-368)))) (-3867 (((-1259 |#1|) $) 149) (((-685 |#1|) (-1259 $)) 148)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 121 (|has| |#1| (-368)))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-4363 (($ $) 120 (|has| |#1| (-368))) (((-3 $ "failed") $) 84 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3379 (((-768)) 28 T CONST)) (-4339 (((-1259 $)) 151) (((-1259 $) (-918)) 150)) (-3979 (((-112) $ $) 40)) (-4368 (((-112) $) 96)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1946 (($ $) 90 (|has| |#1| (-368))) (($ $ (-768)) 89 (|has| |#1| (-368)))) (-2238 (($ $) 118 (|has| |#1| (-368))) (($ $ (-768)) 116 (|has| |#1| (-368)))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ $) 66) (($ $ |#1|) 99)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
(((-329 |#1|) (-140) (-363)) (T -329))
-((-3941 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *4)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-1916 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-1369 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-2513 (*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1)) (-4 *1 (-329 *4)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3387 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-1650 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-1502 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3325 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-3135 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))))
-(-13 (-1278 |t#1|) (-1035 |t#1|) (-10 -8 (-15 -3941 ((-1259 $))) (-15 -3941 ((-1259 $) (-918))) (-15 -3072 ((-1259 |t#1|) $)) (-15 -3072 ((-685 |t#1|) (-1259 $))) (-15 -2910 ($ (-1259 |t#1|))) (-15 -2513 ((-1166 |t#1|) $)) (-15 -1916 ((-1166 |t#1|))) (-15 -1369 ((-918))) (-15 -3344 ((-918) $)) (-15 -1779 (|t#1| $)) (-15 -3715 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -2513 ((-1166 $) $ (-918))) (-15 -1779 ($ $ (-918))) (-15 -3715 ($ $ (-918))) (-15 -3387 ($)) (-15 -1650 ($)) (-15 -2805 ((-112) $)) (-15 -1502 ($)) (-15 -3325 ($ $ (-1166 |t#1|))) (-15 -3645 ((-1166 |t#1|) $)) (-15 -3135 ((-1166 |t#1|) $)) (-15 -3135 ((-3 (-1166 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4002 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1278 |#1|) . T) ((-363) . T) ((-402) -4002 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-368)) ((-1213) . T) ((-1266 |#1|) . T))
-((-1754 (((-112) $ $) NIL)) (-2738 (($ (-1169) $) 104)) (-1839 (($) 93)) (-2358 (((-1114) (-1114)) 9)) (-2560 (($) 94)) (-2693 (($) 108) (($ (-316 (-695))) 116) (($ (-316 (-697))) 112) (($ (-316 (-690))) 120) (($ (-316 (-379))) 127) (($ (-316 (-564))) 123) (($ (-316 (-169 (-379)))) 131)) (-3688 (($ (-1169) $) 105)) (-3388 (($ (-641 (-859))) 95)) (-2504 (((-1264) $) 91)) (-2511 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1610 (($ (-1114)) 60)) (-1301 (((-1098) $) 32)) (-1550 (($ (-1086 (-949 (-564))) $) 101) (($ (-1086 (-949 (-564))) (-949 (-564)) $) 102)) (-3944 (($ (-1114)) 103)) (-2985 (($ (-1169) $) 133) (($ (-1169) $ $) 134)) (-2324 (($ (-1170) (-641 (-1170))) 92)) (-1806 (($ (-1152)) 98) (($ (-641 (-1152))) 96)) (-1765 (((-859) $) 136)) (-2353 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2742 (-112)) (|:| -1451 (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -1361 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4374 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4374 $))) (|:| |commonBranch| (-2 (|:| -4363 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $) 51)) (-1376 (($ (-1152)) 205)) (-2699 (($ (-641 $)) 132)) (-3910 (($ (-1170) (-1152)) 138) (($ (-1170) (-316 (-697))) 178) (($ (-1170) (-316 (-695))) 179) (($ (-1170) (-316 (-690))) 180) (($ (-1170) (-685 (-697))) 141) (($ (-1170) (-685 (-695))) 144) (($ (-1170) (-685 (-690))) 147) (($ (-1170) (-1259 (-697))) 150) (($ (-1170) (-1259 (-695))) 153) (($ (-1170) (-1259 (-690))) 156) (($ (-1170) (-685 (-316 (-697)))) 159) (($ (-1170) (-685 (-316 (-695)))) 162) (($ (-1170) (-685 (-316 (-690)))) 165) (($ (-1170) (-1259 (-316 (-697)))) 168) (($ (-1170) (-1259 (-316 (-695)))) 171) (($ (-1170) (-1259 (-316 (-690)))) 174) (($ (-1170) (-641 (-949 (-564))) (-316 (-697))) 175) (($ (-1170) (-641 (-949 (-564))) (-316 (-695))) 176) (($ (-1170) (-641 (-949 (-564))) (-316 (-690))) 177) (($ (-1170) (-316 (-564))) 202) (($ (-1170) (-316 (-379))) 203) (($ (-1170) (-316 (-169 (-379)))) 204) (($ (-1170) (-685 (-316 (-564)))) 183) (($ (-1170) (-685 (-316 (-379)))) 186) (($ (-1170) (-685 (-316 (-169 (-379))))) 189) (($ (-1170) (-1259 (-316 (-564)))) 192) (($ (-1170) (-1259 (-316 (-379)))) 195) (($ (-1170) (-1259 (-316 (-169 (-379))))) 198) (($ (-1170) (-641 (-949 (-564))) (-316 (-564))) 199) (($ (-1170) (-641 (-949 (-564))) (-316 (-379))) 200) (($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379)))) 201)) (-1686 (((-112) $ $) NIL)))
-(((-330) (-13 (-1094) (-10 -8 (-15 -1550 ($ (-1086 (-949 (-564))) $)) (-15 -1550 ($ (-1086 (-949 (-564))) (-949 (-564)) $)) (-15 -2738 ($ (-1169) $)) (-15 -3688 ($ (-1169) $)) (-15 -1610 ($ (-1114))) (-15 -3944 ($ (-1114))) (-15 -1806 ($ (-1152))) (-15 -1806 ($ (-641 (-1152)))) (-15 -1376 ($ (-1152))) (-15 -2693 ($)) (-15 -2693 ($ (-316 (-695)))) (-15 -2693 ($ (-316 (-697)))) (-15 -2693 ($ (-316 (-690)))) (-15 -2693 ($ (-316 (-379)))) (-15 -2693 ($ (-316 (-564)))) (-15 -2693 ($ (-316 (-169 (-379))))) (-15 -2985 ($ (-1169) $)) (-15 -2985 ($ (-1169) $ $)) (-15 -3910 ($ (-1170) (-1152))) (-15 -3910 ($ (-1170) (-316 (-697)))) (-15 -3910 ($ (-1170) (-316 (-695)))) (-15 -3910 ($ (-1170) (-316 (-690)))) (-15 -3910 ($ (-1170) (-685 (-697)))) (-15 -3910 ($ (-1170) (-685 (-695)))) (-15 -3910 ($ (-1170) (-685 (-690)))) (-15 -3910 ($ (-1170) (-1259 (-697)))) (-15 -3910 ($ (-1170) (-1259 (-695)))) (-15 -3910 ($ (-1170) (-1259 (-690)))) (-15 -3910 ($ (-1170) (-685 (-316 (-697))))) (-15 -3910 ($ (-1170) (-685 (-316 (-695))))) (-15 -3910 ($ (-1170) (-685 (-316 (-690))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-697))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-695))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-690))))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-697)))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-695)))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-690)))) (-15 -3910 ($ (-1170) (-316 (-564)))) (-15 -3910 ($ (-1170) (-316 (-379)))) (-15 -3910 ($ (-1170) (-316 (-169 (-379))))) (-15 -3910 ($ (-1170) (-685 (-316 (-564))))) (-15 -3910 ($ (-1170) (-685 (-316 (-379))))) (-15 -3910 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-564))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-379))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-564)))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-379)))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379))))) (-15 -2699 ($ (-641 $))) (-15 -1839 ($)) (-15 -2560 ($)) (-15 -3388 ($ (-641 (-859)))) (-15 -2324 ($ (-1170) (-641 (-1170)))) (-15 -2511 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2353 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2742 (-112)) (|:| -1451 (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -1361 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4374 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4374 $))) (|:| |commonBranch| (-2 (|:| -4363 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $)) (-15 -2504 ((-1264) $)) (-15 -1301 ((-1098) $)) (-15 -2358 ((-1114) (-1114)))))) (T -330))
-((-1550 (*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *1 (-330)))) (-1550 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *3 (-949 (-564))) (-5 *1 (-330)))) (-2738 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3688 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-1806 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-1806 (*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330)))) (-1376 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-2693 (*1 *1) (-5 *1 (-330))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-2985 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-2985 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-697))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-695))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-690))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-564))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-3910 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-2699 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330)))) (-1839 (*1 *1) (-5 *1 (-330))) (-2560 (*1 *1) (-5 *1 (-330))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-330)))) (-2324 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330)))) (-2511 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -2742 (-112)) (|:| -1451 (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859)))))) (|:| |blockBranch| (-641 (-330))) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -1361 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4374 (-330)))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4374 (-330)))) (|:| |commonBranch| (-2 (|:| -4363 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859))))) (-5 *1 (-330)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
-(-13 (-1094) (-10 -8 (-15 -1550 ($ (-1086 (-949 (-564))) $)) (-15 -1550 ($ (-1086 (-949 (-564))) (-949 (-564)) $)) (-15 -2738 ($ (-1169) $)) (-15 -3688 ($ (-1169) $)) (-15 -1610 ($ (-1114))) (-15 -3944 ($ (-1114))) (-15 -1806 ($ (-1152))) (-15 -1806 ($ (-641 (-1152)))) (-15 -1376 ($ (-1152))) (-15 -2693 ($)) (-15 -2693 ($ (-316 (-695)))) (-15 -2693 ($ (-316 (-697)))) (-15 -2693 ($ (-316 (-690)))) (-15 -2693 ($ (-316 (-379)))) (-15 -2693 ($ (-316 (-564)))) (-15 -2693 ($ (-316 (-169 (-379))))) (-15 -2985 ($ (-1169) $)) (-15 -2985 ($ (-1169) $ $)) (-15 -3910 ($ (-1170) (-1152))) (-15 -3910 ($ (-1170) (-316 (-697)))) (-15 -3910 ($ (-1170) (-316 (-695)))) (-15 -3910 ($ (-1170) (-316 (-690)))) (-15 -3910 ($ (-1170) (-685 (-697)))) (-15 -3910 ($ (-1170) (-685 (-695)))) (-15 -3910 ($ (-1170) (-685 (-690)))) (-15 -3910 ($ (-1170) (-1259 (-697)))) (-15 -3910 ($ (-1170) (-1259 (-695)))) (-15 -3910 ($ (-1170) (-1259 (-690)))) (-15 -3910 ($ (-1170) (-685 (-316 (-697))))) (-15 -3910 ($ (-1170) (-685 (-316 (-695))))) (-15 -3910 ($ (-1170) (-685 (-316 (-690))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-697))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-695))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-690))))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-697)))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-695)))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-690)))) (-15 -3910 ($ (-1170) (-316 (-564)))) (-15 -3910 ($ (-1170) (-316 (-379)))) (-15 -3910 ($ (-1170) (-316 (-169 (-379))))) (-15 -3910 ($ (-1170) (-685 (-316 (-564))))) (-15 -3910 ($ (-1170) (-685 (-316 (-379))))) (-15 -3910 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-564))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-379))))) (-15 -3910 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-564)))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-379)))) (-15 -3910 ($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379))))) (-15 -2699 ($ (-641 $))) (-15 -1839 ($)) (-15 -2560 ($)) (-15 -3388 ($ (-641 (-859)))) (-15 -2324 ($ (-1170) (-641 (-1170)))) (-15 -2511 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2353 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2742 (-112)) (|:| -1451 (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -1361 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4374 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4374 $))) (|:| |commonBranch| (-2 (|:| -4363 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $)) (-15 -2504 ((-1264) $)) (-15 -1301 ((-1098) $)) (-15 -2358 ((-1114) (-1114)))))
-((-1754 (((-112) $ $) NIL)) (-3300 (((-112) $) 13)) (-3727 (($ |#1|) 10)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3739 (($ |#1|) 12)) (-1765 (((-859) $) 19)) (-2377 ((|#1| $) 14)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 21)))
-(((-331 |#1|) (-13 (-847) (-10 -8 (-15 -3727 ($ |#1|)) (-15 -3739 ($ |#1|)) (-15 -3300 ((-112) $)) (-15 -2377 (|#1| $)))) (-847)) (T -331))
-((-3727 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) (-3739 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-847)))) (-2377 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))))
-(-13 (-847) (-10 -8 (-15 -3727 ($ |#1|)) (-15 -3739 ($ |#1|)) (-15 -3300 ((-112) $)) (-15 -2377 (|#1| $))))
-((-2020 (((-330) (-1170) (-949 (-564))) 23)) (-4209 (((-330) (-1170) (-949 (-564))) 27)) (-1329 (((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564)))) 26) (((-330) (-1170) (-949 (-564)) (-949 (-564))) 24)) (-3484 (((-330) (-1170) (-949 (-564))) 31)))
-(((-332) (-10 -7 (-15 -2020 ((-330) (-1170) (-949 (-564)))) (-15 -1329 ((-330) (-1170) (-949 (-564)) (-949 (-564)))) (-15 -1329 ((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564))))) (-15 -4209 ((-330) (-1170) (-949 (-564)))) (-15 -3484 ((-330) (-1170) (-949 (-564)))))) (T -332))
-((-3484 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-4209 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1329 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-949 (-564)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1329 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2020 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))))
-(-10 -7 (-15 -2020 ((-330) (-1170) (-949 (-564)))) (-15 -1329 ((-330) (-1170) (-949 (-564)) (-949 (-564)))) (-15 -1329 ((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564))))) (-15 -4209 ((-330) (-1170) (-949 (-564)))) (-15 -3484 ((-330) (-1170) (-949 (-564)))))
-((-2082 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33)))
-(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2082 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1235 *9)) (-4 *11 (-1235 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11)))))
-(-10 -7 (-15 -2082 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|))))
-((-3390 (((-112) $) 14)))
-(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3390 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334))
-NIL
-(-10 -8 (-15 -3390 ((-112) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4367 (($ $) 26)) (-3390 (((-112) $) 25)) (-4202 (((-1152) $) 9)) (-2943 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 32)) (-3802 (((-1114) $) 10)) (-1502 (((-3 |#4| "failed") $) 24)) (-3293 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-564)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1770 (((-2 (|:| -1600 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20)))
+((-4339 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *4)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-4180 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-3117 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-2041 (*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1)) (-4 *1 (-329 *4)))) (-2217 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3927 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3344 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-1729 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-1486 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-3240 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))))
+(-13 (-1278 |t#1|) (-1035 |t#1|) (-10 -8 (-15 -4339 ((-1259 $))) (-15 -4339 ((-1259 $) (-918))) (-15 -3867 ((-1259 |t#1|) $)) (-15 -3867 ((-685 |t#1|) (-1259 $))) (-15 -3566 ($ (-1259 |t#1|))) (-15 -2041 ((-1166 |t#1|) $)) (-15 -4180 ((-1166 |t#1|))) (-15 -3117 ((-918))) (-15 -3475 ((-918) $)) (-15 -2217 (|t#1| $)) (-15 -3767 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -2041 ((-1166 $) $ (-918))) (-15 -2217 ($ $ (-918))) (-15 -3767 ($ $ (-918))) (-15 -3927 ($)) (-15 -3344 ($)) (-15 -1927 ((-112) $)) (-15 -1729 ($)) (-15 -1486 ($ $ (-1166 |t#1|))) (-15 -1513 ((-1166 |t#1|) $)) (-15 -3240 ((-1166 |t#1|) $)) (-15 -3240 ((-3 (-1166 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4012 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1278 |#1|) . T) ((-363) . T) ((-402) -4012 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-368)) ((-1213) . T) ((-1266 |#1|) . T))
+((-3702 (((-112) $ $) NIL)) (-2463 (($ (-1169) $) 104)) (-3734 (($) 93)) (-2992 (((-1114) (-1114)) 9)) (-1531 (($) 94)) (-3162 (($) 108) (($ (-316 (-695))) 116) (($ (-316 (-697))) 112) (($ (-316 (-690))) 120) (($ (-316 (-379))) 127) (($ (-316 (-564))) 123) (($ (-316 (-169 (-379)))) 131)) (-3726 (($ (-1169) $) 105)) (-3939 (($ (-641 (-859))) 95)) (-1975 (((-1264) $) 91)) (-4054 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4242 (($ (-1114)) 60)) (-3004 (((-1098) $) 32)) (-1859 (($ (-1086 (-949 (-564))) $) 101) (($ (-1086 (-949 (-564))) (-949 (-564)) $) 102)) (-4078 (($ (-1114)) 103)) (-3193 (($ (-1169) $) 133) (($ (-1169) $ $) 134)) (-2613 (($ (-1170) (-641 (-1170))) 92)) (-3478 (($ (-1152)) 98) (($ (-641 (-1152))) 96)) (-3714 (((-859) $) 136)) (-1353 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2510 (-112)) (|:| -3387 (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4167 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4347 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4347 $))) (|:| |commonBranch| (-2 (|:| -4337 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $) 51)) (-3252 (($ (-1152)) 205)) (-3215 (($ (-641 $)) 132)) (-2216 (($ (-1170) (-1152)) 138) (($ (-1170) (-316 (-697))) 178) (($ (-1170) (-316 (-695))) 179) (($ (-1170) (-316 (-690))) 180) (($ (-1170) (-685 (-697))) 141) (($ (-1170) (-685 (-695))) 144) (($ (-1170) (-685 (-690))) 147) (($ (-1170) (-1259 (-697))) 150) (($ (-1170) (-1259 (-695))) 153) (($ (-1170) (-1259 (-690))) 156) (($ (-1170) (-685 (-316 (-697)))) 159) (($ (-1170) (-685 (-316 (-695)))) 162) (($ (-1170) (-685 (-316 (-690)))) 165) (($ (-1170) (-1259 (-316 (-697)))) 168) (($ (-1170) (-1259 (-316 (-695)))) 171) (($ (-1170) (-1259 (-316 (-690)))) 174) (($ (-1170) (-641 (-949 (-564))) (-316 (-697))) 175) (($ (-1170) (-641 (-949 (-564))) (-316 (-695))) 176) (($ (-1170) (-641 (-949 (-564))) (-316 (-690))) 177) (($ (-1170) (-316 (-564))) 202) (($ (-1170) (-316 (-379))) 203) (($ (-1170) (-316 (-169 (-379)))) 204) (($ (-1170) (-685 (-316 (-564)))) 183) (($ (-1170) (-685 (-316 (-379)))) 186) (($ (-1170) (-685 (-316 (-169 (-379))))) 189) (($ (-1170) (-1259 (-316 (-564)))) 192) (($ (-1170) (-1259 (-316 (-379)))) 195) (($ (-1170) (-1259 (-316 (-169 (-379))))) 198) (($ (-1170) (-641 (-949 (-564))) (-316 (-564))) 199) (($ (-1170) (-641 (-949 (-564))) (-316 (-379))) 200) (($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379)))) 201)) (-1720 (((-112) $ $) NIL)))
+(((-330) (-13 (-1094) (-10 -8 (-15 -1859 ($ (-1086 (-949 (-564))) $)) (-15 -1859 ($ (-1086 (-949 (-564))) (-949 (-564)) $)) (-15 -2463 ($ (-1169) $)) (-15 -3726 ($ (-1169) $)) (-15 -4242 ($ (-1114))) (-15 -4078 ($ (-1114))) (-15 -3478 ($ (-1152))) (-15 -3478 ($ (-641 (-1152)))) (-15 -3252 ($ (-1152))) (-15 -3162 ($)) (-15 -3162 ($ (-316 (-695)))) (-15 -3162 ($ (-316 (-697)))) (-15 -3162 ($ (-316 (-690)))) (-15 -3162 ($ (-316 (-379)))) (-15 -3162 ($ (-316 (-564)))) (-15 -3162 ($ (-316 (-169 (-379))))) (-15 -3193 ($ (-1169) $)) (-15 -3193 ($ (-1169) $ $)) (-15 -2216 ($ (-1170) (-1152))) (-15 -2216 ($ (-1170) (-316 (-697)))) (-15 -2216 ($ (-1170) (-316 (-695)))) (-15 -2216 ($ (-1170) (-316 (-690)))) (-15 -2216 ($ (-1170) (-685 (-697)))) (-15 -2216 ($ (-1170) (-685 (-695)))) (-15 -2216 ($ (-1170) (-685 (-690)))) (-15 -2216 ($ (-1170) (-1259 (-697)))) (-15 -2216 ($ (-1170) (-1259 (-695)))) (-15 -2216 ($ (-1170) (-1259 (-690)))) (-15 -2216 ($ (-1170) (-685 (-316 (-697))))) (-15 -2216 ($ (-1170) (-685 (-316 (-695))))) (-15 -2216 ($ (-1170) (-685 (-316 (-690))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-697))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-695))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-690))))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-697)))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-695)))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-690)))) (-15 -2216 ($ (-1170) (-316 (-564)))) (-15 -2216 ($ (-1170) (-316 (-379)))) (-15 -2216 ($ (-1170) (-316 (-169 (-379))))) (-15 -2216 ($ (-1170) (-685 (-316 (-564))))) (-15 -2216 ($ (-1170) (-685 (-316 (-379))))) (-15 -2216 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-564))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-379))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-564)))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-379)))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379))))) (-15 -3215 ($ (-641 $))) (-15 -3734 ($)) (-15 -1531 ($)) (-15 -3939 ($ (-641 (-859)))) (-15 -2613 ($ (-1170) (-641 (-1170)))) (-15 -4054 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1353 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2510 (-112)) (|:| -3387 (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4167 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4347 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4347 $))) (|:| |commonBranch| (-2 (|:| -4337 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $)) (-15 -1975 ((-1264) $)) (-15 -3004 ((-1098) $)) (-15 -2992 ((-1114) (-1114)))))) (T -330))
+((-1859 (*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *1 (-330)))) (-1859 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *3 (-949 (-564))) (-5 *1 (-330)))) (-2463 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3726 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-4242 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-4078 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-3478 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-3478 (*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330)))) (-3252 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-3162 (*1 *1) (-5 *1 (-330))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3193 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3193 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-697))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-695))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-690))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-564))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-2216 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3215 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330)))) (-3734 (*1 *1) (-5 *1 (-330))) (-1531 (*1 *1) (-5 *1 (-330))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-330)))) (-2613 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-1353 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -2510 (-112)) (|:| -3387 (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859)))))) (|:| |blockBranch| (-641 (-330))) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4167 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4347 (-330)))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4347 (-330)))) (|:| |commonBranch| (-2 (|:| -4337 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859))))) (-5 *1 (-330)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330)))) (-2992 (*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
+(-13 (-1094) (-10 -8 (-15 -1859 ($ (-1086 (-949 (-564))) $)) (-15 -1859 ($ (-1086 (-949 (-564))) (-949 (-564)) $)) (-15 -2463 ($ (-1169) $)) (-15 -3726 ($ (-1169) $)) (-15 -4242 ($ (-1114))) (-15 -4078 ($ (-1114))) (-15 -3478 ($ (-1152))) (-15 -3478 ($ (-641 (-1152)))) (-15 -3252 ($ (-1152))) (-15 -3162 ($)) (-15 -3162 ($ (-316 (-695)))) (-15 -3162 ($ (-316 (-697)))) (-15 -3162 ($ (-316 (-690)))) (-15 -3162 ($ (-316 (-379)))) (-15 -3162 ($ (-316 (-564)))) (-15 -3162 ($ (-316 (-169 (-379))))) (-15 -3193 ($ (-1169) $)) (-15 -3193 ($ (-1169) $ $)) (-15 -2216 ($ (-1170) (-1152))) (-15 -2216 ($ (-1170) (-316 (-697)))) (-15 -2216 ($ (-1170) (-316 (-695)))) (-15 -2216 ($ (-1170) (-316 (-690)))) (-15 -2216 ($ (-1170) (-685 (-697)))) (-15 -2216 ($ (-1170) (-685 (-695)))) (-15 -2216 ($ (-1170) (-685 (-690)))) (-15 -2216 ($ (-1170) (-1259 (-697)))) (-15 -2216 ($ (-1170) (-1259 (-695)))) (-15 -2216 ($ (-1170) (-1259 (-690)))) (-15 -2216 ($ (-1170) (-685 (-316 (-697))))) (-15 -2216 ($ (-1170) (-685 (-316 (-695))))) (-15 -2216 ($ (-1170) (-685 (-316 (-690))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-697))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-695))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-690))))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-697)))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-695)))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-690)))) (-15 -2216 ($ (-1170) (-316 (-564)))) (-15 -2216 ($ (-1170) (-316 (-379)))) (-15 -2216 ($ (-1170) (-316 (-169 (-379))))) (-15 -2216 ($ (-1170) (-685 (-316 (-564))))) (-15 -2216 ($ (-1170) (-685 (-316 (-379))))) (-15 -2216 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-564))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-379))))) (-15 -2216 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-564)))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-379)))) (-15 -2216 ($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379))))) (-15 -3215 ($ (-641 $))) (-15 -3734 ($)) (-15 -1531 ($)) (-15 -3939 ($ (-641 (-859)))) (-15 -2613 ($ (-1170) (-641 (-1170)))) (-15 -4054 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1353 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2510 (-112)) (|:| -3387 (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -4167 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4347 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4347 $))) (|:| |commonBranch| (-2 (|:| -4337 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $)) (-15 -1975 ((-1264) $)) (-15 -3004 ((-1098) $)) (-15 -2992 ((-1114) (-1114)))))
+((-3702 (((-112) $ $) NIL)) (-4326 (((-112) $) 13)) (-2491 (($ |#1|) 10)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2502 (($ |#1|) 12)) (-3714 (((-859) $) 19)) (-3130 ((|#1| $) 14)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 21)))
+(((-331 |#1|) (-13 (-847) (-10 -8 (-15 -2491 ($ |#1|)) (-15 -2502 ($ |#1|)) (-15 -4326 ((-112) $)) (-15 -3130 (|#1| $)))) (-847)) (T -331))
+((-2491 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) (-2502 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-847)))) (-3130 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))))
+(-13 (-847) (-10 -8 (-15 -2491 ($ |#1|)) (-15 -2502 ($ |#1|)) (-15 -4326 ((-112) $)) (-15 -3130 (|#1| $))))
+((-2831 (((-330) (-1170) (-949 (-564))) 23)) (-1933 (((-330) (-1170) (-949 (-564))) 27)) (-2342 (((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564)))) 26) (((-330) (-1170) (-949 (-564)) (-949 (-564))) 24)) (-2467 (((-330) (-1170) (-949 (-564))) 31)))
+(((-332) (-10 -7 (-15 -2831 ((-330) (-1170) (-949 (-564)))) (-15 -2342 ((-330) (-1170) (-949 (-564)) (-949 (-564)))) (-15 -2342 ((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564))))) (-15 -1933 ((-330) (-1170) (-949 (-564)))) (-15 -2467 ((-330) (-1170) (-949 (-564)))))) (T -332))
+((-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2342 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-949 (-564)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2342 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))))
+(-10 -7 (-15 -2831 ((-330) (-1170) (-949 (-564)))) (-15 -2342 ((-330) (-1170) (-949 (-564)) (-949 (-564)))) (-15 -2342 ((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564))))) (-15 -1933 ((-330) (-1170) (-949 (-564)))) (-15 -2467 ((-330) (-1170) (-949 (-564)))))
+((-2313 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33)))
+(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2313 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1235 *9)) (-4 *11 (-1235 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11)))))
+(-10 -7 (-15 -2313 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|))))
+((-3959 (((-112) $) 14)))
+(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3959 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334))
+NIL
+(-10 -8 (-15 -3959 ((-112) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1728 (($ $) 26)) (-3959 (((-112) $) 25)) (-1868 (((-1152) $) 9)) (-3952 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 32)) (-3844 (((-1114) $) 10)) (-1729 (((-3 |#4| "failed") $) 24)) (-4266 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-564)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3282 (((-2 (|:| -3532 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20)))
(((-335 |#1| |#2| |#3| |#4|) (-140) (-363) (-1235 |t#1|) (-1235 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -335))
-((-2943 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-3293 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-3293 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-3293 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-3293 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -1600 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-4367 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-1502 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-3293 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -2943 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -3293 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -3293 ($ |t#4|)) (-15 -3293 ($ |t#1| |t#1|)) (-15 -3293 ($ |t#1| |t#1| (-564))) (-15 -1770 ((-2 (|:| -1600 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4367 ($ $)) (-15 -3390 ((-112) $)) (-15 -1502 ((-3 |t#4| "failed") $)) (-15 -3293 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+((-3952 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-4266 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-4266 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-4266 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-4266 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -3532 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-1728 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-1729 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-4266 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -3952 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -4266 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -4266 ($ |t#4|)) (-15 -4266 ($ |t#1| |t#1|)) (-15 -4266 ($ |t#1| |t#1| (-564))) (-15 -3282 ((-2 (|:| -3532 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1728 ($ $)) (-15 -3959 ((-112) $)) (-15 -1729 ((-3 |t#4| "failed") $)) (-15 -4266 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-4367 (($ $) 33)) (-3390 (((-112) $) NIL)) (-4202 (((-1152) $) NIL)) (-4097 (((-1259 |#4|) $) 135)) (-2943 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-3802 (((-1114) $) NIL)) (-1502 (((-3 |#4| "failed") $) 36)) (-1296 (((-1259 |#4|) $) 127)) (-3293 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-564)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1770 (((-2 (|:| -1600 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1765 (((-859) $) 17)) (-4317 (($) 14 T CONST)) (-1686 (((-112) $ $) 20)) (-1783 (($ $) 27) (($ $ $) NIL)) (-1771 (($ $ $) 25)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 23)))
-(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1296 ((-1259 |#4|) $)) (-15 -4097 ((-1259 |#4|) $)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336))
-((-1296 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-4097 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))))
-(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1296 ((-1259 |#4|) $)) (-15 -4097 ((-1259 |#4|) $))))
-((-2407 (($ $ (-1170) |#2|) NIL) (($ $ (-641 (-1170)) (-641 |#2|)) 20) (($ $ (-641 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-4382 (($ $ |#2|) 11)))
-(((-337 |#1| |#2|) (-10 -8 (-15 -4382 (|#1| |#1| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#2| |#2|)) (-15 -2407 (|#1| |#1| (-294 |#2|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -2407 (|#1| |#1| (-1170) |#2|))) (-338 |#2|) (-1094)) (T -337))
-NIL
-(-10 -8 (-15 -4382 (|#1| |#1| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#2| |#2|)) (-15 -2407 (|#1| |#1| (-294 |#2|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -2407 (|#1| |#1| (-1170) |#2|)))
-((-2082 (($ (-1 |#1| |#1|) $) 6)) (-2407 (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 16 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-641 |#1|) (-641 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-4382 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1728 (($ $) 33)) (-3959 (((-112) $) NIL)) (-1868 (((-1152) $) NIL)) (-3230 (((-1259 |#4|) $) 135)) (-3952 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-3844 (((-1114) $) NIL)) (-1729 (((-3 |#4| "failed") $) 36)) (-3604 (((-1259 |#4|) $) 127)) (-4266 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-564)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3282 (((-2 (|:| -3532 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3714 (((-859) $) 17)) (-4312 (($) 14 T CONST)) (-1720 (((-112) $ $) 20)) (-1828 (($ $) 27) (($ $ $) NIL)) (-1814 (($ $ $) 25)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 23)))
+(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3604 ((-1259 |#4|) $)) (-15 -3230 ((-1259 |#4|) $)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336))
+((-3604 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-3230 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))))
+(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3604 ((-1259 |#4|) $)) (-15 -3230 ((-1259 |#4|) $))))
+((-2582 (($ $ (-1170) |#2|) NIL) (($ $ (-641 (-1170)) (-641 |#2|)) 20) (($ $ (-641 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-4382 (($ $ |#2|) 11)))
+(((-337 |#1| |#2|) (-10 -8 (-15 -4382 (|#1| |#1| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#2| |#2|)) (-15 -2582 (|#1| |#1| (-294 |#2|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -2582 (|#1| |#1| (-1170) |#2|))) (-338 |#2|) (-1094)) (T -337))
+NIL
+(-10 -8 (-15 -4382 (|#1| |#1| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#2| |#2|)) (-15 -2582 (|#1| |#1| (-294 |#2|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -2582 (|#1| |#1| (-1170) |#2|)))
+((-2313 (($ (-1 |#1| |#1|) $) 6)) (-2582 (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 16 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-641 |#1|) (-641 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-4382 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|)))))
(((-338 |#1|) (-140) (-1094)) (T -338))
-((-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094)))))
-(-13 (-10 -8 (-15 -2082 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1170) |t#1|)) (-6 (-514 (-1170) |t#1|)) |%noBranch|)))
+((-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094)))))
+(-13 (-10 -8 (-15 -2313 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1170) |t#1|)) (-6 (-514 (-1170) |t#1|)) |%noBranch|)))
(((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-1170)) $) NIL)) (-1991 (((-112)) 98) (((-112) (-112)) 99)) (-3853 (((-641 (-610 $)) $) NIL)) (-3904 (($ $) NIL)) (-3752 (($ $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2662 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-4019 (($ $) NIL)) (-3879 (($ $) NIL)) (-3727 (($ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-610 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 78) (((-3 $ "failed") (-1170)) 104) (((-3 $ "failed") (-316 (-564))) 66 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-407 (-949 (-564)))) 72 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-949 (-564))) 67 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-316 (-379))) 96 (|has| |#3| (-1035 (-379)))) (((-3 $ "failed") (-407 (-949 (-379)))) 90 (|has| |#3| (-1035 (-379)))) (((-3 $ "failed") (-949 (-379))) 85 (|has| |#3| (-1035 (-379))))) (-2064 (((-610 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 79) (($ (-1170)) 105) (($ (-316 (-564))) 68 (|has| |#3| (-1035 (-564)))) (($ (-407 (-949 (-564)))) 73 (|has| |#3| (-1035 (-564)))) (($ (-949 (-564))) 69 (|has| |#3| (-1035 (-564)))) (($ (-316 (-379))) 97 (|has| |#3| (-1035 (-379)))) (($ (-407 (-949 (-379)))) 91 (|has| |#3| (-1035 (-379)))) (($ (-949 (-379))) 87 (|has| |#3| (-1035 (-379))))) (-1926 (((-3 $ "failed") $) NIL)) (-1539 (($) 10)) (-2696 (($ $) NIL) (($ (-641 $)) NIL)) (-2885 (((-641 (-114)) $) NIL)) (-1826 (((-114) (-114)) NIL)) (-2419 (((-112) $) NIL)) (-1629 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2431 (((-1166 $) (-610 $)) NIL (|has| $ (-1046)))) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2082 (($ (-1 $ $) (-610 $)) NIL)) (-4293 (((-3 (-610 $) "failed") $) NIL)) (-4069 (($ $) 101)) (-2186 (($ $) NIL)) (-4202 (((-1152) $) NIL)) (-3943 (((-641 (-610 $)) $) NIL)) (-1583 (($ (-114) $) 100) (($ (-114) (-641 $)) NIL)) (-3559 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-1813 (((-768) $) NIL)) (-3802 (((-1114) $) NIL)) (-1350 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-2152 (($ $) NIL)) (-1518 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2407 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-2898 (($ $) NIL) (($ $ $) NIL)) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-1916 (($ $) NIL (|has| $ (-1046)))) (-3891 (($ $) NIL)) (-3739 (($ $) NIL)) (-1765 (((-859) $) NIL) (($ (-610 $)) NIL) (($ |#3|) NIL) (($ (-564)) NIL) (((-316 |#3|) $) 103)) (-1965 (((-768)) NIL T CONST)) (-1719 (($ $) NIL) (($ (-641 $)) NIL)) (-1573 (((-112) (-114)) NIL)) (-3827 (($ $) NIL)) (-3801 (($ $) NIL)) (-3814 (($ $) NIL)) (-2016 (($ $) NIL)) (-4317 (($) 102 T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1783 (($ $ $) NIL) (($ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL)))
-(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1035 |#3|) (-897 (-1170)) (-10 -8 (-15 -2064 ($ (-316 |#3|))) (-15 -2013 ((-3 $ "failed") (-316 |#3|))) (-15 -2064 ($ (-1170))) (-15 -2013 ((-3 $ "failed") (-1170))) (-15 -1765 ((-316 |#3|) $)) (IF (|has| |#3| (-1035 (-564))) (PROGN (-15 -2064 ($ (-316 (-564)))) (-15 -2013 ((-3 $ "failed") (-316 (-564)))) (-15 -2064 ($ (-407 (-949 (-564))))) (-15 -2013 ((-3 $ "failed") (-407 (-949 (-564))))) (-15 -2064 ($ (-949 (-564)))) (-15 -2013 ((-3 $ "failed") (-949 (-564))))) |%noBranch|) (IF (|has| |#3| (-1035 (-379))) (PROGN (-15 -2064 ($ (-316 (-379)))) (-15 -2013 ((-3 $ "failed") (-316 (-379)))) (-15 -2064 ($ (-407 (-949 (-379))))) (-15 -2013 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2064 ($ (-949 (-379)))) (-15 -2013 ((-3 $ "failed") (-949 (-379))))) |%noBranch|) (-15 -2016 ($ $)) (-15 -4019 ($ $)) (-15 -2152 ($ $)) (-15 -2186 ($ $)) (-15 -4069 ($ $)) (-15 -3727 ($ $)) (-15 -3739 ($ $)) (-15 -3752 ($ $)) (-15 -3801 ($ $)) (-15 -3814 ($ $)) (-15 -3827 ($ $)) (-15 -3879 ($ $)) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -1539 ($)) (-15 -4170 ((-641 (-1170)) $)) (-15 -1991 ((-112))) (-15 -1991 ((-112) (-112))))) (-641 (-1170)) (-641 (-1170)) (-387)) (T -339))
-((-2064 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2016 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4019 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2186 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4069 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3727 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3739 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3752 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3827 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3879 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-1539 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-1991 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))))
-(-13 (-302) (-38 |#3|) (-1035 |#3|) (-897 (-1170)) (-10 -8 (-15 -2064 ($ (-316 |#3|))) (-15 -2013 ((-3 $ "failed") (-316 |#3|))) (-15 -2064 ($ (-1170))) (-15 -2013 ((-3 $ "failed") (-1170))) (-15 -1765 ((-316 |#3|) $)) (IF (|has| |#3| (-1035 (-564))) (PROGN (-15 -2064 ($ (-316 (-564)))) (-15 -2013 ((-3 $ "failed") (-316 (-564)))) (-15 -2064 ($ (-407 (-949 (-564))))) (-15 -2013 ((-3 $ "failed") (-407 (-949 (-564))))) (-15 -2064 ($ (-949 (-564)))) (-15 -2013 ((-3 $ "failed") (-949 (-564))))) |%noBranch|) (IF (|has| |#3| (-1035 (-379))) (PROGN (-15 -2064 ($ (-316 (-379)))) (-15 -2013 ((-3 $ "failed") (-316 (-379)))) (-15 -2064 ($ (-407 (-949 (-379))))) (-15 -2013 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2064 ($ (-949 (-379)))) (-15 -2013 ((-3 $ "failed") (-949 (-379))))) |%noBranch|) (-15 -2016 ($ $)) (-15 -4019 ($ $)) (-15 -2152 ($ $)) (-15 -2186 ($ $)) (-15 -4069 ($ $)) (-15 -3727 ($ $)) (-15 -3739 ($ $)) (-15 -3752 ($ $)) (-15 -3801 ($ $)) (-15 -3814 ($ $)) (-15 -3827 ($ $)) (-15 -3879 ($ $)) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -1539 ($)) (-15 -4170 ((-641 (-1170)) $)) (-15 -1991 ((-112))) (-15 -1991 ((-112) (-112)))))
-((-2082 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2082 (|#8| (-1 |#5| |#1|) |#4|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1213)) (-4 *8 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *9 (-1235 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1235 (-407 *9))))))
-(-10 -7 (-15 -2082 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2764 (((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) $) 40)) (-2910 (($ (-1259 (-407 |#3|)) (-1259 $)) NIL) (($ (-1259 (-407 |#3|))) NIL) (($ (-1259 |#3|) |#3|) 176)) (-3592 (((-1259 $) (-1259 $)) 160)) (-2078 (((-641 (-641 |#2|))) 129)) (-3676 (((-112) |#2| |#2|) 77)) (-2190 (($ $) 151)) (-2103 (((-768)) 33)) (-2585 (((-1259 $) (-1259 $)) 222)) (-3308 (((-641 (-949 |#2|)) (-1170)) 119)) (-2025 (((-112) $) 173)) (-4030 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-3294 (((-3 |#3| "failed")) 53)) (-1834 (((-768)) 187)) (-4382 ((|#2| $ |#2| |#2|) 143)) (-1664 (((-3 |#3| "failed")) 72)) (-3226 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-768)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-3487 (((-1259 $) (-1259 $)) 166)) (-3022 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-2334 (((-112)) 35)))
-(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2078 ((-641 (-641 |#2|)))) (-15 -3308 ((-641 (-949 |#2|)) (-1170))) (-15 -3022 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3294 ((-3 |#3| "failed"))) (-15 -1664 ((-3 |#3| "failed"))) (-15 -4382 (|#2| |#1| |#2| |#2|)) (-15 -2190 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4030 ((-112) |#1| |#3|)) (-15 -4030 ((-112) |#1| |#2|)) (-15 -2910 (|#1| (-1259 |#3|) |#3|)) (-15 -2764 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3592 ((-1259 |#1|) (-1259 |#1|))) (-15 -2585 ((-1259 |#1|) (-1259 |#1|))) (-15 -3487 ((-1259 |#1|) (-1259 |#1|))) (-15 -4030 ((-112) |#1|)) (-15 -2025 ((-112) |#1|)) (-15 -3676 ((-112) |#2| |#2|)) (-15 -2334 ((-112))) (-15 -1834 ((-768))) (-15 -2103 ((-768))) (-15 -3226 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -3226 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-768))) (-15 -2910 (|#1| (-1259 (-407 |#3|)))) (-15 -2910 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|)))) (-342 |#2| |#3| |#4|) (-1213) (-1235 |#2|) (-1235 (-407 |#3|))) (T -341))
-((-2103 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1834 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-2334 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3676 (*1 *2 *3 *3) (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-1664 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-3294 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-949 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-2078 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))))
-(-10 -8 (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2078 ((-641 (-641 |#2|)))) (-15 -3308 ((-641 (-949 |#2|)) (-1170))) (-15 -3022 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3294 ((-3 |#3| "failed"))) (-15 -1664 ((-3 |#3| "failed"))) (-15 -4382 (|#2| |#1| |#2| |#2|)) (-15 -2190 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4030 ((-112) |#1| |#3|)) (-15 -4030 ((-112) |#1| |#2|)) (-15 -2910 (|#1| (-1259 |#3|) |#3|)) (-15 -2764 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3592 ((-1259 |#1|) (-1259 |#1|))) (-15 -2585 ((-1259 |#1|) (-1259 |#1|))) (-15 -3487 ((-1259 |#1|) (-1259 |#1|))) (-15 -4030 ((-112) |#1|)) (-15 -2025 ((-112) |#1|)) (-15 -3676 ((-112) |#2| |#2|)) (-15 -2334 ((-112))) (-15 -1834 ((-768))) (-15 -2103 ((-768))) (-15 -3226 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -3226 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-768))) (-15 -2910 (|#1| (-1259 (-407 |#3|)))) (-15 -2910 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-2764 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 195)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 93 (|has| (-407 |#2|) (-363)))) (-1840 (($ $) 94 (|has| (-407 |#2|) (-363)))) (-4035 (((-112) $) 96 (|has| (-407 |#2|) (-363)))) (-3124 (((-685 (-407 |#2|)) (-1259 $)) 47) (((-685 (-407 |#2|))) 62)) (-3715 (((-407 |#2|) $) 53)) (-2590 (((-1182 (-918) (-768)) (-564)) 146 (|has| (-407 |#2|) (-349)))) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 113 (|has| (-407 |#2|) (-363)))) (-3981 (((-418 $) $) 114 (|has| (-407 |#2|) (-363)))) (-3385 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-3042 (((-768)) 87 (|has| (-407 |#2|) (-368)))) (-3709 (((-112)) 212)) (-2899 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-3760 (($) 17 T CONST)) (-2013 (((-3 (-564) "failed") $) 169 (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) 164)) (-2064 (((-564) $) 168 (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) 165)) (-2910 (($ (-1259 (-407 |#2|)) (-1259 $)) 49) (($ (-1259 (-407 |#2|))) 65) (($ (-1259 |#2|) |#2|) 194)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-407 |#2|) (-349)))) (-1387 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-1663 (((-685 (-407 |#2|)) $ (-1259 $)) 54) (((-685 (-407 |#2|)) $) 60)) (-2620 (((-685 (-564)) (-685 $)) 163 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) 161) (((-685 (-407 |#2|)) (-685 $)) 160)) (-3592 (((-1259 $) (-1259 $)) 200)) (-4367 (($ |#3|) 157) (((-3 $ "failed") (-407 |#3|)) 154 (|has| (-407 |#2|) (-363)))) (-1926 (((-3 $ "failed") $) 33)) (-2078 (((-641 (-641 |#1|))) 181 (|has| |#1| (-368)))) (-3676 (((-112) |#1| |#1|) 216)) (-4224 (((-918)) 55)) (-2542 (($) 90 (|has| (-407 |#2|) (-368)))) (-4226 (((-112)) 209)) (-1461 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-1366 (($ $ $) 107 (|has| (-407 |#2|) (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 102 (|has| (-407 |#2|) (-363)))) (-2190 (($ $) 187)) (-1990 (($) 148 (|has| (-407 |#2|) (-349)))) (-3242 (((-112) $) 149 (|has| (-407 |#2|) (-349)))) (-2184 (($ $ (-768)) 140 (|has| (-407 |#2|) (-349))) (($ $) 139 (|has| (-407 |#2|) (-349)))) (-3241 (((-112) $) 115 (|has| (-407 |#2|) (-363)))) (-2261 (((-918) $) 151 (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) 137 (|has| (-407 |#2|) (-349)))) (-2419 (((-112) $) 31)) (-2103 (((-768)) 219)) (-2585 (((-1259 $) (-1259 $)) 201)) (-1779 (((-407 |#2|) $) 52)) (-3308 (((-641 (-949 |#1|)) (-1170)) 182 (|has| |#1| (-363)))) (-3374 (((-3 $ "failed") $) 141 (|has| (-407 |#2|) (-349)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| (-407 |#2|) (-363)))) (-2513 ((|#3| $) 45 (|has| (-407 |#2|) (-363)))) (-2209 (((-918) $) 89 (|has| (-407 |#2|) (-368)))) (-4358 ((|#3| $) 155)) (-2488 (($ (-641 $)) 100 (|has| (-407 |#2|) (-363))) (($ $ $) 99 (|has| (-407 |#2|) (-363)))) (-4202 (((-1152) $) 9)) (-1438 (((-685 (-407 |#2|))) 196)) (-2234 (((-685 (-407 |#2|))) 198)) (-4272 (($ $) 116 (|has| (-407 |#2|) (-363)))) (-4279 (($ (-1259 |#2|) |#2|) 192)) (-2909 (((-685 (-407 |#2|))) 197)) (-4099 (((-685 (-407 |#2|))) 199)) (-2030 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-1734 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 193)) (-2033 (((-1259 $)) 205)) (-1791 (((-1259 $)) 206)) (-2025 (((-112) $) 204)) (-4030 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-1611 (($) 142 (|has| (-407 |#2|) (-349)) CONST)) (-1403 (($ (-918)) 88 (|has| (-407 |#2|) (-368)))) (-3294 (((-3 |#2| "failed")) 184)) (-3802 (((-1114) $) 10)) (-1834 (((-768)) 218)) (-1502 (($) 159)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| (-407 |#2|) (-363)))) (-2527 (($ (-641 $)) 98 (|has| (-407 |#2|) (-363))) (($ $ $) 97 (|has| (-407 |#2|) (-363)))) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) 145 (|has| (-407 |#2|) (-349)))) (-4006 (((-418 $) $) 112 (|has| (-407 |#2|) (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 109 (|has| (-407 |#2|) (-363)))) (-1343 (((-3 $ "failed") $ $) 92 (|has| (-407 |#2|) (-363)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| (-407 |#2|) (-363)))) (-3712 (((-768) $) 105 (|has| (-407 |#2|) (-363)))) (-4382 ((|#1| $ |#1| |#1|) 186)) (-1664 (((-3 |#2| "failed")) 185)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 106 (|has| (-407 |#2|) (-363)))) (-1938 (((-407 |#2|) (-1259 $)) 48) (((-407 |#2|)) 61)) (-1504 (((-768) $) 150 (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) 138 (|has| (-407 |#2|) (-349)))) (-3226 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 121 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-641 (-1170)) (-641 (-768))) 129 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4266 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-768)) 130 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4266 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 131 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4266 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 132 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4266 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-768)) 134 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4266 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 136 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4266 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2836 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) 153 (|has| (-407 |#2|) (-363)))) (-1916 ((|#3|) 158)) (-3726 (($) 147 (|has| (-407 |#2|) (-349)))) (-3072 (((-1259 (-407 |#2|)) $ (-1259 $)) 51) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) 50) (((-1259 (-407 |#2|)) $) 67) (((-685 (-407 |#2|)) (-1259 $)) 66)) (-2127 (((-1259 (-407 |#2|)) $) 64) (($ (-1259 (-407 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| (-407 |#2|) (-349)))) (-3487 (((-1259 $) (-1259 $)) 202)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 |#2|)) 38) (($ (-407 (-564))) 86 (-4002 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1035 (-407 (-564)))))) (($ $) 91 (|has| (-407 |#2|) (-363)))) (-2864 (($ $) 143 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-407 |#2|) (-145)))) (-3216 ((|#3| $) 46)) (-1965 (((-768)) 28 T CONST)) (-1577 (((-112)) 215)) (-1712 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-3941 (((-1259 $)) 68)) (-1582 (((-112) $ $) 95 (|has| (-407 |#2|) (-363)))) (-3022 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-2334 (((-112)) 217)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) 124 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 123 (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) 125 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4266 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-768)) 126 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4266 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 127 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4266 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 128 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4266 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-768)) 133 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4266 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 135 (-4002 (-4266 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4266 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ $) 120 (|has| (-407 |#2|) (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 117 (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 |#2|)) 40) (($ (-407 |#2|) $) 39) (($ (-407 (-564)) $) 119 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) 118 (|has| (-407 |#2|) (-363)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-1170)) $) NIL)) (-3659 (((-112)) 98) (((-112) (-112)) 99)) (-4011 (((-641 (-610 $)) $) NIL)) (-2657 (($ $) NIL)) (-2516 (($ $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3203 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-4152 (($ $) NIL)) (-2635 (($ $) NIL)) (-2491 (($ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-610 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 78) (((-3 $ "failed") (-1170)) 104) (((-3 $ "failed") (-316 (-564))) 66 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-407 (-949 (-564)))) 72 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-949 (-564))) 67 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-316 (-379))) 96 (|has| |#3| (-1035 (-379)))) (((-3 $ "failed") (-407 (-949 (-379)))) 90 (|has| |#3| (-1035 (-379)))) (((-3 $ "failed") (-949 (-379))) 85 (|has| |#3| (-1035 (-379))))) (-2376 (((-610 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 79) (($ (-1170)) 105) (($ (-316 (-564))) 68 (|has| |#3| (-1035 (-564)))) (($ (-407 (-949 (-564)))) 73 (|has| |#3| (-1035 (-564)))) (($ (-949 (-564))) 69 (|has| |#3| (-1035 (-564)))) (($ (-316 (-379))) 97 (|has| |#3| (-1035 (-379)))) (($ (-407 (-949 (-379)))) 91 (|has| |#3| (-1035 (-379)))) (($ (-949 (-379))) 87 (|has| |#3| (-1035 (-379))))) (-4272 (((-3 $ "failed") $) NIL)) (-1688 (($) 10)) (-3187 (($ $) NIL) (($ (-641 $)) NIL)) (-1512 (((-641 (-114)) $) NIL)) (-2702 (((-114) (-114)) NIL)) (-2340 (((-112) $) NIL)) (-1329 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2466 (((-1166 $) (-610 $)) NIL (|has| $ (-1046)))) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2313 (($ (-1 $ $) (-610 $)) NIL)) (-1419 (((-3 (-610 $) "failed") $) NIL)) (-4042 (($ $) 101)) (-2305 (($ $) NIL)) (-1868 (((-1152) $) NIL)) (-4090 (((-641 (-610 $)) $) NIL)) (-1736 (($ (-114) $) 100) (($ (-114) (-641 $)) NIL)) (-1932 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-3694 (((-768) $) NIL)) (-3844 (((-1114) $) NIL)) (-2544 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4130 (($ $) NIL)) (-1542 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2582 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-3444 (($ $) NIL) (($ $ $) NIL)) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-4180 (($ $) NIL (|has| $ (-1046)))) (-2647 (($ $) NIL)) (-2502 (($ $) NIL)) (-3714 (((-859) $) NIL) (($ (-610 $)) NIL) (($ |#3|) NIL) (($ (-564)) NIL) (((-316 |#3|) $) 103)) (-3379 (((-768)) NIL T CONST)) (-3146 (($ $) NIL) (($ (-641 $)) NIL)) (-2068 (((-112) (-114)) NIL)) (-2595 (($ $) NIL)) (-2566 (($ $) NIL)) (-2577 (($ $) NIL)) (-3920 (($ $) NIL)) (-4312 (($) 102 T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1828 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL)))
+(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1035 |#3|) (-897 (-1170)) (-10 -8 (-15 -2376 ($ (-316 |#3|))) (-15 -2224 ((-3 $ "failed") (-316 |#3|))) (-15 -2376 ($ (-1170))) (-15 -2224 ((-3 $ "failed") (-1170))) (-15 -3714 ((-316 |#3|) $)) (IF (|has| |#3| (-1035 (-564))) (PROGN (-15 -2376 ($ (-316 (-564)))) (-15 -2224 ((-3 $ "failed") (-316 (-564)))) (-15 -2376 ($ (-407 (-949 (-564))))) (-15 -2224 ((-3 $ "failed") (-407 (-949 (-564))))) (-15 -2376 ($ (-949 (-564)))) (-15 -2224 ((-3 $ "failed") (-949 (-564))))) |%noBranch|) (IF (|has| |#3| (-1035 (-379))) (PROGN (-15 -2376 ($ (-316 (-379)))) (-15 -2224 ((-3 $ "failed") (-316 (-379)))) (-15 -2376 ($ (-407 (-949 (-379))))) (-15 -2224 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2376 ($ (-949 (-379)))) (-15 -2224 ((-3 $ "failed") (-949 (-379))))) |%noBranch|) (-15 -3920 ($ $)) (-15 -4152 ($ $)) (-15 -4130 ($ $)) (-15 -2305 ($ $)) (-15 -4042 ($ $)) (-15 -2491 ($ $)) (-15 -2502 ($ $)) (-15 -2516 ($ $)) (-15 -2566 ($ $)) (-15 -2577 ($ $)) (-15 -2595 ($ $)) (-15 -2635 ($ $)) (-15 -2647 ($ $)) (-15 -2657 ($ $)) (-15 -1688 ($)) (-15 -4292 ((-641 (-1170)) $)) (-15 -3659 ((-112))) (-15 -3659 ((-112) (-112))))) (-641 (-1170)) (-641 (-1170)) (-387)) (T -339))
+((-2376 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4152 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4130 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4042 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2491 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2502 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2516 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2566 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2577 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2595 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2635 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2647 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2657 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-1688 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-3659 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))))
+(-13 (-302) (-38 |#3|) (-1035 |#3|) (-897 (-1170)) (-10 -8 (-15 -2376 ($ (-316 |#3|))) (-15 -2224 ((-3 $ "failed") (-316 |#3|))) (-15 -2376 ($ (-1170))) (-15 -2224 ((-3 $ "failed") (-1170))) (-15 -3714 ((-316 |#3|) $)) (IF (|has| |#3| (-1035 (-564))) (PROGN (-15 -2376 ($ (-316 (-564)))) (-15 -2224 ((-3 $ "failed") (-316 (-564)))) (-15 -2376 ($ (-407 (-949 (-564))))) (-15 -2224 ((-3 $ "failed") (-407 (-949 (-564))))) (-15 -2376 ($ (-949 (-564)))) (-15 -2224 ((-3 $ "failed") (-949 (-564))))) |%noBranch|) (IF (|has| |#3| (-1035 (-379))) (PROGN (-15 -2376 ($ (-316 (-379)))) (-15 -2224 ((-3 $ "failed") (-316 (-379)))) (-15 -2376 ($ (-407 (-949 (-379))))) (-15 -2224 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2376 ($ (-949 (-379)))) (-15 -2224 ((-3 $ "failed") (-949 (-379))))) |%noBranch|) (-15 -3920 ($ $)) (-15 -4152 ($ $)) (-15 -4130 ($ $)) (-15 -2305 ($ $)) (-15 -4042 ($ $)) (-15 -2491 ($ $)) (-15 -2502 ($ $)) (-15 -2516 ($ $)) (-15 -2566 ($ $)) (-15 -2577 ($ $)) (-15 -2595 ($ $)) (-15 -2635 ($ $)) (-15 -2647 ($ $)) (-15 -2657 ($ $)) (-15 -1688 ($)) (-15 -4292 ((-641 (-1170)) $)) (-15 -3659 ((-112))) (-15 -3659 ((-112) (-112)))))
+((-2313 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2313 (|#8| (-1 |#5| |#1|) |#4|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1213)) (-4 *8 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *9 (-1235 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1235 (-407 *9))))))
+(-10 -7 (-15 -2313 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2742 (((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) $) 40)) (-3566 (($ (-1259 (-407 |#3|)) (-1259 $)) NIL) (($ (-1259 (-407 |#3|))) NIL) (($ (-1259 |#3|) |#3|) 176)) (-4051 (((-1259 $) (-1259 $)) 160)) (-3314 (((-641 (-641 |#2|))) 129)) (-3612 (((-112) |#2| |#2|) 77)) (-2015 (($ $) 151)) (-2427 (((-768)) 33)) (-1459 (((-1259 $) (-1259 $)) 222)) (-1293 (((-641 (-949 |#2|)) (-1170)) 119)) (-2875 (((-112) $) 173)) (-3853 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-4278 (((-3 |#3| "failed")) 53)) (-1523 (((-768)) 187)) (-4382 ((|#2| $ |#2| |#2|) 143)) (-3449 (((-3 |#3| "failed")) 72)) (-2203 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-768)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-2499 (((-1259 $) (-1259 $)) 166)) (-3337 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-3960 (((-112)) 35)))
+(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3314 ((-641 (-641 |#2|)))) (-15 -1293 ((-641 (-949 |#2|)) (-1170))) (-15 -3337 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4278 ((-3 |#3| "failed"))) (-15 -3449 ((-3 |#3| "failed"))) (-15 -4382 (|#2| |#1| |#2| |#2|)) (-15 -2015 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3853 ((-112) |#1| |#3|)) (-15 -3853 ((-112) |#1| |#2|)) (-15 -3566 (|#1| (-1259 |#3|) |#3|)) (-15 -2742 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4051 ((-1259 |#1|) (-1259 |#1|))) (-15 -1459 ((-1259 |#1|) (-1259 |#1|))) (-15 -2499 ((-1259 |#1|) (-1259 |#1|))) (-15 -3853 ((-112) |#1|)) (-15 -2875 ((-112) |#1|)) (-15 -3612 ((-112) |#2| |#2|)) (-15 -3960 ((-112))) (-15 -1523 ((-768))) (-15 -2427 ((-768))) (-15 -2203 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -2203 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-768))) (-15 -3566 (|#1| (-1259 (-407 |#3|)))) (-15 -3566 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|)))) (-342 |#2| |#3| |#4|) (-1213) (-1235 |#2|) (-1235 (-407 |#3|))) (T -341))
+((-2427 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1523 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3960 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-3449 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-4278 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-949 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-3314 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))))
+(-10 -8 (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3314 ((-641 (-641 |#2|)))) (-15 -1293 ((-641 (-949 |#2|)) (-1170))) (-15 -3337 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4278 ((-3 |#3| "failed"))) (-15 -3449 ((-3 |#3| "failed"))) (-15 -4382 (|#2| |#1| |#2| |#2|)) (-15 -2015 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3853 ((-112) |#1| |#3|)) (-15 -3853 ((-112) |#1| |#2|)) (-15 -3566 (|#1| (-1259 |#3|) |#3|)) (-15 -2742 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4051 ((-1259 |#1|) (-1259 |#1|))) (-15 -1459 ((-1259 |#1|) (-1259 |#1|))) (-15 -2499 ((-1259 |#1|) (-1259 |#1|))) (-15 -3853 ((-112) |#1|)) (-15 -2875 ((-112) |#1|)) (-15 -3612 ((-112) |#2| |#2|)) (-15 -3960 ((-112))) (-15 -1523 ((-768))) (-15 -2427 ((-768))) (-15 -2203 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -2203 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-768))) (-15 -3566 (|#1| (-1259 (-407 |#3|)))) (-15 -3566 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2742 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 195)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 93 (|has| (-407 |#2|) (-363)))) (-1582 (($ $) 94 (|has| (-407 |#2|) (-363)))) (-3897 (((-112) $) 96 (|has| (-407 |#2|) (-363)))) (-3150 (((-685 (-407 |#2|)) (-1259 $)) 47) (((-685 (-407 |#2|))) 62)) (-3767 (((-407 |#2|) $) 53)) (-1494 (((-1182 (-918) (-768)) (-564)) 146 (|has| (-407 |#2|) (-349)))) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 113 (|has| (-407 |#2|) (-363)))) (-1592 (((-418 $) $) 114 (|has| (-407 |#2|) (-363)))) (-3907 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-2018 (((-768)) 87 (|has| (-407 |#2|) (-368)))) (-3932 (((-112)) 212)) (-3455 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-3180 (($) 17 T CONST)) (-2224 (((-3 (-564) "failed") $) 169 (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) 164)) (-2376 (((-564) $) 168 (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) 165)) (-3566 (($ (-1259 (-407 |#2|)) (-1259 $)) 49) (($ (-1259 (-407 |#2|))) 65) (($ (-1259 |#2|) |#2|) 194)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-407 |#2|) (-349)))) (-1399 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-3439 (((-685 (-407 |#2|)) $ (-1259 $)) 54) (((-685 (-407 |#2|)) $) 60)) (-3613 (((-685 (-564)) (-685 $)) 163 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) 161) (((-685 (-407 |#2|)) (-685 $)) 160)) (-4051 (((-1259 $) (-1259 $)) 200)) (-1728 (($ |#3|) 157) (((-3 $ "failed") (-407 |#3|)) 154 (|has| (-407 |#2|) (-363)))) (-4272 (((-3 $ "failed") $) 33)) (-3314 (((-641 (-641 |#1|))) 181 (|has| |#1| (-368)))) (-3612 (((-112) |#1| |#1|) 216)) (-1595 (((-918)) 55)) (-2939 (($) 90 (|has| (-407 |#2|) (-368)))) (-2088 (((-112)) 209)) (-2219 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-1371 (($ $ $) 107 (|has| (-407 |#2|) (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 102 (|has| (-407 |#2|) (-363)))) (-2015 (($ $) 187)) (-3648 (($) 148 (|has| (-407 |#2|) (-349)))) (-1937 (((-112) $) 149 (|has| (-407 |#2|) (-349)))) (-1957 (($ $ (-768)) 140 (|has| (-407 |#2|) (-349))) (($ $) 139 (|has| (-407 |#2|) (-349)))) (-1926 (((-112) $) 115 (|has| (-407 |#2|) (-363)))) (-1454 (((-918) $) 151 (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) 137 (|has| (-407 |#2|) (-349)))) (-2340 (((-112) $) 31)) (-2427 (((-768)) 219)) (-1459 (((-1259 $) (-1259 $)) 201)) (-2217 (((-407 |#2|) $) 52)) (-1293 (((-641 (-949 |#1|)) (-1170)) 182 (|has| |#1| (-363)))) (-3804 (((-3 $ "failed") $) 141 (|has| (-407 |#2|) (-349)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| (-407 |#2|) (-363)))) (-2041 ((|#3| $) 45 (|has| (-407 |#2|) (-363)))) (-4031 (((-918) $) 89 (|has| (-407 |#2|) (-368)))) (-1714 ((|#3| $) 155)) (-2688 (($ (-641 $)) 100 (|has| (-407 |#2|) (-363))) (($ $ $) 99 (|has| (-407 |#2|) (-363)))) (-1868 (((-1152) $) 9)) (-1834 (((-685 (-407 |#2|))) 196)) (-4255 (((-685 (-407 |#2|))) 198)) (-1295 (($ $) 116 (|has| (-407 |#2|) (-363)))) (-4392 (($ (-1259 |#2|) |#2|) 192)) (-3556 (((-685 (-407 |#2|))) 197)) (-3247 (((-685 (-407 |#2|))) 199)) (-2917 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-2991 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 193)) (-2944 (((-1259 $)) 205)) (-2339 (((-1259 $)) 206)) (-2875 (((-112) $) 204)) (-3853 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3304 (($) 142 (|has| (-407 |#2|) (-349)) CONST)) (-3338 (($ (-918)) 88 (|has| (-407 |#2|) (-368)))) (-4278 (((-3 |#2| "failed")) 184)) (-3844 (((-1114) $) 10)) (-1523 (((-768)) 218)) (-1729 (($) 159)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| (-407 |#2|) (-363)))) (-2727 (($ (-641 $)) 98 (|has| (-407 |#2|) (-363))) (($ $ $) 97 (|has| (-407 |#2|) (-363)))) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) 145 (|has| (-407 |#2|) (-349)))) (-4139 (((-418 $) $) 112 (|has| (-407 |#2|) (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 109 (|has| (-407 |#2|) (-363)))) (-1347 (((-3 $ "failed") $ $) 92 (|has| (-407 |#2|) (-363)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| (-407 |#2|) (-363)))) (-3966 (((-768) $) 105 (|has| (-407 |#2|) (-363)))) (-4382 ((|#1| $ |#1| |#1|) 186)) (-3449 (((-3 |#2| "failed")) 185)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 106 (|has| (-407 |#2|) (-363)))) (-4378 (((-407 |#2|) (-1259 $)) 48) (((-407 |#2|)) 61)) (-2671 (((-768) $) 150 (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) 138 (|has| (-407 |#2|) (-349)))) (-2203 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 121 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-641 (-1170)) (-641 (-768))) 129 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4264 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-768)) 130 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4264 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 131 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4264 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 132 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4264 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-768)) 134 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4264 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 136 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4264 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2227 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) 153 (|has| (-407 |#2|) (-363)))) (-4180 ((|#3|) 158)) (-2927 (($) 147 (|has| (-407 |#2|) (-349)))) (-3867 (((-1259 (-407 |#2|)) $ (-1259 $)) 51) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) 50) (((-1259 (-407 |#2|)) $) 67) (((-685 (-407 |#2|)) (-1259 $)) 66)) (-2374 (((-1259 (-407 |#2|)) $) 64) (($ (-1259 (-407 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| (-407 |#2|) (-349)))) (-2499 (((-1259 $) (-1259 $)) 202)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 |#2|)) 38) (($ (-407 (-564))) 86 (-4012 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1035 (-407 (-564)))))) (($ $) 91 (|has| (-407 |#2|) (-363)))) (-4363 (($ $) 143 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-407 |#2|) (-145)))) (-1650 ((|#3| $) 46)) (-3379 (((-768)) 28 T CONST)) (-3926 (((-112)) 215)) (-2835 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-4339 (((-1259 $)) 68)) (-3979 (((-112) $ $) 95 (|has| (-407 |#2|) (-363)))) (-3337 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-3960 (((-112)) 217)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) 124 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 123 (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) 125 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4264 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-768)) 126 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4264 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 127 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4264 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 128 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4264 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-768)) 133 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4264 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 135 (-4012 (-4264 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4264 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ $) 120 (|has| (-407 |#2|) (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 117 (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 |#2|)) 40) (($ (-407 |#2|) $) 39) (($ (-407 (-564)) $) 119 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) 118 (|has| (-407 |#2|) (-363)))))
(((-342 |#1| |#2| |#3|) (-140) (-1213) (-1235 |t#1|) (-1235 (-407 |t#2|))) (T -342))
-((-2103 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) (-1834 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) (-2334 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3676 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-1577 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-1712 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-1712 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-3709 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2899 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2899 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-4226 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-1461 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-1461 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-1791 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2033 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-2585 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-4099 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-2234 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-2909 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-1438 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-2764 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-2910 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-1734 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-4279 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5))))) (-4030 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4030 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-2190 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-4382 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-1664 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-3294 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-641 (-949 *4))))) (-2078 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3))))))
-(-13 (-721 (-407 |t#2|) |t#3|) (-10 -8 (-15 -2103 ((-768))) (-15 -1834 ((-768))) (-15 -2334 ((-112))) (-15 -3676 ((-112) |t#1| |t#1|)) (-15 -1577 ((-112))) (-15 -1712 ((-112) |t#1|)) (-15 -1712 ((-112) |t#2|)) (-15 -3709 ((-112))) (-15 -2899 ((-112) |t#1|)) (-15 -2899 ((-112) |t#2|)) (-15 -4226 ((-112))) (-15 -1461 ((-112) |t#1|)) (-15 -1461 ((-112) |t#2|)) (-15 -1791 ((-1259 $))) (-15 -2033 ((-1259 $))) (-15 -2025 ((-112) $)) (-15 -4030 ((-112) $)) (-15 -3487 ((-1259 $) (-1259 $))) (-15 -2585 ((-1259 $) (-1259 $))) (-15 -3592 ((-1259 $) (-1259 $))) (-15 -4099 ((-685 (-407 |t#2|)))) (-15 -2234 ((-685 (-407 |t#2|)))) (-15 -2909 ((-685 (-407 |t#2|)))) (-15 -1438 ((-685 (-407 |t#2|)))) (-15 -2764 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2910 ($ (-1259 |t#2|) |t#2|)) (-15 -1734 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4279 ($ (-1259 |t#2|) |t#2|)) (-15 -2030 ((-2 (|:| |num| (-685 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4030 ((-112) $ |t#1|)) (-15 -4030 ((-112) $ |t#2|)) (-15 -3226 ($ $ (-1 |t#2| |t#2|))) (-15 -2190 ($ $)) (-15 -4382 (|t#1| $ |t#1| |t#1|)) (-15 -1664 ((-3 |t#2| "failed"))) (-15 -3294 ((-3 |t#2| "failed"))) (-15 -3022 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -3308 ((-641 (-949 |t#1|)) (-1170))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -2078 ((-641 (-641 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-614 #0#) -4002 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-614 #1#) . T) ((-614 (-564)) . T) ((-614 $) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-611 (-859)) . T) ((-172) . T) ((-612 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -4002 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -4002 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-556) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #0#) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #1#) . T) ((-644 $) . T) ((-637 #1#) . T) ((-637 (-564)) |has| (-407 |#2|) (-637 (-564))) ((-714 #0#) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-714 #1#) . T) ((-714 $) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-721 #1# |#3|) . T) ((-723) . T) ((-897 (-1170)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) ((-917) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1035 (-407 (-564))) |has| (-407 |#2|) (-1035 (-407 (-564)))) ((-1035 #1#) . T) ((-1035 (-564)) |has| (-407 |#2|) (-1035 (-564))) ((-1052 #0#) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1052 #1#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| (-407 |#2|) (-349)) ((-1213) -4002 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-907 |#1|) "failed") $) NIL)) (-2064 (((-907 |#1|) $) NIL)) (-2910 (($ (-1259 (-907 |#1|))) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-907 |#1|) (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) NIL (|has| (-907 |#1|) (-368)))) (-3242 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2419 (((-112) $) NIL)) (-1650 (($) NIL (|has| (-907 |#1|) (-368)))) (-2805 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-1779 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2209 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-3645 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-3135 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-3325 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-1403 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-4120 (((-112) $) NIL)) (-3802 (((-1114) $) NIL)) (-2557 (((-955 (-1114))) NIL)) (-1502 (($) NIL (|has| (-907 |#1|) (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) NIL) (((-918)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-1916 (((-1166 (-907 |#1|))) NIL)) (-3726 (($) NIL (|has| (-907 |#1|) (-368)))) (-3387 (($) NIL (|has| (-907 |#1|) (-368)))) (-3072 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-2864 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1560 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3190 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL)))
-(((-343 |#1| |#2|) (-13 (-329 (-907 |#1|)) (-10 -7 (-15 -2557 ((-955 (-1114)))))) (-918) (-918)) (T -343))
-((-2557 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))))
-(-13 (-329 (-907 |#1|)) (-10 -7 (-15 -2557 ((-955 (-1114))))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 59)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) 57 (|has| |#1| (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL (|has| |#1| (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) 144)) (-2064 ((|#1| $) 115)) (-2910 (($ (-1259 |#1|)) 132)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) 126 (|has| |#1| (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) 162 (|has| |#1| (-368)))) (-3242 (((-112) $) 67 (|has| |#1| (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) 61 (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2419 (((-112) $) 63)) (-1650 (($) 164 (|has| |#1| (-368)))) (-2805 (((-112) $) NIL (|has| |#1| (-368)))) (-1779 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 |#1|) $) 119) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-2209 (((-918) $) 174 (|has| |#1| (-368)))) (-3645 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3135 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3325 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 181)) (-1611 (($) NIL (|has| |#1| (-368)) CONST)) (-1403 (($ (-918)) 99 (|has| |#1| (-368)))) (-4120 (((-112) $) 149)) (-3802 (((-1114) $) NIL)) (-2557 (((-955 (-1114))) 58)) (-1502 (($) 160 (|has| |#1| (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) 121 (|has| |#1| (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) 93) (((-918)) 94)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) 163 (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) 156 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-1916 (((-1166 |#1|)) 124)) (-3726 (($) 161 (|has| |#1| (-368)))) (-3387 (($) 169 (|has| |#1| (-368)))) (-3072 (((-1259 |#1|) $) 78) (((-685 |#1|) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1765 (((-859) $) 177) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-2864 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1965 (((-768)) 171 T CONST)) (-3941 (((-1259 $)) 146) (((-1259 $) (-918)) 101)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) 68 T CONST)) (-4327 (($) 106 T CONST)) (-1560 (($ $) 110 (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3190 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1686 (((-112) $ $) 66)) (-1793 (($ $ $) 179) (($ $ |#1|) 180)) (-1783 (($ $) 159) (($ $ $) NIL)) (-1771 (($ $ $) 87)) (** (($ $ (-918)) 183) (($ $ (-768)) 184) (($ $ (-564)) 182)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 105) (($ $ $) 104) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 178)))
-(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2557 ((-955 (-1114)))))) (-349) (-1166 |#1|)) (T -344))
-((-2557 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1166 *3)))))
-(-13 (-329 |#1|) (-10 -7 (-15 -2557 ((-955 (-1114))))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL (|has| |#1| (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-2910 (($ (-1259 |#1|)) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| |#1| (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) NIL (|has| |#1| (-368)))) (-3242 (((-112) $) NIL (|has| |#1| (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2419 (((-112) $) NIL)) (-1650 (($) NIL (|has| |#1| (-368)))) (-2805 (((-112) $) NIL (|has| |#1| (-368)))) (-1779 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-2209 (((-918) $) NIL (|has| |#1| (-368)))) (-3645 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3135 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3325 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| |#1| (-368)) CONST)) (-1403 (($ (-918)) NIL (|has| |#1| (-368)))) (-4120 (((-112) $) NIL)) (-3802 (((-1114) $) NIL)) (-2557 (((-955 (-1114))) NIL)) (-1502 (($) NIL (|has| |#1| (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| |#1| (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) NIL) (((-918)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-1916 (((-1166 |#1|)) NIL)) (-3726 (($) NIL (|has| |#1| (-368)))) (-3387 (($) NIL (|has| |#1| (-368)))) (-3072 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2864 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1560 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3190 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2557 ((-955 (-1114)))))) (-349) (-918)) (T -345))
-((-2557 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))))
-(-13 (-329 |#1|) (-10 -7 (-15 -2557 ((-955 (-1114))))))
-((-1847 (((-768) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114)))))) 61)) (-2580 (((-955 (-1114)) (-1166 |#1|)) 118)) (-2430 (((-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))) (-1166 |#1|)) 105)) (-2113 (((-685 |#1|) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114)))))) 120)) (-2262 (((-3 (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))) "failed") (-918)) 13)) (-2267 (((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114)))))) (-918)) 18)))
-(((-346 |#1|) (-10 -7 (-15 -2580 ((-955 (-1114)) (-1166 |#1|))) (-15 -2430 ((-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))) (-1166 |#1|))) (-15 -2113 ((-685 |#1|) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))))) (-15 -1847 ((-768) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))))) (-15 -2262 ((-3 (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))) "failed") (-918))) (-15 -2267 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114)))))) (-918)))) (-349)) (T -346))
-((-2267 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-3 (-1166 *4) (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-2262 (*1 *2 *3) (|partial| -12 (-5 *3 (-918)) (-5 *2 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-768)) (-5 *1 (-346 *4)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114)))))) (-5 *1 (-346 *4)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-955 (-1114))) (-5 *1 (-346 *4)))))
-(-10 -7 (-15 -2580 ((-955 (-1114)) (-1166 |#1|))) (-15 -2430 ((-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))) (-1166 |#1|))) (-15 -2113 ((-685 |#1|) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))))) (-15 -1847 ((-768) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))))) (-15 -2262 ((-3 (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))) "failed") (-918))) (-15 -2267 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114)))))) (-918))))
-((-1765 ((|#1| |#3|) 105) ((|#3| |#1|) 88)))
-(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -1765 (|#3| |#1|)) (-15 -1765 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347))
-((-1765 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-1765 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4)))))
-(-10 -7 (-15 -1765 (|#3| |#1|)) (-15 -1765 (|#1| |#3|)))
-((-3242 (((-112) $) 60)) (-2261 (((-830 (-918)) $) 23) (((-918) $) 66)) (-3374 (((-3 $ "failed") $) 18)) (-1611 (($) 9)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 116)) (-1504 (((-3 (-768) "failed") $ $) 94) (((-768) $) 81)) (-3226 (($ $ (-768)) NIL) (($ $) 8)) (-3726 (($) 53)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 38)) (-2864 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-348 |#1|) (-10 -8 (-15 -2261 ((-918) |#1|)) (-15 -1504 ((-768) |#1|)) (-15 -3242 ((-112) |#1|)) (-15 -3726 (|#1|)) (-15 -2574 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2864 (|#1| |#1|)) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -1611 (|#1|)) (-15 -3374 ((-3 |#1| "failed") |#1|)) (-15 -1504 ((-3 (-768) "failed") |#1| |#1|)) (-15 -2261 ((-830 (-918)) |#1|)) (-15 -2864 ((-3 |#1| "failed") |#1|)) (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-349)) (T -348))
-NIL
-(-10 -8 (-15 -2261 ((-918) |#1|)) (-15 -1504 ((-768) |#1|)) (-15 -3242 ((-112) |#1|)) (-15 -3726 (|#1|)) (-15 -2574 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2864 (|#1| |#1|)) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -1611 (|#1|)) (-15 -3374 ((-3 |#1| "failed") |#1|)) (-15 -1504 ((-3 (-768) "failed") |#1| |#1|)) (-15 -2261 ((-830 (-918)) |#1|)) (-15 -2864 ((-3 |#1| "failed") |#1|)) (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-2590 (((-1182 (-918) (-768)) (-564)) 94)) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-3385 (((-112) $ $) 60)) (-3042 (((-768)) 104)) (-3760 (($) 17 T CONST)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-2542 (($) 107)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-1990 (($) 92)) (-3242 (((-112) $) 91)) (-2184 (($ $) 80) (($ $ (-768)) 79)) (-3241 (((-112) $) 72)) (-2261 (((-830 (-918)) $) 82) (((-918) $) 89)) (-2419 (((-112) $) 31)) (-3374 (((-3 $ "failed") $) 103)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2209 (((-918) $) 106)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71)) (-1611 (($) 102 T CONST)) (-1403 (($ (-918)) 105)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) 95)) (-4006 (((-418 $) $) 75)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-1504 (((-3 (-768) "failed") $ $) 81) (((-768) $) 90)) (-3226 (($ $ (-768)) 100) (($ $) 98)) (-3726 (($) 93)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 96)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-2864 (((-3 $ "failed") $) 83) (($ $) 97)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-768)) 101) (($ $) 99)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ $) 66)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
+((-2427 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) (-1523 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) (-3960 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3926 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2835 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2835 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-3932 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3455 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3455 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2088 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2219 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2219 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2339 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2944 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2499 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-3247 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-4255 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-3556 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-1834 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-3566 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-4392 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5))))) (-3853 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-3853 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-2015 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-4382 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-3449 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-4278 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-3337 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-641 (-949 *4))))) (-3314 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3))))))
+(-13 (-721 (-407 |t#2|) |t#3|) (-10 -8 (-15 -2427 ((-768))) (-15 -1523 ((-768))) (-15 -3960 ((-112))) (-15 -3612 ((-112) |t#1| |t#1|)) (-15 -3926 ((-112))) (-15 -2835 ((-112) |t#1|)) (-15 -2835 ((-112) |t#2|)) (-15 -3932 ((-112))) (-15 -3455 ((-112) |t#1|)) (-15 -3455 ((-112) |t#2|)) (-15 -2088 ((-112))) (-15 -2219 ((-112) |t#1|)) (-15 -2219 ((-112) |t#2|)) (-15 -2339 ((-1259 $))) (-15 -2944 ((-1259 $))) (-15 -2875 ((-112) $)) (-15 -3853 ((-112) $)) (-15 -2499 ((-1259 $) (-1259 $))) (-15 -1459 ((-1259 $) (-1259 $))) (-15 -4051 ((-1259 $) (-1259 $))) (-15 -3247 ((-685 (-407 |t#2|)))) (-15 -4255 ((-685 (-407 |t#2|)))) (-15 -3556 ((-685 (-407 |t#2|)))) (-15 -1834 ((-685 (-407 |t#2|)))) (-15 -2742 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3566 ($ (-1259 |t#2|) |t#2|)) (-15 -2991 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4392 ($ (-1259 |t#2|) |t#2|)) (-15 -2917 ((-2 (|:| |num| (-685 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3853 ((-112) $ |t#1|)) (-15 -3853 ((-112) $ |t#2|)) (-15 -2203 ($ $ (-1 |t#2| |t#2|))) (-15 -2015 ($ $)) (-15 -4382 (|t#1| $ |t#1| |t#1|)) (-15 -3449 ((-3 |t#2| "failed"))) (-15 -4278 ((-3 |t#2| "failed"))) (-15 -3337 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -1293 ((-641 (-949 |t#1|)) (-1170))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -3314 ((-641 (-641 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-614 #0#) -4012 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-614 #1#) . T) ((-614 (-564)) . T) ((-614 $) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-611 (-859)) . T) ((-172) . T) ((-612 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -4012 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -4012 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-556) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #0#) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #1#) . T) ((-644 $) . T) ((-637 #1#) . T) ((-637 (-564)) |has| (-407 |#2|) (-637 (-564))) ((-714 #0#) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-714 #1#) . T) ((-714 $) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-721 #1# |#3|) . T) ((-723) . T) ((-897 (-1170)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) ((-917) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1035 (-407 (-564))) |has| (-407 |#2|) (-1035 (-407 (-564)))) ((-1035 #1#) . T) ((-1035 (-564)) |has| (-407 |#2|) (-1035 (-564))) ((-1052 #0#) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1052 #1#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| (-407 |#2|) (-349)) ((-1213) -4012 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-907 |#1|) "failed") $) NIL)) (-2376 (((-907 |#1|) $) NIL)) (-3566 (($ (-1259 (-907 |#1|))) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-907 |#1|) (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) NIL (|has| (-907 |#1|) (-368)))) (-1937 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2340 (((-112) $) NIL)) (-3344 (($) NIL (|has| (-907 |#1|) (-368)))) (-1927 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-2217 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-4031 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-1513 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-3240 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-1486 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-3338 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2309 (((-112) $) NIL)) (-3844 (((-1114) $) NIL)) (-4273 (((-955 (-1114))) NIL)) (-1729 (($) NIL (|has| (-907 |#1|) (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) NIL) (((-918)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-4180 (((-1166 (-907 |#1|))) NIL)) (-2927 (($) NIL (|has| (-907 |#1|) (-368)))) (-3927 (($) NIL (|has| (-907 |#1|) (-368)))) (-3867 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-4363 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1946 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-2238 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL)))
+(((-343 |#1| |#2|) (-13 (-329 (-907 |#1|)) (-10 -7 (-15 -4273 ((-955 (-1114)))))) (-918) (-918)) (T -343))
+((-4273 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))))
+(-13 (-329 (-907 |#1|)) (-10 -7 (-15 -4273 ((-955 (-1114))))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 59)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) 57 (|has| |#1| (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL (|has| |#1| (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) 144)) (-2376 ((|#1| $) 115)) (-3566 (($ (-1259 |#1|)) 132)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) 126 (|has| |#1| (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) 162 (|has| |#1| (-368)))) (-1937 (((-112) $) 67 (|has| |#1| (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) 61 (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2340 (((-112) $) 63)) (-3344 (($) 164 (|has| |#1| (-368)))) (-1927 (((-112) $) NIL (|has| |#1| (-368)))) (-2217 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 |#1|) $) 119) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-4031 (((-918) $) 174 (|has| |#1| (-368)))) (-1513 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3240 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1486 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 181)) (-3304 (($) NIL (|has| |#1| (-368)) CONST)) (-3338 (($ (-918)) 99 (|has| |#1| (-368)))) (-2309 (((-112) $) 149)) (-3844 (((-1114) $) NIL)) (-4273 (((-955 (-1114))) 58)) (-1729 (($) 160 (|has| |#1| (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) 121 (|has| |#1| (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) 93) (((-918)) 94)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) 163 (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) 156 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-4180 (((-1166 |#1|)) 124)) (-2927 (($) 161 (|has| |#1| (-368)))) (-3927 (($) 169 (|has| |#1| (-368)))) (-3867 (((-1259 |#1|) $) 78) (((-685 |#1|) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3714 (((-859) $) 177) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-4363 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3379 (((-768)) 171 T CONST)) (-4339 (((-1259 $)) 146) (((-1259 $) (-918)) 101)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) 68 T CONST)) (-4323 (($) 106 T CONST)) (-1946 (($ $) 110 (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2238 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1720 (((-112) $ $) 66)) (-1841 (($ $ $) 179) (($ $ |#1|) 180)) (-1828 (($ $) 159) (($ $ $) NIL)) (-1814 (($ $ $) 87)) (** (($ $ (-918)) 183) (($ $ (-768)) 184) (($ $ (-564)) 182)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 105) (($ $ $) 104) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 178)))
+(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -4273 ((-955 (-1114)))))) (-349) (-1166 |#1|)) (T -344))
+((-4273 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1166 *3)))))
+(-13 (-329 |#1|) (-10 -7 (-15 -4273 ((-955 (-1114))))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL (|has| |#1| (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-3566 (($ (-1259 |#1|)) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| |#1| (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) NIL (|has| |#1| (-368)))) (-1937 (((-112) $) NIL (|has| |#1| (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2340 (((-112) $) NIL)) (-3344 (($) NIL (|has| |#1| (-368)))) (-1927 (((-112) $) NIL (|has| |#1| (-368)))) (-2217 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-4031 (((-918) $) NIL (|has| |#1| (-368)))) (-1513 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3240 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1486 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| |#1| (-368)) CONST)) (-3338 (($ (-918)) NIL (|has| |#1| (-368)))) (-2309 (((-112) $) NIL)) (-3844 (((-1114) $) NIL)) (-4273 (((-955 (-1114))) NIL)) (-1729 (($) NIL (|has| |#1| (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| |#1| (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) NIL) (((-918)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-4180 (((-1166 |#1|)) NIL)) (-2927 (($) NIL (|has| |#1| (-368)))) (-3927 (($) NIL (|has| |#1| (-368)))) (-3867 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-4363 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1946 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2238 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -4273 ((-955 (-1114)))))) (-349) (-918)) (T -345))
+((-4273 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))))
+(-13 (-329 |#1|) (-10 -7 (-15 -4273 ((-955 (-1114))))))
+((-1654 (((-768) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114)))))) 61)) (-1406 (((-955 (-1114)) (-1166 |#1|)) 118)) (-2456 (((-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))) (-1166 |#1|)) 105)) (-2535 (((-685 |#1|) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114)))))) 120)) (-1463 (((-3 (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))) "failed") (-918)) 13)) (-1509 (((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114)))))) (-918)) 18)))
+(((-346 |#1|) (-10 -7 (-15 -1406 ((-955 (-1114)) (-1166 |#1|))) (-15 -2456 ((-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))) (-1166 |#1|))) (-15 -2535 ((-685 |#1|) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))))) (-15 -1654 ((-768) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))))) (-15 -1463 ((-3 (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))) "failed") (-918))) (-15 -1509 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114)))))) (-918)))) (-349)) (T -346))
+((-1509 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-3 (-1166 *4) (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1463 (*1 *2 *3) (|partial| -12 (-5 *3 (-918)) (-5 *2 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-768)) (-5 *1 (-346 *4)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114)))))) (-5 *1 (-346 *4)))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-955 (-1114))) (-5 *1 (-346 *4)))))
+(-10 -7 (-15 -1406 ((-955 (-1114)) (-1166 |#1|))) (-15 -2456 ((-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))) (-1166 |#1|))) (-15 -2535 ((-685 |#1|) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))))) (-15 -1654 ((-768) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))))) (-15 -1463 ((-3 (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))) "failed") (-918))) (-15 -1509 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114)))))) (-918))))
+((-3714 ((|#1| |#3|) 105) ((|#3| |#1|) 88)))
+(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -3714 (|#3| |#1|)) (-15 -3714 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347))
+((-3714 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4)))))
+(-10 -7 (-15 -3714 (|#3| |#1|)) (-15 -3714 (|#1| |#3|)))
+((-1937 (((-112) $) 60)) (-1454 (((-830 (-918)) $) 23) (((-918) $) 66)) (-3804 (((-3 $ "failed") $) 18)) (-3304 (($) 9)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 116)) (-2671 (((-3 (-768) "failed") $ $) 94) (((-768) $) 81)) (-2203 (($ $ (-768)) NIL) (($ $) 8)) (-2927 (($) 53)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 38)) (-4363 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-348 |#1|) (-10 -8 (-15 -1454 ((-918) |#1|)) (-15 -2671 ((-768) |#1|)) (-15 -1937 ((-112) |#1|)) (-15 -2927 (|#1|)) (-15 -1352 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -4363 (|#1| |#1|)) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -3304 (|#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -2671 ((-3 (-768) "failed") |#1| |#1|)) (-15 -1454 ((-830 (-918)) |#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-349)) (T -348))
+NIL
+(-10 -8 (-15 -1454 ((-918) |#1|)) (-15 -2671 ((-768) |#1|)) (-15 -1937 ((-112) |#1|)) (-15 -2927 (|#1|)) (-15 -1352 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -4363 (|#1| |#1|)) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -3304 (|#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -2671 ((-3 (-768) "failed") |#1| |#1|)) (-15 -1454 ((-830 (-918)) |#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-1494 (((-1182 (-918) (-768)) (-564)) 94)) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-3907 (((-112) $ $) 60)) (-2018 (((-768)) 104)) (-3180 (($) 17 T CONST)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-2939 (($) 107)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-3648 (($) 92)) (-1937 (((-112) $) 91)) (-1957 (($ $) 80) (($ $ (-768)) 79)) (-1926 (((-112) $) 72)) (-1454 (((-830 (-918)) $) 82) (((-918) $) 89)) (-2340 (((-112) $) 31)) (-3804 (((-3 $ "failed") $) 103)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-4031 (((-918) $) 106)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71)) (-3304 (($) 102 T CONST)) (-3338 (($ (-918)) 105)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) 95)) (-4139 (((-418 $) $) 75)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-2671 (((-3 (-768) "failed") $ $) 81) (((-768) $) 90)) (-2203 (($ $ (-768)) 100) (($ $) 98)) (-2927 (($) 93)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 96)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-4363 (((-3 $ "failed") $) 83) (($ $) 97)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-768)) 101) (($ $) 99)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ $) 66)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
(((-349) (-140)) (T -349))
-((-2864 (*1 *1 *1) (-4 *1 (-349))) (-2574 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1)))) (-2042 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))))) (-2590 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-918) (-768))))) (-3726 (*1 *1) (-4 *1 (-349))) (-1990 (*1 *1) (-4 *1 (-349))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-768)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-918)))) (-2396 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-402) (-368) (-1145) (-233) (-10 -8 (-15 -2864 ($ $)) (-15 -2574 ((-3 (-1259 $) "failed") (-685 $))) (-15 -2042 ((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564)))))) (-15 -2590 ((-1182 (-918) (-768)) (-564))) (-15 -3726 ($)) (-15 -1990 ($)) (-15 -3242 ((-112) $)) (-15 -1504 ((-768) $)) (-15 -2261 ((-918) $)) (-15 -2396 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+((-4363 (*1 *1 *1) (-4 *1 (-349))) (-1352 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1)))) (-3015 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))))) (-1494 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-918) (-768))))) (-2927 (*1 *1) (-4 *1 (-349))) (-3648 (*1 *1) (-4 *1 (-349))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-768)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-918)))) (-3266 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-402) (-368) (-1145) (-233) (-10 -8 (-15 -4363 ($ $)) (-15 -1352 ((-3 (-1259 $) "failed") (-685 $))) (-15 -3015 ((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564)))))) (-15 -1494 ((-1182 (-918) (-768)) (-564))) (-15 -2927 ($)) (-15 -3648 ($)) (-15 -1937 ((-112) $)) (-15 -2671 ((-768) $)) (-15 -1454 ((-918) $)) (-15 -3266 ((-3 "prime" "polynomial" "normal" "cyclic")))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T))
-((-4018 (((-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|) 57)) (-1791 (((-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 55)))
-(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -1791 ((-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -4018 ((-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -350))
-((-4018 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1791 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(-10 -7 (-15 -1791 ((-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -4018 ((-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-1847 (((-768)) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-907 |#1|) "failed") $) NIL)) (-2064 (((-907 |#1|) $) NIL)) (-2910 (($ (-1259 (-907 |#1|))) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-907 |#1|) (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) NIL (|has| (-907 |#1|) (-368)))) (-3242 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2419 (((-112) $) NIL)) (-1650 (($) NIL (|has| (-907 |#1|) (-368)))) (-2805 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-1779 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2209 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-3645 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-3135 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-3325 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-1403 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-4120 (((-112) $) NIL)) (-3802 (((-1114) $) NIL)) (-2228 (((-1259 (-641 (-2 (|:| -1451 (-907 |#1|)) (|:| -1403 (-1114)))))) NIL)) (-2128 (((-685 (-907 |#1|))) NIL)) (-1502 (($) NIL (|has| (-907 |#1|) (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) NIL) (((-918)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-1916 (((-1166 (-907 |#1|))) NIL)) (-3726 (($) NIL (|has| (-907 |#1|) (-368)))) (-3387 (($) NIL (|has| (-907 |#1|) (-368)))) (-3072 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-2864 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1560 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3190 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL)))
-(((-351 |#1| |#2|) (-13 (-329 (-907 |#1|)) (-10 -7 (-15 -2228 ((-1259 (-641 (-2 (|:| -1451 (-907 |#1|)) (|:| -1403 (-1114))))))) (-15 -2128 ((-685 (-907 |#1|)))) (-15 -1847 ((-768))))) (-918) (-918)) (T -351))
-((-2228 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1451 (-907 *3)) (|:| -1403 (-1114)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2128 (*1 *2) (-12 (-5 *2 (-685 (-907 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-1847 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))))
-(-13 (-329 (-907 |#1|)) (-10 -7 (-15 -2228 ((-1259 (-641 (-2 (|:| -1451 (-907 |#1|)) (|:| -1403 (-1114))))))) (-15 -2128 ((-685 (-907 |#1|)))) (-15 -1847 ((-768)))))
-((-1754 (((-112) $ $) 76)) (-3976 (((-112) $) 90)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 ((|#1| $) 108) (($ $ (-918)) 106 (|has| |#1| (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) 177 (|has| |#1| (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-1847 (((-768)) 105)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) 193 (|has| |#1| (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) 130)) (-2064 ((|#1| $) 107)) (-2910 (($ (-1259 |#1|)) 74)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) 189 (|has| |#1| (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) 178 (|has| |#1| (-368)))) (-3242 (((-112) $) NIL (|has| |#1| (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2419 (((-112) $) NIL)) (-1650 (($) 116 (|has| |#1| (-368)))) (-2805 (((-112) $) 206 (|has| |#1| (-368)))) (-1779 ((|#1| $) 110) (($ $ (-918)) 109 (|has| |#1| (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 |#1|) $) 220) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-2209 (((-918) $) 154 (|has| |#1| (-368)))) (-3645 (((-1166 |#1|) $) 89 (|has| |#1| (-368)))) (-3135 (((-1166 |#1|) $) 86 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 98 (|has| |#1| (-368)))) (-3325 (($ $ (-1166 |#1|)) 85 (|has| |#1| (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 224)) (-1611 (($) NIL (|has| |#1| (-368)) CONST)) (-1403 (($ (-918)) 157 (|has| |#1| (-368)))) (-4120 (((-112) $) 126)) (-3802 (((-1114) $) NIL)) (-2228 (((-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114)))))) 99)) (-2128 (((-685 |#1|)) 103)) (-1502 (($) 112 (|has| |#1| (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) 180 (|has| |#1| (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) NIL) (((-918)) 181)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) 78)) (-1916 (((-1166 |#1|)) 182)) (-3726 (($) 153 (|has| |#1| (-368)))) (-3387 (($) NIL (|has| |#1| (-368)))) (-3072 (((-1259 |#1|) $) 124) (((-685 |#1|) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1765 (((-859) $) 146) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 73)) (-2864 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1965 (((-768)) 187 T CONST)) (-3941 (((-1259 $)) 203) (((-1259 $) (-918)) 119)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) 140 T CONST)) (-4327 (($) 44 T CONST)) (-1560 (($ $) 125 (|has| |#1| (-368))) (($ $ (-768)) 117 (|has| |#1| (-368)))) (-3190 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1686 (((-112) $ $) 214)) (-1793 (($ $ $) 122) (($ $ |#1|) 123)) (-1783 (($ $) 208) (($ $ $) 212)) (-1771 (($ $ $) 210)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 159)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 217) (($ $ $) 171) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121)))
-(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2228 ((-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))))) (-15 -2128 ((-685 |#1|))) (-15 -1847 ((-768))))) (-349) (-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))))) (T -352))
-((-2228 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1451 *3) (|:| -1403 (-1114)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2)))) (-2128 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -1451 *3) (|:| -1403 (-1114))))))))) (-1847 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -1451 *3) (|:| -1403 (-1114))))))))))
-(-13 (-329 |#1|) (-10 -7 (-15 -2228 ((-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))))) (-15 -2128 ((-685 |#1|))) (-15 -1847 ((-768)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-1847 (((-768)) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL (|has| |#1| (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-2910 (($ (-1259 |#1|)) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| |#1| (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) NIL (|has| |#1| (-368)))) (-3242 (((-112) $) NIL (|has| |#1| (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2419 (((-112) $) NIL)) (-1650 (($) NIL (|has| |#1| (-368)))) (-2805 (((-112) $) NIL (|has| |#1| (-368)))) (-1779 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-2209 (((-918) $) NIL (|has| |#1| (-368)))) (-3645 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3135 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3325 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| |#1| (-368)) CONST)) (-1403 (($ (-918)) NIL (|has| |#1| (-368)))) (-4120 (((-112) $) NIL)) (-3802 (((-1114) $) NIL)) (-2228 (((-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114)))))) NIL)) (-2128 (((-685 |#1|)) NIL)) (-1502 (($) NIL (|has| |#1| (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| |#1| (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) NIL) (((-918)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-1916 (((-1166 |#1|)) NIL)) (-3726 (($) NIL (|has| |#1| (-368)))) (-3387 (($) NIL (|has| |#1| (-368)))) (-3072 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2864 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1560 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3190 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2228 ((-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))))) (-15 -2128 ((-685 |#1|))) (-15 -1847 ((-768))))) (-349) (-918)) (T -353))
-((-2228 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1451 *3) (|:| -1403 (-1114)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))) (-2128 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))) (-1847 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))))
-(-13 (-329 |#1|) (-10 -7 (-15 -2228 ((-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))))) (-15 -2128 ((-685 |#1|))) (-15 -1847 ((-768)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-907 |#1|) "failed") $) NIL)) (-2064 (((-907 |#1|) $) NIL)) (-2910 (($ (-1259 (-907 |#1|))) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-907 |#1|) (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) NIL (|has| (-907 |#1|) (-368)))) (-3242 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2419 (((-112) $) NIL)) (-1650 (($) NIL (|has| (-907 |#1|) (-368)))) (-2805 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-1779 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2209 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-3645 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-3135 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-3325 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-1403 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-4120 (((-112) $) NIL)) (-3802 (((-1114) $) NIL)) (-1502 (($) NIL (|has| (-907 |#1|) (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) NIL) (((-918)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-1916 (((-1166 (-907 |#1|))) NIL)) (-3726 (($) NIL (|has| (-907 |#1|) (-368)))) (-3387 (($) NIL (|has| (-907 |#1|) (-368)))) (-3072 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-2864 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1560 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3190 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL)))
+((-3733 (((-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|) 57)) (-2339 (((-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 55)))
+(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -2339 ((-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -3733 ((-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -350))
+((-3733 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2339 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(-10 -7 (-15 -2339 ((-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -3733 ((-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-1654 (((-768)) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-907 |#1|) "failed") $) NIL)) (-2376 (((-907 |#1|) $) NIL)) (-3566 (($ (-1259 (-907 |#1|))) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-907 |#1|) (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) NIL (|has| (-907 |#1|) (-368)))) (-1937 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2340 (((-112) $) NIL)) (-3344 (($) NIL (|has| (-907 |#1|) (-368)))) (-1927 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-2217 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-4031 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-1513 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-3240 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-1486 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-3338 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2309 (((-112) $) NIL)) (-3844 (((-1114) $) NIL)) (-4197 (((-1259 (-641 (-2 (|:| -3387 (-907 |#1|)) (|:| -3338 (-1114)))))) NIL)) (-2682 (((-685 (-907 |#1|))) NIL)) (-1729 (($) NIL (|has| (-907 |#1|) (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) NIL) (((-918)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-4180 (((-1166 (-907 |#1|))) NIL)) (-2927 (($) NIL (|has| (-907 |#1|) (-368)))) (-3927 (($) NIL (|has| (-907 |#1|) (-368)))) (-3867 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-4363 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1946 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-2238 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL)))
+(((-351 |#1| |#2|) (-13 (-329 (-907 |#1|)) (-10 -7 (-15 -4197 ((-1259 (-641 (-2 (|:| -3387 (-907 |#1|)) (|:| -3338 (-1114))))))) (-15 -2682 ((-685 (-907 |#1|)))) (-15 -1654 ((-768))))) (-918) (-918)) (T -351))
+((-4197 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3387 (-907 *3)) (|:| -3338 (-1114)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2682 (*1 *2) (-12 (-5 *2 (-685 (-907 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-1654 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))))
+(-13 (-329 (-907 |#1|)) (-10 -7 (-15 -4197 ((-1259 (-641 (-2 (|:| -3387 (-907 |#1|)) (|:| -3338 (-1114))))))) (-15 -2682 ((-685 (-907 |#1|)))) (-15 -1654 ((-768)))))
+((-3702 (((-112) $ $) 76)) (-1556 (((-112) $) 90)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 ((|#1| $) 108) (($ $ (-918)) 106 (|has| |#1| (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) 177 (|has| |#1| (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-1654 (((-768)) 105)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) 193 (|has| |#1| (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) 130)) (-2376 ((|#1| $) 107)) (-3566 (($ (-1259 |#1|)) 74)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) 189 (|has| |#1| (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) 178 (|has| |#1| (-368)))) (-1937 (((-112) $) NIL (|has| |#1| (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2340 (((-112) $) NIL)) (-3344 (($) 116 (|has| |#1| (-368)))) (-1927 (((-112) $) 206 (|has| |#1| (-368)))) (-2217 ((|#1| $) 110) (($ $ (-918)) 109 (|has| |#1| (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 |#1|) $) 220) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-4031 (((-918) $) 154 (|has| |#1| (-368)))) (-1513 (((-1166 |#1|) $) 89 (|has| |#1| (-368)))) (-3240 (((-1166 |#1|) $) 86 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 98 (|has| |#1| (-368)))) (-1486 (($ $ (-1166 |#1|)) 85 (|has| |#1| (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 224)) (-3304 (($) NIL (|has| |#1| (-368)) CONST)) (-3338 (($ (-918)) 157 (|has| |#1| (-368)))) (-2309 (((-112) $) 126)) (-3844 (((-1114) $) NIL)) (-4197 (((-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114)))))) 99)) (-2682 (((-685 |#1|)) 103)) (-1729 (($) 112 (|has| |#1| (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) 180 (|has| |#1| (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) NIL) (((-918)) 181)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) 78)) (-4180 (((-1166 |#1|)) 182)) (-2927 (($) 153 (|has| |#1| (-368)))) (-3927 (($) NIL (|has| |#1| (-368)))) (-3867 (((-1259 |#1|) $) 124) (((-685 |#1|) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3714 (((-859) $) 146) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 73)) (-4363 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3379 (((-768)) 187 T CONST)) (-4339 (((-1259 $)) 203) (((-1259 $) (-918)) 119)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) 140 T CONST)) (-4323 (($) 44 T CONST)) (-1946 (($ $) 125 (|has| |#1| (-368))) (($ $ (-768)) 117 (|has| |#1| (-368)))) (-2238 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1720 (((-112) $ $) 214)) (-1841 (($ $ $) 122) (($ $ |#1|) 123)) (-1828 (($ $) 208) (($ $ $) 212)) (-1814 (($ $ $) 210)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 159)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 217) (($ $ $) 171) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121)))
+(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -4197 ((-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))))) (-15 -2682 ((-685 |#1|))) (-15 -1654 ((-768))))) (-349) (-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))))) (T -352))
+((-4197 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3387 *3) (|:| -3338 (-1114)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2)))) (-2682 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -3387 *3) (|:| -3338 (-1114))))))))) (-1654 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -3387 *3) (|:| -3338 (-1114))))))))))
+(-13 (-329 |#1|) (-10 -7 (-15 -4197 ((-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))))) (-15 -2682 ((-685 |#1|))) (-15 -1654 ((-768)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-1654 (((-768)) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL (|has| |#1| (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-3566 (($ (-1259 |#1|)) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| |#1| (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) NIL (|has| |#1| (-368)))) (-1937 (((-112) $) NIL (|has| |#1| (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2340 (((-112) $) NIL)) (-3344 (($) NIL (|has| |#1| (-368)))) (-1927 (((-112) $) NIL (|has| |#1| (-368)))) (-2217 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-4031 (((-918) $) NIL (|has| |#1| (-368)))) (-1513 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3240 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1486 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| |#1| (-368)) CONST)) (-3338 (($ (-918)) NIL (|has| |#1| (-368)))) (-2309 (((-112) $) NIL)) (-3844 (((-1114) $) NIL)) (-4197 (((-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114)))))) NIL)) (-2682 (((-685 |#1|)) NIL)) (-1729 (($) NIL (|has| |#1| (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| |#1| (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) NIL) (((-918)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-4180 (((-1166 |#1|)) NIL)) (-2927 (($) NIL (|has| |#1| (-368)))) (-3927 (($) NIL (|has| |#1| (-368)))) (-3867 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-4363 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1946 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2238 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -4197 ((-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))))) (-15 -2682 ((-685 |#1|))) (-15 -1654 ((-768))))) (-349) (-918)) (T -353))
+((-4197 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3387 *3) (|:| -3338 (-1114)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))) (-2682 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))) (-1654 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))))
+(-13 (-329 |#1|) (-10 -7 (-15 -4197 ((-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))))) (-15 -2682 ((-685 |#1|))) (-15 -1654 ((-768)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-907 |#1|) "failed") $) NIL)) (-2376 (((-907 |#1|) $) NIL)) (-3566 (($ (-1259 (-907 |#1|))) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-907 |#1|) (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) NIL (|has| (-907 |#1|) (-368)))) (-1937 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2340 (((-112) $) NIL)) (-3344 (($) NIL (|has| (-907 |#1|) (-368)))) (-1927 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-2217 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-4031 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-1513 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-3240 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-1486 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-3338 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-2309 (((-112) $) NIL)) (-3844 (((-1114) $) NIL)) (-1729 (($) NIL (|has| (-907 |#1|) (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) NIL) (((-918)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-4180 (((-1166 (-907 |#1|))) NIL)) (-2927 (($) NIL (|has| (-907 |#1|) (-368)))) (-3927 (($) NIL (|has| (-907 |#1|) (-368)))) (-3867 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-4363 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1946 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-2238 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL)))
(((-354 |#1| |#2|) (-329 (-907 |#1|)) (-918) (-918)) (T -354))
NIL
(-329 (-907 |#1|))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) 135 (|has| |#1| (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) 164 (|has| |#1| (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) 109)) (-2064 ((|#1| $) 106)) (-2910 (($ (-1259 |#1|)) 101)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) 98 (|has| |#1| (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) 51 (|has| |#1| (-368)))) (-3242 (((-112) $) NIL (|has| |#1| (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2419 (((-112) $) NIL)) (-1650 (($) 136 (|has| |#1| (-368)))) (-2805 (((-112) $) 90 (|has| |#1| (-368)))) (-1779 ((|#1| $) 47) (($ $ (-918)) 52 (|has| |#1| (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 |#1|) $) 79) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-2209 (((-918) $) 113 (|has| |#1| (-368)))) (-3645 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3135 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3325 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| |#1| (-368)) CONST)) (-1403 (($ (-918)) 111 (|has| |#1| (-368)))) (-4120 (((-112) $) 166)) (-3802 (((-1114) $) NIL)) (-1502 (($) 44 (|has| |#1| (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) 130 (|has| |#1| (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) NIL) (((-918)) 163)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) 71)) (-1916 (((-1166 |#1|)) 104)) (-3726 (($) 141 (|has| |#1| (-368)))) (-3387 (($) NIL (|has| |#1| (-368)))) (-3072 (((-1259 |#1|) $) 66) (((-685 |#1|) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1765 (((-859) $) 162) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-2864 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1965 (((-768)) 168 T CONST)) (-3941 (((-1259 $)) 125) (((-1259 $) (-918)) 60)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) 127 T CONST)) (-4327 (($) 40 T CONST)) (-1560 (($ $) 82 (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3190 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1686 (((-112) $ $) 123)) (-1793 (($ $ $) 115) (($ $ |#1|) 116)) (-1783 (($ $) 96) (($ $ $) 121)) (-1771 (($ $ $) 119)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55) (($ $ (-564)) 145)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 94) (($ $ $) 68) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) 135 (|has| |#1| (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) 164 (|has| |#1| (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) 109)) (-2376 ((|#1| $) 106)) (-3566 (($ (-1259 |#1|)) 101)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) 98 (|has| |#1| (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) 51 (|has| |#1| (-368)))) (-1937 (((-112) $) NIL (|has| |#1| (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2340 (((-112) $) NIL)) (-3344 (($) 136 (|has| |#1| (-368)))) (-1927 (((-112) $) 90 (|has| |#1| (-368)))) (-2217 ((|#1| $) 47) (($ $ (-918)) 52 (|has| |#1| (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 |#1|) $) 79) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-4031 (((-918) $) 113 (|has| |#1| (-368)))) (-1513 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3240 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1486 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| |#1| (-368)) CONST)) (-3338 (($ (-918)) 111 (|has| |#1| (-368)))) (-2309 (((-112) $) 166)) (-3844 (((-1114) $) NIL)) (-1729 (($) 44 (|has| |#1| (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) 130 (|has| |#1| (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) NIL) (((-918)) 163)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) 71)) (-4180 (((-1166 |#1|)) 104)) (-2927 (($) 141 (|has| |#1| (-368)))) (-3927 (($) NIL (|has| |#1| (-368)))) (-3867 (((-1259 |#1|) $) 66) (((-685 |#1|) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3714 (((-859) $) 162) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-4363 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3379 (((-768)) 168 T CONST)) (-4339 (((-1259 $)) 125) (((-1259 $) (-918)) 60)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) 127 T CONST)) (-4323 (($) 40 T CONST)) (-1946 (($ $) 82 (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2238 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1720 (((-112) $ $) 123)) (-1841 (($ $ $) 115) (($ $ |#1|) 116)) (-1828 (($ $) 96) (($ $ $) 121)) (-1814 (($ $ $) 119)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55) (($ $ (-564)) 145)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 94) (($ $ $) 68) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92)))
(((-355 |#1| |#2|) (-329 |#1|) (-349) (-1166 |#1|)) (T -355))
NIL
(-329 |#1|)
-((-4357 ((|#1| (-1166 |#2|)) 65)))
-(((-356 |#1| |#2|) (-10 -7 (-15 -4357 (|#1| (-1166 |#2|)))) (-13 (-402) (-10 -7 (-15 -1765 (|#1| |#2|)) (-15 -2209 ((-918) |#1|)) (-15 -3941 ((-1259 |#1|) (-918))) (-15 -1560 (|#1| |#1|)))) (-349)) (T -356))
-((-4357 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -1765 (*2 *4)) (-15 -2209 ((-918) *2)) (-15 -3941 ((-1259 *2) (-918))) (-15 -1560 (*2 *2))))) (-5 *1 (-356 *2 *4)))))
-(-10 -7 (-15 -4357 (|#1| (-1166 |#2|))))
-((-4348 (((-955 (-1166 |#1|)) (-1166 |#1|)) 53)) (-2542 (((-1166 |#1|) (-918) (-918)) 164) (((-1166 |#1|) (-918)) 161)) (-3242 (((-112) (-1166 |#1|)) 119)) (-2433 (((-918) (-918)) 98)) (-2593 (((-918) (-918)) 105)) (-2062 (((-918) (-918)) 96)) (-2805 (((-112) (-1166 |#1|)) 123)) (-2437 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 146)) (-4062 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 151)) (-1877 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 150)) (-1362 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 149)) (-2307 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 142)) (-1799 (((-1166 |#1|) (-1166 |#1|)) 84)) (-1448 (((-1166 |#1|) (-918)) 156)) (-3050 (((-1166 |#1|) (-918)) 159)) (-4068 (((-1166 |#1|) (-918)) 158)) (-3460 (((-1166 |#1|) (-918)) 157)) (-2545 (((-1166 |#1|) (-918)) 154)))
-(((-357 |#1|) (-10 -7 (-15 -3242 ((-112) (-1166 |#1|))) (-15 -2805 ((-112) (-1166 |#1|))) (-15 -2062 ((-918) (-918))) (-15 -2433 ((-918) (-918))) (-15 -2593 ((-918) (-918))) (-15 -2545 ((-1166 |#1|) (-918))) (-15 -1448 ((-1166 |#1|) (-918))) (-15 -3460 ((-1166 |#1|) (-918))) (-15 -4068 ((-1166 |#1|) (-918))) (-15 -3050 ((-1166 |#1|) (-918))) (-15 -2307 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2437 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1362 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1877 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -4062 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2542 ((-1166 |#1|) (-918))) (-15 -2542 ((-1166 |#1|) (-918) (-918))) (-15 -1799 ((-1166 |#1|) (-1166 |#1|))) (-15 -4348 ((-955 (-1166 |#1|)) (-1166 |#1|)))) (-349)) (T -357))
-((-4348 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-955 (-1166 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1166 *4)))) (-1799 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2542 (*1 *2 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4062 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1877 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1362 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2437 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2307 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2593 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2062 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))))
-(-10 -7 (-15 -3242 ((-112) (-1166 |#1|))) (-15 -2805 ((-112) (-1166 |#1|))) (-15 -2062 ((-918) (-918))) (-15 -2433 ((-918) (-918))) (-15 -2593 ((-918) (-918))) (-15 -2545 ((-1166 |#1|) (-918))) (-15 -1448 ((-1166 |#1|) (-918))) (-15 -3460 ((-1166 |#1|) (-918))) (-15 -4068 ((-1166 |#1|) (-918))) (-15 -3050 ((-1166 |#1|) (-918))) (-15 -2307 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2437 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1362 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1877 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -4062 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2542 ((-1166 |#1|) (-918))) (-15 -2542 ((-1166 |#1|) (-918) (-918))) (-15 -1799 ((-1166 |#1|) (-1166 |#1|))) (-15 -4348 ((-955 (-1166 |#1|)) (-1166 |#1|))))
-((-2111 (((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|) 40)))
-(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -2111 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -358))
-((-2111 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))))
-(-10 -7 (-15 -2111 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL (|has| |#1| (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-2910 (($ (-1259 |#1|)) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| |#1| (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) NIL (|has| |#1| (-368)))) (-3242 (((-112) $) NIL (|has| |#1| (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2419 (((-112) $) NIL)) (-1650 (($) NIL (|has| |#1| (-368)))) (-2805 (((-112) $) NIL (|has| |#1| (-368)))) (-1779 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-2209 (((-918) $) NIL (|has| |#1| (-368)))) (-3645 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3135 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3325 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| |#1| (-368)) CONST)) (-1403 (($ (-918)) NIL (|has| |#1| (-368)))) (-4120 (((-112) $) NIL)) (-3802 (((-1114) $) NIL)) (-1502 (($) NIL (|has| |#1| (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| |#1| (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) NIL) (((-918)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-1916 (((-1166 |#1|)) NIL)) (-3726 (($) NIL (|has| |#1| (-368)))) (-3387 (($) NIL (|has| |#1| (-368)))) (-3072 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-2864 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1560 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3190 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-3772 ((|#1| (-1166 |#2|)) 65)))
+(((-356 |#1| |#2|) (-10 -7 (-15 -3772 (|#1| (-1166 |#2|)))) (-13 (-402) (-10 -7 (-15 -3714 (|#1| |#2|)) (-15 -4031 ((-918) |#1|)) (-15 -4339 ((-1259 |#1|) (-918))) (-15 -1946 (|#1| |#1|)))) (-349)) (T -356))
+((-3772 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -3714 (*2 *4)) (-15 -4031 ((-918) *2)) (-15 -4339 ((-1259 *2) (-918))) (-15 -1946 (*2 *2))))) (-5 *1 (-356 *2 *4)))))
+(-10 -7 (-15 -3772 (|#1| (-1166 |#2|))))
+((-3683 (((-955 (-1166 |#1|)) (-1166 |#1|)) 53)) (-2939 (((-1166 |#1|) (-918) (-918)) 164) (((-1166 |#1|) (-918)) 161)) (-1937 (((-112) (-1166 |#1|)) 119)) (-2489 (((-918) (-918)) 98)) (-1514 (((-918) (-918)) 105)) (-3185 (((-918) (-918)) 96)) (-1927 (((-112) (-1166 |#1|)) 123)) (-2539 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 146)) (-2967 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 151)) (-1976 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 150)) (-1366 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 149)) (-3685 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 142)) (-2420 (((-1166 |#1|) (-1166 |#1|)) 84)) (-1934 (((-1166 |#1|) (-918)) 156)) (-3623 (((-1166 |#1|) (-918)) 159)) (-3022 (((-1166 |#1|) (-918)) 158)) (-2241 (((-1166 |#1|) (-918)) 157)) (-4145 (((-1166 |#1|) (-918)) 154)))
+(((-357 |#1|) (-10 -7 (-15 -1937 ((-112) (-1166 |#1|))) (-15 -1927 ((-112) (-1166 |#1|))) (-15 -3185 ((-918) (-918))) (-15 -2489 ((-918) (-918))) (-15 -1514 ((-918) (-918))) (-15 -4145 ((-1166 |#1|) (-918))) (-15 -1934 ((-1166 |#1|) (-918))) (-15 -2241 ((-1166 |#1|) (-918))) (-15 -3022 ((-1166 |#1|) (-918))) (-15 -3623 ((-1166 |#1|) (-918))) (-15 -3685 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2539 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1366 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1976 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2967 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2939 ((-1166 |#1|) (-918))) (-15 -2939 ((-1166 |#1|) (-918) (-918))) (-15 -2420 ((-1166 |#1|) (-1166 |#1|))) (-15 -3683 ((-955 (-1166 |#1|)) (-1166 |#1|)))) (-349)) (T -357))
+((-3683 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-955 (-1166 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1166 *4)))) (-2420 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2939 (*1 *2 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2967 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1976 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1366 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2539 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3685 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1514 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2489 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-3185 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))))
+(-10 -7 (-15 -1937 ((-112) (-1166 |#1|))) (-15 -1927 ((-112) (-1166 |#1|))) (-15 -3185 ((-918) (-918))) (-15 -2489 ((-918) (-918))) (-15 -1514 ((-918) (-918))) (-15 -4145 ((-1166 |#1|) (-918))) (-15 -1934 ((-1166 |#1|) (-918))) (-15 -2241 ((-1166 |#1|) (-918))) (-15 -3022 ((-1166 |#1|) (-918))) (-15 -3623 ((-1166 |#1|) (-918))) (-15 -3685 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2539 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1366 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1976 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2967 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2939 ((-1166 |#1|) (-918))) (-15 -2939 ((-1166 |#1|) (-918) (-918))) (-15 -2420 ((-1166 |#1|) (-1166 |#1|))) (-15 -3683 ((-955 (-1166 |#1|)) (-1166 |#1|))))
+((-2508 (((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|) 40)))
+(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -2508 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -358))
+((-2508 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))))
+(-10 -7 (-15 -2508 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL (|has| |#1| (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-3566 (($ (-1259 |#1|)) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| |#1| (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) NIL (|has| |#1| (-368)))) (-1937 (((-112) $) NIL (|has| |#1| (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2340 (((-112) $) NIL)) (-3344 (($) NIL (|has| |#1| (-368)))) (-1927 (((-112) $) NIL (|has| |#1| (-368)))) (-2217 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-4031 (((-918) $) NIL (|has| |#1| (-368)))) (-1513 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-3240 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-1486 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| |#1| (-368)) CONST)) (-3338 (($ (-918)) NIL (|has| |#1| (-368)))) (-2309 (((-112) $) NIL)) (-3844 (((-1114) $) NIL)) (-1729 (($) NIL (|has| |#1| (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| |#1| (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) NIL) (((-918)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-4180 (((-1166 |#1|)) NIL)) (-2927 (($) NIL (|has| |#1| (-368)))) (-3927 (($) NIL (|has| |#1| (-368)))) (-3867 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-4363 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1946 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2238 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-359 |#1| |#2|) (-329 |#1|) (-349) (-918)) (T -359))
NIL
(-329 |#1|)
-((-2075 (((-112) (-641 (-949 |#1|))) 40)) (-2067 (((-641 (-949 |#1|)) (-641 (-949 |#1|))) 52)) (-3749 (((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|))) 47)))
-(((-360 |#1| |#2|) (-10 -7 (-15 -2075 ((-112) (-641 (-949 |#1|)))) (-15 -3749 ((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|)))) (-15 -2067 ((-641 (-949 |#1|)) (-641 (-949 |#1|))))) (-452) (-641 (-1170))) (T -360))
-((-2067 (*1 *2 *2) (-12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-3749 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170))))))
-(-10 -7 (-15 -2075 ((-112) (-641 (-949 |#1|)))) (-15 -3749 ((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|)))) (-15 -2067 ((-641 (-949 |#1|)) (-641 (-949 |#1|)))))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768) $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) 17)) (-2902 ((|#1| $ (-564)) NIL)) (-2774 (((-564) $ (-564)) NIL)) (-2093 (($ (-1 |#1| |#1|) $) 34)) (-4143 (($ (-1 (-564) (-564)) $) 26)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 28)) (-3802 (((-1114) $) NIL)) (-2362 (((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-564)))) $) 30)) (-2502 (($ $ $) NIL)) (-1762 (($ $ $) NIL)) (-1765 (((-859) $) 40) (($ |#1|) NIL)) (-4327 (($) 11 T CONST)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ |#1| (-564)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-361 |#1|) (-13 (-473) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -3042 ((-768) $)) (-15 -2774 ((-564) $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -4143 ($ (-1 (-564) (-564)) $)) (-15 -2093 ($ (-1 |#1| |#1|) $)) (-15 -2362 ((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-564)))) $)))) (-1094)) (T -361))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-2774 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-4143 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-2093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 (-564))))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))))
-(-13 (-473) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -3042 ((-768) $)) (-15 -2774 ((-564) $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -4143 ($ (-1 (-564) (-564)) $)) (-15 -2093 ($ (-1 |#1| |#1|) $)) (-15 -2362 ((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-564)))) $))))
-((-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 13)) (-1840 (($ $) 14)) (-3981 (((-418 $) $) 33)) (-3241 (((-112) $) 29)) (-4272 (($ $) 18)) (-2527 (($ $ $) 24) (($ (-641 $)) NIL)) (-4006 (((-418 $) $) 34)) (-1343 (((-3 $ "failed") $ $) 23)) (-3712 (((-768) $) 27)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 38)) (-1582 (((-112) $ $) 15)) (-1793 (($ $ $) 36)))
-(((-362 |#1|) (-10 -8 (-15 -1793 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 -3241 ((-112) |#1|)) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -1959 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -3712 ((-768) |#1|)) (-15 -2527 (|#1| (-641 |#1|))) (-15 -2527 (|#1| |#1| |#1|)) (-15 -1582 ((-112) |#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -3584 ((-2 (|:| -1950 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362))
-NIL
-(-10 -8 (-15 -1793 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 -3241 ((-112) |#1|)) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -1959 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -3712 ((-768) |#1|)) (-15 -2527 (|#1| (-641 |#1|))) (-15 -2527 (|#1| |#1| |#1|)) (-15 -1582 ((-112) |#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -3584 ((-2 (|:| -1950 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-3385 (((-112) $ $) 60)) (-3760 (($) 17 T CONST)) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-3241 (((-112) $) 72)) (-2419 (((-112) $) 31)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-4006 (((-418 $) $) 75)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ $) 66)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
+((-3297 (((-112) (-641 (-949 |#1|))) 40)) (-3222 (((-641 (-949 |#1|)) (-641 (-949 |#1|))) 52)) (-3095 (((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|))) 47)))
+(((-360 |#1| |#2|) (-10 -7 (-15 -3297 ((-112) (-641 (-949 |#1|)))) (-15 -3095 ((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|)))) (-15 -3222 ((-641 (-949 |#1|)) (-641 (-949 |#1|))))) (-452) (-641 (-1170))) (T -360))
+((-3222 (*1 *2 *2) (-12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-3095 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170))))))
+(-10 -7 (-15 -3297 ((-112) (-641 (-949 |#1|)))) (-15 -3095 ((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|)))) (-15 -3222 ((-641 (-949 |#1|)) (-641 (-949 |#1|)))))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768) $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) 17)) (-3488 ((|#1| $ (-564)) NIL)) (-2824 (((-564) $ (-564)) NIL)) (-2312 (($ (-1 |#1| |#1|) $) 34)) (-2558 (($ (-1 (-564) (-564)) $) 26)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 28)) (-3844 (((-1114) $) NIL)) (-3020 (((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-564)))) $) 30)) (-1953 (($ $ $) NIL)) (-3217 (($ $ $) NIL)) (-3714 (((-859) $) 40) (($ |#1|) NIL)) (-4323 (($) 11 T CONST)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ |#1| (-564)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-361 |#1|) (-13 (-473) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -2018 ((-768) $)) (-15 -2824 ((-564) $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -2558 ($ (-1 (-564) (-564)) $)) (-15 -2312 ($ (-1 |#1| |#1|) $)) (-15 -3020 ((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-564)))) $)))) (-1094)) (T -361))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-2824 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-2558 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-2312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 (-564))))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))))
+(-13 (-473) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -2018 ((-768) $)) (-15 -2824 ((-564) $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -2558 ($ (-1 (-564) (-564)) $)) (-15 -2312 ($ (-1 |#1| |#1|) $)) (-15 -3020 ((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-564)))) $))))
+((-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 13)) (-1582 (($ $) 14)) (-1592 (((-418 $) $) 33)) (-1926 (((-112) $) 29)) (-1295 (($ $) 18)) (-2727 (($ $ $) 24) (($ (-641 $)) NIL)) (-4139 (((-418 $) $) 34)) (-1347 (((-3 $ "failed") $ $) 23)) (-3966 (((-768) $) 27)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 38)) (-3979 (((-112) $ $) 15)) (-1841 (($ $ $) 36)))
+(((-362 |#1|) (-10 -8 (-15 -1841 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1|)) (-15 -1926 ((-112) |#1|)) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3329 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -3966 ((-768) |#1|)) (-15 -2727 (|#1| (-641 |#1|))) (-15 -2727 (|#1| |#1| |#1|)) (-15 -3979 ((-112) |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -2156 ((-2 (|:| -1425 |#1|) (|:| -4399 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362))
+NIL
+(-10 -8 (-15 -1841 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1|)) (-15 -1926 ((-112) |#1|)) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3329 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -3966 ((-768) |#1|)) (-15 -2727 (|#1| (-641 |#1|))) (-15 -2727 (|#1| |#1| |#1|)) (-15 -3979 ((-112) |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -2156 ((-2 (|:| -1425 |#1|) (|:| -4399 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-3907 (((-112) $ $) 60)) (-3180 (($) 17 T CONST)) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-1926 (((-112) $) 72)) (-2340 (((-112) $) 31)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-4139 (((-418 $) $) 75)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ $) 66)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
(((-363) (-140)) (T -363))
-((-1793 (*1 *1 *1 *1) (-4 *1 (-363))))
-(-13 (-307) (-1213) (-243) (-10 -8 (-15 -1793 ($ $ $)) (-6 -4409) (-6 -4403)))
+((-1841 (*1 *1 *1 *1) (-4 *1 (-363))))
+(-13 (-307) (-1213) (-243) (-10 -8 (-15 -1841 ($ $ $)) (-6 -4410) (-6 -4404)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-1754 (((-112) $ $) 7)) (-4309 ((|#2| $ |#2|) 13)) (-2559 (($ $ (-1152)) 18)) (-3893 ((|#2| $) 14)) (-1589 (($ |#1|) 20) (($ |#1| (-1152)) 19)) (-4363 ((|#1| $) 16)) (-4202 (((-1152) $) 9)) (-3533 (((-1152) $) 15)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-3713 (($ $) 17)) (-1686 (((-112) $ $) 6)))
+((-3702 (((-112) $ $) 7)) (-1551 ((|#2| $ |#2|) 13)) (-4295 (($ $ (-1152)) 18)) (-2047 ((|#2| $) 14)) (-1721 (($ |#1|) 20) (($ |#1| (-1152)) 19)) (-4337 ((|#1| $) 16)) (-1868 (((-1152) $) 9)) (-1665 (((-1152) $) 15)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-3977 (($ $) 17)) (-1720 (((-112) $ $) 6)))
(((-364 |#1| |#2|) (-140) (-1094) (-1094)) (T -364))
-((-1589 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1589 (*1 *1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094)) (-4 *4 (-1094)))) (-2559 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3713 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-1152)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-4309 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -1589 ($ |t#1|)) (-15 -1589 ($ |t#1| (-1152))) (-15 -2559 ($ $ (-1152))) (-15 -3713 ($ $)) (-15 -4363 (|t#1| $)) (-15 -3533 ((-1152) $)) (-15 -3893 (|t#2| $)) (-15 -4309 (|t#2| $ |t#2|))))
+((-1721 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1721 (*1 *1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094)) (-4 *4 (-1094)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3977 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-1152)))) (-2047 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1551 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -1721 ($ |t#1|)) (-15 -1721 ($ |t#1| (-1152))) (-15 -4295 ($ $ (-1152))) (-15 -3977 ($ $)) (-15 -4337 (|t#1| $)) (-15 -1665 ((-1152) $)) (-15 -2047 (|t#2| $)) (-15 -1551 (|t#2| $ |t#2|))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-4309 ((|#1| $ |#1|) 31)) (-2559 (($ $ (-1152)) 23)) (-3930 (((-3 |#1| "failed") $) 30)) (-3893 ((|#1| $) 28)) (-1589 (($ (-388)) 22) (($ (-388) (-1152)) 21)) (-4363 (((-388) $) 25)) (-4202 (((-1152) $) NIL)) (-3533 (((-1152) $) 26)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 20)) (-3713 (($ $) 24)) (-1686 (((-112) $ $) 19)))
-(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -3930 ((-3 |#1| "failed") $)))) (-1094)) (T -365))
-((-3930 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094)))))
-(-13 (-364 (-388) |#1|) (-10 -8 (-15 -3930 ((-3 |#1| "failed") $))))
-((-3165 (((-1259 (-685 |#2|)) (-1259 $)) 70)) (-2685 (((-685 |#2|) (-1259 $)) 141)) (-4349 ((|#2| $) 39)) (-1725 (((-685 |#2|) $ (-1259 $)) 144)) (-3828 (((-3 $ "failed") $) 91)) (-3158 ((|#2| $) 42)) (-3261 (((-1166 |#2|) $) 99)) (-1870 ((|#2| (-1259 $)) 124)) (-3660 (((-1166 |#2|) $) 34)) (-3202 (((-112)) 118)) (-2910 (($ (-1259 |#2|) (-1259 $)) 134)) (-1926 (((-3 $ "failed") $) 95)) (-2053 (((-112)) 112)) (-2824 (((-112)) 107)) (-3222 (((-112)) 61)) (-3449 (((-685 |#2|) (-1259 $)) 139)) (-3899 ((|#2| $) 38)) (-1549 (((-685 |#2|) $ (-1259 $)) 143)) (-3647 (((-3 $ "failed") $) 89)) (-4009 ((|#2| $) 41)) (-2883 (((-1166 |#2|) $) 98)) (-2291 ((|#2| (-1259 $)) 122)) (-1563 (((-1166 |#2|) $) 32)) (-3734 (((-112)) 117)) (-1995 (((-112)) 109)) (-2187 (((-112)) 59)) (-1756 (((-112)) 104)) (-3015 (((-112)) 119)) (-3072 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 130)) (-2060 (((-112)) 115)) (-2663 (((-641 (-1259 |#2|))) 103)) (-3730 (((-112)) 116)) (-1379 (((-112)) 113)) (-3689 (((-112)) 54)) (-2323 (((-112)) 120)))
-(((-366 |#1| |#2|) (-10 -8 (-15 -3261 ((-1166 |#2|) |#1|)) (-15 -2883 ((-1166 |#2|) |#1|)) (-15 -2663 ((-641 (-1259 |#2|)))) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -3647 ((-3 |#1| "failed") |#1|)) (-15 -1926 ((-3 |#1| "failed") |#1|)) (-15 -2824 ((-112))) (-15 -1995 ((-112))) (-15 -2053 ((-112))) (-15 -2187 ((-112))) (-15 -3222 ((-112))) (-15 -1756 ((-112))) (-15 -2323 ((-112))) (-15 -3015 ((-112))) (-15 -3202 ((-112))) (-15 -3734 ((-112))) (-15 -3689 ((-112))) (-15 -3730 ((-112))) (-15 -1379 ((-112))) (-15 -2060 ((-112))) (-15 -3660 ((-1166 |#2|) |#1|)) (-15 -1563 ((-1166 |#2|) |#1|)) (-15 -2685 ((-685 |#2|) (-1259 |#1|))) (-15 -3449 ((-685 |#2|) (-1259 |#1|))) (-15 -1870 (|#2| (-1259 |#1|))) (-15 -2291 (|#2| (-1259 |#1|))) (-15 -2910 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3158 (|#2| |#1|)) (-15 -4009 (|#2| |#1|)) (-15 -4349 (|#2| |#1|)) (-15 -3899 (|#2| |#1|)) (-15 -1725 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1549 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3165 ((-1259 (-685 |#2|)) (-1259 |#1|)))) (-367 |#2|) (-172)) (T -366))
-((-2060 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1379 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3730 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3689 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3734 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3202 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3015 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2323 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1756 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3222 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2187 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2053 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1995 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2824 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2663 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))))
-(-10 -8 (-15 -3261 ((-1166 |#2|) |#1|)) (-15 -2883 ((-1166 |#2|) |#1|)) (-15 -2663 ((-641 (-1259 |#2|)))) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -3647 ((-3 |#1| "failed") |#1|)) (-15 -1926 ((-3 |#1| "failed") |#1|)) (-15 -2824 ((-112))) (-15 -1995 ((-112))) (-15 -2053 ((-112))) (-15 -2187 ((-112))) (-15 -3222 ((-112))) (-15 -1756 ((-112))) (-15 -2323 ((-112))) (-15 -3015 ((-112))) (-15 -3202 ((-112))) (-15 -3734 ((-112))) (-15 -3689 ((-112))) (-15 -3730 ((-112))) (-15 -1379 ((-112))) (-15 -2060 ((-112))) (-15 -3660 ((-1166 |#2|) |#1|)) (-15 -1563 ((-1166 |#2|) |#1|)) (-15 -2685 ((-685 |#2|) (-1259 |#1|))) (-15 -3449 ((-685 |#2|) (-1259 |#1|))) (-15 -1870 (|#2| (-1259 |#1|))) (-15 -2291 (|#2| (-1259 |#1|))) (-15 -2910 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3158 (|#2| |#1|)) (-15 -4009 (|#2| |#1|)) (-15 -4349 (|#2| |#1|)) (-15 -3899 (|#2| |#1|)) (-15 -1725 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1549 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3165 ((-1259 (-685 |#2|)) (-1259 |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-1950 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) 19)) (-3165 (((-1259 (-685 |#1|)) (-1259 $)) 78)) (-3233 (((-1259 $)) 81)) (-3760 (($) 17 T CONST)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-2661 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-2685 (((-685 |#1|) (-1259 $)) 65)) (-4349 ((|#1| $) 74)) (-1725 (((-685 |#1|) $ (-1259 $)) 76)) (-3828 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-1864 (($ $ (-918)) 28)) (-3158 ((|#1| $) 72)) (-3261 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-1870 ((|#1| (-1259 $)) 67)) (-3660 (((-1166 |#1|) $) 63)) (-3202 (((-112)) 57)) (-2910 (($ (-1259 |#1|) (-1259 $)) 69)) (-1926 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-4224 (((-918)) 80)) (-1703 (((-112)) 54)) (-2544 (($ $ (-918)) 33)) (-2053 (((-112)) 50)) (-2824 (((-112)) 48)) (-3222 (((-112)) 52)) (-4280 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-3979 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-3449 (((-685 |#1|) (-1259 $)) 66)) (-3899 ((|#1| $) 75)) (-1549 (((-685 |#1|) $ (-1259 $)) 77)) (-3647 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-3229 (($ $ (-918)) 29)) (-4009 ((|#1| $) 73)) (-2883 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-2291 ((|#1| (-1259 $)) 68)) (-1563 (((-1166 |#1|) $) 64)) (-3734 (((-112)) 58)) (-4202 (((-1152) $) 9)) (-1995 (((-112)) 49)) (-2187 (((-112)) 51)) (-1756 (((-112)) 53)) (-3802 (((-1114) $) 10)) (-3015 (((-112)) 56)) (-3072 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70)) (-4339 (((-641 (-949 |#1|)) (-1259 $)) 79)) (-1762 (($ $ $) 25)) (-2060 (((-112)) 62)) (-1765 (((-859) $) 11)) (-2663 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-1850 (($ $ $ $) 26)) (-3730 (((-112)) 60)) (-3008 (($ $ $) 24)) (-1379 (((-112)) 61)) (-3689 (((-112)) 59)) (-2323 (((-112)) 55)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-3702 (((-112) $ $) NIL)) (-1551 ((|#1| $ |#1|) 31)) (-4295 (($ $ (-1152)) 23)) (-4235 (((-3 |#1| "failed") $) 30)) (-2047 ((|#1| $) 28)) (-1721 (($ (-388)) 22) (($ (-388) (-1152)) 21)) (-4337 (((-388) $) 25)) (-1868 (((-1152) $) NIL)) (-1665 (((-1152) $) 26)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 20)) (-3977 (($ $) 24)) (-1720 (((-112) $ $) 19)))
+(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -4235 ((-3 |#1| "failed") $)))) (-1094)) (T -365))
+((-4235 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094)))))
+(-13 (-364 (-388) |#1|) (-10 -8 (-15 -4235 ((-3 |#1| "failed") $))))
+((-2426 (((-1259 (-685 |#2|)) (-1259 $)) 70)) (-3102 (((-685 |#2|) (-1259 $)) 141)) (-3693 ((|#2| $) 39)) (-2921 (((-685 |#2|) $ (-1259 $)) 144)) (-2684 (((-3 $ "failed") $) 91)) (-2345 ((|#2| $) 42)) (-2119 (((-1166 |#2|) $) 99)) (-1907 ((|#2| (-1259 $)) 124)) (-3448 (((-1166 |#2|) $) 34)) (-2790 (((-112)) 118)) (-3566 (($ (-1259 |#2|) (-1259 $)) 134)) (-4272 (((-3 $ "failed") $) 95)) (-3113 (((-112)) 112)) (-2111 (((-112)) 107)) (-1717 (((-112)) 61)) (-3276 (((-685 |#2|) (-1259 $)) 139)) (-2112 ((|#2| $) 38)) (-1847 (((-685 |#2|) $ (-1259 $)) 143)) (-1524 (((-3 $ "failed") $) 89)) (-3645 ((|#2| $) 41)) (-1487 (((-1166 |#2|) $) 98)) (-3531 ((|#2| (-1259 $)) 122)) (-1980 (((-1166 |#2|) $) 32)) (-2989 (((-112)) 117)) (-3700 (((-112)) 109)) (-1981 (((-112)) 59)) (-3172 (((-112)) 104)) (-1458 (((-112)) 119)) (-3867 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 130)) (-3168 (((-112)) 115)) (-2919 (((-641 (-1259 |#2|))) 103)) (-2954 (((-112)) 116)) (-3808 (((-112)) 113)) (-3738 (((-112)) 54)) (-3851 (((-112)) 120)))
+(((-366 |#1| |#2|) (-10 -8 (-15 -2119 ((-1166 |#2|) |#1|)) (-15 -1487 ((-1166 |#2|) |#1|)) (-15 -2919 ((-641 (-1259 |#2|)))) (-15 -2684 ((-3 |#1| "failed") |#1|)) (-15 -1524 ((-3 |#1| "failed") |#1|)) (-15 -4272 ((-3 |#1| "failed") |#1|)) (-15 -2111 ((-112))) (-15 -3700 ((-112))) (-15 -3113 ((-112))) (-15 -1981 ((-112))) (-15 -1717 ((-112))) (-15 -3172 ((-112))) (-15 -3851 ((-112))) (-15 -1458 ((-112))) (-15 -2790 ((-112))) (-15 -2989 ((-112))) (-15 -3738 ((-112))) (-15 -2954 ((-112))) (-15 -3808 ((-112))) (-15 -3168 ((-112))) (-15 -3448 ((-1166 |#2|) |#1|)) (-15 -1980 ((-1166 |#2|) |#1|)) (-15 -3102 ((-685 |#2|) (-1259 |#1|))) (-15 -3276 ((-685 |#2|) (-1259 |#1|))) (-15 -1907 (|#2| (-1259 |#1|))) (-15 -3531 (|#2| (-1259 |#1|))) (-15 -3566 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2345 (|#2| |#1|)) (-15 -3645 (|#2| |#1|)) (-15 -3693 (|#2| |#1|)) (-15 -2112 (|#2| |#1|)) (-15 -2921 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1847 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2426 ((-1259 (-685 |#2|)) (-1259 |#1|)))) (-367 |#2|) (-172)) (T -366))
+((-3168 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3808 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2954 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3738 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2989 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2790 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1458 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3851 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3172 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1981 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3113 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3700 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2111 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2919 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))))
+(-10 -8 (-15 -2119 ((-1166 |#2|) |#1|)) (-15 -1487 ((-1166 |#2|) |#1|)) (-15 -2919 ((-641 (-1259 |#2|)))) (-15 -2684 ((-3 |#1| "failed") |#1|)) (-15 -1524 ((-3 |#1| "failed") |#1|)) (-15 -4272 ((-3 |#1| "failed") |#1|)) (-15 -2111 ((-112))) (-15 -3700 ((-112))) (-15 -3113 ((-112))) (-15 -1981 ((-112))) (-15 -1717 ((-112))) (-15 -3172 ((-112))) (-15 -3851 ((-112))) (-15 -1458 ((-112))) (-15 -2790 ((-112))) (-15 -2989 ((-112))) (-15 -3738 ((-112))) (-15 -2954 ((-112))) (-15 -3808 ((-112))) (-15 -3168 ((-112))) (-15 -3448 ((-1166 |#2|) |#1|)) (-15 -1980 ((-1166 |#2|) |#1|)) (-15 -3102 ((-685 |#2|) (-1259 |#1|))) (-15 -3276 ((-685 |#2|) (-1259 |#1|))) (-15 -1907 (|#2| (-1259 |#1|))) (-15 -3531 (|#2| (-1259 |#1|))) (-15 -3566 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2345 (|#2| |#1|)) (-15 -3645 (|#2| |#1|)) (-15 -3693 (|#2| |#1|)) (-15 -2112 (|#2| |#1|)) (-15 -2921 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1847 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2426 ((-1259 (-685 |#2|)) (-1259 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-1425 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) 19)) (-2426 (((-1259 (-685 |#1|)) (-1259 $)) 78)) (-1838 (((-1259 $)) 81)) (-3180 (($) 17 T CONST)) (-1830 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-2911 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-3102 (((-685 |#1|) (-1259 $)) 65)) (-3693 ((|#1| $) 74)) (-2921 (((-685 |#1|) $ (-1259 $)) 76)) (-2684 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-1842 (($ $ (-918)) 28)) (-2345 ((|#1| $) 72)) (-2119 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-1907 ((|#1| (-1259 $)) 67)) (-3448 (((-1166 |#1|) $) 63)) (-2790 (((-112)) 57)) (-3566 (($ (-1259 |#1|) (-1259 $)) 69)) (-4272 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-1595 (((-918)) 80)) (-3882 (((-112)) 54)) (-4133 (($ $ (-918)) 33)) (-3113 (((-112)) 50)) (-2111 (((-112)) 48)) (-1717 (((-112)) 52)) (-1303 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-1566 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-3276 (((-685 |#1|) (-1259 $)) 66)) (-2112 ((|#1| $) 75)) (-1847 (((-685 |#1|) $ (-1259 $)) 77)) (-1524 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-1788 (($ $ (-918)) 29)) (-3645 ((|#1| $) 73)) (-1487 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-3531 ((|#1| (-1259 $)) 68)) (-1980 (((-1166 |#1|) $) 64)) (-2989 (((-112)) 58)) (-1868 (((-1152) $) 9)) (-3700 (((-112)) 49)) (-1981 (((-112)) 51)) (-3172 (((-112)) 53)) (-3844 (((-1114) $) 10)) (-1458 (((-112)) 56)) (-3867 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70)) (-3602 (((-641 (-949 |#1|)) (-1259 $)) 79)) (-3217 (($ $ $) 25)) (-3168 (((-112)) 62)) (-3714 (((-859) $) 11)) (-2919 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-1687 (($ $ $ $) 26)) (-2954 (((-112)) 60)) (-1390 (($ $ $) 24)) (-3808 (((-112)) 61)) (-3738 (((-112)) 59)) (-3851 (((-112)) 55)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-367 |#1|) (-140) (-172)) (T -367))
-((-3233 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3)))) (-4224 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-918)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))))) (-1549 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-1725 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4009 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3072 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 *4)))) (-3072 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2910 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-1563 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-2060 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1379 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3730 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3689 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3734 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3202 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3015 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2323 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1703 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1756 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3222 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2187 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2053 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1995 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2824 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1926 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3647 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3828 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2663 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-641 (-1259 *3))))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-4280 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3941 (-641 *1)))) (-4 *1 (-367 *3)))) (-3550 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3941 (-641 *1)))) (-4 *1 (-367 *3)))) (-3979 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-2661 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-1950 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
-(-13 (-741 |t#1|) (-10 -8 (-15 -3233 ((-1259 $))) (-15 -4224 ((-918))) (-15 -4339 ((-641 (-949 |t#1|)) (-1259 $))) (-15 -3165 ((-1259 (-685 |t#1|)) (-1259 $))) (-15 -1549 ((-685 |t#1|) $ (-1259 $))) (-15 -1725 ((-685 |t#1|) $ (-1259 $))) (-15 -3899 (|t#1| $)) (-15 -4349 (|t#1| $)) (-15 -4009 (|t#1| $)) (-15 -3158 (|t#1| $)) (-15 -3072 ((-1259 |t#1|) $ (-1259 $))) (-15 -3072 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -2910 ($ (-1259 |t#1|) (-1259 $))) (-15 -2291 (|t#1| (-1259 $))) (-15 -1870 (|t#1| (-1259 $))) (-15 -3449 ((-685 |t#1|) (-1259 $))) (-15 -2685 ((-685 |t#1|) (-1259 $))) (-15 -1563 ((-1166 |t#1|) $)) (-15 -3660 ((-1166 |t#1|) $)) (-15 -2060 ((-112))) (-15 -1379 ((-112))) (-15 -3730 ((-112))) (-15 -3689 ((-112))) (-15 -3734 ((-112))) (-15 -3202 ((-112))) (-15 -3015 ((-112))) (-15 -2323 ((-112))) (-15 -1703 ((-112))) (-15 -1756 ((-112))) (-15 -3222 ((-112))) (-15 -2187 ((-112))) (-15 -2053 ((-112))) (-15 -1995 ((-112))) (-15 -2824 ((-112))) (IF (|has| |t#1| (-556)) (PROGN (-15 -1926 ((-3 $ "failed") $)) (-15 -3647 ((-3 $ "failed") $)) (-15 -3828 ((-3 $ "failed") $)) (-15 -2663 ((-641 (-1259 |t#1|)))) (-15 -2883 ((-1166 |t#1|) $)) (-15 -3261 ((-1166 |t#1|) $)) (-15 -4280 ((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed"))) (-15 -3979 ((-3 $ "failed"))) (-15 -2661 ((-3 $ "failed"))) (-15 -1950 ((-3 $ "failed"))) (-6 -4408)) |%noBranch|)))
+((-1838 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3)))) (-1595 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-918)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))))) (-1847 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2921 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 *4)))) (-3867 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3566 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-1980 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-3168 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3808 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2954 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3738 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2989 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2790 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1458 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3851 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3882 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3172 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1717 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1981 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3113 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3700 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2111 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4272 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-1524 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2684 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2919 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-641 (-1259 *3))))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-1303 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4339 (-641 *1)))) (-4 *1 (-367 *3)))) (-1830 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4339 (-641 *1)))) (-4 *1 (-367 *3)))) (-1566 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-2911 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-1425 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
+(-13 (-741 |t#1|) (-10 -8 (-15 -1838 ((-1259 $))) (-15 -1595 ((-918))) (-15 -3602 ((-641 (-949 |t#1|)) (-1259 $))) (-15 -2426 ((-1259 (-685 |t#1|)) (-1259 $))) (-15 -1847 ((-685 |t#1|) $ (-1259 $))) (-15 -2921 ((-685 |t#1|) $ (-1259 $))) (-15 -2112 (|t#1| $)) (-15 -3693 (|t#1| $)) (-15 -3645 (|t#1| $)) (-15 -2345 (|t#1| $)) (-15 -3867 ((-1259 |t#1|) $ (-1259 $))) (-15 -3867 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -3566 ($ (-1259 |t#1|) (-1259 $))) (-15 -3531 (|t#1| (-1259 $))) (-15 -1907 (|t#1| (-1259 $))) (-15 -3276 ((-685 |t#1|) (-1259 $))) (-15 -3102 ((-685 |t#1|) (-1259 $))) (-15 -1980 ((-1166 |t#1|) $)) (-15 -3448 ((-1166 |t#1|) $)) (-15 -3168 ((-112))) (-15 -3808 ((-112))) (-15 -2954 ((-112))) (-15 -3738 ((-112))) (-15 -2989 ((-112))) (-15 -2790 ((-112))) (-15 -1458 ((-112))) (-15 -3851 ((-112))) (-15 -3882 ((-112))) (-15 -3172 ((-112))) (-15 -1717 ((-112))) (-15 -1981 ((-112))) (-15 -3113 ((-112))) (-15 -3700 ((-112))) (-15 -2111 ((-112))) (IF (|has| |t#1| (-556)) (PROGN (-15 -4272 ((-3 $ "failed") $)) (-15 -1524 ((-3 $ "failed") $)) (-15 -2684 ((-3 $ "failed") $)) (-15 -2919 ((-641 (-1259 |t#1|)))) (-15 -1487 ((-1166 |t#1|) $)) (-15 -2119 ((-1166 |t#1|) $)) (-15 -1303 ((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed"))) (-15 -1830 ((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed"))) (-15 -1566 ((-3 $ "failed"))) (-15 -2911 ((-3 $ "failed"))) (-15 -1425 ((-3 $ "failed"))) (-6 -4409)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-717) . T) ((-741 |#1|) . T) ((-758) . T) ((-1052 |#1|) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 7)) (-3042 (((-768)) 16)) (-2542 (($) 13)) (-2209 (((-918) $) 14)) (-4202 (((-1152) $) 9)) (-1403 (($ (-918)) 15)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)))
+((-3702 (((-112) $ $) 7)) (-2018 (((-768)) 16)) (-2939 (($) 13)) (-4031 (((-918) $) 14)) (-1868 (((-1152) $) 9)) (-3338 (($ (-918)) 15)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)))
(((-368) (-140)) (T -368))
-((-3042 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-768)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-368)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-918)))) (-2542 (*1 *1) (-4 *1 (-368))))
-(-13 (-1094) (-10 -8 (-15 -3042 ((-768))) (-15 -1403 ($ (-918))) (-15 -2209 ((-918) $)) (-15 -2542 ($))))
+((-2018 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-768)))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-368)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-918)))) (-2939 (*1 *1) (-4 *1 (-368))))
+(-13 (-1094) (-10 -8 (-15 -2018 ((-768))) (-15 -3338 ($ (-918))) (-15 -4031 ((-918) $)) (-15 -2939 ($))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-3124 (((-685 |#2|) (-1259 $)) 47)) (-2910 (($ (-1259 |#2|) (-1259 $)) 41)) (-1663 (((-685 |#2|) $ (-1259 $)) 49)) (-1938 ((|#2| (-1259 $)) 13)) (-3072 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 27)))
-(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -3124 ((-685 |#2|) (-1259 |#1|))) (-15 -1938 (|#2| (-1259 |#1|))) (-15 -2910 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1663 ((-685 |#2|) |#1| (-1259 |#1|)))) (-370 |#2| |#3|) (-172) (-1235 |#2|)) (T -369))
+((-3150 (((-685 |#2|) (-1259 $)) 47)) (-3566 (($ (-1259 |#2|) (-1259 $)) 41)) (-3439 (((-685 |#2|) $ (-1259 $)) 49)) (-4378 ((|#2| (-1259 $)) 13)) (-3867 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 27)))
+(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -3150 ((-685 |#2|) (-1259 |#1|))) (-15 -4378 (|#2| (-1259 |#1|))) (-15 -3566 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3439 ((-685 |#2|) |#1| (-1259 |#1|)))) (-370 |#2| |#3|) (-172) (-1235 |#2|)) (T -369))
NIL
-(-10 -8 (-15 -3124 ((-685 |#2|) (-1259 |#1|))) (-15 -1938 (|#2| (-1259 |#1|))) (-15 -2910 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1663 ((-685 |#2|) |#1| (-1259 |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3124 (((-685 |#1|) (-1259 $)) 47)) (-3715 ((|#1| $) 53)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2910 (($ (-1259 |#1|) (-1259 $)) 49)) (-1663 (((-685 |#1|) $ (-1259 $)) 54)) (-1926 (((-3 $ "failed") $) 33)) (-4224 (((-918)) 55)) (-2419 (((-112) $) 31)) (-1779 ((|#1| $) 52)) (-2513 ((|#2| $) 45 (|has| |#1| (-363)))) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1938 ((|#1| (-1259 $)) 48)) (-3072 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-2864 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-3216 ((|#2| $) 46)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(-10 -8 (-15 -3150 ((-685 |#2|) (-1259 |#1|))) (-15 -4378 (|#2| (-1259 |#1|))) (-15 -3566 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3439 ((-685 |#2|) |#1| (-1259 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3150 (((-685 |#1|) (-1259 $)) 47)) (-3767 ((|#1| $) 53)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-3566 (($ (-1259 |#1|) (-1259 $)) 49)) (-3439 (((-685 |#1|) $ (-1259 $)) 54)) (-4272 (((-3 $ "failed") $) 33)) (-1595 (((-918)) 55)) (-2340 (((-112) $) 31)) (-2217 ((|#1| $) 52)) (-2041 ((|#2| $) 45 (|has| |#1| (-363)))) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-4378 ((|#1| (-1259 $)) 48)) (-3867 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-4363 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-1650 ((|#2| $) 46)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-370 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -370))
-((-4224 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-918)))) (-1663 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-3072 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4)))) (-3072 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-2910 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2)) (-4 *2 (-172)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1235 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -4224 ((-918))) (-15 -1663 ((-685 |t#1|) $ (-1259 $))) (-15 -3715 (|t#1| $)) (-15 -1779 (|t#1| $)) (-15 -3072 ((-1259 |t#1|) $ (-1259 $))) (-15 -3072 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -2910 ($ (-1259 |t#1|) (-1259 $))) (-15 -1938 (|t#1| (-1259 $))) (-15 -3124 ((-685 |t#1|) (-1259 $))) (-15 -3216 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -2513 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
+((-1595 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-918)))) (-3439 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4)))) (-3867 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3566 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2)) (-4 *2 (-172)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1235 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -1595 ((-918))) (-15 -3439 ((-685 |t#1|) $ (-1259 $))) (-15 -3767 (|t#1| $)) (-15 -2217 (|t#1| $)) (-15 -3867 ((-1259 |t#1|) $ (-1259 $))) (-15 -3867 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -3566 ($ (-1259 |t#1|) (-1259 $))) (-15 -4378 (|t#1| (-1259 $))) (-15 -3150 ((-685 |t#1|) (-1259 $))) (-15 -1650 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -2041 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-4077 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-4367 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2082 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4367 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4077 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1209) (-373 |#1|) (-1209) (-373 |#3|)) (T -371))
-((-4077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-4367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5)))))
-(-10 -7 (-15 -2082 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4367 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4077 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-4310 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3606 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2494 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3716 (($ $) 25)) (-1356 (((-564) (-1 (-112) |#2|) $) NIL) (((-564) |#2| $) 11) (((-564) |#2| $ (-564)) NIL)) (-4012 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-372 |#1| |#2|) (-10 -8 (-15 -3606 (|#1| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4310 ((-112) |#1|)) (-15 -2494 (|#1| |#1|)) (-15 -4012 (|#1| |#1| |#1|)) (-15 -1356 ((-564) |#2| |#1| (-564))) (-15 -1356 ((-564) |#2| |#1|)) (-15 -1356 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -4310 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2494 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3716 (|#1| |#1|)) (-15 -4012 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1209)) (T -372))
-NIL
-(-10 -8 (-15 -3606 (|#1| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4310 ((-112) |#1|)) (-15 -2494 (|#1| |#1|)) (-15 -4012 (|#1| |#1| |#1|)) (-15 -1356 ((-564) |#2| |#1| (-564))) (-15 -1356 ((-564) |#2| |#1|)) (-15 -1356 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -4310 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2494 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3716 (|#1| |#1|)) (-15 -4012 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3476 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) 8)) (-1881 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3852 (($ $) 90 (|has| $ (-6 -4412)))) (-3716 (($ $) 100)) (-3104 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 51)) (-1356 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-1633 (($ (-768) |#1|) 69)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 43 (|has| (-564) (-847)))) (-3571 (($ $ $) 87 (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 44 (|has| (-564) (-847)))) (-1547 (($ $ $) 86 (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-1371 (((-641 (-564)) $) 46)) (-3629 (((-112) (-564) $) 47)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3073 ((|#1| $) 42 (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2614 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2008 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2286 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-1899 (($ $) 13)) (-2127 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 70)) (-2817 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1728 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 82 (|has| |#1| (-847)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3092 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-1728 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2313 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1728 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3092 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1209) (-373 |#1|) (-1209) (-373 |#3|)) (T -371))
+((-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-1728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5)))))
+(-10 -7 (-15 -2313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1728 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3092 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1562 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-4194 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2904 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-1923 (($ $) 25)) (-3303 (((-564) (-1 (-112) |#2|) $) NIL) (((-564) |#2| $) 11) (((-564) |#2| $ (-564)) NIL)) (-3678 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-372 |#1| |#2|) (-10 -8 (-15 -4194 (|#1| |#1|)) (-15 -4194 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1562 ((-112) |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -3303 ((-564) |#2| |#1| (-564))) (-15 -3303 ((-564) |#2| |#1|)) (-15 -3303 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1562 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2904 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1209)) (T -372))
+NIL
+(-10 -8 (-15 -4194 (|#1| |#1|)) (-15 -4194 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1562 ((-112) |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -3303 ((-564) |#2| |#1| (-564))) (-15 -3303 ((-564) |#2| |#1|)) (-15 -3303 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1562 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2904 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2399 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4413))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4413))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) 8)) (-3868 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-1651 (($ $) 90 (|has| $ (-6 -4413)))) (-1923 (($ $) 100)) (-2084 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 51)) (-3303 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-3564 (($ (-768) |#1|) 69)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 43 (|has| (-564) (-847)))) (-3428 (($ $ $) 87 (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-3413 (($ $ $) 86 (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3127 (((-641 (-564)) $) 46)) (-1338 (((-112) (-564) $) 47)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2049 ((|#1| $) 42 (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3538 (($ $ |#1|) 41 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2090 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3474 (($ $ $ (-564)) 91 (|has| $ (-6 -4413)))) (-3890 (($ $) 13)) (-2374 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 70)) (-1865 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1769 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 82 (|has| |#1| (-847)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-373 |#1|) (-140) (-1209)) (T -373))
-((-4012 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-3716 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-2494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-4310 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-1356 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-564)))) (-1356 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-564)))) (-1356 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)))) (-4012 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) (-2494 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-847)) (-5 *2 (-112)))) (-2286 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4412)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-3852 (*1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-3606 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4412)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-3606 (*1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))))
-(-13 (-647 |t#1|) (-10 -8 (-6 -4411) (-15 -4012 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3716 ($ $)) (-15 -2494 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4310 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1356 ((-564) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -1356 ((-564) |t#1| $)) (-15 -1356 ((-564) |t#1| $ (-564)))) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-6 (-847)) (-15 -4012 ($ $ $)) (-15 -2494 ($ $)) (-15 -4310 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4412)) (PROGN (-15 -2286 ($ $ $ (-564))) (-15 -3852 ($ $)) (-15 -3606 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-847)) (-15 -3606 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3265 (((-641 |#1|) $) 32)) (-2496 (($ $ (-768)) 33)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2839 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 36)) (-2776 (($ $) 34)) (-2558 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 37)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-2407 (($ $ |#1| $) 31) (($ $ (-641 |#1|) (-641 $)) 30)) (-3344 (((-768) $) 38)) (-1776 (($ $ $) 29)) (-1765 (((-859) $) 11) (($ |#1|) 41) (((-1274 |#1| |#2|) $) 40) (((-1283 |#1| |#2|) $) 39)) (-1662 ((|#2| (-1283 |#1| |#2|) $) 42)) (-4317 (($) 18 T CONST)) (-3032 (($ (-668 |#1|)) 35)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#2|) 28 (|has| |#2| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+((-3678 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-2904 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-1562 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3303 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-564)))) (-3303 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-564)))) (-3303 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)))) (-3678 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) (-2904 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-847)) (-5 *2 (-112)))) (-3474 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4413)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-1651 (*1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-4194 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4413)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-4194 (*1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))))
+(-13 (-647 |t#1|) (-10 -8 (-6 -4412) (-15 -3678 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1923 ($ $)) (-15 -2904 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1562 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3303 ((-564) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3303 ((-564) |t#1| $)) (-15 -3303 ((-564) |t#1| $ (-564)))) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-6 (-847)) (-15 -3678 ($ $ $)) (-15 -2904 ($ $)) (-15 -1562 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4413)) (PROGN (-15 -3474 ($ $ $ (-564))) (-15 -1651 ($ $)) (-15 -4194 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-847)) (-15 -4194 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3441 (((-641 |#1|) $) 32)) (-1887 (($ $ (-768)) 33)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4084 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 36)) (-2843 (($ $) 34)) (-4286 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 37)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-2582 (($ $ |#1| $) 31) (($ $ (-641 |#1|) (-641 $)) 30)) (-3475 (((-768) $) 38)) (-3725 (($ $ $) 29)) (-3714 (((-859) $) 11) (($ |#1|) 41) (((-1274 |#1| |#2|) $) 40) (((-1283 |#1| |#2|) $) 39)) (-1817 ((|#2| (-1283 |#1| |#2|) $) 42)) (-4312 (($) 18 T CONST)) (-3434 (($ (-668 |#1|)) 35)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#2|) 28 (|has| |#2| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
(((-374 |#1| |#2|) (-140) (-847) (-172)) (T -374))
-((-1662 (*1 *2 *3 *1) (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-847)) (-4 *2 (-172)))) (-1765 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-1274 *3 *4)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-1283 *3 *4)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-768)))) (-2558 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-2839 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3032 (*1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-2776 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-2496 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-641 *3)))) (-2407 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-847)) (-4 *5 (-172)))))
-(-13 (-632 |t#2|) (-10 -8 (-15 -1662 (|t#2| (-1283 |t#1| |t#2|) $)) (-15 -1765 ($ |t#1|)) (-15 -1765 ((-1274 |t#1| |t#2|) $)) (-15 -1765 ((-1283 |t#1| |t#2|) $)) (-15 -3344 ((-768) $)) (-15 -2558 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -2839 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -3032 ($ (-668 |t#1|))) (-15 -2776 ($ $)) (-15 -2496 ($ $ (-768))) (-15 -3265 ((-641 |t#1|) $)) (-15 -2407 ($ $ |t#1| $)) (-15 -2407 ($ $ (-641 |t#1|) (-641 $)))))
+((-1817 (*1 *2 *3 *1) (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-847)) (-4 *2 (-172)))) (-3714 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-1274 *3 *4)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-1283 *3 *4)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-768)))) (-4286 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-4084 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3434 (*1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-2843 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-1887 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-641 *3)))) (-2582 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-847)) (-4 *5 (-172)))))
+(-13 (-632 |t#2|) (-10 -8 (-15 -1817 (|t#2| (-1283 |t#1| |t#2|) $)) (-15 -3714 ($ |t#1|)) (-15 -3714 ((-1274 |t#1| |t#2|) $)) (-15 -3714 ((-1283 |t#1| |t#2|) $)) (-15 -3475 ((-768) $)) (-15 -4286 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -4084 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -3434 ($ (-668 |t#1|))) (-15 -2843 ($ $)) (-15 -1887 ($ $ (-768))) (-15 -3441 ((-641 |t#1|) $)) (-15 -2582 ($ $ |t#1| $)) (-15 -2582 ($ $ (-641 |t#1|) (-641 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#2|) . T) ((-632 |#2|) . T) ((-714 |#2|) . T) ((-1052 |#2|) . T) ((-1094) . T))
-((-1624 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 41)) (-4085 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2729 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
-(((-375 |#1| |#2|) (-10 -7 (-15 -4085 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2729 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1624 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1209) (-13 (-373 |#1|) (-10 -7 (-6 -4412)))) (T -375))
-((-1624 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))))) (-2729 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))))) (-4085 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))))))
-(-10 -7 (-15 -4085 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2729 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1624 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-2620 (((-685 |#2|) (-685 $)) NIL) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 22) (((-685 (-564)) (-685 $)) 14)))
-(((-376 |#1| |#2|) (-10 -8 (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 |#2|) (-685 |#1|)))) (-377 |#2|) (-1046)) (T -376))
-NIL
-(-10 -8 (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 |#2|) (-685 |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2620 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 43 (|has| |#1| (-637 (-564)))) (((-685 (-564)) (-685 $)) 42 (|has| |#1| (-637 (-564))))) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-4371 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 41)) (-3159 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2370 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
+(((-375 |#1| |#2|) (-10 -7 (-15 -3159 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2370 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4371 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1209) (-13 (-373 |#1|) (-10 -7 (-6 -4413)))) (T -375))
+((-4371 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4413)))))) (-2370 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4413)))))) (-3159 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4413)))))))
+(-10 -7 (-15 -3159 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2370 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4371 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-3613 (((-685 |#2|) (-685 $)) NIL) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 22) (((-685 (-564)) (-685 $)) 14)))
+(((-376 |#1| |#2|) (-10 -8 (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 |#2|) (-685 |#1|)))) (-377 |#2|) (-1046)) (T -376))
+NIL
+(-10 -8 (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 |#2|) (-685 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-3613 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 43 (|has| |#1| (-637 (-564)))) (((-685 (-564)) (-685 $)) 42 (|has| |#1| (-637 (-564))))) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-377 |#1|) (-140) (-1046)) (T -377))
NIL
(-13 (-637 |t#1|) (-10 -7 (IF (|has| |t#1| (-637 (-564))) (-6 (-637 (-564))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2381 (((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|) 51) (((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|) 50) (((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|) 47) (((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|) 41)) (-3707 (((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|) 30) (((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|) 18)))
-(((-378 |#1|) (-10 -7 (-15 -2381 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -2381 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|)) (-15 -2381 ((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -2381 ((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3707 ((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3707 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|))) (-13 (-363) (-845))) (T -378))
-((-3707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-845))))) (-3707 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 (-169 (-564)))))) (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 (-169 (-564))))))) (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))))
-(-10 -7 (-15 -2381 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -2381 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|)) (-15 -2381 ((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -2381 ((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3707 ((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3707 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 35)) (-4328 (((-564) $) 61)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3742 (($ $) 141)) (-3904 (($ $) 106)) (-3752 (($ $) 93)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-4019 (($ $) 47)) (-3385 (((-112) $ $) NIL)) (-3879 (($ $) 104)) (-3727 (($ $) 87)) (-3438 (((-564) $) 80)) (-2980 (($ $ (-564)) 75)) (-3933 (($ $) NIL)) (-3778 (($ $) NIL)) (-3760 (($) NIL T CONST)) (-3039 (($ $) 143)) (-2013 (((-3 (-564) "failed") $) 237) (((-3 (-407 (-564)) "failed") $) 233)) (-2064 (((-564) $) 235) (((-407 (-564)) $) 231)) (-1387 (($ $ $) NIL)) (-2446 (((-564) $ $) 130)) (-1926 (((-3 $ "failed") $) 145)) (-3192 (((-407 (-564)) $ (-768)) 238) (((-407 (-564)) $ (-768) (-768)) 230)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-2269 (((-918)) 95) (((-918) (-918)) 126 (|has| $ (-6 -4402)))) (-1751 (((-112) $) 135)) (-1539 (($) 41)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-3400 (((-1264) (-768)) 197)) (-3046 (((-1264)) 202) (((-1264) (-768)) 203)) (-1528 (((-1264)) 204) (((-1264) (-768)) 205)) (-2232 (((-1264)) 200) (((-1264) (-768)) 201)) (-2261 (((-564) $) 68)) (-2419 (((-112) $) 40)) (-1935 (($ $ (-564)) NIL)) (-4168 (($ $) 51)) (-1779 (($ $) NIL)) (-2506 (((-112) $) 37)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL) (($) NIL (-12 (-4254 (|has| $ (-6 -4394))) (-4254 (|has| $ (-6 -4402)))))) (-1547 (($ $ $) NIL) (($) 127 (-12 (-4254 (|has| $ (-6 -4394))) (-4254 (|has| $ (-6 -4402)))))) (-2137 (((-564) $) 17)) (-3639 (($) 113) (($ $) 119)) (-4069 (($) 118) (($ $) 120)) (-2186 (($ $) 108)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 147)) (-3913 (((-918) (-564)) 46 (|has| $ (-6 -4402)))) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) 59)) (-2677 (($ $) 140)) (-2139 (($ (-564) (-564)) 136) (($ (-564) (-564) (-918)) 137)) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3747 (((-564) $) 19)) (-3825 (($) 121)) (-2152 (($ $) 103)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1824 (((-918)) 128) (((-918) (-918)) 129 (|has| $ (-6 -4402)))) (-3226 (($ $ (-768)) NIL) (($ $) 146)) (-3807 (((-918) (-564)) 50 (|has| $ (-6 -4402)))) (-3949 (($ $) NIL)) (-3789 (($ $) NIL)) (-3918 (($ $) NIL)) (-3765 (($ $) NIL)) (-3891 (($ $) 105)) (-3739 (($ $) 92)) (-2127 (((-379) $) 224) (((-225) $) 225) (((-889 (-379)) $) NIL) (((-1152) $) 208) (((-536) $) 222) (($ (-225)) 229)) (-1765 (((-859) $) 210) (($ (-564)) 234) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 234) (($ (-407 (-564))) NIL) (((-225) $) 226)) (-1965 (((-768)) NIL T CONST)) (-2991 (($ $) 142)) (-2941 (((-918)) 60) (((-918) (-918)) 82 (|has| $ (-6 -4402)))) (-2743 (((-918)) 131)) (-3991 (($ $) 111)) (-3827 (($ $) 49) (($ $ $) 58)) (-1582 (((-112) $ $) NIL)) (-3963 (($ $) 109)) (-3801 (($ $) 39)) (-4020 (($ $) NIL)) (-3854 (($ $) NIL)) (-3586 (($ $) NIL)) (-3867 (($ $) NIL)) (-4005 (($ $) NIL)) (-3840 (($ $) NIL)) (-3977 (($ $) 110)) (-3814 (($ $) 52)) (-2016 (($ $) 57)) (-4317 (($) 36 T CONST)) (-4327 (($) 43 T CONST)) (-3886 (((-1152) $) 27) (((-1152) $ (-112)) 29) (((-1264) (-819) $) 30) (((-1264) (-819) $ (-112)) 31)) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 56)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 45)) (-1793 (($ $ $) 48) (($ $ (-564)) 42)) (-1783 (($ $) 38) (($ $ $) 53)) (-1771 (($ $ $) 74)) (** (($ $ (-918)) 85) (($ $ (-768)) NIL) (($ $ (-564)) 114) (($ $ (-407 (-564))) 157) (($ $ $) 149)) (* (($ (-918) $) 81) (($ (-768) $) NIL) (($ (-564) $) 86) (($ $ $) 73) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-379) (-13 (-404) (-233) (-612 (-1152)) (-825) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -1793 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -4168 ($ $)) (-15 -2446 ((-564) $ $)) (-15 -2980 ($ $ (-564))) (-15 -3192 ((-407 (-564)) $ (-768))) (-15 -3192 ((-407 (-564)) $ (-768) (-768))) (-15 -3639 ($)) (-15 -4069 ($)) (-15 -3825 ($)) (-15 -3827 ($ $ $)) (-15 -3639 ($ $)) (-15 -4069 ($ $)) (-15 -1528 ((-1264))) (-15 -1528 ((-1264) (-768))) (-15 -2232 ((-1264))) (-15 -2232 ((-1264) (-768))) (-15 -3046 ((-1264))) (-15 -3046 ((-1264) (-768))) (-15 -3400 ((-1264) (-768))) (-6 -4402) (-6 -4394)))) (T -379))
-((** (*1 *1 *1 *1) (-5 *1 (-379))) (-1793 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-4168 (*1 *1 *1) (-5 *1 (-379))) (-2446 (*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-3192 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-3192 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-3639 (*1 *1) (-5 *1 (-379))) (-4069 (*1 *1) (-5 *1 (-379))) (-3825 (*1 *1) (-5 *1 (-379))) (-3827 (*1 *1 *1 *1) (-5 *1 (-379))) (-3639 (*1 *1 *1) (-5 *1 (-379))) (-4069 (*1 *1 *1) (-5 *1 (-379))) (-1528 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-2232 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-3046 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))))
-(-13 (-404) (-233) (-612 (-1152)) (-825) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -1793 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -4168 ($ $)) (-15 -2446 ((-564) $ $)) (-15 -2980 ($ $ (-564))) (-15 -3192 ((-407 (-564)) $ (-768))) (-15 -3192 ((-407 (-564)) $ (-768) (-768))) (-15 -3639 ($)) (-15 -4069 ($)) (-15 -3825 ($)) (-15 -3827 ($ $ $)) (-15 -3639 ($ $)) (-15 -4069 ($ $)) (-15 -1528 ((-1264))) (-15 -1528 ((-1264) (-768))) (-15 -2232 ((-1264))) (-15 -2232 ((-1264) (-768))) (-15 -3046 ((-1264))) (-15 -3046 ((-1264) (-768))) (-15 -3400 ((-1264) (-768))) (-6 -4402) (-6 -4394)))
-((-4325 (((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|) 46) (((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|) 45) (((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|) 42) (((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|) 36)) (-3940 (((-641 |#1|) (-407 (-949 (-564))) |#1|) 20) (((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|) 30)))
-(((-380 |#1|) (-10 -7 (-15 -4325 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|)) (-15 -4325 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|)) (-15 -4325 ((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|)) (-15 -4325 ((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|)) (-15 -3940 ((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|)) (-15 -3940 ((-641 |#1|) (-407 (-949 (-564))) |#1|))) (-13 (-845) (-363))) (T -380))
-((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-3940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-845) (-363))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 (-564))))) (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 (-564)))))) (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))))
-(-10 -7 (-15 -4325 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|)) (-15 -4325 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|)) (-15 -4325 ((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|)) (-15 -4325 ((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|)) (-15 -3940 ((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|)) (-15 -3940 ((-641 |#1|) (-407 (-949 (-564))) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) 30)) (-2064 ((|#2| $) 32)) (-4346 (($ $) NIL)) (-3107 (((-768) $) 11)) (-2791 (((-641 $) $) 23)) (-3101 (((-112) $) NIL)) (-2292 (($ |#2| |#1|) 21)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2536 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-4311 ((|#2| $) 18)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 50) (($ |#2|) 31)) (-4264 (((-641 |#1|) $) 20)) (-1757 ((|#1| $ |#2|) 54)) (-4317 (($) 33 T CONST)) (-3723 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 38) (($ |#2| |#1|) 39)))
+((-3157 (((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|) 51) (((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|) 50) (((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|) 47) (((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|) 41)) (-3924 (((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|) 30) (((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|) 18)))
+(((-378 |#1|) (-10 -7 (-15 -3157 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3157 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|)) (-15 -3157 ((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3157 ((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3924 ((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3924 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|))) (-13 (-363) (-845))) (T -378))
+((-3924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-845))))) (-3924 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 (-169 (-564)))))) (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 (-169 (-564))))))) (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))))
+(-10 -7 (-15 -3157 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3157 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|)) (-15 -3157 ((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3157 ((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3924 ((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3924 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 35)) (-3494 (((-564) $) 61)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-3043 (($ $) 141)) (-2657 (($ $) 106)) (-2516 (($ $) 93)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-4152 (($ $) 47)) (-3907 (((-112) $ $) NIL)) (-2635 (($ $) 104)) (-2491 (($ $) 87)) (-3191 (((-564) $) 80)) (-2490 (($ $ (-564)) 75)) (-2679 (($ $) NIL)) (-2542 (($ $) NIL)) (-3180 (($) NIL T CONST)) (-3513 (($ $) 143)) (-2224 (((-3 (-564) "failed") $) 237) (((-3 (-407 (-564)) "failed") $) 233)) (-2376 (((-564) $) 235) (((-407 (-564)) $) 231)) (-1399 (($ $ $) NIL)) (-2633 (((-564) $ $) 130)) (-4272 (((-3 $ "failed") $) 145)) (-2695 (((-407 (-564)) $ (-768)) 238) (((-407 (-564)) $ (-768) (-768)) 230)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3173 (((-918)) 95) (((-918) (-918)) 126 (|has| $ (-6 -4403)))) (-3137 (((-112) $) 135)) (-1688 (($) 41)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-2895 (((-1264) (-768)) 197)) (-3584 (((-1264)) 202) (((-1264) (-768)) 203)) (-1638 (((-1264)) 204) (((-1264) (-768)) 205)) (-4243 (((-1264)) 200) (((-1264) (-768)) 201)) (-1454 (((-564) $) 68)) (-2340 (((-112) $) 40)) (-4342 (($ $ (-564)) NIL)) (-2780 (($ $) 51)) (-2217 (($ $) NIL)) (-2001 (((-112) $) 37)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL) (($) NIL (-12 (-4253 (|has| $ (-6 -4395))) (-4253 (|has| $ (-6 -4403)))))) (-3413 (($ $ $) NIL) (($) 127 (-12 (-4253 (|has| $ (-6 -4395))) (-4253 (|has| $ (-6 -4403)))))) (-2371 (((-564) $) 17)) (-1448 (($) 113) (($ $) 119)) (-4042 (($) 118) (($ $) 120)) (-2305 (($ $) 108)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 147)) (-2250 (((-918) (-564)) 46 (|has| $ (-6 -4403)))) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) 59)) (-3034 (($ $) 140)) (-2244 (($ (-564) (-564)) 136) (($ (-564) (-564) (-918)) 137)) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3078 (((-564) $) 19)) (-2662 (($) 121)) (-4130 (($ $) 103)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2678 (((-918)) 128) (((-918) (-918)) 129 (|has| $ (-6 -4403)))) (-2203 (($ $ (-768)) NIL) (($ $) 146)) (-2474 (((-918) (-564)) 50 (|has| $ (-6 -4403)))) (-2692 (($ $) NIL)) (-2557 (($ $) NIL)) (-2669 (($ $) NIL)) (-2529 (($ $) NIL)) (-2647 (($ $) 105)) (-2502 (($ $) 92)) (-2374 (((-379) $) 224) (((-225) $) 225) (((-889 (-379)) $) NIL) (((-1152) $) 208) (((-536) $) 222) (($ (-225)) 229)) (-3714 (((-859) $) 210) (($ (-564)) 234) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 234) (($ (-407 (-564))) NIL) (((-225) $) 226)) (-3379 (((-768)) NIL T CONST)) (-4296 (($ $) 142)) (-3929 (((-918)) 60) (((-918) (-918)) 82 (|has| $ (-6 -4403)))) (-3270 (((-918)) 131)) (-2728 (($ $) 111)) (-2595 (($ $) 49) (($ $ $) 58)) (-3979 (((-112) $ $) NIL)) (-2704 (($ $) 109)) (-2566 (($ $) 39)) (-2751 (($ $) NIL)) (-2615 (($ $) NIL)) (-2053 (($ $) NIL)) (-2626 (($ $) NIL)) (-2740 (($ $) NIL)) (-2605 (($ $) NIL)) (-2716 (($ $) 110)) (-2577 (($ $) 52)) (-3920 (($ $) 57)) (-4312 (($) 36 T CONST)) (-4323 (($) 43 T CONST)) (-1983 (((-1152) $) 27) (((-1152) $ (-112)) 29) (((-1264) (-819) $) 30) (((-1264) (-819) $ (-112)) 31)) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 56)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 45)) (-1841 (($ $ $) 48) (($ $ (-564)) 42)) (-1828 (($ $) 38) (($ $ $) 53)) (-1814 (($ $ $) 74)) (** (($ $ (-918)) 85) (($ $ (-768)) NIL) (($ $ (-564)) 114) (($ $ (-407 (-564))) 157) (($ $ $) 149)) (* (($ (-918) $) 81) (($ (-768) $) NIL) (($ (-564) $) 86) (($ $ $) 73) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-379) (-13 (-404) (-233) (-612 (-1152)) (-825) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -1841 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2780 ($ $)) (-15 -2633 ((-564) $ $)) (-15 -2490 ($ $ (-564))) (-15 -2695 ((-407 (-564)) $ (-768))) (-15 -2695 ((-407 (-564)) $ (-768) (-768))) (-15 -1448 ($)) (-15 -4042 ($)) (-15 -2662 ($)) (-15 -2595 ($ $ $)) (-15 -1448 ($ $)) (-15 -4042 ($ $)) (-15 -1638 ((-1264))) (-15 -1638 ((-1264) (-768))) (-15 -4243 ((-1264))) (-15 -4243 ((-1264) (-768))) (-15 -3584 ((-1264))) (-15 -3584 ((-1264) (-768))) (-15 -2895 ((-1264) (-768))) (-6 -4403) (-6 -4395)))) (T -379))
+((** (*1 *1 *1 *1) (-5 *1 (-379))) (-1841 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2780 (*1 *1 *1) (-5 *1 (-379))) (-2633 (*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2490 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2695 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-2695 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-1448 (*1 *1) (-5 *1 (-379))) (-4042 (*1 *1) (-5 *1 (-379))) (-2662 (*1 *1) (-5 *1 (-379))) (-2595 (*1 *1 *1 *1) (-5 *1 (-379))) (-1448 (*1 *1 *1) (-5 *1 (-379))) (-4042 (*1 *1 *1) (-5 *1 (-379))) (-1638 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-4243 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-3584 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))))
+(-13 (-404) (-233) (-612 (-1152)) (-825) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -1841 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2780 ($ $)) (-15 -2633 ((-564) $ $)) (-15 -2490 ($ $ (-564))) (-15 -2695 ((-407 (-564)) $ (-768))) (-15 -2695 ((-407 (-564)) $ (-768) (-768))) (-15 -1448 ($)) (-15 -4042 ($)) (-15 -2662 ($)) (-15 -2595 ($ $ $)) (-15 -1448 ($ $)) (-15 -4042 ($ $)) (-15 -1638 ((-1264))) (-15 -1638 ((-1264) (-768))) (-15 -4243 ((-1264))) (-15 -4243 ((-1264) (-768))) (-15 -3584 ((-1264))) (-15 -3584 ((-1264) (-768))) (-15 -2895 ((-1264) (-768))) (-6 -4403) (-6 -4395)))
+((-3472 (((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|) 46) (((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|) 45) (((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|) 42) (((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|) 36)) (-4329 (((-641 |#1|) (-407 (-949 (-564))) |#1|) 20) (((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|) 30)))
+(((-380 |#1|) (-10 -7 (-15 -3472 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|)) (-15 -3472 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|)) (-15 -3472 ((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|)) (-15 -3472 ((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|)) (-15 -4329 ((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|)) (-15 -4329 ((-641 |#1|) (-407 (-949 (-564))) |#1|))) (-13 (-845) (-363))) (T -380))
+((-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-4329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-845) (-363))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 (-564))))) (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 (-564)))))) (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))))
+(-10 -7 (-15 -3472 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|)) (-15 -3472 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|)) (-15 -3472 ((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|)) (-15 -3472 ((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|)) (-15 -4329 ((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|)) (-15 -4329 ((-641 |#1|) (-407 (-949 (-564))) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) 30)) (-2376 ((|#2| $) 32)) (-1374 (($ $) NIL)) (-2998 (((-768) $) 11)) (-1767 (((-641 $) $) 23)) (-2961 (((-112) $) NIL)) (-2579 (($ |#2| |#1|) 21)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4063 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1330 ((|#2| $) 18)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 50) (($ |#2|) 31)) (-4252 (((-641 |#1|) $) 20)) (-3181 ((|#1| $ |#2|) 54)) (-4312 (($) 33 T CONST)) (-2902 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 38) (($ |#2| |#1|) 39)))
(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1046) (-847)) (T -381))
((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847)))))
(-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#2| "failed") $) 44)) (-2064 ((|#2| $) 45)) (-4346 (($ $) 30)) (-3107 (((-768) $) 34)) (-2791 (((-641 $) $) 35)) (-3101 (((-112) $) 38)) (-2292 (($ |#2| |#1|) 39)) (-2082 (($ (-1 |#1| |#1|) $) 40)) (-2536 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-4311 ((|#2| $) 33)) (-4323 ((|#1| $) 32)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ |#2|) 43)) (-4264 (((-641 |#1|) $) 36)) (-1757 ((|#1| $ |#2|) 41)) (-4317 (($) 18 T CONST)) (-3723 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#2| "failed") $) 44)) (-2376 ((|#2| $) 45)) (-1374 (($ $) 30)) (-2998 (((-768) $) 34)) (-1767 (((-641 $) $) 35)) (-2961 (((-112) $) 38)) (-2579 (($ |#2| |#1|) 39)) (-2313 (($ (-1 |#1| |#1|) $) 40)) (-4063 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1330 ((|#2| $) 33)) (-1345 ((|#1| $) 32)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ |#2|) 43)) (-4252 (((-641 |#1|) $) 36)) (-3181 ((|#1| $ |#2|) 41)) (-4312 (($) 18 T CONST)) (-2902 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
(((-382 |#1| |#2|) (-140) (-1046) (-1094)) (T -382))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))) (-1757 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) (-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)))) (-2292 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-2791 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-382 *3 *4)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-768)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4346 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))))
-(-13 (-111 |t#1| |t#1|) (-1035 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1757 (|t#1| $ |t#2|)) (-15 -2082 ($ (-1 |t#1| |t#1|) $)) (-15 -2292 ($ |t#2| |t#1|)) (-15 -3101 ((-112) $)) (-15 -3723 ((-641 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4264 ((-641 |t#1|) $)) (-15 -2791 ((-641 $) $)) (-15 -3107 ((-768) $)) (-15 -4311 (|t#2| $)) (-15 -4323 (|t#1| $)) (-15 -2536 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4346 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-714 |t#1|)) |%noBranch|)))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))) (-3181 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)))) (-2579 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-1767 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-382 *3 *4)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-768)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1374 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))))
+(-13 (-111 |t#1| |t#1|) (-1035 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3181 (|t#1| $ |t#2|)) (-15 -2313 ($ (-1 |t#1| |t#1|) $)) (-15 -2579 ($ |t#2| |t#1|)) (-15 -2961 ((-112) $)) (-15 -2902 ((-641 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4252 ((-641 |t#1|) $)) (-15 -1767 ((-641 $) $)) (-15 -2998 ((-768) $)) (-15 -1330 (|t#2| $)) (-15 -1345 (|t#1| $)) (-15 -4063 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1374 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-714 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) |has| |#1| (-172)) ((-1035 |#2|) . T) ((-1052 |#1|) . T) ((-1094) . T))
-((-3501 (((-1264) $) 7)) (-1765 (((-859) $) 8) (($ (-685 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 11)))
+((-2263 (((-1264) $) 7)) (-3714 (((-859) $) 8) (($ (-685 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 11)))
(((-383) (-140)) (T -383))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) (-4 *1 (-383)))))
-(-13 (-395) (-10 -8 (-15 -1765 ($ (-685 (-695)))) (-15 -1765 ($ (-641 (-330)))) (-15 -1765 ($ (-330))) (-15 -1765 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))))))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) (-4 *1 (-383)))))
+(-13 (-395) (-10 -8 (-15 -3714 ($ (-685 (-695)))) (-15 -3714 ($ (-641 (-330)))) (-15 -3714 ($ (-330))) (-15 -3714 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))))))
(((-611 (-859)) . T) ((-395) . T) ((-1209) . T))
-((-2013 (((-3 $ "failed") (-685 (-316 (-379)))) 21) (((-3 $ "failed") (-685 (-316 (-564)))) 19) (((-3 $ "failed") (-685 (-949 (-379)))) 17) (((-3 $ "failed") (-685 (-949 (-564)))) 15) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 13) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 11)) (-2064 (($ (-685 (-316 (-379)))) 22) (($ (-685 (-316 (-564)))) 20) (($ (-685 (-949 (-379)))) 18) (($ (-685 (-949 (-564)))) 16) (($ (-685 (-407 (-949 (-379))))) 14) (($ (-685 (-407 (-949 (-564))))) 12)) (-3501 (((-1264) $) 7)) (-1765 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 23)))
+((-2224 (((-3 $ "failed") (-685 (-316 (-379)))) 21) (((-3 $ "failed") (-685 (-316 (-564)))) 19) (((-3 $ "failed") (-685 (-949 (-379)))) 17) (((-3 $ "failed") (-685 (-949 (-564)))) 15) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 13) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 11)) (-2376 (($ (-685 (-316 (-379)))) 22) (($ (-685 (-316 (-564)))) 20) (($ (-685 (-949 (-379)))) 18) (($ (-685 (-949 (-564)))) 16) (($ (-685 (-407 (-949 (-379))))) 14) (($ (-685 (-407 (-949 (-564))))) 12)) (-2263 (((-1264) $) 7)) (-3714 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 23)))
(((-384) (-140)) (T -384))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) (-4 *1 (-384)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))))
-(-13 (-395) (-10 -8 (-15 -1765 ($ (-641 (-330)))) (-15 -1765 ($ (-330))) (-15 -1765 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))) (-15 -2064 ($ (-685 (-316 (-379))))) (-15 -2013 ((-3 $ "failed") (-685 (-316 (-379))))) (-15 -2064 ($ (-685 (-316 (-564))))) (-15 -2013 ((-3 $ "failed") (-685 (-316 (-564))))) (-15 -2064 ($ (-685 (-949 (-379))))) (-15 -2013 ((-3 $ "failed") (-685 (-949 (-379))))) (-15 -2064 ($ (-685 (-949 (-564))))) (-15 -2013 ((-3 $ "failed") (-685 (-949 (-564))))) (-15 -2064 ($ (-685 (-407 (-949 (-379)))))) (-15 -2013 ((-3 $ "failed") (-685 (-407 (-949 (-379)))))) (-15 -2064 ($ (-685 (-407 (-949 (-564)))))) (-15 -2013 ((-3 $ "failed") (-685 (-407 (-949 (-564))))))))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) (-4 *1 (-384)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))))
+(-13 (-395) (-10 -8 (-15 -3714 ($ (-641 (-330)))) (-15 -3714 ($ (-330))) (-15 -3714 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))) (-15 -2376 ($ (-685 (-316 (-379))))) (-15 -2224 ((-3 $ "failed") (-685 (-316 (-379))))) (-15 -2376 ($ (-685 (-316 (-564))))) (-15 -2224 ((-3 $ "failed") (-685 (-316 (-564))))) (-15 -2376 ($ (-685 (-949 (-379))))) (-15 -2224 ((-3 $ "failed") (-685 (-949 (-379))))) (-15 -2376 ($ (-685 (-949 (-564))))) (-15 -2224 ((-3 $ "failed") (-685 (-949 (-564))))) (-15 -2376 ($ (-685 (-407 (-949 (-379)))))) (-15 -2224 ((-3 $ "failed") (-685 (-407 (-949 (-379)))))) (-15 -2376 ($ (-685 (-407 (-949 (-564)))))) (-15 -2224 ((-3 $ "failed") (-685 (-407 (-949 (-564))))))))
(((-611 (-859)) . T) ((-395) . T) ((-1209) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-3253 ((|#2| $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 34)) (-4317 (($) 12 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4267 (($ |#1| |#2|) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2045 ((|#2| $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 34)) (-4312 (($) 12 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|))) (-1046) (-847)) (T -385))
NIL
(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768) $) 71)) (-3760 (($) NIL T CONST)) (-2839 (((-3 $ "failed") $ $) 74)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-3615 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 61)) (-2419 (((-112) $) 17)) (-2902 ((|#1| $ (-564)) NIL)) (-2774 (((-768) $ (-564)) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2093 (($ (-1 |#1| |#1|) $) 40)) (-4143 (($ (-1 (-768) (-768)) $) 37)) (-2558 (((-3 $ "failed") $ $) 58)) (-4202 (((-1152) $) NIL)) (-3125 (($ $ $) 28)) (-3215 (($ $ $) 26)) (-3802 (((-1114) $) NIL)) (-2362 (((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-768)))) $) 34)) (-1959 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 67)) (-1765 (((-859) $) 24) (($ |#1|) NIL)) (-4327 (($) 11 T CONST)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) 80 (|has| |#1| (-847)))) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ |#1| (-768)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
-(((-386 |#1|) (-13 (-723) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -3215 ($ $ $)) (-15 -3125 ($ $ $)) (-15 -2558 ((-3 $ "failed") $ $)) (-15 -2839 ((-3 $ "failed") $ $)) (-15 -1959 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3615 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3042 ((-768) $)) (-15 -2362 ((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-768)))) $)) (-15 -2774 ((-768) $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -4143 ($ (-1 (-768) (-768)) $)) (-15 -2093 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) (-1094)) (T -386))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3215 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3125 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2558 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2839 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-1959 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3615 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 (-768))))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-4143 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-768) (-768))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3)))))
-(-13 (-723) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -3215 ($ $ $)) (-15 -3125 ($ $ $)) (-15 -2558 ((-3 $ "failed") $ $)) (-15 -2839 ((-3 $ "failed") $ $)) (-15 -1959 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3615 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3042 ((-768) $)) (-15 -2362 ((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-768)))) $)) (-15 -2774 ((-768) $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -4143 ($ (-1 (-768) (-768)) $)) (-15 -2093 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2013 (((-3 (-564) "failed") $) 48)) (-2064 (((-564) $) 49)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-3571 (($ $ $) 55)) (-1547 (($ $ $) 54)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1343 (((-3 $ "failed") $ $) 43)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 47)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1738 (((-112) $ $) 52)) (-1715 (((-112) $ $) 51)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 53)) (-1705 (((-112) $ $) 50)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768) $) 71)) (-3180 (($) NIL T CONST)) (-4084 (((-3 $ "failed") $ $) 74)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-4298 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 61)) (-2340 (((-112) $) 17)) (-3488 ((|#1| $ (-564)) NIL)) (-2824 (((-768) $ (-564)) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-2312 (($ (-1 |#1| |#1|) $) 40)) (-2558 (($ (-1 (-768) (-768)) $) 37)) (-4286 (((-3 $ "failed") $ $) 58)) (-1868 (((-1152) $) NIL)) (-3161 (($ $ $) 28)) (-1640 (($ $ $) 26)) (-3844 (((-1114) $) NIL)) (-3020 (((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-768)))) $) 34)) (-3329 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 67)) (-3714 (((-859) $) 24) (($ |#1|) NIL)) (-4323 (($) 11 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) 80 (|has| |#1| (-847)))) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ |#1| (-768)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+(((-386 |#1|) (-13 (-723) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -1640 ($ $ $)) (-15 -3161 ($ $ $)) (-15 -4286 ((-3 $ "failed") $ $)) (-15 -4084 ((-3 $ "failed") $ $)) (-15 -3329 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2018 ((-768) $)) (-15 -3020 ((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-768)))) $)) (-15 -2824 ((-768) $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -2558 ($ (-1 (-768) (-768)) $)) (-15 -2312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) (-1094)) (T -386))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-1640 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3161 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-4286 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-4084 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3329 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-4298 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 (-768))))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2824 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2558 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-768) (-768))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3)))))
+(-13 (-723) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -1640 ($ $ $)) (-15 -3161 ($ $ $)) (-15 -4286 ((-3 $ "failed") $ $)) (-15 -4084 ((-3 $ "failed") $ $)) (-15 -3329 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2018 ((-768) $)) (-15 -3020 ((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-768)))) $)) (-15 -2824 ((-768) $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -2558 ($ (-1 (-768) (-768)) $)) (-15 -2312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-2224 (((-3 (-564) "failed") $) 48)) (-2376 (((-564) $) 49)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-3428 (($ $ $) 55)) (-3413 (($ $ $) 54)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1347 (((-3 $ "failed") $ $) 43)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 47)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1781 (((-112) $ $) 52)) (-1758 (((-112) $ $) 51)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 53)) (-1746 (((-112) $ $) 50)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-387) (-140)) (T -387))
NIL
(-13 (-556) (-847) (-1035 (-564)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-1035 (-564)) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-4112 (((-112) $) 25)) (-3346 (((-112) $) 22)) (-1633 (($ (-1152) (-1152) (-1152)) 26)) (-4363 (((-1152) $) 16)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2371 (($ (-1152) (-1152) (-1152)) 14)) (-4201 (((-1152) $) 17)) (-1927 (((-112) $) 18)) (-2263 (((-1152) $) 15)) (-1765 (((-859) $) 12) (($ (-1152)) 13) (((-1152) $) 9)) (-1686 (((-112) $ $) 7)))
+((-3702 (((-112) $ $) NIL)) (-3347 (((-112) $) 25)) (-3497 (((-112) $) 22)) (-3564 (($ (-1152) (-1152) (-1152)) 26)) (-4337 (((-1152) $) 16)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1378 (($ (-1152) (-1152) (-1152)) 14)) (-1856 (((-1152) $) 17)) (-4283 (((-112) $) 18)) (-4065 (((-1152) $) 15)) (-3714 (((-859) $) 12) (($ (-1152)) 13) (((-1152) $) 9)) (-1720 (((-112) $ $) 7)))
(((-388) (-389)) (T -388))
NIL
(-389)
-((-1754 (((-112) $ $) 7)) (-4112 (((-112) $) 16)) (-3346 (((-112) $) 17)) (-1633 (($ (-1152) (-1152) (-1152)) 15)) (-4363 (((-1152) $) 20)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-2371 (($ (-1152) (-1152) (-1152)) 22)) (-4201 (((-1152) $) 19)) (-1927 (((-112) $) 18)) (-2263 (((-1152) $) 21)) (-1765 (((-859) $) 11) (($ (-1152)) 24) (((-1152) $) 23)) (-1686 (((-112) $ $) 6)))
+((-3702 (((-112) $ $) 7)) (-3347 (((-112) $) 16)) (-3497 (((-112) $) 17)) (-3564 (($ (-1152) (-1152) (-1152)) 15)) (-4337 (((-1152) $) 20)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1378 (($ (-1152) (-1152) (-1152)) 22)) (-1856 (((-1152) $) 19)) (-4283 (((-112) $) 18)) (-4065 (((-1152) $) 21)) (-3714 (((-859) $) 11) (($ (-1152)) 24) (((-1152) $) 23)) (-1720 (((-112) $ $) 6)))
(((-389) (-140)) (T -389))
-((-2371 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-1633 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))))
-(-13 (-1094) (-490 (-1152)) (-10 -8 (-15 -2371 ($ (-1152) (-1152) (-1152))) (-15 -2263 ((-1152) $)) (-15 -4363 ((-1152) $)) (-15 -4201 ((-1152) $)) (-15 -1927 ((-112) $)) (-15 -3346 ((-112) $)) (-15 -4112 ((-112) $)) (-15 -1633 ($ (-1152) (-1152) (-1152)))))
+((-1378 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-4283 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-3564 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))))
+(-13 (-1094) (-490 (-1152)) (-10 -8 (-15 -1378 ($ (-1152) (-1152) (-1152))) (-15 -4065 ((-1152) $)) (-15 -4337 ((-1152) $)) (-15 -1856 ((-1152) $)) (-15 -4283 ((-112) $)) (-15 -3497 ((-112) $)) (-15 -3347 ((-112) $)) (-15 -3564 ($ (-1152) (-1152) (-1152)))))
(((-102) . T) ((-614 #0=(-1152)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-4139 (((-859) $) 63)) (-3760 (($) NIL T CONST)) (-1864 (($ $ (-918)) NIL)) (-2544 (($ $ (-918)) NIL)) (-3229 (($ $ (-918)) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1502 (($ (-768)) 37)) (-3850 (((-768)) 18)) (-2922 (((-859) $) 65)) (-1762 (($ $ $) NIL)) (-1765 (((-859) $) NIL)) (-1850 (($ $ $ $) NIL)) (-3008 (($ $ $) NIL)) (-4317 (($) 24 T CONST)) (-1686 (((-112) $ $) 40)) (-1783 (($ $) 47) (($ $ $) 49)) (-1771 (($ $ $) 50)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 51) (($ $ |#3|) NIL) (($ |#3| $) 46)))
-(((-390 |#1| |#2| |#3|) (-13 (-741 |#3|) (-10 -8 (-15 -3850 ((-768))) (-15 -2922 ((-859) $)) (-15 -4139 ((-859) $)) (-15 -1502 ($ (-768))))) (-768) (-768) (-172)) (T -390))
-((-3850 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)) (-4 *5 (-172)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)) (-4 *5 (-172)))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
-(-13 (-741 |#3|) (-10 -8 (-15 -3850 ((-768))) (-15 -2922 ((-859) $)) (-15 -4139 ((-859) $)) (-15 -1502 ($ (-768)))))
-((-3276 (((-1152)) 12)) (-3633 (((-1141 (-1152))) 31)) (-3428 (((-1264) (-1152)) 28) (((-1264) (-388)) 27)) (-3441 (((-1264)) 29)) (-3556 (((-1141 (-1152))) 30)))
-(((-391) (-10 -7 (-15 -3556 ((-1141 (-1152)))) (-15 -3633 ((-1141 (-1152)))) (-15 -3441 ((-1264))) (-15 -3428 ((-1264) (-388))) (-15 -3428 ((-1264) (-1152))) (-15 -3276 ((-1152))))) (T -391))
-((-3276 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-3441 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391)))) (-3633 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))) (-3556 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))))
-(-10 -7 (-15 -3556 ((-1141 (-1152)))) (-15 -3633 ((-1141 (-1152)))) (-15 -3441 ((-1264))) (-15 -3428 ((-1264) (-388))) (-15 -3428 ((-1264) (-1152))) (-15 -3276 ((-1152))))
-((-2261 (((-768) (-336 |#1| |#2| |#3| |#4|)) 19)))
-(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2261 ((-768) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392))
-((-2261 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-768)) (-5 *1 (-392 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2261 ((-768) (-336 |#1| |#2| |#3| |#4|))))
-((-1765 (((-394) |#1|) 11)))
-(((-393 |#1|) (-10 -7 (-15 -1765 ((-394) |#1|))) (-1094)) (T -393))
-((-1765 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -1765 ((-394) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-2130 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-3601 (((-641 (-1152)) $ (-641 (-1152))) 44)) (-3498 (((-641 (-1152)) $ (-641 (-1152))) 45)) (-2229 (((-641 (-1152)) $) 40)) (-1633 (($) 30)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3337 (((-641 (-1152)) $) 41)) (-2618 (((-641 (-1152)) $) 42)) (-3463 (((-1264) $ (-564)) 38) (((-1264) $) 39)) (-2127 (($ (-859) (-564)) 35)) (-1765 (((-859) $) 54) (($ (-859)) 32)) (-1686 (((-112) $ $) NIL)))
-(((-394) (-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2127 ($ (-859) (-564))) (-15 -3463 ((-1264) $ (-564))) (-15 -3463 ((-1264) $)) (-15 -2618 ((-641 (-1152)) $)) (-15 -3337 ((-641 (-1152)) $)) (-15 -1633 ($)) (-15 -2229 ((-641 (-1152)) $)) (-15 -3498 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3601 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2130 ((-641 (-1152)) $ (-641 (-1152))))))) (T -394))
-((-2127 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-394)))) (-3463 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-1633 (*1 *1) (-5 *1 (-394))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-3498 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-3601 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2130 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))))
-(-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2127 ($ (-859) (-564))) (-15 -3463 ((-1264) $ (-564))) (-15 -3463 ((-1264) $)) (-15 -2618 ((-641 (-1152)) $)) (-15 -3337 ((-641 (-1152)) $)) (-15 -1633 ($)) (-15 -2229 ((-641 (-1152)) $)) (-15 -3498 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3601 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2130 ((-641 (-1152)) $ (-641 (-1152))))))
-((-3501 (((-1264) $) 7)) (-1765 (((-859) $) 8)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2503 (((-859) $) 63)) (-3180 (($) NIL T CONST)) (-1842 (($ $ (-918)) NIL)) (-4133 (($ $ (-918)) NIL)) (-1788 (($ $ (-918)) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1729 (($ (-768)) 37)) (-2869 (((-768)) 18)) (-3710 (((-859) $) 65)) (-3217 (($ $ $) NIL)) (-3714 (((-859) $) NIL)) (-1687 (($ $ $ $) NIL)) (-1390 (($ $ $) NIL)) (-4312 (($) 24 T CONST)) (-1720 (((-112) $ $) 40)) (-1828 (($ $) 47) (($ $ $) 49)) (-1814 (($ $ $) 50)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 51) (($ $ |#3|) NIL) (($ |#3| $) 46)))
+(((-390 |#1| |#2| |#3|) (-13 (-741 |#3|) (-10 -8 (-15 -2869 ((-768))) (-15 -3710 ((-859) $)) (-15 -2503 ((-859) $)) (-15 -1729 ($ (-768))))) (-768) (-768) (-172)) (T -390))
+((-2869 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)) (-4 *5 (-172)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)) (-4 *5 (-172)))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
+(-13 (-741 |#3|) (-10 -8 (-15 -2869 ((-768))) (-15 -3710 ((-859) $)) (-15 -2503 ((-859) $)) (-15 -1729 ($ (-768)))))
+((-4091 (((-1152)) 12)) (-1393 (((-1141 (-1152))) 31)) (-2195 (((-1264) (-1152)) 28) (((-1264) (-388)) 27)) (-2207 (((-1264)) 29)) (-1897 (((-1141 (-1152))) 30)))
+(((-391) (-10 -7 (-15 -1897 ((-1141 (-1152)))) (-15 -1393 ((-1141 (-1152)))) (-15 -2207 ((-1264))) (-15 -2195 ((-1264) (-388))) (-15 -2195 ((-1264) (-1152))) (-15 -4091 ((-1152))))) (T -391))
+((-4091 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391)))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-2207 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391)))) (-1393 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))) (-1897 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))))
+(-10 -7 (-15 -1897 ((-1141 (-1152)))) (-15 -1393 ((-1141 (-1152)))) (-15 -2207 ((-1264))) (-15 -2195 ((-1264) (-388))) (-15 -2195 ((-1264) (-1152))) (-15 -4091 ((-1152))))
+((-1454 (((-768) (-336 |#1| |#2| |#3| |#4|)) 19)))
+(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1454 ((-768) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392))
+((-1454 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-768)) (-5 *1 (-392 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1454 ((-768) (-336 |#1| |#2| |#3| |#4|))))
+((-3714 (((-394) |#1|) 11)))
+(((-393 |#1|) (-10 -7 (-15 -3714 ((-394) |#1|))) (-1094)) (T -393))
+((-3714 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -3714 ((-394) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-2708 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-4146 (((-641 (-1152)) $ (-641 (-1152))) 44)) (-2616 (((-641 (-1152)) $ (-641 (-1152))) 45)) (-4209 (((-641 (-1152)) $) 40)) (-3564 (($) 30)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3899 (((-641 (-1152)) $) 41)) (-3586 (((-641 (-1152)) $) 42)) (-3512 (((-1264) $ (-564)) 38) (((-1264) $) 39)) (-2374 (($ (-859) (-564)) 35)) (-3714 (((-859) $) 54) (($ (-859)) 32)) (-1720 (((-112) $ $) NIL)))
+(((-394) (-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2374 ($ (-859) (-564))) (-15 -3512 ((-1264) $ (-564))) (-15 -3512 ((-1264) $)) (-15 -3586 ((-641 (-1152)) $)) (-15 -3899 ((-641 (-1152)) $)) (-15 -3564 ($)) (-15 -4209 ((-641 (-1152)) $)) (-15 -2616 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4146 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2708 ((-641 (-1152)) $ (-641 (-1152))))))) (T -394))
+((-2374 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-394)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-3564 (*1 *1) (-5 *1 (-394))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2616 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-4146 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2708 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))))
+(-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2374 ($ (-859) (-564))) (-15 -3512 ((-1264) $ (-564))) (-15 -3512 ((-1264) $)) (-15 -3586 ((-641 (-1152)) $)) (-15 -3899 ((-641 (-1152)) $)) (-15 -3564 ($)) (-15 -4209 ((-641 (-1152)) $)) (-15 -2616 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4146 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2708 ((-641 (-1152)) $ (-641 (-1152))))))
+((-2263 (((-1264) $) 7)) (-3714 (((-859) $) 8)))
(((-395) (-140)) (T -395))
-((-3501 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264)))))
-(-13 (-1209) (-611 (-859)) (-10 -8 (-15 -3501 ((-1264) $))))
+((-2263 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264)))))
+(-13 (-1209) (-611 (-859)) (-10 -8 (-15 -2263 ((-1264) $))))
(((-611 (-859)) . T) ((-1209) . T))
-((-2013 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-564))) 19) (((-3 $ "failed") (-949 (-379))) 17) (((-3 $ "failed") (-949 (-564))) 15) (((-3 $ "failed") (-407 (-949 (-379)))) 13) (((-3 $ "failed") (-407 (-949 (-564)))) 11)) (-2064 (($ (-316 (-379))) 22) (($ (-316 (-564))) 20) (($ (-949 (-379))) 18) (($ (-949 (-564))) 16) (($ (-407 (-949 (-379)))) 14) (($ (-407 (-949 (-564)))) 12)) (-3501 (((-1264) $) 7)) (-1765 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 23)))
+((-2224 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-564))) 19) (((-3 $ "failed") (-949 (-379))) 17) (((-3 $ "failed") (-949 (-564))) 15) (((-3 $ "failed") (-407 (-949 (-379)))) 13) (((-3 $ "failed") (-407 (-949 (-564)))) 11)) (-2376 (($ (-316 (-379))) 22) (($ (-316 (-564))) 20) (($ (-949 (-379))) 18) (($ (-949 (-564))) 16) (($ (-407 (-949 (-379)))) 14) (($ (-407 (-949 (-564)))) 12)) (-2263 (((-1264) $) 7)) (-3714 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 23)))
(((-396) (-140)) (T -396))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) (-4 *1 (-396)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))))
-(-13 (-395) (-10 -8 (-15 -1765 ($ (-641 (-330)))) (-15 -1765 ($ (-330))) (-15 -1765 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))) (-15 -2064 ($ (-316 (-379)))) (-15 -2013 ((-3 $ "failed") (-316 (-379)))) (-15 -2064 ($ (-316 (-564)))) (-15 -2013 ((-3 $ "failed") (-316 (-564)))) (-15 -2064 ($ (-949 (-379)))) (-15 -2013 ((-3 $ "failed") (-949 (-379)))) (-15 -2064 ($ (-949 (-564)))) (-15 -2013 ((-3 $ "failed") (-949 (-564)))) (-15 -2064 ($ (-407 (-949 (-379))))) (-15 -2013 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2064 ($ (-407 (-949 (-564))))) (-15 -2013 ((-3 $ "failed") (-407 (-949 (-564)))))))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) (-4 *1 (-396)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))))
+(-13 (-395) (-10 -8 (-15 -3714 ($ (-641 (-330)))) (-15 -3714 ($ (-330))) (-15 -3714 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))) (-15 -2376 ($ (-316 (-379)))) (-15 -2224 ((-3 $ "failed") (-316 (-379)))) (-15 -2376 ($ (-316 (-564)))) (-15 -2224 ((-3 $ "failed") (-316 (-564)))) (-15 -2376 ($ (-949 (-379)))) (-15 -2224 ((-3 $ "failed") (-949 (-379)))) (-15 -2376 ($ (-949 (-564)))) (-15 -2224 ((-3 $ "failed") (-949 (-564)))) (-15 -2376 ($ (-407 (-949 (-379))))) (-15 -2224 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2376 ($ (-407 (-949 (-564))))) (-15 -2224 ((-3 $ "failed") (-407 (-949 (-564)))))))
(((-611 (-859)) . T) ((-395) . T) ((-1209) . T))
-((-1789 (((-641 (-1152)) (-641 (-1152))) 9)) (-3501 (((-1264) (-388)) 27)) (-1693 (((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170))) 60) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170)) 35) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170))) 34)))
-(((-397) (-10 -7 (-15 -1693 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -1693 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -1693 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -3501 ((-1264) (-388))) (-15 -1789 ((-641 (-1152)) (-641 (-1152)))))) (T -397))
-((-1789 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397)))) (-1693 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-1693 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-1693 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))))
-(-10 -7 (-15 -1693 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -1693 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -1693 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -3501 ((-1264) (-388))) (-15 -1789 ((-641 (-1152)) (-641 (-1152)))))
-((-3501 (((-1264) $) 36)) (-1765 (((-859) $) 98) (($ (-330)) 100) (($ (-641 (-330))) 99) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 97) (($ (-316 (-697))) 53) (($ (-316 (-695))) 73) (($ (-316 (-690))) 86) (($ (-294 (-316 (-697)))) 68) (($ (-294 (-316 (-695)))) 81) (($ (-294 (-316 (-690)))) 94) (($ (-316 (-564))) 105) (($ (-316 (-379))) 118) (($ (-316 (-169 (-379)))) 131) (($ (-294 (-316 (-564)))) 113) (($ (-294 (-316 (-379)))) 126) (($ (-294 (-316 (-169 (-379))))) 139)))
-(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -1765 ($ (-330))) (-15 -1765 ($ (-641 (-330)))) (-15 -1765 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))) (-15 -1765 ($ (-316 (-697)))) (-15 -1765 ($ (-316 (-695)))) (-15 -1765 ($ (-316 (-690)))) (-15 -1765 ($ (-294 (-316 (-697))))) (-15 -1765 ($ (-294 (-316 (-695))))) (-15 -1765 ($ (-294 (-316 (-690))))) (-15 -1765 ($ (-316 (-564)))) (-15 -1765 ($ (-316 (-379)))) (-15 -1765 ($ (-316 (-169 (-379))))) (-15 -1765 ($ (-294 (-316 (-564))))) (-15 -1765 ($ (-294 (-316 (-379))))) (-15 -1765 ($ (-294 (-316 (-169 (-379)))))))) (-1170) (-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-641 (-1170)) (-1174)) (T -398))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))))
-(-13 (-395) (-10 -8 (-15 -1765 ($ (-330))) (-15 -1765 ($ (-641 (-330)))) (-15 -1765 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))) (-15 -1765 ($ (-316 (-697)))) (-15 -1765 ($ (-316 (-695)))) (-15 -1765 ($ (-316 (-690)))) (-15 -1765 ($ (-294 (-316 (-697))))) (-15 -1765 ($ (-294 (-316 (-695))))) (-15 -1765 ($ (-294 (-316 (-690))))) (-15 -1765 ($ (-316 (-564)))) (-15 -1765 ($ (-316 (-379)))) (-15 -1765 ($ (-316 (-169 (-379))))) (-15 -1765 ($ (-294 (-316 (-564))))) (-15 -1765 ($ (-294 (-316 (-379))))) (-15 -1765 ($ (-294 (-316 (-169 (-379))))))))
-((-1754 (((-112) $ $) NIL)) (-4217 ((|#2| $) 38)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1578 (($ (-407 |#2|)) 95)) (-3643 (((-641 (-2 (|:| -3747 (-768)) (|:| -3415 |#2|) (|:| |num| |#2|))) $) 39)) (-3226 (($ $) 34) (($ $ (-768)) 36)) (-2127 (((-407 |#2|) $) 51)) (-1776 (($ (-641 (-2 (|:| -3747 (-768)) (|:| -3415 |#2|) (|:| |num| |#2|)))) 33)) (-1765 (((-859) $) 137)) (-3190 (($ $) 35) (($ $ (-768)) 37)) (-1686 (((-112) $ $) NIL)) (-1771 (($ |#2| $) 41)))
-(((-399 |#1| |#2|) (-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -1771 ($ |#2| $)) (-15 -1578 ($ (-407 |#2|))) (-15 -4217 (|#2| $)) (-15 -3643 ((-641 (-2 (|:| -3747 (-768)) (|:| -3415 |#2|) (|:| |num| |#2|))) $)) (-15 -1776 ($ (-641 (-2 (|:| -3747 (-768)) (|:| -3415 |#2|) (|:| |num| |#2|))))) (-15 -3226 ($ $)) (-15 -3190 ($ $)) (-15 -3226 ($ $ (-768))) (-15 -3190 ($ $ (-768))))) (-13 (-363) (-147)) (-1235 |#1|)) (T -399))
-((-1771 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1235 *3)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-4217 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-3643 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-641 (-2 (|:| -3747 (-768)) (|:| -3415 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -3747 (-768)) (|:| -3415 *4) (|:| |num| *4)))) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-3226 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-3190 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))))
-(-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -1771 ($ |#2| $)) (-15 -1578 ($ (-407 |#2|))) (-15 -4217 (|#2| $)) (-15 -3643 ((-641 (-2 (|:| -3747 (-768)) (|:| -3415 |#2|) (|:| |num| |#2|))) $)) (-15 -1776 ($ (-641 (-2 (|:| -3747 (-768)) (|:| -3415 |#2|) (|:| |num| |#2|))))) (-15 -3226 ($ $)) (-15 -3190 ($ $)) (-15 -3226 ($ $ (-768))) (-15 -3190 ($ $ (-768)))))
-((-1754 (((-112) $ $) 9 (-4002 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 15 (|has| |#1| (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 14 (|has| |#1| (-883 (-564))))) (-4202 (((-1152) $) 13 (-4002 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-3802 (((-1114) $) 12 (-4002 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-1765 (((-859) $) 11 (-4002 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-1686 (((-112) $ $) 10 (-4002 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))))
+((-2316 (((-641 (-1152)) (-641 (-1152))) 9)) (-2263 (((-1264) (-388)) 27)) (-3762 (((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170))) 60) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170)) 35) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170))) 34)))
+(((-397) (-10 -7 (-15 -3762 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -3762 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -3762 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -2263 ((-1264) (-388))) (-15 -2316 ((-641 (-1152)) (-641 (-1152)))))) (T -397))
+((-2316 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397)))) (-3762 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-3762 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-3762 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))))
+(-10 -7 (-15 -3762 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -3762 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -3762 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -2263 ((-1264) (-388))) (-15 -2316 ((-641 (-1152)) (-641 (-1152)))))
+((-2263 (((-1264) $) 36)) (-3714 (((-859) $) 98) (($ (-330)) 100) (($ (-641 (-330))) 99) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 97) (($ (-316 (-697))) 53) (($ (-316 (-695))) 73) (($ (-316 (-690))) 86) (($ (-294 (-316 (-697)))) 68) (($ (-294 (-316 (-695)))) 81) (($ (-294 (-316 (-690)))) 94) (($ (-316 (-564))) 105) (($ (-316 (-379))) 118) (($ (-316 (-169 (-379)))) 131) (($ (-294 (-316 (-564)))) 113) (($ (-294 (-316 (-379)))) 126) (($ (-294 (-316 (-169 (-379))))) 139)))
+(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -3714 ($ (-330))) (-15 -3714 ($ (-641 (-330)))) (-15 -3714 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))) (-15 -3714 ($ (-316 (-697)))) (-15 -3714 ($ (-316 (-695)))) (-15 -3714 ($ (-316 (-690)))) (-15 -3714 ($ (-294 (-316 (-697))))) (-15 -3714 ($ (-294 (-316 (-695))))) (-15 -3714 ($ (-294 (-316 (-690))))) (-15 -3714 ($ (-316 (-564)))) (-15 -3714 ($ (-316 (-379)))) (-15 -3714 ($ (-316 (-169 (-379))))) (-15 -3714 ($ (-294 (-316 (-564))))) (-15 -3714 ($ (-294 (-316 (-379))))) (-15 -3714 ($ (-294 (-316 (-169 (-379)))))))) (-1170) (-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-641 (-1170)) (-1174)) (T -398))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))))
+(-13 (-395) (-10 -8 (-15 -3714 ($ (-330))) (-15 -3714 ($ (-641 (-330)))) (-15 -3714 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))) (-15 -3714 ($ (-316 (-697)))) (-15 -3714 ($ (-316 (-695)))) (-15 -3714 ($ (-316 (-690)))) (-15 -3714 ($ (-294 (-316 (-697))))) (-15 -3714 ($ (-294 (-316 (-695))))) (-15 -3714 ($ (-294 (-316 (-690))))) (-15 -3714 ($ (-316 (-564)))) (-15 -3714 ($ (-316 (-379)))) (-15 -3714 ($ (-316 (-169 (-379))))) (-15 -3714 ($ (-294 (-316 (-564))))) (-15 -3714 ($ (-294 (-316 (-379))))) (-15 -3714 ($ (-294 (-316 (-169 (-379))))))))
+((-3702 (((-112) $ $) NIL)) (-2024 ((|#2| $) 38)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3938 (($ (-407 |#2|)) 95)) (-1495 (((-641 (-2 (|:| -3078 (-768)) (|:| -2390 |#2|) (|:| |num| |#2|))) $) 39)) (-2203 (($ $) 34) (($ $ (-768)) 36)) (-2374 (((-407 |#2|) $) 51)) (-3725 (($ (-641 (-2 (|:| -3078 (-768)) (|:| -2390 |#2|) (|:| |num| |#2|)))) 33)) (-3714 (((-859) $) 137)) (-2238 (($ $) 35) (($ $ (-768)) 37)) (-1720 (((-112) $ $) NIL)) (-1814 (($ |#2| $) 41)))
+(((-399 |#1| |#2|) (-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -1814 ($ |#2| $)) (-15 -3938 ($ (-407 |#2|))) (-15 -2024 (|#2| $)) (-15 -1495 ((-641 (-2 (|:| -3078 (-768)) (|:| -2390 |#2|) (|:| |num| |#2|))) $)) (-15 -3725 ($ (-641 (-2 (|:| -3078 (-768)) (|:| -2390 |#2|) (|:| |num| |#2|))))) (-15 -2203 ($ $)) (-15 -2238 ($ $)) (-15 -2203 ($ $ (-768))) (-15 -2238 ($ $ (-768))))) (-13 (-363) (-147)) (-1235 |#1|)) (T -399))
+((-1814 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1235 *3)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-2024 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-1495 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-641 (-2 (|:| -3078 (-768)) (|:| -2390 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -3078 (-768)) (|:| -2390 *4) (|:| |num| *4)))) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-2203 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-2238 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-2238 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))))
+(-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -1814 ($ |#2| $)) (-15 -3938 ($ (-407 |#2|))) (-15 -2024 (|#2| $)) (-15 -1495 ((-641 (-2 (|:| -3078 (-768)) (|:| -2390 |#2|) (|:| |num| |#2|))) $)) (-15 -3725 ($ (-641 (-2 (|:| -3078 (-768)) (|:| -2390 |#2|) (|:| |num| |#2|))))) (-15 -2203 ($ $)) (-15 -2238 ($ $)) (-15 -2203 ($ $ (-768))) (-15 -2238 ($ $ (-768)))))
+((-3702 (((-112) $ $) 9 (-4012 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 15 (|has| |#1| (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 14 (|has| |#1| (-883 (-564))))) (-1868 (((-1152) $) 13 (-4012 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-3844 (((-1114) $) 12 (-4012 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-3714 (((-859) $) 11 (-4012 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-1720 (((-112) $ $) 10 (-4012 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))))
(((-400 |#1|) (-140) (-1209)) (T -400))
NIL
(-13 (-1209) (-10 -7 (IF (|has| |t#1| (-883 (-564))) (-6 (-883 (-564))) |%noBranch|) (IF (|has| |t#1| (-883 (-379))) (-6 (-883 (-379))) |%noBranch|)))
-(((-102) -4002 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-611 (-859)) -4002 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-1094) -4002 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-1209) . T))
-((-2184 (($ $) 12) (($ $ (-768)) 14)))
-(((-401 |#1|) (-10 -8 (-15 -2184 (|#1| |#1| (-768))) (-15 -2184 (|#1| |#1|))) (-402)) (T -401))
+(((-102) -4012 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-611 (-859)) -4012 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-1094) -4012 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-1209) . T))
+((-1957 (($ $) 12) (($ $ (-768)) 14)))
+(((-401 |#1|) (-10 -8 (-15 -1957 (|#1| |#1| (-768))) (-15 -1957 (|#1| |#1|))) (-402)) (T -401))
NIL
-(-10 -8 (-15 -2184 (|#1| |#1| (-768))) (-15 -2184 (|#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-3385 (((-112) $ $) 60)) (-3760 (($) 17 T CONST)) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-2184 (($ $) 80) (($ $ (-768)) 79)) (-3241 (((-112) $) 72)) (-2261 (((-830 (-918)) $) 82)) (-2419 (((-112) $) 31)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-4006 (((-418 $) $) 75)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-1504 (((-3 (-768) "failed") $ $) 81)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-2864 (((-3 $ "failed") $) 83)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ $) 66)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
+(-10 -8 (-15 -1957 (|#1| |#1| (-768))) (-15 -1957 (|#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-3907 (((-112) $ $) 60)) (-3180 (($) 17 T CONST)) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-1957 (($ $) 80) (($ $ (-768)) 79)) (-1926 (((-112) $) 72)) (-1454 (((-830 (-918)) $) 82)) (-2340 (((-112) $) 31)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-4139 (((-418 $) $) 75)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-2671 (((-3 (-768) "failed") $ $) 81)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-4363 (((-3 $ "failed") $) 83)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ $) 66)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
(((-402) (-140)) (T -402))
-((-2261 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-830 (-918))))) (-1504 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-768)))) (-2184 (*1 *1 *1) (-4 *1 (-402))) (-2184 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-768)))))
-(-13 (-363) (-145) (-10 -8 (-15 -2261 ((-830 (-918)) $)) (-15 -1504 ((-3 (-768) "failed") $ $)) (-15 -2184 ($ $)) (-15 -2184 ($ $ (-768)))))
+((-1454 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-830 (-918))))) (-2671 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-768)))) (-1957 (*1 *1 *1) (-4 *1 (-402))) (-1957 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-768)))))
+(-13 (-363) (-145) (-10 -8 (-15 -1454 ((-830 (-918)) $)) (-15 -2671 ((-3 (-768) "failed") $ $)) (-15 -1957 ($ $)) (-15 -1957 ($ $ (-768)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-2139 (($ (-564) (-564)) 11) (($ (-564) (-564) (-918)) NIL)) (-1824 (((-918)) 20) (((-918) (-918)) NIL)))
-(((-403 |#1|) (-10 -8 (-15 -1824 ((-918) (-918))) (-15 -1824 ((-918))) (-15 -2139 (|#1| (-564) (-564) (-918))) (-15 -2139 (|#1| (-564) (-564)))) (-404)) (T -403))
-((-1824 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))))
-(-10 -8 (-15 -1824 ((-918) (-918))) (-15 -1824 ((-918))) (-15 -2139 (|#1| (-564) (-564) (-918))) (-15 -2139 (|#1| (-564) (-564))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4328 (((-564) $) 90)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3742 (($ $) 88)) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-4019 (($ $) 98)) (-3385 (((-112) $ $) 60)) (-3438 (((-564) $) 115)) (-3760 (($) 17 T CONST)) (-3039 (($ $) 87)) (-2013 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-2064 (((-564) $) 104) (((-407 (-564)) $) 101)) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-3241 (((-112) $) 72)) (-2269 (((-918)) 131) (((-918) (-918)) 128 (|has| $ (-6 -4402)))) (-1751 (((-112) $) 113)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 94)) (-2261 (((-564) $) 137)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 97)) (-1779 (($ $) 93)) (-2506 (((-112) $) 114)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3571 (($ $ $) 112) (($) 125 (-12 (-4254 (|has| $ (-6 -4402))) (-4254 (|has| $ (-6 -4394)))))) (-1547 (($ $ $) 111) (($) 124 (-12 (-4254 (|has| $ (-6 -4402))) (-4254 (|has| $ (-6 -4394)))))) (-2137 (((-564) $) 134)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71)) (-3913 (((-918) (-564)) 127 (|has| $ (-6 -4402)))) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-2002 (($ $) 89)) (-2677 (($ $) 91)) (-2139 (($ (-564) (-564)) 139) (($ (-564) (-564) (-918)) 138)) (-4006 (((-418 $) $) 75)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3747 (((-564) $) 135)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-1824 (((-918)) 132) (((-918) (-918)) 129 (|has| $ (-6 -4402)))) (-3807 (((-918) (-564)) 126 (|has| $ (-6 -4402)))) (-2127 (((-379) $) 106) (((-225) $) 105) (((-889 (-379)) $) 95)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-1965 (((-768)) 28 T CONST)) (-2991 (($ $) 92)) (-2941 (((-918)) 133) (((-918) (-918)) 130 (|has| $ (-6 -4402)))) (-2743 (((-918)) 136)) (-1582 (((-112) $ $) 40)) (-2016 (($ $) 116)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1738 (((-112) $ $) 109)) (-1715 (((-112) $ $) 108)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 110)) (-1705 (((-112) $ $) 107)) (-1793 (($ $ $) 66)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
+((-2244 (($ (-564) (-564)) 11) (($ (-564) (-564) (-918)) NIL)) (-2678 (((-918)) 20) (((-918) (-918)) NIL)))
+(((-403 |#1|) (-10 -8 (-15 -2678 ((-918) (-918))) (-15 -2678 ((-918))) (-15 -2244 (|#1| (-564) (-564) (-918))) (-15 -2244 (|#1| (-564) (-564)))) (-404)) (T -403))
+((-2678 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-2678 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))))
+(-10 -8 (-15 -2678 ((-918) (-918))) (-15 -2678 ((-918))) (-15 -2244 (|#1| (-564) (-564) (-918))) (-15 -2244 (|#1| (-564) (-564))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3494 (((-564) $) 90)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-3043 (($ $) 88)) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-4152 (($ $) 98)) (-3907 (((-112) $ $) 60)) (-3191 (((-564) $) 115)) (-3180 (($) 17 T CONST)) (-3513 (($ $) 87)) (-2224 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-2376 (((-564) $) 104) (((-407 (-564)) $) 101)) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-1926 (((-112) $) 72)) (-3173 (((-918)) 131) (((-918) (-918)) 128 (|has| $ (-6 -4403)))) (-3137 (((-112) $) 113)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 94)) (-1454 (((-564) $) 137)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 97)) (-2217 (($ $) 93)) (-2001 (((-112) $) 114)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3428 (($ $ $) 112) (($) 125 (-12 (-4253 (|has| $ (-6 -4403))) (-4253 (|has| $ (-6 -4395)))))) (-3413 (($ $ $) 111) (($) 124 (-12 (-4253 (|has| $ (-6 -4403))) (-4253 (|has| $ (-6 -4395)))))) (-2371 (((-564) $) 134)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71)) (-2250 (((-918) (-564)) 127 (|has| $ (-6 -4403)))) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-3782 (($ $) 89)) (-3034 (($ $) 91)) (-2244 (($ (-564) (-564)) 139) (($ (-564) (-564) (-918)) 138)) (-4139 (((-418 $) $) 75)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3078 (((-564) $) 135)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-2678 (((-918)) 132) (((-918) (-918)) 129 (|has| $ (-6 -4403)))) (-2474 (((-918) (-564)) 126 (|has| $ (-6 -4403)))) (-2374 (((-379) $) 106) (((-225) $) 105) (((-889 (-379)) $) 95)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-3379 (((-768)) 28 T CONST)) (-4296 (($ $) 92)) (-3929 (((-918)) 133) (((-918) (-918)) 130 (|has| $ (-6 -4403)))) (-3270 (((-918)) 136)) (-3979 (((-112) $ $) 40)) (-3920 (($ $) 116)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1781 (((-112) $ $) 109)) (-1758 (((-112) $ $) 108)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 110)) (-1746 (((-112) $ $) 107)) (-1841 (($ $ $) 66)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
(((-404) (-140)) (T -404))
-((-2139 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) (-2139 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-4 *1 (-404)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2743 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2137 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2941 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-1824 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-2269 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404)))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4402)) (-4 *1 (-404)) (-5 *2 (-918)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4402)) (-4 *1 (-404)) (-5 *2 (-918)))) (-3571 (*1 *1) (-12 (-4 *1 (-404)) (-4254 (|has| *1 (-6 -4402))) (-4254 (|has| *1 (-6 -4394))))) (-1547 (*1 *1) (-12 (-4 *1 (-404)) (-4254 (|has| *1 (-6 -4402))) (-4254 (|has| *1 (-6 -4394))))))
-(-13 (-1055) (-10 -8 (-6 -2299) (-15 -2139 ($ (-564) (-564))) (-15 -2139 ($ (-564) (-564) (-918))) (-15 -2261 ((-564) $)) (-15 -2743 ((-918))) (-15 -3747 ((-564) $)) (-15 -2137 ((-564) $)) (-15 -2941 ((-918))) (-15 -1824 ((-918))) (-15 -2269 ((-918))) (IF (|has| $ (-6 -4402)) (PROGN (-15 -2941 ((-918) (-918))) (-15 -1824 ((-918) (-918))) (-15 -2269 ((-918) (-918))) (-15 -3913 ((-918) (-564))) (-15 -3807 ((-918) (-564)))) |%noBranch|) (IF (|has| $ (-6 -4394)) |%noBranch| (IF (|has| $ (-6 -4402)) |%noBranch| (PROGN (-15 -3571 ($)) (-15 -1547 ($)))))))
+((-2244 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) (-2244 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-4 *1 (-404)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-3270 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2371 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-3929 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-2678 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-3173 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4403)) (-4 *1 (-404)))) (-2678 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4403)) (-4 *1 (-404)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4403)) (-4 *1 (-404)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4403)) (-4 *1 (-404)) (-5 *2 (-918)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4403)) (-4 *1 (-404)) (-5 *2 (-918)))) (-3428 (*1 *1) (-12 (-4 *1 (-404)) (-4253 (|has| *1 (-6 -4403))) (-4253 (|has| *1 (-6 -4395))))) (-3413 (*1 *1) (-12 (-4 *1 (-404)) (-4253 (|has| *1 (-6 -4403))) (-4253 (|has| *1 (-6 -4395))))))
+(-13 (-1055) (-10 -8 (-6 -2441) (-15 -2244 ($ (-564) (-564))) (-15 -2244 ($ (-564) (-564) (-918))) (-15 -1454 ((-564) $)) (-15 -3270 ((-918))) (-15 -3078 ((-564) $)) (-15 -2371 ((-564) $)) (-15 -3929 ((-918))) (-15 -2678 ((-918))) (-15 -3173 ((-918))) (IF (|has| $ (-6 -4403)) (PROGN (-15 -3929 ((-918) (-918))) (-15 -2678 ((-918) (-918))) (-15 -3173 ((-918) (-918))) (-15 -2250 ((-918) (-564))) (-15 -2474 ((-918) (-564)))) |%noBranch|) (IF (|has| $ (-6 -4395)) |%noBranch| (IF (|has| $ (-6 -4403)) |%noBranch| (PROGN (-15 -3428 ($)) (-15 -3413 ($)))))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-889 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-883 (-379)) . T) ((-917) . T) ((-999) . T) ((-1019) . T) ((-1055) . T) ((-1035 (-407 (-564))) . T) ((-1035 (-564)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-2082 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20)))
-(((-405 |#1| |#2|) (-10 -7 (-15 -2082 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-556) (-556)) (T -405))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6)))))
-(-10 -7 (-15 -2082 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|))))
-((-2082 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13)))
-(((-406 |#1| |#2|) (-10 -7 (-15 -2082 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-556) (-556)) (T -406))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))))
-(-10 -7 (-15 -2082 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 13)) (-4328 ((|#1| $) 21 (|has| |#1| (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL (|has| |#1| (-817)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) 17) (((-3 (-1170) "failed") $) NIL (|has| |#1| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564))))) (-2064 ((|#1| $) 15) (((-1170) $) NIL (|has| |#1| (-1035 (-1170)))) (((-407 (-564)) $) 69 (|has| |#1| (-1035 (-564)))) (((-564) $) NIL (|has| |#1| (-1035 (-564))))) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) 51)) (-2542 (($) NIL (|has| |#1| (-545)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1751 (((-112) $) NIL (|has| |#1| (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#1| (-883 (-379))))) (-2419 (((-112) $) 57)) (-1957 (($ $) NIL)) (-1507 ((|#1| $) 73)) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-2506 (((-112) $) NIL (|has| |#1| (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| |#1| (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 100)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL (|has| |#1| (-307)))) (-2677 ((|#1| $) 28 (|has| |#1| (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) 148 (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) 141 (|has| |#1| (-906)))) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-3712 (((-768) $) NIL)) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3762 (($ $) NIL)) (-1517 ((|#1| $) 75)) (-2127 (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (((-536) $) NIL (|has| |#1| (-612 (-536)))) (((-379) $) NIL (|has| |#1| (-1019))) (((-225) $) NIL (|has| |#1| (-1019)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 10) (($ (-1170)) NIL (|has| |#1| (-1035 (-1170))))) (-2864 (((-3 $ "failed") $) 102 (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) 103 T CONST)) (-2991 ((|#1| $) 26 (|has| |#1| (-545)))) (-1582 (((-112) $ $) NIL)) (-2016 (($ $) NIL (|has| |#1| (-817)))) (-4317 (($) 22 T CONST)) (-4327 (($) 8 T CONST)) (-3886 (((-1152) $) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1152) $ (-112)) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1264) (-819) $) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1264) (-819) $ (-112)) 47 (-12 (|has| |#1| (-545)) (|has| |#1| (-825))))) (-3190 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) 66)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) 24 (|has| |#1| (-847)))) (-1793 (($ $ $) 136) (($ |#1| |#1|) 53)) (-1783 (($ $) 25) (($ $ $) 56)) (-1771 (($ $ $) 54)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 135)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 61) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-407 |#1|) (-13 (-989 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4409)) (-6 -4398) |%noBranch|) |%noBranch|) |%noBranch|))) (-556)) (T -407))
-NIL
-(-13 (-989 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4409)) (-6 -4398) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3124 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 18)) (-2910 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 24)) (-1663 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 40)) (-2513 ((|#3| $) 73)) (-1938 ((|#2| (-1259 $)) NIL) ((|#2|) 20)) (-3072 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 22) (((-685 |#2|) (-1259 $)) 38)) (-2127 (((-1259 |#2|) $) 11) (($ (-1259 |#2|)) 13)) (-3216 ((|#3| $) 55)))
-(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -1663 ((-685 |#2|) |#1|)) (-15 -1938 (|#2|)) (-15 -3124 ((-685 |#2|))) (-15 -2127 (|#1| (-1259 |#2|))) (-15 -2127 ((-1259 |#2|) |#1|)) (-15 -2910 (|#1| (-1259 |#2|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1|)) (-15 -2513 (|#3| |#1|)) (-15 -3216 (|#3| |#1|)) (-15 -3124 ((-685 |#2|) (-1259 |#1|))) (-15 -1938 (|#2| (-1259 |#1|))) (-15 -2910 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1663 ((-685 |#2|) |#1| (-1259 |#1|)))) (-409 |#2| |#3|) (-172) (-1235 |#2|)) (T -408))
-((-3124 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-1938 (*1 *2) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4)))))
-(-10 -8 (-15 -1663 ((-685 |#2|) |#1|)) (-15 -1938 (|#2|)) (-15 -3124 ((-685 |#2|))) (-15 -2127 (|#1| (-1259 |#2|))) (-15 -2127 ((-1259 |#2|) |#1|)) (-15 -2910 (|#1| (-1259 |#2|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1|)) (-15 -2513 (|#3| |#1|)) (-15 -3216 (|#3| |#1|)) (-15 -3124 ((-685 |#2|) (-1259 |#1|))) (-15 -1938 (|#2| (-1259 |#1|))) (-15 -2910 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1663 ((-685 |#2|) |#1| (-1259 |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3124 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3715 ((|#1| $) 53)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2910 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-1663 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-1926 (((-3 $ "failed") $) 33)) (-4224 (((-918)) 55)) (-2419 (((-112) $) 31)) (-1779 ((|#1| $) 52)) (-2513 ((|#2| $) 45 (|has| |#1| (-363)))) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1938 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-3072 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2127 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-2864 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-3216 ((|#2| $) 46)) (-1965 (((-768)) 28 T CONST)) (-3941 (((-1259 $)) 68)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-2313 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20)))
+(((-405 |#1| |#2|) (-10 -7 (-15 -2313 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-556) (-556)) (T -405))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6)))))
+(-10 -7 (-15 -2313 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|))))
+((-2313 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13)))
+(((-406 |#1| |#2|) (-10 -7 (-15 -2313 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-556) (-556)) (T -406))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))))
+(-10 -7 (-15 -2313 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 13)) (-3494 ((|#1| $) 21 (|has| |#1| (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL (|has| |#1| (-817)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) 17) (((-3 (-1170) "failed") $) NIL (|has| |#1| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564))))) (-2376 ((|#1| $) 15) (((-1170) $) NIL (|has| |#1| (-1035 (-1170)))) (((-407 (-564)) $) 69 (|has| |#1| (-1035 (-564)))) (((-564) $) NIL (|has| |#1| (-1035 (-564))))) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) 51)) (-2939 (($) NIL (|has| |#1| (-545)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| |#1| (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#1| (-883 (-379))))) (-2340 (((-112) $) 57)) (-1492 (($ $) NIL)) (-1655 ((|#1| $) 73)) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-2001 (((-112) $) NIL (|has| |#1| (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| |#1| (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 100)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL (|has| |#1| (-307)))) (-3034 ((|#1| $) 28 (|has| |#1| (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) 148 (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) 141 (|has| |#1| (-906)))) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-3966 (((-768) $) NIL)) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3197 (($ $) NIL)) (-1668 ((|#1| $) 75)) (-2374 (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (((-536) $) NIL (|has| |#1| (-612 (-536)))) (((-379) $) NIL (|has| |#1| (-1019))) (((-225) $) NIL (|has| |#1| (-1019)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 10) (($ (-1170)) NIL (|has| |#1| (-1035 (-1170))))) (-4363 (((-3 $ "failed") $) 102 (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) 103 T CONST)) (-4296 ((|#1| $) 26 (|has| |#1| (-545)))) (-3979 (((-112) $ $) NIL)) (-3920 (($ $) NIL (|has| |#1| (-817)))) (-4312 (($) 22 T CONST)) (-4323 (($) 8 T CONST)) (-1983 (((-1152) $) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1152) $ (-112)) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1264) (-819) $) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1264) (-819) $ (-112)) 47 (-12 (|has| |#1| (-545)) (|has| |#1| (-825))))) (-2238 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) 66)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) 24 (|has| |#1| (-847)))) (-1841 (($ $ $) 136) (($ |#1| |#1|) 53)) (-1828 (($ $) 25) (($ $ $) 56)) (-1814 (($ $ $) 54)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 135)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 61) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-407 |#1|) (-13 (-989 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4399)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4410)) (-6 -4399) |%noBranch|) |%noBranch|) |%noBranch|))) (-556)) (T -407))
+NIL
+(-13 (-989 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4399)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4410)) (-6 -4399) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3150 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 18)) (-3566 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 24)) (-3439 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 40)) (-2041 ((|#3| $) 73)) (-4378 ((|#2| (-1259 $)) NIL) ((|#2|) 20)) (-3867 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 22) (((-685 |#2|) (-1259 $)) 38)) (-2374 (((-1259 |#2|) $) 11) (($ (-1259 |#2|)) 13)) (-1650 ((|#3| $) 55)))
+(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -3439 ((-685 |#2|) |#1|)) (-15 -4378 (|#2|)) (-15 -3150 ((-685 |#2|))) (-15 -2374 (|#1| (-1259 |#2|))) (-15 -2374 ((-1259 |#2|) |#1|)) (-15 -3566 (|#1| (-1259 |#2|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1|)) (-15 -2041 (|#3| |#1|)) (-15 -1650 (|#3| |#1|)) (-15 -3150 ((-685 |#2|) (-1259 |#1|))) (-15 -4378 (|#2| (-1259 |#1|))) (-15 -3566 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3439 ((-685 |#2|) |#1| (-1259 |#1|)))) (-409 |#2| |#3|) (-172) (-1235 |#2|)) (T -408))
+((-3150 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-4378 (*1 *2) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4)))))
+(-10 -8 (-15 -3439 ((-685 |#2|) |#1|)) (-15 -4378 (|#2|)) (-15 -3150 ((-685 |#2|))) (-15 -2374 (|#1| (-1259 |#2|))) (-15 -2374 ((-1259 |#2|) |#1|)) (-15 -3566 (|#1| (-1259 |#2|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1|)) (-15 -2041 (|#3| |#1|)) (-15 -1650 (|#3| |#1|)) (-15 -3150 ((-685 |#2|) (-1259 |#1|))) (-15 -4378 (|#2| (-1259 |#1|))) (-15 -3566 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3439 ((-685 |#2|) |#1| (-1259 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3150 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3767 ((|#1| $) 53)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-3566 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-3439 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-4272 (((-3 $ "failed") $) 33)) (-1595 (((-918)) 55)) (-2340 (((-112) $) 31)) (-2217 ((|#1| $) 52)) (-2041 ((|#2| $) 45 (|has| |#1| (-363)))) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-4378 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-3867 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2374 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-4363 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-1650 ((|#2| $) 46)) (-3379 (((-768)) 28 T CONST)) (-4339 (((-1259 $)) 68)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-409 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -409))
-((-3941 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1)) (-4 *1 (-409 *3 *4)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-3124 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3)))) (-1938 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3)))))
-(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -3941 ((-1259 $))) (-15 -3072 ((-1259 |t#1|) $)) (-15 -3072 ((-685 |t#1|) (-1259 $))) (-15 -2910 ($ (-1259 |t#1|))) (-15 -2127 ((-1259 |t#1|) $)) (-15 -2127 ($ (-1259 |t#1|))) (-15 -3124 ((-685 |t#1|))) (-15 -1938 (|t#1|)) (-15 -1663 ((-685 |t#1|) $))))
+((-4339 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1)) (-4 *1 (-409 *3 *4)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-2374 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-3150 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3)))) (-4378 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3)))))
+(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -4339 ((-1259 $))) (-15 -3867 ((-1259 |t#1|) $)) (-15 -3867 ((-685 |t#1|) (-1259 $))) (-15 -3566 ($ (-1259 |t#1|))) (-15 -2374 ((-1259 |t#1|) $)) (-15 -2374 ($ (-1259 |t#1|))) (-15 -3150 ((-685 |t#1|))) (-15 -4378 (|t#1|)) (-15 -3439 ((-685 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-370 |#1| |#2|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) 27) (((-3 (-564) "failed") $) 19)) (-2064 ((|#2| $) NIL) (((-407 (-564)) $) 24) (((-564) $) 14)) (-1765 (($ |#2|) NIL) (($ (-407 (-564))) 22) (($ (-564)) 11)))
-(((-410 |#1| |#2|) (-10 -8 (-15 -1765 (|#1| (-564))) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -1765 (|#1| |#2|))) (-411 |#2|) (-1209)) (T -410))
+((-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) 27) (((-3 (-564) "failed") $) 19)) (-2376 ((|#2| $) NIL) (((-407 (-564)) $) 24) (((-564) $) 14)) (-3714 (($ |#2|) NIL) (($ (-407 (-564))) 22) (($ (-564)) 11)))
+(((-410 |#1| |#2|) (-10 -8 (-15 -3714 (|#1| (-564))) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#1| |#2|))) (-411 |#2|) (-1209)) (T -410))
NIL
-(-10 -8 (-15 -1765 (|#1| (-564))) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -1765 (|#1| |#2|)))
-((-2013 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-564)) "failed") $) 16 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 13 (|has| |#1| (-1035 (-564))))) (-2064 ((|#1| $) 8) (((-407 (-564)) $) 17 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 14 (|has| |#1| (-1035 (-564))))) (-1765 (($ |#1|) 6) (($ (-407 (-564))) 15 (|has| |#1| (-1035 (-407 (-564))))) (($ (-564)) 12 (|has| |#1| (-1035 (-564))))))
+(-10 -8 (-15 -3714 (|#1| (-564))) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#1| |#2|)))
+((-2224 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-564)) "failed") $) 16 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 13 (|has| |#1| (-1035 (-564))))) (-2376 ((|#1| $) 8) (((-407 (-564)) $) 17 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 14 (|has| |#1| (-1035 (-564))))) (-3714 (($ |#1|) 6) (($ (-407 (-564))) 15 (|has| |#1| (-1035 (-407 (-564))))) (($ (-564)) 12 (|has| |#1| (-1035 (-564))))))
(((-411 |#1|) (-140) (-1209)) (T -411))
NIL
(-13 (-1035 |t#1|) (-10 -7 (IF (|has| |t#1| (-1035 (-564))) (-6 (-1035 (-564))) |%noBranch|) (IF (|has| |t#1| (-1035 (-407 (-564)))) (-6 (-1035 (-407 (-564)))) |%noBranch|)))
(((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 #1=(-564)) |has| |#1| (-1035 (-564))) ((-614 |#1|) . T) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 #1#) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T))
-((-2082 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 35)))
-(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2082 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-989 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1035 |#2|)) (-307) (-989 |#5|) (-1235 |#6|) (-13 (-409 |#6| |#7|) (-1035 |#6|))) (T -412))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-989 *5)) (-4 *7 (-1235 *6)) (-4 *8 (-13 (-409 *6 *7) (-1035 *6))) (-4 *9 (-307)) (-4 *10 (-989 *9)) (-4 *11 (-1235 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1035 *10))))))
-(-10 -7 (-15 -2082 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|))))
-((-1754 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-2566 ((|#4| (-768) (-1259 |#4|)) 60)) (-2419 (((-112) $) NIL)) (-1507 (((-1259 |#4|) $) 17)) (-1779 ((|#2| $) 55)) (-2867 (($ $) 163)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 108)) (-2943 (($ (-1259 |#4|)) 107)) (-3802 (((-1114) $) NIL)) (-1517 ((|#1| $) 18)) (-2502 (($ $ $) NIL)) (-1762 (($ $ $) NIL)) (-1765 (((-859) $) 153)) (-3941 (((-1259 |#4|) $) 146)) (-4327 (($) 11 T CONST)) (-1686 (((-112) $ $) 41)) (-1793 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 139)) (* (($ $ $) 135)))
-(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -2943 ($ (-1259 |#4|))) (-15 -3941 ((-1259 |#4|) $)) (-15 -1779 (|#2| $)) (-15 -1507 ((-1259 |#4|) $)) (-15 -1517 (|#1| $)) (-15 -2867 ($ $)) (-15 -2566 (|#4| (-768) (-1259 |#4|))))) (-307) (-989 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1035 |#2|))) (T -413))
-((-2943 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-3941 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) (-1779 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1035 *2))))) (-1507 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) (-1517 (*1 *2 *1) (-12 (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) (-2867 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) (-2566 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1259 *2)) (-4 *5 (-307)) (-4 *6 (-989 *5)) (-4 *2 (-13 (-409 *6 *7) (-1035 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6)))))
-(-13 (-473) (-10 -8 (-15 -2943 ($ (-1259 |#4|))) (-15 -3941 ((-1259 |#4|) $)) (-15 -1779 (|#2| $)) (-15 -1507 ((-1259 |#4|) $)) (-15 -1517 (|#1| $)) (-15 -2867 ($ $)) (-15 -2566 (|#4| (-768) (-1259 |#4|)))))
-((-1754 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-1779 ((|#2| $) 71)) (-3170 (($ (-1259 |#4|)) 27) (($ (-413 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1035 |#2|)))) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 37)) (-3941 (((-1259 |#4|) $) 28)) (-4327 (($) 25 T CONST)) (-1686 (((-112) $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ $ $) 82)))
-(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-723) (-10 -8 (-15 -3941 ((-1259 |#4|) $)) (-15 -1779 (|#2| $)) (-15 -3170 ($ (-1259 |#4|))) (IF (|has| |#4| (-1035 |#2|)) (-15 -3170 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-989 |#1|) (-1235 |#2|) (-409 |#2| |#3|) (-1259 |#4|)) (T -414))
-((-3941 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-1779 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1259 *5)))) (-3170 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3170 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1035 *4)) (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))))
-(-13 (-723) (-10 -8 (-15 -3941 ((-1259 |#4|) $)) (-15 -1779 (|#2| $)) (-15 -3170 ($ (-1259 |#4|))) (IF (|has| |#4| (-1035 |#2|)) (-15 -3170 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-2082 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
-(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))))
-(-10 -7 (-15 -2082 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1950 (((-3 $ "failed")) 99)) (-3165 (((-1259 (-685 |#2|)) (-1259 $)) NIL) (((-1259 (-685 |#2|))) 104)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) 97)) (-2661 (((-3 $ "failed")) 96)) (-2685 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 115)) (-1725 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 123)) (-4089 (((-1166 (-949 |#2|))) 65)) (-1870 ((|#2| (-1259 $)) NIL) ((|#2|) 119)) (-2910 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 125)) (-4280 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) 95)) (-3979 (((-3 $ "failed")) 87)) (-3449 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 113)) (-1549 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 121)) (-3743 (((-1166 (-949 |#2|))) 64)) (-2291 ((|#2| (-1259 $)) NIL) ((|#2|) 117)) (-3072 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 124) (((-685 |#2|) (-1259 $)) 133)) (-2127 (((-1259 |#2|) $) 109) (($ (-1259 |#2|)) 111)) (-4339 (((-641 (-949 |#2|)) (-1259 $)) NIL) (((-641 (-949 |#2|))) 107)) (-3021 (($ (-685 |#2|) $) 103)))
-(((-416 |#1| |#2|) (-10 -8 (-15 -3021 (|#1| (-685 |#2|) |#1|)) (-15 -4089 ((-1166 (-949 |#2|)))) (-15 -3743 ((-1166 (-949 |#2|)))) (-15 -1725 ((-685 |#2|) |#1|)) (-15 -1549 ((-685 |#2|) |#1|)) (-15 -2685 ((-685 |#2|))) (-15 -3449 ((-685 |#2|))) (-15 -1870 (|#2|)) (-15 -2291 (|#2|)) (-15 -2127 (|#1| (-1259 |#2|))) (-15 -2127 ((-1259 |#2|) |#1|)) (-15 -2910 (|#1| (-1259 |#2|))) (-15 -4339 ((-641 (-949 |#2|)))) (-15 -3165 ((-1259 (-685 |#2|)))) (-15 -3072 ((-685 |#2|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1|)) (-15 -1950 ((-3 |#1| "failed"))) (-15 -2661 ((-3 |#1| "failed"))) (-15 -3979 ((-3 |#1| "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| |#1|) (|:| -3941 (-641 |#1|))) "failed"))) (-15 -4280 ((-3 (-2 (|:| |particular| |#1|) (|:| -3941 (-641 |#1|))) "failed"))) (-15 -2685 ((-685 |#2|) (-1259 |#1|))) (-15 -3449 ((-685 |#2|) (-1259 |#1|))) (-15 -1870 (|#2| (-1259 |#1|))) (-15 -2291 (|#2| (-1259 |#1|))) (-15 -2910 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1725 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1549 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3165 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -4339 ((-641 (-949 |#2|)) (-1259 |#1|)))) (-417 |#2|) (-172)) (T -416))
-((-3165 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-4339 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2291 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1870 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-3449 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-2685 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3743 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-4089 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))))
-(-10 -8 (-15 -3021 (|#1| (-685 |#2|) |#1|)) (-15 -4089 ((-1166 (-949 |#2|)))) (-15 -3743 ((-1166 (-949 |#2|)))) (-15 -1725 ((-685 |#2|) |#1|)) (-15 -1549 ((-685 |#2|) |#1|)) (-15 -2685 ((-685 |#2|))) (-15 -3449 ((-685 |#2|))) (-15 -1870 (|#2|)) (-15 -2291 (|#2|)) (-15 -2127 (|#1| (-1259 |#2|))) (-15 -2127 ((-1259 |#2|) |#1|)) (-15 -2910 (|#1| (-1259 |#2|))) (-15 -4339 ((-641 (-949 |#2|)))) (-15 -3165 ((-1259 (-685 |#2|)))) (-15 -3072 ((-685 |#2|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1|)) (-15 -1950 ((-3 |#1| "failed"))) (-15 -2661 ((-3 |#1| "failed"))) (-15 -3979 ((-3 |#1| "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| |#1|) (|:| -3941 (-641 |#1|))) "failed"))) (-15 -4280 ((-3 (-2 (|:| |particular| |#1|) (|:| -3941 (-641 |#1|))) "failed"))) (-15 -2685 ((-685 |#2|) (-1259 |#1|))) (-15 -3449 ((-685 |#2|) (-1259 |#1|))) (-15 -1870 (|#2| (-1259 |#1|))) (-15 -2291 (|#2| (-1259 |#1|))) (-15 -2910 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3072 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3072 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1725 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1549 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3165 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -4339 ((-641 (-949 |#2|)) (-1259 |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-1950 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) 19)) (-3165 (((-1259 (-685 |#1|)) (-1259 $)) 78) (((-1259 (-685 |#1|))) 100)) (-3233 (((-1259 $)) 81)) (-3760 (($) 17 T CONST)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-2661 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-2685 (((-685 |#1|) (-1259 $)) 65) (((-685 |#1|)) 92)) (-4349 ((|#1| $) 74)) (-1725 (((-685 |#1|) $ (-1259 $)) 76) (((-685 |#1|) $) 90)) (-3828 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-4089 (((-1166 (-949 |#1|))) 88 (|has| |#1| (-363)))) (-1864 (($ $ (-918)) 28)) (-3158 ((|#1| $) 72)) (-3261 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-1870 ((|#1| (-1259 $)) 67) ((|#1|) 94)) (-3660 (((-1166 |#1|) $) 63)) (-3202 (((-112)) 57)) (-2910 (($ (-1259 |#1|) (-1259 $)) 69) (($ (-1259 |#1|)) 98)) (-1926 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-4224 (((-918)) 80)) (-1703 (((-112)) 54)) (-2544 (($ $ (-918)) 33)) (-2053 (((-112)) 50)) (-2824 (((-112)) 48)) (-3222 (((-112)) 52)) (-4280 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-3979 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-3449 (((-685 |#1|) (-1259 $)) 66) (((-685 |#1|)) 93)) (-3899 ((|#1| $) 75)) (-1549 (((-685 |#1|) $ (-1259 $)) 77) (((-685 |#1|) $) 91)) (-3647 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-3743 (((-1166 (-949 |#1|))) 89 (|has| |#1| (-363)))) (-3229 (($ $ (-918)) 29)) (-4009 ((|#1| $) 73)) (-2883 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-2291 ((|#1| (-1259 $)) 68) ((|#1|) 95)) (-1563 (((-1166 |#1|) $) 64)) (-3734 (((-112)) 58)) (-4202 (((-1152) $) 9)) (-1995 (((-112)) 49)) (-2187 (((-112)) 51)) (-1756 (((-112)) 53)) (-3802 (((-1114) $) 10)) (-3015 (((-112)) 56)) (-4382 ((|#1| $ (-564)) 101)) (-3072 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70) (((-1259 |#1|) $) 103) (((-685 |#1|) (-1259 $)) 102)) (-2127 (((-1259 |#1|) $) 97) (($ (-1259 |#1|)) 96)) (-4339 (((-641 (-949 |#1|)) (-1259 $)) 79) (((-641 (-949 |#1|))) 99)) (-1762 (($ $ $) 25)) (-2060 (((-112)) 62)) (-1765 (((-859) $) 11)) (-3941 (((-1259 $)) 104)) (-2663 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-1850 (($ $ $ $) 26)) (-3730 (((-112)) 60)) (-3021 (($ (-685 |#1|) $) 87)) (-3008 (($ $ $) 24)) (-1379 (((-112)) 61)) (-3689 (((-112)) 59)) (-2323 (((-112)) 55)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-2313 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 35)))
+(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2313 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-989 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1035 |#2|)) (-307) (-989 |#5|) (-1235 |#6|) (-13 (-409 |#6| |#7|) (-1035 |#6|))) (T -412))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-989 *5)) (-4 *7 (-1235 *6)) (-4 *8 (-13 (-409 *6 *7) (-1035 *6))) (-4 *9 (-307)) (-4 *10 (-989 *9)) (-4 *11 (-1235 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1035 *10))))))
+(-10 -7 (-15 -2313 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|))))
+((-3702 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-4355 ((|#4| (-768) (-1259 |#4|)) 60)) (-2340 (((-112) $) NIL)) (-1655 (((-1259 |#4|) $) 17)) (-2217 ((|#2| $) 55)) (-1297 (($ $) 163)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 108)) (-3952 (($ (-1259 |#4|)) 107)) (-3844 (((-1114) $) NIL)) (-1668 ((|#1| $) 18)) (-1953 (($ $ $) NIL)) (-3217 (($ $ $) NIL)) (-3714 (((-859) $) 153)) (-4339 (((-1259 |#4|) $) 146)) (-4323 (($) 11 T CONST)) (-1720 (((-112) $ $) 41)) (-1841 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 139)) (* (($ $ $) 135)))
+(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -3952 ($ (-1259 |#4|))) (-15 -4339 ((-1259 |#4|) $)) (-15 -2217 (|#2| $)) (-15 -1655 ((-1259 |#4|) $)) (-15 -1668 (|#1| $)) (-15 -1297 ($ $)) (-15 -4355 (|#4| (-768) (-1259 |#4|))))) (-307) (-989 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1035 |#2|))) (T -413))
+((-3952 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-4339 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) (-2217 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1035 *2))))) (-1655 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) (-1668 (*1 *2 *1) (-12 (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) (-1297 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) (-4355 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1259 *2)) (-4 *5 (-307)) (-4 *6 (-989 *5)) (-4 *2 (-13 (-409 *6 *7) (-1035 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6)))))
+(-13 (-473) (-10 -8 (-15 -3952 ($ (-1259 |#4|))) (-15 -4339 ((-1259 |#4|) $)) (-15 -2217 (|#2| $)) (-15 -1655 ((-1259 |#4|) $)) (-15 -1668 (|#1| $)) (-15 -1297 ($ $)) (-15 -4355 (|#4| (-768) (-1259 |#4|)))))
+((-3702 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-2217 ((|#2| $) 71)) (-2473 (($ (-1259 |#4|)) 27) (($ (-413 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1035 |#2|)))) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 37)) (-4339 (((-1259 |#4|) $) 28)) (-4323 (($) 25 T CONST)) (-1720 (((-112) $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ $ $) 82)))
+(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-723) (-10 -8 (-15 -4339 ((-1259 |#4|) $)) (-15 -2217 (|#2| $)) (-15 -2473 ($ (-1259 |#4|))) (IF (|has| |#4| (-1035 |#2|)) (-15 -2473 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-989 |#1|) (-1235 |#2|) (-409 |#2| |#3|) (-1259 |#4|)) (T -414))
+((-4339 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-2217 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1259 *5)))) (-2473 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2473 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1035 *4)) (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))))
+(-13 (-723) (-10 -8 (-15 -4339 ((-1259 |#4|) $)) (-15 -2217 (|#2| $)) (-15 -2473 ($ (-1259 |#4|))) (IF (|has| |#4| (-1035 |#2|)) (-15 -2473 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-2313 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
+(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))))
+(-10 -7 (-15 -2313 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1425 (((-3 $ "failed")) 99)) (-2426 (((-1259 (-685 |#2|)) (-1259 $)) NIL) (((-1259 (-685 |#2|))) 104)) (-1830 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) 97)) (-2911 (((-3 $ "failed")) 96)) (-3102 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 115)) (-2921 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 123)) (-3176 (((-1166 (-949 |#2|))) 65)) (-1907 ((|#2| (-1259 $)) NIL) ((|#2|) 119)) (-3566 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 125)) (-1303 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) 95)) (-1566 (((-3 $ "failed")) 87)) (-3276 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 113)) (-1847 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 121)) (-3050 (((-1166 (-949 |#2|))) 64)) (-3531 ((|#2| (-1259 $)) NIL) ((|#2|) 117)) (-3867 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 124) (((-685 |#2|) (-1259 $)) 133)) (-2374 (((-1259 |#2|) $) 109) (($ (-1259 |#2|)) 111)) (-3602 (((-641 (-949 |#2|)) (-1259 $)) NIL) (((-641 (-949 |#2|))) 107)) (-1996 (($ (-685 |#2|) $) 103)))
+(((-416 |#1| |#2|) (-10 -8 (-15 -1996 (|#1| (-685 |#2|) |#1|)) (-15 -3176 ((-1166 (-949 |#2|)))) (-15 -3050 ((-1166 (-949 |#2|)))) (-15 -2921 ((-685 |#2|) |#1|)) (-15 -1847 ((-685 |#2|) |#1|)) (-15 -3102 ((-685 |#2|))) (-15 -3276 ((-685 |#2|))) (-15 -1907 (|#2|)) (-15 -3531 (|#2|)) (-15 -2374 (|#1| (-1259 |#2|))) (-15 -2374 ((-1259 |#2|) |#1|)) (-15 -3566 (|#1| (-1259 |#2|))) (-15 -3602 ((-641 (-949 |#2|)))) (-15 -2426 ((-1259 (-685 |#2|)))) (-15 -3867 ((-685 |#2|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1|)) (-15 -1425 ((-3 |#1| "failed"))) (-15 -2911 ((-3 |#1| "failed"))) (-15 -1566 ((-3 |#1| "failed"))) (-15 -1830 ((-3 (-2 (|:| |particular| |#1|) (|:| -4339 (-641 |#1|))) "failed"))) (-15 -1303 ((-3 (-2 (|:| |particular| |#1|) (|:| -4339 (-641 |#1|))) "failed"))) (-15 -3102 ((-685 |#2|) (-1259 |#1|))) (-15 -3276 ((-685 |#2|) (-1259 |#1|))) (-15 -1907 (|#2| (-1259 |#1|))) (-15 -3531 (|#2| (-1259 |#1|))) (-15 -3566 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2921 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1847 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2426 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -3602 ((-641 (-949 |#2|)) (-1259 |#1|)))) (-417 |#2|) (-172)) (T -416))
+((-2426 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3602 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3531 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1907 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-3276 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3102 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3050 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3176 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))))
+(-10 -8 (-15 -1996 (|#1| (-685 |#2|) |#1|)) (-15 -3176 ((-1166 (-949 |#2|)))) (-15 -3050 ((-1166 (-949 |#2|)))) (-15 -2921 ((-685 |#2|) |#1|)) (-15 -1847 ((-685 |#2|) |#1|)) (-15 -3102 ((-685 |#2|))) (-15 -3276 ((-685 |#2|))) (-15 -1907 (|#2|)) (-15 -3531 (|#2|)) (-15 -2374 (|#1| (-1259 |#2|))) (-15 -2374 ((-1259 |#2|) |#1|)) (-15 -3566 (|#1| (-1259 |#2|))) (-15 -3602 ((-641 (-949 |#2|)))) (-15 -2426 ((-1259 (-685 |#2|)))) (-15 -3867 ((-685 |#2|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1|)) (-15 -1425 ((-3 |#1| "failed"))) (-15 -2911 ((-3 |#1| "failed"))) (-15 -1566 ((-3 |#1| "failed"))) (-15 -1830 ((-3 (-2 (|:| |particular| |#1|) (|:| -4339 (-641 |#1|))) "failed"))) (-15 -1303 ((-3 (-2 (|:| |particular| |#1|) (|:| -4339 (-641 |#1|))) "failed"))) (-15 -3102 ((-685 |#2|) (-1259 |#1|))) (-15 -3276 ((-685 |#2|) (-1259 |#1|))) (-15 -1907 (|#2| (-1259 |#1|))) (-15 -3531 (|#2| (-1259 |#1|))) (-15 -3566 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -3867 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -3867 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -2921 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1847 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -2426 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -3602 ((-641 (-949 |#2|)) (-1259 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-1425 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) 19)) (-2426 (((-1259 (-685 |#1|)) (-1259 $)) 78) (((-1259 (-685 |#1|))) 100)) (-1838 (((-1259 $)) 81)) (-3180 (($) 17 T CONST)) (-1830 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-2911 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-3102 (((-685 |#1|) (-1259 $)) 65) (((-685 |#1|)) 92)) (-3693 ((|#1| $) 74)) (-2921 (((-685 |#1|) $ (-1259 $)) 76) (((-685 |#1|) $) 90)) (-2684 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-3176 (((-1166 (-949 |#1|))) 88 (|has| |#1| (-363)))) (-1842 (($ $ (-918)) 28)) (-2345 ((|#1| $) 72)) (-2119 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-1907 ((|#1| (-1259 $)) 67) ((|#1|) 94)) (-3448 (((-1166 |#1|) $) 63)) (-2790 (((-112)) 57)) (-3566 (($ (-1259 |#1|) (-1259 $)) 69) (($ (-1259 |#1|)) 98)) (-4272 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-1595 (((-918)) 80)) (-3882 (((-112)) 54)) (-4133 (($ $ (-918)) 33)) (-3113 (((-112)) 50)) (-2111 (((-112)) 48)) (-1717 (((-112)) 52)) (-1303 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-1566 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-3276 (((-685 |#1|) (-1259 $)) 66) (((-685 |#1|)) 93)) (-2112 ((|#1| $) 75)) (-1847 (((-685 |#1|) $ (-1259 $)) 77) (((-685 |#1|) $) 91)) (-1524 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-3050 (((-1166 (-949 |#1|))) 89 (|has| |#1| (-363)))) (-1788 (($ $ (-918)) 29)) (-3645 ((|#1| $) 73)) (-1487 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-3531 ((|#1| (-1259 $)) 68) ((|#1|) 95)) (-1980 (((-1166 |#1|) $) 64)) (-2989 (((-112)) 58)) (-1868 (((-1152) $) 9)) (-3700 (((-112)) 49)) (-1981 (((-112)) 51)) (-3172 (((-112)) 53)) (-3844 (((-1114) $) 10)) (-1458 (((-112)) 56)) (-4382 ((|#1| $ (-564)) 101)) (-3867 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70) (((-1259 |#1|) $) 103) (((-685 |#1|) (-1259 $)) 102)) (-2374 (((-1259 |#1|) $) 97) (($ (-1259 |#1|)) 96)) (-3602 (((-641 (-949 |#1|)) (-1259 $)) 79) (((-641 (-949 |#1|))) 99)) (-3217 (($ $ $) 25)) (-3168 (((-112)) 62)) (-3714 (((-859) $) 11)) (-4339 (((-1259 $)) 104)) (-2919 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-1687 (($ $ $ $) 26)) (-2954 (((-112)) 60)) (-1996 (($ (-685 |#1|) $) 87)) (-1390 (($ $ $) 24)) (-3808 (((-112)) 61)) (-3738 (((-112)) 59)) (-3851 (((-112)) 55)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-417 |#1|) (-140) (-172)) (T -417))
-((-3941 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3165 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3))))) (-4339 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-949 *3))))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-2291 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1870 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3449 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-2685 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-3743 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-949 *3))))) (-4089 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-949 *3))))) (-3021 (*1 *1 *2 *1) (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))))
-(-13 (-367 |t#1|) (-10 -8 (-15 -3941 ((-1259 $))) (-15 -3072 ((-1259 |t#1|) $)) (-15 -3072 ((-685 |t#1|) (-1259 $))) (-15 -4382 (|t#1| $ (-564))) (-15 -3165 ((-1259 (-685 |t#1|)))) (-15 -4339 ((-641 (-949 |t#1|)))) (-15 -2910 ($ (-1259 |t#1|))) (-15 -2127 ((-1259 |t#1|) $)) (-15 -2127 ($ (-1259 |t#1|))) (-15 -2291 (|t#1|)) (-15 -1870 (|t#1|)) (-15 -3449 ((-685 |t#1|))) (-15 -2685 ((-685 |t#1|))) (-15 -1549 ((-685 |t#1|) $)) (-15 -1725 ((-685 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -3743 ((-1166 (-949 |t#1|)))) (-15 -4089 ((-1166 (-949 |t#1|))))) |%noBranch|) (-15 -3021 ($ (-685 |t#1|) $))))
+((-4339 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-2426 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3))))) (-3602 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-949 *3))))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-2374 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-3531 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1907 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3276 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-3102 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-3050 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-949 *3))))) (-3176 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-949 *3))))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))))
+(-13 (-367 |t#1|) (-10 -8 (-15 -4339 ((-1259 $))) (-15 -3867 ((-1259 |t#1|) $)) (-15 -3867 ((-685 |t#1|) (-1259 $))) (-15 -4382 (|t#1| $ (-564))) (-15 -2426 ((-1259 (-685 |t#1|)))) (-15 -3602 ((-641 (-949 |t#1|)))) (-15 -3566 ($ (-1259 |t#1|))) (-15 -2374 ((-1259 |t#1|) $)) (-15 -2374 ($ (-1259 |t#1|))) (-15 -3531 (|t#1|)) (-15 -1907 (|t#1|)) (-15 -3276 ((-685 |t#1|))) (-15 -3102 ((-685 |t#1|))) (-15 -1847 ((-685 |t#1|) $)) (-15 -2921 ((-685 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -3050 ((-1166 (-949 |t#1|)))) (-15 -3176 ((-1166 (-949 |t#1|))))) |%noBranch|) (-15 -1996 ($ (-685 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-367 |#1|) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-717) . T) ((-741 |#1|) . T) ((-758) . T) ((-1052 |#1|) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 60)) (-1496 (($ $) 78)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 190)) (-1840 (($ $) NIL)) (-4035 (((-112) $) 48)) (-1950 ((|#1| $) 16)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-1213)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-3511 (($ |#1| (-564)) 43)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 148)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 74)) (-1926 (((-3 $ "failed") $) 164)) (-1978 (((-3 (-407 (-564)) "failed") $) 84 (|has| |#1| (-545)))) (-2709 (((-112) $) 80 (|has| |#1| (-545)))) (-3424 (((-407 (-564)) $) 91 (|has| |#1| (-545)))) (-4303 (($ |#1| (-564)) 45)) (-3241 (((-112) $) 212 (|has| |#1| (-1213)))) (-2419 (((-112) $) 62)) (-1921 (((-768) $) 51)) (-3890 (((-3 "nil" "sqfr" "irred" "prime") $ (-564)) 174)) (-2902 ((|#1| $ (-564)) 173)) (-2901 (((-564) $ (-564)) 172)) (-3341 (($ |#1| (-564)) 42)) (-2082 (($ (-1 |#1| |#1|) $) 182)) (-1339 (($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564))))) 79)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4202 (((-1152) $) NIL)) (-2561 (($ |#1| (-564)) 44)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 191 (|has| |#1| (-452)))) (-1677 (($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime")) 41)) (-2362 (((-641 (-2 (|:| -4006 |#1|) (|:| -3747 (-564)))) $) 73)) (-3418 (((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $) 12)) (-4006 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-1343 (((-3 $ "failed") $ $) 175)) (-3747 (((-564) $) 167)) (-2134 ((|#1| $) 75)) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 100 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 106 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) $) NIL (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-1170)) (-641 $)) 107 (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-294 $))) 103 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-641 $) (-641 $)) NIL (|has| |#1| (-309 $)))) (-4382 (($ $ |#1|) 92 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-286 $ $)))) (-3226 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) 181)) (-2127 (((-536) $) 39 (|has| |#1| (-612 (-536)))) (((-379) $) 113 (|has| |#1| (-1019))) (((-225) $) 119 (|has| |#1| (-1019)))) (-1765 (((-859) $) 146) (($ (-564)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564)))))) (-1965 (((-768)) 67 T CONST)) (-1582 (((-112) $ $) NIL)) (-4317 (($) 53 T CONST)) (-4327 (($) 52 T CONST)) (-3190 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1686 (((-112) $ $) 159)) (-1783 (($ $) 161) (($ $ $) NIL)) (-1771 (($ $ $) 179)) (** (($ $ (-918)) NIL) (($ $ (-768)) 125)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-418 |#1|) (-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -2134 (|#1| $)) (-15 -3747 ((-564) $)) (-15 -1339 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3418 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3341 ($ |#1| (-564))) (-15 -2362 ((-641 (-2 (|:| -4006 |#1|) (|:| -3747 (-564)))) $)) (-15 -2561 ($ |#1| (-564))) (-15 -2901 ((-564) $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -3890 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -1921 ((-768) $)) (-15 -4303 ($ |#1| (-564))) (-15 -3511 ($ |#1| (-564))) (-15 -1677 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1950 (|#1| $)) (-15 -1496 ($ $)) (-15 -2082 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|))) (-556)) (T -418))
-((-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) (-2134 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-564))))) (-4 *2 (-556)) (-5 *1 (-418 *2)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3341 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -4006 *3) (|:| -3747 (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2561 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2901 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3890 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-556)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-4303 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3511 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1677 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1950 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1496 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-1978 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))))
-(-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -2134 (|#1| $)) (-15 -3747 ((-564) $)) (-15 -1339 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3418 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3341 ($ |#1| (-564))) (-15 -2362 ((-641 (-2 (|:| -4006 |#1|) (|:| -3747 (-564)))) $)) (-15 -2561 ($ |#1| (-564))) (-15 -2901 ((-564) $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -3890 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -1921 ((-768) $)) (-15 -4303 ($ |#1| (-564))) (-15 -3511 ($ |#1| (-564))) (-15 -1677 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1950 (|#1| $)) (-15 -1496 ($ $)) (-15 -2082 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|)))
-((-2203 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 28)) (-3116 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 17)))
-(((-419 |#1|) (-10 -7 (-15 -2203 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3116 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-556)) (T -419))
-((-3116 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))) (-2203 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4)))))
-(-10 -7 (-15 -2203 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3116 ((-418 |#1|) (-418 |#1|) (-418 |#1|))))
-((-3469 ((|#2| |#2|) 186)) (-2061 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112)) 60)))
-(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2061 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -3469 (|#2| |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -420))
-((-3469 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3))) (-14 *4 (-1170)) (-14 *5 *2))) (-2061 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-14 *6 (-1170)) (-14 *7 *3))))
-(-10 -7 (-15 -2061 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -3469 (|#2| |#2|)))
-((-2082 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1046) (-847)) (-430 |#1|) (-13 (-1046) (-847)) (-430 |#3|)) (T -421))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1046) (-847))) (-4 *6 (-13 (-1046) (-847))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5)))))
-(-10 -7 (-15 -2082 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3469 ((|#2| |#2|) 103)) (-2394 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 52)) (-3763 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 170)))
-(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2394 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -3763 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -3469 (|#2| |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|) (-10 -8 (-15 -1765 ($ |#3|)))) (-845) (-13 (-1237 |#2| |#3|) (-363) (-1194) (-10 -8 (-15 -3226 ($ $)) (-15 -3591 ($ $)))) (-980 |#4|) (-1170)) (T -422))
-((-3469 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -1765 ($ *4))))) (-4 *4 (-845)) (-4 *5 (-13 (-1237 *2 *4) (-363) (-1194) (-10 -8 (-15 -3226 ($ $)) (-15 -3591 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-980 *5)) (-14 *7 (-1170)))) (-3763 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -1765 ($ *7))))) (-4 *7 (-845)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -3226 ($ $)) (-15 -3591 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) (-14 *10 (-1170)))) (-2394 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -1765 ($ *7))))) (-4 *7 (-845)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -3226 ($ $)) (-15 -3591 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) (-14 *10 (-1170)))))
-(-10 -7 (-15 -2394 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -3763 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -3469 (|#2| |#2|)))
-((-4077 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4367 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2082 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4367 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4077 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1094) (-425 |#1|) (-1094) (-425 |#3|)) (T -423))
-((-4077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-4367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5)))))
-(-10 -7 (-15 -2082 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4367 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4077 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2010 (($) 52)) (-3423 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2032 (($ $ $) 45)) (-2723 (((-112) $ $) 34)) (-3042 (((-768)) 56)) (-3581 (($ (-641 |#2|)) 23) (($) NIL)) (-2542 (($) 67)) (-2081 (((-112) $ $) 15)) (-3571 ((|#2| $) 78)) (-1547 ((|#2| $) 76)) (-2209 (((-918) $) 71)) (-1617 (($ $ $) 41)) (-1403 (($ (-918)) 61)) (-2003 (($ $ |#2|) NIL) (($ $ $) 44)) (-3815 (((-768) (-1 (-112) |#2|) $) NIL) (((-768) |#2| $) 31)) (-1776 (($ (-641 |#2|)) 27)) (-3481 (($ $) 54)) (-1765 (((-859) $) 39)) (-2165 (((-768) $) 24)) (-4086 (($ (-641 |#2|)) 22) (($) NIL)) (-1686 (((-112) $ $) 19)))
-(((-424 |#1| |#2|) (-10 -8 (-15 -3042 ((-768))) (-15 -1403 (|#1| (-918))) (-15 -2209 ((-918) |#1|)) (-15 -2542 (|#1|)) (-15 -3571 (|#2| |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -2010 (|#1|)) (-15 -3481 (|#1| |#1|)) (-15 -2165 ((-768) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -2081 ((-112) |#1| |#1|)) (-15 -4086 (|#1|)) (-15 -4086 (|#1| (-641 |#2|))) (-15 -3581 (|#1|)) (-15 -3581 (|#1| (-641 |#2|))) (-15 -1617 (|#1| |#1| |#1|)) (-15 -2003 (|#1| |#1| |#1|)) (-15 -2003 (|#1| |#1| |#2|)) (-15 -2032 (|#1| |#1| |#1|)) (-15 -2723 ((-112) |#1| |#1|)) (-15 -3423 (|#1| |#1| |#1|)) (-15 -3423 (|#1| |#1| |#2|)) (-15 -3423 (|#1| |#2| |#1|)) (-15 -1776 (|#1| (-641 |#2|))) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1094)) (T -424))
-((-3042 (*1 *2) (-12 (-4 *4 (-1094)) (-5 *2 (-768)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
-(-10 -8 (-15 -3042 ((-768))) (-15 -1403 (|#1| (-918))) (-15 -2209 ((-918) |#1|)) (-15 -2542 (|#1|)) (-15 -3571 (|#2| |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -2010 (|#1|)) (-15 -3481 (|#1| |#1|)) (-15 -2165 ((-768) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -2081 ((-112) |#1| |#1|)) (-15 -4086 (|#1|)) (-15 -4086 (|#1| (-641 |#2|))) (-15 -3581 (|#1|)) (-15 -3581 (|#1| (-641 |#2|))) (-15 -1617 (|#1| |#1| |#1|)) (-15 -2003 (|#1| |#1| |#1|)) (-15 -2003 (|#1| |#1| |#2|)) (-15 -2032 (|#1| |#1| |#1|)) (-15 -2723 ((-112) |#1| |#1|)) (-15 -3423 (|#1| |#1| |#1|)) (-15 -3423 (|#1| |#1| |#2|)) (-15 -3423 (|#1| |#2| |#1|)) (-15 -1776 (|#1| (-641 |#2|))) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|)))
-((-1754 (((-112) $ $) 19)) (-2010 (($) 67 (|has| |#1| (-368)))) (-3423 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2032 (($ $ $) 78)) (-2723 (((-112) $ $) 79)) (-3263 (((-112) $ (-768)) 8)) (-3042 (((-768)) 61 (|has| |#1| (-368)))) (-3581 (($ (-641 |#1|)) 74) (($) 73)) (-4194 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3104 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2359 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-2542 (($) 64 (|has| |#1| (-368)))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2081 (((-112) $ $) 70)) (-2830 (((-112) $ (-768)) 9)) (-3571 ((|#1| $) 65 (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1547 ((|#1| $) 66 (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2209 (((-918) $) 63 (|has| |#1| (-368)))) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22)) (-1617 (($ $ $) 75)) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40)) (-1403 (($ (-918)) 62 (|has| |#1| (-368)))) (-3802 (((-1114) $) 21)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-2003 (($ $ |#1|) 77) (($ $ $) 76)) (-3784 (($) 49) (($ (-641 |#1|)) 48)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 50)) (-3481 (($ $) 68 (|has| |#1| (-368)))) (-1765 (((-859) $) 18)) (-2165 (((-768) $) 69)) (-4086 (($ (-641 |#1|)) 72) (($) 71)) (-2652 (($ (-641 |#1|)) 42)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20)) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 60)) (-2597 (($ $) 78)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 190)) (-1582 (($ $) NIL)) (-3897 (((-112) $) 48)) (-1425 ((|#1| $) 16)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-1213)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-2735 (($ |#1| (-564)) 43)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 148)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 74)) (-4272 (((-3 $ "failed") $) 164)) (-3502 (((-3 (-407 (-564)) "failed") $) 84 (|has| |#1| (-545)))) (-3309 (((-112) $) 80 (|has| |#1| (-545)))) (-3074 (((-407 (-564)) $) 91 (|has| |#1| (-545)))) (-1496 (($ |#1| (-564)) 45)) (-1926 (((-112) $) 212 (|has| |#1| (-1213)))) (-2340 (((-112) $) 62)) (-4226 (((-768) $) 51)) (-2028 (((-3 "nil" "sqfr" "irred" "prime") $ (-564)) 174)) (-3488 ((|#1| $ (-564)) 173)) (-3476 (((-564) $ (-564)) 172)) (-3440 (($ |#1| (-564)) 42)) (-2313 (($ (-1 |#1| |#1|) $) 182)) (-2423 (($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564))))) 79)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1868 (((-1152) $) NIL)) (-4309 (($ |#1| (-564)) 44)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 191 (|has| |#1| (-452)))) (-3605 (($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime")) 41)) (-3020 (((-641 (-2 (|:| -4139 |#1|) (|:| -3078 (-564)))) $) 73)) (-3028 (((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $) 12)) (-4139 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-1347 (((-3 $ "failed") $ $) 175)) (-3078 (((-564) $) 167)) (-4111 ((|#1| $) 75)) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 100 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 106 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) $) NIL (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-1170)) (-641 $)) 107 (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-294 $))) 103 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-641 $) (-641 $)) NIL (|has| |#1| (-309 $)))) (-4382 (($ $ |#1|) 92 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-286 $ $)))) (-2203 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) 181)) (-2374 (((-536) $) 39 (|has| |#1| (-612 (-536)))) (((-379) $) 113 (|has| |#1| (-1019))) (((-225) $) 119 (|has| |#1| (-1019)))) (-3714 (((-859) $) 146) (($ (-564)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564)))))) (-3379 (((-768)) 67 T CONST)) (-3979 (((-112) $ $) NIL)) (-4312 (($) 53 T CONST)) (-4323 (($) 52 T CONST)) (-2238 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1720 (((-112) $ $) 159)) (-1828 (($ $) 161) (($ $ $) NIL)) (-1814 (($ $ $) 179)) (** (($ $ (-918)) NIL) (($ $ (-768)) 125)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-418 |#1|) (-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -4111 (|#1| $)) (-15 -3078 ((-564) $)) (-15 -2423 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3028 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3440 ($ |#1| (-564))) (-15 -3020 ((-641 (-2 (|:| -4139 |#1|) (|:| -3078 (-564)))) $)) (-15 -4309 ($ |#1| (-564))) (-15 -3476 ((-564) $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -2028 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -4226 ((-768) $)) (-15 -1496 ($ |#1| (-564))) (-15 -2735 ($ |#1| (-564))) (-15 -3605 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1425 (|#1| $)) (-15 -2597 ($ $)) (-15 -2313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|))) (-556)) (T -418))
+((-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) (-4111 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2423 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-564))))) (-4 *2 (-556)) (-5 *1 (-418 *2)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3440 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -4139 *3) (|:| -3078 (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-4309 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3476 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2028 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-556)))) (-4226 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-1496 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2735 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3605 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1425 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2597 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-3502 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))))
+(-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -4111 (|#1| $)) (-15 -3078 ((-564) $)) (-15 -2423 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -3028 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -3440 ($ |#1| (-564))) (-15 -3020 ((-641 (-2 (|:| -4139 |#1|) (|:| -3078 (-564)))) $)) (-15 -4309 ($ |#1| (-564))) (-15 -3476 ((-564) $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -2028 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -4226 ((-768) $)) (-15 -1496 ($ |#1| (-564))) (-15 -2735 ($ |#1| (-564))) (-15 -3605 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1425 (|#1| $)) (-15 -2597 ($ $)) (-15 -2313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|)))
+((-2150 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 28)) (-3076 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 17)))
+(((-419 |#1|) (-10 -7 (-15 -2150 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3076 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-556)) (T -419))
+((-3076 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))) (-2150 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4)))))
+(-10 -7 (-15 -2150 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3076 ((-418 |#1|) (-418 |#1|) (-418 |#1|))))
+((-2317 ((|#2| |#2|) 186)) (-3177 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112)) 60)))
+(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3177 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2317 (|#2| |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -420))
+((-2317 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3))) (-14 *4 (-1170)) (-14 *5 *2))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-14 *6 (-1170)) (-14 *7 *3))))
+(-10 -7 (-15 -3177 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2317 (|#2| |#2|)))
+((-2313 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1046) (-847)) (-430 |#1|) (-13 (-1046) (-847)) (-430 |#3|)) (T -421))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1046) (-847))) (-4 *6 (-13 (-1046) (-847))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5)))))
+(-10 -7 (-15 -2313 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2317 ((|#2| |#2|) 103)) (-3246 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 52)) (-3206 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 170)))
+(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3246 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -3206 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2317 (|#2| |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|) (-10 -8 (-15 -3714 ($ |#3|)))) (-845) (-13 (-1237 |#2| |#3|) (-363) (-1194) (-10 -8 (-15 -2203 ($ $)) (-15 -4039 ($ $)))) (-980 |#4|) (-1170)) (T -422))
+((-2317 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -3714 ($ *4))))) (-4 *4 (-845)) (-4 *5 (-13 (-1237 *2 *4) (-363) (-1194) (-10 -8 (-15 -2203 ($ $)) (-15 -4039 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-980 *5)) (-14 *7 (-1170)))) (-3206 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -3714 ($ *7))))) (-4 *7 (-845)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -2203 ($ $)) (-15 -4039 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) (-14 *10 (-1170)))) (-3246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -3714 ($ *7))))) (-4 *7 (-845)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -2203 ($ $)) (-15 -4039 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) (-14 *10 (-1170)))))
+(-10 -7 (-15 -3246 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -3206 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2317 (|#2| |#2|)))
+((-3092 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1728 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2313 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1728 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3092 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1094) (-425 |#1|) (-1094) (-425 |#3|)) (T -423))
+((-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-1728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5)))))
+(-10 -7 (-15 -2313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1728 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3092 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3866 (($) 52)) (-3452 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2935 (($ $ $) 45)) (-2303 (((-112) $ $) 34)) (-2018 (((-768)) 56)) (-3633 (($ (-641 |#2|)) 23) (($) NIL)) (-2939 (($) 67)) (-2214 (((-112) $ $) 15)) (-3428 ((|#2| $) 78)) (-3413 ((|#2| $) 76)) (-4031 (((-918) $) 71)) (-4302 (($ $ $) 41)) (-3338 (($ (-918)) 61)) (-3796 (($ $ |#2|) NIL) (($ $ $) 44)) (-3855 (((-768) (-1 (-112) |#2|) $) NIL) (((-768) |#2| $) 31)) (-3725 (($ (-641 |#2|)) 27)) (-2432 (($ $) 54)) (-3714 (((-859) $) 39)) (-1754 (((-768) $) 24)) (-4208 (($ (-641 |#2|)) 22) (($) NIL)) (-1720 (((-112) $ $) 19)))
+(((-424 |#1| |#2|) (-10 -8 (-15 -2018 ((-768))) (-15 -3338 (|#1| (-918))) (-15 -4031 ((-918) |#1|)) (-15 -2939 (|#1|)) (-15 -3428 (|#2| |#1|)) (-15 -3413 (|#2| |#1|)) (-15 -3866 (|#1|)) (-15 -2432 (|#1| |#1|)) (-15 -1754 ((-768) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -4208 (|#1|)) (-15 -4208 (|#1| (-641 |#2|))) (-15 -3633 (|#1|)) (-15 -3633 (|#1| (-641 |#2|))) (-15 -4302 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2303 ((-112) |#1| |#1|)) (-15 -3452 (|#1| |#1| |#1|)) (-15 -3452 (|#1| |#1| |#2|)) (-15 -3452 (|#1| |#2| |#1|)) (-15 -3725 (|#1| (-641 |#2|))) (-15 -3855 ((-768) |#2| |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1094)) (T -424))
+((-2018 (*1 *2) (-12 (-4 *4 (-1094)) (-5 *2 (-768)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
+(-10 -8 (-15 -2018 ((-768))) (-15 -3338 (|#1| (-918))) (-15 -4031 ((-918) |#1|)) (-15 -2939 (|#1|)) (-15 -3428 (|#2| |#1|)) (-15 -3413 (|#2| |#1|)) (-15 -3866 (|#1|)) (-15 -2432 (|#1| |#1|)) (-15 -1754 ((-768) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -4208 (|#1|)) (-15 -4208 (|#1| (-641 |#2|))) (-15 -3633 (|#1|)) (-15 -3633 (|#1| (-641 |#2|))) (-15 -4302 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2303 ((-112) |#1| |#1|)) (-15 -3452 (|#1| |#1| |#1|)) (-15 -3452 (|#1| |#1| |#2|)) (-15 -3452 (|#1| |#2| |#1|)) (-15 -3725 (|#1| (-641 |#2|))) (-15 -3855 ((-768) |#2| |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|)))
+((-3702 (((-112) $ $) 19)) (-3866 (($) 67 (|has| |#1| (-368)))) (-3452 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2935 (($ $ $) 78)) (-2303 (((-112) $ $) 79)) (-2141 (((-112) $ (-768)) 8)) (-2018 (((-768)) 61 (|has| |#1| (-368)))) (-3633 (($ (-641 |#1|)) 74) (($) 73)) (-1773 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2084 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ |#1| $) 47 (|has| $ (-6 -4412))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4412)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4412)))) (-2939 (($) 64 (|has| |#1| (-368)))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2214 (((-112) $ $) 70)) (-2173 (((-112) $ (-768)) 9)) (-3428 ((|#1| $) 65 (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3413 ((|#1| $) 66 (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4031 (((-918) $) 63 (|has| |#1| (-368)))) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22)) (-4302 (($ $ $) 75)) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40)) (-3338 (($ (-918)) 62 (|has| |#1| (-368)))) (-3844 (((-1114) $) 21)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3796 (($ $ |#1|) 77) (($ $ $) 76)) (-3372 (($) 49) (($ (-641 |#1|)) 48)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 50)) (-2432 (($ $) 68 (|has| |#1| (-368)))) (-3714 (((-859) $) 18)) (-1754 (((-768) $) 69)) (-4208 (($ (-641 |#1|)) 72) (($) 71)) (-3976 (($ (-641 |#1|)) 42)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20)) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-425 |#1|) (-140) (-1094)) (T -425))
-((-2165 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-768)))) (-3481 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))) (-2010 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))) (-1547 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))))
-(-13 (-229 |t#1|) (-1092 |t#1|) (-10 -8 (-6 -4411) (-15 -2165 ((-768) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -3481 ($ $)) (-15 -2010 ($))) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-15 -1547 (|t#1| $)) (-15 -3571 (|t#1| $))) |%noBranch|)))
+((-1754 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-768)))) (-2432 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))) (-3866 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-3428 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))))
+(-13 (-229 |t#1|) (-1092 |t#1|) (-10 -8 (-6 -4412) (-15 -1754 ((-768) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -2432 ($ $)) (-15 -3866 ($))) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-15 -3413 (|t#1| $)) (-15 -3428 (|t#1| $))) |%noBranch|)))
(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T))
-((-3653 (((-585 |#2|) |#2| (-1170)) 38)) (-1498 (((-585 |#2|) |#2| (-1170)) 21)) (-3194 ((|#2| |#2| (-1170)) 26)))
-(((-426 |#1| |#2|) (-10 -7 (-15 -1498 ((-585 |#2|) |#2| (-1170))) (-15 -3653 ((-585 |#2|) |#2| (-1170))) (-15 -3194 (|#2| |#2| (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -426))
-((-3194 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4))))) (-3653 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))) (-1498 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))))
-(-10 -7 (-15 -1498 ((-585 |#2|) |#2| (-1170))) (-15 -3653 ((-585 |#2|) |#2| (-1170))) (-15 -3194 (|#2| |#2| (-1170))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2755 (($ |#2| |#1|) 37)) (-2926 (($ |#2| |#1|) 35)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-1965 (((-768)) NIL T CONST)) (-4317 (($) 10 T CONST)) (-4327 (($) 16 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 36)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4398)) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|) |%noBranch|) (-15 -1765 ($ |#1|)) (-15 -1765 ($ (-331 |#2|))) (-15 -2755 ($ |#2| |#1|)) (-15 -2926 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-564)))) (-13 (-847) (-21))) (T -427))
-((-1765 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) (-4 *3 (-13 (-847) (-21))))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-847) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) (-2755 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-847) (-21))))) (-2926 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-847) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4398)) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|) |%noBranch|) (-15 -1765 ($ |#1|)) (-15 -1765 ($ (-331 |#2|))) (-15 -2755 ($ |#2| |#1|)) (-15 -2926 ($ |#2| |#1|))))
-((-3591 (((-3 |#2| (-641 |#2|)) |#2| (-1170)) 115)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -3591 ((-3 |#2| (-641 |#2|)) |#2| (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -428))
-((-3591 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1194) (-956) (-29 *5))))))
-(-10 -7 (-15 -3591 ((-3 |#2| (-641 |#2|)) |#2| (-1170))))
-((-4170 (((-641 (-1170)) $) 80)) (-3964 (((-407 (-1166 $)) $ (-610 $)) 310)) (-2662 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) 274)) (-2013 (((-3 (-610 $) "failed") $) NIL) (((-3 (-1170) "failed") $) 83) (((-3 (-564) "failed") $) NIL) (((-3 |#2| "failed") $) 270) (((-3 (-407 (-949 |#2|)) "failed") $) 360) (((-3 (-949 |#2|) "failed") $) 272) (((-3 (-407 (-564)) "failed") $) NIL)) (-2064 (((-610 $) $) NIL) (((-1170) $) 30) (((-564) $) NIL) ((|#2| $) 268) (((-407 (-949 |#2|)) $) 342) (((-949 |#2|) $) 269) (((-407 (-564)) $) NIL)) (-1826 (((-114) (-114)) 49)) (-1957 (($ $) 98)) (-4293 (((-3 (-610 $) "failed") $) 265)) (-3943 (((-641 (-610 $)) $) 266)) (-1964 (((-3 (-641 $) "failed") $) 284)) (-3221 (((-3 (-2 (|:| |val| $) (|:| -3747 (-564))) "failed") $) 291)) (-1295 (((-3 (-641 $) "failed") $) 282)) (-2375 (((-3 (-2 (|:| -1662 (-564)) (|:| |var| (-610 $))) "failed") $) 301)) (-1691 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $) 288) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-114)) 252) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-1170)) 254)) (-4285 (((-112) $) 19)) (-4298 ((|#2| $) 21)) (-2407 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 273) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 108) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) 62) (($ $ (-641 (-1170))) 277) (($ $) 278) (($ $ (-114) $ (-1170)) 65) (($ $ (-641 (-114)) (-641 $) (-1170)) 72) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 119) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 279) (($ $ (-1170) (-768) (-1 $ (-641 $))) 104) (($ $ (-1170) (-768) (-1 $ $)) 103)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) 118)) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 275)) (-3762 (($ $) 321)) (-2127 (((-889 (-564)) $) 294) (((-889 (-379)) $) 298) (($ (-418 $)) 356) (((-536) $) NIL)) (-1765 (((-859) $) 276) (($ (-610 $)) 92) (($ (-1170)) 26) (($ |#2|) NIL) (($ (-1119 |#2| (-610 $))) NIL) (($ (-407 |#2|)) 326) (($ (-949 (-407 |#2|))) 365) (($ (-407 (-949 (-407 |#2|)))) 338) (($ (-407 (-949 |#2|))) 332) (($ $) NIL) (($ (-949 |#2|)) 214) (($ (-407 (-564))) 370) (($ (-564)) NIL)) (-1965 (((-768)) 87)) (-1573 (((-112) (-114)) 44)) (-4060 (($ (-1170) $) 33) (($ (-1170) $ $) 34) (($ (-1170) $ $ $) 35) (($ (-1170) $ $ $ $) 36) (($ (-1170) (-641 $)) 41)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#2| $) 303) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL)))
-(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-918) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1765 (|#1| (-564))) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -1765 (|#1| (-949 |#2|))) (-15 -2013 ((-3 (-949 |#2|) "failed") |#1|)) (-15 -2064 ((-949 |#2|) |#1|)) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1765 (|#1| (-407 (-949 |#2|)))) (-15 -2013 ((-3 (-407 (-949 |#2|)) "failed") |#1|)) (-15 -2064 ((-407 (-949 |#2|)) |#1|)) (-15 -3964 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -1765 (|#1| (-407 (-949 (-407 |#2|))))) (-15 -1765 (|#1| (-949 (-407 |#2|)))) (-15 -1765 (|#1| (-407 |#2|))) (-15 -3762 (|#1| |#1|)) (-15 -2127 (|#1| (-418 |#1|))) (-15 -2407 (|#1| |#1| (-1170) (-768) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-1170) (-768) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| |#1|)))) (-15 -3221 ((-3 (-2 (|:| |val| |#1|) (|:| -3747 (-564))) "failed") |#1|)) (-15 -1691 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3747 (-564))) "failed") |#1| (-1170))) (-15 -1691 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3747 (-564))) "failed") |#1| (-114))) (-15 -1957 (|#1| |#1|)) (-15 -1765 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -2375 ((-3 (-2 (|:| -1662 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -1295 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -1691 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3747 (-564))) "failed") |#1|)) (-15 -1964 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -2407 (|#1| |#1| (-114) |#1| (-1170))) (-15 -2407 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-641 (-1170)))) (-15 -2407 (|#1| |#1| (-1170))) (-15 -4060 (|#1| (-1170) (-641 |#1|))) (-15 -4060 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -4060 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -4060 (|#1| (-1170) |#1| |#1|)) (-15 -4060 (|#1| (-1170) |#1|)) (-15 -4170 ((-641 (-1170)) |#1|)) (-15 -4298 (|#2| |#1|)) (-15 -4285 ((-112) |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -1765 (|#1| (-1170))) (-15 -2013 ((-3 (-1170) "failed") |#1|)) (-15 -2064 ((-1170) |#1|)) (-15 -2407 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2407 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -3943 ((-641 (-610 |#1|)) |#1|)) (-15 -4293 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2662 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2662 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2662 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2407 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -1765 (|#1| (-610 |#1|))) (-15 -2013 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2064 ((-610 |#1|) |#1|)) (-15 -1765 ((-859) |#1|))) (-430 |#2|) (-847)) (T -429))
-((-1826 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-847)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-1965 (*1 *2) (-12 (-4 *4 (-847)) (-5 *2 (-768)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))))
-(-10 -8 (-15 * (|#1| (-918) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1765 (|#1| (-564))) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -1765 (|#1| (-949 |#2|))) (-15 -2013 ((-3 (-949 |#2|) "failed") |#1|)) (-15 -2064 ((-949 |#2|) |#1|)) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1765 (|#1| (-407 (-949 |#2|)))) (-15 -2013 ((-3 (-407 (-949 |#2|)) "failed") |#1|)) (-15 -2064 ((-407 (-949 |#2|)) |#1|)) (-15 -3964 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -1765 (|#1| (-407 (-949 (-407 |#2|))))) (-15 -1765 (|#1| (-949 (-407 |#2|)))) (-15 -1765 (|#1| (-407 |#2|))) (-15 -3762 (|#1| |#1|)) (-15 -2127 (|#1| (-418 |#1|))) (-15 -2407 (|#1| |#1| (-1170) (-768) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-1170) (-768) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| |#1|)))) (-15 -3221 ((-3 (-2 (|:| |val| |#1|) (|:| -3747 (-564))) "failed") |#1|)) (-15 -1691 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3747 (-564))) "failed") |#1| (-1170))) (-15 -1691 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3747 (-564))) "failed") |#1| (-114))) (-15 -1957 (|#1| |#1|)) (-15 -1765 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -2375 ((-3 (-2 (|:| -1662 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -1295 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -1691 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3747 (-564))) "failed") |#1|)) (-15 -1964 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -2407 (|#1| |#1| (-114) |#1| (-1170))) (-15 -2407 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-641 (-1170)))) (-15 -2407 (|#1| |#1| (-1170))) (-15 -4060 (|#1| (-1170) (-641 |#1|))) (-15 -4060 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -4060 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -4060 (|#1| (-1170) |#1| |#1|)) (-15 -4060 (|#1| (-1170) |#1|)) (-15 -4170 ((-641 (-1170)) |#1|)) (-15 -4298 (|#2| |#1|)) (-15 -4285 ((-112) |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -1765 (|#1| (-1170))) (-15 -2013 ((-3 (-1170) "failed") |#1|)) (-15 -2064 ((-1170) |#1|)) (-15 -2407 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2407 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2407 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2407 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -3943 ((-641 (-610 |#1|)) |#1|)) (-15 -4293 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2662 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2662 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2662 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2407 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2407 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -1765 (|#1| (-610 |#1|))) (-15 -2013 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2064 ((-610 |#1|) |#1|)) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 114 (|has| |#1| (-25)))) (-4170 (((-641 (-1170)) $) 201)) (-3964 (((-407 (-1166 $)) $ (-610 $)) 169 (|has| |#1| (-556)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 141 (|has| |#1| (-556)))) (-1840 (($ $) 142 (|has| |#1| (-556)))) (-4035 (((-112) $) 144 (|has| |#1| (-556)))) (-3853 (((-641 (-610 $)) $) 44)) (-3936 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-2662 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-1368 (($ $) 161 (|has| |#1| (-556)))) (-3981 (((-418 $) $) 162 (|has| |#1| (-556)))) (-3385 (((-112) $ $) 152 (|has| |#1| (-556)))) (-3760 (($) 102 (-4002 (|has| |#1| (-1106)) (|has| |#1| (-25))) CONST)) (-2013 (((-3 (-610 $) "failed") $) 69) (((-3 (-1170) "failed") $) 214) (((-3 (-564) "failed") $) 208 (|has| |#1| (-1035 (-564)))) (((-3 |#1| "failed") $) 205) (((-3 (-407 (-949 |#1|)) "failed") $) 167 (|has| |#1| (-556))) (((-3 (-949 |#1|) "failed") $) 121 (|has| |#1| (-1046))) (((-3 (-407 (-564)) "failed") $) 96 (-4002 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-2064 (((-610 $) $) 70) (((-1170) $) 215) (((-564) $) 207 (|has| |#1| (-1035 (-564)))) ((|#1| $) 206) (((-407 (-949 |#1|)) $) 168 (|has| |#1| (-556))) (((-949 |#1|) $) 122 (|has| |#1| (-1046))) (((-407 (-564)) $) 97 (-4002 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-1387 (($ $ $) 156 (|has| |#1| (-556)))) (-2620 (((-685 (-564)) (-685 $)) 135 (-4266 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 134 (-4266 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 133 (|has| |#1| (-1046))) (((-685 |#1|) (-685 $)) 132 (|has| |#1| (-1046)))) (-1926 (((-3 $ "failed") $) 104 (|has| |#1| (-1106)))) (-1366 (($ $ $) 155 (|has| |#1| (-556)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 150 (|has| |#1| (-556)))) (-3241 (((-112) $) 163 (|has| |#1| (-556)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 210 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 209 (|has| |#1| (-883 (-379))))) (-2696 (($ $) 51) (($ (-641 $)) 50)) (-2885 (((-641 (-114)) $) 43)) (-1826 (((-114) (-114)) 42)) (-2419 (((-112) $) 103 (|has| |#1| (-1106)))) (-1629 (((-112) $) 22 (|has| $ (-1035 (-564))))) (-1957 (($ $) 184 (|has| |#1| (-1046)))) (-1507 (((-1119 |#1| (-610 $)) $) 185 (|has| |#1| (-1046)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 159 (|has| |#1| (-556)))) (-2431 (((-1166 $) (-610 $)) 25 (|has| $ (-1046)))) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-2082 (($ (-1 $ $) (-610 $)) 36)) (-4293 (((-3 (-610 $) "failed") $) 46)) (-2488 (($ (-641 $)) 148 (|has| |#1| (-556))) (($ $ $) 147 (|has| |#1| (-556)))) (-4202 (((-1152) $) 9)) (-3943 (((-641 (-610 $)) $) 45)) (-1583 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-1964 (((-3 (-641 $) "failed") $) 190 (|has| |#1| (-1106)))) (-3221 (((-3 (-2 (|:| |val| $) (|:| -3747 (-564))) "failed") $) 181 (|has| |#1| (-1046)))) (-1295 (((-3 (-641 $) "failed") $) 188 (|has| |#1| (-25)))) (-2375 (((-3 (-2 (|:| -1662 (-564)) (|:| |var| (-610 $))) "failed") $) 187 (|has| |#1| (-25)))) (-1691 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $) 189 (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-114)) 183 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-1170)) 182 (|has| |#1| (-1046)))) (-3559 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-4272 (($ $) 106 (-4002 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1813 (((-768) $) 47)) (-3802 (((-1114) $) 10)) (-4285 (((-112) $) 203)) (-4298 ((|#1| $) 202)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 149 (|has| |#1| (-556)))) (-2527 (($ (-641 $)) 146 (|has| |#1| (-556))) (($ $ $) 145 (|has| |#1| (-556)))) (-1350 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-4006 (((-418 $) $) 160 (|has| |#1| (-556)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 157 (|has| |#1| (-556)))) (-1343 (((-3 $ "failed") $ $) 140 (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 151 (|has| |#1| (-556)))) (-1518 (((-112) $) 23 (|has| $ (-1035 (-564))))) (-2407 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1170)) 195 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 194 (|has| |#1| (-612 (-536)))) (($ $) 193 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 192 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 191 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 180 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 179 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) 178 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ $)) 177 (|has| |#1| (-1046)))) (-3712 (((-768) $) 153 (|has| |#1| (-556)))) (-4382 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 154 (|has| |#1| (-556)))) (-2898 (($ $) 49) (($ $ $) 48)) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) 126 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 125 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 124 (|has| |#1| (-1046))) (($ $ (-1170)) 123 (|has| |#1| (-1046)))) (-3762 (($ $) 174 (|has| |#1| (-556)))) (-1517 (((-1119 |#1| (-610 $)) $) 175 (|has| |#1| (-556)))) (-1916 (($ $) 24 (|has| $ (-1046)))) (-2127 (((-889 (-564)) $) 212 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 211 (|has| |#1| (-612 (-889 (-379))))) (($ (-418 $)) 176 (|has| |#1| (-556))) (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-2502 (($ $ $) 109 (|has| |#1| (-473)))) (-1762 (($ $ $) 110 (|has| |#1| (-473)))) (-1765 (((-859) $) 11) (($ (-610 $)) 68) (($ (-1170)) 213) (($ |#1|) 204) (($ (-1119 |#1| (-610 $))) 186 (|has| |#1| (-1046))) (($ (-407 |#1|)) 172 (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) 171 (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) 170 (|has| |#1| (-556))) (($ (-407 (-949 |#1|))) 166 (|has| |#1| (-556))) (($ $) 139 (|has| |#1| (-556))) (($ (-949 |#1|)) 120 (|has| |#1| (-1046))) (($ (-407 (-564))) 95 (-4002 (|has| |#1| (-556)) (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564)))))) (($ (-564)) 94 (-4002 (|has| |#1| (-1046)) (|has| |#1| (-1035 (-564)))))) (-2864 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-1965 (((-768)) 131 (|has| |#1| (-1046)) CONST)) (-1719 (($ $) 53) (($ (-641 $)) 52)) (-1573 (((-112) (-114)) 41)) (-1582 (((-112) $ $) 143 (|has| |#1| (-556)))) (-4060 (($ (-1170) $) 200) (($ (-1170) $ $) 199) (($ (-1170) $ $ $) 198) (($ (-1170) $ $ $ $) 197) (($ (-1170) (-641 $)) 196)) (-4317 (($) 113 (|has| |#1| (-25)) CONST)) (-4327 (($) 101 (|has| |#1| (-1106)) CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) 130 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 129 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 128 (|has| |#1| (-1046))) (($ $ (-1170)) 127 (|has| |#1| (-1046)))) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1793 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 173 (|has| |#1| (-556))) (($ $ $) 107 (-4002 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1783 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1771 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-564)) 108 (-4002 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-768)) 105 (|has| |#1| (-1106))) (($ $ (-918)) 100 (|has| |#1| (-1106)))) (* (($ (-407 (-564)) $) 165 (|has| |#1| (-556))) (($ $ (-407 (-564))) 164 (|has| |#1| (-556))) (($ |#1| $) 138 (|has| |#1| (-172))) (($ $ |#1|) 137 (|has| |#1| (-172))) (($ (-564) $) 119 (|has| |#1| (-21))) (($ (-768) $) 115 (|has| |#1| (-25))) (($ (-918) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1106)))))
+((-1583 (((-585 |#2|) |#2| (-1170)) 38)) (-2618 (((-585 |#2|) |#2| (-1170)) 21)) (-2719 ((|#2| |#2| (-1170)) 26)))
+(((-426 |#1| |#2|) (-10 -7 (-15 -2618 ((-585 |#2|) |#2| (-1170))) (-15 -1583 ((-585 |#2|) |#2| (-1170))) (-15 -2719 (|#2| |#2| (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -426))
+((-2719 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))) (-2618 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))))
+(-10 -7 (-15 -2618 ((-585 |#2|) |#2| (-1170))) (-15 -1583 ((-585 |#2|) |#2| (-1170))) (-15 -2719 (|#2| |#2| (-1170))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-2652 (($ |#2| |#1|) 37)) (-3755 (($ |#2| |#1|) 35)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-3379 (((-768)) NIL T CONST)) (-4312 (($) 10 T CONST)) (-4323 (($) 16 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 36)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4399)) (IF (|has| |#1| (-6 -4399)) (-6 -4399) |%noBranch|) |%noBranch|) (-15 -3714 ($ |#1|)) (-15 -3714 ($ (-331 |#2|))) (-15 -2652 ($ |#2| |#1|)) (-15 -3755 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-564)))) (-13 (-847) (-21))) (T -427))
+((-3714 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) (-4 *3 (-13 (-847) (-21))))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-847) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) (-2652 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-847) (-21))))) (-3755 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-847) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4399)) (IF (|has| |#1| (-6 -4399)) (-6 -4399) |%noBranch|) |%noBranch|) (-15 -3714 ($ |#1|)) (-15 -3714 ($ (-331 |#2|))) (-15 -2652 ($ |#2| |#1|)) (-15 -3755 ($ |#2| |#1|))))
+((-4039 (((-3 |#2| (-641 |#2|)) |#2| (-1170)) 115)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -4039 ((-3 |#2| (-641 |#2|)) |#2| (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -428))
+((-4039 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1194) (-956) (-29 *5))))))
+(-10 -7 (-15 -4039 ((-3 |#2| (-641 |#2|)) |#2| (-1170))))
+((-4292 (((-641 (-1170)) $) 80)) (-4103 (((-407 (-1166 $)) $ (-610 $)) 310)) (-3203 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) 274)) (-2224 (((-3 (-610 $) "failed") $) NIL) (((-3 (-1170) "failed") $) 83) (((-3 (-564) "failed") $) NIL) (((-3 |#2| "failed") $) 270) (((-3 (-407 (-949 |#2|)) "failed") $) 360) (((-3 (-949 |#2|) "failed") $) 272) (((-3 (-407 (-564)) "failed") $) NIL)) (-2376 (((-610 $) $) NIL) (((-1170) $) 30) (((-564) $) NIL) ((|#2| $) 268) (((-407 (-949 |#2|)) $) 342) (((-949 |#2|) $) 269) (((-407 (-564)) $) NIL)) (-2702 (((-114) (-114)) 49)) (-1492 (($ $) 98)) (-1419 (((-3 (-610 $) "failed") $) 265)) (-4090 (((-641 (-610 $)) $) 266)) (-3370 (((-3 (-641 $) "failed") $) 284)) (-1705 (((-3 (-2 (|:| |val| $) (|:| -3078 (-564))) "failed") $) 291)) (-3591 (((-3 (-641 $) "failed") $) 282)) (-3120 (((-3 (-2 (|:| -1817 (-564)) (|:| |var| (-610 $))) "failed") $) 301)) (-3741 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $) 288) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-114)) 252) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-1170)) 254)) (-1304 (((-112) $) 19)) (-1316 ((|#2| $) 21)) (-2582 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 273) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 108) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) 62) (($ $ (-641 (-1170))) 277) (($ $) 278) (($ $ (-114) $ (-1170)) 65) (($ $ (-641 (-114)) (-641 $) (-1170)) 72) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 119) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 279) (($ $ (-1170) (-768) (-1 $ (-641 $))) 104) (($ $ (-1170) (-768) (-1 $ $)) 103)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) 118)) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 275)) (-3197 (($ $) 321)) (-2374 (((-889 (-564)) $) 294) (((-889 (-379)) $) 298) (($ (-418 $)) 356) (((-536) $) NIL)) (-3714 (((-859) $) 276) (($ (-610 $)) 92) (($ (-1170)) 26) (($ |#2|) NIL) (($ (-1119 |#2| (-610 $))) NIL) (($ (-407 |#2|)) 326) (($ (-949 (-407 |#2|))) 365) (($ (-407 (-949 (-407 |#2|)))) 338) (($ (-407 (-949 |#2|))) 332) (($ $) NIL) (($ (-949 |#2|)) 214) (($ (-407 (-564))) 370) (($ (-564)) NIL)) (-3379 (((-768)) 87)) (-2068 (((-112) (-114)) 44)) (-2776 (($ (-1170) $) 33) (($ (-1170) $ $) 34) (($ (-1170) $ $ $) 35) (($ (-1170) $ $ $ $) 36) (($ (-1170) (-641 $)) 41)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#2| $) 303) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL)))
+(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-918) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3714 (|#1| (-564))) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -3714 (|#1| (-949 |#2|))) (-15 -2224 ((-3 (-949 |#2|) "failed") |#1|)) (-15 -2376 ((-949 |#2|) |#1|)) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3714 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3714 (|#1| (-407 (-949 |#2|)))) (-15 -2224 ((-3 (-407 (-949 |#2|)) "failed") |#1|)) (-15 -2376 ((-407 (-949 |#2|)) |#1|)) (-15 -4103 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -3714 (|#1| (-407 (-949 (-407 |#2|))))) (-15 -3714 (|#1| (-949 (-407 |#2|)))) (-15 -3714 (|#1| (-407 |#2|))) (-15 -3197 (|#1| |#1|)) (-15 -2374 (|#1| (-418 |#1|))) (-15 -2582 (|#1| |#1| (-1170) (-768) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-1170) (-768) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| |#1|)))) (-15 -1705 ((-3 (-2 (|:| |val| |#1|) (|:| -3078 (-564))) "failed") |#1|)) (-15 -3741 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3078 (-564))) "failed") |#1| (-1170))) (-15 -3741 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3078 (-564))) "failed") |#1| (-114))) (-15 -1492 (|#1| |#1|)) (-15 -3714 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -3120 ((-3 (-2 (|:| -1817 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -3591 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3741 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3078 (-564))) "failed") |#1|)) (-15 -3370 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -2582 (|#1| |#1| (-114) |#1| (-1170))) (-15 -2582 (|#1| |#1|)) (-15 -2582 (|#1| |#1| (-641 (-1170)))) (-15 -2582 (|#1| |#1| (-1170))) (-15 -2776 (|#1| (-1170) (-641 |#1|))) (-15 -2776 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -2776 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -2776 (|#1| (-1170) |#1| |#1|)) (-15 -2776 (|#1| (-1170) |#1|)) (-15 -4292 ((-641 (-1170)) |#1|)) (-15 -1316 (|#2| |#1|)) (-15 -1304 ((-112) |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -3714 (|#1| (-1170))) (-15 -2224 ((-3 (-1170) "failed") |#1|)) (-15 -2376 ((-1170) |#1|)) (-15 -2582 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2582 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -4090 ((-641 (-610 |#1|)) |#1|)) (-15 -1419 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3203 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3203 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3203 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2582 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -3714 (|#1| (-610 |#1|))) (-15 -2224 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2376 ((-610 |#1|) |#1|)) (-15 -3714 ((-859) |#1|))) (-430 |#2|) (-847)) (T -429))
+((-2702 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-847)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-3379 (*1 *2) (-12 (-4 *4 (-847)) (-5 *2 (-768)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))))
+(-10 -8 (-15 * (|#1| (-918) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3714 (|#1| (-564))) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -3714 (|#1| (-949 |#2|))) (-15 -2224 ((-3 (-949 |#2|) "failed") |#1|)) (-15 -2376 ((-949 |#2|) |#1|)) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3714 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3714 (|#1| (-407 (-949 |#2|)))) (-15 -2224 ((-3 (-407 (-949 |#2|)) "failed") |#1|)) (-15 -2376 ((-407 (-949 |#2|)) |#1|)) (-15 -4103 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -3714 (|#1| (-407 (-949 (-407 |#2|))))) (-15 -3714 (|#1| (-949 (-407 |#2|)))) (-15 -3714 (|#1| (-407 |#2|))) (-15 -3197 (|#1| |#1|)) (-15 -2374 (|#1| (-418 |#1|))) (-15 -2582 (|#1| |#1| (-1170) (-768) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-1170) (-768) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| |#1|)))) (-15 -1705 ((-3 (-2 (|:| |val| |#1|) (|:| -3078 (-564))) "failed") |#1|)) (-15 -3741 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3078 (-564))) "failed") |#1| (-1170))) (-15 -3741 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3078 (-564))) "failed") |#1| (-114))) (-15 -1492 (|#1| |#1|)) (-15 -3714 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -3120 ((-3 (-2 (|:| -1817 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -3591 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3741 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -3078 (-564))) "failed") |#1|)) (-15 -3370 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -2582 (|#1| |#1| (-114) |#1| (-1170))) (-15 -2582 (|#1| |#1|)) (-15 -2582 (|#1| |#1| (-641 (-1170)))) (-15 -2582 (|#1| |#1| (-1170))) (-15 -2776 (|#1| (-1170) (-641 |#1|))) (-15 -2776 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -2776 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -2776 (|#1| (-1170) |#1| |#1|)) (-15 -2776 (|#1| (-1170) |#1|)) (-15 -4292 ((-641 (-1170)) |#1|)) (-15 -1316 (|#2| |#1|)) (-15 -1304 ((-112) |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -3714 (|#1| (-1170))) (-15 -2224 ((-3 (-1170) "failed") |#1|)) (-15 -2376 ((-1170) |#1|)) (-15 -2582 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2582 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2582 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2582 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -4090 ((-641 (-610 |#1|)) |#1|)) (-15 -1419 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3203 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3203 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3203 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2582 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2582 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -3714 (|#1| (-610 |#1|))) (-15 -2224 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2376 ((-610 |#1|) |#1|)) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 114 (|has| |#1| (-25)))) (-4292 (((-641 (-1170)) $) 201)) (-4103 (((-407 (-1166 $)) $ (-610 $)) 169 (|has| |#1| (-556)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 141 (|has| |#1| (-556)))) (-1582 (($ $) 142 (|has| |#1| (-556)))) (-3897 (((-112) $) 144 (|has| |#1| (-556)))) (-4011 (((-641 (-610 $)) $) 44)) (-4281 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-3203 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-1328 (($ $) 161 (|has| |#1| (-556)))) (-1592 (((-418 $) $) 162 (|has| |#1| (-556)))) (-3907 (((-112) $ $) 152 (|has| |#1| (-556)))) (-3180 (($) 102 (-4012 (|has| |#1| (-1106)) (|has| |#1| (-25))) CONST)) (-2224 (((-3 (-610 $) "failed") $) 69) (((-3 (-1170) "failed") $) 214) (((-3 (-564) "failed") $) 208 (|has| |#1| (-1035 (-564)))) (((-3 |#1| "failed") $) 205) (((-3 (-407 (-949 |#1|)) "failed") $) 167 (|has| |#1| (-556))) (((-3 (-949 |#1|) "failed") $) 121 (|has| |#1| (-1046))) (((-3 (-407 (-564)) "failed") $) 96 (-4012 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-2376 (((-610 $) $) 70) (((-1170) $) 215) (((-564) $) 207 (|has| |#1| (-1035 (-564)))) ((|#1| $) 206) (((-407 (-949 |#1|)) $) 168 (|has| |#1| (-556))) (((-949 |#1|) $) 122 (|has| |#1| (-1046))) (((-407 (-564)) $) 97 (-4012 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-1399 (($ $ $) 156 (|has| |#1| (-556)))) (-3613 (((-685 (-564)) (-685 $)) 135 (-4264 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 134 (-4264 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 133 (|has| |#1| (-1046))) (((-685 |#1|) (-685 $)) 132 (|has| |#1| (-1046)))) (-4272 (((-3 $ "failed") $) 104 (|has| |#1| (-1106)))) (-1371 (($ $ $) 155 (|has| |#1| (-556)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 150 (|has| |#1| (-556)))) (-1926 (((-112) $) 163 (|has| |#1| (-556)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 210 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 209 (|has| |#1| (-883 (-379))))) (-3187 (($ $) 51) (($ (-641 $)) 50)) (-1512 (((-641 (-114)) $) 43)) (-2702 (((-114) (-114)) 42)) (-2340 (((-112) $) 103 (|has| |#1| (-1106)))) (-1329 (((-112) $) 22 (|has| $ (-1035 (-564))))) (-1492 (($ $) 184 (|has| |#1| (-1046)))) (-1655 (((-1119 |#1| (-610 $)) $) 185 (|has| |#1| (-1046)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 159 (|has| |#1| (-556)))) (-2466 (((-1166 $) (-610 $)) 25 (|has| $ (-1046)))) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-2313 (($ (-1 $ $) (-610 $)) 36)) (-1419 (((-3 (-610 $) "failed") $) 46)) (-2688 (($ (-641 $)) 148 (|has| |#1| (-556))) (($ $ $) 147 (|has| |#1| (-556)))) (-1868 (((-1152) $) 9)) (-4090 (((-641 (-610 $)) $) 45)) (-1736 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-3370 (((-3 (-641 $) "failed") $) 190 (|has| |#1| (-1106)))) (-1705 (((-3 (-2 (|:| |val| $) (|:| -3078 (-564))) "failed") $) 181 (|has| |#1| (-1046)))) (-3591 (((-3 (-641 $) "failed") $) 188 (|has| |#1| (-25)))) (-3120 (((-3 (-2 (|:| -1817 (-564)) (|:| |var| (-610 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3741 (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $) 189 (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-114)) 183 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-1170)) 182 (|has| |#1| (-1046)))) (-1932 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-1295 (($ $) 106 (-4012 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3694 (((-768) $) 47)) (-3844 (((-1114) $) 10)) (-1304 (((-112) $) 203)) (-1316 ((|#1| $) 202)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 149 (|has| |#1| (-556)))) (-2727 (($ (-641 $)) 146 (|has| |#1| (-556))) (($ $ $) 145 (|has| |#1| (-556)))) (-2544 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-4139 (((-418 $) $) 160 (|has| |#1| (-556)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 157 (|has| |#1| (-556)))) (-1347 (((-3 $ "failed") $ $) 140 (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 151 (|has| |#1| (-556)))) (-1542 (((-112) $) 23 (|has| $ (-1035 (-564))))) (-2582 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1170)) 195 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 194 (|has| |#1| (-612 (-536)))) (($ $) 193 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 192 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 191 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 180 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 179 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) 178 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ $)) 177 (|has| |#1| (-1046)))) (-3966 (((-768) $) 153 (|has| |#1| (-556)))) (-4382 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 154 (|has| |#1| (-556)))) (-3444 (($ $) 49) (($ $ $) 48)) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) 126 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 125 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 124 (|has| |#1| (-1046))) (($ $ (-1170)) 123 (|has| |#1| (-1046)))) (-3197 (($ $) 174 (|has| |#1| (-556)))) (-1668 (((-1119 |#1| (-610 $)) $) 175 (|has| |#1| (-556)))) (-4180 (($ $) 24 (|has| $ (-1046)))) (-2374 (((-889 (-564)) $) 212 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 211 (|has| |#1| (-612 (-889 (-379))))) (($ (-418 $)) 176 (|has| |#1| (-556))) (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-1953 (($ $ $) 109 (|has| |#1| (-473)))) (-3217 (($ $ $) 110 (|has| |#1| (-473)))) (-3714 (((-859) $) 11) (($ (-610 $)) 68) (($ (-1170)) 213) (($ |#1|) 204) (($ (-1119 |#1| (-610 $))) 186 (|has| |#1| (-1046))) (($ (-407 |#1|)) 172 (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) 171 (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) 170 (|has| |#1| (-556))) (($ (-407 (-949 |#1|))) 166 (|has| |#1| (-556))) (($ $) 139 (|has| |#1| (-556))) (($ (-949 |#1|)) 120 (|has| |#1| (-1046))) (($ (-407 (-564))) 95 (-4012 (|has| |#1| (-556)) (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564)))))) (($ (-564)) 94 (-4012 (|has| |#1| (-1046)) (|has| |#1| (-1035 (-564)))))) (-4363 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-3379 (((-768)) 131 (|has| |#1| (-1046)) CONST)) (-3146 (($ $) 53) (($ (-641 $)) 52)) (-2068 (((-112) (-114)) 41)) (-3979 (((-112) $ $) 143 (|has| |#1| (-556)))) (-2776 (($ (-1170) $) 200) (($ (-1170) $ $) 199) (($ (-1170) $ $ $) 198) (($ (-1170) $ $ $ $) 197) (($ (-1170) (-641 $)) 196)) (-4312 (($) 113 (|has| |#1| (-25)) CONST)) (-4323 (($) 101 (|has| |#1| (-1106)) CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) 130 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 129 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 128 (|has| |#1| (-1046))) (($ $ (-1170)) 127 (|has| |#1| (-1046)))) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1841 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 173 (|has| |#1| (-556))) (($ $ $) 107 (-4012 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1828 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1814 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-564)) 108 (-4012 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-768)) 105 (|has| |#1| (-1106))) (($ $ (-918)) 100 (|has| |#1| (-1106)))) (* (($ (-407 (-564)) $) 165 (|has| |#1| (-556))) (($ $ (-407 (-564))) 164 (|has| |#1| (-556))) (($ |#1| $) 138 (|has| |#1| (-172))) (($ $ |#1|) 137 (|has| |#1| (-172))) (($ (-564) $) 119 (|has| |#1| (-21))) (($ (-768) $) 115 (|has| |#1| (-25))) (($ (-918) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1106)))))
(((-430 |#1|) (-140) (-847)) (T -430))
-((-4285 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-112)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-641 (-1170))))) (-4060 (*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-4060 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-4060 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-4060 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-4060 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-612 (-536))))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-612 (-536))))) (-2407 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-612 (-536))))) (-2407 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-847)) (-4 *4 (-612 (-536))))) (-2407 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170)) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-612 (-536))))) (-1964 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-1691 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3747 (-564)))) (-4 *1 (-430 *3)))) (-1295 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-2375 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1662 (-564)) (|:| |var| (-610 *1)))) (-4 *1 (-430 *3)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1046)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-1507 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-1957 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-1046)))) (-1691 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1046)) (-4 *4 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3747 (-564)))) (-4 *1 (-430 *4)))) (-1691 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1046)) (-4 *4 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3747 (-564)))) (-4 *1 (-430 *4)))) (-3221 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-2 (|:| |val| *1) (|:| -3747 (-564)))) (-4 *1 (-430 *3)))) (-2407 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2407 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2407 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 (-641 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2407 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-1517 (*1 *2 *1) (-12 (-4 *3 (-556)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-3762 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-556)))) (-1793 (*1 *1 *2 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)) (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-1106)))))
-(-13 (-302) (-1035 (-1170)) (-881 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -4285 ((-112) $)) (-15 -4298 (|t#1| $)) (-15 -4170 ((-641 (-1170)) $)) (-15 -4060 ($ (-1170) $)) (-15 -4060 ($ (-1170) $ $)) (-15 -4060 ($ (-1170) $ $ $)) (-15 -4060 ($ (-1170) $ $ $ $)) (-15 -4060 ($ (-1170) (-641 $))) (IF (|has| |t#1| (-612 (-536))) (PROGN (-6 (-612 (-536))) (-15 -2407 ($ $ (-1170))) (-15 -2407 ($ $ (-641 (-1170)))) (-15 -2407 ($ $)) (-15 -2407 ($ $ (-114) $ (-1170))) (-15 -2407 ($ $ (-641 (-114)) (-641 $) (-1170)))) |%noBranch|) (IF (|has| |t#1| (-1106)) (PROGN (-6 (-723)) (-15 ** ($ $ (-768))) (-15 -1964 ((-3 (-641 $) "failed") $)) (-15 -1691 ((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1295 ((-3 (-641 $) "failed") $)) (-15 -2375 ((-3 (-2 (|:| -1662 (-564)) (|:| |var| (-610 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-1035 (-949 |t#1|))) (-6 (-897 (-1170))) (-6 (-377 |t#1|)) (-15 -1765 ($ (-1119 |t#1| (-610 $)))) (-15 -1507 ((-1119 |t#1| (-610 $)) $)) (-15 -1957 ($ $)) (-15 -1691 ((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-114))) (-15 -1691 ((-3 (-2 (|:| |var| (-610 $)) (|:| -3747 (-564))) "failed") $ (-1170))) (-15 -3221 ((-3 (-2 (|:| |val| $) (|:| -3747 (-564))) "failed") $)) (-15 -2407 ($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $)))) (-15 -2407 ($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $))))) (-15 -2407 ($ $ (-1170) (-768) (-1 $ (-641 $)))) (-15 -2407 ($ $ (-1170) (-768) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-363)) (-6 (-1035 (-407 (-949 |t#1|)))) (-15 -2127 ($ (-418 $))) (-15 -1517 ((-1119 |t#1| (-610 $)) $)) (-15 -3762 ($ $)) (-15 -1793 ($ (-1119 |t#1| (-610 $)) (-1119 |t#1| (-610 $)))) (-15 -1765 ($ (-407 |t#1|))) (-15 -1765 ($ (-949 (-407 |t#1|)))) (-15 -1765 ($ (-407 (-949 (-407 |t#1|))))) (-15 -3964 ((-407 (-1166 $)) $ (-610 $))) (IF (|has| |t#1| (-1035 (-564))) (-6 (-1035 (-407 (-564)))) |%noBranch|)) |%noBranch|)))
-(((-21) -4002 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -4002 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4002 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-564))) |has| |#1| (-556)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-556)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-556)) ((-131) -4002 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-556))) ((-614 #1=(-407 (-949 |#1|))) |has| |#1| (-556)) ((-614 (-564)) -4002 (|has| |#1| (-1046)) (|has| |#1| (-1035 (-564))) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-614 #2=(-610 $)) . T) ((-614 #3=(-949 |#1|)) |has| |#1| (-1046)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) |has| |#1| (-556)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-243) |has| |#1| (-556)) ((-290) |has| |#1| (-556)) ((-307) |has| |#1| (-556)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-556)) ((-377 |#1|) |has| |#1| (-1046)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-556)) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-556)) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) -4002 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) ((-637 |#1|) |has| |#1| (-1046)) ((-714 #0#) |has| |#1| (-556)) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) -4002 (|has| |#1| (-1106)) (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-847) . T) ((-897 (-1170)) |has| |#1| (-1046)) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-917) |has| |#1| (-556)) ((-1035 (-407 (-564))) -4002 (|has| |#1| (-1035 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) ((-1035 #1#) |has| |#1| (-556)) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 #3#) |has| |#1| (-1046)) ((-1035 #4#) . T) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-556)) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) |has| |#1| (-556)) ((-1046) -4002 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1053) -4002 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1106) -4002 (|has| |#1| (-1106)) (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1094) . T) ((-1209) . T) ((-1213) |has| |#1| (-556)))
-((-3007 ((|#2| |#2| |#2|) 31)) (-1826 (((-114) (-114)) 43)) (-2572 ((|#2| |#2|) 63)) (-1316 ((|#2| |#2|) 66)) (-2784 ((|#2| |#2|) 30)) (-1958 ((|#2| |#2| |#2|) 33)) (-3311 ((|#2| |#2| |#2|) 35)) (-1475 ((|#2| |#2| |#2|) 32)) (-2642 ((|#2| |#2| |#2|) 34)) (-1573 (((-112) (-114)) 41)) (-2648 ((|#2| |#2|) 37)) (-4066 ((|#2| |#2|) 36)) (-2016 ((|#2| |#2|) 25)) (-3376 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2837 ((|#2| |#2| |#2|) 29)))
-(((-431 |#1| |#2|) (-10 -7 (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -2016 (|#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -3376 (|#2| |#2| |#2|)) (-15 -2837 (|#2| |#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -3007 (|#2| |#2| |#2|)) (-15 -1475 (|#2| |#2| |#2|)) (-15 -1958 (|#2| |#2| |#2|)) (-15 -2642 (|#2| |#2| |#2|)) (-15 -3311 (|#2| |#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -2648 (|#2| |#2|)) (-15 -1316 (|#2| |#2|)) (-15 -2572 (|#2| |#2|))) (-13 (-847) (-556)) (-430 |#1|)) (T -431))
-((-2572 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1316 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3311 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2642 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1958 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1475 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3007 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2837 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3376 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3376 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2016 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))))
-(-10 -7 (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -2016 (|#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -3376 (|#2| |#2| |#2|)) (-15 -2837 (|#2| |#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -3007 (|#2| |#2| |#2|)) (-15 -1475 (|#2| |#2| |#2|)) (-15 -1958 (|#2| |#2| |#2|)) (-15 -2642 (|#2| |#2| |#2|)) (-15 -3311 (|#2| |#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -2648 (|#2| |#2|)) (-15 -1316 (|#2| |#2|)) (-15 -2572 (|#2| |#2|)))
-((-1990 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|) 105 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|)) 68)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -1990 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -1990 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-556) (-847) (-147)) (-430 |#1|)) (T -432))
-((-1990 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-556) (-847) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3)) (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-847) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-432 *4 *5)))))
-(-10 -7 (-15 -1990 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -1990 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|))
-((-4127 (((-1264)) 19)) (-2911 (((-1166 (-407 (-564))) |#2| (-610 |#2|)) 41) (((-407 (-564)) |#2|) 25)))
-(((-433 |#1| |#2|) (-10 -7 (-15 -2911 ((-407 (-564)) |#2|)) (-15 -2911 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -4127 ((-1264)))) (-13 (-847) (-556) (-1035 (-564))) (-430 |#1|)) (T -433))
-((-4127 (*1 *2) (-12 (-4 *3 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1264)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-2911 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3)))) (-2911 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))))
-(-10 -7 (-15 -2911 ((-407 (-564)) |#2|)) (-15 -2911 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -4127 ((-1264))))
-((-4122 (((-112) $) 32)) (-4381 (((-112) $) 34)) (-1670 (((-112) $) 35)) (-2015 (((-112) $) 38)) (-3138 (((-112) $) 33)) (-2183 (((-112) $) 37)) (-1765 (((-859) $) 20) (($ (-1152)) 31) (($ (-1170)) 26) (((-1170) $) 24) (((-1098) $) 23)) (-1324 (((-112) $) 36)) (-1686 (((-112) $ $) 17)))
-(((-434) (-13 (-611 (-859)) (-10 -8 (-15 -1765 ($ (-1152))) (-15 -1765 ($ (-1170))) (-15 -1765 ((-1170) $)) (-15 -1765 ((-1098) $)) (-15 -4122 ((-112) $)) (-15 -3138 ((-112) $)) (-15 -1670 ((-112) $)) (-15 -2183 ((-112) $)) (-15 -2015 ((-112) $)) (-15 -1324 ((-112) $)) (-15 -4381 ((-112) $)) (-15 -1686 ((-112) $ $))))) (T -434))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1670 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-4381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1686 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -1765 ($ (-1152))) (-15 -1765 ($ (-1170))) (-15 -1765 ((-1170) $)) (-15 -1765 ((-1098) $)) (-15 -4122 ((-112) $)) (-15 -3138 ((-112) $)) (-15 -1670 ((-112) $)) (-15 -2183 ((-112) $)) (-15 -2015 ((-112) $)) (-15 -1324 ((-112) $)) (-15 -4381 ((-112) $)) (-15 -1686 ((-112) $ $))))
-((-2657 (((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|) 72)) (-3656 (((-418 |#3|) |#3|) 34)) (-2720 (((-3 (-418 (-1166 (-48))) "failed") |#3|) 46 (|has| |#2| (-1035 (-48))))) (-4319 (((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -1966 (-112))) |#3|) 37)))
-(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -3656 ((-418 |#3|) |#3|)) (-15 -2657 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -4319 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -1966 (-112))) |#3|)) (IF (|has| |#2| (-1035 (-48))) (-15 -2720 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-556) (-847) (-1035 (-564))) (-430 |#1|) (-1235 |#2|)) (T -435))
-((-2720 (*1 *2 *3) (|partial| -12 (-4 *5 (-1035 (-48))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-4319 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -1966 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-2657 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-3656 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -3656 ((-418 |#3|) |#3|)) (-15 -2657 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -4319 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -1966 (-112))) |#3|)) (IF (|has| |#2| (-1035 (-48))) (-15 -2720 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-4309 (((-1152) $ (-1152)) NIL)) (-2559 (($ $ (-1152)) NIL)) (-3893 (((-1152) $) NIL)) (-1318 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-1589 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-4363 (((-388) $) NIL)) (-4202 (((-1152) $) NIL)) (-3533 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3235 (((-1264) (-1152)) 9)) (-2084 (((-1264) (-1152)) 10)) (-2204 (((-1264)) 11)) (-1765 (((-859) $) NIL)) (-3713 (($ $) 38)) (-1686 (((-112) $ $) NIL)))
-(((-436) (-13 (-364 (-388) (-1152)) (-10 -7 (-15 -1318 ((-388) (-388) (-388))) (-15 -1318 ((-388) (-388))) (-15 -3235 ((-1264) (-1152))) (-15 -2084 ((-1264) (-1152))) (-15 -2204 ((-1264)))))) (T -436))
-((-1318 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1318 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-2204 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436)))))
-(-13 (-364 (-388) (-1152)) (-10 -7 (-15 -1318 ((-388) (-388) (-388))) (-15 -1318 ((-388) (-388))) (-15 -3235 ((-1264) (-1152))) (-15 -2084 ((-1264) (-1152))) (-15 -2204 ((-1264)))))
-((-1754 (((-112) $ $) NIL)) (-1457 (((-3 (|:| |fst| (-434)) (|:| -3048 "void")) $) 11)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2969 (($) 35)) (-3923 (($) 41)) (-2820 (($) 37)) (-2138 (($) 39)) (-3518 (($) 36)) (-2609 (($) 38)) (-3680 (($) 40)) (-2770 (((-112) $) 8)) (-3009 (((-641 (-949 (-564))) $) 19)) (-1776 (($ (-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-641 (-1170)) (-112)) 29) (($ (-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-641 (-949 (-564))) (-112)) 30)) (-1765 (((-859) $) 24) (($ (-434)) 32)) (-1686 (((-112) $ $) NIL)))
-(((-437) (-13 (-1094) (-10 -8 (-15 -1765 ($ (-434))) (-15 -1457 ((-3 (|:| |fst| (-434)) (|:| -3048 "void")) $)) (-15 -3009 ((-641 (-949 (-564))) $)) (-15 -2770 ((-112) $)) (-15 -1776 ($ (-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-641 (-1170)) (-112))) (-15 -1776 ($ (-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-641 (-949 (-564))) (-112))) (-15 -2969 ($)) (-15 -3518 ($)) (-15 -2820 ($)) (-15 -3923 ($)) (-15 -2609 ($)) (-15 -2138 ($)) (-15 -3680 ($))))) (T -437))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *1 (-437)))) (-3009 (*1 *2 *1) (-12 (-5 *2 (-641 (-949 (-564)))) (-5 *1 (-437)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1776 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437)))) (-1776 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-2969 (*1 *1) (-5 *1 (-437))) (-3518 (*1 *1) (-5 *1 (-437))) (-2820 (*1 *1) (-5 *1 (-437))) (-3923 (*1 *1) (-5 *1 (-437))) (-2609 (*1 *1) (-5 *1 (-437))) (-2138 (*1 *1) (-5 *1 (-437))) (-3680 (*1 *1) (-5 *1 (-437))))
-(-13 (-1094) (-10 -8 (-15 -1765 ($ (-434))) (-15 -1457 ((-3 (|:| |fst| (-434)) (|:| -3048 "void")) $)) (-15 -3009 ((-641 (-949 (-564))) $)) (-15 -2770 ((-112) $)) (-15 -1776 ($ (-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-641 (-1170)) (-112))) (-15 -1776 ($ (-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-641 (-949 (-564))) (-112))) (-15 -2969 ($)) (-15 -3518 ($)) (-15 -2820 ($)) (-15 -3923 ($)) (-15 -2609 ($)) (-15 -2138 ($)) (-15 -3680 ($))))
-((-1754 (((-112) $ $) NIL)) (-4363 (((-1170) $) 8)) (-4202 (((-1152) $) 17)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 14)))
-(((-438 |#1|) (-13 (-1094) (-10 -8 (-15 -4363 ((-1170) $)))) (-1170)) (T -438))
-((-4363 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2))))
-(-13 (-1094) (-10 -8 (-15 -4363 ((-1170) $))))
-((-1754 (((-112) $ $) NIL)) (-4187 (((-1112) $) 7)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 13)) (-1686 (((-112) $ $) 9)))
-(((-439) (-13 (-1094) (-10 -8 (-15 -4187 ((-1112) $))))) (T -439))
-((-4187 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439)))))
-(-13 (-1094) (-10 -8 (-15 -4187 ((-1112) $))))
-((-3501 (((-1264) $) 7)) (-1765 (((-859) $) 8) (($ (-1259 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 11)))
+((-1304 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-112)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-641 (-1170))))) (-2776 (*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-2776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-2776 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-2776 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-612 (-536))))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-612 (-536))))) (-2582 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-612 (-536))))) (-2582 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-847)) (-4 *4 (-612 (-536))))) (-2582 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170)) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-612 (-536))))) (-3370 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-3741 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3078 (-564)))) (-4 *1 (-430 *3)))) (-3591 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-3120 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1817 (-564)) (|:| |var| (-610 *1)))) (-4 *1 (-430 *3)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1046)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-1655 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-1492 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-1046)))) (-3741 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1046)) (-4 *4 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3078 (-564)))) (-4 *1 (-430 *4)))) (-3741 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1046)) (-4 *4 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3078 (-564)))) (-4 *1 (-430 *4)))) (-1705 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-2 (|:| |val| *1) (|:| -3078 (-564)))) (-4 *1 (-430 *3)))) (-2582 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2582 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2582 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 (-641 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2582 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-1668 (*1 *2 *1) (-12 (-4 *3 (-556)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-3197 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-556)))) (-1841 (*1 *1 *2 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-4103 (*1 *2 *1 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)) (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-1106)))))
+(-13 (-302) (-1035 (-1170)) (-881 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -1304 ((-112) $)) (-15 -1316 (|t#1| $)) (-15 -4292 ((-641 (-1170)) $)) (-15 -2776 ($ (-1170) $)) (-15 -2776 ($ (-1170) $ $)) (-15 -2776 ($ (-1170) $ $ $)) (-15 -2776 ($ (-1170) $ $ $ $)) (-15 -2776 ($ (-1170) (-641 $))) (IF (|has| |t#1| (-612 (-536))) (PROGN (-6 (-612 (-536))) (-15 -2582 ($ $ (-1170))) (-15 -2582 ($ $ (-641 (-1170)))) (-15 -2582 ($ $)) (-15 -2582 ($ $ (-114) $ (-1170))) (-15 -2582 ($ $ (-641 (-114)) (-641 $) (-1170)))) |%noBranch|) (IF (|has| |t#1| (-1106)) (PROGN (-6 (-723)) (-15 ** ($ $ (-768))) (-15 -3370 ((-3 (-641 $) "failed") $)) (-15 -3741 ((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3591 ((-3 (-641 $) "failed") $)) (-15 -3120 ((-3 (-2 (|:| -1817 (-564)) (|:| |var| (-610 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-1035 (-949 |t#1|))) (-6 (-897 (-1170))) (-6 (-377 |t#1|)) (-15 -3714 ($ (-1119 |t#1| (-610 $)))) (-15 -1655 ((-1119 |t#1| (-610 $)) $)) (-15 -1492 ($ $)) (-15 -3741 ((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-114))) (-15 -3741 ((-3 (-2 (|:| |var| (-610 $)) (|:| -3078 (-564))) "failed") $ (-1170))) (-15 -1705 ((-3 (-2 (|:| |val| $) (|:| -3078 (-564))) "failed") $)) (-15 -2582 ($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $)))) (-15 -2582 ($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $))))) (-15 -2582 ($ $ (-1170) (-768) (-1 $ (-641 $)))) (-15 -2582 ($ $ (-1170) (-768) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-363)) (-6 (-1035 (-407 (-949 |t#1|)))) (-15 -2374 ($ (-418 $))) (-15 -1668 ((-1119 |t#1| (-610 $)) $)) (-15 -3197 ($ $)) (-15 -1841 ($ (-1119 |t#1| (-610 $)) (-1119 |t#1| (-610 $)))) (-15 -3714 ($ (-407 |t#1|))) (-15 -3714 ($ (-949 (-407 |t#1|)))) (-15 -3714 ($ (-407 (-949 (-407 |t#1|))))) (-15 -4103 ((-407 (-1166 $)) $ (-610 $))) (IF (|has| |t#1| (-1035 (-564))) (-6 (-1035 (-407 (-564)))) |%noBranch|)) |%noBranch|)))
+(((-21) -4012 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -4012 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4012 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-564))) |has| |#1| (-556)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-556)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-556)) ((-131) -4012 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-556))) ((-614 #1=(-407 (-949 |#1|))) |has| |#1| (-556)) ((-614 (-564)) -4012 (|has| |#1| (-1046)) (|has| |#1| (-1035 (-564))) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-614 #2=(-610 $)) . T) ((-614 #3=(-949 |#1|)) |has| |#1| (-1046)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) |has| |#1| (-556)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-243) |has| |#1| (-556)) ((-290) |has| |#1| (-556)) ((-307) |has| |#1| (-556)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-556)) ((-377 |#1|) |has| |#1| (-1046)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-556)) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-556)) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) -4012 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) ((-637 |#1|) |has| |#1| (-1046)) ((-714 #0#) |has| |#1| (-556)) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) -4012 (|has| |#1| (-1106)) (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-847) . T) ((-897 (-1170)) |has| |#1| (-1046)) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-917) |has| |#1| (-556)) ((-1035 (-407 (-564))) -4012 (|has| |#1| (-1035 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) ((-1035 #1#) |has| |#1| (-556)) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 #3#) |has| |#1| (-1046)) ((-1035 #4#) . T) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-556)) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) |has| |#1| (-556)) ((-1046) -4012 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1053) -4012 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1106) -4012 (|has| |#1| (-1106)) (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1094) . T) ((-1209) . T) ((-1213) |has| |#1| (-556)))
+((-1380 ((|#2| |#2| |#2|) 31)) (-2702 (((-114) (-114)) 43)) (-1325 ((|#2| |#2|) 63)) (-2208 ((|#2| |#2|) 66)) (-1684 ((|#2| |#2|) 30)) (-1504 ((|#2| |#2| |#2|) 33)) (-1332 ((|#2| |#2| |#2|) 35)) (-2372 ((|#2| |#2| |#2|) 32)) (-3870 ((|#2| |#2| |#2|) 34)) (-2068 (((-112) (-114)) 41)) (-3936 ((|#2| |#2|) 37)) (-3005 ((|#2| |#2|) 36)) (-3920 ((|#2| |#2|) 25)) (-3829 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2240 ((|#2| |#2| |#2|) 29)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -3920 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3829 (|#2| |#2| |#2|)) (-15 -2240 (|#2| |#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -1380 (|#2| |#2| |#2|)) (-15 -2372 (|#2| |#2| |#2|)) (-15 -1504 (|#2| |#2| |#2|)) (-15 -3870 (|#2| |#2| |#2|)) (-15 -1332 (|#2| |#2| |#2|)) (-15 -3005 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -2208 (|#2| |#2|)) (-15 -1325 (|#2| |#2|))) (-13 (-847) (-556)) (-430 |#1|)) (T -431))
+((-1325 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2208 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3005 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1332 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3870 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1504 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2372 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1380 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1684 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2240 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3829 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2702 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))))
+(-10 -7 (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -3920 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3829 (|#2| |#2| |#2|)) (-15 -2240 (|#2| |#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -1380 (|#2| |#2| |#2|)) (-15 -2372 (|#2| |#2| |#2|)) (-15 -1504 (|#2| |#2| |#2|)) (-15 -3870 (|#2| |#2| |#2|)) (-15 -1332 (|#2| |#2| |#2|)) (-15 -3005 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -2208 (|#2| |#2|)) (-15 -1325 (|#2| |#2|)))
+((-3648 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|) 105 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|)) 68)))
+(((-432 |#1| |#2|) (-10 -7 (-15 -3648 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -3648 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-556) (-847) (-147)) (-430 |#1|)) (T -432))
+((-3648 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-556) (-847) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3)) (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-847) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-432 *4 *5)))))
+(-10 -7 (-15 -3648 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -3648 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|))
+((-2391 (((-1264)) 19)) (-3580 (((-1166 (-407 (-564))) |#2| (-610 |#2|)) 41) (((-407 (-564)) |#2|) 25)))
+(((-433 |#1| |#2|) (-10 -7 (-15 -3580 ((-407 (-564)) |#2|)) (-15 -3580 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -2391 ((-1264)))) (-13 (-847) (-556) (-1035 (-564))) (-430 |#1|)) (T -433))
+((-2391 (*1 *2) (-12 (-4 *3 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1264)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3)))) (-3580 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))))
+(-10 -7 (-15 -3580 ((-407 (-564)) |#2|)) (-15 -3580 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -2391 ((-1264))))
+((-2330 (((-112) $) 32)) (-3988 (((-112) $) 34)) (-3518 (((-112) $) 35)) (-3911 (((-112) $) 38)) (-3268 (((-112) $) 33)) (-1947 (((-112) $) 37)) (-3714 (((-859) $) 20) (($ (-1152)) 31) (($ (-1170)) 26) (((-1170) $) 24) (((-1098) $) 23)) (-2298 (((-112) $) 36)) (-1720 (((-112) $ $) 17)))
+(((-434) (-13 (-611 (-859)) (-10 -8 (-15 -3714 ($ (-1152))) (-15 -3714 ($ (-1170))) (-15 -3714 ((-1170) $)) (-15 -3714 ((-1098) $)) (-15 -2330 ((-112) $)) (-15 -3268 ((-112) $)) (-15 -3518 ((-112) $)) (-15 -1947 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -2298 ((-112) $)) (-15 -3988 ((-112) $)) (-15 -1720 ((-112) $ $))))) (T -434))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2298 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1720 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -3714 ($ (-1152))) (-15 -3714 ($ (-1170))) (-15 -3714 ((-1170) $)) (-15 -3714 ((-1098) $)) (-15 -2330 ((-112) $)) (-15 -3268 ((-112) $)) (-15 -3518 ((-112) $)) (-15 -1947 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -2298 ((-112) $)) (-15 -3988 ((-112) $)) (-15 -1720 ((-112) $ $))))
+((-4018 (((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|) 72)) (-3415 (((-418 |#3|) |#3|) 34)) (-2283 (((-3 (-418 (-1166 (-48))) "failed") |#3|) 46 (|has| |#2| (-1035 (-48))))) (-1627 (((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -2062 (-112))) |#3|) 37)))
+(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -3415 ((-418 |#3|) |#3|)) (-15 -4018 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -1627 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -2062 (-112))) |#3|)) (IF (|has| |#2| (-1035 (-48))) (-15 -2283 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-556) (-847) (-1035 (-564))) (-430 |#1|) (-1235 |#2|)) (T -435))
+((-2283 (*1 *2 *3) (|partial| -12 (-4 *5 (-1035 (-48))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-1627 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -2062 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-4018 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-3415 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
+(-10 -7 (-15 -3415 ((-418 |#3|) |#3|)) (-15 -4018 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -1627 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -2062 (-112))) |#3|)) (IF (|has| |#2| (-1035 (-48))) (-15 -2283 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-1551 (((-1152) $ (-1152)) NIL)) (-4295 (($ $ (-1152)) NIL)) (-2047 (((-1152) $) NIL)) (-2233 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-1721 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-4337 (((-388) $) NIL)) (-1868 (((-1152) $) NIL)) (-1665 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1861 (((-1264) (-1152)) 9)) (-2235 (((-1264) (-1152)) 10)) (-2161 (((-1264)) 11)) (-3714 (((-859) $) NIL)) (-3977 (($ $) 38)) (-1720 (((-112) $ $) NIL)))
+(((-436) (-13 (-364 (-388) (-1152)) (-10 -7 (-15 -2233 ((-388) (-388) (-388))) (-15 -2233 ((-388) (-388))) (-15 -1861 ((-1264) (-1152))) (-15 -2235 ((-1264) (-1152))) (-15 -2161 ((-1264)))))) (T -436))
+((-2233 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-2233 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-2161 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436)))))
+(-13 (-364 (-388) (-1152)) (-10 -7 (-15 -2233 ((-388) (-388) (-388))) (-15 -2233 ((-388) (-388))) (-15 -1861 ((-1264) (-1152))) (-15 -2235 ((-1264) (-1152))) (-15 -2161 ((-1264)))))
+((-3702 (((-112) $ $) NIL)) (-2180 (((-3 (|:| |fst| (-434)) (|:| -3035 "void")) $) 11)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4107 (($) 35)) (-4153 (($) 41)) (-2082 (($) 37)) (-2771 (($) 39)) (-2795 (($) 36)) (-3481 (($) 38)) (-3639 (($) 40)) (-2792 (((-112) $) 8)) (-1403 (((-641 (-949 (-564))) $) 19)) (-3725 (($ (-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-641 (-1170)) (-112)) 29) (($ (-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-641 (-949 (-564))) (-112)) 30)) (-3714 (((-859) $) 24) (($ (-434)) 32)) (-1720 (((-112) $ $) NIL)))
+(((-437) (-13 (-1094) (-10 -8 (-15 -3714 ($ (-434))) (-15 -2180 ((-3 (|:| |fst| (-434)) (|:| -3035 "void")) $)) (-15 -1403 ((-641 (-949 (-564))) $)) (-15 -2792 ((-112) $)) (-15 -3725 ($ (-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-641 (-1170)) (-112))) (-15 -3725 ($ (-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-641 (-949 (-564))) (-112))) (-15 -4107 ($)) (-15 -2795 ($)) (-15 -2082 ($)) (-15 -4153 ($)) (-15 -3481 ($)) (-15 -2771 ($)) (-15 -3639 ($))))) (T -437))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *1 (-437)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-641 (-949 (-564)))) (-5 *1 (-437)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3725 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437)))) (-3725 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-4107 (*1 *1) (-5 *1 (-437))) (-2795 (*1 *1) (-5 *1 (-437))) (-2082 (*1 *1) (-5 *1 (-437))) (-4153 (*1 *1) (-5 *1 (-437))) (-3481 (*1 *1) (-5 *1 (-437))) (-2771 (*1 *1) (-5 *1 (-437))) (-3639 (*1 *1) (-5 *1 (-437))))
+(-13 (-1094) (-10 -8 (-15 -3714 ($ (-434))) (-15 -2180 ((-3 (|:| |fst| (-434)) (|:| -3035 "void")) $)) (-15 -1403 ((-641 (-949 (-564))) $)) (-15 -2792 ((-112) $)) (-15 -3725 ($ (-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-641 (-1170)) (-112))) (-15 -3725 ($ (-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-641 (-949 (-564))) (-112))) (-15 -4107 ($)) (-15 -2795 ($)) (-15 -2082 ($)) (-15 -4153 ($)) (-15 -3481 ($)) (-15 -2771 ($)) (-15 -3639 ($))))
+((-3702 (((-112) $ $) NIL)) (-4337 (((-1170) $) 8)) (-1868 (((-1152) $) 17)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 14)))
+(((-438 |#1|) (-13 (-1094) (-10 -8 (-15 -4337 ((-1170) $)))) (-1170)) (T -438))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2))))
+(-13 (-1094) (-10 -8 (-15 -4337 ((-1170) $))))
+((-3702 (((-112) $ $) NIL)) (-4299 (((-1112) $) 7)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 13)) (-1720 (((-112) $ $) 9)))
+(((-439) (-13 (-1094) (-10 -8 (-15 -4299 ((-1112) $))))) (T -439))
+((-4299 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439)))))
+(-13 (-1094) (-10 -8 (-15 -4299 ((-1112) $))))
+((-2263 (((-1264) $) 7)) (-3714 (((-859) $) 8) (($ (-1259 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 11)))
(((-440) (-140)) (T -440))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) (-4 *1 (-440)))))
-(-13 (-395) (-10 -8 (-15 -1765 ($ (-1259 (-695)))) (-15 -1765 ($ (-641 (-330)))) (-15 -1765 ($ (-330))) (-15 -1765 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))))))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) (-4 *1 (-440)))))
+(-13 (-395) (-10 -8 (-15 -3714 ($ (-1259 (-695)))) (-15 -3714 ($ (-641 (-330)))) (-15 -3714 ($ (-330))) (-15 -3714 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))))))
(((-611 (-859)) . T) ((-395) . T) ((-1209) . T))
-((-2013 (((-3 $ "failed") (-1259 (-316 (-379)))) 21) (((-3 $ "failed") (-1259 (-316 (-564)))) 19) (((-3 $ "failed") (-1259 (-949 (-379)))) 17) (((-3 $ "failed") (-1259 (-949 (-564)))) 15) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 13) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 11)) (-2064 (($ (-1259 (-316 (-379)))) 22) (($ (-1259 (-316 (-564)))) 20) (($ (-1259 (-949 (-379)))) 18) (($ (-1259 (-949 (-564)))) 16) (($ (-1259 (-407 (-949 (-379))))) 14) (($ (-1259 (-407 (-949 (-564))))) 12)) (-3501 (((-1264) $) 7)) (-1765 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) 23)))
+((-2224 (((-3 $ "failed") (-1259 (-316 (-379)))) 21) (((-3 $ "failed") (-1259 (-316 (-564)))) 19) (((-3 $ "failed") (-1259 (-949 (-379)))) 17) (((-3 $ "failed") (-1259 (-949 (-564)))) 15) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 13) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 11)) (-2376 (($ (-1259 (-316 (-379)))) 22) (($ (-1259 (-316 (-564)))) 20) (($ (-1259 (-949 (-379)))) 18) (($ (-1259 (-949 (-564)))) 16) (($ (-1259 (-407 (-949 (-379))))) 14) (($ (-1259 (-407 (-949 (-564))))) 12)) (-2263 (((-1264) $) 7)) (-3714 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) 23)))
(((-441) (-140)) (T -441))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330))))) (-4 *1 (-441)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))))
-(-13 (-395) (-10 -8 (-15 -1765 ($ (-641 (-330)))) (-15 -1765 ($ (-330))) (-15 -1765 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))) (-15 -2064 ($ (-1259 (-316 (-379))))) (-15 -2013 ((-3 $ "failed") (-1259 (-316 (-379))))) (-15 -2064 ($ (-1259 (-316 (-564))))) (-15 -2013 ((-3 $ "failed") (-1259 (-316 (-564))))) (-15 -2064 ($ (-1259 (-949 (-379))))) (-15 -2013 ((-3 $ "failed") (-1259 (-949 (-379))))) (-15 -2064 ($ (-1259 (-949 (-564))))) (-15 -2013 ((-3 $ "failed") (-1259 (-949 (-564))))) (-15 -2064 ($ (-1259 (-407 (-949 (-379)))))) (-15 -2013 ((-3 $ "failed") (-1259 (-407 (-949 (-379)))))) (-15 -2064 ($ (-1259 (-407 (-949 (-564)))))) (-15 -2013 ((-3 $ "failed") (-1259 (-407 (-949 (-564))))))))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330))))) (-4 *1 (-441)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))))
+(-13 (-395) (-10 -8 (-15 -3714 ($ (-641 (-330)))) (-15 -3714 ($ (-330))) (-15 -3714 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))) (-15 -2376 ($ (-1259 (-316 (-379))))) (-15 -2224 ((-3 $ "failed") (-1259 (-316 (-379))))) (-15 -2376 ($ (-1259 (-316 (-564))))) (-15 -2224 ((-3 $ "failed") (-1259 (-316 (-564))))) (-15 -2376 ($ (-1259 (-949 (-379))))) (-15 -2224 ((-3 $ "failed") (-1259 (-949 (-379))))) (-15 -2376 ($ (-1259 (-949 (-564))))) (-15 -2224 ((-3 $ "failed") (-1259 (-949 (-564))))) (-15 -2376 ($ (-1259 (-407 (-949 (-379)))))) (-15 -2224 ((-3 $ "failed") (-1259 (-407 (-949 (-379)))))) (-15 -2376 ($ (-1259 (-407 (-949 (-564)))))) (-15 -2224 ((-3 $ "failed") (-1259 (-407 (-949 (-564))))))))
(((-611 (-859)) . T) ((-395) . T) ((-1209) . T))
-((-3310 (((-112)) 18)) (-3148 (((-112) (-112)) 19)) (-2000 (((-112)) 14)) (-1607 (((-112) (-112)) 15)) (-1405 (((-112)) 16)) (-1306 (((-112) (-112)) 17)) (-3098 (((-918) (-918)) 22) (((-918)) 21)) (-1921 (((-768) (-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564))))) 51)) (-1312 (((-918) (-918)) 24) (((-918)) 23)) (-2946 (((-2 (|:| -3819 (-564)) (|:| -2362 (-641 |#1|))) |#1|) 94)) (-1339 (((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564))))))) 174)) (-1435 (((-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))) |#1| (-112)) 207)) (-2708 (((-418 |#1|) |#1| (-768) (-768)) 222) (((-418 |#1|) |#1| (-641 (-768)) (-768)) 219) (((-418 |#1|) |#1| (-641 (-768))) 221) (((-418 |#1|) |#1| (-768)) 220) (((-418 |#1|) |#1|) 218)) (-4337 (((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112)) 224) (((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768)) 225) (((-3 |#1| "failed") (-918) |#1| (-641 (-768))) 227) (((-3 |#1| "failed") (-918) |#1| (-768)) 226) (((-3 |#1| "failed") (-918) |#1|) 228)) (-4006 (((-418 |#1|) |#1| (-768) (-768)) 217) (((-418 |#1|) |#1| (-641 (-768)) (-768)) 213) (((-418 |#1|) |#1| (-641 (-768))) 215) (((-418 |#1|) |#1| (-768)) 214) (((-418 |#1|) |#1|) 212)) (-4288 (((-112) |#1|) 43)) (-3863 (((-734 (-768)) (-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564))))) 99)) (-2230 (((-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)) 211)))
-(((-442 |#1|) (-10 -7 (-15 -1339 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))))) (-15 -3863 ((-734 (-768)) (-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))))) (-15 -1312 ((-918))) (-15 -1312 ((-918) (-918))) (-15 -3098 ((-918))) (-15 -3098 ((-918) (-918))) (-15 -1921 ((-768) (-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))))) (-15 -2946 ((-2 (|:| -3819 (-564)) (|:| -2362 (-641 |#1|))) |#1|)) (-15 -3310 ((-112))) (-15 -3148 ((-112) (-112))) (-15 -2000 ((-112))) (-15 -1607 ((-112) (-112))) (-15 -4288 ((-112) |#1|)) (-15 -1405 ((-112))) (-15 -1306 ((-112) (-112))) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -4006 ((-418 |#1|) |#1| (-768))) (-15 -4006 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -4006 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -4006 ((-418 |#1|) |#1| (-768) (-768))) (-15 -2708 ((-418 |#1|) |#1|)) (-15 -2708 ((-418 |#1|) |#1| (-768))) (-15 -2708 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -2708 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -2708 ((-418 |#1|) |#1| (-768) (-768))) (-15 -4337 ((-3 |#1| "failed") (-918) |#1|)) (-15 -4337 ((-3 |#1| "failed") (-918) |#1| (-768))) (-15 -4337 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)))) (-15 -4337 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768))) (-15 -4337 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112))) (-15 -1435 ((-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))) |#1| (-112))) (-15 -2230 ((-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)))) (-1235 (-564))) (T -442))
-((-2230 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-768))) (-5 *6 (-768)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| *3) (|:| -1490 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1435 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| *3) (|:| -1490 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4337 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-4337 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-4337 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-4337 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-768)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-4337 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-918)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-2708 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2708 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2708 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2708 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4006 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4006 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4006 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1306 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1405 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4288 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2000 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3148 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3310 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2946 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3819 (-564)) (|:| -2362 (-641 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4006 *4) (|:| -3344 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-768)) (-5 *1 (-442 *4)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3098 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1312 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1312 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4006 *4) (|:| -3344 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-734 (-768))) (-5 *1 (-442 *4)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| *4) (|:| -1490 (-564))))))) (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
-(-10 -7 (-15 -1339 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))))) (-15 -3863 ((-734 (-768)) (-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))))) (-15 -1312 ((-918))) (-15 -1312 ((-918) (-918))) (-15 -3098 ((-918))) (-15 -3098 ((-918) (-918))) (-15 -1921 ((-768) (-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))))) (-15 -2946 ((-2 (|:| -3819 (-564)) (|:| -2362 (-641 |#1|))) |#1|)) (-15 -3310 ((-112))) (-15 -3148 ((-112) (-112))) (-15 -2000 ((-112))) (-15 -1607 ((-112) (-112))) (-15 -4288 ((-112) |#1|)) (-15 -1405 ((-112))) (-15 -1306 ((-112) (-112))) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -4006 ((-418 |#1|) |#1| (-768))) (-15 -4006 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -4006 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -4006 ((-418 |#1|) |#1| (-768) (-768))) (-15 -2708 ((-418 |#1|) |#1|)) (-15 -2708 ((-418 |#1|) |#1| (-768))) (-15 -2708 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -2708 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -2708 ((-418 |#1|) |#1| (-768) (-768))) (-15 -4337 ((-3 |#1| "failed") (-918) |#1|)) (-15 -4337 ((-3 |#1| "failed") (-918) |#1| (-768))) (-15 -4337 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)))) (-15 -4337 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768))) (-15 -4337 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112))) (-15 -1435 ((-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))) |#1| (-112))) (-15 -2230 ((-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))) |#1| (-112) (-1096 (-768)) (-768))))
-((-2665 (((-564) |#2|) 52) (((-564) |#2| (-768)) 51)) (-3732 (((-564) |#2|) 67)) (-3402 ((|#3| |#2|) 26)) (-1779 ((|#3| |#2| (-918)) 15)) (-2564 ((|#3| |#2|) 16)) (-1929 ((|#3| |#2|) 9)) (-1813 ((|#3| |#2|) 10)) (-2395 ((|#3| |#2| (-918)) 74) ((|#3| |#2|) 34)) (-2519 (((-564) |#2|) 69)))
-(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -2519 ((-564) |#2|)) (-15 -2395 (|#3| |#2|)) (-15 -2395 (|#3| |#2| (-918))) (-15 -3732 ((-564) |#2|)) (-15 -2665 ((-564) |#2| (-768))) (-15 -2665 ((-564) |#2|)) (-15 -1779 (|#3| |#2| (-918))) (-15 -3402 (|#3| |#2|)) (-15 -1929 (|#3| |#2|)) (-15 -1813 (|#3| |#2|)) (-15 -2564 (|#3| |#2|))) (-1046) (-1235 |#1|) (-13 (-404) (-1035 |#1|) (-363) (-1194) (-284))) (T -443))
-((-2564 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-1813 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-2665 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))) (-2665 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5)) (-4 *6 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))) (-2395 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-2395 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2519 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))))
-(-10 -7 (-15 -2519 ((-564) |#2|)) (-15 -2395 (|#3| |#2|)) (-15 -2395 (|#3| |#2| (-918))) (-15 -3732 ((-564) |#2|)) (-15 -2665 ((-564) |#2| (-768))) (-15 -2665 ((-564) |#2|)) (-15 -1779 (|#3| |#2| (-918))) (-15 -3402 (|#3| |#2|)) (-15 -1929 (|#3| |#2|)) (-15 -1813 (|#3| |#2|)) (-15 -2564 (|#3| |#2|)))
-((-4388 ((|#2| (-1259 |#1|)) 45)) (-4242 ((|#2| |#2| |#1|) 61)) (-2505 ((|#2| |#2| |#1|) 53)) (-3716 ((|#2| |#2|) 49)) (-1534 (((-112) |#2|) 36)) (-3313 (((-641 |#2|) (-918) (-418 |#2|)) 24)) (-4337 ((|#2| (-918) (-418 |#2|)) 28)) (-3863 (((-734 (-768)) (-418 |#2|)) 33)))
-(((-444 |#1| |#2|) (-10 -7 (-15 -1534 ((-112) |#2|)) (-15 -4388 (|#2| (-1259 |#1|))) (-15 -3716 (|#2| |#2|)) (-15 -2505 (|#2| |#2| |#1|)) (-15 -4242 (|#2| |#2| |#1|)) (-15 -3863 ((-734 (-768)) (-418 |#2|))) (-15 -4337 (|#2| (-918) (-418 |#2|))) (-15 -3313 ((-641 |#2|) (-918) (-418 |#2|)))) (-1046) (-1235 |#1|)) (T -444))
-((-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-1046)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6)))) (-4337 (*1 *2 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1046)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1046)) (-5 *2 (-734 (-768))) (-5 *1 (-444 *4 *5)))) (-4242 (*1 *2 *2 *3) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-2505 (*1 *2 *2 *3) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-4388 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1046)) (-4 *2 (-1235 *4)) (-5 *1 (-444 *4 *2)))) (-1534 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -1534 ((-112) |#2|)) (-15 -4388 (|#2| (-1259 |#1|))) (-15 -3716 (|#2| |#2|)) (-15 -2505 (|#2| |#2| |#1|)) (-15 -4242 (|#2| |#2| |#1|)) (-15 -3863 ((-734 (-768)) (-418 |#2|))) (-15 -4337 (|#2| (-918) (-418 |#2|))) (-15 -3313 ((-641 |#2|) (-918) (-418 |#2|))))
-((-4153 (((-768)) 57)) (-1383 (((-768)) 29 (|has| |#1| (-404))) (((-768) (-768)) 28 (|has| |#1| (-404)))) (-4028 (((-564) |#1|) 25 (|has| |#1| (-404)))) (-4307 (((-564) |#1|) 27 (|has| |#1| (-404)))) (-4031 (((-768)) 56) (((-768) (-768)) 55)) (-2700 ((|#1| (-768) (-564)) 36)) (-2718 (((-1264)) 59)))
-(((-445 |#1|) (-10 -7 (-15 -2700 (|#1| (-768) (-564))) (-15 -4031 ((-768) (-768))) (-15 -4031 ((-768))) (-15 -4153 ((-768))) (-15 -2718 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -4307 ((-564) |#1|)) (-15 -4028 ((-564) |#1|)) (-15 -1383 ((-768) (-768))) (-15 -1383 ((-768)))) |%noBranch|)) (-1046)) (T -445))
-((-1383 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-4028 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-4307 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-2718 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-4153 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-4031 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-4031 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1046)))))
-(-10 -7 (-15 -2700 (|#1| (-768) (-564))) (-15 -4031 ((-768) (-768))) (-15 -4031 ((-768))) (-15 -4153 ((-768))) (-15 -2718 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -4307 ((-564) |#1|)) (-15 -4028 ((-564) |#1|)) (-15 -1383 ((-768) (-768))) (-15 -1383 ((-768)))) |%noBranch|))
-((-3535 (((-641 (-564)) (-564)) 75)) (-3241 (((-112) (-169 (-564))) 81)) (-4006 (((-418 (-169 (-564))) (-169 (-564))) 74)))
-(((-446) (-10 -7 (-15 -4006 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -3535 ((-641 (-564)) (-564))) (-15 -3241 ((-112) (-169 (-564)))))) (T -446))
-((-3241 (*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) (-3535 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))) (-4006 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) (-5 *3 (-169 (-564))))))
-(-10 -7 (-15 -4006 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -3535 ((-641 (-564)) (-564))) (-15 -3241 ((-112) (-169 (-564)))))
-((-4359 ((|#4| |#4| (-641 |#4|)) 80)) (-3654 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 22) (((-641 |#4|) (-641 |#4|) (-1152)) 21) (((-641 |#4|) (-641 |#4|)) 13)))
-(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4359 (|#4| |#4| (-641 |#4|))) (-15 -3654 ((-641 |#4|) (-641 |#4|))) (-15 -3654 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -3654 ((-641 |#4|) (-641 |#4|) (-1152) (-1152)))) (-307) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -447))
-((-3654 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3654 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3654 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-447 *3 *4 *5 *6)))) (-4359 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *2)))))
-(-10 -7 (-15 -4359 (|#4| |#4| (-641 |#4|))) (-15 -3654 ((-641 |#4|) (-641 |#4|))) (-15 -3654 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -3654 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))))
-((-2731 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 89) (((-641 (-641 |#4|)) (-641 |#4|)) 88) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112)) 82) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|)) 83)) (-3422 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 54) (((-641 (-641 |#4|)) (-641 |#4|)) 75)))
-(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3422 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -3422 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2731 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2731 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2731 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2731 ((-641 (-641 |#4|)) (-641 |#4|) (-112)))) (-13 (-307) (-147)) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -448))
-((-2731 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2731 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2731 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2731 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3422 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-3422 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(-10 -7 (-15 -3422 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -3422 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2731 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2731 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2731 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2731 ((-641 (-641 |#4|)) (-641 |#4|) (-112))))
-((-1458 (((-768) |#4|) 12)) (-3521 (((-641 (-2 (|:| |totdeg| (-768)) (|:| -3808 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -3808 |#4|)))) 38)) (-2667 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1777 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3431 ((|#4| |#4| (-641 |#4|)) 54)) (-3064 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|)) 96)) (-2531 (((-1264) |#4|) 59)) (-3569 (((-1264) (-641 |#4|)) 69)) (-2065 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564)) 66)) (-1908 (((-1264) (-564)) 111)) (-1522 (((-641 |#4|) (-641 |#4|)) 103)) (-2686 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -3808 |#4|)) |#4| (-768)) 31)) (-3536 (((-564) |#4|) 108)) (-2422 ((|#4| |#4|) 36)) (-4074 (((-641 |#4|) (-641 |#4|) (-564) (-564)) 74)) (-3155 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564)) 124)) (-3522 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2773 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2599 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3227 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3771 (((-112) |#2| |#2|) 75)) (-1482 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3697 (((-112) |#2| |#2| |#2| |#2|) 80)) (-1941 ((|#4| |#4| (-641 |#4|)) 97)))
-(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1941 (|#4| |#4| (-641 |#4|))) (-15 -3431 (|#4| |#4| (-641 |#4|))) (-15 -4074 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2773 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3771 ((-112) |#2| |#2|)) (-15 -3697 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1482 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3227 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2599 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3064 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -2422 (|#4| |#4|)) (-15 -3521 ((-641 (-2 (|:| |totdeg| (-768)) (|:| -3808 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -3808 |#4|))))) (-15 -1777 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2667 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1522 ((-641 |#4|) (-641 |#4|))) (-15 -3536 ((-564) |#4|)) (-15 -2531 ((-1264) |#4|)) (-15 -2065 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -3155 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -3569 ((-1264) (-641 |#4|))) (-15 -1908 ((-1264) (-564))) (-15 -3522 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2686 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -3808 |#4|)) |#4| (-768))) (-15 -1458 ((-768) |#4|))) (-452) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -449))
-((-1458 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2686 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-768)) (|:| -3808 *4))) (-5 *5 (-768)) (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-3522 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3155 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2065 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2531 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-3536 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-564)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2667 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-790)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-847)))) (-3521 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-768)) (|:| -3808 *3)))) (-5 *4 (-768)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *3)))) (-2422 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-2599 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-790)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *4 *3 *5 *6)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-1482 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-790)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *3)))) (-3697 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-3771 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-4074 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3431 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))) (-1941 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1941 (|#4| |#4| (-641 |#4|))) (-15 -3431 (|#4| |#4| (-641 |#4|))) (-15 -4074 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2773 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3771 ((-112) |#2| |#2|)) (-15 -3697 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1482 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3227 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2599 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3064 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -2422 (|#4| |#4|)) (-15 -3521 ((-641 (-2 (|:| |totdeg| (-768)) (|:| -3808 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -3808 |#4|))))) (-15 -1777 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2667 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1522 ((-641 |#4|) (-641 |#4|))) (-15 -3536 ((-564) |#4|)) (-15 -2531 ((-1264) |#4|)) (-15 -2065 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -3155 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -3569 ((-1264) (-641 |#4|))) (-15 -1908 ((-1264) (-564))) (-15 -3522 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2686 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -3808 |#4|)) |#4| (-768))) (-15 -1458 ((-768) |#4|)))
-((-1472 ((|#4| |#4| (-641 |#4|)) 20 (|has| |#1| (-363)))) (-2067 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 46) (((-641 |#4|) (-641 |#4|) (-1152)) 45) (((-641 |#4|) (-641 |#4|)) 34)))
-(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2067 ((-641 |#4|) (-641 |#4|))) (-15 -2067 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -2067 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -1472 (|#4| |#4| (-641 |#4|))) |%noBranch|)) (-452) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -450))
-((-1472 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *2)))) (-2067 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2067 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-450 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2067 ((-641 |#4|) (-641 |#4|))) (-15 -2067 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -2067 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -1472 (|#4| |#4| (-641 |#4|))) |%noBranch|))
-((-2488 (($ $ $) 14) (($ (-641 $)) 21)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 48)) (-2527 (($ $ $) NIL) (($ (-641 $)) 22)))
-(((-451 |#1|) (-10 -8 (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2488 (|#1| (-641 |#1|))) (-15 -2488 (|#1| |#1| |#1|)) (-15 -2527 (|#1| (-641 |#1|))) (-15 -2527 (|#1| |#1| |#1|))) (-452)) (T -451))
-NIL
-(-10 -8 (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2488 (|#1| (-641 |#1|))) (-15 -2488 (|#1| |#1| |#1|)) (-15 -2527 (|#1| (-641 |#1|))) (-15 -2527 (|#1| |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-1343 (((-3 $ "failed") $ $) 43)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-1317 (((-112)) 18)) (-2237 (((-112) (-112)) 19)) (-3758 (((-112)) 14)) (-4207 (((-112) (-112)) 15)) (-1515 (((-112)) 16)) (-2938 (((-112) (-112)) 17)) (-2934 (((-918) (-918)) 22) (((-918)) 21)) (-4226 (((-768) (-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564))))) 51)) (-2165 (((-918) (-918)) 24) (((-918)) 23)) (-3982 (((-2 (|:| -2601 (-564)) (|:| -3020 (-641 |#1|))) |#1|) 94)) (-2423 (((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564))))))) 174)) (-1797 (((-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))) |#1| (-112)) 207)) (-3299 (((-418 |#1|) |#1| (-768) (-768)) 222) (((-418 |#1|) |#1| (-641 (-768)) (-768)) 219) (((-418 |#1|) |#1| (-641 (-768))) 221) (((-418 |#1|) |#1| (-768)) 220) (((-418 |#1|) |#1|) 218)) (-3574 (((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112)) 224) (((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768)) 225) (((-3 |#1| "failed") (-918) |#1| (-641 (-768))) 227) (((-3 |#1| "failed") (-918) |#1| (-768)) 226) (((-3 |#1| "failed") (-918) |#1|) 228)) (-4139 (((-418 |#1|) |#1| (-768) (-768)) 217) (((-418 |#1|) |#1| (-641 (-768)) (-768)) 213) (((-418 |#1|) |#1| (-641 (-768))) 215) (((-418 |#1|) |#1| (-768)) 214) (((-418 |#1|) |#1|) 212)) (-1368 (((-112) |#1|) 43)) (-1744 (((-734 (-768)) (-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564))))) 99)) (-4218 (((-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)) 211)))
+(((-442 |#1|) (-10 -7 (-15 -2423 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))))) (-15 -1744 ((-734 (-768)) (-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))))) (-15 -2165 ((-918))) (-15 -2165 ((-918) (-918))) (-15 -2934 ((-918))) (-15 -2934 ((-918) (-918))) (-15 -4226 ((-768) (-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))))) (-15 -3982 ((-2 (|:| -2601 (-564)) (|:| -3020 (-641 |#1|))) |#1|)) (-15 -1317 ((-112))) (-15 -2237 ((-112) (-112))) (-15 -3758 ((-112))) (-15 -4207 ((-112) (-112))) (-15 -1368 ((-112) |#1|)) (-15 -1515 ((-112))) (-15 -2938 ((-112) (-112))) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -4139 ((-418 |#1|) |#1| (-768))) (-15 -4139 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -4139 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -4139 ((-418 |#1|) |#1| (-768) (-768))) (-15 -3299 ((-418 |#1|) |#1|)) (-15 -3299 ((-418 |#1|) |#1| (-768))) (-15 -3299 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -3299 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -3299 ((-418 |#1|) |#1| (-768) (-768))) (-15 -3574 ((-3 |#1| "failed") (-918) |#1|)) (-15 -3574 ((-3 |#1| "failed") (-918) |#1| (-768))) (-15 -3574 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)))) (-15 -3574 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768))) (-15 -3574 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112))) (-15 -1797 ((-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))) |#1| (-112))) (-15 -4218 ((-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)))) (-1235 (-564))) (T -442))
+((-4218 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-768))) (-5 *6 (-768)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| *3) (|:| -2534 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| *3) (|:| -2534 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3574 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3574 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3574 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3574 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-768)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3574 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-918)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-3299 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3299 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3299 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3299 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3299 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4139 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1515 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1368 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4207 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3758 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1317 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3982 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2601 (-564)) (|:| -3020 (-641 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4139 *4) (|:| -3475 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-768)) (-5 *1 (-442 *4)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2934 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2165 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2165 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4139 *4) (|:| -3475 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-734 (-768))) (-5 *1 (-442 *4)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| *4) (|:| -2534 (-564))))))) (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
+(-10 -7 (-15 -2423 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))))) (-15 -1744 ((-734 (-768)) (-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))))) (-15 -2165 ((-918))) (-15 -2165 ((-918) (-918))) (-15 -2934 ((-918))) (-15 -2934 ((-918) (-918))) (-15 -4226 ((-768) (-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))))) (-15 -3982 ((-2 (|:| -2601 (-564)) (|:| -3020 (-641 |#1|))) |#1|)) (-15 -1317 ((-112))) (-15 -2237 ((-112) (-112))) (-15 -3758 ((-112))) (-15 -4207 ((-112) (-112))) (-15 -1368 ((-112) |#1|)) (-15 -1515 ((-112))) (-15 -2938 ((-112) (-112))) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -4139 ((-418 |#1|) |#1| (-768))) (-15 -4139 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -4139 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -4139 ((-418 |#1|) |#1| (-768) (-768))) (-15 -3299 ((-418 |#1|) |#1|)) (-15 -3299 ((-418 |#1|) |#1| (-768))) (-15 -3299 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -3299 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -3299 ((-418 |#1|) |#1| (-768) (-768))) (-15 -3574 ((-3 |#1| "failed") (-918) |#1|)) (-15 -3574 ((-3 |#1| "failed") (-918) |#1| (-768))) (-15 -3574 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)))) (-15 -3574 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768))) (-15 -3574 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112))) (-15 -1797 ((-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))) |#1| (-112))) (-15 -4218 ((-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))) |#1| (-112) (-1096 (-768)) (-768))))
+((-2936 (((-564) |#2|) 52) (((-564) |#2| (-768)) 51)) (-2971 (((-564) |#2|) 67)) (-2914 ((|#3| |#2|) 26)) (-2217 ((|#3| |#2| (-918)) 15)) (-3451 ((|#3| |#2|) 16)) (-4307 ((|#3| |#2|) 9)) (-3694 ((|#3| |#2|) 10)) (-3253 ((|#3| |#2| (-918)) 74) ((|#3| |#2|) 34)) (-2086 (((-564) |#2|) 69)))
+(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -2086 ((-564) |#2|)) (-15 -3253 (|#3| |#2|)) (-15 -3253 (|#3| |#2| (-918))) (-15 -2971 ((-564) |#2|)) (-15 -2936 ((-564) |#2| (-768))) (-15 -2936 ((-564) |#2|)) (-15 -2217 (|#3| |#2| (-918))) (-15 -2914 (|#3| |#2|)) (-15 -4307 (|#3| |#2|)) (-15 -3694 (|#3| |#2|)) (-15 -3451 (|#3| |#2|))) (-1046) (-1235 |#1|) (-13 (-404) (-1035 |#1|) (-363) (-1194) (-284))) (T -443))
+((-3451 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-4307 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2914 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2217 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-2936 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))) (-2936 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5)) (-4 *6 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))))) (-2971 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))) (-3253 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2086 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))))
+(-10 -7 (-15 -2086 ((-564) |#2|)) (-15 -3253 (|#3| |#2|)) (-15 -3253 (|#3| |#2| (-918))) (-15 -2971 ((-564) |#2|)) (-15 -2936 ((-564) |#2| (-768))) (-15 -2936 ((-564) |#2|)) (-15 -2217 (|#3| |#2| (-918))) (-15 -2914 (|#3| |#2|)) (-15 -4307 (|#3| |#2|)) (-15 -3694 (|#3| |#2|)) (-15 -3451 (|#3| |#2|)))
+((-4041 ((|#2| (-1259 |#1|)) 45)) (-2221 ((|#2| |#2| |#1|) 61)) (-1986 ((|#2| |#2| |#1|) 53)) (-1923 ((|#2| |#2|) 49)) (-1692 (((-112) |#2|) 36)) (-1340 (((-641 |#2|) (-918) (-418 |#2|)) 24)) (-3574 ((|#2| (-918) (-418 |#2|)) 28)) (-1744 (((-734 (-768)) (-418 |#2|)) 33)))
+(((-444 |#1| |#2|) (-10 -7 (-15 -1692 ((-112) |#2|)) (-15 -4041 (|#2| (-1259 |#1|))) (-15 -1923 (|#2| |#2|)) (-15 -1986 (|#2| |#2| |#1|)) (-15 -2221 (|#2| |#2| |#1|)) (-15 -1744 ((-734 (-768)) (-418 |#2|))) (-15 -3574 (|#2| (-918) (-418 |#2|))) (-15 -1340 ((-641 |#2|) (-918) (-418 |#2|)))) (-1046) (-1235 |#1|)) (T -444))
+((-1340 (*1 *2 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-1046)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1046)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1046)) (-5 *2 (-734 (-768))) (-5 *1 (-444 *4 *5)))) (-2221 (*1 *2 *2 *3) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-1986 (*1 *2 *2 *3) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-1923 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1046)) (-4 *2 (-1235 *4)) (-5 *1 (-444 *4 *2)))) (-1692 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -1692 ((-112) |#2|)) (-15 -4041 (|#2| (-1259 |#1|))) (-15 -1923 (|#2| |#2|)) (-15 -1986 (|#2| |#2| |#1|)) (-15 -2221 (|#2| |#2| |#1|)) (-15 -1744 ((-734 (-768)) (-418 |#2|))) (-15 -3574 (|#2| (-918) (-418 |#2|))) (-15 -1340 ((-641 |#2|) (-918) (-418 |#2|))))
+((-2648 (((-768)) 57)) (-2509 (((-768)) 29 (|has| |#1| (-404))) (((-768) (-768)) 28 (|has| |#1| (-404)))) (-3830 (((-564) |#1|) 25 (|has| |#1| (-404)))) (-1527 (((-564) |#1|) 27 (|has| |#1| (-404)))) (-3864 (((-768)) 56) (((-768) (-768)) 55)) (-3224 ((|#1| (-768) (-564)) 36)) (-3382 (((-1264)) 59)))
+(((-445 |#1|) (-10 -7 (-15 -3224 (|#1| (-768) (-564))) (-15 -3864 ((-768) (-768))) (-15 -3864 ((-768))) (-15 -2648 ((-768))) (-15 -3382 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -1527 ((-564) |#1|)) (-15 -3830 ((-564) |#1|)) (-15 -2509 ((-768) (-768))) (-15 -2509 ((-768)))) |%noBranch|)) (-1046)) (T -445))
+((-2509 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-3830 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-1527 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-3382 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-2648 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-3864 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1046)))))
+(-10 -7 (-15 -3224 (|#1| (-768) (-564))) (-15 -3864 ((-768) (-768))) (-15 -3864 ((-768))) (-15 -2648 ((-768))) (-15 -3382 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -1527 ((-564) |#1|)) (-15 -3830 ((-564) |#1|)) (-15 -2509 ((-768) (-768))) (-15 -2509 ((-768)))) |%noBranch|))
+((-1686 (((-641 (-564)) (-564)) 75)) (-1926 (((-112) (-169 (-564))) 81)) (-4139 (((-418 (-169 (-564))) (-169 (-564))) 74)))
+(((-446) (-10 -7 (-15 -4139 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -1686 ((-641 (-564)) (-564))) (-15 -1926 ((-112) (-169 (-564)))))) (T -446))
+((-1926 (*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) (-1686 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) (-5 *3 (-169 (-564))))))
+(-10 -7 (-15 -4139 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -1686 ((-641 (-564)) (-564))) (-15 -1926 ((-112) (-169 (-564)))))
+((-3786 ((|#4| |#4| (-641 |#4|)) 80)) (-3400 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 22) (((-641 |#4|) (-641 |#4|) (-1152)) 21) (((-641 |#4|) (-641 |#4|)) 13)))
+(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3786 (|#4| |#4| (-641 |#4|))) (-15 -3400 ((-641 |#4|) (-641 |#4|))) (-15 -3400 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -3400 ((-641 |#4|) (-641 |#4|) (-1152) (-1152)))) (-307) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -447))
+((-3400 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *7)))) (-3400 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-447 *3 *4 *5 *6)))) (-3786 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3786 (|#4| |#4| (-641 |#4|))) (-15 -3400 ((-641 |#4|) (-641 |#4|))) (-15 -3400 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -3400 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))))
+((-2396 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 89) (((-641 (-641 |#4|)) (-641 |#4|)) 88) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112)) 82) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|)) 83)) (-3061 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 54) (((-641 (-641 |#4|)) (-641 |#4|)) 75)))
+(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3061 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -3061 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2396 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2396 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2396 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2396 ((-641 (-641 |#4|)) (-641 |#4|) (-112)))) (-13 (-307) (-147)) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -448))
+((-2396 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2396 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2396 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2396 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-3061 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
+(-10 -7 (-15 -3061 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -3061 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2396 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2396 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2396 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2396 ((-641 (-641 |#4|)) (-641 |#4|) (-112))))
+((-2188 (((-768) |#4|) 12)) (-2820 (((-641 (-2 (|:| |totdeg| (-768)) (|:| -2485 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -2485 |#4|)))) 38)) (-2955 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2194 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3129 ((|#4| |#4| (-641 |#4|)) 54)) (-3780 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|)) 96)) (-2184 (((-1264) |#4|) 59)) (-2031 (((-1264) (-641 |#4|)) 69)) (-3204 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564)) 66)) (-4085 (((-1264) (-564)) 111)) (-1575 (((-641 |#4|) (-641 |#4|)) 103)) (-3114 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -2485 |#4|)) |#4| (-768)) 31)) (-1698 (((-564) |#4|) 108)) (-2378 ((|#4| |#4|) 36)) (-3065 (((-641 |#4|) (-641 |#4|) (-564) (-564)) 74)) (-2311 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564)) 124)) (-2827 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2816 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1584 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-1765 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3273 (((-112) |#2| |#2|) 75)) (-2448 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3810 (((-112) |#2| |#2| |#2| |#2|) 80)) (-1311 ((|#4| |#4| (-641 |#4|)) 97)))
+(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1311 (|#4| |#4| (-641 |#4|))) (-15 -3129 (|#4| |#4| (-641 |#4|))) (-15 -3065 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2816 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3273 ((-112) |#2| |#2|)) (-15 -3810 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2448 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1765 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1584 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3780 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -2378 (|#4| |#4|)) (-15 -2820 ((-641 (-2 (|:| |totdeg| (-768)) (|:| -2485 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -2485 |#4|))))) (-15 -2194 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2955 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1575 ((-641 |#4|) (-641 |#4|))) (-15 -1698 ((-564) |#4|)) (-15 -2184 ((-1264) |#4|)) (-15 -3204 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -2311 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -2031 ((-1264) (-641 |#4|))) (-15 -4085 ((-1264) (-564))) (-15 -2827 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3114 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -2485 |#4|)) |#4| (-768))) (-15 -2188 ((-768) |#4|))) (-452) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -449))
+((-2188 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-3114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-768)) (|:| -2485 *4))) (-5 *5 (-768)) (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-2827 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2311 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *4)))) (-3204 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2184 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-564)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2955 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-790)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-847)))) (-2820 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-768)) (|:| -2485 *3)))) (-5 *4 (-768)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *3)))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-1584 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-790)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *4 *3 *5 *6)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2448 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-790)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *3)))) (-3810 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3065 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3129 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))) (-1311 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1311 (|#4| |#4| (-641 |#4|))) (-15 -3129 (|#4| |#4| (-641 |#4|))) (-15 -3065 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2816 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3273 ((-112) |#2| |#2|)) (-15 -3810 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2448 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1765 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1584 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3780 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -2378 (|#4| |#4|)) (-15 -2820 ((-641 (-2 (|:| |totdeg| (-768)) (|:| -2485 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -2485 |#4|))))) (-15 -2194 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2955 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1575 ((-641 |#4|) (-641 |#4|))) (-15 -1698 ((-564) |#4|)) (-15 -2184 ((-1264) |#4|)) (-15 -3204 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -2311 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -2031 ((-1264) (-641 |#4|))) (-15 -4085 ((-1264) (-564))) (-15 -2827 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3114 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -2485 |#4|)) |#4| (-768))) (-15 -2188 ((-768) |#4|)))
+((-2333 ((|#4| |#4| (-641 |#4|)) 20 (|has| |#1| (-363)))) (-3222 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 46) (((-641 |#4|) (-641 |#4|) (-1152)) 45) (((-641 |#4|) (-641 |#4|)) 34)))
+(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3222 ((-641 |#4|) (-641 |#4|))) (-15 -3222 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -3222 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -2333 (|#4| |#4| (-641 |#4|))) |%noBranch|)) (-452) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -450))
+((-2333 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *2)))) (-3222 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3222 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3222 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-450 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3222 ((-641 |#4|) (-641 |#4|))) (-15 -3222 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -3222 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -2333 (|#4| |#4| (-641 |#4|))) |%noBranch|))
+((-2688 (($ $ $) 14) (($ (-641 $)) 21)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 48)) (-2727 (($ $ $) NIL) (($ (-641 $)) 22)))
+(((-451 |#1|) (-10 -8 (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2688 (|#1| (-641 |#1|))) (-15 -2688 (|#1| |#1| |#1|)) (-15 -2727 (|#1| (-641 |#1|))) (-15 -2727 (|#1| |#1| |#1|))) (-452)) (T -451))
+NIL
+(-10 -8 (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2688 (|#1| (-641 |#1|))) (-15 -2688 (|#1| |#1| |#1|)) (-15 -2727 (|#1| (-641 |#1|))) (-15 -2727 (|#1| |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-1347 (((-3 $ "failed") $ $) 43)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-452) (-140)) (T -452))
-((-2527 (*1 *1 *1 *1) (-4 *1 (-452))) (-2527 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-2488 (*1 *1 *1 *1) (-4 *1 (-452))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-3281 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452)))))
-(-13 (-556) (-10 -8 (-15 -2527 ($ $ $)) (-15 -2527 ($ (-641 $))) (-15 -2488 ($ $ $)) (-15 -2488 ($ (-641 $))) (-15 -3281 ((-1166 $) (-1166 $) (-1166 $)))))
+((-2727 (*1 *1 *1 *1) (-4 *1 (-452))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-2688 (*1 *1 *1 *1) (-4 *1 (-452))) (-2688 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-4150 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452)))))
+(-13 (-556) (-10 -8 (-15 -2727 ($ $ $)) (-15 -2727 ($ (-641 $))) (-15 -2688 ($ $ $)) (-15 -2688 ($ (-641 $))) (-15 -4150 ((-1166 $) (-1166 $) (-1166 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-1950 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3165 (((-1259 (-685 (-407 (-949 |#1|)))) (-1259 $)) NIL) (((-1259 (-685 (-407 (-949 |#1|))))) NIL)) (-3233 (((-1259 $)) NIL)) (-3760 (($) NIL T CONST)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL)) (-2661 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-2685 (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-949 |#1|)))) NIL)) (-4349 (((-407 (-949 |#1|)) $) NIL)) (-1725 (((-685 (-407 (-949 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-949 |#1|))) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-4089 (((-1166 (-949 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-363))) (((-1166 (-407 (-949 |#1|)))) 94 (|has| |#1| (-556)))) (-1864 (($ $ (-918)) NIL)) (-3158 (((-407 (-949 |#1|)) $) NIL)) (-3261 (((-1166 (-407 (-949 |#1|))) $) 92 (|has| (-407 (-949 |#1|)) (-556)))) (-1870 (((-407 (-949 |#1|)) (-1259 $)) NIL) (((-407 (-949 |#1|))) NIL)) (-3660 (((-1166 (-407 (-949 |#1|))) $) NIL)) (-3202 (((-112)) NIL)) (-2910 (($ (-1259 (-407 (-949 |#1|))) (-1259 $)) 118) (($ (-1259 (-407 (-949 |#1|)))) NIL)) (-1926 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-4224 (((-918)) NIL)) (-1703 (((-112)) NIL)) (-2544 (($ $ (-918)) NIL)) (-2053 (((-112)) NIL)) (-2824 (((-112)) NIL)) (-3222 (((-112)) NIL)) (-4280 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL)) (-3979 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3449 (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-949 |#1|)))) NIL)) (-3899 (((-407 (-949 |#1|)) $) NIL)) (-1549 (((-685 (-407 (-949 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-949 |#1|))) $) NIL)) (-3647 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3743 (((-1166 (-949 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-363))) (((-1166 (-407 (-949 |#1|)))) 93 (|has| |#1| (-556)))) (-3229 (($ $ (-918)) NIL)) (-4009 (((-407 (-949 |#1|)) $) NIL)) (-2883 (((-1166 (-407 (-949 |#1|))) $) 87 (|has| (-407 (-949 |#1|)) (-556)))) (-2291 (((-407 (-949 |#1|)) (-1259 $)) NIL) (((-407 (-949 |#1|))) NIL)) (-1563 (((-1166 (-407 (-949 |#1|))) $) NIL)) (-3734 (((-112)) NIL)) (-4202 (((-1152) $) NIL)) (-1995 (((-112)) NIL)) (-2187 (((-112)) NIL)) (-1756 (((-112)) NIL)) (-3802 (((-1114) $) NIL)) (-3577 (((-407 (-949 |#1|)) $ $) 78 (|has| |#1| (-556)))) (-1801 (((-407 (-949 |#1|)) $) 104 (|has| |#1| (-556)))) (-2520 (((-407 (-949 |#1|)) $) 108 (|has| |#1| (-556)))) (-3088 (((-1166 (-407 (-949 |#1|))) $) 98 (|has| |#1| (-556)))) (-3618 (((-407 (-949 |#1|))) 79 (|has| |#1| (-556)))) (-2931 (((-407 (-949 |#1|)) $ $) 71 (|has| |#1| (-556)))) (-3792 (((-407 (-949 |#1|)) $) 103 (|has| |#1| (-556)))) (-2302 (((-407 (-949 |#1|)) $) 107 (|has| |#1| (-556)))) (-2666 (((-1166 (-407 (-949 |#1|))) $) 97 (|has| |#1| (-556)))) (-2393 (((-407 (-949 |#1|))) 75 (|has| |#1| (-556)))) (-3144 (($) 114) (($ (-1170)) 122) (($ (-1259 (-1170))) 121) (($ (-1259 $)) 109) (($ (-1170) (-1259 $)) 120) (($ (-1259 (-1170)) (-1259 $)) 119)) (-3015 (((-112)) NIL)) (-4382 (((-407 (-949 |#1|)) $ (-564)) NIL)) (-3072 (((-1259 (-407 (-949 |#1|))) $ (-1259 $)) 111) (((-685 (-407 (-949 |#1|))) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 (-949 |#1|))) $) 45) (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL)) (-2127 (((-1259 (-407 (-949 |#1|))) $) NIL) (($ (-1259 (-407 (-949 |#1|)))) 42)) (-4339 (((-641 (-949 (-407 (-949 |#1|)))) (-1259 $)) NIL) (((-641 (-949 (-407 (-949 |#1|))))) NIL) (((-641 (-949 |#1|)) (-1259 $)) 112 (|has| |#1| (-556))) (((-641 (-949 |#1|))) 113 (|has| |#1| (-556)))) (-1762 (($ $ $) NIL)) (-2060 (((-112)) NIL)) (-1765 (((-859) $) NIL) (($ (-1259 (-407 (-949 |#1|)))) NIL)) (-3941 (((-1259 $)) 67)) (-2663 (((-641 (-1259 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-1850 (($ $ $ $) NIL)) (-3730 (((-112)) NIL)) (-3021 (($ (-685 (-407 (-949 |#1|))) $) NIL)) (-3008 (($ $ $) NIL)) (-1379 (((-112)) NIL)) (-3689 (((-112)) NIL)) (-2323 (((-112)) NIL)) (-4317 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) 110)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 63) (($ $ (-407 (-949 |#1|))) NIL) (($ (-407 (-949 |#1|)) $) NIL) (($ (-1136 |#2| (-407 (-949 |#1|))) $) NIL)))
-(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-949 |#1|))) (-644 (-1136 |#2| (-407 (-949 |#1|)))) (-10 -8 (-15 -1765 ($ (-1259 (-407 (-949 |#1|))))) (-15 -4280 ((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed"))) (-15 -3144 ($)) (-15 -3144 ($ (-1170))) (-15 -3144 ($ (-1259 (-1170)))) (-15 -3144 ($ (-1259 $))) (-15 -3144 ($ (-1170) (-1259 $))) (-15 -3144 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -3743 ((-1166 (-407 (-949 |#1|))))) (-15 -2666 ((-1166 (-407 (-949 |#1|))) $)) (-15 -3792 ((-407 (-949 |#1|)) $)) (-15 -2302 ((-407 (-949 |#1|)) $)) (-15 -4089 ((-1166 (-407 (-949 |#1|))))) (-15 -3088 ((-1166 (-407 (-949 |#1|))) $)) (-15 -1801 ((-407 (-949 |#1|)) $)) (-15 -2520 ((-407 (-949 |#1|)) $)) (-15 -2931 ((-407 (-949 |#1|)) $ $)) (-15 -2393 ((-407 (-949 |#1|)))) (-15 -3577 ((-407 (-949 |#1|)) $ $)) (-15 -3618 ((-407 (-949 |#1|)))) (-15 -4339 ((-641 (-949 |#1|)) (-1259 $))) (-15 -4339 ((-641 (-949 |#1|))))) |%noBranch|))) (-172) (-918) (-641 (-1170)) (-1259 (-685 |#1|))) (T -453))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 *3)))) (-4 *3 (-172)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))))) (-4280 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -3941 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3550 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -3941 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3144 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-918)) (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2))))) (-3144 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3))))) (-3144 (*1 *1 *2) (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3144 (*1 *1 *2) (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3144 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4))))) (-3144 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-3743 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-4089 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2931 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2393 (*1 *2) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3577 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3618 (*1 *2) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-949 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-4339 (*1 *2) (-12 (-5 *2 (-641 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(-13 (-417 (-407 (-949 |#1|))) (-644 (-1136 |#2| (-407 (-949 |#1|)))) (-10 -8 (-15 -1765 ($ (-1259 (-407 (-949 |#1|))))) (-15 -4280 ((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed"))) (-15 -3144 ($)) (-15 -3144 ($ (-1170))) (-15 -3144 ($ (-1259 (-1170)))) (-15 -3144 ($ (-1259 $))) (-15 -3144 ($ (-1170) (-1259 $))) (-15 -3144 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -3743 ((-1166 (-407 (-949 |#1|))))) (-15 -2666 ((-1166 (-407 (-949 |#1|))) $)) (-15 -3792 ((-407 (-949 |#1|)) $)) (-15 -2302 ((-407 (-949 |#1|)) $)) (-15 -4089 ((-1166 (-407 (-949 |#1|))))) (-15 -3088 ((-1166 (-407 (-949 |#1|))) $)) (-15 -1801 ((-407 (-949 |#1|)) $)) (-15 -2520 ((-407 (-949 |#1|)) $)) (-15 -2931 ((-407 (-949 |#1|)) $ $)) (-15 -2393 ((-407 (-949 |#1|)))) (-15 -3577 ((-407 (-949 |#1|)) $ $)) (-15 -3618 ((-407 (-949 |#1|)))) (-15 -4339 ((-641 (-949 |#1|)) (-1259 $))) (-15 -4339 ((-641 (-949 |#1|))))) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 18)) (-4170 (((-641 (-861 |#1|)) $) 93)) (-3964 (((-1166 $) $ (-861 |#1|)) 59) (((-1166 |#2|) $) 142)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1840 (($ $) NIL (|has| |#2| (-556)))) (-4035 (((-112) $) NIL (|has| |#2| (-556)))) (-2831 (((-768) $) 27) (((-768) $ (-641 (-861 |#1|))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1368 (($ $) NIL (|has| |#2| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) 57) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2064 ((|#2| $) 55) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-4267 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-1666 (($ $ (-641 (-564))) 99)) (-4346 (($ $) 87)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#2| (-906)))) (-2877 (($ $ |#2| |#3| $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) 72)) (-4157 (($ (-1166 |#2|) (-861 |#1|)) 147) (($ (-1166 $) (-861 |#1|)) 65)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) 75)) (-4145 (($ |#2| |#3|) 38) (($ $ (-861 |#1|) (-768)) 40) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-861 |#1|)) NIL)) (-3829 ((|#3| $) NIL) (((-768) $ (-861 |#1|)) 63) (((-641 (-768)) $ (-641 (-861 |#1|))) 70)) (-3571 (($ $ $) NIL (|has| |#2| (-847)))) (-1547 (($ $ $) NIL (|has| |#2| (-847)))) (-2964 (($ (-1 |#3| |#3|) $) NIL)) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2022 (((-3 (-861 |#1|) "failed") $) 52)) (-4311 (($ $) NIL)) (-4323 ((|#2| $) 54)) (-2488 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-4202 (((-1152) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -3747 (-768))) "failed") $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) 53)) (-4298 ((|#2| $) 140)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) 152 (|has| |#2| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1343 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) 106) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) 112) (($ $ (-861 |#1|) $) 104) (($ $ (-641 (-861 |#1|)) (-641 $)) 130)) (-1938 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3226 (($ $ (-861 |#1|)) 66) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-3344 ((|#3| $) 86) (((-768) $ (-861 |#1|)) 49) (((-641 (-768)) $ (-641 (-861 |#1|))) 69)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2712 ((|#2| $) 149 (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1765 (((-859) $) 177) (($ (-564)) NIL) (($ |#2|) 105) (($ (-861 |#1|)) 42) (($ (-407 (-564))) NIL (-4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-4264 (((-641 |#2|) $) NIL)) (-1757 ((|#2| $ |#3|) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4317 (($) 22 T CONST)) (-4327 (($) 31 T CONST)) (-3190 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1738 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1793 (($ $ |#2|) 84 (|has| |#2| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 135)) (** (($ $ (-918)) NIL) (($ $ (-768)) 133)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) 83) (($ $ |#2|) NIL)))
-(((-454 |#1| |#2| |#3|) (-13 (-946 |#2| |#3| (-861 |#1|)) (-10 -8 (-15 -1666 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046) (-238 (-2589 |#1|) (-768))) (T -454))
-((-1666 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-238 (-2589 *3) (-768))))))
-(-13 (-946 |#2| |#3| (-861 |#1|)) (-10 -8 (-15 -1666 ($ $ (-641 (-564))))))
-((-4078 (((-112) |#1| (-641 |#2|)) 92)) (-1411 (((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|)) 101)) (-2697 (((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|))) 103)) (-3753 ((|#2| |#2| |#1|) 35)) (-2241 (((-768) |#2| (-641 |#2|)) 26)))
-(((-455 |#1| |#2|) (-10 -7 (-15 -3753 (|#2| |#2| |#1|)) (-15 -2241 ((-768) |#2| (-641 |#2|))) (-15 -1411 ((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|))) (-15 -2697 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -4078 ((-112) |#1| (-641 |#2|)))) (-307) (-1235 |#1|)) (T -455))
-((-4078 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-2697 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307)) (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4)))) (-1411 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-307)) (-4 *6 (-1235 *4)) (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6)))) (-2241 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307)) (-5 *2 (-768)) (-5 *1 (-455 *5 *3)))) (-3753 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3)))))
-(-10 -7 (-15 -3753 (|#2| |#2| |#1|)) (-15 -2241 ((-768) |#2| (-641 |#2|))) (-15 -1411 ((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|))) (-15 -2697 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -4078 ((-112) |#1| (-641 |#2|))))
-((-4006 (((-418 |#5|) |#5|) 24)))
-(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4006 ((-418 |#5|) |#5|))) (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170))))) (-790) (-556) (-556) (-946 |#4| |#2| |#1|)) (T -456))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170)))))) (-4 *5 (-790)) (-4 *7 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-946 *7 *5 *4)))))
-(-10 -7 (-15 -4006 ((-418 |#5|) |#5|)))
-((-3285 ((|#3|) 40)) (-3281 (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 36)))
-(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3281 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3285 (|#3|))) (-790) (-847) (-906) (-946 |#3| |#1| |#2|)) (T -457))
-((-3285 (*1 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3281 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3281 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3285 (|#3|)))
-((-4006 (((-418 (-1166 |#1|)) (-1166 |#1|)) 43)))
-(((-458 |#1|) (-10 -7 (-15 -4006 ((-418 (-1166 |#1|)) (-1166 |#1|)))) (-307)) (T -458))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1166 *4)))))
-(-10 -7 (-15 -4006 ((-418 (-1166 |#1|)) (-1166 |#1|))))
-((-4223 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768))) 44) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768))) 43) (((-52) |#2| (-1170) (-294 |#2|)) 36) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 29)) (-3526 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 87) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 86) (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 85) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 84) (((-52) |#2| (-1170) (-294 |#2|)) 79) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 78)) (-4248 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 73) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 71)) (-4235 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 50) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 49)))
-(((-459 |#1| |#2|) (-10 -7 (-15 -4223 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -4223 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -4223 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768)))) (-15 -4223 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768)))) (-15 -4235 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -4235 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -4248 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -4248 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3526 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3526 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -3526 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -3526 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -3526 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3526 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -459))
-((-3526 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3526 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3526 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-4248 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-4248 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-4235 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-4235 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-4223 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-768))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-4223 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-768))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-4223 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))))
-(-10 -7 (-15 -4223 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -4223 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -4223 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768)))) (-15 -4223 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768)))) (-15 -4235 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -4235 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -4248 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -4248 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3526 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3526 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -3526 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -3526 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -3526 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3526 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))))
-((-3753 ((|#2| |#2| |#1|) 15)) (-4274 (((-641 |#2|) |#2| (-641 |#2|) |#1| (-918)) 84)) (-1860 (((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918)) 70)))
-(((-460 |#1| |#2|) (-10 -7 (-15 -1860 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918))) (-15 -4274 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-918))) (-15 -3753 (|#2| |#2| |#1|))) (-307) (-1235 |#1|)) (T -460))
-((-3753 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3)))) (-4274 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-641 *3)) (-5 *5 (-918)) (-4 *3 (-1235 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-1860 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-918)) (-4 *5 (-307)) (-4 *3 (-1235 *5)) (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3)))))
-(-10 -7 (-15 -1860 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918))) (-15 -4274 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-918))) (-15 -3753 (|#2| |#2| |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 28)) (-3473 (($ |#3|) 25)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-4346 (($ $) 32)) (-3574 (($ |#2| |#4| $) 33)) (-4145 (($ |#2| (-710 |#3| |#4| |#5|)) 24)) (-4311 (((-710 |#3| |#4| |#5|) $) 15)) (-3926 ((|#3| $) 19)) (-3450 ((|#4| $) 17)) (-4323 ((|#2| $) 29)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-2634 (($ |#2| |#3| |#4|) 26)) (-4317 (($) 36 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 34)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-714 |#6|) (-714 |#2|) (-10 -8 (-15 -4323 (|#2| $)) (-15 -4311 ((-710 |#3| |#4| |#5|) $)) (-15 -3450 (|#4| $)) (-15 -3926 (|#3| $)) (-15 -4346 ($ $)) (-15 -4145 ($ |#2| (-710 |#3| |#4| |#5|))) (-15 -3473 ($ |#3|)) (-15 -2634 ($ |#2| |#3| |#4|)) (-15 -3574 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-641 (-1170)) (-172) (-847) (-238 (-2589 |#1|) (-768)) (-1 (-112) (-2 (|:| -1403 |#3|) (|:| -3747 |#4|)) (-2 (|:| -1403 |#3|) (|:| -3747 |#4|))) (-946 |#2| |#4| (-861 |#1|))) (T -461))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2589 *3) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *6)) (-2 (|:| -1403 *5) (|:| -3747 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-847)) (-4 *2 (-946 *4 *6 (-861 *3))))) (-4323 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2589 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1403 *4) (|:| -3747 *5)) (-2 (|:| -1403 *4) (|:| -3747 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-847)) (-4 *7 (-946 *2 *5 (-861 *3))))) (-4311 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2589 *3) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *6)) (-2 (|:| -1403 *5) (|:| -3747 *6)))) (-5 *2 (-710 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-847)) (-4 *8 (-946 *4 *6 (-861 *3))))) (-3450 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *2)) (-2 (|:| -1403 *5) (|:| -3747 *2)))) (-4 *2 (-238 (-2589 *3) (-768))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-847)) (-4 *7 (-946 *4 *2 (-861 *3))))) (-3926 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2589 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1403 *2) (|:| -3747 *5)) (-2 (|:| -1403 *2) (|:| -3747 *5)))) (-4 *2 (-847)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-946 *4 *5 (-861 *3))))) (-4346 (*1 *1 *1) (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172)) (-4 *5 (-238 (-2589 *2) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1403 *4) (|:| -3747 *5)) (-2 (|:| -1403 *4) (|:| -3747 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-847)) (-4 *7 (-946 *3 *5 (-861 *2))))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-710 *5 *6 *7)) (-4 *5 (-847)) (-4 *6 (-238 (-2589 *4) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *6)) (-2 (|:| -1403 *5) (|:| -3747 *6)))) (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-946 *2 *6 (-861 *4))))) (-3473 (*1 *1 *2) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2589 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1403 *2) (|:| -3747 *5)) (-2 (|:| -1403 *2) (|:| -3747 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-847)) (-4 *7 (-946 *4 *5 (-861 *3))))) (-2634 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172)) (-4 *4 (-238 (-2589 *5) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1403 *3) (|:| -3747 *4)) (-2 (|:| -1403 *3) (|:| -3747 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-847)) (-4 *7 (-946 *2 *4 (-861 *5))))) (-3574 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-4 *3 (-238 (-2589 *4) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *3)) (-2 (|:| -1403 *5) (|:| -3747 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-847)) (-4 *7 (-946 *2 *3 (-861 *4))))))
-(-13 (-714 |#6|) (-714 |#2|) (-10 -8 (-15 -4323 (|#2| $)) (-15 -4311 ((-710 |#3| |#4| |#5|) $)) (-15 -3450 (|#4| $)) (-15 -3926 (|#3| $)) (-15 -4346 ($ $)) (-15 -4145 ($ |#2| (-710 |#3| |#4| |#5|))) (-15 -3473 ($ |#3|)) (-15 -2634 ($ |#2| |#3| |#4|)) (-15 -3574 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-1802 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1802 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|) (-13 (-1035 (-407 (-564))) (-363) (-10 -8 (-15 -1765 ($ |#4|)) (-15 -1507 (|#4| $)) (-15 -1517 (|#4| $))))) (T -462))
-((-1802 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-847)) (-4 *5 (-790)) (-4 *6 (-556)) (-4 *7 (-946 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1035 (-407 (-564))) (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))))))
-(-10 -7 (-15 -1802 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-1754 (((-112) $ $) NIL)) (-4170 (((-641 |#3|) $) 41)) (-1747 (((-112) $) NIL)) (-2197 (((-112) $) NIL (|has| |#1| (-556)))) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-4177 (((-112) $) NIL (|has| |#1| (-556)))) (-3911 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2694 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1378 (((-112) $) NIL (|has| |#1| (-556)))) (-2254 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) 49)) (-2064 (($ (-641 |#4|)) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2359 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411)))) (-3080 (((-641 |#4|) $) 18 (|has| $ (-6 -4411)))) (-3162 ((|#3| $) 47)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#4|) $) 14 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-3513 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 21)) (-4343 (((-641 |#3|) $) NIL)) (-1853 (((-112) |#3| $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3802 (((-1114) $) NIL)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1467 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 39)) (-3845 (($) 17)) (-3815 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) 16)) (-2127 (((-536) $) NIL (|has| |#4| (-612 (-536)))) (($ (-641 |#4|)) 51)) (-1776 (($ (-641 |#4|)) 13)) (-2318 (($ $ |#3|) NIL)) (-1869 (($ $ |#3|) NIL)) (-1845 (($ $ |#3|) NIL)) (-1765 (((-859) $) 38) (((-641 |#4|) $) 50)) (-2237 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 30)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-463 |#1| |#2| |#3| |#4|) (-13 (-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2127 ($ (-641 |#4|))) (-6 -4411) (-6 -4412))) (-1046) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -463))
-((-2127 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-463 *3 *4 *5 *6)))))
-(-13 (-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2127 ($ (-641 |#4|))) (-6 -4411) (-6 -4412)))
-((-4317 (($) 11)) (-4327 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -4327 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4317 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464))
-NIL
-(-10 -8 (-15 -4327 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4317 (|#1|)))
-((-1754 (((-112) $ $) 7)) (-2013 (((-3 |#1| "failed") $) 26)) (-2064 ((|#1| $) 27)) (-3123 (($ $ $) 23)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3344 ((|#2| $) 19)) (-1765 (((-859) $) 11) (($ |#1|) 25)) (-4317 (($) 18 T CONST)) (-4327 (($) 24 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 15) (($ $ $) 13)) (-1771 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1425 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-2426 (((-1259 (-685 (-407 (-949 |#1|)))) (-1259 $)) NIL) (((-1259 (-685 (-407 (-949 |#1|))))) NIL)) (-1838 (((-1259 $)) NIL)) (-3180 (($) NIL T CONST)) (-1830 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL)) (-2911 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3102 (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-949 |#1|)))) NIL)) (-3693 (((-407 (-949 |#1|)) $) NIL)) (-2921 (((-685 (-407 (-949 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-949 |#1|))) $) NIL)) (-2684 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3176 (((-1166 (-949 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-363))) (((-1166 (-407 (-949 |#1|)))) 94 (|has| |#1| (-556)))) (-1842 (($ $ (-918)) NIL)) (-2345 (((-407 (-949 |#1|)) $) NIL)) (-2119 (((-1166 (-407 (-949 |#1|))) $) 92 (|has| (-407 (-949 |#1|)) (-556)))) (-1907 (((-407 (-949 |#1|)) (-1259 $)) NIL) (((-407 (-949 |#1|))) NIL)) (-3448 (((-1166 (-407 (-949 |#1|))) $) NIL)) (-2790 (((-112)) NIL)) (-3566 (($ (-1259 (-407 (-949 |#1|))) (-1259 $)) 118) (($ (-1259 (-407 (-949 |#1|)))) NIL)) (-4272 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-1595 (((-918)) NIL)) (-3882 (((-112)) NIL)) (-4133 (($ $ (-918)) NIL)) (-3113 (((-112)) NIL)) (-2111 (((-112)) NIL)) (-1717 (((-112)) NIL)) (-1303 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL)) (-1566 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3276 (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-949 |#1|)))) NIL)) (-2112 (((-407 (-949 |#1|)) $) NIL)) (-1847 (((-685 (-407 (-949 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-949 |#1|))) $) NIL)) (-1524 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3050 (((-1166 (-949 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-363))) (((-1166 (-407 (-949 |#1|)))) 93 (|has| |#1| (-556)))) (-1788 (($ $ (-918)) NIL)) (-3645 (((-407 (-949 |#1|)) $) NIL)) (-1487 (((-1166 (-407 (-949 |#1|))) $) 87 (|has| (-407 (-949 |#1|)) (-556)))) (-3531 (((-407 (-949 |#1|)) (-1259 $)) NIL) (((-407 (-949 |#1|))) NIL)) (-1980 (((-1166 (-407 (-949 |#1|))) $) NIL)) (-2989 (((-112)) NIL)) (-1868 (((-1152) $) NIL)) (-3700 (((-112)) NIL)) (-1981 (((-112)) NIL)) (-3172 (((-112)) NIL)) (-3844 (((-1114) $) NIL)) (-2107 (((-407 (-949 |#1|)) $ $) 78 (|has| |#1| (-556)))) (-2442 (((-407 (-949 |#1|)) $) 104 (|has| |#1| (-556)))) (-2097 (((-407 (-949 |#1|)) $) 108 (|has| |#1| (-556)))) (-2857 (((-1166 (-407 (-949 |#1|))) $) 98 (|has| |#1| (-556)))) (-4310 (((-407 (-949 |#1|))) 79 (|has| |#1| (-556)))) (-3818 (((-407 (-949 |#1|)) $ $) 71 (|has| |#1| (-556)))) (-2324 (((-407 (-949 |#1|)) $) 103 (|has| |#1| (-556)))) (-3643 (((-407 (-949 |#1|)) $) 107 (|has| |#1| (-556)))) (-2946 (((-1166 (-407 (-949 |#1|))) $) 97 (|has| |#1| (-556)))) (-3237 (((-407 (-949 |#1|))) 75 (|has| |#1| (-556)))) (-2190 (($) 114) (($ (-1170)) 122) (($ (-1259 (-1170))) 121) (($ (-1259 $)) 109) (($ (-1170) (-1259 $)) 120) (($ (-1259 (-1170)) (-1259 $)) 119)) (-1458 (((-112)) NIL)) (-4382 (((-407 (-949 |#1|)) $ (-564)) NIL)) (-3867 (((-1259 (-407 (-949 |#1|))) $ (-1259 $)) 111) (((-685 (-407 (-949 |#1|))) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 (-949 |#1|))) $) 45) (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL)) (-2374 (((-1259 (-407 (-949 |#1|))) $) NIL) (($ (-1259 (-407 (-949 |#1|)))) 42)) (-3602 (((-641 (-949 (-407 (-949 |#1|)))) (-1259 $)) NIL) (((-641 (-949 (-407 (-949 |#1|))))) NIL) (((-641 (-949 |#1|)) (-1259 $)) 112 (|has| |#1| (-556))) (((-641 (-949 |#1|))) 113 (|has| |#1| (-556)))) (-3217 (($ $ $) NIL)) (-3168 (((-112)) NIL)) (-3714 (((-859) $) NIL) (($ (-1259 (-407 (-949 |#1|)))) NIL)) (-4339 (((-1259 $)) 67)) (-2919 (((-641 (-1259 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-1687 (($ $ $ $) NIL)) (-2954 (((-112)) NIL)) (-1996 (($ (-685 (-407 (-949 |#1|))) $) NIL)) (-1390 (($ $ $) NIL)) (-3808 (((-112)) NIL)) (-3738 (((-112)) NIL)) (-3851 (((-112)) NIL)) (-4312 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) 110)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 63) (($ $ (-407 (-949 |#1|))) NIL) (($ (-407 (-949 |#1|)) $) NIL) (($ (-1136 |#2| (-407 (-949 |#1|))) $) NIL)))
+(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-949 |#1|))) (-644 (-1136 |#2| (-407 (-949 |#1|)))) (-10 -8 (-15 -3714 ($ (-1259 (-407 (-949 |#1|))))) (-15 -1303 ((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed"))) (-15 -1830 ((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed"))) (-15 -2190 ($)) (-15 -2190 ($ (-1170))) (-15 -2190 ($ (-1259 (-1170)))) (-15 -2190 ($ (-1259 $))) (-15 -2190 ($ (-1170) (-1259 $))) (-15 -2190 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -3050 ((-1166 (-407 (-949 |#1|))))) (-15 -2946 ((-1166 (-407 (-949 |#1|))) $)) (-15 -2324 ((-407 (-949 |#1|)) $)) (-15 -3643 ((-407 (-949 |#1|)) $)) (-15 -3176 ((-1166 (-407 (-949 |#1|))))) (-15 -2857 ((-1166 (-407 (-949 |#1|))) $)) (-15 -2442 ((-407 (-949 |#1|)) $)) (-15 -2097 ((-407 (-949 |#1|)) $)) (-15 -3818 ((-407 (-949 |#1|)) $ $)) (-15 -3237 ((-407 (-949 |#1|)))) (-15 -2107 ((-407 (-949 |#1|)) $ $)) (-15 -4310 ((-407 (-949 |#1|)))) (-15 -3602 ((-641 (-949 |#1|)) (-1259 $))) (-15 -3602 ((-641 (-949 |#1|))))) |%noBranch|))) (-172) (-918) (-641 (-1170)) (-1259 (-685 |#1|))) (T -453))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 *3)))) (-4 *3 (-172)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))))) (-1303 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4339 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1830 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4339 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2190 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-918)) (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2))))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3))))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2190 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4))))) (-2190 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-3050 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3176 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3818 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3237 (*1 *2) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2107 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-4310 (*1 *2) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-949 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-3602 (*1 *2) (-12 (-5 *2 (-641 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(-13 (-417 (-407 (-949 |#1|))) (-644 (-1136 |#2| (-407 (-949 |#1|)))) (-10 -8 (-15 -3714 ($ (-1259 (-407 (-949 |#1|))))) (-15 -1303 ((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed"))) (-15 -1830 ((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed"))) (-15 -2190 ($)) (-15 -2190 ($ (-1170))) (-15 -2190 ($ (-1259 (-1170)))) (-15 -2190 ($ (-1259 $))) (-15 -2190 ($ (-1170) (-1259 $))) (-15 -2190 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -3050 ((-1166 (-407 (-949 |#1|))))) (-15 -2946 ((-1166 (-407 (-949 |#1|))) $)) (-15 -2324 ((-407 (-949 |#1|)) $)) (-15 -3643 ((-407 (-949 |#1|)) $)) (-15 -3176 ((-1166 (-407 (-949 |#1|))))) (-15 -2857 ((-1166 (-407 (-949 |#1|))) $)) (-15 -2442 ((-407 (-949 |#1|)) $)) (-15 -2097 ((-407 (-949 |#1|)) $)) (-15 -3818 ((-407 (-949 |#1|)) $ $)) (-15 -3237 ((-407 (-949 |#1|)))) (-15 -2107 ((-407 (-949 |#1|)) $ $)) (-15 -4310 ((-407 (-949 |#1|)))) (-15 -3602 ((-641 (-949 |#1|)) (-1259 $))) (-15 -3602 ((-641 (-949 |#1|))))) |%noBranch|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 18)) (-4292 (((-641 (-861 |#1|)) $) 93)) (-4103 (((-1166 $) $ (-861 |#1|)) 59) (((-1166 |#2|) $) 142)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1582 (($ $) NIL (|has| |#2| (-556)))) (-3897 (((-112) $) NIL (|has| |#2| (-556)))) (-2181 (((-768) $) 27) (((-768) $ (-641 (-861 |#1|))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1328 (($ $) NIL (|has| |#2| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) 57) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2376 ((|#2| $) 55) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-4275 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3473 (($ $ (-641 (-564))) 99)) (-1374 (($ $) 87)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#2| (-906)))) (-1423 (($ $ |#2| |#3| $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) 72)) (-4279 (($ (-1166 |#2|) (-861 |#1|)) 147) (($ (-1166 $) (-861 |#1|)) 65)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) 75)) (-4267 (($ |#2| |#3|) 38) (($ $ (-861 |#1|) (-768)) 40) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-861 |#1|)) NIL)) (-2700 ((|#3| $) NIL) (((-768) $ (-861 |#1|)) 63) (((-641 (-768)) $ (-641 (-861 |#1|))) 70)) (-3428 (($ $ $) NIL (|has| |#2| (-847)))) (-3413 (($ $ $) NIL (|has| |#2| (-847)))) (-4062 (($ (-1 |#3| |#3|) $) NIL)) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-2848 (((-3 (-861 |#1|) "failed") $) 52)) (-1330 (($ $) NIL)) (-1345 ((|#2| $) 54)) (-2688 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1868 (((-1152) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -3078 (-768))) "failed") $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) 53)) (-1316 ((|#2| $) 140)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) 152 (|has| |#2| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1347 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) 106) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) 112) (($ $ (-861 |#1|) $) 104) (($ $ (-641 (-861 |#1|)) (-641 $)) 130)) (-4378 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-2203 (($ $ (-861 |#1|)) 66) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-3475 ((|#3| $) 86) (((-768) $ (-861 |#1|)) 49) (((-641 (-768)) $ (-641 (-861 |#1|))) 69)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3324 ((|#2| $) 149 (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3714 (((-859) $) 177) (($ (-564)) NIL) (($ |#2|) 105) (($ (-861 |#1|)) 42) (($ (-407 (-564))) NIL (-4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-4252 (((-641 |#2|) $) NIL)) (-3181 ((|#2| $ |#3|) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4312 (($) 22 T CONST)) (-4323 (($) 31 T CONST)) (-2238 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1841 (($ $ |#2|) 84 (|has| |#2| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 135)) (** (($ $ (-918)) NIL) (($ $ (-768)) 133)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) 83) (($ $ |#2|) NIL)))
+(((-454 |#1| |#2| |#3|) (-13 (-946 |#2| |#3| (-861 |#1|)) (-10 -8 (-15 -3473 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046) (-238 (-2779 |#1|) (-768))) (T -454))
+((-3473 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-238 (-2779 *3) (-768))))))
+(-13 (-946 |#2| |#3| (-861 |#1|)) (-10 -8 (-15 -3473 ($ $ (-641 (-564))))))
+((-3100 (((-112) |#1| (-641 |#2|)) 92)) (-1573 (((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|)) 101)) (-3196 (((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|))) 103)) (-3126 ((|#2| |#2| |#1|) 35)) (-4335 (((-768) |#2| (-641 |#2|)) 26)))
+(((-455 |#1| |#2|) (-10 -7 (-15 -3126 (|#2| |#2| |#1|)) (-15 -4335 ((-768) |#2| (-641 |#2|))) (-15 -1573 ((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|))) (-15 -3196 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -3100 ((-112) |#1| (-641 |#2|)))) (-307) (-1235 |#1|)) (T -455))
+((-3100 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-3196 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307)) (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4)))) (-1573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-307)) (-4 *6 (-1235 *4)) (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6)))) (-4335 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307)) (-5 *2 (-768)) (-5 *1 (-455 *5 *3)))) (-3126 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3)))))
+(-10 -7 (-15 -3126 (|#2| |#2| |#1|)) (-15 -4335 ((-768) |#2| (-641 |#2|))) (-15 -1573 ((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|))) (-15 -3196 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -3100 ((-112) |#1| (-641 |#2|))))
+((-4139 (((-418 |#5|) |#5|) 24)))
+(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4139 ((-418 |#5|) |#5|))) (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170))))) (-790) (-556) (-556) (-946 |#4| |#2| |#1|)) (T -456))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170)))))) (-4 *5 (-790)) (-4 *7 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-946 *7 *5 *4)))))
+(-10 -7 (-15 -4139 ((-418 |#5|) |#5|)))
+((-4198 ((|#3|) 40)) (-4150 (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 36)))
+(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4150 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -4198 (|#3|))) (-790) (-847) (-906) (-946 |#3| |#1| |#2|)) (T -457))
+((-4198 (*1 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-946 *2 *3 *4)))) (-4150 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6)))))
+(-10 -7 (-15 -4150 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -4198 (|#3|)))
+((-4139 (((-418 (-1166 |#1|)) (-1166 |#1|)) 43)))
+(((-458 |#1|) (-10 -7 (-15 -4139 ((-418 (-1166 |#1|)) (-1166 |#1|)))) (-307)) (T -458))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1166 *4)))))
+(-10 -7 (-15 -4139 ((-418 (-1166 |#1|)) (-1166 |#1|))))
+((-4350 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768))) 44) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768))) 43) (((-52) |#2| (-1170) (-294 |#2|)) 36) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 29)) (-3392 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 87) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 86) (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 85) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 84) (((-52) |#2| (-1170) (-294 |#2|)) 79) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 78)) (-4374 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 73) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 71)) (-4362 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 50) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 49)))
+(((-459 |#1| |#2|) (-10 -7 (-15 -4350 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -4350 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -4350 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768)))) (-15 -4350 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768)))) (-15 -4362 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -4362 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -4374 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -4374 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3392 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3392 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -3392 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -3392 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -3392 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3392 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -459))
+((-3392 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3392 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3392 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3392 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-4374 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-4374 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-4362 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-4362 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-4350 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-768))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-4350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-768))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-4350 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))))
+(-10 -7 (-15 -4350 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -4350 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -4350 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768)))) (-15 -4350 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768)))) (-15 -4362 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -4362 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -4374 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -4374 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3392 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -3392 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -3392 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -3392 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -3392 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -3392 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))))
+((-3126 ((|#2| |#2| |#1|) 15)) (-4345 (((-641 |#2|) |#2| (-641 |#2|) |#1| (-918)) 84)) (-1793 (((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918)) 70)))
+(((-460 |#1| |#2|) (-10 -7 (-15 -1793 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918))) (-15 -4345 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-918))) (-15 -3126 (|#2| |#2| |#1|))) (-307) (-1235 |#1|)) (T -460))
+((-3126 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3)))) (-4345 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-641 *3)) (-5 *5 (-918)) (-4 *3 (-1235 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-1793 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-918)) (-4 *5 (-307)) (-4 *3 (-1235 *5)) (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3)))))
+(-10 -7 (-15 -1793 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918))) (-15 -4345 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-918))) (-15 -3126 (|#2| |#2| |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 28)) (-2366 (($ |#3|) 25)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1374 (($ $) 32)) (-2076 (($ |#2| |#4| $) 33)) (-4267 (($ |#2| (-710 |#3| |#4| |#5|)) 24)) (-1330 (((-710 |#3| |#4| |#5|) $) 15)) (-4188 ((|#3| $) 19)) (-3283 ((|#4| $) 17)) (-1345 ((|#2| $) 29)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-3770 (($ |#2| |#3| |#4|) 26)) (-4312 (($) 36 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 34)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-714 |#6|) (-714 |#2|) (-10 -8 (-15 -1345 (|#2| $)) (-15 -1330 ((-710 |#3| |#4| |#5|) $)) (-15 -3283 (|#4| $)) (-15 -4188 (|#3| $)) (-15 -1374 ($ $)) (-15 -4267 ($ |#2| (-710 |#3| |#4| |#5|))) (-15 -2366 ($ |#3|)) (-15 -3770 ($ |#2| |#3| |#4|)) (-15 -2076 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-641 (-1170)) (-172) (-847) (-238 (-2779 |#1|) (-768)) (-1 (-112) (-2 (|:| -3338 |#3|) (|:| -3078 |#4|)) (-2 (|:| -3338 |#3|) (|:| -3078 |#4|))) (-946 |#2| |#4| (-861 |#1|))) (T -461))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2779 *3) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *6)) (-2 (|:| -3338 *5) (|:| -3078 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-847)) (-4 *2 (-946 *4 *6 (-861 *3))))) (-1345 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2779 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -3338 *4) (|:| -3078 *5)) (-2 (|:| -3338 *4) (|:| -3078 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-847)) (-4 *7 (-946 *2 *5 (-861 *3))))) (-1330 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2779 *3) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *6)) (-2 (|:| -3338 *5) (|:| -3078 *6)))) (-5 *2 (-710 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-847)) (-4 *8 (-946 *4 *6 (-861 *3))))) (-3283 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *2)) (-2 (|:| -3338 *5) (|:| -3078 *2)))) (-4 *2 (-238 (-2779 *3) (-768))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-847)) (-4 *7 (-946 *4 *2 (-861 *3))))) (-4188 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2779 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -3338 *2) (|:| -3078 *5)) (-2 (|:| -3338 *2) (|:| -3078 *5)))) (-4 *2 (-847)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-946 *4 *5 (-861 *3))))) (-1374 (*1 *1 *1) (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172)) (-4 *5 (-238 (-2779 *2) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -3338 *4) (|:| -3078 *5)) (-2 (|:| -3338 *4) (|:| -3078 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-847)) (-4 *7 (-946 *3 *5 (-861 *2))))) (-4267 (*1 *1 *2 *3) (-12 (-5 *3 (-710 *5 *6 *7)) (-4 *5 (-847)) (-4 *6 (-238 (-2779 *4) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *6)) (-2 (|:| -3338 *5) (|:| -3078 *6)))) (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-946 *2 *6 (-861 *4))))) (-2366 (*1 *1 *2) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2779 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -3338 *2) (|:| -3078 *5)) (-2 (|:| -3338 *2) (|:| -3078 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-847)) (-4 *7 (-946 *4 *5 (-861 *3))))) (-3770 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172)) (-4 *4 (-238 (-2779 *5) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -3338 *3) (|:| -3078 *4)) (-2 (|:| -3338 *3) (|:| -3078 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-847)) (-4 *7 (-946 *2 *4 (-861 *5))))) (-2076 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-4 *3 (-238 (-2779 *4) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *3)) (-2 (|:| -3338 *5) (|:| -3078 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-847)) (-4 *7 (-946 *2 *3 (-861 *4))))))
+(-13 (-714 |#6|) (-714 |#2|) (-10 -8 (-15 -1345 (|#2| $)) (-15 -1330 ((-710 |#3| |#4| |#5|) $)) (-15 -3283 (|#4| $)) (-15 -4188 (|#3| $)) (-15 -1374 ($ $)) (-15 -4267 ($ |#2| (-710 |#3| |#4| |#5|))) (-15 -2366 ($ |#3|)) (-15 -3770 ($ |#2| |#3| |#4|)) (-15 -2076 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2454 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2454 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|) (-13 (-1035 (-407 (-564))) (-363) (-10 -8 (-15 -3714 ($ |#4|)) (-15 -1655 (|#4| $)) (-15 -1668 (|#4| $))))) (T -462))
+((-2454 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-847)) (-4 *5 (-790)) (-4 *6 (-556)) (-4 *7 (-946 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1035 (-407 (-564))) (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))))))
+(-10 -7 (-15 -2454 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-3702 (((-112) $ $) NIL)) (-4292 (((-641 |#3|) $) 41)) (-3097 (((-112) $) NIL)) (-2092 (((-112) $) NIL (|has| |#1| (-556)))) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-4148 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-2846 (((-112) $) NIL (|has| |#1| (-556)))) (-2228 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3171 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3798 (((-112) $) NIL (|has| |#1| (-556)))) (-1373 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) 49)) (-2376 (($ (-641 |#4|)) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4412)))) (-4244 (((-641 |#4|) $) 18 (|has| $ (-6 -4412)))) (-2394 ((|#3| $) 47)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#4|) $) 14 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-1988 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 21)) (-3652 (((-641 |#3|) $) NIL)) (-1722 (((-112) |#3| $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3844 (((-1114) $) NIL)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2280 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 39)) (-2834 (($) 17)) (-3855 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) 16)) (-2374 (((-536) $) NIL (|has| |#4| (-612 (-536)))) (($ (-641 |#4|)) 51)) (-3725 (($ (-641 |#4|)) 13)) (-3789 (($ $ |#3|) NIL)) (-1896 (($ $ |#3|) NIL)) (-1632 (($ $ |#3|) NIL)) (-3714 (((-859) $) 38) (((-641 |#4|) $) 50)) (-4289 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 30)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-463 |#1| |#2| |#3| |#4|) (-13 (-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2374 ($ (-641 |#4|))) (-6 -4412) (-6 -4413))) (-1046) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -463))
+((-2374 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-463 *3 *4 *5 *6)))))
+(-13 (-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2374 ($ (-641 |#4|))) (-6 -4412) (-6 -4413)))
+((-4312 (($) 11)) (-4323 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -4323 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4312 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464))
+NIL
+(-10 -8 (-15 -4323 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4312 (|#1|)))
+((-3702 (((-112) $ $) 7)) (-2224 (((-3 |#1| "failed") $) 26)) (-2376 ((|#1| $) 27)) (-3142 (($ $ $) 23)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3475 ((|#2| $) 19)) (-3714 (((-859) $) 11) (($ |#1|) 25)) (-4312 (($) 18 T CONST)) (-4323 (($) 24 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 15) (($ $ $) 13)) (-1814 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-465 |#1| |#2|) (-140) (-172) (-23)) (T -465))
-((-4327 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3123 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-470 |t#1| |t#2|) (-1035 |t#1|) (-10 -8 (-15 (-4327) ($) -3246) (-15 -3123 ($ $ $))))
+((-4323 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3142 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-470 |t#1| |t#2|) (-1035 |t#1|) (-10 -8 (-15 (-4323) ($) -2222) (-15 -3142 ($ $ $))))
(((-102) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-470 |#1| |#2|) . T) ((-1035 |#1|) . T) ((-1094) . T))
-((-4273 (((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918)) 29)) (-2915 (((-1259 (-1259 (-564))) (-918)) 24)))
-(((-466) (-10 -7 (-15 -4273 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918))) (-15 -2915 ((-1259 (-1259 (-564))) (-918))))) (T -466))
-((-2915 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466)))) (-4273 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-918)) (-5 *1 (-466)))))
-(-10 -7 (-15 -4273 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918))) (-15 -2915 ((-1259 (-1259 (-564))) (-918))))
-((-1469 (((-564) (-564)) 32) (((-564)) 24)) (-3177 (((-564) (-564)) 28) (((-564)) 20)) (-4304 (((-564) (-564)) 30) (((-564)) 22)) (-2199 (((-112) (-112)) 14) (((-112)) 12)) (-1998 (((-112) (-112)) 13) (((-112)) 11)) (-3323 (((-112) (-112)) 26) (((-112)) 17)))
-(((-467) (-10 -7 (-15 -1998 ((-112))) (-15 -2199 ((-112))) (-15 -1998 ((-112) (-112))) (-15 -2199 ((-112) (-112))) (-15 -3323 ((-112))) (-15 -4304 ((-564))) (-15 -3177 ((-564))) (-15 -1469 ((-564))) (-15 -3323 ((-112) (-112))) (-15 -4304 ((-564) (-564))) (-15 -3177 ((-564) (-564))) (-15 -1469 ((-564) (-564))))) (T -467))
-((-1469 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-4304 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3323 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1469 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3177 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-4304 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-3323 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2199 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1998 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
-(-10 -7 (-15 -1998 ((-112))) (-15 -2199 ((-112))) (-15 -1998 ((-112) (-112))) (-15 -2199 ((-112) (-112))) (-15 -3323 ((-112))) (-15 -4304 ((-564))) (-15 -3177 ((-564))) (-15 -1469 ((-564))) (-15 -3323 ((-112) (-112))) (-15 -4304 ((-564) (-564))) (-15 -3177 ((-564) (-564))) (-15 -1469 ((-564) (-564))))
-((-1754 (((-112) $ $) NIL)) (-2310 (((-641 (-379)) $) 34) (((-641 (-379)) $ (-641 (-379))) 144)) (-3791 (((-641 (-1088 (-379))) $) 16) (((-641 (-1088 (-379))) $ (-641 (-1088 (-379)))) 140)) (-3693 (((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871))) 58)) (-2848 (((-641 (-641 (-940 (-225)))) $) 135)) (-3489 (((-1264) $ (-940 (-225)) (-871)) 160)) (-4236 (($ $) 134) (($ (-641 (-641 (-940 (-225))))) 147) (($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918))) 146) (($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263))) 148)) (-4202 (((-1152) $) NIL)) (-2351 (((-564) $) 108)) (-3802 (((-1114) $) NIL)) (-2096 (($) 145)) (-2679 (((-641 (-225)) (-641 (-641 (-940 (-225))))) 88)) (-1468 (((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918)) 153) (((-1264) $ (-940 (-225))) 155) (((-1264) $ (-940 (-225)) (-871) (-871) (-918)) 154)) (-1765 (((-859) $) 166) (($ (-641 (-641 (-940 (-225))))) 161)) (-4013 (((-1264) $ (-940 (-225))) 159)) (-1686 (((-112) $ $) NIL)))
-(((-468) (-13 (-1094) (-10 -8 (-15 -2096 ($)) (-15 -4236 ($ $)) (-15 -4236 ($ (-641 (-641 (-940 (-225)))))) (-15 -4236 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)))) (-15 -4236 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263)))) (-15 -2848 ((-641 (-641 (-940 (-225)))) $)) (-15 -2351 ((-564) $)) (-15 -3791 ((-641 (-1088 (-379))) $)) (-15 -3791 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -2310 ((-641 (-379)) $)) (-15 -2310 ((-641 (-379)) $ (-641 (-379)))) (-15 -1468 ((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918))) (-15 -1468 ((-1264) $ (-940 (-225)))) (-15 -1468 ((-1264) $ (-940 (-225)) (-871) (-871) (-918))) (-15 -4013 ((-1264) $ (-940 (-225)))) (-15 -3489 ((-1264) $ (-940 (-225)) (-871))) (-15 -1765 ($ (-641 (-641 (-940 (-225)))))) (-15 -1765 ((-859) $)) (-15 -3693 ((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871)))) (-15 -2679 ((-641 (-225)) (-641 (-641 (-940 (-225))))))))) (T -468))
-((-1765 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468)))) (-2096 (*1 *1) (-5 *1 (-468))) (-4236 (*1 *1 *1) (-5 *1 (-468))) (-4236 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-4236 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *4 (-641 (-918))) (-5 *1 (-468)))) (-4236 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *4 (-641 (-918))) (-5 *5 (-641 (-263))) (-5 *1 (-468)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-3791 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-2310 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-1468 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1468 (*1 *2 *1 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1468 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-4013 (*1 *2 *1 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-3489 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-3693 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *1 (-468)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-225))) (-5 *1 (-468)))))
-(-13 (-1094) (-10 -8 (-15 -2096 ($)) (-15 -4236 ($ $)) (-15 -4236 ($ (-641 (-641 (-940 (-225)))))) (-15 -4236 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)))) (-15 -4236 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263)))) (-15 -2848 ((-641 (-641 (-940 (-225)))) $)) (-15 -2351 ((-564) $)) (-15 -3791 ((-641 (-1088 (-379))) $)) (-15 -3791 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -2310 ((-641 (-379)) $)) (-15 -2310 ((-641 (-379)) $ (-641 (-379)))) (-15 -1468 ((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918))) (-15 -1468 ((-1264) $ (-940 (-225)))) (-15 -1468 ((-1264) $ (-940 (-225)) (-871) (-871) (-918))) (-15 -4013 ((-1264) $ (-940 (-225)))) (-15 -3489 ((-1264) $ (-940 (-225)) (-871))) (-15 -1765 ($ (-641 (-641 (-940 (-225)))))) (-15 -1765 ((-859) $)) (-15 -3693 ((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871)))) (-15 -2679 ((-641 (-225)) (-641 (-641 (-940 (-225))))))))
-((-1783 (($ $) NIL) (($ $ $) 11)))
-(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469))
-NIL
-(-10 -8 (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3344 ((|#2| $) 19)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 15) (($ $ $) 13)) (-1771 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-4334 (((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918)) 29)) (-3631 (((-1259 (-1259 (-564))) (-918)) 24)))
+(((-466) (-10 -7 (-15 -4334 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918))) (-15 -3631 ((-1259 (-1259 (-564))) (-918))))) (T -466))
+((-3631 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466)))) (-4334 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-918)) (-5 *1 (-466)))))
+(-10 -7 (-15 -4334 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918))) (-15 -3631 ((-1259 (-1259 (-564))) (-918))))
+((-2299 (((-564) (-564)) 32) (((-564)) 24)) (-2548 (((-564) (-564)) 28) (((-564)) 20)) (-1507 (((-564) (-564)) 30) (((-564)) 22)) (-2109 (((-112) (-112)) 14) (((-112)) 12)) (-3736 (((-112) (-112)) 13) (((-112)) 11)) (-1465 (((-112) (-112)) 26) (((-112)) 17)))
+(((-467) (-10 -7 (-15 -3736 ((-112))) (-15 -2109 ((-112))) (-15 -3736 ((-112) (-112))) (-15 -2109 ((-112) (-112))) (-15 -1465 ((-112))) (-15 -1507 ((-564))) (-15 -2548 ((-564))) (-15 -2299 ((-564))) (-15 -1465 ((-112) (-112))) (-15 -1507 ((-564) (-564))) (-15 -2548 ((-564) (-564))) (-15 -2299 ((-564) (-564))))) (T -467))
+((-2299 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2548 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2299 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2548 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1507 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1465 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3736 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2109 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3736 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(-10 -7 (-15 -3736 ((-112))) (-15 -2109 ((-112))) (-15 -3736 ((-112) (-112))) (-15 -2109 ((-112) (-112))) (-15 -1465 ((-112))) (-15 -1507 ((-564))) (-15 -2548 ((-564))) (-15 -2299 ((-564))) (-15 -1465 ((-112) (-112))) (-15 -1507 ((-564) (-564))) (-15 -2548 ((-564) (-564))) (-15 -2299 ((-564) (-564))))
+((-3702 (((-112) $ $) NIL)) (-1294 (((-641 (-379)) $) 34) (((-641 (-379)) $ (-641 (-379))) 144)) (-2314 (((-641 (-1088 (-379))) $) 16) (((-641 (-1088 (-379))) $ (-641 (-1088 (-379)))) 140)) (-3759 (((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871))) 58)) (-4189 (((-641 (-641 (-940 (-225)))) $) 135)) (-3362 (((-1264) $ (-940 (-225)) (-871)) 160)) (-2168 (($ $) 134) (($ (-641 (-641 (-940 (-225))))) 147) (($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918))) 146) (($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263))) 148)) (-1868 (((-1152) $) NIL)) (-1350 (((-564) $) 108)) (-3844 (((-1114) $) NIL)) (-2347 (($) 145)) (-3051 (((-641 (-225)) (-641 (-641 (-940 (-225))))) 88)) (-2290 (((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918)) 153) (((-1264) $ (-940 (-225))) 155) (((-1264) $ (-940 (-225)) (-871) (-871) (-918)) 154)) (-3714 (((-859) $) 166) (($ (-641 (-641 (-940 (-225))))) 161)) (-3688 (((-1264) $ (-940 (-225))) 159)) (-1720 (((-112) $ $) NIL)))
+(((-468) (-13 (-1094) (-10 -8 (-15 -2347 ($)) (-15 -2168 ($ $)) (-15 -2168 ($ (-641 (-641 (-940 (-225)))))) (-15 -2168 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)))) (-15 -2168 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263)))) (-15 -4189 ((-641 (-641 (-940 (-225)))) $)) (-15 -1350 ((-564) $)) (-15 -2314 ((-641 (-1088 (-379))) $)) (-15 -2314 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -1294 ((-641 (-379)) $)) (-15 -1294 ((-641 (-379)) $ (-641 (-379)))) (-15 -2290 ((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918))) (-15 -2290 ((-1264) $ (-940 (-225)))) (-15 -2290 ((-1264) $ (-940 (-225)) (-871) (-871) (-918))) (-15 -3688 ((-1264) $ (-940 (-225)))) (-15 -3362 ((-1264) $ (-940 (-225)) (-871))) (-15 -3714 ($ (-641 (-641 (-940 (-225)))))) (-15 -3714 ((-859) $)) (-15 -3759 ((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871)))) (-15 -3051 ((-641 (-225)) (-641 (-641 (-940 (-225))))))))) (T -468))
+((-3714 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468)))) (-2347 (*1 *1) (-5 *1 (-468))) (-2168 (*1 *1 *1) (-5 *1 (-468))) (-2168 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-2168 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *4 (-641 (-918))) (-5 *1 (-468)))) (-2168 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *4 (-641 (-918))) (-5 *5 (-641 (-263))) (-5 *1 (-468)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-1350 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-2314 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-1294 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-2290 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-2290 (*1 *2 *1 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-2290 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-3688 (*1 *2 *1 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-3362 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-3759 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *1 (-468)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-225))) (-5 *1 (-468)))))
+(-13 (-1094) (-10 -8 (-15 -2347 ($)) (-15 -2168 ($ $)) (-15 -2168 ($ (-641 (-641 (-940 (-225)))))) (-15 -2168 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)))) (-15 -2168 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263)))) (-15 -4189 ((-641 (-641 (-940 (-225)))) $)) (-15 -1350 ((-564) $)) (-15 -2314 ((-641 (-1088 (-379))) $)) (-15 -2314 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -1294 ((-641 (-379)) $)) (-15 -1294 ((-641 (-379)) $ (-641 (-379)))) (-15 -2290 ((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918))) (-15 -2290 ((-1264) $ (-940 (-225)))) (-15 -2290 ((-1264) $ (-940 (-225)) (-871) (-871) (-918))) (-15 -3688 ((-1264) $ (-940 (-225)))) (-15 -3362 ((-1264) $ (-940 (-225)) (-871))) (-15 -3714 ($ (-641 (-641 (-940 (-225)))))) (-15 -3714 ((-859) $)) (-15 -3759 ((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871)))) (-15 -3051 ((-641 (-225)) (-641 (-641 (-940 (-225))))))))
+((-1828 (($ $) NIL) (($ $ $) 11)))
+(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469))
+NIL
+(-10 -8 (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3475 ((|#2| $) 19)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 15) (($ $ $) 13)) (-1814 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-470 |#1| |#2|) (-140) (-172) (-23)) (T -470))
-((-3344 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-4317 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1783 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1771 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1783 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-1094) (-10 -8 (-15 -3344 (|t#2| $)) (-15 (-4317) ($) -3246) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1783 ($ $)) (-15 -1771 ($ $ $)) (-15 -1783 ($ $ $))))
+((-3475 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-4312 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1828 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1814 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1828 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-1094) (-10 -8 (-15 -3475 (|t#2| $)) (-15 (-4312) ($) -2222) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1828 ($ $)) (-15 -1814 ($ $ $)) (-15 -1828 ($ $ $))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-2177 (((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|))) 136)) (-4196 (((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))) 133)) (-1591 (((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))) 86)))
-(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -2177 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -1591 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))))) (-641 (-1170)) (-452) (-452)) (T -471))
-((-1591 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-641 (-247 *5 *6))) (|:| |coords| (-641 (-564))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))) (-2177 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))))
-(-10 -7 (-15 -4196 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -2177 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -1591 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))))
-((-1926 (((-3 $ "failed") $) 11)) (-2502 (($ $ $) 23)) (-1762 (($ $ $) 24)) (-1793 (($ $ $) 9)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 22)))
-(((-472 |#1|) (-10 -8 (-15 -1762 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1793 (|#1| |#1| |#1|)) (-15 -1926 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) (-473)) (T -472))
-NIL
-(-10 -8 (-15 -1762 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1793 (|#1| |#1| |#1|)) (-15 -1926 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))))
-((-1754 (((-112) $ $) 7)) (-3760 (($) 18 T CONST)) (-1926 (((-3 $ "failed") $) 15)) (-2419 (((-112) $) 17)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 24)) (-3802 (((-1114) $) 10)) (-2502 (($ $ $) 21)) (-1762 (($ $ $) 20)) (-1765 (((-859) $) 11)) (-4327 (($) 19 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ $) 23)) (** (($ $ (-918)) 13) (($ $ (-768)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14)))
+((-1882 (((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|))) 136)) (-1796 (((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))) 133)) (-4056 (((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))) 86)))
+(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -1796 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -1882 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -4056 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))))) (-641 (-1170)) (-452) (-452)) (T -471))
+((-4056 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-641 (-247 *5 *6))) (|:| |coords| (-641 (-564))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))) (-1882 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))))
+(-10 -7 (-15 -1796 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -1882 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -4056 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))))
+((-4272 (((-3 $ "failed") $) 11)) (-1953 (($ $ $) 23)) (-3217 (($ $ $) 24)) (-1841 (($ $ $) 9)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 22)))
+(((-472 |#1|) (-10 -8 (-15 -3217 (|#1| |#1| |#1|)) (-15 -1953 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1841 (|#1| |#1| |#1|)) (-15 -4272 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) (-473)) (T -472))
+NIL
+(-10 -8 (-15 -3217 (|#1| |#1| |#1|)) (-15 -1953 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1841 (|#1| |#1| |#1|)) (-15 -4272 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))))
+((-3702 (((-112) $ $) 7)) (-3180 (($) 18 T CONST)) (-4272 (((-3 $ "failed") $) 15)) (-2340 (((-112) $) 17)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 24)) (-3844 (((-1114) $) 10)) (-1953 (($ $ $) 21)) (-3217 (($ $ $) 20)) (-3714 (((-859) $) 11)) (-4323 (($) 19 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ $) 23)) (** (($ $ (-918)) 13) (($ $ (-768)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14)))
(((-473) (-140)) (T -473))
-((-4272 (*1 *1 *1) (-4 *1 (-473))) (-1793 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) (-2502 (*1 *1 *1 *1) (-4 *1 (-473))) (-1762 (*1 *1 *1 *1) (-4 *1 (-473))))
-(-13 (-723) (-10 -8 (-15 -4272 ($ $)) (-15 -1793 ($ $ $)) (-15 ** ($ $ (-564))) (-6 -4408) (-15 -2502 ($ $ $)) (-15 -1762 ($ $ $))))
+((-1295 (*1 *1 *1) (-4 *1 (-473))) (-1841 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) (-1953 (*1 *1 *1 *1) (-4 *1 (-473))) (-3217 (*1 *1 *1 *1) (-4 *1 (-473))))
+(-13 (-723) (-10 -8 (-15 -1295 ($ $)) (-15 -1841 ($ $ $)) (-15 ** ($ $ (-564))) (-6 -4409) (-15 -1953 ($ $ $)) (-15 -3217 ($ $ $))))
(((-102) . T) ((-611 (-859)) . T) ((-723) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) 18)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3742 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-3219 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3879 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3241 (((-112) $) NIL (|has| |#1| (-363)))) (-1459 (((-112) $) NIL)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2082 (($ (-1 |#1| |#1|) $) 25)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-3591 (($ $) 29 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 35 (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 30 (|has| |#1| (-38 (-407 (-564)))))) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-2678 (($ $ (-407 (-564))) NIL)) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 28 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 16)) (-3344 (((-407 (-564)) $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1255 |#2|)) NIL) (($ (-1244 |#1| |#2| |#3|)) 9) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-1757 ((|#1| $ (-407 (-564))) NIL)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-3415 ((|#1| $) 21)) (-3991 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) 27)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-474 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-10 -8 (-15 -1765 ($ (-1255 |#2|))) (-15 -1765 ($ (-1244 |#1| |#2| |#3|))) (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -474))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
-(-13 (-1240 |#1|) (-10 -8 (-15 -1765 ($ (-1255 |#2|))) (-15 -1765 ($ (-1244 |#1| |#2| |#3|))) (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3476 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#2| $ |#1| |#2|) 18)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 |#2| "failed") |#1| $) 19)) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 16)) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) NIL)) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 ((|#1| $) NIL (|has| |#1| (-847)))) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1479 ((|#1| $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3211 (((-641 |#1|) $) NIL)) (-4185 (((-112) |#1| $) NIL)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1371 (((-641 |#1|) $) NIL)) (-3629 (((-112) |#1| $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3073 ((|#2| $) NIL (|has| |#1| (-847)))) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-1765 (((-859) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) 18)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-3043 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-1681 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-2657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2635 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-2679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1926 (((-112) $) NIL (|has| |#1| (-363)))) (-2200 (((-112) $) NIL)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2313 (($ (-1 |#1| |#1|) $) 25)) (-2305 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-4039 (($ $) 29 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 35 (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 30 (|has| |#1| (-38 (-407 (-564)))))) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-3042 (($ $ (-407 (-564))) NIL)) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4130 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 28 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 16)) (-3475 (((-407 (-564)) $) NIL)) (-2692 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1255 |#2|)) NIL) (($ (-1244 |#1| |#2| |#3|)) 9) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3181 ((|#1| $ (-407 (-564))) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-2390 ((|#1| $) 21)) (-2728 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) 27)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-474 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-10 -8 (-15 -3714 ($ (-1255 |#2|))) (-15 -3714 ($ (-1244 |#1| |#2| |#3|))) (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -474))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
+(-13 (-1240 |#1|) (-10 -8 (-15 -3714 ($ (-1255 |#2|))) (-15 -3714 ($ (-1244 |#1| |#2| |#3|))) (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|)))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-2399 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#2| $ |#1| |#2|) 18)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 |#2| "failed") |#1| $) 19)) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) 16)) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) NIL)) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 ((|#1| $) NIL (|has| |#1| (-847)))) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2415 ((|#1| $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4413))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1922 (((-641 |#1|) $) NIL)) (-1690 (((-112) |#1| $) NIL)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-3127 (((-641 |#1|) $) NIL)) (-1338 (((-112) |#1| $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2049 ((|#2| $) NIL (|has| |#1| (-847)))) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3714 (((-859) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-475 |#1| |#2| |#3| |#4|) (-1185 |#1| |#2|) (-1094) (-1094) (-1185 |#1| |#2|) |#2|) (T -475))
NIL
(-1185 |#1| |#2|)
-((-1754 (((-112) $ $) NIL)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |#4|)))) (-641 |#4|)) NIL)) (-4389 (((-641 $) (-641 |#4|)) NIL)) (-4170 (((-641 |#3|) $) NIL)) (-1747 (((-112) $) NIL)) (-2197 (((-112) $) NIL (|has| |#1| (-556)))) (-1940 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3993 ((|#4| |#4| $) NIL)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3760 (($) NIL T CONST)) (-4177 (((-112) $) 29 (|has| |#1| (-556)))) (-3911 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2694 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1378 (((-112) $) NIL (|has| |#1| (-556)))) (-3207 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2254 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2064 (($ (-641 |#4|)) NIL)) (-3086 (((-3 $ "failed") $) 45)) (-2758 ((|#4| |#4| $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2359 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4269 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3621 ((|#4| |#4| $) NIL)) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2058 (((-2 (|:| -3439 (-641 |#4|)) (|:| -1589 (-641 |#4|))) $) NIL)) (-3080 (((-641 |#4|) $) 18 (|has| $ (-6 -4411)))) (-2415 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3162 ((|#3| $) 38)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#4|) $) 19 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-3513 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 23)) (-4343 (((-641 |#3|) $) NIL)) (-1853 (((-112) |#3| $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-2376 (((-3 |#4| "failed") $) 42)) (-3277 (((-641 |#4|) $) NIL)) (-3561 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3874 ((|#4| |#4| $) NIL)) (-3862 (((-112) $ $) NIL)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1512 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3491 ((|#4| |#4| $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 (((-3 |#4| "failed") $) 40)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3159 (((-3 $ "failed") $ |#4|) 56)) (-2678 (($ $ |#4|) NIL)) (-1467 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 17)) (-3845 (($) 14)) (-3344 (((-768) $) NIL)) (-3815 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) 13)) (-2127 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) 22)) (-2318 (($ $ |#3|) 52)) (-1869 (($ $ |#3|) 53)) (-3430 (($ $) NIL)) (-1845 (($ $ |#3|) NIL)) (-1765 (((-859) $) 35) (((-641 |#4|) $) 46)) (-1597 (((-768) $) NIL (|has| |#3| (-368)))) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1599 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-2237 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2380 (((-641 |#3|) $) NIL)) (-3623 (((-112) |#3| $) NIL)) (-1686 (((-112) $ $) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |#4|)))) (-641 |#4|)) NIL)) (-4055 (((-641 $) (-641 |#4|)) NIL)) (-4292 (((-641 |#3|) $) NIL)) (-3097 (((-112) $) NIL)) (-2092 (((-112) $) NIL (|has| |#1| (-556)))) (-1300 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3500 ((|#4| |#4| $) NIL)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-4148 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3180 (($) NIL T CONST)) (-2846 (((-112) $) 29 (|has| |#1| (-556)))) (-2228 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3171 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3798 (((-112) $) NIL (|has| |#1| (-556)))) (-1578 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1373 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2376 (($ (-641 |#4|)) NIL)) (-2063 (((-3 $ "failed") $) 45)) (-2687 ((|#4| |#4| $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4344 ((|#4| |#4| $) NIL)) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4412))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3151 (((-2 (|:| -3489 (-641 |#4|)) (|:| -1721 (-641 |#4|))) $) NIL)) (-4244 (((-641 |#4|) $) 18 (|has| $ (-6 -4412)))) (-2297 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2394 ((|#3| $) 38)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#4|) $) 19 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-1988 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 23)) (-3652 (((-641 |#3|) $) NIL)) (-1722 (((-112) |#3| $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-2541 (((-3 |#4| "failed") $) 42)) (-4104 (((-641 |#4|) $) NIL)) (-1954 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1863 ((|#4| |#4| $) NIL)) (-1733 (((-112) $ $) NIL)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1485 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2543 ((|#4| |#4| $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 (((-3 |#4| "failed") $) 40)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2359 (((-3 $ "failed") $ |#4|) 56)) (-3042 (($ $ |#4|) NIL)) (-2280 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 17)) (-2834 (($) 14)) (-3475 (((-768) $) NIL)) (-3855 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) 13)) (-2374 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) 22)) (-3789 (($ $ |#3|) 52)) (-1896 (($ $ |#3|) 53)) (-3121 (($ $) NIL)) (-1632 (($ $ |#3|) NIL)) (-3714 (((-859) $) 35) (((-641 |#4|) $) 46)) (-4113 (((-768) $) NIL (|has| |#3| (-368)))) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4138 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-4289 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3148 (((-641 |#3|) $) NIL)) (-4368 (((-112) |#3| $) NIL)) (-1720 (((-112) $ $) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-476 |#1| |#2| |#3| |#4|) (-1202 |#1| |#2| |#3| |#4|) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -476))
NIL
(-1202 |#1| |#2| |#3| |#4|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2064 (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1539 (($) 17)) (-2419 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-2127 (((-379) $) 21) (((-225) $) 24) (((-407 (-1166 (-564))) $) 18) (((-536) $) 53)) (-1765 (((-859) $) 51) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (((-225) $) 23) (((-379) $) 20)) (-1965 (((-768)) NIL T CONST)) (-1582 (((-112) $ $) NIL)) (-4317 (($) 37 T CONST)) (-4327 (($) 8 T CONST)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-477) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))) (-1019) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -1539 ($))))) (T -477))
-((-1539 (*1 *1) (-5 *1 (-477))))
-(-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))) (-1019) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -1539 ($))))
-((-1754 (((-112) $ $) NIL)) (-4324 (((-1129) $) 11)) (-4312 (((-1129) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-478) (-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1129) $))))) (T -478))
-((-4312 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))))
-(-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1129) $))))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3476 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#2| $ |#1| |#2|) 16)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 |#2| "failed") |#1| $) 20)) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 18)) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) NIL)) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 ((|#1| $) NIL (|has| |#1| (-847)))) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1479 ((|#1| $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3211 (((-641 |#1|) $) 13)) (-4185 (((-112) |#1| $) NIL)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1371 (((-641 |#1|) $) NIL)) (-3629 (((-112) |#1| $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3073 ((|#2| $) NIL (|has| |#1| (-847)))) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 19)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-1765 (((-859) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 11 (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2589 (((-768) $) 15 (|has| $ (-6 -4411)))))
-(((-479 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) (-1094) (-1094) (-1152)) (T -479))
-NIL
-(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411)))
-((-2095 (((-564) (-564) (-564)) 19)) (-4292 (((-112) (-564) (-564) (-564) (-564)) 26)) (-2107 (((-1259 (-641 (-564))) (-768) (-768)) 39)))
-(((-480) (-10 -7 (-15 -2095 ((-564) (-564) (-564))) (-15 -4292 ((-112) (-564) (-564) (-564) (-564))) (-15 -2107 ((-1259 (-641 (-564))) (-768) (-768))))) (T -480))
-((-2107 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480)))) (-4292 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))) (-2095 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480)))))
-(-10 -7 (-15 -2095 ((-564) (-564) (-564))) (-15 -4292 ((-112) (-564) (-564) (-564) (-564))) (-15 -2107 ((-1259 (-641 (-564))) (-768) (-768))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-861 |#1|)) $) NIL)) (-3964 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1840 (($ $) NIL (|has| |#2| (-556)))) (-4035 (((-112) $) NIL (|has| |#2| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1368 (($ $) NIL (|has| |#2| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2064 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-4267 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-1666 (($ $ (-641 (-564))) NIL)) (-4346 (($ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#2| (-906)))) (-2877 (($ $ |#2| (-482 (-2589 |#1|) (-768)) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-4157 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#2| (-482 (-2589 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-861 |#1|)) NIL)) (-3829 (((-482 (-2589 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-3571 (($ $ $) NIL (|has| |#2| (-847)))) (-1547 (($ $ $) NIL (|has| |#2| (-847)))) (-2964 (($ (-1 (-482 (-2589 |#1|) (-768)) (-482 (-2589 |#1|) (-768))) $) NIL)) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2022 (((-3 (-861 |#1|) "failed") $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#2| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-4202 (((-1152) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -3747 (-768))) "failed") $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#2| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1343 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-1938 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3226 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-3344 (((-482 (-2589 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2712 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ (-407 (-564))) NIL (-4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-4264 (((-641 |#2|) $) NIL)) (-1757 ((|#2| $ (-482 (-2589 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1738 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-481 |#1| |#2|) (-13 (-946 |#2| (-482 (-2589 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -1666 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046)) (T -481))
-((-1666 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1046)))))
-(-13 (-946 |#2| (-482 (-2589 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -1666 ($ $ (-641 (-564))))))
-((-1754 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3976 (((-112) $) NIL (|has| |#2| (-131)))) (-3473 (($ (-918)) NIL (|has| |#2| (-1046)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3382 (($ $ $) NIL (|has| |#2| (-790)))) (-3936 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3263 (((-112) $ (-768)) NIL)) (-3042 (((-768)) NIL (|has| |#2| (-368)))) (-3438 (((-564) $) NIL (|has| |#2| (-845)))) (-1881 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-2064 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-2620 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-1926 (((-3 $ "failed") $) NIL (|has| |#2| (-723)))) (-2542 (($) NIL (|has| |#2| (-368)))) (-3528 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ (-564)) 15)) (-1751 (((-112) $) NIL (|has| |#2| (-845)))) (-3080 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2419 (((-112) $) NIL (|has| |#2| (-723)))) (-2506 (((-112) $) NIL (|has| |#2| (-845)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-3817 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-3513 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2209 (((-918) $) NIL (|has| |#2| (-368)))) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#2| (-1094)))) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-1403 (($ (-918)) NIL (|has| |#2| (-368)))) (-3802 (((-1114) $) NIL (|has| |#2| (-1094)))) (-3073 ((|#2| $) NIL (|has| (-564) (-847)))) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-4158 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-4059 (($ (-1259 |#2|)) NIL)) (-3850 (((-134)) NIL (|has| |#2| (-363)))) (-3226 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-3815 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-4002 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-1965 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-2237 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2016 (($ $) NIL (|has| |#2| (-845)))) (-4317 (($) NIL (|has| |#2| (-131)) CONST)) (-4327 (($) NIL (|has| |#2| (-723)) CONST)) (-3190 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1738 (((-112) $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1715 (((-112) $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1686 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1728 (((-112) $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1705 (((-112) $ $) 21 (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1771 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) NIL (|has| |#2| (-723))) (($ $ |#2|) NIL (|has| |#2| (-723))) (($ |#2| $) NIL (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2376 (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-1688 (($) 17)) (-2340 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2374 (((-379) $) 21) (((-225) $) 24) (((-407 (-1166 (-564))) $) 18) (((-536) $) 53)) (-3714 (((-859) $) 51) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (((-225) $) 23) (((-379) $) 20)) (-3379 (((-768)) NIL T CONST)) (-3979 (((-112) $ $) NIL)) (-4312 (($) 37 T CONST)) (-4323 (($) 8 T CONST)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-477) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))) (-1019) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -1688 ($))))) (T -477))
+((-1688 (*1 *1) (-5 *1 (-477))))
+(-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))) (-1019) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -1688 ($))))
+((-3702 (((-112) $ $) NIL)) (-3119 (((-1129) $) 11)) (-3109 (((-1129) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-478) (-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1129) $))))) (T -478))
+((-3109 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))))
+(-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1129) $))))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-2399 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#2| $ |#1| |#2|) 16)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 |#2| "failed") |#1| $) 20)) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) 18)) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) NIL)) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 ((|#1| $) NIL (|has| |#1| (-847)))) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2415 ((|#1| $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4413))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1922 (((-641 |#1|) $) 13)) (-1690 (((-112) |#1| $) NIL)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-3127 (((-641 |#1|) $) NIL)) (-1338 (((-112) |#1| $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2049 ((|#2| $) NIL (|has| |#1| (-847)))) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) 19)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3714 (((-859) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 11 (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2779 (((-768) $) 15 (|has| $ (-6 -4412)))))
+(((-479 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4412))) (-1094) (-1094) (-1152)) (T -479))
+NIL
+(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4412)))
+((-2332 (((-564) (-564) (-564)) 19)) (-1408 (((-112) (-564) (-564) (-564) (-564)) 26)) (-4077 (((-1259 (-641 (-564))) (-768) (-768)) 39)))
+(((-480) (-10 -7 (-15 -2332 ((-564) (-564) (-564))) (-15 -1408 ((-112) (-564) (-564) (-564) (-564))) (-15 -4077 ((-1259 (-641 (-564))) (-768) (-768))))) (T -480))
+((-4077 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480)))) (-1408 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))) (-2332 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480)))))
+(-10 -7 (-15 -2332 ((-564) (-564) (-564))) (-15 -1408 ((-112) (-564) (-564) (-564) (-564))) (-15 -4077 ((-1259 (-641 (-564))) (-768) (-768))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-861 |#1|)) $) NIL)) (-4103 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1582 (($ $) NIL (|has| |#2| (-556)))) (-3897 (((-112) $) NIL (|has| |#2| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1328 (($ $) NIL (|has| |#2| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2376 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-4275 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3473 (($ $ (-641 (-564))) NIL)) (-1374 (($ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#2| (-906)))) (-1423 (($ $ |#2| (-482 (-2779 |#1|) (-768)) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-4279 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#2| (-482 (-2779 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-861 |#1|)) NIL)) (-2700 (((-482 (-2779 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-3428 (($ $ $) NIL (|has| |#2| (-847)))) (-3413 (($ $ $) NIL (|has| |#2| (-847)))) (-4062 (($ (-1 (-482 (-2779 |#1|) (-768)) (-482 (-2779 |#1|) (-768))) $) NIL)) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-2848 (((-3 (-861 |#1|) "failed") $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#2| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1868 (((-1152) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -3078 (-768))) "failed") $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#2| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1347 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-4378 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-2203 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-3475 (((-482 (-2779 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3324 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ (-407 (-564))) NIL (-4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-4252 (((-641 |#2|) $) NIL)) (-3181 ((|#2| $ (-482 (-2779 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-481 |#1| |#2|) (-13 (-946 |#2| (-482 (-2779 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -3473 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046)) (T -481))
+((-3473 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1046)))))
+(-13 (-946 |#2| (-482 (-2779 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -3473 ($ $ (-641 (-564))))))
+((-3702 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1556 (((-112) $) NIL (|has| |#2| (-131)))) (-2366 (($ (-918)) NIL (|has| |#2| (-1046)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-3884 (($ $ $) NIL (|has| |#2| (-790)))) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2141 (((-112) $ (-768)) NIL)) (-2018 (((-768)) NIL (|has| |#2| (-368)))) (-3191 (((-564) $) NIL (|has| |#2| (-845)))) (-3868 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-2376 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-3613 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-4272 (((-3 $ "failed") $) NIL (|has| |#2| (-723)))) (-2939 (($) NIL (|has| |#2| (-368)))) (-1998 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ (-564)) 15)) (-3137 (((-112) $) NIL (|has| |#2| (-845)))) (-4244 (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2340 (((-112) $) NIL (|has| |#2| (-723)))) (-2001 (((-112) $) NIL (|has| |#2| (-845)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2572 (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1988 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-4031 (((-918) $) NIL (|has| |#2| (-368)))) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3338 (($ (-918)) NIL (|has| |#2| (-368)))) (-3844 (((-1114) $) NIL (|has| |#2| (-1094)))) (-2049 ((|#2| $) NIL (|has| (-564) (-847)))) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-2681 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-4184 (($ (-1259 |#2|)) NIL)) (-2869 (((-134)) NIL (|has| |#2| (-363)))) (-2203 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-3855 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-4012 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-3379 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-4289 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-3920 (($ $) NIL (|has| |#2| (-845)))) (-4312 (($) NIL (|has| |#2| (-131)) CONST)) (-4323 (($) NIL (|has| |#2| (-723)) CONST)) (-2238 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1781 (((-112) $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1758 (((-112) $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1720 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1769 (((-112) $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1746 (((-112) $ $) 21 (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1814 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) NIL (|has| |#2| (-723))) (($ $ |#2|) NIL (|has| |#2| (-723))) (($ |#2| $) NIL (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-482 |#1| |#2|) (-238 |#1| |#2|) (-768) (-790)) (T -482))
NIL
(-238 |#1| |#2|)
-((-1754 (((-112) $ $) NIL)) (-4088 (((-641 (-506)) $) 14)) (-4363 (((-506) $) 12)) (-4202 (((-1152) $) NIL)) (-2811 (($ (-506) (-641 (-506))) 10)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-483) (-13 (-1077) (-10 -8 (-15 -2811 ($ (-506) (-641 (-506)))) (-15 -4363 ((-506) $)) (-15 -4088 ((-641 (-506)) $))))) (T -483))
-((-2811 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483)))))
-(-13 (-1077) (-10 -8 (-15 -2811 ($ (-506) (-641 (-506)))) (-15 -4363 ((-506) $)) (-15 -4088 ((-641 (-506)) $))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) NIL)) (-3760 (($) NIL T CONST)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-1397 (($ $ $) 48)) (-4012 (($ $ $) 47)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1547 ((|#1| $) 38)) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 18)) (-2924 (($ (-641 |#1|)) 19)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3389 ((|#1| $) 34)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 11)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) 45)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) 29 (|has| $ (-6 -4411)))))
-(((-484 |#1|) (-13 (-965 |#1|) (-10 -8 (-15 -2924 ($ (-641 |#1|))))) (-847)) (T -484))
-((-2924 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-484 *3)))))
-(-13 (-965 |#1|) (-10 -8 (-15 -2924 ($ (-641 |#1|)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-4367 (($ $) 76)) (-3390 (((-112) $) NIL)) (-4202 (((-1152) $) NIL)) (-2943 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 49)) (-3802 (((-1114) $) NIL)) (-1502 (((-3 |#4| "failed") $) 121)) (-3293 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 86) (($ |#4|) 35) (($ |#1| |#1|) 131) (($ |#1| |#1| (-564)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 144)) (-1770 (((-2 (|:| -1600 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 51)) (-1765 (((-859) $) 115)) (-4317 (($) 36 T CONST)) (-1686 (((-112) $ $) 125)) (-1783 (($ $) 82) (($ $ $) NIL)) (-1771 (($ $ $) 77)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 83)))
+((-3702 (((-112) $ $) NIL)) (-1461 (((-641 (-506)) $) 14)) (-4337 (((-506) $) 12)) (-1868 (((-1152) $) NIL)) (-1995 (($ (-506) (-641 (-506))) 10)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-483) (-13 (-1077) (-10 -8 (-15 -1995 ($ (-506) (-641 (-506)))) (-15 -4337 ((-506) $)) (-15 -1461 ((-641 (-506)) $))))) (T -483))
+((-1995 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483)))))
+(-13 (-1077) (-10 -8 (-15 -1995 ($ (-506) (-641 (-506)))) (-15 -4337 ((-506) $)) (-15 -1461 ((-641 (-506)) $))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) NIL)) (-3180 (($) NIL T CONST)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2573 (($ $ $) 48)) (-3678 (($ $ $) 47)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3413 ((|#1| $) 38)) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 18)) (-3732 (($ (-641 |#1|)) 19)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3950 ((|#1| $) 34)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) 11)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) 45)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) 29 (|has| $ (-6 -4412)))))
+(((-484 |#1|) (-13 (-965 |#1|) (-10 -8 (-15 -3732 ($ (-641 |#1|))))) (-847)) (T -484))
+((-3732 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-484 *3)))))
+(-13 (-965 |#1|) (-10 -8 (-15 -3732 ($ (-641 |#1|)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1728 (($ $) 76)) (-3959 (((-112) $) NIL)) (-1868 (((-1152) $) NIL)) (-3952 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 49)) (-3844 (((-1114) $) NIL)) (-1729 (((-3 |#4| "failed") $) 121)) (-4266 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 86) (($ |#4|) 35) (($ |#1| |#1|) 131) (($ |#1| |#1| (-564)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 144)) (-3282 (((-2 (|:| -3532 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 51)) (-3714 (((-859) $) 115)) (-4312 (($) 36 T CONST)) (-1720 (((-112) $ $) 125)) (-1828 (($ $) 82) (($ $ $) NIL)) (-1814 (($ $ $) 77)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 83)))
(((-485 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485))
NIL
(-335 |#1| |#2| |#3| |#4|)
-((-3120 (((-564) (-641 (-564))) 53)) (-3835 ((|#1| (-641 |#1|)) 94)) (-2952 (((-641 |#1|) (-641 |#1|)) 95)) (-4383 (((-641 |#1|) (-641 |#1|)) 97)) (-2527 ((|#1| (-641 |#1|)) 96)) (-2712 (((-641 (-564)) (-641 |#1|)) 56)))
-(((-486 |#1|) (-10 -7 (-15 -2527 (|#1| (-641 |#1|))) (-15 -3835 (|#1| (-641 |#1|))) (-15 -4383 ((-641 |#1|) (-641 |#1|))) (-15 -2952 ((-641 |#1|) (-641 |#1|))) (-15 -2712 ((-641 (-564)) (-641 |#1|))) (-15 -3120 ((-564) (-641 (-564))))) (-1235 (-564))) (T -486))
-((-3120 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) (-4 *4 (-1235 *2)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564))) (-5 *1 (-486 *4)))) (-2952 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-4383 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))))
-(-10 -7 (-15 -2527 (|#1| (-641 |#1|))) (-15 -3835 (|#1| (-641 |#1|))) (-15 -4383 ((-641 |#1|) (-641 |#1|))) (-15 -2952 ((-641 |#1|) (-641 |#1|))) (-15 -2712 ((-641 (-564)) (-641 |#1|))) (-15 -3120 ((-564) (-641 (-564)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 (((-564) $) NIL (|has| (-564) (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL (|has| (-564) (-817)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2064 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-564) (-545)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1751 (((-112) $) NIL (|has| (-564) (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-1507 (((-564) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2506 (((-112) $) NIL (|has| (-564) (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| (-564) (-847)))) (-2082 (($ (-1 (-564) (-564)) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-564) (-1145)) CONST)) (-4216 (($ (-407 (-564))) 9)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-2677 (((-564) $) NIL (|has| (-564) (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2407 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3712 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3762 (($ $) NIL)) (-1517 (((-564) $) NIL)) (-2127 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 16) $) 10)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-1965 (((-768)) NIL T CONST)) (-2991 (((-564) $) NIL (|has| (-564) (-545)))) (-1582 (((-112) $ $) NIL)) (-2016 (($ $) NIL (|has| (-564) (-817)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1738 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1705 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1793 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
-(((-487) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 16)) (-10 -8 (-15 -2002 ((-407 (-564)) $)) (-15 -4216 ($ (-407 (-564))))))) (T -487))
-((-2002 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))))
-(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 16)) (-10 -8 (-15 -2002 ((-407 (-564)) $)) (-15 -4216 ($ (-407 (-564))))))
-((-3817 (((-641 |#2|) $) 29)) (-3675 (((-112) |#2| $) 34)) (-1467 (((-112) (-1 (-112) |#2|) $) 24)) (-2407 (($ $ (-641 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-3815 (((-768) (-1 (-112) |#2|) $) 28) (((-768) |#2| $) 32)) (-1765 (((-859) $) 43)) (-2237 (((-112) (-1 (-112) |#2|) $) 23)) (-1686 (((-112) $ $) 37)) (-2589 (((-768) $) 18)))
-(((-488 |#1| |#2|) (-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -2407 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#2| |#2|)) (-15 -2407 (|#1| |#1| (-294 |#2|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3675 ((-112) |#2| |#1|)) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3817 ((-641 |#2|) |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2589 ((-768) |#1|))) (-489 |#2|) (-1209)) (T -488))
-NIL
-(-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -2407 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#2| |#2|)) (-15 -2407 (|#1| |#1| (-294 |#2|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3675 ((-112) |#2| |#1|)) (-15 -3815 ((-768) |#2| |#1|)) (-15 -3817 ((-641 |#2|) |#1|)) (-15 -3815 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2589 ((-768) |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-3760 (($) 7 T CONST)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3115 (((-564) (-641 (-564))) 53)) (-2764 ((|#1| (-641 |#1|)) 94)) (-4046 (((-641 |#1|) (-641 |#1|)) 95)) (-3996 (((-641 |#1|) (-641 |#1|)) 97)) (-2727 ((|#1| (-641 |#1|)) 96)) (-3324 (((-641 (-564)) (-641 |#1|)) 56)))
+(((-486 |#1|) (-10 -7 (-15 -2727 (|#1| (-641 |#1|))) (-15 -2764 (|#1| (-641 |#1|))) (-15 -3996 ((-641 |#1|) (-641 |#1|))) (-15 -4046 ((-641 |#1|) (-641 |#1|))) (-15 -3324 ((-641 (-564)) (-641 |#1|))) (-15 -3115 ((-564) (-641 (-564))))) (-1235 (-564))) (T -486))
+((-3115 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) (-4 *4 (-1235 *2)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564))) (-5 *1 (-486 *4)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))))
+(-10 -7 (-15 -2727 (|#1| (-641 |#1|))) (-15 -2764 (|#1| (-641 |#1|))) (-15 -3996 ((-641 |#1|) (-641 |#1|))) (-15 -4046 ((-641 |#1|) (-641 |#1|))) (-15 -3324 ((-641 (-564)) (-641 |#1|))) (-15 -3115 ((-564) (-641 (-564)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 (((-564) $) NIL (|has| (-564) (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL (|has| (-564) (-817)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2376 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-564) (-545)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-564) (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL)) (-1655 (((-564) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2001 (((-112) $) NIL (|has| (-564) (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| (-564) (-847)))) (-2313 (($ (-1 (-564) (-564)) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-564) (-1145)) CONST)) (-2012 (($ (-407 (-564))) 9)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-3034 (((-564) $) NIL (|has| (-564) (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2582 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3966 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3197 (($ $) NIL)) (-1668 (((-564) $) NIL)) (-2374 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 16) $) 10)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-3379 (((-768)) NIL T CONST)) (-4296 (((-564) $) NIL (|has| (-564) (-545)))) (-3979 (((-112) $ $) NIL)) (-3920 (($ $) NIL (|has| (-564) (-817)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1746 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1841 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL)))
+(((-487) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 16)) (-10 -8 (-15 -3782 ((-407 (-564)) $)) (-15 -2012 ($ (-407 (-564))))))) (T -487))
+((-3782 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))))
+(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 16)) (-10 -8 (-15 -3782 ((-407 (-564)) $)) (-15 -2012 ($ (-407 (-564))))))
+((-2572 (((-641 |#2|) $) 29)) (-3601 (((-112) |#2| $) 34)) (-2280 (((-112) (-1 (-112) |#2|) $) 24)) (-2582 (($ $ (-641 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-3855 (((-768) (-1 (-112) |#2|) $) 28) (((-768) |#2| $) 32)) (-3714 (((-859) $) 43)) (-4289 (((-112) (-1 (-112) |#2|) $) 23)) (-1720 (((-112) $ $) 37)) (-2779 (((-768) $) 18)))
+(((-488 |#1| |#2|) (-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -2582 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#2| |#2|)) (-15 -2582 (|#1| |#1| (-294 |#2|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3601 ((-112) |#2| |#1|)) (-15 -3855 ((-768) |#2| |#1|)) (-15 -2572 ((-641 |#2|) |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2779 ((-768) |#1|))) (-489 |#2|) (-1209)) (T -488))
+NIL
+(-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -2582 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#2| |#2|)) (-15 -2582 (|#1| |#1| (-294 |#2|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -3601 ((-112) |#2| |#1|)) (-15 -3855 ((-768) |#2| |#1|)) (-15 -2572 ((-641 |#2|) |#1|)) (-15 -3855 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2779 ((-768) |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-3180 (($) 7 T CONST)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-489 |#1|) (-140) (-1209)) (T -489))
-((-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-2237 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-1467 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3815 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-768)))) (-3080 (*1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-3817 (*1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-3815 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-768)))) (-3675 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |t#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2082 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4412)) (-15 -3513 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4411)) (PROGN (-15 -2237 ((-112) (-1 (-112) |t#1|) $)) (-15 -1467 ((-112) (-1 (-112) |t#1|) $)) (-15 -3815 ((-768) (-1 (-112) |t#1|) $)) (-15 -3080 ((-641 |t#1|) $)) (-15 -3817 ((-641 |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3815 ((-768) |t#1| $)) (-15 -3675 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-1765 ((|#1| $) 6) (($ |#1|) 9)))
+((-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-1988 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4413)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-4289 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-2280 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3855 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-768)))) (-4244 (*1 *2 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-2572 (*1 *2 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-3855 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-768)))) (-3601 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |t#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2313 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4413)) (-15 -1988 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4412)) (PROGN (-15 -4289 ((-112) (-1 (-112) |t#1|) $)) (-15 -2280 ((-112) (-1 (-112) |t#1|) $)) (-15 -3855 ((-768) (-1 (-112) |t#1|) $)) (-15 -4244 ((-641 |t#1|) $)) (-15 -2572 ((-641 |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3855 ((-768) |t#1| $)) (-15 -3601 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-3714 ((|#1| $) 6) (($ |#1|) 9)))
(((-490 |#1|) (-140) (-1209)) (T -490))
NIL
(-13 (-611 |t#1|) (-614 |t#1|))
(((-614 |#1|) . T) ((-611 |#1|) . T))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3750 (($ (-1152)) 8)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 15) (((-1152) $) 12)) (-1686 (((-112) $ $) 11)))
-(((-491) (-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -3750 ($ (-1152)))))) (T -491))
-((-3750 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491)))))
-(-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -3750 ($ (-1152)))))
-((-3904 (($ $) 15)) (-3879 (($ $) 24)) (-3933 (($ $) 12)) (-3949 (($ $) 10)) (-3918 (($ $) 17)) (-3891 (($ $) 22)))
-(((-492 |#1|) (-10 -8 (-15 -3891 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3904 (|#1| |#1|))) (-493)) (T -492))
-NIL
-(-10 -8 (-15 -3891 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)))
-((-3904 (($ $) 11)) (-3879 (($ $) 10)) (-3933 (($ $) 9)) (-3949 (($ $) 8)) (-3918 (($ $) 7)) (-3891 (($ $) 6)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3104 (($ (-1152)) 8)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 15) (((-1152) $) 12)) (-1720 (((-112) $ $) 11)))
+(((-491) (-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -3104 ($ (-1152)))))) (T -491))
+((-3104 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491)))))
+(-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -3104 ($ (-1152)))))
+((-2657 (($ $) 15)) (-2635 (($ $) 24)) (-2679 (($ $) 12)) (-2692 (($ $) 10)) (-2669 (($ $) 17)) (-2647 (($ $) 22)))
+(((-492 |#1|) (-10 -8 (-15 -2647 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2657 (|#1| |#1|))) (-493)) (T -492))
+NIL
+(-10 -8 (-15 -2647 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2657 (|#1| |#1|)))
+((-2657 (($ $) 11)) (-2635 (($ $) 10)) (-2679 (($ $) 9)) (-2692 (($ $) 8)) (-2669 (($ $) 7)) (-2647 (($ $) 6)))
(((-493) (-140)) (T -493))
-((-3904 (*1 *1 *1) (-4 *1 (-493))) (-3879 (*1 *1 *1) (-4 *1 (-493))) (-3933 (*1 *1 *1) (-4 *1 (-493))) (-3949 (*1 *1 *1) (-4 *1 (-493))) (-3918 (*1 *1 *1) (-4 *1 (-493))) (-3891 (*1 *1 *1) (-4 *1 (-493))))
-(-13 (-10 -8 (-15 -3891 ($ $)) (-15 -3918 ($ $)) (-15 -3949 ($ $)) (-15 -3933 ($ $)) (-15 -3879 ($ $)) (-15 -3904 ($ $))))
-((-4006 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 54)))
-(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4006 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1235 |#1|) (-13 (-363) (-147) (-721 |#1| |#2|)) (-1235 |#3|)) (T -494))
-((-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-721 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7)))))
-(-10 -7 (-15 -4006 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|))))
-((-1754 (((-112) $ $) NIL)) (-4186 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-2487 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-3976 (((-112) $) 38)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2512 (((-112) $ $) 72)) (-3853 (((-641 (-610 $)) $) 49)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2662 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-4019 (($ $) NIL)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-2984 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-3330 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-2013 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2064 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) 54)) (-1387 (($ $ $) NIL)) (-2620 (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1447 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-4367 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-2696 (($ $) NIL) (($ (-641 $)) NIL)) (-2885 (((-641 (-114)) $) NIL)) (-1826 (((-114) (-114)) NIL)) (-2419 (((-112) $) 41)) (-1629 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-1507 (((-1119 (-564) (-610 $)) $) 36)) (-1935 (($ $ (-564)) NIL)) (-1779 (((-1166 $) (-1166 $) (-610 $)) 86) (((-1166 $) (-1166 $) (-641 (-610 $))) 61) (($ $ (-610 $)) 75) (($ $ (-641 (-610 $))) 76)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2431 (((-1166 $) (-610 $)) 73 (|has| $ (-1046)))) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2082 (($ (-1 $ $) (-610 $)) NIL)) (-4293 (((-3 (-610 $) "failed") $) NIL)) (-2488 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3943 (((-641 (-610 $)) $) NIL)) (-1583 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-3559 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-4272 (($ $) NIL)) (-1813 (((-768) $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1350 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1518 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2407 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3712 (((-768) $) NIL)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-2898 (($ $) NIL) (($ $ $) NIL)) (-3226 (($ $ (-768)) NIL) (($ $) 35)) (-1517 (((-1119 (-564) (-610 $)) $) 19)) (-1916 (($ $) NIL (|has| $ (-1046)))) (-2127 (((-379) $) 100) (((-225) $) 108) (((-169 (-379)) $) 116)) (-1765 (((-859) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) 20)) (-1965 (((-768)) NIL T CONST)) (-1719 (($ $) NIL) (($ (-641 $)) NIL)) (-1573 (((-112) (-114)) 92)) (-1582 (((-112) $ $) NIL)) (-4317 (($) 10 T CONST)) (-4327 (($) 21 T CONST)) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 23)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1793 (($ $ $) 43)) (-1783 (($ $ $) NIL) (($ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) 47) (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) 26) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL)))
-(((-495) (-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -1765 ($ (-1119 (-564) (-610 $)))) (-15 -1507 ((-1119 (-564) (-610 $)) $)) (-15 -1517 ((-1119 (-564) (-610 $)) $)) (-15 -4367 ($ $)) (-15 -2512 ((-112) $ $)) (-15 -1779 ((-1166 $) (-1166 $) (-610 $))) (-15 -1779 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -1779 ($ $ (-610 $))) (-15 -1779 ($ $ (-641 (-610 $))))))) (T -495))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-4367 (*1 *1 *1) (-5 *1 (-495))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-1779 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) (-1779 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495)))) (-5 *1 (-495)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495)))))
-(-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -1765 ($ (-1119 (-564) (-610 $)))) (-15 -1507 ((-1119 (-564) (-610 $)) $)) (-15 -1517 ((-1119 (-564) (-610 $)) $)) (-15 -4367 ($ $)) (-15 -2512 ((-112) $ $)) (-15 -1779 ((-1166 $) (-1166 $) (-610 $))) (-15 -1779 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -1779 ($ $ (-610 $))) (-15 -1779 ($ $ (-641 (-610 $))))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-564) |#1|) 36 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) 32 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 31)) (-1356 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-1633 (($ (-768) |#1|) 17)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) 15 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) 34 (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 22 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 25) (($ (-1 |#1| |#1| |#1|) $ $) 28)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3073 ((|#1| $) NIL (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) 13 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 16)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 35) (($ $ (-1226 (-564))) NIL)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) NIL)) (-2817 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2589 (((-768) $) 9 (|has| $ (-6 -4411)))))
+((-2657 (*1 *1 *1) (-4 *1 (-493))) (-2635 (*1 *1 *1) (-4 *1 (-493))) (-2679 (*1 *1 *1) (-4 *1 (-493))) (-2692 (*1 *1 *1) (-4 *1 (-493))) (-2669 (*1 *1 *1) (-4 *1 (-493))) (-2647 (*1 *1 *1) (-4 *1 (-493))))
+(-13 (-10 -8 (-15 -2647 ($ $)) (-15 -2669 ($ $)) (-15 -2692 ($ $)) (-15 -2679 ($ $)) (-15 -2635 ($ $)) (-15 -2657 ($ $))))
+((-4139 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 54)))
+(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1235 |#1|) (-13 (-363) (-147) (-721 |#1| |#2|)) (-1235 |#3|)) (T -494))
+((-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-721 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7)))))
+(-10 -7 (-15 -4139 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|))))
+((-3702 (((-112) $ $) NIL)) (-1701 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-1815 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-1556 (((-112) $) 38)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-2032 (((-112) $ $) 72)) (-4011 (((-641 (-610 $)) $) 49)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3203 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-4152 (($ $) NIL)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-4248 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-1544 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-2224 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2376 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) 54)) (-1399 (($ $ $) NIL)) (-3613 (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1920 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-1728 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3187 (($ $) NIL) (($ (-641 $)) NIL)) (-1512 (((-641 (-114)) $) NIL)) (-2702 (((-114) (-114)) NIL)) (-2340 (((-112) $) 41)) (-1329 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-1655 (((-1119 (-564) (-610 $)) $) 36)) (-4342 (($ $ (-564)) NIL)) (-2217 (((-1166 $) (-1166 $) (-610 $)) 86) (((-1166 $) (-1166 $) (-641 (-610 $))) 61) (($ $ (-610 $)) 75) (($ $ (-641 (-610 $))) 76)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2466 (((-1166 $) (-610 $)) 73 (|has| $ (-1046)))) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2313 (($ (-1 $ $) (-610 $)) NIL)) (-1419 (((-3 (-610 $) "failed") $) NIL)) (-2688 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-4090 (((-641 (-610 $)) $) NIL)) (-1736 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-1932 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-1295 (($ $) NIL)) (-3694 (((-768) $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2544 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1542 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2582 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3966 (((-768) $) NIL)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-3444 (($ $) NIL) (($ $ $) NIL)) (-2203 (($ $ (-768)) NIL) (($ $) 35)) (-1668 (((-1119 (-564) (-610 $)) $) 19)) (-4180 (($ $) NIL (|has| $ (-1046)))) (-2374 (((-379) $) 100) (((-225) $) 108) (((-169 (-379)) $) 116)) (-3714 (((-859) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) 20)) (-3379 (((-768)) NIL T CONST)) (-3146 (($ $) NIL) (($ (-641 $)) NIL)) (-2068 (((-112) (-114)) 92)) (-3979 (((-112) $ $) NIL)) (-4312 (($) 10 T CONST)) (-4323 (($) 21 T CONST)) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 23)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1841 (($ $ $) 43)) (-1828 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) 47) (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) 26) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL)))
+(((-495) (-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -3714 ($ (-1119 (-564) (-610 $)))) (-15 -1655 ((-1119 (-564) (-610 $)) $)) (-15 -1668 ((-1119 (-564) (-610 $)) $)) (-15 -1728 ($ $)) (-15 -2032 ((-112) $ $)) (-15 -2217 ((-1166 $) (-1166 $) (-610 $))) (-15 -2217 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2217 ($ $ (-610 $))) (-15 -2217 ($ $ (-641 (-610 $))))))) (T -495))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1728 (*1 *1 *1) (-5 *1 (-495))) (-2032 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495)))) (-5 *1 (-495)))) (-2217 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) (-2217 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495)))))
+(-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -3714 ($ (-1119 (-564) (-610 $)))) (-15 -1655 ((-1119 (-564) (-610 $)) $)) (-15 -1668 ((-1119 (-564) (-610 $)) $)) (-15 -1728 ($ $)) (-15 -2032 ((-112) $ $)) (-15 -2217 ((-1166 $) (-1166 $) (-610 $))) (-15 -2217 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -2217 ($ $ (-610 $))) (-15 -2217 ($ $ (-641 (-610 $))))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-564) |#1|) 46 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 41)) (-3303 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3564 (($ (-768) |#1|) 21)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) 17 (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2049 ((|#1| $) NIL (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) 15 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) 19)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 45) (($ $ (-1226 (-564))) NIL)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) 13)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 24)) (-1865 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2779 (((-768) $) 11 (|has| $ (-6 -4412)))))
(((-496 |#1| |#2|) (-19 |#1|) (-1209) (-564)) (T -496))
NIL
(-19 |#1|)
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1470 (($ $ (-564) (-496 |#1| |#3|)) NIL)) (-3652 (($ $ (-564) (-496 |#1| |#2|)) NIL)) (-3760 (($) NIL T CONST)) (-2698 (((-496 |#1| |#3|) $ (-564)) NIL)) (-3528 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3455 ((|#1| $ (-564) (-564)) NIL)) (-3080 (((-641 |#1|) $) NIL)) (-3383 (((-768) $) NIL)) (-1633 (($ (-768) (-768) |#1|) NIL)) (-3393 (((-768) $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-1786 (((-564) $) NIL)) (-2810 (((-564) $) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (((-564) $) NIL)) (-2104 (((-564) $) NIL)) (-3513 (($ (-1 |#1| |#1|) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2614 (($ $ |#1|) NIL)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1709 (((-496 |#1| |#2|) $ (-564)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2310 (($ $ (-564) (-496 |#1| |#3|)) NIL)) (-1571 (($ $ (-564) (-496 |#1| |#2|)) NIL)) (-3180 (($) NIL T CONST)) (-3207 (((-496 |#1| |#3|) $ (-564)) NIL)) (-1998 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3593 ((|#1| $ (-564) (-564)) NIL)) (-4244 (((-641 |#1|) $) NIL)) (-3947 (((-768) $) NIL)) (-3564 (($ (-768) (-768) |#1|) NIL)) (-3956 (((-768) $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2285 (((-564) $) NIL)) (-1984 (((-564) $) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2083 (((-564) $) NIL)) (-2437 (((-564) $) NIL)) (-1988 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3538 (($ $ |#1|) NIL)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-2811 (((-496 |#1| |#2|) $ (-564)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1209) (-564) (-564)) (T -497))
NIL
(-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|))
-((-3588 (((-641 (-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768)) 33)) (-3418 (((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768)) 43)) (-4178 (((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)) 110)))
-(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3418 ((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768))) (-15 -3588 ((-641 (-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768))) (-15 -4178 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -498))
-((-4178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-2 (|:| -3941 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7))))) (-5 *5 (-768)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -3941 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-3588 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-4 *5 (-349)) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3941 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -3941 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6)))) (-4 *7 (-1235 *6)))) (-3418 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-768)) (-4 *3 (-349)) (-4 *5 (-1235 *3)) (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1235 *5)))))
-(-10 -7 (-15 -3418 ((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768))) (-15 -3588 ((-641 (-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768))) (-15 -4178 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768))))
-((-2038 (((-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 74)) (-1992 ((|#1| (-685 |#1|) |#1| (-768)) 27)) (-2088 (((-768) (-768) (-768)) 36)) (-1808 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 54)) (-1481 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 62) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 59)) (-4164 ((|#1| (-685 |#1|) (-685 |#1|) |#1| (-564)) 31)) (-3044 ((|#1| (-685 |#1|)) 18)))
-(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -3044 (|#1| (-685 |#1|))) (-15 -1992 (|#1| (-685 |#1|) |#1| (-768))) (-15 -4164 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -2088 ((-768) (-768) (-768))) (-15 -1481 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1481 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1808 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2038 ((-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))))) (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -499))
-((-2038 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1808 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1481 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1481 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2088 (*1 *2 *2 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4164 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-564)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-1992 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-768)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))))
-(-10 -7 (-15 -3044 (|#1| (-685 |#1|))) (-15 -1992 (|#1| (-685 |#1|) |#1| (-768))) (-15 -4164 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -2088 ((-768) (-768) (-768))) (-15 -1481 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1481 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1808 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2038 ((-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -3941 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))))
-((-1754 (((-112) $ $) NIL)) (-1569 (($ $) NIL)) (-4291 (($ $ $) 39)) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) $) NIL (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-847)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2494 (($ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-1881 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4412))) (((-112) $ (-564) (-112)) 41 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-2359 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-4367 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-3528 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4412)))) (-3455 (((-112) $ (-564)) NIL)) (-1356 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-3080 (((-641 (-112)) $) NIL (|has| $ (-6 -4411)))) (-4277 (($ $ $) 37)) (-4254 (($ $) NIL)) (-1580 (($ $ $) NIL)) (-1633 (($ (-768) (-112)) 26)) (-1902 (($ $ $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) 8 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL)) (-4012 (($ $ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3817 (((-641 (-112)) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL)) (-3513 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-112) (-112) (-112)) $ $) 34) (($ (-1 (-112) (-112)) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-3412 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 (((-112) $) NIL (|has| (-564) (-847)))) (-2343 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2614 (($ $ (-112)) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-3599 (((-641 (-112)) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 27)) (-4382 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) 21) (((-112) $ (-564) (-112)) NIL)) (-2008 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3815 (((-768) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094)))) (((-768) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) 28)) (-2127 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-1776 (($ (-641 (-112))) NIL)) (-2817 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1765 (((-859) $) 25)) (-2237 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-4266 (($ $ $) 35)) (-3306 (($ $ $) NIL)) (-1430 (($ $ $) 44)) (-1441 (($ $) 42)) (-1420 (($ $ $) 43)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 29)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 30)) (-3295 (($ $ $) NIL)) (-2589 (((-768) $) 13 (|has| $ (-6 -4411)))))
-(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -1441 ($ $)) (-15 -1430 ($ $ $)) (-15 -1420 ($ $ $)))) (-564)) (T -500))
-((-1441 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-1430 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-1420 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))))
-(-13 (-123) (-10 -8 (-15 -1441 ($ $)) (-15 -1430 ($ $ $)) (-15 -1420 ($ $ $))))
-((-3282 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|)) 34)) (-4070 (((-1166 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1166 |#4|)) 21)) (-3059 (((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|))) 48)) (-2399 (((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|) 57)))
-(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4070 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -4070 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3282 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -3059 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -2399 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|))) (-1046) (-1235 |#1|) (-1235 |#2|) (-1046)) (T -501))
-((-2399 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6)))) (-3059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1235 *6)))) (-3282 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1235 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))))
-(-10 -7 (-15 -4070 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -4070 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3282 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -3059 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -2399 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-1754 (((-112) $ $) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3092 (((-1264) $) 25)) (-4382 (((-1152) $ (-1170)) 30)) (-3463 (((-1264) $) 17)) (-1765 (((-859) $) 27) (($ (-1152)) 26)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 11)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 9)))
-(((-502) (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 ((-1264) $)) (-15 -3092 ((-1264) $)) (-15 -1765 ($ (-1152)))))) (T -502))
-((-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502)))))
-(-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 ((-1264) $)) (-15 -3092 ((-1264) $)) (-15 -1765 ($ (-1152)))))
-((-3470 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3946 ((|#1| |#4|) 10)) (-4149 ((|#3| |#4|) 17)))
-(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3946 (|#1| |#4|)) (-15 -4149 (|#3| |#4|)) (-15 -3470 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-556) (-989 |#1|) (-373 |#1|) (-373 |#2|)) (T -503))
-((-3470 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-4149 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))))
-(-10 -7 (-15 -3946 (|#1| |#4|)) (-15 -4149 (|#3| |#4|)) (-15 -3470 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-1754 (((-112) $ $) NIL)) (-1341 (((-112) $ (-641 |#3|)) 128) (((-112) $) 129)) (-3976 (((-112) $) 180)) (-3436 (($ $ |#4|) 119) (($ $ |#4| (-641 |#3|)) 123)) (-3838 (((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|)) 173 (|has| |#3| (-612 (-1170))))) (-3741 (($ $ $) 107) (($ $ |#4|) 105)) (-2419 (((-112) $) 179)) (-2159 (($ $) 133)) (-4202 (((-1152) $) NIL)) (-1617 (($ $ $) 99) (($ (-641 $)) 101)) (-4034 (((-112) |#4| $) 131)) (-2485 (((-112) $ $) 85)) (-2943 (($ (-641 |#4|)) 106)) (-3802 (((-1114) $) NIL)) (-2325 (($ (-641 |#4|)) 177)) (-3060 (((-112) $) 178)) (-2067 (($ $) 88)) (-2227 (((-641 |#4|) $) 72)) (-2055 (((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|)) NIL)) (-3401 (((-112) |#4| $) 92)) (-3850 (((-564) $ (-641 |#3|)) 135) (((-564) $) 136)) (-1765 (((-859) $) 176) (($ (-641 |#4|)) 102)) (-2406 (($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $))) NIL)) (-1686 (((-112) $ $) 87)) (-1771 (($ $ $) 109)) (** (($ $ (-768)) 117)) (* (($ $ $) 115)))
-(((-504 |#1| |#2| |#3| |#4|) (-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 -1771 ($ $ $)) (-15 -2419 ((-112) $)) (-15 -3976 ((-112) $)) (-15 -3401 ((-112) |#4| $)) (-15 -2485 ((-112) $ $)) (-15 -4034 ((-112) |#4| $)) (-15 -1341 ((-112) $ (-641 |#3|))) (-15 -1341 ((-112) $)) (-15 -1617 ($ $ $)) (-15 -1617 ($ (-641 $))) (-15 -3741 ($ $ $)) (-15 -3741 ($ $ |#4|)) (-15 -2067 ($ $)) (-15 -2055 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -2406 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -3850 ((-564) $ (-641 |#3|))) (-15 -3850 ((-564) $)) (-15 -2159 ($ $)) (-15 -2943 ($ (-641 |#4|))) (-15 -2325 ($ (-641 |#4|))) (-15 -3060 ((-112) $)) (-15 -2227 ((-641 |#4|) $)) (-15 -1765 ($ (-641 |#4|))) (-15 -3436 ($ $ |#4|)) (-15 -3436 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -3838 ((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|))) |%noBranch|))) (-363) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -504))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1771 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2419 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3976 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3401 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2485 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-4034 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-1341 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-1341 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1617 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3741 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3741 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-2067 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2055 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-2406 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-3850 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2159 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2325 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-3060 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2227 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-3436 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-3436 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-612 (-1170))) (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1159 (-641 (-949 *4)) (-641 (-294 (-949 *4))))) (-5 *1 (-504 *4 *5 *6 *7)))))
-(-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 -1771 ($ $ $)) (-15 -2419 ((-112) $)) (-15 -3976 ((-112) $)) (-15 -3401 ((-112) |#4| $)) (-15 -2485 ((-112) $ $)) (-15 -4034 ((-112) |#4| $)) (-15 -1341 ((-112) $ (-641 |#3|))) (-15 -1341 ((-112) $)) (-15 -1617 ($ $ $)) (-15 -1617 ($ (-641 $))) (-15 -3741 ($ $ $)) (-15 -3741 ($ $ |#4|)) (-15 -2067 ($ $)) (-15 -2055 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -2406 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -3850 ((-564) $ (-641 |#3|))) (-15 -3850 ((-564) $)) (-15 -2159 ($ $)) (-15 -2943 ($ (-641 |#4|))) (-15 -2325 ($ (-641 |#4|))) (-15 -3060 ((-112) $)) (-15 -2227 ((-641 |#4|) $)) (-15 -1765 ($ (-641 |#4|))) (-15 -3436 ($ $ |#4|)) (-15 -3436 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -3838 ((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|))) |%noBranch|)))
-((-3132 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 177)) (-3342 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 178)) (-4386 (((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 128)) (-3241 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) NIL)) (-1423 (((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 180)) (-2121 (((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))) 195)))
-(((-505 |#1| |#2|) (-10 -7 (-15 -3132 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3342 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3241 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4386 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1423 ((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2121 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))))) (-641 (-1170)) (-768)) (T -505))
-((-2121 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *1 (-505 *4 *5)))) (-1423 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-641 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *4 (-768)) (-861 *3) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-505 *3 *4)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))))
-(-10 -7 (-15 -3132 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3342 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3241 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4386 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1423 ((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2121 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|)))))
-((-1754 (((-112) $ $) NIL)) (-1633 (($) 6)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 12) (((-1170) $) 10)) (-1686 (((-112) $ $) 8)))
-(((-506) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -1633 ($))))) (T -506))
-((-1633 (*1 *1) (-5 *1 (-506))))
-(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -1633 ($))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-3253 ((|#2| $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4317 (($) 12 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) 11) (($ $ $) 34)) (-1771 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 21)))
+((-2185 (((-641 (-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768)) 33)) (-3028 (((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768)) 43)) (-2855 (((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)) 110)))
+(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3028 ((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768))) (-15 -2185 ((-641 (-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768))) (-15 -2855 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -498))
+((-2855 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-2 (|:| -4339 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7))))) (-5 *5 (-768)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -4339 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-2185 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-4 *5 (-349)) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -4339 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -4339 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6)))) (-4 *7 (-1235 *6)))) (-3028 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-768)) (-4 *3 (-349)) (-4 *5 (-1235 *3)) (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1235 *5)))))
+(-10 -7 (-15 -3028 ((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768))) (-15 -2185 ((-641 (-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768))) (-15 -2855 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768))))
+((-2978 (((-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 74)) (-3670 ((|#1| (-685 |#1|) |#1| (-768)) 27)) (-2265 (((-768) (-768) (-768)) 36)) (-2512 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 54)) (-2435 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 62) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 59)) (-2752 ((|#1| (-685 |#1|) (-685 |#1|) |#1| (-564)) 31)) (-3558 ((|#1| (-685 |#1|)) 18)))
+(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -3558 (|#1| (-685 |#1|))) (-15 -3670 (|#1| (-685 |#1|) |#1| (-768))) (-15 -2752 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -2265 ((-768) (-768) (-768))) (-15 -2435 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2435 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -2512 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2978 ((-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))))) (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -499))
+((-2978 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2512 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2435 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2435 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2265 (*1 *2 *2 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2752 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-564)) (-4 *2 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3670 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-768)) (-4 *2 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))))
+(-10 -7 (-15 -3558 (|#1| (-685 |#1|))) (-15 -3670 (|#1| (-685 |#1|) |#1| (-768))) (-15 -2752 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -2265 ((-768) (-768) (-768))) (-15 -2435 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2435 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -2512 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2978 ((-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4339 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))))
+((-3702 (((-112) $ $) NIL)) (-1703 (($ $) NIL)) (-4288 (($ $ $) 39)) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) $) NIL (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4194 (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| (-112) (-847)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4413)))) (-2904 (($ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3868 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4413))) (((-112) $ (-564) (-112)) 41 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-2514 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-1728 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-1998 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4413)))) (-3593 (((-112) $ (-564)) NIL)) (-3303 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-4244 (((-641 (-112)) $) NIL (|has| $ (-6 -4412)))) (-4276 (($ $ $) 37)) (-4253 (($ $) NIL)) (-3958 (($ $ $) NIL)) (-3564 (($ (-768) (-112)) 26)) (-4026 (($ $ $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) 8 (|has| (-564) (-847)))) (-3428 (($ $ $) NIL)) (-3678 (($ $ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2572 (((-641 (-112)) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL)) (-1988 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-112) (-112) (-112)) $ $) 34) (($ (-1 (-112) (-112)) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-2455 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 (((-112) $) NIL (|has| (-564) (-847)))) (-2905 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3538 (($ $ (-112)) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094))))) (-4121 (((-641 (-112)) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) 27)) (-4382 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) 21) (((-112) $ (-564) (-112)) NIL)) (-2090 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3855 (((-768) (-112) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-1094)))) (((-768) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) 28)) (-2374 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-3725 (($ (-641 (-112))) NIL)) (-1865 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3714 (((-859) $) 25)) (-4289 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-4264 (($ $ $) 35)) (-2284 (($ $ $) NIL)) (-1567 (($ $ $) 44)) (-1579 (($ $) 42)) (-1555 (($ $ $) 43)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 29)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 30)) (-2271 (($ $ $) NIL)) (-2779 (((-768) $) 13 (|has| $ (-6 -4412)))))
+(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -1579 ($ $)) (-15 -1567 ($ $ $)) (-15 -1555 ($ $ $)))) (-564)) (T -500))
+((-1579 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-1567 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-1555 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))))
+(-13 (-123) (-10 -8 (-15 -1579 ($ $)) (-15 -1567 ($ $ $)) (-15 -1555 ($ $ $))))
+((-4163 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|)) 34)) (-3030 (((-1166 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1166 |#4|)) 21)) (-3723 (((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|))) 48)) (-3284 (((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|) 57)))
+(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3030 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -3030 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4163 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -3723 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -3284 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|))) (-1046) (-1235 |#1|) (-1235 |#2|) (-1046)) (T -501))
+((-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6)))) (-3723 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1235 *6)))) (-4163 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))) (-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1235 *4)))) (-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))))
+(-10 -7 (-15 -3030 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -3030 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4163 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -3723 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -3284 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-3702 (((-112) $ $) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2890 (((-1264) $) 25)) (-4382 (((-1152) $ (-1170)) 30)) (-3512 (((-1264) $) 17)) (-3714 (((-859) $) 27) (($ (-1152)) 26)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 11)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 9)))
+(((-502) (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 ((-1264) $)) (-15 -2890 ((-1264) $)) (-15 -3714 ($ (-1152)))))) (T -502))
+((-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502)))))
+(-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 ((-1264) $)) (-15 -2890 ((-1264) $)) (-15 -3714 ($ (-1152)))))
+((-2328 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4376 ((|#1| |#4|) 10)) (-2606 ((|#3| |#4|) 17)))
+(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 (|#1| |#4|)) (-15 -2606 (|#3| |#4|)) (-15 -2328 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-556) (-989 |#1|) (-373 |#1|) (-373 |#2|)) (T -503))
+((-2328 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-2606 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))))
+(-10 -7 (-15 -4376 (|#1| |#4|)) (-15 -2606 (|#3| |#4|)) (-15 -2328 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-3702 (((-112) $ $) NIL)) (-2443 (((-112) $ (-641 |#3|)) 128) (((-112) $) 129)) (-1556 (((-112) $) 180)) (-3175 (($ $ |#4|) 119) (($ $ |#4| (-641 |#3|)) 123)) (-2785 (((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|)) 173 (|has| |#3| (-612 (-1170))))) (-3031 (($ $ $) 107) (($ $ |#4|) 105)) (-2340 (((-112) $) 179)) (-1693 (($ $) 133)) (-1868 (((-1152) $) NIL)) (-4302 (($ $ $) 99) (($ (-641 $)) 101)) (-3886 (((-112) |#4| $) 131)) (-1794 (((-112) $ $) 85)) (-3952 (($ (-641 |#4|)) 106)) (-3844 (((-1114) $) NIL)) (-3862 (($ (-641 |#4|)) 177)) (-3737 (((-112) $) 178)) (-3222 (($ $) 88)) (-4187 (((-641 |#4|) $) 72)) (-3132 (((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|)) NIL)) (-2907 (((-112) |#4| $) 92)) (-2869 (((-564) $ (-641 |#3|)) 135) (((-564) $) 136)) (-3714 (((-859) $) 176) (($ (-641 |#4|)) 102)) (-3334 (($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $))) NIL)) (-1720 (((-112) $ $) 87)) (-1814 (($ $ $) 109)) (** (($ $ (-768)) 117)) (* (($ $ $) 115)))
+(((-504 |#1| |#2| |#3| |#4|) (-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 -1814 ($ $ $)) (-15 -2340 ((-112) $)) (-15 -1556 ((-112) $)) (-15 -2907 ((-112) |#4| $)) (-15 -1794 ((-112) $ $)) (-15 -3886 ((-112) |#4| $)) (-15 -2443 ((-112) $ (-641 |#3|))) (-15 -2443 ((-112) $)) (-15 -4302 ($ $ $)) (-15 -4302 ($ (-641 $))) (-15 -3031 ($ $ $)) (-15 -3031 ($ $ |#4|)) (-15 -3222 ($ $)) (-15 -3132 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -3334 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -2869 ((-564) $ (-641 |#3|))) (-15 -2869 ((-564) $)) (-15 -1693 ($ $)) (-15 -3952 ($ (-641 |#4|))) (-15 -3862 ($ (-641 |#4|))) (-15 -3737 ((-112) $)) (-15 -4187 ((-641 |#4|) $)) (-15 -3714 ($ (-641 |#4|))) (-15 -3175 ($ $ |#4|)) (-15 -3175 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -2785 ((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|))) |%noBranch|))) (-363) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -504))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1814 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-2340 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1556 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2907 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-1794 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3886 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2443 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-2443 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-4302 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-4302 (*1 *1 *2) (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3031 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3031 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-3222 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3132 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2869 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-2869 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1693 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-3862 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-3737 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-4187 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-3175 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-612 (-1170))) (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1159 (-641 (-949 *4)) (-641 (-294 (-949 *4))))) (-5 *1 (-504 *4 *5 *6 *7)))))
+(-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 -1814 ($ $ $)) (-15 -2340 ((-112) $)) (-15 -1556 ((-112) $)) (-15 -2907 ((-112) |#4| $)) (-15 -1794 ((-112) $ $)) (-15 -3886 ((-112) |#4| $)) (-15 -2443 ((-112) $ (-641 |#3|))) (-15 -2443 ((-112) $)) (-15 -4302 ($ $ $)) (-15 -4302 ($ (-641 $))) (-15 -3031 ($ $ $)) (-15 -3031 ($ $ |#4|)) (-15 -3222 ($ $)) (-15 -3132 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -3334 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -2869 ((-564) $ (-641 |#3|))) (-15 -2869 ((-564) $)) (-15 -1693 ($ $)) (-15 -3952 ($ (-641 |#4|))) (-15 -3862 ($ (-641 |#4|))) (-15 -3737 ((-112) $)) (-15 -4187 ((-641 |#4|) $)) (-15 -3714 ($ (-641 |#4|))) (-15 -3175 ($ $ |#4|)) (-15 -3175 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -2785 ((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|))) |%noBranch|)))
+((-3213 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 177)) (-3450 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 178)) (-3535 (((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 128)) (-1926 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) NIL)) (-1678 (((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 180)) (-2630 (((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))) 195)))
+(((-505 |#1| |#2|) (-10 -7 (-15 -3213 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3450 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1926 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3535 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1678 ((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2630 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))))) (-641 (-1170)) (-768)) (T -505))
+((-2630 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *1 (-505 *4 *5)))) (-1678 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-641 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))))) (-3535 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *4 (-768)) (-861 *3) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-505 *3 *4)))) (-1926 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))))
+(-10 -7 (-15 -3213 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3450 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1926 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3535 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1678 ((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2630 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|)))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2812 (($) 6)) (-3714 (((-859) $) 12) (((-1170) $) 10)) (-1720 (((-112) $ $) 8)))
+(((-506) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -2812 ($))))) (T -506))
+((-2812 (*1 *1) (-5 *1 (-506))))
+(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -2812 ($))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4267 (($ |#1| |#2|) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2045 ((|#2| $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-4312 (($) 12 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) 11) (($ $ $) 34)) (-1814 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 21)))
(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-847)) (T -507))
NIL
(-13 (-21) (-509 |#1| |#2|))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 13)) (-3760 (($) NIL T CONST)) (-4346 (($ $) 40)) (-4145 (($ |#1| |#2|) 37)) (-2082 (($ (-1 |#1| |#1|) $) 39)) (-3253 ((|#2| $) NIL)) (-4323 ((|#1| $) 41)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4317 (($) 10 T CONST)) (-1686 (((-112) $ $) NIL)) (-1771 (($ $ $) 25)) (* (($ (-918) $) NIL) (($ (-768) $) 35)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 13)) (-3180 (($) NIL T CONST)) (-1374 (($ $) 40)) (-4267 (($ |#1| |#2|) 37)) (-2313 (($ (-1 |#1| |#1|) $) 39)) (-2045 ((|#2| $) NIL)) (-1345 ((|#1| $) 41)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-4312 (($) 10 T CONST)) (-1720 (((-112) $ $) NIL)) (-1814 (($ $ $) 25)) (* (($ (-918) $) NIL) (($ (-768) $) 35)))
(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-847)) (T -508))
NIL
(-13 (-23) (-509 |#1| |#2|))
-((-1754 (((-112) $ $) 7)) (-4346 (($ $) 13)) (-4145 (($ |#1| |#2|) 16)) (-2082 (($ (-1 |#1| |#1|) $) 17)) (-3253 ((|#2| $) 14)) (-4323 ((|#1| $) 15)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)))
+((-3702 (((-112) $ $) 7)) (-1374 (($ $) 13)) (-4267 (($ |#1| |#2|) 16)) (-2313 (($ (-1 |#1| |#1|) $) 17)) (-2045 ((|#2| $) 14)) (-1345 ((|#1| $) 15)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)))
(((-509 |#1| |#2|) (-140) (-1094) (-847)) (T -509))
-((-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-847)))) (-4145 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1094)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-847)))) (-4346 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))))
-(-13 (-1094) (-10 -8 (-15 -2082 ($ (-1 |t#1| |t#1|) $)) (-15 -4145 ($ |t#1| |t#2|)) (-15 -4323 (|t#1| $)) (-15 -3253 (|t#2| $)) (-15 -4346 ($ $))))
+((-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-847)))) (-4267 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1094)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-847)))) (-1374 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))))
+(-13 (-1094) (-10 -8 (-15 -2313 ($ (-1 |t#1| |t#1|) $)) (-15 -4267 ($ |t#1| |t#2|)) (-15 -1345 (|t#1| $)) (-15 -2045 (|t#2| $)) (-15 -1374 ($ $))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-3253 ((|#2| $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4317 (($) NIL T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 20)) (-1771 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4267 (($ |#1| |#2|) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2045 ((|#2| $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-4312 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 20)) (-1814 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL)))
(((-510 |#1| |#2|) (-13 (-789) (-509 |#1| |#2|)) (-789) (-847)) (T -510))
NIL
(-13 (-789) (-509 |#1| |#2|))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3382 (($ $ $) 22)) (-3936 (((-3 $ "failed") $ $) 18)) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-3253 ((|#2| $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4317 (($) NIL T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1771 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3884 (($ $ $) 22)) (-4281 (((-3 $ "failed") $ $) 18)) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4267 (($ |#1| |#2|) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2045 ((|#2| $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-4312 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL)))
(((-511 |#1| |#2|) (-13 (-790) (-509 |#1| |#2|)) (-790) (-847)) (T -511))
NIL
(-13 (-790) (-509 |#1| |#2|))
-((-1754 (((-112) $ $) NIL)) (-4346 (($ $) 31)) (-4145 (($ |#1| |#2|) 27)) (-2082 (($ (-1 |#1| |#1|) $) 29)) (-3253 ((|#2| $) 33)) (-4323 ((|#1| $) 32)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 26)) (-1686 (((-112) $ $) 19)))
+((-3702 (((-112) $ $) NIL)) (-1374 (($ $) 31)) (-4267 (($ |#1| |#2|) 27)) (-2313 (($ (-1 |#1| |#1|) $) 29)) (-2045 ((|#2| $) 33)) (-1345 ((|#1| $) 32)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 26)) (-1720 (((-112) $ $) 19)))
(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1094) (-847)) (T -512))
NIL
(-509 |#1| |#2|)
-((-2407 (($ $ (-641 |#2|) (-641 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -2407 (|#1| |#1| |#2| |#3|)) (-15 -2407 (|#1| |#1| (-641 |#2|) (-641 |#3|)))) (-514 |#2| |#3|) (-1094) (-1209)) (T -513))
+((-2582 (($ $ (-641 |#2|) (-641 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -2582 (|#1| |#1| |#2| |#3|)) (-15 -2582 (|#1| |#1| (-641 |#2|) (-641 |#3|)))) (-514 |#2| |#3|) (-1094) (-1209)) (T -513))
NIL
-(-10 -8 (-15 -2407 (|#1| |#1| |#2| |#3|)) (-15 -2407 (|#1| |#1| (-641 |#2|) (-641 |#3|))))
-((-2407 (($ $ (-641 |#1|) (-641 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(-10 -8 (-15 -2582 (|#1| |#1| |#2| |#3|)) (-15 -2582 (|#1| |#1| (-641 |#2|) (-641 |#3|))))
+((-2582 (($ $ (-641 |#1|) (-641 |#2|)) 7) (($ $ |#1| |#2|) 6)))
(((-514 |#1| |#2|) (-140) (-1094) (-1209)) (T -514))
-((-2407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1209)))) (-2407 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209)))))
-(-13 (-10 -8 (-15 -2407 ($ $ |t#1| |t#2|)) (-15 -2407 ($ $ (-641 |t#1|) (-641 |t#2|)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 17)) (-3219 (((-641 (-2 (|:| |gen| |#1|) (|:| -2152 |#2|))) $) 19)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3042 (((-768) $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-2902 ((|#1| $ (-564)) 24)) (-2012 ((|#2| $ (-564)) 22)) (-2093 (($ (-1 |#1| |#1|) $) 48)) (-2132 (($ (-1 |#2| |#2|) $) 45)) (-4202 (((-1152) $) NIL)) (-4055 (($ $ $) 55 (|has| |#2| (-789)))) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 44) (($ |#1|) NIL)) (-1757 ((|#2| |#1| $) 51)) (-4317 (($) 11 T CONST)) (-1686 (((-112) $ $) 30)) (-1771 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-918) $) NIL) (($ (-768) $) 37) (($ |#2| |#1|) 32)))
+((-2582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1209)))) (-2582 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209)))))
+(-13 (-10 -8 (-15 -2582 ($ $ |t#1| |t#2|)) (-15 -2582 ($ $ (-641 |t#1|) (-641 |t#2|)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 17)) (-1681 (((-641 (-2 (|:| |gen| |#1|) (|:| -4130 |#2|))) $) 19)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2018 (((-768) $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-3488 ((|#1| $ (-564)) 24)) (-3887 ((|#2| $ (-564)) 22)) (-2312 (($ (-1 |#1| |#1|) $) 48)) (-2731 (($ (-1 |#2| |#2|) $) 45)) (-1868 (((-1152) $) NIL)) (-2924 (($ $ $) 55 (|has| |#2| (-789)))) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 44) (($ |#1|) NIL)) (-3181 ((|#2| |#1| $) 51)) (-4312 (($) 11 T CONST)) (-1720 (((-112) $ $) 30)) (-1814 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-918) $) NIL) (($ (-768) $) 37) (($ |#2| |#1|) 32)))
(((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1094) (-131) |#2|) (T -515))
NIL
(-323 |#1| |#2|)
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-2783 (((-112) (-112)) 32)) (-1881 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-4194 (($ (-1 (-112) |#1|) $) 78)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3083 (($ $) 82 (|has| |#1| (-1094)))) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1907 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 65)) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1356 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-4281 (($ $ (-564)) 19)) (-2356 (((-768) $) 13)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-1633 (($ (-768) |#1|) 31)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) 29 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1397 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 56)) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) 57) (($ $ $) NIL (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) 28 (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2098 (($ $ $ (-564)) 74) (($ |#1| $ (-564)) 58)) (-3412 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1345 (($ (-641 |#1|)) 43)) (-3073 ((|#1| $) NIL (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) 24 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 61)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 21)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 54) (($ $ (-1226 (-564))) NIL)) (-4183 (($ $ (-1226 (-564))) 72) (($ $ (-564)) 66)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) 62 (|has| $ (-6 -4412)))) (-1899 (($ $) 53)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) NIL)) (-2478 (($ $ $) 63) (($ $ |#1|) 60)) (-2817 (($ $ |#1|) NIL) (($ |#1| $) 59) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2589 (((-768) $) 22 (|has| $ (-6 -4411)))))
-(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1345 ($ (-641 |#1|))) (-15 -2356 ((-768) $)) (-15 -4281 ($ $ (-564))) (-15 -2783 ((-112) (-112))))) (-1209) (-564)) (T -516))
-((-1345 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4)) (-14 *4 (-564)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564)))))
-(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -1345 ($ (-641 |#1|))) (-15 -2356 ((-768) $)) (-15 -4281 ($ $ (-564))) (-15 -2783 ((-112) (-112)))))
-((-1754 (((-112) $ $) NIL)) (-2779 (((-1129) $) 11)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2340 (((-1129) $) 13)) (-2092 (((-1129) $) 9)) (-1765 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-517) (-13 (-1077) (-10 -8 (-15 -2092 ((-1129) $)) (-15 -2779 ((-1129) $)) (-15 -2340 ((-1129) $))))) (T -517))
-((-2092 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))))
-(-13 (-1077) (-10 -8 (-15 -2092 ((-1129) $)) (-15 -2779 ((-1129) $)) (-15 -2340 ((-1129) $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 (((-581 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-581 |#1|) (-368)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL (|has| (-581 |#1|) (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-581 |#1|) "failed") $) NIL)) (-2064 (((-581 |#1|) $) NIL)) (-2910 (($ (-1259 (-581 |#1|))) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-581 |#1|) (-368)))) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-581 |#1|) (-368)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) NIL (|has| (-581 |#1|) (-368)))) (-3242 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-2184 (($ $ (-768)) NIL (-4002 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368)))) (($ $) NIL (-4002 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3241 (((-112) $) NIL)) (-2261 (((-918) $) NIL (|has| (-581 |#1|) (-368))) (((-830 (-918)) $) NIL (-4002 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-2419 (((-112) $) NIL)) (-1650 (($) NIL (|has| (-581 |#1|) (-368)))) (-2805 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-1779 (((-581 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-3374 (((-3 $ "failed") $) NIL (|has| (-581 |#1|) (-368)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 (-581 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-2209 (((-918) $) NIL (|has| (-581 |#1|) (-368)))) (-3645 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368)))) (-3135 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-1166 (-581 |#1|)) "failed") $ $) NIL (|has| (-581 |#1|) (-368)))) (-3325 (($ $ (-1166 (-581 |#1|))) NIL (|has| (-581 |#1|) (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-581 |#1|) (-368)) CONST)) (-1403 (($ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-4120 (((-112) $) NIL)) (-3802 (((-1114) $) NIL)) (-1502 (($) NIL (|has| (-581 |#1|) (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| (-581 |#1|) (-368)))) (-4006 (((-418 $) $) NIL)) (-1369 (((-830 (-918))) NIL) (((-918)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-768) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4002 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3850 (((-134)) NIL)) (-3226 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-3344 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-1916 (((-1166 (-581 |#1|))) NIL)) (-3726 (($) NIL (|has| (-581 |#1|) (-368)))) (-3387 (($) NIL (|has| (-581 |#1|) (-368)))) (-3072 (((-1259 (-581 |#1|)) $) NIL) (((-685 (-581 |#1|)) (-1259 $)) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-581 |#1|) (-368)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-581 |#1|)) NIL)) (-2864 (($ $) NIL (|has| (-581 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4002 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1560 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-3190 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL) (($ $ (-581 |#1|)) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-581 |#1|)) NIL) (($ (-581 |#1|) $) NIL)))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-1673 (((-112) (-112)) 32)) (-3868 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413)))) (-1773 (($ (-1 (-112) |#1|) $) 78)) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2822 (($ $) 82 (|has| |#1| (-1094)))) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4074 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 65)) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-3303 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-1314 (($ $ (-564)) 19)) (-2975 (((-768) $) 13)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3564 (($ (-768) |#1|) 31)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) 29 (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-2573 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 56)) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) 57) (($ $ $) NIL (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) 28 (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2373 (($ $ $ (-564)) 74) (($ |#1| $ (-564)) 58)) (-2455 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2480 (($ (-641 |#1|)) 43)) (-2049 ((|#1| $) NIL (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) 24 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 61)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) 21)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 54) (($ $ (-1226 (-564))) NIL)) (-2899 (($ $ (-1226 (-564))) 72) (($ $ (-564)) 66)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) 62 (|has| $ (-6 -4413)))) (-3890 (($ $) 53)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) NIL)) (-1711 (($ $ $) 63) (($ $ |#1|) 60)) (-1865 (($ $ |#1|) NIL) (($ |#1| $) 59) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2779 (((-768) $) 22 (|has| $ (-6 -4412)))))
+(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2480 ($ (-641 |#1|))) (-15 -2975 ((-768) $)) (-15 -1314 ($ $ (-564))) (-15 -1673 ((-112) (-112))))) (-1209) (-564)) (T -516))
+((-2480 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4)) (-14 *4 (-564)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564)))))
+(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2480 ($ (-641 |#1|))) (-15 -2975 ((-768) $)) (-15 -1314 ($ $ (-564))) (-15 -1673 ((-112) (-112)))))
+((-3702 (((-112) $ $) NIL)) (-2868 (((-1129) $) 11)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2878 (((-1129) $) 13)) (-4059 (((-1129) $) 9)) (-3714 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-517) (-13 (-1077) (-10 -8 (-15 -4059 ((-1129) $)) (-15 -2868 ((-1129) $)) (-15 -2878 ((-1129) $))))) (T -517))
+((-4059 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))))
+(-13 (-1077) (-10 -8 (-15 -4059 ((-1129) $)) (-15 -2868 ((-1129) $)) (-15 -2878 ((-1129) $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 (((-581 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-581 |#1|) (-368)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL (|has| (-581 |#1|) (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-581 |#1|) "failed") $) NIL)) (-2376 (((-581 |#1|) $) NIL)) (-3566 (($ (-1259 (-581 |#1|))) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-581 |#1|) (-368)))) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-581 |#1|) (-368)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) NIL (|has| (-581 |#1|) (-368)))) (-1937 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-1957 (($ $ (-768)) NIL (-4012 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368)))) (($ $) NIL (-4012 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-1926 (((-112) $) NIL)) (-1454 (((-918) $) NIL (|has| (-581 |#1|) (-368))) (((-830 (-918)) $) NIL (-4012 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-2340 (((-112) $) NIL)) (-3344 (($) NIL (|has| (-581 |#1|) (-368)))) (-1927 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-2217 (((-581 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-3804 (((-3 $ "failed") $) NIL (|has| (-581 |#1|) (-368)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 (-581 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-4031 (((-918) $) NIL (|has| (-581 |#1|) (-368)))) (-1513 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368)))) (-3240 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-1166 (-581 |#1|)) "failed") $ $) NIL (|has| (-581 |#1|) (-368)))) (-1486 (($ $ (-1166 (-581 |#1|))) NIL (|has| (-581 |#1|) (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-581 |#1|) (-368)) CONST)) (-3338 (($ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-2309 (((-112) $) NIL)) (-3844 (((-1114) $) NIL)) (-1729 (($) NIL (|has| (-581 |#1|) (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| (-581 |#1|) (-368)))) (-4139 (((-418 $) $) NIL)) (-3117 (((-830 (-918))) NIL) (((-918)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-768) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4012 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-2869 (((-134)) NIL)) (-2203 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-3475 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-4180 (((-1166 (-581 |#1|))) NIL)) (-2927 (($) NIL (|has| (-581 |#1|) (-368)))) (-3927 (($) NIL (|has| (-581 |#1|) (-368)))) (-3867 (((-1259 (-581 |#1|)) $) NIL) (((-685 (-581 |#1|)) (-1259 $)) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-581 |#1|) (-368)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-581 |#1|)) NIL)) (-4363 (($ $) NIL (|has| (-581 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4012 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1946 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-2238 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL) (($ $ (-581 |#1|)) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-581 |#1|)) NIL) (($ (-581 |#1|) $) NIL)))
(((-518 |#1| |#2|) (-329 (-581 |#1|)) (-918) (-918)) (T -518))
NIL
(-329 (-581 |#1|))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-564) (-564) |#1|) 50)) (-1470 (($ $ (-564) |#4|) NIL)) (-3652 (($ $ (-564) |#5|) NIL)) (-3760 (($) NIL T CONST)) (-2698 ((|#4| $ (-564)) NIL)) (-3528 ((|#1| $ (-564) (-564) |#1|) 49)) (-3455 ((|#1| $ (-564) (-564)) 45)) (-3080 (((-641 |#1|) $) NIL)) (-3383 (((-768) $) 33)) (-1633 (($ (-768) (-768) |#1|) 30)) (-3393 (((-768) $) 38)) (-2830 (((-112) $ (-768)) NIL)) (-1786 (((-564) $) 31)) (-2810 (((-564) $) 32)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (((-564) $) 37)) (-2104 (((-564) $) 39)) (-3513 (($ (-1 |#1| |#1|) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) 54 (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2614 (($ $ |#1|) NIL)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 14)) (-3845 (($) 16)) (-4382 ((|#1| $ (-564) (-564)) 47) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1709 ((|#5| $ (-564)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-564) (-564) |#1|) 50)) (-2310 (($ $ (-564) |#4|) NIL)) (-1571 (($ $ (-564) |#5|) NIL)) (-3180 (($) NIL T CONST)) (-3207 ((|#4| $ (-564)) NIL)) (-1998 ((|#1| $ (-564) (-564) |#1|) 49)) (-3593 ((|#1| $ (-564) (-564)) 45)) (-4244 (((-641 |#1|) $) NIL)) (-3947 (((-768) $) 33)) (-3564 (($ (-768) (-768) |#1|) 30)) (-3956 (((-768) $) 38)) (-2173 (((-112) $ (-768)) NIL)) (-2285 (((-564) $) 31)) (-1984 (((-564) $) 32)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2083 (((-564) $) 37)) (-2437 (((-564) $) 39)) (-1988 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) 54 (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3538 (($ $ |#1|) NIL)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 14)) (-2834 (($) 16)) (-4382 ((|#1| $ (-564) (-564)) 47) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-2811 ((|#5| $ (-564)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1209) (-564) (-564) (-373 |#1|) (-373 |#1|)) (T -519))
NIL
(-57 |#1| |#4| |#5|)
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) NIL)) (-2722 ((|#1| $) NIL)) (-1882 (($ $) NIL)) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3280 (($ $ (-564)) 73 (|has| $ (-6 -4412)))) (-4310 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4412)))) (-2494 (($ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-3768 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-2293 (($ $ $) 23 (|has| $ (-6 -4412)))) (-3129 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-4318 ((|#1| $ |#1|) 21 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4412))) (($ $ "rest" $) 24 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-4194 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2711 ((|#1| $) NIL)) (-3760 (($) NIL T CONST)) (-3852 (($ $) 28 (|has| $ (-6 -4412)))) (-3716 (($ $) 29)) (-3086 (($ $) 18) (($ $ (-768)) 35)) (-3083 (($ $) 66 (|has| |#1| (-1094)))) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1907 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2359 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1418 (((-112) $) NIL)) (-1356 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3080 (((-641 |#1|) $) 27 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1633 (($ (-768) |#1|) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) 31 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1397 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-4012 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2953 (($ |#1|) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3848 (((-641 |#1|) $) NIL)) (-2200 (((-112) $) NIL)) (-4202 (((-1152) $) 62 (|has| |#1| (-1094)))) (-2376 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2098 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3412 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3073 ((|#1| $) 13) (($ $ (-768)) NIL)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-2141 (((-112) $) NIL)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 12)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) 17)) (-3845 (($) 16)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL)) (-3837 (((-564) $ $) NIL)) (-4183 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2008 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1867 (((-112) $) 39)) (-2294 (($ $) NIL)) (-4207 (($ $) NIL (|has| $ (-6 -4412)))) (-2355 (((-768) $) NIL)) (-4119 (($ $) 44)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) 40)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 26)) (-2478 (($ $ $) 65) (($ $ |#1|) NIL)) (-2817 (($ $ $) NIL) (($ |#1| $) 10) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-1765 (((-859) $) 54 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) 58 (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2589 (((-768) $) 9 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) NIL)) (-2985 ((|#1| $) NIL)) (-3794 (($ $) NIL)) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-4140 (($ $ (-564)) 73 (|has| $ (-6 -4413)))) (-1562 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4194 (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4413)))) (-2904 (($ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3242 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-3543 (($ $ $) 23 (|has| $ (-6 -4413)))) (-3186 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-1617 ((|#1| $ |#1|) 21 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4413))) (($ $ "rest" $) 24 (|has| $ (-6 -4413))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-1773 (($ (-1 (-112) |#1|) $) NIL)) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2976 ((|#1| $) NIL)) (-3180 (($) NIL T CONST)) (-1651 (($ $) 28 (|has| $ (-6 -4413)))) (-1923 (($ $) 29)) (-2063 (($ $) 18) (($ $ (-768)) 35)) (-2822 (($ $) 66 (|has| |#1| (-1094)))) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4074 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2514 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-1635 (((-112) $) NIL)) (-3303 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-4244 (((-641 |#1|) $) 27 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3564 (($ (-768) |#1|) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) 31 (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-2573 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3678 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1929 (($ |#1|) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2523 (((-641 |#1|) $) NIL)) (-2120 (((-112) $) NIL)) (-1868 (((-1152) $) 62 (|has| |#1| (-1094)))) (-2541 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2373 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2455 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2049 ((|#1| $) 13) (($ $ (-768)) NIL)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-2791 (((-112) $) NIL)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 12)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) 17)) (-2834 (($) 16)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL)) (-2774 (((-564) $ $) NIL)) (-2899 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2090 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1875 (((-112) $) 39)) (-3554 (($ $) NIL)) (-1911 (($ $) NIL (|has| $ (-6 -4413)))) (-2966 (((-768) $) NIL)) (-3414 (($ $) 44)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) 40)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 26)) (-1711 (($ $ $) 65) (($ $ |#1|) NIL)) (-1865 (($ $ $) NIL) (($ |#1| $) 10) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-3714 (((-859) $) 54 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) 58 (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2779 (((-768) $) 9 (|has| $ (-6 -4412)))))
(((-520 |#1| |#2|) (-662 |#1|) (-1209) (-564)) (T -520))
NIL
(-662 |#1|)
-((-1364 ((|#4| |#4|) 37)) (-4224 (((-768) |#4|) 46)) (-4227 (((-768) |#4|) 47)) (-3798 (((-641 |#3|) |#4|) 56 (|has| |#3| (-6 -4412)))) (-1675 (((-3 |#4| "failed") |#4|) 70)) (-2181 ((|#4| |#4|) 62)) (-2672 ((|#1| |#4|) 61)))
-(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1364 (|#4| |#4|)) (-15 -4224 ((-768) |#4|)) (-15 -4227 ((-768) |#4|)) (IF (|has| |#3| (-6 -4412)) (-15 -3798 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -2672 (|#1| |#4|)) (-15 -2181 (|#4| |#4|)) (-15 -1675 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -521))
-((-1675 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2181 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2672 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-3798 (*1 *2 *3) (-12 (|has| *6 (-6 -4412)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-4227 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-4224 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1364 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(-10 -7 (-15 -1364 (|#4| |#4|)) (-15 -4224 ((-768) |#4|)) (-15 -4227 ((-768) |#4|)) (IF (|has| |#3| (-6 -4412)) (-15 -3798 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -2672 (|#1| |#4|)) (-15 -2181 (|#4| |#4|)) (-15 -1675 ((-3 |#4| "failed") |#4|)))
-((-1364 ((|#8| |#4|) 20)) (-3798 (((-641 |#3|) |#4|) 29 (|has| |#7| (-6 -4412)))) (-1675 (((-3 |#8| "failed") |#4|) 23)))
-(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1364 (|#8| |#4|)) (-15 -1675 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4412)) (-15 -3798 ((-641 |#3|) |#4|)) |%noBranch|)) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-989 |#1|) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -522))
-((-3798 (*1 *2 *3) (-12 (|has| *9 (-6 -4412)) (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-641 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6)) (-4 *10 (-683 *7 *8 *9)))) (-1675 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-1364 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))))
-(-10 -7 (-15 -1364 (|#8| |#4|)) (-15 -1675 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4412)) (-15 -3798 ((-641 |#3|) |#4|)) |%noBranch|))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1398 (($ (-768) (-768)) NIL)) (-4093 (($ $ $) NIL)) (-3659 (($ (-600 |#1| |#3|)) NIL) (($ $) NIL)) (-2741 (((-112) $) NIL)) (-3578 (($ $ (-564) (-564)) 20)) (-3871 (($ $ (-564) (-564)) NIL)) (-2577 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-2963 (($ $) NIL)) (-2832 (((-112) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2683 (($ $ (-564) (-564) $) NIL)) (-1881 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-1470 (($ $ (-564) (-600 |#1| |#3|)) NIL)) (-3652 (($ $ (-564) (-600 |#1| |#2|)) NIL)) (-2460 (($ (-768) |#1|) NIL)) (-3760 (($) NIL T CONST)) (-1364 (($ $) 29 (|has| |#1| (-307)))) (-2698 (((-600 |#1| |#3|) $ (-564)) NIL)) (-4224 (((-768) $) 32 (|has| |#1| (-556)))) (-3528 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3455 ((|#1| $ (-564) (-564)) NIL)) (-3080 (((-641 |#1|) $) NIL)) (-4227 (((-768) $) 34 (|has| |#1| (-556)))) (-3798 (((-641 (-600 |#1| |#2|)) $) 37 (|has| |#1| (-556)))) (-3383 (((-768) $) NIL)) (-1633 (($ (-768) (-768) |#1|) NIL)) (-3393 (((-768) $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-1893 ((|#1| $) 27 (|has| |#1| (-6 (-4413 "*"))))) (-1786 (((-564) $) 10)) (-2810 (((-564) $) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (((-564) $) 13)) (-2104 (((-564) $) NIL)) (-1605 (($ (-641 (-641 |#1|))) NIL)) (-3513 (($ (-1 |#1| |#1|) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3671 (((-641 (-641 |#1|)) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1675 (((-3 $ "failed") $) 41 (|has| |#1| (-363)))) (-2624 (($ $ $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2614 (($ $ |#1|) NIL)) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-3530 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-3883 (((-112) $) NIL)) (-2672 ((|#1| $) 25 (|has| |#1| (-6 (-4413 "*"))))) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1709 (((-600 |#1| |#2|) $ (-564)) NIL)) (-1765 (($ (-600 |#1| |#2|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1509 (((-112) $) NIL)) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $ $) NIL) (($ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-600 |#1| |#2|) $ (-600 |#1| |#2|)) NIL) (((-600 |#1| |#3|) (-600 |#1| |#3|) $) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3781 ((|#4| |#4|) 37)) (-1595 (((-768) |#4|) 46)) (-2099 (((-768) |#4|) 47)) (-2397 (((-641 |#3|) |#4|) 56 (|has| |#3| (-6 -4413)))) (-3577 (((-3 |#4| "failed") |#4|) 70)) (-1925 ((|#4| |#4|) 62)) (-2990 ((|#1| |#4|) 61)))
+(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3781 (|#4| |#4|)) (-15 -1595 ((-768) |#4|)) (-15 -2099 ((-768) |#4|)) (IF (|has| |#3| (-6 -4413)) (-15 -2397 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -2990 (|#1| |#4|)) (-15 -1925 (|#4| |#4|)) (-15 -3577 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -521))
+((-3577 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1925 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2990 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-2397 (*1 *2 *3) (-12 (|has| *6 (-6 -4413)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2099 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1595 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
+(-10 -7 (-15 -3781 (|#4| |#4|)) (-15 -1595 ((-768) |#4|)) (-15 -2099 ((-768) |#4|)) (IF (|has| |#3| (-6 -4413)) (-15 -2397 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -2990 (|#1| |#4|)) (-15 -1925 (|#4| |#4|)) (-15 -3577 ((-3 |#4| "failed") |#4|)))
+((-3781 ((|#8| |#4|) 20)) (-2397 (((-641 |#3|) |#4|) 29 (|has| |#7| (-6 -4413)))) (-3577 (((-3 |#8| "failed") |#4|) 23)))
+(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3781 (|#8| |#4|)) (-15 -3577 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4413)) (-15 -2397 ((-641 |#3|) |#4|)) |%noBranch|)) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-989 |#1|) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -522))
+((-2397 (*1 *2 *3) (-12 (|has| *9 (-6 -4413)) (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-641 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6)) (-4 *10 (-683 *7 *8 *9)))) (-3577 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-3781 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))))
+(-10 -7 (-15 -3781 (|#8| |#4|)) (-15 -3577 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4413)) (-15 -2397 ((-641 |#3|) |#4|)) |%noBranch|))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1532 (($ (-768) (-768)) NIL)) (-3202 (($ $ $) NIL)) (-3437 (($ (-600 |#1| |#3|)) NIL) (($ $) NIL)) (-2497 (((-112) $) NIL)) (-2113 (($ $ (-564) (-564)) 20)) (-1826 (($ $ (-564) (-564)) NIL)) (-1379 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-4050 (($ $) NIL)) (-2193 (((-112) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3088 (($ $ (-564) (-564) $) NIL)) (-3868 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-2310 (($ $ (-564) (-600 |#1| |#3|)) NIL)) (-1571 (($ $ (-564) (-600 |#1| |#2|)) NIL)) (-2787 (($ (-768) |#1|) NIL)) (-3180 (($) NIL T CONST)) (-3781 (($ $) 29 (|has| |#1| (-307)))) (-3207 (((-600 |#1| |#3|) $ (-564)) NIL)) (-1595 (((-768) $) 32 (|has| |#1| (-556)))) (-1998 ((|#1| $ (-564) (-564) |#1|) NIL)) (-3593 ((|#1| $ (-564) (-564)) NIL)) (-4244 (((-641 |#1|) $) NIL)) (-2099 (((-768) $) 34 (|has| |#1| (-556)))) (-2397 (((-641 (-600 |#1| |#2|)) $) 37 (|has| |#1| (-556)))) (-3947 (((-768) $) NIL)) (-3564 (($ (-768) (-768) |#1|) NIL)) (-3956 (((-768) $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2125 ((|#1| $) 27 (|has| |#1| (-6 (-4414 "*"))))) (-2285 (((-564) $) 10)) (-1984 (((-564) $) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2083 (((-564) $) 13)) (-2437 (((-564) $) NIL)) (-3469 (($ (-641 (-641 |#1|))) NIL)) (-1988 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3549 (((-641 (-641 |#1|)) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3577 (((-3 $ "failed") $) 41 (|has| |#1| (-363)))) (-3661 (($ $ $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3538 (($ $ |#1|) NIL)) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-1634 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-1950 (((-112) $) NIL)) (-2990 ((|#1| $) 25 (|has| |#1| (-6 (-4414 "*"))))) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-2811 (((-600 |#1| |#2|) $ (-564)) NIL)) (-3714 (($ (-600 |#1| |#2|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2718 (((-112) $) NIL)) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-600 |#1| |#2|) $ (-600 |#1| |#2|)) NIL) (((-600 |#1| |#3|) (-600 |#1| |#3|) $) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-523 |#1| |#2| |#3|) (-683 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) (-1046) (-564) (-564)) (T -523))
NIL
(-683 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-2533 (((-641 (-1208)) $) 13)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL) (($ (-641 (-1208))) 11)) (-1686 (((-112) $ $) NIL)))
-(((-524) (-13 (-1077) (-10 -8 (-15 -1765 ($ (-641 (-1208)))) (-15 -2533 ((-641 (-1208)) $))))) (T -524))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))))
-(-13 (-1077) (-10 -8 (-15 -1765 ($ (-641 (-1208)))) (-15 -2533 ((-641 (-1208)) $))))
-((-1754 (((-112) $ $) NIL)) (-2583 (((-1129) $) 14)) (-4202 (((-1152) $) NIL)) (-1888 (((-506) $) 11)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-525) (-13 (-1077) (-10 -8 (-15 -1888 ((-506) $)) (-15 -2583 ((-1129) $))))) (T -525))
-((-1888 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))))
-(-13 (-1077) (-10 -8 (-15 -1888 ((-506) $)) (-15 -2583 ((-1129) $))))
-((-1659 (((-687 (-1217)) $) 15)) (-2842 (((-687 (-1215)) $) 39)) (-3076 (((-687 (-1214)) $) 30)) (-1396 (((-687 (-549)) $) 12)) (-3410 (((-687 (-547)) $) 43)) (-2011 (((-687 (-546)) $) 34)) (-2248 (((-768) $ (-128)) 55)))
-(((-526 |#1|) (-10 -8 (-15 -2248 ((-768) |#1| (-128))) (-15 -2842 ((-687 (-1215)) |#1|)) (-15 -3410 ((-687 (-547)) |#1|)) (-15 -3076 ((-687 (-1214)) |#1|)) (-15 -2011 ((-687 (-546)) |#1|)) (-15 -1659 ((-687 (-1217)) |#1|)) (-15 -1396 ((-687 (-549)) |#1|))) (-527)) (T -526))
-NIL
-(-10 -8 (-15 -2248 ((-768) |#1| (-128))) (-15 -2842 ((-687 (-1215)) |#1|)) (-15 -3410 ((-687 (-547)) |#1|)) (-15 -3076 ((-687 (-1214)) |#1|)) (-15 -2011 ((-687 (-546)) |#1|)) (-15 -1659 ((-687 (-1217)) |#1|)) (-15 -1396 ((-687 (-549)) |#1|)))
-((-1659 (((-687 (-1217)) $) 12)) (-2842 (((-687 (-1215)) $) 8)) (-3076 (((-687 (-1214)) $) 10)) (-1396 (((-687 (-549)) $) 13)) (-3410 (((-687 (-547)) $) 9)) (-2011 (((-687 (-546)) $) 11)) (-2248 (((-768) $ (-128)) 7)) (-2021 (((-687 (-129)) $) 14)) (-3713 (($ $) 6)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-2209 (((-641 (-1208)) $) 13)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL) (($ (-641 (-1208))) 11)) (-1720 (((-112) $ $) NIL)))
+(((-524) (-13 (-1077) (-10 -8 (-15 -3714 ($ (-641 (-1208)))) (-15 -2209 ((-641 (-1208)) $))))) (T -524))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))))
+(-13 (-1077) (-10 -8 (-15 -3714 ($ (-641 (-1208)))) (-15 -2209 ((-641 (-1208)) $))))
+((-3702 (((-112) $ $) NIL)) (-1437 (((-1129) $) 14)) (-1868 (((-1152) $) NIL)) (-2075 (((-506) $) 11)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-525) (-13 (-1077) (-10 -8 (-15 -2075 ((-506) $)) (-15 -1437 ((-1129) $))))) (T -525))
+((-2075 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))))
+(-13 (-1077) (-10 -8 (-15 -2075 ((-506) $)) (-15 -1437 ((-1129) $))))
+((-3420 (((-687 (-1217)) $) 15)) (-4117 (((-687 (-1215)) $) 39)) (-3900 (((-687 (-1214)) $) 30)) (-1540 (((-687 (-549)) $) 12)) (-2983 (((-687 (-547)) $) 43)) (-3877 (((-687 (-546)) $) 34)) (-1306 (((-768) $ (-128)) 55)))
+(((-526 |#1|) (-10 -8 (-15 -1306 ((-768) |#1| (-128))) (-15 -4117 ((-687 (-1215)) |#1|)) (-15 -2983 ((-687 (-547)) |#1|)) (-15 -3900 ((-687 (-1214)) |#1|)) (-15 -3877 ((-687 (-546)) |#1|)) (-15 -3420 ((-687 (-1217)) |#1|)) (-15 -1540 ((-687 (-549)) |#1|))) (-527)) (T -526))
+NIL
+(-10 -8 (-15 -1306 ((-768) |#1| (-128))) (-15 -4117 ((-687 (-1215)) |#1|)) (-15 -2983 ((-687 (-547)) |#1|)) (-15 -3900 ((-687 (-1214)) |#1|)) (-15 -3877 ((-687 (-546)) |#1|)) (-15 -3420 ((-687 (-1217)) |#1|)) (-15 -1540 ((-687 (-549)) |#1|)))
+((-3420 (((-687 (-1217)) $) 12)) (-4117 (((-687 (-1215)) $) 8)) (-3900 (((-687 (-1214)) $) 10)) (-1540 (((-687 (-549)) $) 13)) (-2983 (((-687 (-547)) $) 9)) (-3877 (((-687 (-546)) $) 11)) (-1306 (((-768) $ (-128)) 7)) (-2839 (((-687 (-129)) $) 14)) (-3977 (($ $) 6)))
(((-527) (-140)) (T -527))
-((-2021 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129))))) (-1396 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549))))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217))))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546))))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214))))) (-3410 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547))))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215))))) (-2248 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-768)))))
-(-13 (-173) (-10 -8 (-15 -2021 ((-687 (-129)) $)) (-15 -1396 ((-687 (-549)) $)) (-15 -1659 ((-687 (-1217)) $)) (-15 -2011 ((-687 (-546)) $)) (-15 -3076 ((-687 (-1214)) $)) (-15 -3410 ((-687 (-547)) $)) (-15 -2842 ((-687 (-1215)) $)) (-15 -2248 ((-768) $ (-128)))))
+((-2839 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129))))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549))))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217))))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546))))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214))))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547))))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215))))) (-1306 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-768)))))
+(-13 (-173) (-10 -8 (-15 -2839 ((-687 (-129)) $)) (-15 -1540 ((-687 (-549)) $)) (-15 -3420 ((-687 (-1217)) $)) (-15 -3877 ((-687 (-546)) $)) (-15 -3900 ((-687 (-1214)) $)) (-15 -2983 ((-687 (-547)) $)) (-15 -4117 ((-687 (-1215)) $)) (-15 -1306 ((-768) $ (-128)))))
(((-173) . T))
-((-1294 (((-1166 |#1|) (-768)) 113)) (-3715 (((-1259 |#1|) (-1259 |#1|) (-918)) 106)) (-2168 (((-1264) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))) |#1|) 122)) (-3027 (((-1259 |#1|) (-1259 |#1|) (-768)) 53)) (-2542 (((-1259 |#1|) (-918)) 108)) (-2045 (((-1259 |#1|) (-1259 |#1|) (-564)) 30)) (-3808 (((-1166 |#1|) (-1259 |#1|)) 114)) (-1650 (((-1259 |#1|) (-918)) 135)) (-2805 (((-112) (-1259 |#1|)) 118)) (-1779 (((-1259 |#1|) (-1259 |#1|) (-918)) 98)) (-2513 (((-1166 |#1|) (-1259 |#1|)) 129)) (-2209 (((-918) (-1259 |#1|)) 94)) (-4272 (((-1259 |#1|) (-1259 |#1|)) 38)) (-1403 (((-1259 |#1|) (-918) (-918)) 138)) (-2568 (((-1259 |#1|) (-1259 |#1|) (-1114) (-1114)) 29)) (-2066 (((-1259 |#1|) (-1259 |#1|) (-768) (-1114)) 54)) (-3941 (((-1259 (-1259 |#1|)) (-918)) 134)) (-1793 (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 119)) (** (((-1259 |#1|) (-1259 |#1|) (-564)) 65)) (* (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 31)))
-(((-528 |#1|) (-10 -7 (-15 -2168 ((-1264) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))) |#1|)) (-15 -2542 ((-1259 |#1|) (-918))) (-15 -1403 ((-1259 |#1|) (-918) (-918))) (-15 -3808 ((-1166 |#1|) (-1259 |#1|))) (-15 -1294 ((-1166 |#1|) (-768))) (-15 -2066 ((-1259 |#1|) (-1259 |#1|) (-768) (-1114))) (-15 -3027 ((-1259 |#1|) (-1259 |#1|) (-768))) (-15 -2568 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -2045 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1793 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1779 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -3715 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -4272 ((-1259 |#1|) (-1259 |#1|))) (-15 -2209 ((-918) (-1259 |#1|))) (-15 -2805 ((-112) (-1259 |#1|))) (-15 -3941 ((-1259 (-1259 |#1|)) (-918))) (-15 -1650 ((-1259 |#1|) (-918))) (-15 -2513 ((-1166 |#1|) (-1259 |#1|)))) (-349)) (T -528))
-((-2513 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-918)) (-5 *1 (-528 *4)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-3715 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1779 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1793 (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2045 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2568 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3027 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2066 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1259 *5)) (-5 *3 (-768)) (-5 *4 (-1114)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-1403 (*1 *2 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4)))))
-(-10 -7 (-15 -2168 ((-1264) (-1259 (-641 (-2 (|:| -1451 |#1|) (|:| -1403 (-1114))))) |#1|)) (-15 -2542 ((-1259 |#1|) (-918))) (-15 -1403 ((-1259 |#1|) (-918) (-918))) (-15 -3808 ((-1166 |#1|) (-1259 |#1|))) (-15 -1294 ((-1166 |#1|) (-768))) (-15 -2066 ((-1259 |#1|) (-1259 |#1|) (-768) (-1114))) (-15 -3027 ((-1259 |#1|) (-1259 |#1|) (-768))) (-15 -2568 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -2045 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1793 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1779 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -3715 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -4272 ((-1259 |#1|) (-1259 |#1|))) (-15 -2209 ((-918) (-1259 |#1|))) (-15 -2805 ((-112) (-1259 |#1|))) (-15 -3941 ((-1259 (-1259 |#1|)) (-918))) (-15 -1650 ((-1259 |#1|) (-918))) (-15 -2513 ((-1166 |#1|) (-1259 |#1|))))
-((-1659 (((-687 (-1217)) $) NIL)) (-2842 (((-687 (-1215)) $) NIL)) (-3076 (((-687 (-1214)) $) NIL)) (-1396 (((-687 (-549)) $) NIL)) (-3410 (((-687 (-547)) $) NIL)) (-2011 (((-687 (-546)) $) NIL)) (-2248 (((-768) $ (-128)) NIL)) (-2021 (((-687 (-129)) $) 25)) (-3067 (((-1114) $ (-1114)) 30)) (-1356 (((-1114) $) 29)) (-2408 (((-112) $) 19)) (-2054 (($ (-388)) 14) (($ (-1152)) 16)) (-3744 (((-112) $) 26)) (-1765 (((-859) $) 33)) (-3713 (($ $) 27)))
-(((-529) (-13 (-527) (-611 (-859)) (-10 -8 (-15 -2054 ($ (-388))) (-15 -2054 ($ (-1152))) (-15 -3744 ((-112) $)) (-15 -2408 ((-112) $)) (-15 -1356 ((-1114) $)) (-15 -3067 ((-1114) $ (-1114)))))) (T -529))
-((-2054 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-2054 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))) (-3067 (*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))))
-(-13 (-527) (-611 (-859)) (-10 -8 (-15 -2054 ($ (-388))) (-15 -2054 ($ (-1152))) (-15 -3744 ((-112) $)) (-15 -2408 ((-112) $)) (-15 -1356 ((-1114) $)) (-15 -3067 ((-1114) $ (-1114)))))
-((-2122 (((-1 |#1| |#1|) |#1|) 11)) (-4064 (((-1 |#1| |#1|)) 10)))
-(((-530 |#1|) (-10 -7 (-15 -4064 ((-1 |#1| |#1|))) (-15 -2122 ((-1 |#1| |#1|) |#1|))) (-13 (-723) (-25))) (T -530))
-((-2122 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))) (-4064 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))))
-(-10 -7 (-15 -4064 ((-1 |#1| |#1|))) (-15 -2122 ((-1 |#1| |#1|) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3382 (($ $ $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-4145 (($ (-768) |#1|) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2082 (($ (-1 (-768) (-768)) $) NIL)) (-3253 ((|#1| $) NIL)) (-4323 (((-768) $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 27)) (-4317 (($) NIL T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1771 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL)))
+((-3575 (((-1166 |#1|) (-768)) 113)) (-3767 (((-1259 |#1|) (-1259 |#1|) (-918)) 106)) (-1777 (((-1264) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))) |#1|) 122)) (-3389 (((-1259 |#1|) (-1259 |#1|) (-768)) 53)) (-2939 (((-1259 |#1|) (-918)) 108)) (-3040 (((-1259 |#1|) (-1259 |#1|) (-564)) 30)) (-2485 (((-1166 |#1|) (-1259 |#1|)) 114)) (-3344 (((-1259 |#1|) (-918)) 135)) (-1927 (((-112) (-1259 |#1|)) 118)) (-2217 (((-1259 |#1|) (-1259 |#1|) (-918)) 98)) (-2041 (((-1166 |#1|) (-1259 |#1|)) 129)) (-4031 (((-918) (-1259 |#1|)) 94)) (-1295 (((-1259 |#1|) (-1259 |#1|)) 38)) (-3338 (((-1259 |#1|) (-918) (-918)) 138)) (-4379 (((-1259 |#1|) (-1259 |#1|) (-1114) (-1114)) 29)) (-3214 (((-1259 |#1|) (-1259 |#1|) (-768) (-1114)) 54)) (-4339 (((-1259 (-1259 |#1|)) (-918)) 134)) (-1841 (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 119)) (** (((-1259 |#1|) (-1259 |#1|) (-564)) 65)) (* (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 31)))
+(((-528 |#1|) (-10 -7 (-15 -1777 ((-1264) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))) |#1|)) (-15 -2939 ((-1259 |#1|) (-918))) (-15 -3338 ((-1259 |#1|) (-918) (-918))) (-15 -2485 ((-1166 |#1|) (-1259 |#1|))) (-15 -3575 ((-1166 |#1|) (-768))) (-15 -3214 ((-1259 |#1|) (-1259 |#1|) (-768) (-1114))) (-15 -3389 ((-1259 |#1|) (-1259 |#1|) (-768))) (-15 -4379 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -3040 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1841 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -2217 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -3767 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -1295 ((-1259 |#1|) (-1259 |#1|))) (-15 -4031 ((-918) (-1259 |#1|))) (-15 -1927 ((-112) (-1259 |#1|))) (-15 -4339 ((-1259 (-1259 |#1|)) (-918))) (-15 -3344 ((-1259 |#1|) (-918))) (-15 -2041 ((-1166 |#1|) (-1259 |#1|)))) (-349)) (T -528))
+((-2041 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-918)) (-5 *1 (-528 *4)))) (-1295 (*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1841 (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3040 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-4379 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3389 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3214 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1259 *5)) (-5 *3 (-768)) (-5 *4 (-1114)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-3338 (*1 *2 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4)))))
+(-10 -7 (-15 -1777 ((-1264) (-1259 (-641 (-2 (|:| -3387 |#1|) (|:| -3338 (-1114))))) |#1|)) (-15 -2939 ((-1259 |#1|) (-918))) (-15 -3338 ((-1259 |#1|) (-918) (-918))) (-15 -2485 ((-1166 |#1|) (-1259 |#1|))) (-15 -3575 ((-1166 |#1|) (-768))) (-15 -3214 ((-1259 |#1|) (-1259 |#1|) (-768) (-1114))) (-15 -3389 ((-1259 |#1|) (-1259 |#1|) (-768))) (-15 -4379 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -3040 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1841 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -2217 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -3767 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -1295 ((-1259 |#1|) (-1259 |#1|))) (-15 -4031 ((-918) (-1259 |#1|))) (-15 -1927 ((-112) (-1259 |#1|))) (-15 -4339 ((-1259 (-1259 |#1|)) (-918))) (-15 -3344 ((-1259 |#1|) (-918))) (-15 -2041 ((-1166 |#1|) (-1259 |#1|))))
+((-3420 (((-687 (-1217)) $) NIL)) (-4117 (((-687 (-1215)) $) NIL)) (-3900 (((-687 (-1214)) $) NIL)) (-1540 (((-687 (-549)) $) NIL)) (-2983 (((-687 (-547)) $) NIL)) (-3877 (((-687 (-546)) $) NIL)) (-1306 (((-768) $ (-128)) NIL)) (-2839 (((-687 (-129)) $) 25)) (-3820 (((-1114) $ (-1114)) 30)) (-3303 (((-1114) $) 29)) (-3346 (((-112) $) 19)) (-3124 (($ (-388)) 14) (($ (-1152)) 16)) (-3059 (((-112) $) 26)) (-3714 (((-859) $) 33)) (-3977 (($ $) 27)))
+(((-529) (-13 (-527) (-611 (-859)) (-10 -8 (-15 -3124 ($ (-388))) (-15 -3124 ($ (-1152))) (-15 -3059 ((-112) $)) (-15 -3346 ((-112) $)) (-15 -3303 ((-1114) $)) (-15 -3820 ((-1114) $ (-1114)))))) (T -529))
+((-3124 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))) (-3820 (*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))))
+(-13 (-527) (-611 (-859)) (-10 -8 (-15 -3124 ($ (-388))) (-15 -3124 ($ (-1152))) (-15 -3059 ((-112) $)) (-15 -3346 ((-112) $)) (-15 -3303 ((-1114) $)) (-15 -3820 ((-1114) $ (-1114)))))
+((-4099 (((-1 |#1| |#1|) |#1|) 11)) (-2986 (((-1 |#1| |#1|)) 10)))
+(((-530 |#1|) (-10 -7 (-15 -2986 ((-1 |#1| |#1|))) (-15 -4099 ((-1 |#1| |#1|) |#1|))) (-13 (-723) (-25))) (T -530))
+((-4099 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))) (-2986 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))))
+(-10 -7 (-15 -2986 ((-1 |#1| |#1|))) (-15 -4099 ((-1 |#1| |#1|) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3884 (($ $ $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4267 (($ (-768) |#1|) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2313 (($ (-1 (-768) (-768)) $) NIL)) (-2045 ((|#1| $) NIL)) (-1345 (((-768) $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 27)) (-4312 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL)))
(((-531 |#1|) (-13 (-790) (-509 (-768) |#1|)) (-847)) (T -531))
NIL
(-13 (-790) (-509 (-768) |#1|))
-((-4368 (((-641 |#2|) (-1166 |#1|) |#3|) 98)) (-2767 (((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))) 114)) (-1755 (((-1166 |#1|) (-685 |#1|)) 110)))
-(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -1755 ((-1166 |#1|) (-685 |#1|))) (-15 -4368 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -2767 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))))) (-363) (-363) (-13 (-363) (-845))) (T -532))
-((-2767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6))) (-4 *6 (-363)) (-5 *2 (-641 (-2 (|:| |outval| *7) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-845))))) (-4368 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-845))))))
-(-10 -7 (-15 -1755 ((-1166 |#1|) (-685 |#1|))) (-15 -4368 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -2767 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|)))))
-((-1794 (((-687 (-1217)) $ (-1217)) NIL)) (-3224 (((-687 (-549)) $ (-549)) NIL)) (-3620 (((-768) $ (-128)) 41)) (-2507 (((-687 (-129)) $ (-129)) 42)) (-1659 (((-687 (-1217)) $) NIL)) (-2842 (((-687 (-1215)) $) NIL)) (-3076 (((-687 (-1214)) $) NIL)) (-1396 (((-687 (-549)) $) NIL)) (-3410 (((-687 (-547)) $) NIL)) (-2011 (((-687 (-546)) $) NIL)) (-2248 (((-768) $ (-128)) 37)) (-2021 (((-687 (-129)) $) 39)) (-1880 (((-112) $) 29)) (-3611 (((-687 $) (-579) (-951)) 19) (((-687 $) (-491) (-951)) 26)) (-1765 (((-859) $) 49)) (-3713 (($ $) 43)))
-(((-533) (-13 (-764 (-579)) (-611 (-859)) (-10 -8 (-15 -3611 ((-687 $) (-491) (-951)))))) (T -533))
-((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-951)) (-5 *2 (-687 (-533))) (-5 *1 (-533)))))
-(-13 (-764 (-579)) (-611 (-859)) (-10 -8 (-15 -3611 ((-687 $) (-491) (-951)))))
-((-1553 (((-840 (-564))) 12)) (-1564 (((-840 (-564))) 14)) (-1551 (((-830 (-564))) 9)))
-(((-534) (-10 -7 (-15 -1551 ((-830 (-564)))) (-15 -1553 ((-840 (-564)))) (-15 -1564 ((-840 (-564)))))) (T -534))
-((-1564 (*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) (-1553 (*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) (-1551 (*1 *2) (-12 (-5 *2 (-830 (-564))) (-5 *1 (-534)))))
-(-10 -7 (-15 -1551 ((-830 (-564)))) (-15 -1553 ((-840 (-564)))) (-15 -1564 ((-840 (-564)))))
-((-1695 (((-536) (-1170)) 15)) (-1486 ((|#1| (-536)) 20)))
-(((-535 |#1|) (-10 -7 (-15 -1695 ((-536) (-1170))) (-15 -1486 (|#1| (-536)))) (-1209)) (T -535))
-((-1486 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1209)))))
-(-10 -7 (-15 -1695 ((-536) (-1170))) (-15 -1486 (|#1| (-536))))
-((-1754 (((-112) $ $) NIL)) (-2068 (((-1152) $) 55)) (-2416 (((-112) $) 51)) (-3664 (((-1170) $) 52)) (-4144 (((-112) $) 49)) (-1961 (((-1152) $) 50)) (-3121 (($ (-1152)) 56)) (-3859 (((-112) $) NIL)) (-3648 (((-112) $) NIL)) (-3142 (((-112) $) NIL)) (-4202 (((-1152) $) NIL)) (-2766 (($ $ (-641 (-1170))) 21)) (-1486 (((-52) $) 23)) (-1670 (((-112) $) NIL)) (-3690 (((-564) $) NIL)) (-3802 (((-1114) $) NIL)) (-2387 (($ $ (-641 (-1170)) (-1170)) 73)) (-2443 (((-112) $) NIL)) (-2139 (((-225) $) NIL)) (-2668 (($ $) 44)) (-3617 (((-859) $) NIL)) (-2076 (((-112) $ $) NIL)) (-4382 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-4101 (((-641 $) $) 30)) (-2988 (((-1170) (-641 $)) 57)) (-2127 (($ (-1152)) NIL) (($ (-1170)) 19) (($ (-564)) 8) (($ (-225)) 28) (($ (-859)) NIL) (($ (-641 $)) 65) (((-1098) $) 12) (($ (-1098)) 13)) (-2222 (((-1170) (-1170) (-641 $)) 60)) (-1765 (((-859) $) 54)) (-2975 (($ $) 59)) (-2965 (($ $) 58)) (-3973 (($ $ (-641 $)) 66)) (-2236 (((-112) $) 29)) (-4317 (($) 9 T CONST)) (-4327 (($) 11 T CONST)) (-1686 (((-112) $ $) 74)) (-1793 (($ $ $) 82)) (-1771 (($ $ $) 75)) (** (($ $ (-768)) 81) (($ $ (-564)) 80)) (* (($ $ $) 76)) (-2589 (((-564) $) NIL)))
-(((-536) (-13 (-1097 (-1152) (-1170) (-564) (-225) (-859)) (-612 (-1098)) (-10 -8 (-15 -1486 ((-52) $)) (-15 -2127 ($ (-1098))) (-15 -3973 ($ $ (-641 $))) (-15 -2387 ($ $ (-641 (-1170)) (-1170))) (-15 -2766 ($ $ (-641 (-1170)))) (-15 -1771 ($ $ $)) (-15 * ($ $ $)) (-15 -1793 ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ (-564))) (-15 0 ($) -3246) (-15 1 ($) -3246) (-15 -2668 ($ $)) (-15 -2068 ((-1152) $)) (-15 -3121 ($ (-1152))) (-15 -2988 ((-1170) (-641 $))) (-15 -2222 ((-1170) (-1170) (-641 $)))))) (T -536))
-((-1486 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-536)))) (-3973 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536)))) (-2387 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536)))) (-2766 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536)))) (-1771 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-1793 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) (-4317 (*1 *1) (-5 *1 (-536))) (-4327 (*1 *1) (-5 *1 (-536))) (-2668 (*1 *1 *1) (-5 *1 (-536))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536)))) (-2222 (*1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536)))))
-(-13 (-1097 (-1152) (-1170) (-564) (-225) (-859)) (-612 (-1098)) (-10 -8 (-15 -1486 ((-52) $)) (-15 -2127 ($ (-1098))) (-15 -3973 ($ $ (-641 $))) (-15 -2387 ($ $ (-641 (-1170)) (-1170))) (-15 -2766 ($ $ (-641 (-1170)))) (-15 -1771 ($ $ $)) (-15 * ($ $ $)) (-15 -1793 ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ (-564))) (-15 (-4317) ($) -3246) (-15 (-4327) ($) -3246) (-15 -2668 ($ $)) (-15 -2068 ((-1152) $)) (-15 -3121 ($ (-1152))) (-15 -2988 ((-1170) (-641 $))) (-15 -2222 ((-1170) (-1170) (-641 $)))))
-((-3447 ((|#2| |#2|) 17)) (-1680 ((|#2| |#2|) 13)) (-1769 ((|#2| |#2| (-564) (-564)) 20)) (-3499 ((|#2| |#2|) 15)))
-(((-537 |#1| |#2|) (-10 -7 (-15 -1680 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -1769 (|#2| |#2| (-564) (-564)))) (-13 (-556) (-147)) (-1250 |#1|)) (T -537))
-((-1769 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1250 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))))
-(-10 -7 (-15 -1680 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -1769 (|#2| |#2| (-564) (-564))))
-((-4212 (((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))) 32)) (-1495 (((-641 |#2|) (-949 |#1|) |#3|) 54) (((-641 |#2|) (-1166 |#1|) |#3|) 53)) (-1820 (((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|) 106)))
-(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -1495 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -1495 ((-641 |#2|) (-949 |#1|) |#3|)) (-15 -1820 ((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|)) (-15 -4212 ((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))))) (-452) (-363) (-13 (-363) (-845))) (T -538))
-((-4212 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363)) (-5 *2 (-641 (-294 (-949 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-845))))) (-1820 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-845))))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))))
-(-10 -7 (-15 -1495 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -1495 ((-641 |#2|) (-949 |#1|) |#3|)) (-15 -1820 ((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|)) (-15 -4212 ((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170)))))
-((-3753 ((|#2| |#2| |#1|) 17)) (-4290 ((|#2| (-641 |#2|)) 33)) (-1464 ((|#2| (-641 |#2|)) 56)))
-(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4290 (|#2| (-641 |#2|))) (-15 -1464 (|#2| (-641 |#2|))) (-15 -3753 (|#2| |#2| |#1|))) (-307) (-1235 |#1|) |#1| (-1 |#1| |#1| (-768))) (T -539))
-((-3753 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-768))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))) (-4290 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))))
-(-10 -7 (-15 -4290 (|#2| (-641 |#2|))) (-15 -1464 (|#2| (-641 |#2|))) (-15 -3753 (|#2| |#2| |#1|)))
-((-4006 (((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 94) (((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 220)))
-(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4006 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -4006 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))))) (-847) (-790) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -540))
-((-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *8 (-946 *7 *6 *5)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-946 *7 *6 *5)))))
-(-10 -7 (-15 -4006 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -4006 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))))
-((-3447 ((|#4| |#4|) 73)) (-1680 ((|#4| |#4|) 69)) (-1769 ((|#4| |#4| (-564) (-564)) 75)) (-3499 ((|#4| |#4|) 71)))
-(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1680 (|#4| |#4|)) (-15 -3499 (|#4| |#4|)) (-15 -3447 (|#4| |#4|)) (-15 -1769 (|#4| |#4| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1235 |#1|) (-721 |#1| |#2|) (-1250 |#3|)) (T -541))
-((-1769 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-4 *5 (-1235 *4)) (-4 *6 (-721 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1250 *6)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))))
-(-10 -7 (-15 -1680 (|#4| |#4|)) (-15 -3499 (|#4| |#4|)) (-15 -3447 (|#4| |#4|)) (-15 -1769 (|#4| |#4| (-564) (-564))))
-((-3447 ((|#2| |#2|) 27)) (-1680 ((|#2| |#2|) 23)) (-1769 ((|#2| |#2| (-564) (-564)) 29)) (-3499 ((|#2| |#2|) 25)))
-(((-542 |#1| |#2|) (-10 -7 (-15 -1680 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -1769 (|#2| |#2| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1250 |#1|)) (T -542))
-((-1769 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))))
-(-10 -7 (-15 -1680 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -1769 (|#2| |#2| (-564) (-564))))
-((-3583 (((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)) 18) (((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|)) 14) (((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|)) 32)))
-(((-543 |#1| |#2|) (-10 -7 (-15 -3583 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -3583 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -3583 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) (-1046) (-1235 |#1|)) (T -543))
-((-3583 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-3583 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-3583 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -3583 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -3583 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -3583 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|))))
-((-3823 (($ $ $) 82)) (-3981 (((-418 $) $) 50)) (-2013 (((-3 (-564) "failed") $) 62)) (-2064 (((-564) $) 40)) (-1978 (((-3 (-407 (-564)) "failed") $) 77)) (-2709 (((-112) $) 25)) (-3424 (((-407 (-564)) $) 75)) (-3241 (((-112) $) 53)) (-4043 (($ $ $ $) 90)) (-1751 (((-112) $) 16)) (-2314 (($ $ $) 60)) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 72)) (-3374 (((-3 $ "failed") $) 67)) (-2600 (($ $) 23)) (-4233 (($ $ $) 88)) (-1611 (($) 63)) (-1613 (($ $) 56)) (-4006 (((-418 $) $) 48)) (-1518 (((-112) $) 14)) (-3712 (((-768) $) 30)) (-3226 (($ $ (-768)) NIL) (($ $) 11)) (-1899 (($ $) 17)) (-2127 (((-564) $) NIL) (((-536) $) 39) (((-889 (-564)) $) 43) (((-379) $) 33) (((-225) $) 36)) (-1965 (((-768)) 9)) (-2775 (((-112) $ $) 20)) (-1939 (($ $ $) 58)))
-(((-544 |#1|) (-10 -8 (-15 -4233 (|#1| |#1| |#1|)) (-15 -4043 (|#1| |#1| |#1| |#1|)) (-15 -2600 (|#1| |#1|)) (-15 -1899 (|#1| |#1|)) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -3823 (|#1| |#1| |#1|)) (-15 -2775 ((-112) |#1| |#1|)) (-15 -1518 ((-112) |#1|)) (-15 -1611 (|#1|)) (-15 -3374 ((-3 |#1| "failed") |#1|)) (-15 -2127 ((-225) |#1|)) (-15 -2127 ((-379) |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -1939 (|#1| |#1| |#1|)) (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2127 ((-564) |#1|)) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -1751 ((-112) |#1|)) (-15 -3712 ((-768) |#1|)) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -3241 ((-112) |#1|)) (-15 -1965 ((-768)))) (-545)) (T -544))
-((-1965 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-544 *3)) (-4 *3 (-545)))))
-(-10 -8 (-15 -4233 (|#1| |#1| |#1|)) (-15 -4043 (|#1| |#1| |#1| |#1|)) (-15 -2600 (|#1| |#1|)) (-15 -1899 (|#1| |#1|)) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -3823 (|#1| |#1| |#1|)) (-15 -2775 ((-112) |#1| |#1|)) (-15 -1518 ((-112) |#1|)) (-15 -1611 (|#1|)) (-15 -3374 ((-3 |#1| "failed") |#1|)) (-15 -2127 ((-225) |#1|)) (-15 -2127 ((-379) |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1|)) (-15 -1939 (|#1| |#1| |#1|)) (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2127 ((-564) |#1|)) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -1751 ((-112) |#1|)) (-15 -3712 ((-768) |#1|)) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -3241 ((-112) |#1|)) (-15 -1965 ((-768))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3823 (($ $ $) 85)) (-3936 (((-3 $ "failed") $ $) 19)) (-2018 (($ $ $ $) 74)) (-1368 (($ $) 52)) (-3981 (((-418 $) $) 53)) (-3385 (((-112) $ $) 125)) (-3438 (((-564) $) 114)) (-2980 (($ $ $) 88)) (-3760 (($) 17 T CONST)) (-2013 (((-3 (-564) "failed") $) 106)) (-2064 (((-564) $) 107)) (-1387 (($ $ $) 129)) (-2620 (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 104) (((-685 (-564)) (-685 $)) 103)) (-1926 (((-3 $ "failed") $) 33)) (-1978 (((-3 (-407 (-564)) "failed") $) 82)) (-2709 (((-112) $) 84)) (-3424 (((-407 (-564)) $) 83)) (-2542 (($) 81) (($ $) 80)) (-1366 (($ $ $) 128)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 123)) (-3241 (((-112) $) 54)) (-4043 (($ $ $ $) 72)) (-4071 (($ $ $) 86)) (-1751 (((-112) $) 116)) (-2314 (($ $ $) 97)) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 100)) (-2419 (((-112) $) 31)) (-1629 (((-112) $) 92)) (-3374 (((-3 $ "failed") $) 94)) (-2506 (((-112) $) 115)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 132)) (-2676 (($ $ $ $) 73)) (-3571 (($ $ $) 117)) (-1547 (($ $ $) 118)) (-2600 (($ $) 76)) (-2564 (($ $) 89)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4233 (($ $ $) 71)) (-1611 (($) 93 T CONST)) (-2311 (($ $) 78)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-1613 (($ $) 98)) (-4006 (((-418 $) $) 51)) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 130)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 124)) (-1518 (((-112) $) 91)) (-3712 (((-768) $) 126)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 127)) (-3226 (($ $ (-768)) 111) (($ $) 109)) (-3312 (($ $) 77)) (-1899 (($ $) 79)) (-2127 (((-564) $) 108) (((-536) $) 102) (((-889 (-564)) $) 101) (((-379) $) 96) (((-225) $) 95)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 105)) (-1965 (((-768)) 28 T CONST)) (-2775 (((-112) $ $) 87)) (-1939 (($ $ $) 99)) (-2743 (($) 90)) (-1582 (((-112) $ $) 40)) (-1903 (($ $ $ $) 75)) (-2016 (($ $) 113)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-768)) 112) (($ $) 110)) (-1738 (((-112) $ $) 120)) (-1715 (((-112) $ $) 121)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 119)) (-1705 (((-112) $ $) 122)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3871 (((-641 |#2|) (-1166 |#1|) |#3|) 98)) (-2765 (((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))) 114)) (-3164 (((-1166 |#1|) (-685 |#1|)) 110)))
+(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -3164 ((-1166 |#1|) (-685 |#1|))) (-15 -3871 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -2765 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))))) (-363) (-363) (-13 (-363) (-845))) (T -532))
+((-2765 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6))) (-4 *6 (-363)) (-5 *2 (-641 (-2 (|:| |outval| *7) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-845))))) (-3871 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-845))))))
+(-10 -7 (-15 -3164 ((-1166 |#1|) (-685 |#1|))) (-15 -3871 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -2765 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|)))))
+((-2363 (((-687 (-1217)) $ (-1217)) NIL)) (-1742 (((-687 (-549)) $ (-549)) NIL)) (-4332 (((-768) $ (-128)) 41)) (-2010 (((-687 (-129)) $ (-129)) 42)) (-3420 (((-687 (-1217)) $) NIL)) (-4117 (((-687 (-1215)) $) NIL)) (-3900 (((-687 (-1214)) $) NIL)) (-1540 (((-687 (-549)) $) NIL)) (-2983 (((-687 (-547)) $) NIL)) (-3877 (((-687 (-546)) $) NIL)) (-1306 (((-768) $ (-128)) 37)) (-2839 (((-687 (-129)) $) 39)) (-2008 (((-112) $) 29)) (-4251 (((-687 $) (-579) (-951)) 19) (((-687 $) (-491) (-951)) 26)) (-3714 (((-859) $) 49)) (-3977 (($ $) 43)))
+(((-533) (-13 (-764 (-579)) (-611 (-859)) (-10 -8 (-15 -4251 ((-687 $) (-491) (-951)))))) (T -533))
+((-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-951)) (-5 *2 (-687 (-533))) (-5 *1 (-533)))))
+(-13 (-764 (-579)) (-611 (-859)) (-10 -8 (-15 -4251 ((-687 $) (-491) (-951)))))
+((-1577 (((-840 (-564))) 12)) (-1589 (((-840 (-564))) 14)) (-1700 (((-830 (-564))) 9)))
+(((-534) (-10 -7 (-15 -1700 ((-830 (-564)))) (-15 -1577 ((-840 (-564)))) (-15 -1589 ((-840 (-564)))))) (T -534))
+((-1589 (*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) (-1577 (*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) (-1700 (*1 *2) (-12 (-5 *2 (-830 (-564))) (-5 *1 (-534)))))
+(-10 -7 (-15 -1700 ((-830 (-564)))) (-15 -1577 ((-840 (-564)))) (-15 -1589 ((-840 (-564)))))
+((-3787 (((-536) (-1170)) 15)) (-3358 ((|#1| (-536)) 20)))
+(((-535 |#1|) (-10 -7 (-15 -3787 ((-536) (-1170))) (-15 -3358 (|#1| (-536)))) (-1209)) (T -535))
+((-3358 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1209)))))
+(-10 -7 (-15 -3787 ((-536) (-1170))) (-15 -3358 (|#1| (-536))))
+((-3702 (((-112) $ $) NIL)) (-3231 (((-1152) $) 55)) (-2307 (((-112) $) 51)) (-2713 (((-1170) $) 52)) (-2568 (((-112) $) 49)) (-3963 (((-1152) $) 50)) (-3125 (($ (-1152)) 56)) (-1696 (((-112) $) NIL)) (-1539 (((-112) $) NIL)) (-3306 (((-112) $) NIL)) (-1868 (((-1152) $) NIL)) (-3287 (($ $ (-641 (-1170))) 21)) (-3358 (((-52) $) 23)) (-3518 (((-112) $) NIL)) (-2738 (((-564) $) NIL)) (-3844 (((-1114) $) NIL)) (-2553 (($ $ (-641 (-1170)) (-1170)) 73)) (-2614 (((-112) $) NIL)) (-2244 (((-225) $) NIL)) (-1631 (($ $) 44)) (-3779 (((-859) $) NIL)) (-4035 (((-112) $ $) NIL)) (-4382 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-4222 (((-641 $) $) 30)) (-1974 (((-1170) (-641 $)) 57)) (-2374 (($ (-1152)) NIL) (($ (-1170)) 19) (($ (-564)) 8) (($ (-225)) 28) (($ (-859)) NIL) (($ (-641 $)) 65) (((-1098) $) 12) (($ (-1098)) 13)) (-4219 (((-1170) (-1170) (-641 $)) 60)) (-3714 (((-859) $) 54)) (-1951 (($ $) 59)) (-1940 (($ $) 58)) (-1521 (($ $ (-641 $)) 66)) (-4280 (((-112) $) 29)) (-4312 (($) 9 T CONST)) (-4323 (($) 11 T CONST)) (-1720 (((-112) $ $) 74)) (-1841 (($ $ $) 82)) (-1814 (($ $ $) 75)) (** (($ $ (-768)) 81) (($ $ (-564)) 80)) (* (($ $ $) 76)) (-2779 (((-564) $) NIL)))
+(((-536) (-13 (-1097 (-1152) (-1170) (-564) (-225) (-859)) (-612 (-1098)) (-10 -8 (-15 -3358 ((-52) $)) (-15 -2374 ($ (-1098))) (-15 -1521 ($ $ (-641 $))) (-15 -2553 ($ $ (-641 (-1170)) (-1170))) (-15 -3287 ($ $ (-641 (-1170)))) (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 -1841 ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ (-564))) (-15 0 ($) -2222) (-15 1 ($) -2222) (-15 -1631 ($ $)) (-15 -3231 ((-1152) $)) (-15 -3125 ($ (-1152))) (-15 -1974 ((-1170) (-641 $))) (-15 -4219 ((-1170) (-1170) (-641 $)))))) (T -536))
+((-3358 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-536)))) (-1521 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536)))) (-2553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536)))) (-3287 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536)))) (-1814 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-1841 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) (-4312 (*1 *1) (-5 *1 (-536))) (-4323 (*1 *1) (-5 *1 (-536))) (-1631 (*1 *1 *1) (-5 *1 (-536))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536)))) (-4219 (*1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536)))))
+(-13 (-1097 (-1152) (-1170) (-564) (-225) (-859)) (-612 (-1098)) (-10 -8 (-15 -3358 ((-52) $)) (-15 -2374 ($ (-1098))) (-15 -1521 ($ $ (-641 $))) (-15 -2553 ($ $ (-641 (-1170)) (-1170))) (-15 -3287 ($ $ (-641 (-1170)))) (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 -1841 ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ (-564))) (-15 (-4312) ($) -2222) (-15 (-4323) ($) -2222) (-15 -1631 ($ $)) (-15 -3231 ((-1152) $)) (-15 -3125 ($ (-1152))) (-15 -1974 ((-1170) (-641 $))) (-15 -4219 ((-1170) (-1170) (-641 $)))))
+((-3255 ((|#2| |#2|) 17)) (-3642 ((|#2| |#2|) 13)) (-3274 ((|#2| |#2| (-564) (-564)) 20)) (-2625 ((|#2| |#2|) 15)))
+(((-537 |#1| |#2|) (-10 -7 (-15 -3642 (|#2| |#2|)) (-15 -2625 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -3274 (|#2| |#2| (-564) (-564)))) (-13 (-556) (-147)) (-1250 |#1|)) (T -537))
+((-3274 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1250 *4)))) (-3255 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-2625 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))))
+(-10 -7 (-15 -3642 (|#2| |#2|)) (-15 -2625 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -3274 (|#2| |#2| (-564) (-564))))
+((-1967 (((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))) 32)) (-2584 (((-641 |#2|) (-949 |#1|) |#3|) 54) (((-641 |#2|) (-1166 |#1|) |#3|) 53)) (-2644 (((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|) 106)))
+(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2584 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -2584 ((-641 |#2|) (-949 |#1|) |#3|)) (-15 -2644 ((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|)) (-15 -1967 ((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))))) (-452) (-363) (-13 (-363) (-845))) (T -538))
+((-1967 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363)) (-5 *2 (-641 (-294 (-949 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-845))))) (-2644 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-845))))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))))
+(-10 -7 (-15 -2584 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -2584 ((-641 |#2|) (-949 |#1|) |#3|)) (-15 -2644 ((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|)) (-15 -1967 ((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170)))))
+((-3126 ((|#2| |#2| |#1|) 17)) (-1395 ((|#2| (-641 |#2|)) 33)) (-2247 ((|#2| (-641 |#2|)) 56)))
+(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1395 (|#2| (-641 |#2|))) (-15 -2247 (|#2| (-641 |#2|))) (-15 -3126 (|#2| |#2| |#1|))) (-307) (-1235 |#1|) |#1| (-1 |#1| |#1| (-768))) (T -539))
+((-3126 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-768))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))))
+(-10 -7 (-15 -1395 (|#2| (-641 |#2|))) (-15 -2247 (|#2| (-641 |#2|))) (-15 -3126 (|#2| |#2| |#1|)))
+((-4139 (((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 94) (((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 220)))
+(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -4139 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))))) (-847) (-790) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -540))
+((-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *8 (-946 *7 *6 *5)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-946 *7 *6 *5)))))
+(-10 -7 (-15 -4139 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -4139 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))))
+((-3255 ((|#4| |#4|) 73)) (-3642 ((|#4| |#4|) 69)) (-3274 ((|#4| |#4| (-564) (-564)) 75)) (-2625 ((|#4| |#4|) 71)))
+(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3642 (|#4| |#4|)) (-15 -2625 (|#4| |#4|)) (-15 -3255 (|#4| |#4|)) (-15 -3274 (|#4| |#4| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1235 |#1|) (-721 |#1| |#2|) (-1250 |#3|)) (T -541))
+((-3274 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-4 *5 (-1235 *4)) (-4 *6 (-721 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1250 *6)))) (-3255 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-2625 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))))
+(-10 -7 (-15 -3642 (|#4| |#4|)) (-15 -2625 (|#4| |#4|)) (-15 -3255 (|#4| |#4|)) (-15 -3274 (|#4| |#4| (-564) (-564))))
+((-3255 ((|#2| |#2|) 27)) (-3642 ((|#2| |#2|) 23)) (-3274 ((|#2| |#2| (-564) (-564)) 29)) (-2625 ((|#2| |#2|) 25)))
+(((-542 |#1| |#2|) (-10 -7 (-15 -3642 (|#2| |#2|)) (-15 -2625 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -3274 (|#2| |#2| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1250 |#1|)) (T -542))
+((-3274 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4)))) (-3255 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-2625 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))))
+(-10 -7 (-15 -3642 (|#2| |#2|)) (-15 -2625 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -3274 (|#2| |#2| (-564) (-564))))
+((-2145 (((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)) 18) (((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|)) 14) (((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|)) 32)))
+(((-543 |#1| |#2|) (-10 -7 (-15 -2145 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2145 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2145 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) (-1046) (-1235 |#1|)) (T -543))
+((-2145 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-2145 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-2145 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5)))))
+(-10 -7 (-15 -2145 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2145 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2145 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|))))
+((-2642 (($ $ $) 82)) (-1592 (((-418 $) $) 50)) (-2224 (((-3 (-564) "failed") $) 62)) (-2376 (((-564) $) 40)) (-3502 (((-3 (-407 (-564)) "failed") $) 77)) (-3309 (((-112) $) 25)) (-3074 (((-407 (-564)) $) 75)) (-1926 (((-112) $) 53)) (-3973 (($ $ $ $) 90)) (-3137 (((-112) $) 16)) (-3742 (($ $ $) 60)) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 72)) (-3804 (((-3 $ "failed") $) 67)) (-1568 (($ $) 23)) (-2148 (($ $ $) 88)) (-3304 (($) 63)) (-4265 (($ $) 56)) (-4139 (((-418 $) $) 48)) (-1542 (((-112) $) 14)) (-3966 (((-768) $) 30)) (-2203 (($ $ (-768)) NIL) (($ $) 11)) (-3890 (($ $) 17)) (-2374 (((-564) $) NIL) (((-536) $) 39) (((-889 (-564)) $) 43) (((-379) $) 33) (((-225) $) 36)) (-3379 (((-768)) 9)) (-2833 (((-112) $ $) 20)) (-4389 (($ $ $) 58)))
+(((-544 |#1|) (-10 -8 (-15 -2148 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -2642 (|#1| |#1| |#1|)) (-15 -2833 ((-112) |#1| |#1|)) (-15 -1542 ((-112) |#1|)) (-15 -3304 (|#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -2374 ((-225) |#1|)) (-15 -2374 ((-379) |#1|)) (-15 -3742 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 -4389 (|#1| |#1| |#1|)) (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2374 ((-564) |#1|)) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -3137 ((-112) |#1|)) (-15 -3966 ((-768) |#1|)) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -1926 ((-112) |#1|)) (-15 -3379 ((-768)))) (-545)) (T -544))
+((-3379 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-544 *3)) (-4 *3 (-545)))))
+(-10 -8 (-15 -2148 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -2642 (|#1| |#1| |#1|)) (-15 -2833 ((-112) |#1| |#1|)) (-15 -1542 ((-112) |#1|)) (-15 -3304 (|#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -2374 ((-225) |#1|)) (-15 -2374 ((-379) |#1|)) (-15 -3742 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1|)) (-15 -4389 (|#1| |#1| |#1|)) (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2374 ((-564) |#1|)) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -3137 ((-112) |#1|)) (-15 -3966 ((-768) |#1|)) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -1926 ((-112) |#1|)) (-15 -3379 ((-768))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-2642 (($ $ $) 85)) (-4281 (((-3 $ "failed") $ $) 19)) (-3944 (($ $ $ $) 74)) (-1328 (($ $) 52)) (-1592 (((-418 $) $) 53)) (-3907 (((-112) $ $) 125)) (-3191 (((-564) $) 114)) (-2490 (($ $ $) 88)) (-3180 (($) 17 T CONST)) (-2224 (((-3 (-564) "failed") $) 106)) (-2376 (((-564) $) 107)) (-1399 (($ $ $) 129)) (-3613 (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 104) (((-685 (-564)) (-685 $)) 103)) (-4272 (((-3 $ "failed") $) 33)) (-3502 (((-3 (-407 (-564)) "failed") $) 82)) (-3309 (((-112) $) 84)) (-3074 (((-407 (-564)) $) 83)) (-2939 (($) 81) (($ $) 80)) (-1371 (($ $ $) 128)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 123)) (-1926 (((-112) $) 54)) (-3973 (($ $ $ $) 72)) (-3039 (($ $ $) 86)) (-3137 (((-112) $) 116)) (-3742 (($ $ $) 97)) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 100)) (-2340 (((-112) $) 31)) (-1329 (((-112) $) 92)) (-3804 (((-3 $ "failed") $) 94)) (-2001 (((-112) $) 115)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 132)) (-3026 (($ $ $ $) 73)) (-3428 (($ $ $) 117)) (-3413 (($ $ $) 118)) (-1568 (($ $) 76)) (-3451 (($ $) 89)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-2148 (($ $ $) 71)) (-3304 (($) 93 T CONST)) (-4324 (($ $) 78)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-4265 (($ $) 98)) (-4139 (((-418 $) $) 51)) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 130)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 124)) (-1542 (((-112) $) 91)) (-3966 (((-768) $) 126)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 127)) (-2203 (($ $ (-768)) 111) (($ $) 109)) (-2021 (($ $) 77)) (-3890 (($ $) 79)) (-2374 (((-564) $) 108) (((-536) $) 102) (((-889 (-564)) $) 101) (((-379) $) 96) (((-225) $) 95)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 105)) (-3379 (((-768)) 28 T CONST)) (-2833 (((-112) $ $) 87)) (-4389 (($ $ $) 99)) (-3270 (($) 90)) (-3979 (((-112) $ $) 40)) (-4037 (($ $ $ $) 75)) (-3920 (($ $) 113)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-768)) 112) (($ $) 110)) (-1781 (((-112) $ $) 120)) (-1758 (((-112) $ $) 121)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 119)) (-1746 (((-112) $ $) 122)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-545) (-140)) (T -545))
-((-1629 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2743 (*1 *1) (-4 *1 (-545))) (-2564 (*1 *1 *1) (-4 *1 (-545))) (-2980 (*1 *1 *1 *1) (-4 *1 (-545))) (-2775 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-4071 (*1 *1 *1 *1) (-4 *1 (-545))) (-3823 (*1 *1 *1 *1) (-4 *1 (-545))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-1978 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-2542 (*1 *1) (-4 *1 (-545))) (-2542 (*1 *1 *1) (-4 *1 (-545))) (-1899 (*1 *1 *1) (-4 *1 (-545))) (-2311 (*1 *1 *1) (-4 *1 (-545))) (-3312 (*1 *1 *1) (-4 *1 (-545))) (-2600 (*1 *1 *1) (-4 *1 (-545))) (-1903 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2018 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2676 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4043 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4233 (*1 *1 *1 *1) (-4 *1 (-545))))
-(-13 (-1213) (-307) (-817) (-233) (-612 (-564)) (-1035 (-564)) (-637 (-564)) (-612 (-536)) (-612 (-889 (-564))) (-883 (-564)) (-143) (-1019) (-147) (-1145) (-10 -8 (-15 -1629 ((-112) $)) (-15 -1518 ((-112) $)) (-6 -4410) (-15 -2743 ($)) (-15 -2564 ($ $)) (-15 -2980 ($ $ $)) (-15 -2775 ((-112) $ $)) (-15 -4071 ($ $ $)) (-15 -3823 ($ $ $)) (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $)) (-15 -2542 ($)) (-15 -2542 ($ $)) (-15 -1899 ($ $)) (-15 -2311 ($ $)) (-15 -3312 ($ $)) (-15 -2600 ($ $)) (-15 -1903 ($ $ $ $)) (-15 -2018 ($ $ $ $)) (-15 -2676 ($ $ $ $)) (-15 -4043 ($ $ $ $)) (-15 -4233 ($ $ $)) (-6 -4409)))
+((-1329 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3270 (*1 *1) (-4 *1 (-545))) (-3451 (*1 *1 *1) (-4 *1 (-545))) (-2490 (*1 *1 *1 *1) (-4 *1 (-545))) (-2833 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3039 (*1 *1 *1 *1) (-4 *1 (-545))) (-2642 (*1 *1 *1 *1) (-4 *1 (-545))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-3502 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-2939 (*1 *1) (-4 *1 (-545))) (-2939 (*1 *1 *1) (-4 *1 (-545))) (-3890 (*1 *1 *1) (-4 *1 (-545))) (-4324 (*1 *1 *1) (-4 *1 (-545))) (-2021 (*1 *1 *1) (-4 *1 (-545))) (-1568 (*1 *1 *1) (-4 *1 (-545))) (-4037 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3944 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3026 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3973 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2148 (*1 *1 *1 *1) (-4 *1 (-545))))
+(-13 (-1213) (-307) (-817) (-233) (-612 (-564)) (-1035 (-564)) (-637 (-564)) (-612 (-536)) (-612 (-889 (-564))) (-883 (-564)) (-143) (-1019) (-147) (-1145) (-10 -8 (-15 -1329 ((-112) $)) (-15 -1542 ((-112) $)) (-6 -4411) (-15 -3270 ($)) (-15 -3451 ($ $)) (-15 -2490 ($ $ $)) (-15 -2833 ((-112) $ $)) (-15 -3039 ($ $ $)) (-15 -2642 ($ $ $)) (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $)) (-15 -2939 ($)) (-15 -2939 ($ $)) (-15 -3890 ($ $)) (-15 -4324 ($ $)) (-15 -2021 ($ $)) (-15 -1568 ($ $)) (-15 -4037 ($ $ $ $)) (-15 -3944 ($ $ $ $)) (-15 -3026 ($ $ $ $)) (-15 -3973 ($ $ $ $)) (-15 -2148 ($ $ $)) (-6 -4410)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-143) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-536)) . T) ((-612 (-564)) . T) ((-612 (-889 (-564))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-637 (-564)) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-817) . T) ((-845) . T) ((-847) . T) ((-883 (-564)) . T) ((-917) . T) ((-1019) . T) ((-1035 (-564)) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-546) (-13 (-841) (-10 -8 (-15 -3760 ($) -3246)))) (T -546))
-((-3760 (*1 *1) (-5 *1 (-546))))
-(-13 (-841) (-10 -8 (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-546) (-13 (-841) (-10 -8 (-15 -3180 ($) -2222)))) (T -546))
+((-3180 (*1 *1) (-5 *1 (-546))))
+(-13 (-841) (-10 -8 (-15 -3180 ($) -2222)))
((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-547) (-13 (-841) (-10 -8 (-15 -3760 ($) -3246)))) (T -547))
-((-3760 (*1 *1) (-5 *1 (-547))))
-(-13 (-841) (-10 -8 (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-547) (-13 (-841) (-10 -8 (-15 -3180 ($) -2222)))) (T -547))
+((-3180 (*1 *1) (-5 *1 (-547))))
+(-13 (-841) (-10 -8 (-15 -3180 ($) -2222)))
((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-548) (-13 (-841) (-10 -8 (-15 -3760 ($) -3246)))) (T -548))
-((-3760 (*1 *1) (-5 *1 (-548))))
-(-13 (-841) (-10 -8 (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-548) (-13 (-841) (-10 -8 (-15 -3180 ($) -2222)))) (T -548))
+((-3180 (*1 *1) (-5 *1 (-548))))
+(-13 (-841) (-10 -8 (-15 -3180 ($) -2222)))
((|Integer|) (COND ((< 64 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-549) (-13 (-841) (-10 -8 (-15 -3760 ($) -3246)))) (T -549))
-((-3760 (*1 *1) (-5 *1 (-549))))
-(-13 (-841) (-10 -8 (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-549) (-13 (-841) (-10 -8 (-15 -3180 ($) -2222)))) (T -549))
+((-3180 (*1 *1) (-5 *1 (-549))))
+(-13 (-841) (-10 -8 (-15 -3180 ($) -2222)))
((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3476 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#2| $ |#1| |#2|) NIL)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 |#2| "failed") |#1| $) NIL)) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) NIL)) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) NIL)) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 ((|#1| $) NIL (|has| |#1| (-847)))) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1479 ((|#1| $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3211 (((-641 |#1|) $) NIL)) (-4185 (((-112) |#1| $) NIL)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1371 (((-641 |#1|) $) NIL)) (-3629 (((-112) |#1| $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3073 ((|#2| $) NIL (|has| |#1| (-847)))) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-1765 (((-859) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-550 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) (-1094) (-1094) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411)))) (T -550))
-NIL
-(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411)))
-((-1619 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))) 52)))
-(((-551 |#1| |#2|) (-10 -7 (-15 -1619 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))))) (-13 (-847) (-556)) (-13 (-27) (-430 |#1|))) (T -551))
-((-1619 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-847) (-556))) (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3)))))
-(-10 -7 (-15 -1619 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|)))))
-((-2074 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 222)) (-2026 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 218)) (-4132 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 226)))
-(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4132 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2074 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2026 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-847) (-556) (-1035 (-564))) (-13 (-27) (-430 |#1|)) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -552))
-((-2026 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-4132 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
-(-10 -7 (-15 -4132 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2074 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2026 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-2179 (((-112) (-564) (-564)) 12)) (-3161 (((-564) (-564)) 7)) (-2191 (((-564) (-564) (-564)) 10)))
-(((-553) (-10 -7 (-15 -3161 ((-564) (-564))) (-15 -2191 ((-564) (-564) (-564))) (-15 -2179 ((-112) (-564) (-564))))) (T -553))
-((-2179 (*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))) (-2191 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
-(-10 -7 (-15 -3161 ((-564) (-564))) (-15 -2191 ((-564) (-564) (-564))) (-15 -2179 ((-112) (-564) (-564))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-2579 ((|#1| $) 62)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3904 (($ $) 92)) (-3752 (($ $) 75)) (-3382 ((|#1| $) 63)) (-3936 (((-3 $ "failed") $ $) 19)) (-4019 (($ $) 74)) (-3879 (($ $) 91)) (-3727 (($ $) 76)) (-3933 (($ $) 90)) (-3778 (($ $) 77)) (-3760 (($) 17 T CONST)) (-2013 (((-3 (-564) "failed") $) 70)) (-2064 (((-564) $) 71)) (-1926 (((-3 $ "failed") $) 33)) (-4301 (($ |#1| |#1|) 67)) (-1751 (((-112) $) 61)) (-1539 (($) 102)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 73)) (-2506 (((-112) $) 60)) (-3571 (($ $ $) 108)) (-1547 (($ $ $) 107)) (-2186 (($ $) 99)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-3607 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-407 (-564))) 65)) (-3851 ((|#1| $) 64)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-1343 (((-3 $ "failed") $ $) 43)) (-2152 (($ $) 100)) (-3949 (($ $) 89)) (-3789 (($ $) 78)) (-3918 (($ $) 88)) (-3765 (($ $) 79)) (-3891 (($ $) 87)) (-3739 (($ $) 80)) (-4103 (((-112) $ |#1|) 59)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 69)) (-1965 (((-768)) 28 T CONST)) (-3991 (($ $) 98)) (-3827 (($ $) 86)) (-1582 (((-112) $ $) 40)) (-3963 (($ $) 97)) (-3801 (($ $) 85)) (-4020 (($ $) 96)) (-3854 (($ $) 84)) (-3586 (($ $) 95)) (-3867 (($ $) 83)) (-4005 (($ $) 94)) (-3840 (($ $) 82)) (-3977 (($ $) 93)) (-3814 (($ $) 81)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1738 (((-112) $ $) 105)) (-1715 (((-112) $ $) 104)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 106)) (-1705 (((-112) $ $) 103)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ $) 101) (($ $ (-407 (-564))) 72)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-2399 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#2| $ |#1| |#2|) NIL)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 |#2| "failed") |#1| $) NIL)) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) NIL)) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) NIL)) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 ((|#1| $) NIL (|has| |#1| (-847)))) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2415 ((|#1| $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4413))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1922 (((-641 |#1|) $) NIL)) (-1690 (((-112) |#1| $) NIL)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-3127 (((-641 |#1|) $) NIL)) (-1338 (((-112) |#1| $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2049 ((|#2| $) NIL (|has| |#1| (-847)))) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3714 (((-859) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-550 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4412))) (-1094) (-1094) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4412)))) (T -550))
+NIL
+(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4412)))
+((-4325 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))) 52)))
+(((-551 |#1| |#2|) (-10 -7 (-15 -4325 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))))) (-13 (-847) (-556)) (-13 (-27) (-430 |#1|))) (T -551))
+((-4325 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-847) (-556))) (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3)))))
+(-10 -7 (-15 -4325 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|)))))
+((-3288 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 222)) (-2882 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 218)) (-2433 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 226)))
+(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2433 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3288 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2882 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-847) (-556) (-1035 (-564))) (-13 (-27) (-430 |#1|)) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -552))
+((-2882 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-3288 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))))
+(-10 -7 (-15 -2433 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3288 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2882 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1901 (((-112) (-564) (-564)) 12)) (-2383 (((-564) (-564)) 7)) (-2026 (((-564) (-564) (-564)) 10)))
+(((-553) (-10 -7 (-15 -2383 ((-564) (-564))) (-15 -2026 ((-564) (-564) (-564))) (-15 -1901 ((-112) (-564) (-564))))) (T -553))
+((-1901 (*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))) (-2026 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))) (-2383 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
+(-10 -7 (-15 -2383 ((-564) (-564))) (-15 -2026 ((-564) (-564) (-564))) (-15 -1901 ((-112) (-564) (-564))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-1615 ((|#1| $) 62)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-2657 (($ $) 92)) (-2516 (($ $) 75)) (-3884 ((|#1| $) 63)) (-4281 (((-3 $ "failed") $ $) 19)) (-4152 (($ $) 74)) (-2635 (($ $) 91)) (-2491 (($ $) 76)) (-2679 (($ $) 90)) (-2542 (($ $) 77)) (-3180 (($) 17 T CONST)) (-2224 (((-3 (-564) "failed") $) 70)) (-2376 (((-564) $) 71)) (-4272 (((-3 $ "failed") $) 33)) (-1473 (($ |#1| |#1|) 67)) (-3137 (((-112) $) 61)) (-1688 (($) 102)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 73)) (-2001 (((-112) $) 60)) (-3428 (($ $ $) 108)) (-3413 (($ $ $) 107)) (-2305 (($ $) 99)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-4203 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-407 (-564))) 65)) (-1641 ((|#1| $) 64)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-1347 (((-3 $ "failed") $ $) 43)) (-4130 (($ $) 100)) (-2692 (($ $) 89)) (-2557 (($ $) 78)) (-2669 (($ $) 88)) (-2529 (($ $) 79)) (-2647 (($ $) 87)) (-2502 (($ $) 80)) (-3267 (((-112) $ |#1|) 59)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 69)) (-3379 (((-768)) 28 T CONST)) (-2728 (($ $) 98)) (-2595 (($ $) 86)) (-3979 (((-112) $ $) 40)) (-2704 (($ $) 97)) (-2566 (($ $) 85)) (-2751 (($ $) 96)) (-2615 (($ $) 84)) (-2053 (($ $) 95)) (-2626 (($ $) 83)) (-2740 (($ $) 94)) (-2605 (($ $) 82)) (-2716 (($ $) 93)) (-2577 (($ $) 81)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1781 (((-112) $ $) 105)) (-1758 (((-112) $ $) 104)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 106)) (-1746 (((-112) $ $) 103)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ $) 101) (($ $ (-407 (-564))) 72)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-554 |#1|) (-140) (-13 (-404) (-1194))) (T -554))
-((-3607 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-4301 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3607 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3607 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2579 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-4103 (*1 *2 *1 *3) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))))
-(-13 (-452) (-847) (-1194) (-999) (-1035 (-564)) (-10 -8 (-6 -2299) (-15 -3607 ($ |t#1| |t#1|)) (-15 -4301 ($ |t#1| |t#1|)) (-15 -3607 ($ |t#1|)) (-15 -3607 ($ (-407 (-564)))) (-15 -3851 (|t#1| $)) (-15 -3382 (|t#1| $)) (-15 -2579 (|t#1| $)) (-15 -1751 ((-112) $)) (-15 -2506 ((-112) $)) (-15 -4103 ((-112) $ |t#1|))))
+((-4203 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-1473 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-4203 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-4203 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-3267 (*1 *2 *1 *3) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))))
+(-13 (-452) (-847) (-1194) (-999) (-1035 (-564)) (-10 -8 (-6 -2441) (-15 -4203 ($ |t#1| |t#1|)) (-15 -1473 ($ |t#1| |t#1|)) (-15 -4203 ($ |t#1|)) (-15 -4203 ($ (-407 (-564)))) (-15 -1641 (|t#1| $)) (-15 -3884 (|t#1| $)) (-15 -1615 (|t#1| $)) (-15 -3137 ((-112) $)) (-15 -2001 ((-112) $)) (-15 -3267 ((-112) $ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-999) . T) ((-1035 (-564)) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) . T) ((-1197) . T))
-((-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 9)) (-1840 (($ $) 11)) (-4035 (((-112) $) 20)) (-1926 (((-3 $ "failed") $) 16)) (-1582 (((-112) $ $) 22)))
-(((-555 |#1|) (-10 -8 (-15 -4035 ((-112) |#1|)) (-15 -1582 ((-112) |#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -3584 ((-2 (|:| -1950 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1926 ((-3 |#1| "failed") |#1|))) (-556)) (T -555))
+((-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 9)) (-1582 (($ $) 11)) (-3897 (((-112) $) 20)) (-4272 (((-3 $ "failed") $) 16)) (-3979 (((-112) $ $) 22)))
+(((-555 |#1|) (-10 -8 (-15 -3897 ((-112) |#1|)) (-15 -3979 ((-112) |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -2156 ((-2 (|:| -1425 |#1|) (|:| -4399 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4272 ((-3 |#1| "failed") |#1|))) (-556)) (T -555))
NIL
-(-10 -8 (-15 -4035 ((-112) |#1|)) (-15 -1582 ((-112) |#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -3584 ((-2 (|:| -1950 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1926 ((-3 |#1| "failed") |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1343 (((-3 $ "failed") $ $) 43)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+(-10 -8 (-15 -3897 ((-112) |#1|)) (-15 -3979 ((-112) |#1| |#1|)) (-15 -1582 (|#1| |#1|)) (-15 -2156 ((-2 (|:| -1425 |#1|) (|:| -4399 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4272 ((-3 |#1| "failed") |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1347 (((-3 $ "failed") $ $) 43)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-556) (-140)) (T -556))
-((-1343 (*1 *1 *1 *1) (|partial| -4 *1 (-556))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1950 *1) (|:| -4398 *1) (|:| |associate| *1))) (-4 *1 (-556)))) (-1840 (*1 *1 *1) (-4 *1 (-556))) (-1582 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
-(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -1343 ((-3 $ "failed") $ $)) (-15 -3584 ((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $)) (-15 -1840 ($ $)) (-15 -1582 ((-112) $ $)) (-15 -4035 ((-112) $))))
+((-1347 (*1 *1 *1 *1) (|partial| -4 *1 (-556))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1425 *1) (|:| -4399 *1) (|:| |associate| *1))) (-4 *1 (-556)))) (-1582 (*1 *1 *1) (-4 *1 (-556))) (-3979 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -1347 ((-3 $ "failed") $ $)) (-15 -2156 ((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $)) (-15 -1582 ($ $)) (-15 -3979 ((-112) $ $)) (-15 -3897 ((-112) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2787 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|)) 39)) (-1412 (((-585 |#2|) |#2| (-1170)) 64)) (-2725 (((-3 |#2| "failed") |#2| (-1170)) 157)) (-1665 (((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))) 160)) (-3485 (((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|) 42)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -3485 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -2787 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -2725 ((-3 |#2| "failed") |#2| (-1170))) (-15 -1412 ((-585 |#2|) |#2| (-1170))) (-15 -1665 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -557))
-((-1665 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3))) (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))) (-1412 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2725 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2787 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *3)))) (-3485 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(-10 -7 (-15 -3485 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -2787 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -2725 ((-3 |#2| "failed") |#2| (-1170))) (-15 -1412 ((-585 |#2|) |#2| (-1170))) (-15 -1665 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|)))))
-((-3981 (((-418 |#1|) |#1|) 18)) (-4006 (((-418 |#1|) |#1|) 33)) (-3444 (((-3 |#1| "failed") |#1|) 49)) (-1351 (((-418 |#1|) |#1|) 63)))
-(((-558 |#1|) (-10 -7 (-15 -4006 ((-418 |#1|) |#1|)) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -1351 ((-418 |#1|) |#1|)) (-15 -3444 ((-3 |#1| "failed") |#1|))) (-545)) (T -558))
-((-3444 (*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))) (-1351 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-3981 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-4006 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
-(-10 -7 (-15 -4006 ((-418 |#1|) |#1|)) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -1351 ((-418 |#1|) |#1|)) (-15 -3444 ((-3 |#1| "failed") |#1|)))
-((-1439 (($) 9)) (-2444 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-3211 (((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-2098 (($ (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3839 (($ (-641 (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1327 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-3599 (((-641 (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2595 (((-1264)) 12)))
-(((-559) (-10 -8 (-15 -1439 ($)) (-15 -2595 ((-1264))) (-15 -3211 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3839 ($ (-641 (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2098 ($ (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2444 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3599 ((-641 (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1327 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -559))
-((-1327 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-2444 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-559)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-3211 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-559)))) (-2595 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559)))) (-1439 (*1 *1) (-5 *1 (-559))))
-(-10 -8 (-15 -1439 ($)) (-15 -2595 ((-1264))) (-15 -3211 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3839 ($ (-641 (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2098 ($ (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2444 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3599 ((-641 (-2 (|:| -2351 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1327 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1361 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-3964 (((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|)) 35)) (-2762 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|)) 115)) (-2148 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 85) (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 55)) (-2484 (((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|))) 92) (((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|)) 114)) (-3731 (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|)) 116)) (-2974 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3941 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 135 (|has| |#3| (-652 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3941 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 134 (|has| |#3| (-652 |#2|)))) (-4157 ((|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|) 53)) (-4358 (((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|)) 34)))
-(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -2148 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -2148 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2484 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -2484 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2762 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -2762 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3731 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -3731 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3964 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -4157 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -4358 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -2974 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3941 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -2974 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3941 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -560))
-((-2974 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-2974 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1166 *6)) (-4 *7 (-1094)))) (-4157 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) (-3964 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1166 *3)) (-4 *7 (-1094)))) (-3731 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-3731 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-2762 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-2762 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-2484 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-2484 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-2148 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-2148 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
-(-10 -7 (-15 -2148 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -2148 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2484 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -2484 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2762 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -2762 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3731 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -3731 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3964 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -4157 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -4358 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -2974 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3941 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -2974 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3941 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|))
-((-3924 (((-564) (-564) (-768)) 88)) (-3071 (((-564) (-564)) 86)) (-1679 (((-564) (-564)) 84)) (-3704 (((-564) (-564)) 91)) (-1556 (((-564) (-564) (-564)) 68)) (-2955 (((-564) (-564) (-564)) 65)) (-3856 (((-407 (-564)) (-564)) 29)) (-1951 (((-564) (-564)) 35)) (-4268 (((-564) (-564)) 77)) (-1388 (((-564) (-564)) 50)) (-3141 (((-641 (-564)) (-564)) 83)) (-4178 (((-564) (-564) (-564) (-564) (-564)) 62)) (-3243 (((-407 (-564)) (-564)) 59)))
-(((-561) (-10 -7 (-15 -3243 ((-407 (-564)) (-564))) (-15 -4178 ((-564) (-564) (-564) (-564) (-564))) (-15 -3141 ((-641 (-564)) (-564))) (-15 -1388 ((-564) (-564))) (-15 -4268 ((-564) (-564))) (-15 -1951 ((-564) (-564))) (-15 -3856 ((-407 (-564)) (-564))) (-15 -2955 ((-564) (-564) (-564))) (-15 -1556 ((-564) (-564) (-564))) (-15 -3704 ((-564) (-564))) (-15 -1679 ((-564) (-564))) (-15 -3071 ((-564) (-564))) (-15 -3924 ((-564) (-564) (-768))))) (T -561))
-((-3924 (*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-768)) (-5 *1 (-561)))) (-3071 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1556 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2955 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3856 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-4268 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3141 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-4178 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3243 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
-(-10 -7 (-15 -3243 ((-407 (-564)) (-564))) (-15 -4178 ((-564) (-564) (-564) (-564) (-564))) (-15 -3141 ((-641 (-564)) (-564))) (-15 -1388 ((-564) (-564))) (-15 -4268 ((-564) (-564))) (-15 -1951 ((-564) (-564))) (-15 -3856 ((-407 (-564)) (-564))) (-15 -2955 ((-564) (-564) (-564))) (-15 -1556 ((-564) (-564) (-564))) (-15 -3704 ((-564) (-564))) (-15 -1679 ((-564) (-564))) (-15 -3071 ((-564) (-564))) (-15 -3924 ((-564) (-564) (-768))))
-((-3776 (((-2 (|:| |answer| |#4|) (|:| -1390 |#4|)) |#4| (-1 |#2| |#2|)) 57)))
-(((-562 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3776 ((-2 (|:| |answer| |#4|) (|:| -1390 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -562))
-((-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1390 *3))) (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))))
-(-10 -7 (-15 -3776 ((-2 (|:| |answer| |#4|) (|:| -1390 |#4|)) |#4| (-1 |#2| |#2|))))
-((-3776 (((-2 (|:| |answer| (-407 |#2|)) (|:| -1390 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -3776 ((-2 (|:| |answer| (-407 |#2|)) (|:| -1390 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -563))
-((-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -1390 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
-(-10 -7 (-15 -3776 ((-2 (|:| |answer| (-407 |#2|)) (|:| -1390 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 30)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 93)) (-1840 (($ $) 94)) (-4035 (((-112) $) NIL)) (-3823 (($ $ $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $ $ $) 51)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL)) (-2980 (($ $ $) 88)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL)) (-2064 (((-564) $) NIL)) (-1387 (($ $ $) 53)) (-2620 (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 76) (((-685 (-564)) (-685 $)) 72)) (-1926 (((-3 $ "failed") $) 90)) (-1978 (((-3 (-407 (-564)) "failed") $) NIL)) (-2709 (((-112) $) NIL)) (-3424 (((-407 (-564)) $) NIL)) (-2542 (($) 78) (($ $) 79)) (-1366 (($ $ $) 87)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-4043 (($ $ $ $) NIL)) (-4071 (($ $ $) 69)) (-1751 (((-112) $) NIL)) (-2314 (($ $ $) NIL)) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2419 (((-112) $) 34)) (-1629 (((-112) $) 82)) (-3374 (((-3 $ "failed") $) NIL)) (-2506 (((-112) $) 43)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2676 (($ $ $ $) 54)) (-3571 (($ $ $) 84)) (-1547 (($ $ $) 83)) (-2600 (($ $) NIL)) (-2564 (($ $) 49)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) 68)) (-4233 (($ $ $) NIL)) (-1611 (($) NIL T CONST)) (-2311 (($ $) 38)) (-3802 (((-1114) $) 42)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 125)) (-2527 (($ $ $) 91) (($ (-641 $)) NIL)) (-1613 (($ $) NIL)) (-4006 (((-418 $) $) 111)) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL)) (-1343 (((-3 $ "failed") $ $) 109)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1518 (((-112) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 86)) (-3226 (($ $ (-768)) NIL) (($ $) NIL)) (-3312 (($ $) 40)) (-1899 (($ $) 36)) (-2127 (((-564) $) 48) (((-536) $) 63) (((-889 (-564)) $) NIL) (((-379) $) 57) (((-225) $) 60) (((-1152) $) 65)) (-1765 (((-859) $) 46) (($ (-564)) 47) (($ $) NIL) (($ (-564)) 47)) (-1965 (((-768)) NIL T CONST)) (-2775 (((-112) $ $) NIL)) (-1939 (($ $ $) NIL)) (-2743 (($) 35)) (-1582 (((-112) $ $) NIL)) (-1903 (($ $ $ $) 50)) (-2016 (($ $) 77)) (-4317 (($) 6 T CONST)) (-4327 (($) 31 T CONST)) (-3886 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-819) $) 28) (((-1264) (-819) $ (-112)) 29)) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 33)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 10)) (-1783 (($ $) 16) (($ $ $) 39)) (-1771 (($ $ $) 37)) (** (($ $ (-918)) NIL) (($ $ (-768)) 81)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 80) (($ $ $) 52)))
-(((-564) (-13 (-545) (-612 (-1152)) (-825) (-10 -8 (-15 -2542 ($ $)) (-6 -4398) (-6 -4403) (-6 -4399) (-6 -4393)))) (T -564))
-((-2542 (*1 *1 *1) (-5 *1 (-564))))
-(-13 (-545) (-612 (-1152)) (-825) (-10 -8 (-15 -2542 ($ $)) (-6 -4398) (-6 -4403) (-6 -4399) (-6 -4393)))
-((-1657 (((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058)) 119) (((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766)) 121)) (-3591 (((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170)) 196) (((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152)) 195) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058)) 200) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379)) 201) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379)) 202) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379))))) 203) (((-1032) (-316 (-379)) (-1088 (-840 (-379)))) 191) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379)) 190) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379)) 186) (((-1032) (-766)) 178) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058)) 185)))
-(((-565) (-10 -7 (-15 -3591 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058))) (-15 -3591 ((-1032) (-766))) (-15 -3591 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379))) (-15 -3591 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379))) (-15 -3591 ((-1032) (-316 (-379)) (-1088 (-840 (-379))))) (-15 -3591 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))))) (-15 -3591 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379))) (-15 -3591 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379))) (-15 -3591 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058))) (-15 -3591 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152))) (-15 -3591 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170))))) (T -565))
-((-3591 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) (-5 *5 (-1170)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3591 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) (-5 *5 (-1152)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *1 (-565)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *1 (-565)))) (-3591 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3591 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3591 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3591 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))))
-(-10 -7 (-15 -3591 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058))) (-15 -3591 ((-1032) (-766))) (-15 -3591 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379))) (-15 -3591 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379))) (-15 -3591 ((-1032) (-316 (-379)) (-1088 (-840 (-379))))) (-15 -3591 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))))) (-15 -3591 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379))) (-15 -3591 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379))) (-15 -3591 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058))) (-15 -3591 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152))) (-15 -3591 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170))))
-((-2658 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|)) 202)) (-1640 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|)) 102)) (-3105 (((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|) 198)) (-3529 (((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170))) 207)) (-3419 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3941 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170)) 216 (|has| |#3| (-652 |#2|)))))
-(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -1640 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -3105 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -2658 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -3529 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -3419 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3941 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -566))
-((-3419 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-3529 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094)))) (-2658 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094)))) (-3105 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))) (-1640 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))))
-(-10 -7 (-15 -1640 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -3105 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -2658 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -3529 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -3419 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3941 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|))
-((-4204 (((-2 (|:| -2166 |#2|) (|:| |nconst| |#2|)) |#2| (-1170)) 63)) (-2239 (((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|)) 180 (-12 (|has| |#2| (-1133)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 159 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564)))))) (-3590 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 161 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564)))))))
-(((-567 |#1| |#2|) (-10 -7 (-15 -4204 ((-2 (|:| -2166 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -3590 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -2239 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -2239 ((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -567))
-((-2239 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-840 *2)) (-4 *2 (-1133)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *1 (-567 *5 *2)))) (-2239 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3590 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4204 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| -2166 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(-10 -7 (-15 -4204 ((-2 (|:| -2166 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -3590 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -2239 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -2239 ((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-4378 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))) 41)) (-3591 (((-585 (-407 |#2|)) (-407 |#2|)) 28)) (-3272 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-1818 (((-3 (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -3591 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -3272 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -1818 ((-3 (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -4378 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -568))
-((-4378 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *5 *6)))) (-1818 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -2745 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) (-3272 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147) (-1035 (-564)))) (-5 *1 (-568 *3 *4)))) (-3591 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))))
-(-10 -7 (-15 -3591 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -3272 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -1818 ((-3 (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -4378 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|)))))
-((-2532 (((-3 (-564) "failed") |#1|) 14)) (-1670 (((-112) |#1|) 13)) (-3690 (((-564) |#1|) 9)))
-(((-569 |#1|) (-10 -7 (-15 -3690 ((-564) |#1|)) (-15 -1670 ((-112) |#1|)) (-15 -2532 ((-3 (-564) "failed") |#1|))) (-1035 (-564))) (T -569))
-((-2532 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))) (-1670 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1035 (-564))))) (-3690 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))))
-(-10 -7 (-15 -3690 ((-564) |#1|)) (-15 -1670 ((-112) |#1|)) (-15 -2532 ((-3 (-564) "failed") |#1|)))
-((-3196 (((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|)))) 48)) (-1498 (((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170)) 28)) (-1905 (((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170)) 23)) (-2220 (((-3 (-2 (|:| -2745 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))) 35)))
-(((-570 |#1|) (-10 -7 (-15 -1498 ((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -1905 ((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170))) (-15 -3196 ((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|))))) (-15 -2220 ((-3 (-2 (|:| -2745 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))))) (-13 (-556) (-1035 (-564)) (-147))) (T -570))
-((-2220 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-2 (|:| -2745 (-407 (-949 *5))) (|:| |coeff| (-407 (-949 *5))))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5))))) (-3196 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-949 *6)))) (-5 *3 (-407 (-949 *6))) (-4 *6 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6)))) (-1905 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1035 (-564)) (-147))) (-5 *1 (-570 *4)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-585 (-407 (-949 *5)))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5))))))
-(-10 -7 (-15 -1498 ((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -1905 ((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170))) (-15 -3196 ((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|))))) (-15 -2220 ((-3 (-2 (|:| -2745 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))))
-((-1754 (((-112) $ $) 73)) (-3976 (((-112) $) 47)) (-2579 ((|#1| $) 39)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) 77)) (-3904 (($ $) 137)) (-3752 (($ $) 117)) (-3382 ((|#1| $) 37)) (-3936 (((-3 $ "failed") $ $) NIL)) (-4019 (($ $) NIL)) (-3879 (($ $) 139)) (-3727 (($ $) 113)) (-3933 (($ $) 141)) (-3778 (($ $) 121)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) 92)) (-2064 (((-564) $) 94)) (-1926 (((-3 $ "failed") $) 76)) (-4301 (($ |#1| |#1|) 35)) (-1751 (((-112) $) 43)) (-1539 (($) 103)) (-2419 (((-112) $) 54)) (-1935 (($ $ (-564)) NIL)) (-2506 (((-112) $) 44)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2186 (($ $) 105)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-3607 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-407 (-564))) 91)) (-3851 ((|#1| $) 36)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) 79) (($ (-641 $)) NIL)) (-1343 (((-3 $ "failed") $ $) 78)) (-2152 (($ $) 107)) (-3949 (($ $) 145)) (-3789 (($ $) 119)) (-3918 (($ $) 147)) (-3765 (($ $) 123)) (-3891 (($ $) 143)) (-3739 (($ $) 115)) (-4103 (((-112) $ |#1|) 41)) (-1765 (((-859) $) 99) (($ (-564)) 81) (($ $) NIL) (($ (-564)) 81)) (-1965 (((-768)) 101 T CONST)) (-3991 (($ $) 159)) (-3827 (($ $) 129)) (-1582 (((-112) $ $) NIL)) (-3963 (($ $) 157)) (-3801 (($ $) 125)) (-4020 (($ $) 155)) (-3854 (($ $) 135)) (-3586 (($ $) 153)) (-3867 (($ $) 133)) (-4005 (($ $) 151)) (-3840 (($ $) 131)) (-3977 (($ $) 149)) (-3814 (($ $) 127)) (-4317 (($) 30 T CONST)) (-4327 (($) 10 T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 48)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 46)) (-1783 (($ $) 52) (($ $ $) 53)) (-1771 (($ $ $) 51)) (** (($ $ (-918)) 69) (($ $ (-768)) NIL) (($ $ $) 109) (($ $ (-407 (-564))) 161)) (* (($ (-918) $) 64) (($ (-768) $) NIL) (($ (-564) $) 63) (($ $ $) 60)))
+((-1718 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|)) 39)) (-1585 (((-585 |#2|) |#2| (-1170)) 64)) (-2325 (((-3 |#2| "failed") |#2| (-1170)) 157)) (-3462 (((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))) 160)) (-2477 (((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|) 42)))
+(((-557 |#1| |#2|) (-10 -7 (-15 -2477 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -1718 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -2325 ((-3 |#2| "failed") |#2| (-1170))) (-15 -1585 ((-585 |#2|) |#2| (-1170))) (-15 -3462 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -557))
+((-3462 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3))) (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2325 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1718 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *3)))) (-2477 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
+(-10 -7 (-15 -2477 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -1718 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -2325 ((-3 |#2| "failed") |#2| (-1170))) (-15 -1585 ((-585 |#2|) |#2| (-1170))) (-15 -3462 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|)))))
+((-1592 (((-418 |#1|) |#1|) 18)) (-4139 (((-418 |#1|) |#1|) 33)) (-3229 (((-3 |#1| "failed") |#1|) 49)) (-3353 (((-418 |#1|) |#1|) 63)))
+(((-558 |#1|) (-10 -7 (-15 -4139 ((-418 |#1|) |#1|)) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -3353 ((-418 |#1|) |#1|)) (-15 -3229 ((-3 |#1| "failed") |#1|))) (-545)) (T -558))
+((-3229 (*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))) (-3353 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-1592 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
+(-10 -7 (-15 -4139 ((-418 |#1|) |#1|)) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -3353 ((-418 |#1|) |#1|)) (-15 -3229 ((-3 |#1| "failed") |#1|)))
+((-1845 (($) 9)) (-1475 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1922 (((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-2373 (($ (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2793 (($ (-641 (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2575 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-4121 (((-641 (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1537 (((-1264)) 12)))
+(((-559) (-10 -8 (-15 -1845 ($)) (-15 -1537 ((-1264))) (-15 -1922 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2793 ($ (-641 (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2373 ($ (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1475 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4121 ((-641 (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2575 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -559))
+((-2575 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-1475 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-2373 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-559)))) (-2793 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-559)))) (-1537 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559)))) (-1845 (*1 *1) (-5 *1 (-559))))
+(-10 -8 (-15 -1845 ($)) (-15 -1537 ((-1264))) (-15 -1922 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2793 ($ (-641 (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2373 ($ (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1475 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4121 ((-641 (-2 (|:| -1350 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2575 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4167 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-4103 (((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|)) 35)) (-2721 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|)) 115)) (-1598 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 85) (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 55)) (-1783 (((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|))) 92) (((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|)) 114)) (-2962 (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|)) 116)) (-4169 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4339 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 135 (|has| |#3| (-652 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4339 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 134 (|has| |#3| (-652 |#2|)))) (-4279 ((|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|) 53)) (-1714 (((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|)) 34)))
+(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -1598 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -1598 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -1783 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -1783 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2721 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -2721 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2962 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -2962 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -4103 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -4279 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -1714 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -4169 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4339 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4169 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4339 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -560))
+((-4169 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-4169 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-1714 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1166 *6)) (-4 *7 (-1094)))) (-4279 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) (-4103 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1166 *3)) (-4 *7 (-1094)))) (-2962 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-2962 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-2721 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-2721 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-1783 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-1783 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-1598 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-1598 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
+(-10 -7 (-15 -1598 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -1598 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -1783 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -1783 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2721 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -2721 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -2962 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -2962 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -4103 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -4279 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -1714 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -4169 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4339 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4169 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4339 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|))
+((-4166 (((-564) (-564) (-768)) 88)) (-3856 (((-564) (-564)) 86)) (-3628 (((-564) (-564)) 84)) (-3888 (((-564) (-564)) 91)) (-1902 (((-564) (-564) (-564)) 68)) (-3964 (((-564) (-564) (-564)) 65)) (-1661 (((-407 (-564)) (-564)) 29)) (-1436 (((-564) (-564)) 35)) (-4287 (((-564) (-564)) 77)) (-2124 (((-564) (-564)) 50)) (-3296 (((-641 (-564)) (-564)) 83)) (-2855 (((-564) (-564) (-564) (-564) (-564)) 62)) (-1948 (((-407 (-564)) (-564)) 59)))
+(((-561) (-10 -7 (-15 -1948 ((-407 (-564)) (-564))) (-15 -2855 ((-564) (-564) (-564) (-564) (-564))) (-15 -3296 ((-641 (-564)) (-564))) (-15 -2124 ((-564) (-564))) (-15 -4287 ((-564) (-564))) (-15 -1436 ((-564) (-564))) (-15 -1661 ((-407 (-564)) (-564))) (-15 -3964 ((-564) (-564) (-564))) (-15 -1902 ((-564) (-564) (-564))) (-15 -3888 ((-564) (-564))) (-15 -3628 ((-564) (-564))) (-15 -3856 ((-564) (-564))) (-15 -4166 ((-564) (-564) (-768))))) (T -561))
+((-4166 (*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-768)) (-5 *1 (-561)))) (-3856 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1902 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3964 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1661 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-4287 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3296 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-2855 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1948 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
+(-10 -7 (-15 -1948 ((-407 (-564)) (-564))) (-15 -2855 ((-564) (-564) (-564) (-564) (-564))) (-15 -3296 ((-641 (-564)) (-564))) (-15 -2124 ((-564) (-564))) (-15 -4287 ((-564) (-564))) (-15 -1436 ((-564) (-564))) (-15 -1661 ((-407 (-564)) (-564))) (-15 -3964 ((-564) (-564) (-564))) (-15 -1902 ((-564) (-564) (-564))) (-15 -3888 ((-564) (-564))) (-15 -3628 ((-564) (-564))) (-15 -3856 ((-564) (-564))) (-15 -4166 ((-564) (-564) (-768))))
+((-3308 (((-2 (|:| |answer| |#4|) (|:| -2218 |#4|)) |#4| (-1 |#2| |#2|)) 57)))
+(((-562 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 ((-2 (|:| |answer| |#4|) (|:| -2218 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -562))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2218 *3))) (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))))
+(-10 -7 (-15 -3308 ((-2 (|:| |answer| |#4|) (|:| -2218 |#4|)) |#4| (-1 |#2| |#2|))))
+((-3308 (((-2 (|:| |answer| (-407 |#2|)) (|:| -2218 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -3308 ((-2 (|:| |answer| (-407 |#2|)) (|:| -2218 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -563))
+((-3308 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -2218 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
+(-10 -7 (-15 -3308 ((-2 (|:| |answer| (-407 |#2|)) (|:| -2218 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 30)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 93)) (-1582 (($ $) 94)) (-3897 (((-112) $) NIL)) (-2642 (($ $ $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3944 (($ $ $ $) 51)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL)) (-2490 (($ $ $) 88)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL)) (-2376 (((-564) $) NIL)) (-1399 (($ $ $) 53)) (-3613 (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 76) (((-685 (-564)) (-685 $)) 72)) (-4272 (((-3 $ "failed") $) 90)) (-3502 (((-3 (-407 (-564)) "failed") $) NIL)) (-3309 (((-112) $) NIL)) (-3074 (((-407 (-564)) $) NIL)) (-2939 (($) 78) (($ $) 79)) (-1371 (($ $ $) 87)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3973 (($ $ $ $) NIL)) (-3039 (($ $ $) 69)) (-3137 (((-112) $) NIL)) (-3742 (($ $ $) NIL)) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2340 (((-112) $) 34)) (-1329 (((-112) $) 82)) (-3804 (((-3 $ "failed") $) NIL)) (-2001 (((-112) $) 43)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3026 (($ $ $ $) 54)) (-3428 (($ $ $) 84)) (-3413 (($ $ $) 83)) (-1568 (($ $) NIL)) (-3451 (($ $) 49)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) 68)) (-2148 (($ $ $) NIL)) (-3304 (($) NIL T CONST)) (-4324 (($ $) 38)) (-3844 (((-1114) $) 42)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 125)) (-2727 (($ $ $) 91) (($ (-641 $)) NIL)) (-4265 (($ $) NIL)) (-4139 (((-418 $) $) 111)) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL)) (-1347 (((-3 $ "failed") $ $) 109)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1542 (((-112) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 86)) (-2203 (($ $ (-768)) NIL) (($ $) NIL)) (-2021 (($ $) 40)) (-3890 (($ $) 36)) (-2374 (((-564) $) 48) (((-536) $) 63) (((-889 (-564)) $) NIL) (((-379) $) 57) (((-225) $) 60) (((-1152) $) 65)) (-3714 (((-859) $) 46) (($ (-564)) 47) (($ $) NIL) (($ (-564)) 47)) (-3379 (((-768)) NIL T CONST)) (-2833 (((-112) $ $) NIL)) (-4389 (($ $ $) NIL)) (-3270 (($) 35)) (-3979 (((-112) $ $) NIL)) (-4037 (($ $ $ $) 50)) (-3920 (($ $) 77)) (-4312 (($) 6 T CONST)) (-4323 (($) 31 T CONST)) (-1983 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-819) $) 28) (((-1264) (-819) $ (-112)) 29)) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 33)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 10)) (-1828 (($ $) 16) (($ $ $) 39)) (-1814 (($ $ $) 37)) (** (($ $ (-918)) NIL) (($ $ (-768)) 81)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 80) (($ $ $) 52)))
+(((-564) (-13 (-545) (-612 (-1152)) (-825) (-10 -8 (-15 -2939 ($ $)) (-6 -4399) (-6 -4404) (-6 -4400) (-6 -4394)))) (T -564))
+((-2939 (*1 *1 *1) (-5 *1 (-564))))
+(-13 (-545) (-612 (-1152)) (-825) (-10 -8 (-15 -2939 ($ $)) (-6 -4399) (-6 -4404) (-6 -4400) (-6 -4394)))
+((-3402 (((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058)) 119) (((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766)) 121)) (-4039 (((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170)) 196) (((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152)) 195) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058)) 200) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379)) 201) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379)) 202) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379))))) 203) (((-1032) (-316 (-379)) (-1088 (-840 (-379)))) 191) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379)) 190) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379)) 186) (((-1032) (-766)) 178) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058)) 185)))
+(((-565) (-10 -7 (-15 -4039 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058))) (-15 -4039 ((-1032) (-766))) (-15 -4039 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379))) (-15 -4039 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379))) (-15 -4039 ((-1032) (-316 (-379)) (-1088 (-840 (-379))))) (-15 -4039 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))))) (-15 -4039 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379))) (-15 -4039 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379))) (-15 -4039 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058))) (-15 -4039 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152))) (-15 -4039 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170))))) (T -565))
+((-4039 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) (-5 *5 (-1170)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-4039 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) (-5 *5 (-1152)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *1 (-565)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *1 (-565)))) (-4039 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-4039 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-4039 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *2 (-1032)) (-5 *1 (-565)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-565)))) (-4039 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-4039 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-4039 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))))
+(-10 -7 (-15 -4039 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058))) (-15 -4039 ((-1032) (-766))) (-15 -4039 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379))) (-15 -4039 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379))) (-15 -4039 ((-1032) (-316 (-379)) (-1088 (-840 (-379))))) (-15 -4039 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))))) (-15 -4039 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379))) (-15 -4039 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379))) (-15 -4039 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058))) (-15 -4039 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152))) (-15 -4039 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170))))
+((-2884 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|)) 202)) (-1430 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|)) 102)) (-2987 (((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|) 198)) (-1624 (((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170))) 207)) (-3037 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4339 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170)) 216 (|has| |#3| (-652 |#2|)))))
+(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -1430 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -2987 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -2884 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -1624 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -3037 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4339 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -566))
+((-3037 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-1624 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094)))) (-2884 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094)))) (-2987 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))) (-1430 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))))
+(-10 -7 (-15 -1430 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -2987 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -2884 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -1624 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -3037 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4339 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|))
+((-1878 (((-2 (|:| -1766 |#2|) (|:| |nconst| |#2|)) |#2| (-1170)) 63)) (-4314 (((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|)) 180 (-12 (|has| |#2| (-1133)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 159 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564)))))) (-2210 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 161 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564)))))))
+(((-567 |#1| |#2|) (-10 -7 (-15 -1878 ((-2 (|:| -1766 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -2210 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -4314 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -4314 ((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -567))
+((-4314 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-840 *2)) (-4 *2 (-1133)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *1 (-567 *5 *2)))) (-4314 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2210 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-1878 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| -1766 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
+(-10 -7 (-15 -1878 ((-2 (|:| -1766 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -2210 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -4314 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -4314 ((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-3957 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))) 41)) (-4039 (((-585 (-407 |#2|)) (-407 |#2|)) 28)) (-4044 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-2624 (((-3 (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -4039 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -4044 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2624 ((-3 (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3957 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -568))
+((-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *5 *6)))) (-2624 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -2537 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) (-4044 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147) (-1035 (-564)))) (-5 *1 (-568 *3 *4)))) (-4039 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))))
+(-10 -7 (-15 -4039 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -4044 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2624 ((-3 (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3957 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|)))))
+((-2196 (((-3 (-564) "failed") |#1|) 14)) (-3518 (((-112) |#1|) 13)) (-2738 (((-564) |#1|) 9)))
+(((-569 |#1|) (-10 -7 (-15 -2738 ((-564) |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -2196 ((-3 (-564) "failed") |#1|))) (-1035 (-564))) (T -569))
+((-2196 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))) (-3518 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1035 (-564))))) (-2738 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))))
+(-10 -7 (-15 -2738 ((-564) |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -2196 ((-3 (-564) "failed") |#1|)))
+((-2744 (((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|)))) 48)) (-2618 (((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170)) 28)) (-4049 (((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170)) 23)) (-4137 (((-3 (-2 (|:| -2537 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))) 35)))
+(((-570 |#1|) (-10 -7 (-15 -2618 ((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -4049 ((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170))) (-15 -2744 ((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|))))) (-15 -4137 ((-3 (-2 (|:| -2537 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))))) (-13 (-556) (-1035 (-564)) (-147))) (T -570))
+((-4137 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-2 (|:| -2537 (-407 (-949 *5))) (|:| |coeff| (-407 (-949 *5))))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5))))) (-2744 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-949 *6)))) (-5 *3 (-407 (-949 *6))) (-4 *6 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6)))) (-4049 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1035 (-564)) (-147))) (-5 *1 (-570 *4)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-585 (-407 (-949 *5)))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5))))))
+(-10 -7 (-15 -2618 ((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -4049 ((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170))) (-15 -2744 ((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|))))) (-15 -4137 ((-3 (-2 (|:| -2537 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))))
+((-3702 (((-112) $ $) 73)) (-1556 (((-112) $) 47)) (-1615 ((|#1| $) 39)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) 77)) (-2657 (($ $) 137)) (-2516 (($ $) 117)) (-3884 ((|#1| $) 37)) (-4281 (((-3 $ "failed") $ $) NIL)) (-4152 (($ $) NIL)) (-2635 (($ $) 139)) (-2491 (($ $) 113)) (-2679 (($ $) 141)) (-2542 (($ $) 121)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) 92)) (-2376 (((-564) $) 94)) (-4272 (((-3 $ "failed") $) 76)) (-1473 (($ |#1| |#1|) 35)) (-3137 (((-112) $) 43)) (-1688 (($) 103)) (-2340 (((-112) $) 54)) (-4342 (($ $ (-564)) NIL)) (-2001 (((-112) $) 44)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2305 (($ $) 105)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-4203 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-407 (-564))) 91)) (-1641 ((|#1| $) 36)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) 79) (($ (-641 $)) NIL)) (-1347 (((-3 $ "failed") $ $) 78)) (-4130 (($ $) 107)) (-2692 (($ $) 145)) (-2557 (($ $) 119)) (-2669 (($ $) 147)) (-2529 (($ $) 123)) (-2647 (($ $) 143)) (-2502 (($ $) 115)) (-3267 (((-112) $ |#1|) 41)) (-3714 (((-859) $) 99) (($ (-564)) 81) (($ $) NIL) (($ (-564)) 81)) (-3379 (((-768)) 101 T CONST)) (-2728 (($ $) 159)) (-2595 (($ $) 129)) (-3979 (((-112) $ $) NIL)) (-2704 (($ $) 157)) (-2566 (($ $) 125)) (-2751 (($ $) 155)) (-2615 (($ $) 135)) (-2053 (($ $) 153)) (-2626 (($ $) 133)) (-2740 (($ $) 151)) (-2605 (($ $) 131)) (-2716 (($ $) 149)) (-2577 (($ $) 127)) (-4312 (($) 30 T CONST)) (-4323 (($) 10 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 48)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 46)) (-1828 (($ $) 52) (($ $ $) 53)) (-1814 (($ $ $) 51)) (** (($ $ (-918)) 69) (($ $ (-768)) NIL) (($ $ $) 109) (($ $ (-407 (-564))) 161)) (* (($ (-918) $) 64) (($ (-768) $) NIL) (($ (-564) $) 63) (($ $ $) 60)))
(((-571 |#1|) (-554 |#1|) (-13 (-404) (-1194))) (T -571))
NIL
(-554 |#1|)
-((-2111 (((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564))) 27)))
-(((-572) (-10 -7 (-15 -2111 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564)))))) (T -572))
-((-2111 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564))) (-5 *1 (-572)))))
-(-10 -7 (-15 -2111 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564)))))
-((-3497 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170)) 19)) (-2089 (((-641 (-610 |#2|)) (-641 |#2|) (-1170)) 23)) (-3423 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|))) 11)) (-2727 ((|#2| |#2| (-1170)) 59 (|has| |#1| (-556)))) (-2925 ((|#2| |#2| (-1170)) 87 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-3117 (((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170)) 25)) (-3084 (((-610 |#2|) (-641 (-610 |#2|))) 24)) (-1445 (((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) 115 (-12 (|has| |#2| (-284)) (|has| |#2| (-627)) (|has| |#2| (-1035 (-1170))) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-452)) (|has| |#1| (-883 (-564)))))))
-(((-573 |#1| |#2|) (-10 -7 (-15 -3497 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -3084 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -3117 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -3423 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -2089 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2727 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -2925 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1445 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-847) (-430 |#1|)) (T -573))
-((-1445 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1170))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1170))) (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1035 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1170)) (-4 *7 (-612 (-889 (-564)))) (-4 *7 (-452)) (-4 *7 (-883 (-564))) (-4 *7 (-847)) (-5 *2 (-585 *3)) (-5 *1 (-573 *7 *3)))) (-2925 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-847)) (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-2727 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-847)) (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))) (-2089 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6)))) (-3423 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-847)) (-5 *1 (-573 *3 *4)))) (-3117 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6)) (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *1 (-573 *5 *6)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-847)) (-5 *2 (-610 *5)) (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))) (-3497 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4)) (-4 *4 (-847)) (-5 *1 (-573 *4 *5)))))
-(-10 -7 (-15 -3497 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -3084 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -3117 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -3423 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -2089 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2727 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -2925 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1445 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1911 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|)) 200)) (-2472 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|))) 177)) (-3624 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|))) 174)) (-3380 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 165)) (-1421 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-4350 (((-3 (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 203)) (-2669 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 206)) (-3150 (((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 90)) (-1713 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-3877 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|))) 181)) (-2581 (((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 169)) (-2080 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 191)) (-3655 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|)) 211)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -1421 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2080 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -1911 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -2669 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -3655 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -2472 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -3877 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -4350 ((-3 (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3624 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -3380 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2581 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -3150 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1713 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -574))
-((-1713 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-574 *5 *3)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-2581 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3549 *4) (|:| |sol?| (-112))) (-564) *4)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5)))) (-3380 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2745 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4)))) (-3624 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7))) (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *7)))) (-4350 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2745 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-3877 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3549 *7) (|:| |sol?| (-112))) (-564) *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-2472 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2745 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-3655 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3549 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2745 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2669 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2745 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2745 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-1911 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2080 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3549 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-1421 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2745 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(-10 -7 (-15 -1421 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2080 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -1911 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -2669 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -3655 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -2472 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -3877 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -4350 ((-3 (-2 (|:| -2745 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3624 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -3380 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2581 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3549 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -3150 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1713 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1604 (((-3 |#2| "failed") |#2| (-1170) (-1170)) 10)))
-(((-575 |#1| |#2|) (-10 -7 (-15 -1604 ((-3 |#2| "failed") |#2| (-1170) (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-1133) (-29 |#1|))) (T -575))
-((-1604 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-1133) (-29 *4))))))
-(-10 -7 (-15 -1604 ((-3 |#2| "failed") |#2| (-1170) (-1170))))
-((-1794 (((-687 (-1217)) $ (-1217)) 26)) (-3224 (((-687 (-549)) $ (-549)) 25)) (-3620 (((-768) $ (-128)) 27)) (-2507 (((-687 (-129)) $ (-129)) 24)) (-1659 (((-687 (-1217)) $) 12)) (-2842 (((-687 (-1215)) $) 8)) (-3076 (((-687 (-1214)) $) 10)) (-1396 (((-687 (-549)) $) 13)) (-3410 (((-687 (-547)) $) 9)) (-2011 (((-687 (-546)) $) 11)) (-2248 (((-768) $ (-128)) 7)) (-2021 (((-687 (-129)) $) 14)) (-3713 (($ $) 6)))
+((-2508 (((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564))) 27)))
+(((-572) (-10 -7 (-15 -2508 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564)))))) (T -572))
+((-2508 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564))) (-5 *1 (-572)))))
+(-10 -7 (-15 -2508 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564)))))
+((-2602 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170)) 19)) (-2282 (((-641 (-610 |#2|)) (-641 |#2|) (-1170)) 23)) (-3452 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|))) 11)) (-2350 ((|#2| |#2| (-1170)) 59 (|has| |#1| (-556)))) (-3744 ((|#2| |#2| (-1170)) 87 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-3085 (((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170)) 25)) (-2832 (((-610 |#2|) (-641 (-610 |#2|))) 24)) (-1899 (((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) 115 (-12 (|has| |#2| (-284)) (|has| |#2| (-627)) (|has| |#2| (-1035 (-1170))) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-452)) (|has| |#1| (-883 (-564)))))))
+(((-573 |#1| |#2|) (-10 -7 (-15 -2602 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -2832 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -3085 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -3452 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -2282 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2350 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -3744 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1899 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-847) (-430 |#1|)) (T -573))
+((-1899 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1170))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1170))) (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1035 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1170)) (-4 *7 (-612 (-889 (-564)))) (-4 *7 (-452)) (-4 *7 (-883 (-564))) (-4 *7 (-847)) (-5 *2 (-585 *3)) (-5 *1 (-573 *7 *3)))) (-3744 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-847)) (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-2350 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-847)) (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6)))) (-3452 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-847)) (-5 *1 (-573 *3 *4)))) (-3085 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6)) (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *1 (-573 *5 *6)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-847)) (-5 *2 (-610 *5)) (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))) (-2602 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4)) (-4 *4 (-847)) (-5 *1 (-573 *4 *5)))))
+(-10 -7 (-15 -2602 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -2832 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -3085 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -3452 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -2282 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2350 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -3744 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1899 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-4118 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|)) 200)) (-1644 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|))) 177)) (-4380 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|))) 174)) (-3863 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 165)) (-1657 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-3706 (((-3 (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 203)) (-2963 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 206)) (-2258 (((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 90)) (-2845 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-1894 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|))) 181)) (-1418 (((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 169)) (-2201 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 191)) (-3408 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|)) 211)))
+(((-574 |#1| |#2|) (-10 -7 (-15 -1657 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2201 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -4118 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -2963 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -3408 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -1644 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -1894 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -3706 ((-3 (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -4380 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -3863 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1418 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2258 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2845 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -574))
+((-2845 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-574 *5 *3)))) (-2258 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-1418 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2592 *4) (|:| |sol?| (-112))) (-564) *4)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5)))) (-3863 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2537 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4)))) (-4380 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7))) (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *7)))) (-3706 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2537 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-1894 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2592 *7) (|:| |sol?| (-112))) (-564) *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-1644 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2537 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-3408 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2592 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2537 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2963 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2537 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2537 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-4118 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2201 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2592 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-1657 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2537 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(-10 -7 (-15 -1657 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2201 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -4118 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -2963 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -3408 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -1644 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -1894 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -3706 ((-3 (-2 (|:| -2537 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -4380 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -3863 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1418 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2592 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2258 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2845 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-4185 (((-3 |#2| "failed") |#2| (-1170) (-1170)) 10)))
+(((-575 |#1| |#2|) (-10 -7 (-15 -4185 ((-3 |#2| "failed") |#2| (-1170) (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-1133) (-29 |#1|))) (T -575))
+((-4185 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-1133) (-29 *4))))))
+(-10 -7 (-15 -4185 ((-3 |#2| "failed") |#2| (-1170) (-1170))))
+((-2363 (((-687 (-1217)) $ (-1217)) 26)) (-1742 (((-687 (-549)) $ (-549)) 25)) (-4332 (((-768) $ (-128)) 27)) (-2010 (((-687 (-129)) $ (-129)) 24)) (-3420 (((-687 (-1217)) $) 12)) (-4117 (((-687 (-1215)) $) 8)) (-3900 (((-687 (-1214)) $) 10)) (-1540 (((-687 (-549)) $) 13)) (-2983 (((-687 (-547)) $) 9)) (-3877 (((-687 (-546)) $) 11)) (-1306 (((-768) $ (-128)) 7)) (-2839 (((-687 (-129)) $) 14)) (-3977 (($ $) 6)))
(((-576) (-140)) (T -576))
NIL
(-13 (-527) (-857))
(((-173) . T) ((-527) . T) ((-857) . T))
-((-1794 (((-687 (-1217)) $ (-1217)) NIL)) (-3224 (((-687 (-549)) $ (-549)) NIL)) (-3620 (((-768) $ (-128)) NIL)) (-2507 (((-687 (-129)) $ (-129)) NIL)) (-1659 (((-687 (-1217)) $) NIL)) (-2842 (((-687 (-1215)) $) NIL)) (-3076 (((-687 (-1214)) $) NIL)) (-1396 (((-687 (-549)) $) NIL)) (-3410 (((-687 (-547)) $) NIL)) (-2011 (((-687 (-546)) $) NIL)) (-2248 (((-768) $ (-128)) NIL)) (-2021 (((-687 (-129)) $) NIL)) (-2408 (((-112) $) NIL)) (-2069 (($ (-388)) 14) (($ (-1152)) 16)) (-1765 (((-859) $) NIL)) (-3713 (($ $) NIL)))
-(((-577) (-13 (-576) (-611 (-859)) (-10 -8 (-15 -2069 ($ (-388))) (-15 -2069 ($ (-1152))) (-15 -2408 ((-112) $))))) (T -577))
-((-2069 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577)))))
-(-13 (-576) (-611 (-859)) (-10 -8 (-15 -2069 ($ (-388))) (-15 -2069 ($ (-1152))) (-15 -2408 ((-112) $))))
-((-1754 (((-112) $ $) NIL)) (-1874 (($) 7 T CONST)) (-4202 (((-1152) $) NIL)) (-3523 (($) 6 T CONST)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 14)) (-2196 (($) 8 T CONST)) (-1686 (((-112) $ $) 10)))
-(((-578) (-13 (-1094) (-10 -8 (-15 -3523 ($) -3246) (-15 -1874 ($) -3246) (-15 -2196 ($) -3246)))) (T -578))
-((-3523 (*1 *1) (-5 *1 (-578))) (-1874 (*1 *1) (-5 *1 (-578))) (-2196 (*1 *1) (-5 *1 (-578))))
-(-13 (-1094) (-10 -8 (-15 -3523 ($) -3246) (-15 -1874 ($) -3246) (-15 -2196 ($) -3246)))
-((-1754 (((-112) $ $) NIL)) (-3304 (((-687 $) (-491)) 21)) (-4202 (((-1152) $) NIL)) (-3786 (($ (-1152)) 14)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 34)) (-1449 (((-213 4 (-129)) $) 24)) (-1686 (((-112) $ $) 26)))
-(((-579) (-13 (-1094) (-10 -8 (-15 -3786 ($ (-1152))) (-15 -1449 ((-213 4 (-129)) $)) (-15 -3304 ((-687 $) (-491)))))) (T -579))
-((-3786 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579)))))
-(-13 (-1094) (-10 -8 (-15 -3786 ($ (-1152))) (-15 -1449 ((-213 4 (-129)) $)) (-15 -3304 ((-687 $) (-491)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-4019 (($ $ (-564)) 77)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-2806 (($ (-1166 (-564)) (-564)) 83)) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) 68)) (-1798 (($ $) 43)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-2261 (((-768) $) 16)) (-2419 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4022 (((-564)) 37)) (-2942 (((-564) $) 41)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2678 (($ $ (-564)) 24)) (-1343 (((-3 $ "failed") $ $) 73)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) 17)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 74)) (-1824 (((-1150 (-564)) $) 19)) (-3204 (($ $) 26)) (-1765 (((-859) $) 103) (($ (-564)) 63) (($ $) NIL)) (-1965 (((-768)) 15 T CONST)) (-1582 (((-112) $ $) NIL)) (-2299 (((-564) $ (-564)) 46)) (-4317 (($) 44 T CONST)) (-4327 (($) 21 T CONST)) (-1686 (((-112) $ $) 54)) (-1783 (($ $) 62) (($ $ $) 48)) (-1771 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 64) (($ $ $) 65)))
+((-2363 (((-687 (-1217)) $ (-1217)) NIL)) (-1742 (((-687 (-549)) $ (-549)) NIL)) (-4332 (((-768) $ (-128)) NIL)) (-2010 (((-687 (-129)) $ (-129)) NIL)) (-3420 (((-687 (-1217)) $) NIL)) (-4117 (((-687 (-1215)) $) NIL)) (-3900 (((-687 (-1214)) $) NIL)) (-1540 (((-687 (-549)) $) NIL)) (-2983 (((-687 (-547)) $) NIL)) (-3877 (((-687 (-546)) $) NIL)) (-1306 (((-768) $ (-128)) NIL)) (-2839 (((-687 (-129)) $) NIL)) (-3346 (((-112) $) NIL)) (-3241 (($ (-388)) 14) (($ (-1152)) 16)) (-3714 (((-859) $) NIL)) (-3977 (($ $) NIL)))
+(((-577) (-13 (-576) (-611 (-859)) (-10 -8 (-15 -3241 ($ (-388))) (-15 -3241 ($ (-1152))) (-15 -3346 ((-112) $))))) (T -577))
+((-3241 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577)))))
+(-13 (-576) (-611 (-859)) (-10 -8 (-15 -3241 ($ (-388))) (-15 -3241 ($ (-1152))) (-15 -3346 ((-112) $))))
+((-3702 (((-112) $ $) NIL)) (-3783 (($) 7 T CONST)) (-1868 (((-1152) $) NIL)) (-3568 (($) 6 T CONST)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 14)) (-2080 (($) 8 T CONST)) (-1720 (((-112) $ $) 10)))
+(((-578) (-13 (-1094) (-10 -8 (-15 -3568 ($) -2222) (-15 -3783 ($) -2222) (-15 -2080 ($) -2222)))) (T -578))
+((-3568 (*1 *1) (-5 *1 (-578))) (-3783 (*1 *1) (-5 *1 (-578))) (-2080 (*1 *1) (-5 *1 (-578))))
+(-13 (-1094) (-10 -8 (-15 -3568 ($) -2222) (-15 -3783 ($) -2222) (-15 -2080 ($) -2222)))
+((-3702 (((-112) $ $) NIL)) (-2348 (((-687 $) (-491)) 21)) (-1868 (((-1152) $) NIL)) (-2269 (($ (-1152)) 14)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 34)) (-1944 (((-213 4 (-129)) $) 24)) (-1720 (((-112) $ $) 26)))
+(((-579) (-13 (-1094) (-10 -8 (-15 -2269 ($ (-1152))) (-15 -1944 ((-213 4 (-129)) $)) (-15 -2348 ((-687 $) (-491)))))) (T -579))
+((-2269 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579)))))
+(-13 (-1094) (-10 -8 (-15 -2269 ($ (-1152))) (-15 -1944 ((-213 4 (-129)) $)) (-15 -2348 ((-687 $) (-491)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-4152 (($ $ (-564)) 77)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-1939 (($ (-1166 (-564)) (-564)) 83)) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) 68)) (-2409 (($ $) 43)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1454 (((-768) $) 16)) (-2340 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3756 (((-564)) 37)) (-3941 (((-564) $) 41)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3042 (($ $ (-564)) 24)) (-1347 (((-3 $ "failed") $ $) 73)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) 17)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 74)) (-2678 (((-1150 (-564)) $) 19)) (-2807 (($ $) 26)) (-3714 (((-859) $) 103) (($ (-564)) 63) (($ $) NIL)) (-3379 (((-768)) 15 T CONST)) (-3979 (((-112) $ $) NIL)) (-2441 (((-564) $ (-564)) 46)) (-4312 (($) 44 T CONST)) (-4323 (($) 21 T CONST)) (-1720 (((-112) $ $) 54)) (-1828 (($ $) 62) (($ $ $) 48)) (-1814 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 64) (($ $ $) 65)))
(((-580 |#1| |#2|) (-866 |#1|) (-564) (-112)) (T -580))
NIL
(-866 |#1|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 30)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-2590 (((-1182 (-918) (-768)) (-564)) 59)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 $ "failed") $) 98)) (-2064 (($ $) 97)) (-2910 (($ (-1259 $)) 96)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) 44)) (-2542 (($) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) 61)) (-3242 (((-112) $) NIL)) (-2184 (($ $) NIL) (($ $ (-768)) NIL)) (-3241 (((-112) $) NIL)) (-2261 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-2419 (((-112) $) NIL)) (-1650 (($) 49 (|has| $ (-368)))) (-2805 (((-112) $) NIL (|has| $ (-368)))) (-1779 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-3374 (((-3 $ "failed") $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 $) $ (-918)) NIL (|has| $ (-368))) (((-1166 $) $) 107)) (-2209 (((-918) $) 67)) (-3645 (((-1166 $) $) NIL (|has| $ (-368)))) (-3135 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-3325 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL T CONST)) (-1403 (($ (-918)) 60)) (-4120 (((-112) $) 90)) (-3802 (((-1114) $) NIL)) (-1502 (($) 28 (|has| $ (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) 54)) (-4006 (((-418 $) $) NIL)) (-1369 (((-918)) 89) (((-830 (-918))) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-3 (-768) "failed") $ $) NIL) (((-768) $) NIL)) (-3850 (((-134)) NIL)) (-3226 (($ $ (-768)) NIL) (($ $) NIL)) (-3344 (((-918) $) 88) (((-830 (-918)) $) NIL)) (-1916 (((-1166 $)) 105)) (-3726 (($) 66)) (-3387 (($) 50 (|has| $ (-368)))) (-3072 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) 94)) (-2127 (((-564) $) 40)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) 42) (($ $) NIL) (($ (-407 (-564))) NIL)) (-2864 (((-3 $ "failed") $) NIL) (($ $) 108)) (-1965 (((-768)) 51 T CONST)) (-3941 (((-1259 $) (-918)) 100) (((-1259 $)) 99)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) 31 T CONST)) (-4327 (($) 27 T CONST)) (-1560 (($ $ (-768)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 34)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 30)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-1494 (((-1182 (-918) (-768)) (-564)) 59)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 $ "failed") $) 98)) (-2376 (($ $) 97)) (-3566 (($ (-1259 $)) 96)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) 44)) (-2939 (($) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) 61)) (-1937 (((-112) $) NIL)) (-1957 (($ $) NIL) (($ $ (-768)) NIL)) (-1926 (((-112) $) NIL)) (-1454 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-2340 (((-112) $) NIL)) (-3344 (($) 49 (|has| $ (-368)))) (-1927 (((-112) $) NIL (|has| $ (-368)))) (-2217 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 $) $ (-918)) NIL (|has| $ (-368))) (((-1166 $) $) 107)) (-4031 (((-918) $) 67)) (-1513 (((-1166 $) $) NIL (|has| $ (-368)))) (-3240 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-1486 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL T CONST)) (-3338 (($ (-918)) 60)) (-2309 (((-112) $) 90)) (-3844 (((-1114) $) NIL)) (-1729 (($) 28 (|has| $ (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) 54)) (-4139 (((-418 $) $) NIL)) (-3117 (((-918)) 89) (((-830 (-918))) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-3 (-768) "failed") $ $) NIL) (((-768) $) NIL)) (-2869 (((-134)) NIL)) (-2203 (($ $ (-768)) NIL) (($ $) NIL)) (-3475 (((-918) $) 88) (((-830 (-918)) $) NIL)) (-4180 (((-1166 $)) 105)) (-2927 (($) 66)) (-3927 (($) 50 (|has| $ (-368)))) (-3867 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) 94)) (-2374 (((-564) $) 40)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) 42) (($ $) NIL) (($ (-407 (-564))) NIL)) (-4363 (((-3 $ "failed") $) NIL) (($ $) 108)) (-3379 (((-768)) 51 T CONST)) (-4339 (((-1259 $) (-918)) 100) (((-1259 $)) 99)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) 31 T CONST)) (-4323 (($) 27 T CONST)) (-1946 (($ $ (-768)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 34)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
(((-581 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-918)) (T -581))
NIL
(-13 (-349) (-329 $) (-612 (-564)))
-((-4138 (((-1264) (-1152)) 10)))
-(((-582) (-10 -7 (-15 -4138 ((-1264) (-1152))))) (T -582))
-((-4138 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582)))))
-(-10 -7 (-15 -4138 ((-1264) (-1152))))
-((-1654 (((-585 |#2|) (-585 |#2|)) 41)) (-2134 (((-641 |#2|) (-585 |#2|)) 43)) (-1493 ((|#2| (-585 |#2|)) 49)))
-(((-583 |#1| |#2|) (-10 -7 (-15 -1654 ((-585 |#2|) (-585 |#2|))) (-15 -2134 ((-641 |#2|) (-585 |#2|))) (-15 -1493 (|#2| (-585 |#2|)))) (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))) (-13 (-29 |#1|) (-1194))) (T -583))
-((-1493 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194))) (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *1 (-583 *3 *4)))))
-(-10 -7 (-15 -1654 ((-585 |#2|) (-585 |#2|))) (-15 -2134 ((-641 |#2|) (-585 |#2|))) (-15 -1493 (|#2| (-585 |#2|))))
-((-2082 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 30)))
-(((-584 |#1| |#2|) (-10 -7 (-15 -2082 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2082 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2082 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2082 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -584))
-((-2082 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) (-2082 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) (-2082 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2745 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2745 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6)))))
-(-10 -7 (-15 -2082 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2082 ((-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2745 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2082 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2082 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) 76)) (-2064 ((|#1| $) NIL)) (-2745 ((|#1| $) 30)) (-1579 (((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-4371 (($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1390 (((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $) 31)) (-4202 (((-1152) $) NIL)) (-3504 (($ |#1| |#1|) 38) (($ |#1| (-1170)) 49 (|has| |#1| (-1035 (-1170))))) (-3802 (((-1114) $) NIL)) (-4362 (((-112) $) 35)) (-3226 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1170)) 89 (|has| |#1| (-897 (-1170))))) (-1765 (((-859) $) 112) (($ |#1|) 29)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) 17) (($ $ $) NIL)) (-1771 (($ $ $) 85)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 16) (($ (-407 (-564)) $) 41) (($ $ (-407 (-564))) NIL)))
-(((-585 |#1|) (-13 (-714 (-407 (-564))) (-1035 |#1|) (-10 -8 (-15 -4371 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2745 (|#1| $)) (-15 -1390 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -1579 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4362 ((-112) $)) (-15 -3504 ($ |#1| |#1|)) (-15 -3226 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-897 (-1170))) (-15 -3226 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1035 (-1170))) (-15 -3504 ($ |#1| (-1170))) |%noBranch|))) (-363)) (T -585))
-((-4371 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2)) (|:| |logand| (-1166 *2))))) (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-585 *2)))) (-2745 (*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3)) (|:| |logand| (-1166 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3504 (*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3226 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3226 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-897 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1170)))) (-3504 (*1 *1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1035 *3)) (-4 *2 (-363)))))
-(-13 (-714 (-407 (-564))) (-1035 |#1|) (-10 -8 (-15 -4371 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2745 (|#1| $)) (-15 -1390 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -1579 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4362 ((-112) $)) (-15 -3504 ($ |#1| |#1|)) (-15 -3226 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-897 (-1170))) (-15 -3226 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1035 (-1170))) (-15 -3504 ($ |#1| (-1170))) |%noBranch|)))
-((-1889 (((-112) |#1|) 16)) (-2453 (((-3 |#1| "failed") |#1|) 14)) (-2674 (((-2 (|:| -2743 |#1|) (|:| -3747 (-768))) |#1|) 38) (((-3 |#1| "failed") |#1| (-768)) 18)) (-3818 (((-112) |#1| (-768)) 19)) (-2951 ((|#1| |#1|) 42)) (-2610 ((|#1| |#1| (-768)) 45)))
-(((-586 |#1|) (-10 -7 (-15 -3818 ((-112) |#1| (-768))) (-15 -2674 ((-3 |#1| "failed") |#1| (-768))) (-15 -2674 ((-2 (|:| -2743 |#1|) (|:| -3747 (-768))) |#1|)) (-15 -2610 (|#1| |#1| (-768))) (-15 -1889 ((-112) |#1|)) (-15 -2453 ((-3 |#1| "failed") |#1|)) (-15 -2951 (|#1| |#1|))) (-545)) (T -586))
-((-2951 (*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2453 (*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-1889 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-2610 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2674 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2743 *3) (|:| -3747 (-768)))) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-2674 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
-(-10 -7 (-15 -3818 ((-112) |#1| (-768))) (-15 -2674 ((-3 |#1| "failed") |#1| (-768))) (-15 -2674 ((-2 (|:| -2743 |#1|) (|:| -3747 (-768))) |#1|)) (-15 -2610 (|#1| |#1| (-768))) (-15 -1889 ((-112) |#1|)) (-15 -2453 ((-3 |#1| "failed") |#1|)) (-15 -2951 (|#1| |#1|)))
-((-4270 (((-1166 |#1|) (-918)) 43)))
-(((-587 |#1|) (-10 -7 (-15 -4270 ((-1166 |#1|) (-918)))) (-349)) (T -587))
-((-4270 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4)) (-4 *4 (-349)))))
-(-10 -7 (-15 -4270 ((-1166 |#1|) (-918))))
-((-1654 (((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|)))) 27)) (-3591 (((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170)) 34 (|has| |#1| (-147)))) (-2134 (((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|)))) 19)) (-3194 (((-316 |#1|) (-407 (-949 |#1|)) (-1170)) 32 (|has| |#1| (-147)))) (-1493 (((-316 |#1|) (-585 (-407 (-949 |#1|)))) 21)))
-(((-588 |#1|) (-10 -7 (-15 -1654 ((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|))))) (-15 -2134 ((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|))))) (-15 -1493 ((-316 |#1|) (-585 (-407 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3591 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3194 ((-316 |#1|) (-407 (-949 |#1|)) (-1170)))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (T -588))
-((-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-949 *4)))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-949 *4)))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-585 (-407 (-949 *3)))) (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *1 (-588 *3)))))
-(-10 -7 (-15 -1654 ((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|))))) (-15 -2134 ((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|))))) (-15 -1493 ((-316 |#1|) (-585 (-407 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3591 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3194 ((-316 |#1|) (-407 (-949 |#1|)) (-1170)))) |%noBranch|))
-((-4021 (((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564)))) 74) (((-641 (-685 (-564))) (-641 (-564))) 75) (((-685 (-564)) (-641 (-564)) (-902 (-564))) 68)) (-4179 (((-768) (-641 (-564))) 65)))
-(((-589) (-10 -7 (-15 -4179 ((-768) (-641 (-564)))) (-15 -4021 ((-685 (-564)) (-641 (-564)) (-902 (-564)))) (-15 -4021 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -4021 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564))))))) (T -589))
-((-4021 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-902 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-4021 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-902 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-589)))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-768)) (-5 *1 (-589)))))
-(-10 -7 (-15 -4179 ((-768) (-641 (-564)))) (-15 -4021 ((-685 (-564)) (-641 (-564)) (-902 (-564)))) (-15 -4021 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -4021 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564))))))
-((-2605 (((-641 |#5|) |#5| (-112)) 99)) (-1684 (((-112) |#5| (-641 |#5|)) 34)))
-(((-590 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2605 ((-641 |#5|) |#5| (-112))) (-15 -1684 ((-112) |#5| (-641 |#5|)))) (-13 (-307) (-147)) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -590))
-((-1684 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-590 *5 *6 *7 *8 *3)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-641 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2605 ((-641 |#5|) |#5| (-112))) (-15 -1684 ((-112) |#5| (-641 |#5|))))
-((-1754 (((-112) $ $) NIL)) (-4324 (((-1129) $) 11)) (-4312 (((-1129) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-591) (-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1129) $))))) (T -591))
-((-4312 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))))
-(-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1129) $))))
-((-1754 (((-112) $ $) NIL (|has| (-144) (-1094)))) (-3318 (($ $) 38)) (-2851 (($ $) NIL)) (-2567 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-2490 (((-112) $ $) 66)) (-2471 (((-112) $ $ (-564)) 60)) (-1654 (((-641 $) $ (-144)) 74) (((-641 $) $ (-141)) 75)) (-4310 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-847)))) (-3606 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-847))))) (-2494 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 (((-144) $ (-564) (-144)) 57 (|has| $ (-6 -4412))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3919 (($ $ (-144)) 79) (($ $ (-141)) 80)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-2856 (($ $ (-1226 (-564)) $) 56)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2359 (($ (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4411)))) (-3528 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4412)))) (-3455 (((-144) $ (-564)) NIL)) (-2516 (((-112) $ $) 93)) (-1356 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 63 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 61) (((-564) (-141) $ (-564)) 65)) (-3080 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-1633 (($ (-768) (-144)) 9)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) 32 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| (-144) (-847)))) (-4012 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-847)))) (-3817 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-1479 (((-564) $) 47 (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| (-144) (-847)))) (-3128 (((-112) $ $ (-144)) 94)) (-4299 (((-768) $ $ (-144)) 91)) (-3513 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2847 (($ $) 41)) (-1816 (($ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3934 (($ $ (-144)) 76) (($ $ (-141)) 77)) (-4202 (((-1152) $) 43 (|has| (-144) (-1094)))) (-3412 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) 27)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-564) $) 90) (((-1114) $) NIL (|has| (-144) (-1094)))) (-3073 (((-144) $) NIL (|has| (-564) (-847)))) (-2343 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2614 (($ $ (-144)) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-3599 (((-641 (-144)) $) NIL)) (-2742 (((-112) $) 15)) (-3845 (($) 10)) (-4382 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) 67) (($ $ (-1226 (-564))) 25) (($ $ $) NIL)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3815 (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411))) (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2286 (($ $ $ (-564)) 82 (|has| $ (-6 -4412)))) (-1899 (($ $) 20)) (-2127 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-1776 (($ (-641 (-144))) NIL)) (-2817 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-641 $)) 83)) (-1765 (($ (-144)) NIL) (((-859) $) 31 (|has| (-144) (-611 (-859))))) (-2237 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1686 (((-112) $ $) 17 (|has| (-144) (-1094)))) (-1728 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1705 (((-112) $ $) 18 (|has| (-144) (-847)))) (-2589 (((-768) $) 16 (|has| $ (-6 -4411)))))
-(((-592 |#1|) (-13 (-1138) (-10 -8 (-15 -3802 ((-564) $)))) (-564)) (T -592))
-((-3802 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2))))
-(-13 (-1138) (-10 -8 (-15 -3802 ((-564) $))))
-((-1334 (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|)) 32)))
-(((-593 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1334 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -1334 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|)) (T -593))
-((-1334 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-1334 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1088 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-790)) (-4 *4 (-847)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *6 *4 *7 *3)))))
-(-10 -7 (-15 -1334 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -1334 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 71)) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3742 (($ $ (-564)) 57) (($ $ (-564) (-564)) 58)) (-3219 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 64)) (-1402 (($ $) 107)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2654 (((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564))) 240)) (-3526 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 36)) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1459 (((-112) $) NIL)) (-2261 (((-564) $) 62) (((-564) $ (-564)) 63)) (-2419 (((-112) $) NIL)) (-2300 (($ $ (-918)) 83)) (-3849 (($ (-1 |#1| (-564)) $) 80)) (-3101 (((-112) $) 26)) (-4145 (($ |#1| (-564)) 22) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2082 (($ (-1 |#1| |#1|) $) 75)) (-3110 (($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 13)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3591 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-3610 (((-3 $ "failed") $ $ (-112)) 106)) (-3273 (($ $ $) 114)) (-3802 (((-1114) $) NIL)) (-1635 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 15)) (-3055 (((-1023 (-840 (-564))) $) 14)) (-2678 (($ $ (-564)) 47)) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2407 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-4382 ((|#1| $ (-564)) 61) (($ $ $) NIL (|has| (-564) (-1106)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-3344 (((-564) $) NIL)) (-3204 (($ $) 48)) (-1765 (((-859) $) NIL) (($ (-564)) 29) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 28 (|has| |#1| (-172)))) (-1757 ((|#1| $ (-564)) 60)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) 39 T CONST)) (-3415 ((|#1| $) NIL)) (-3596 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-1503 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3370 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-2133 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-2890 (($ $) 201 (|has| |#1| (-38 (-407 (-564)))))) (-3748 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2083 (($ $ (-407 (-564))) 176 (|has| |#1| (-38 (-407 (-564)))))) (-2619 (($ $ |#1|) 156 (|has| |#1| (-38 (-407 (-564)))))) (-2274 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3614 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-4347 (($ $) 203 (|has| |#1| (-38 (-407 (-564)))))) (-3603 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2739 (($ $) 199 (|has| |#1| (-38 (-407 (-564)))))) (-1968 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-2188 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-2993 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-2466 (($ $) 209 (|has| |#1| (-38 (-407 (-564)))))) (-4010 (($ $) 185 (|has| |#1| (-38 (-407 (-564)))))) (-3900 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-2573 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-1440 (($ $) 213 (|has| |#1| (-38 (-407 (-564)))))) (-2151 (($ $) 189 (|has| |#1| (-38 (-407 (-564)))))) (-3209 (($ $) 215 (|has| |#1| (-38 (-407 (-564)))))) (-2368 (($ $) 191 (|has| |#1| (-38 (-407 (-564)))))) (-3724 (($ $) 211 (|has| |#1| (-38 (-407 (-564)))))) (-1478 (($ $) 187 (|has| |#1| (-38 (-407 (-564)))))) (-3686 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-4180 (($ $) 183 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2299 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-4317 (($) 30 T CONST)) (-4327 (($) 40 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1686 (((-112) $ $) 73)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) 90) (($ $ $) 72)) (-1771 (($ $ $) 87)) (** (($ $ (-918)) NIL) (($ $ (-768)) 109)) (* (($ (-918) $) 97) (($ (-768) $) 95) (($ (-564) $) 92) (($ $ $) 103) (($ $ |#1|) NIL) (($ |#1| $) 121) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-594 |#1|) (-13 (-1237 |#1| (-564)) (-10 -8 (-15 -3110 ($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3055 ((-1023 (-840 (-564))) $)) (-15 -1635 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -3526 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3101 ((-112) $)) (-15 -3849 ($ (-1 |#1| (-564)) $)) (-15 -3610 ((-3 $ "failed") $ $ (-112))) (-15 -1402 ($ $)) (-15 -3273 ($ $ $)) (-15 -2654 ((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $)) (-15 -2619 ($ $ |#1|)) (-15 -2083 ($ $ (-407 (-564)))) (-15 -3614 ($ $)) (-15 -2274 ($ $)) (-15 -2133 ($ $)) (-15 -2993 ($ $)) (-15 -1503 ($ $)) (-15 -1968 ($ $)) (-15 -3748 ($ $)) (-15 -3603 ($ $)) (-15 -2573 ($ $)) (-15 -4180 ($ $)) (-15 -4010 ($ $)) (-15 -1478 ($ $)) (-15 -2151 ($ $)) (-15 -2368 ($ $)) (-15 -3370 ($ $)) (-15 -2188 ($ $)) (-15 -3596 ($ $)) (-15 -2739 ($ $)) (-15 -2890 ($ $)) (-15 -4347 ($ $)) (-15 -3900 ($ $)) (-15 -3686 ($ $)) (-15 -2466 ($ $)) (-15 -3724 ($ $)) (-15 -1440 ($ $)) (-15 -3209 ($ $))) |%noBranch|))) (-1046)) (T -594))
-((-3101 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-3110 (*1 *1 *2 *3) (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1046)) (-5 *1 (-594 *4)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) (-3849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) (-3610 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-1402 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))) (-3273 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))) (-2654 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6)))) (-5 *4 (-1023 (-840 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564))) (-4 *6 (-1046)) (-5 *2 (-859)) (-5 *1 (-594 *6)))) (-3591 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2619 (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1046)))) (-3614 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2133 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2993 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1503 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1968 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3748 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3603 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2573 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4180 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4010 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1478 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3370 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2188 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3596 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2739 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2890 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4347 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3900 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3686 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2466 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3724 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1440 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3209 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(-13 (-1237 |#1| (-564)) (-10 -8 (-15 -3110 ($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3055 ((-1023 (-840 (-564))) $)) (-15 -1635 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -3526 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3101 ((-112) $)) (-15 -3849 ($ (-1 |#1| (-564)) $)) (-15 -3610 ((-3 $ "failed") $ $ (-112))) (-15 -1402 ($ $)) (-15 -3273 ($ $ $)) (-15 -2654 ((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $)) (-15 -2619 ($ $ |#1|)) (-15 -2083 ($ $ (-407 (-564)))) (-15 -3614 ($ $)) (-15 -2274 ($ $)) (-15 -2133 ($ $)) (-15 -2993 ($ $)) (-15 -1503 ($ $)) (-15 -1968 ($ $)) (-15 -3748 ($ $)) (-15 -3603 ($ $)) (-15 -2573 ($ $)) (-15 -4180 ($ $)) (-15 -4010 ($ $)) (-15 -1478 ($ $)) (-15 -2151 ($ $)) (-15 -2368 ($ $)) (-15 -3370 ($ $)) (-15 -2188 ($ $)) (-15 -3596 ($ $)) (-15 -2739 ($ $)) (-15 -2890 ($ $)) (-15 -4347 ($ $)) (-15 -3900 ($ $)) (-15 -3686 ($ $)) (-15 -2466 ($ $)) (-15 -3724 ($ $)) (-15 -1440 ($ $)) (-15 -3209 ($ $))) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3526 (($ (-1150 |#1|)) 9)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) 48)) (-1459 (((-112) $) 58)) (-2261 (((-768) $) 63) (((-768) $ (-768)) 62)) (-2419 (((-112) $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1343 (((-3 $ "failed") $ $) 50 (|has| |#1| (-556)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556)))) (-4264 (((-1150 |#1|) $) 29)) (-1965 (((-768)) 57 T CONST)) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) 10 T CONST)) (-4327 (($) 14 T CONST)) (-1686 (((-112) $ $) 28)) (-1783 (($ $) 36) (($ $ $) 16)) (-1771 (($ $ $) 31)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-564)) 42)))
-(((-595 |#1|) (-13 (-1046) (-10 -8 (-15 -4264 ((-1150 |#1|) $)) (-15 -3526 ($ (-1150 |#1|))) (-15 -1459 ((-112) $)) (-15 -2261 ((-768) $)) (-15 -2261 ((-768) $ (-768))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) (-1046)) (T -595))
-((-4264 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-595 *3)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-2261 (*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))))
-(-13 (-1046) (-10 -8 (-15 -4264 ((-1150 |#1|) $)) (-15 -3526 ($ (-1150 |#1|))) (-15 -1459 ((-112) $)) (-15 -2261 ((-768) $)) (-15 -2261 ((-768) $ (-768))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|)))
-((-2082 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 15)))
-(((-596 |#1| |#2|) (-10 -7 (-15 -2082 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1209) (-1209)) (T -596))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6)))))
-(-10 -7 (-15 -2082 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))))
-((-2082 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)) 20) (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|)) 19) (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 18)))
-(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -2082 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2082 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -2082 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -597))
-((-2082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-599 *8)) (-5 *1 (-597 *6 *7 *8)))))
-(-10 -7 (-15 -2082 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2082 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -2082 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|))))
-((-4237 ((|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))) 57)) (-1727 (((-169 |#2|) |#3|) 123)) (-3171 ((|#3| (-169 |#2|)) 46)) (-3184 ((|#2| |#3|) 21)) (-1443 ((|#3| |#2|) 35)))
-(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -3171 (|#3| (-169 |#2|))) (-15 -3184 (|#2| |#3|)) (-15 -1443 (|#3| |#2|)) (-15 -1727 ((-169 |#2|) |#3|)) (-15 -4237 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))))) (-13 (-556) (-847)) (-13 (-430 |#1|) (-999) (-1194)) (-13 (-430 (-169 |#1|)) (-999) (-1194))) (T -598))
-((-4237 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170))) (-4 *2 (-13 (-430 (-169 *5)) (-999) (-1194))) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-999) (-1194))))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))) (-1443 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-999) (-1194))))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-5 *1 (-598 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) (-5 *1 (-598 *4 *5 *2)))))
-(-10 -7 (-15 -3171 (|#3| (-169 |#2|))) (-15 -3184 (|#2| |#3|)) (-15 -1443 (|#3| |#2|)) (-15 -1727 ((-169 |#2|) |#3|)) (-15 -4237 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170)))))
-((-2164 (($ (-1 (-112) |#1|) $) 17)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2107 (($ (-1 |#1| |#1|) |#1|) 9)) (-2144 (($ (-1 (-112) |#1|) $) 13)) (-2155 (($ (-1 (-112) |#1|) $) 15)) (-1776 (((-1150 |#1|) $) 18)) (-1765 (((-859) $) NIL)))
-(((-599 |#1|) (-13 (-611 (-859)) (-10 -8 (-15 -2082 ($ (-1 |#1| |#1|) $)) (-15 -2144 ($ (-1 (-112) |#1|) $)) (-15 -2155 ($ (-1 (-112) |#1|) $)) (-15 -2164 ($ (-1 (-112) |#1|) $)) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -1776 ((-1150 |#1|) $)))) (-1209)) (T -599))
-((-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2144 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2155 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-2107 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -2082 ($ (-1 |#1| |#1|) $)) (-15 -2144 ($ (-1 (-112) |#1|) $)) (-15 -2155 ($ (-1 (-112) |#1|) $)) (-15 -2164 ($ (-1 (-112) |#1|) $)) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -1776 ((-1150 |#1|) $))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1398 (($ (-768)) NIL (|has| |#1| (-23)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1356 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4147 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-1633 (($ (-768) |#1|) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3500 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-2972 (((-112) $ (-768)) NIL)) (-2564 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3073 ((|#1| $) NIL (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4158 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3663 (($ $ $) NIL (|has| |#1| (-1046)))) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) NIL)) (-2817 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1783 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1771 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-2492 (((-1264) (-1152)) 10)))
+(((-582) (-10 -7 (-15 -2492 ((-1264) (-1152))))) (T -582))
+((-2492 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582)))))
+(-10 -7 (-15 -2492 ((-1264) (-1152))))
+((-3374 (((-585 |#2|) (-585 |#2|)) 41)) (-4111 (((-641 |#2|) (-585 |#2|)) 43)) (-2559 ((|#2| (-585 |#2|)) 49)))
+(((-583 |#1| |#2|) (-10 -7 (-15 -3374 ((-585 |#2|) (-585 |#2|))) (-15 -4111 ((-641 |#2|) (-585 |#2|))) (-15 -2559 (|#2| (-585 |#2|)))) (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))) (-13 (-29 |#1|) (-1194))) (T -583))
+((-2559 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194))) (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *1 (-583 *3 *4)))))
+(-10 -7 (-15 -3374 ((-585 |#2|) (-585 |#2|))) (-15 -4111 ((-641 |#2|) (-585 |#2|))) (-15 -2559 (|#2| (-585 |#2|))))
+((-2313 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 30)))
+(((-584 |#1| |#2|) (-10 -7 (-15 -2313 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2313 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2313 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2313 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -584))
+((-2313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) (-2313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) (-2313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2537 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2537 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6)))))
+(-10 -7 (-15 -2313 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2313 ((-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2537 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2313 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2313 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) 76)) (-2376 ((|#1| $) NIL)) (-2537 ((|#1| $) 30)) (-3949 (((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3904 (($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2218 (((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $) 31)) (-1868 (((-1152) $) NIL)) (-2668 (($ |#1| |#1|) 38) (($ |#1| (-1170)) 49 (|has| |#1| (-1035 (-1170))))) (-3844 (((-1114) $) NIL)) (-3825 (((-112) $) 35)) (-2203 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1170)) 89 (|has| |#1| (-897 (-1170))))) (-3714 (((-859) $) 112) (($ |#1|) 29)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) 17) (($ $ $) NIL)) (-1814 (($ $ $) 85)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 16) (($ (-407 (-564)) $) 41) (($ $ (-407 (-564))) NIL)))
+(((-585 |#1|) (-13 (-714 (-407 (-564))) (-1035 |#1|) (-10 -8 (-15 -3904 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2537 (|#1| $)) (-15 -2218 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -3949 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3825 ((-112) $)) (-15 -2668 ($ |#1| |#1|)) (-15 -2203 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-897 (-1170))) (-15 -2203 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1035 (-1170))) (-15 -2668 ($ |#1| (-1170))) |%noBranch|))) (-363)) (T -585))
+((-3904 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2)) (|:| |logand| (-1166 *2))))) (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-585 *2)))) (-2537 (*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3)) (|:| |logand| (-1166 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-2668 (*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-2203 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-2203 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-897 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1170)))) (-2668 (*1 *1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1035 *3)) (-4 *2 (-363)))))
+(-13 (-714 (-407 (-564))) (-1035 |#1|) (-10 -8 (-15 -3904 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2537 (|#1| $)) (-15 -2218 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -3949 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3825 ((-112) $)) (-15 -2668 ($ |#1| |#1|)) (-15 -2203 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-897 (-1170))) (-15 -2203 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1035 (-1170))) (-15 -2668 ($ |#1| (-1170))) |%noBranch|)))
+((-2085 (((-112) |#1|) 16)) (-2711 (((-3 |#1| "failed") |#1|) 14)) (-3010 (((-2 (|:| -3270 |#1|) (|:| -3078 (-768))) |#1|) 38) (((-3 |#1| "failed") |#1| (-768)) 18)) (-2587 (((-112) |#1| (-768)) 19)) (-4033 ((|#1| |#1|) 42)) (-3492 ((|#1| |#1| (-768)) 45)))
+(((-586 |#1|) (-10 -7 (-15 -2587 ((-112) |#1| (-768))) (-15 -3010 ((-3 |#1| "failed") |#1| (-768))) (-15 -3010 ((-2 (|:| -3270 |#1|) (|:| -3078 (-768))) |#1|)) (-15 -3492 (|#1| |#1| (-768))) (-15 -2085 ((-112) |#1|)) (-15 -2711 ((-3 |#1| "failed") |#1|)) (-15 -4033 (|#1| |#1|))) (-545)) (T -586))
+((-4033 (*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2711 (*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2085 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-3492 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3010 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3270 *3) (|:| -3078 (-768)))) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-3010 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2587 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
+(-10 -7 (-15 -2587 ((-112) |#1| (-768))) (-15 -3010 ((-3 |#1| "failed") |#1| (-768))) (-15 -3010 ((-2 (|:| -3270 |#1|) (|:| -3078 (-768))) |#1|)) (-15 -3492 (|#1| |#1| (-768))) (-15 -2085 ((-112) |#1|)) (-15 -2711 ((-3 |#1| "failed") |#1|)) (-15 -4033 (|#1| |#1|)))
+((-4311 (((-1166 |#1|) (-918)) 43)))
+(((-587 |#1|) (-10 -7 (-15 -4311 ((-1166 |#1|) (-918)))) (-349)) (T -587))
+((-4311 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4)) (-4 *4 (-349)))))
+(-10 -7 (-15 -4311 ((-1166 |#1|) (-918))))
+((-3374 (((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|)))) 27)) (-4039 (((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170)) 34 (|has| |#1| (-147)))) (-4111 (((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|)))) 19)) (-2719 (((-316 |#1|) (-407 (-949 |#1|)) (-1170)) 32 (|has| |#1| (-147)))) (-2559 (((-316 |#1|) (-585 (-407 (-949 |#1|)))) 21)))
+(((-588 |#1|) (-10 -7 (-15 -3374 ((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|))))) (-15 -4111 ((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|))))) (-15 -2559 ((-316 |#1|) (-585 (-407 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4039 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -2719 ((-316 |#1|) (-407 (-949 |#1|)) (-1170)))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (T -588))
+((-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5)))) (-2559 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-949 *4)))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-949 *4)))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-585 (-407 (-949 *3)))) (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *1 (-588 *3)))))
+(-10 -7 (-15 -3374 ((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|))))) (-15 -4111 ((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|))))) (-15 -2559 ((-316 |#1|) (-585 (-407 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4039 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -2719 ((-316 |#1|) (-407 (-949 |#1|)) (-1170)))) |%noBranch|))
+((-3745 (((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564)))) 74) (((-641 (-685 (-564))) (-641 (-564))) 75) (((-685 (-564)) (-641 (-564)) (-902 (-564))) 68)) (-2865 (((-768) (-641 (-564))) 65)))
+(((-589) (-10 -7 (-15 -2865 ((-768) (-641 (-564)))) (-15 -3745 ((-685 (-564)) (-641 (-564)) (-902 (-564)))) (-15 -3745 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -3745 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564))))))) (T -589))
+((-3745 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-902 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-3745 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-902 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-589)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-768)) (-5 *1 (-589)))))
+(-10 -7 (-15 -2865 ((-768) (-641 (-564)))) (-15 -3745 ((-685 (-564)) (-641 (-564)) (-902 (-564)))) (-15 -3745 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -3745 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564))))))
+((-3436 (((-641 |#5|) |#5| (-112)) 99)) (-3674 (((-112) |#5| (-641 |#5|)) 34)))
+(((-590 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3436 ((-641 |#5|) |#5| (-112))) (-15 -3674 ((-112) |#5| (-641 |#5|)))) (-13 (-307) (-147)) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -590))
+((-3674 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-590 *5 *6 *7 *8 *3)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-641 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3436 ((-641 |#5|) |#5| (-112))) (-15 -3674 ((-112) |#5| (-641 |#5|))))
+((-3702 (((-112) $ $) NIL)) (-3119 (((-1129) $) 11)) (-3109 (((-1129) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-591) (-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1129) $))))) (T -591))
+((-3109 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))))
+(-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1129) $))))
+((-3702 (((-112) $ $) NIL (|has| (-144) (-1094)))) (-1412 (($ $) 38)) (-4225 (($ $) NIL)) (-4367 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1468 (((-112) $ $) 66)) (-1445 (((-112) $ $ (-564)) 60)) (-3374 (((-641 $) $ (-144)) 74) (((-641 $) $ (-141)) 75)) (-1562 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-847)))) (-4194 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| (-144) (-847))))) (-2904 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 (((-144) $ (-564) (-144)) 57 (|has| $ (-6 -4413))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-2898 (($ $ (-144)) 79) (($ $ (-141)) 80)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-4270 (($ $ (-1226 (-564)) $) 56)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-2514 (($ (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4412))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4412)))) (-1998 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4413)))) (-3593 (((-144) $ (-564)) NIL)) (-1490 (((-112) $ $) 93)) (-3303 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 63 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 61) (((-564) (-141) $ (-564)) 65)) (-4244 (((-641 (-144)) $) NIL (|has| $ (-6 -4412)))) (-3564 (($ (-768) (-144)) 9)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) 32 (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| (-144) (-847)))) (-3678 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-847)))) (-2572 (((-641 (-144)) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-2415 (((-564) $) 47 (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| (-144) (-847)))) (-2174 (((-112) $ $ (-144)) 94)) (-1414 (((-768) $ $ (-144)) 91)) (-1988 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4177 (($ $) 41)) (-2603 (($ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2908 (($ $ (-144)) 76) (($ $ (-141)) 77)) (-1868 (((-1152) $) 43 (|has| (-144) (-1094)))) (-2455 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) 27)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-564) $) 90) (((-1114) $) NIL (|has| (-144) (-1094)))) (-2049 (((-144) $) NIL (|has| (-564) (-847)))) (-2905 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3538 (($ $ (-144)) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-4121 (((-641 (-144)) $) NIL)) (-2510 (((-112) $) 15)) (-2834 (($) 10)) (-4382 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) 67) (($ $ (-1226 (-564))) 25) (($ $ $) NIL)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3855 (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412))) (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-3474 (($ $ $ (-564)) 82 (|has| $ (-6 -4413)))) (-3890 (($ $) 20)) (-2374 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-3725 (($ (-641 (-144))) NIL)) (-1865 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-641 $)) 83)) (-3714 (($ (-144)) NIL) (((-859) $) 31 (|has| (-144) (-611 (-859))))) (-4289 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1720 (((-112) $ $) 17 (|has| (-144) (-1094)))) (-1769 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1746 (((-112) $ $) 18 (|has| (-144) (-847)))) (-2779 (((-768) $) 16 (|has| $ (-6 -4412)))))
+(((-592 |#1|) (-13 (-1138) (-10 -8 (-15 -3844 ((-564) $)))) (-564)) (T -592))
+((-3844 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2))))
+(-13 (-1138) (-10 -8 (-15 -3844 ((-564) $))))
+((-3064 (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|)) 32)))
+(((-593 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3064 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -3064 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|)) (T -593))
+((-3064 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-3064 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1088 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-790)) (-4 *4 (-847)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3064 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -3064 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 71)) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-3043 (($ $ (-564)) 57) (($ $ (-564) (-564)) 58)) (-1681 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 64)) (-1835 (($ $) 107)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3994 (((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564))) 240)) (-3392 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 36)) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2200 (((-112) $) NIL)) (-1454 (((-564) $) 62) (((-564) $ (-564)) 63)) (-2340 (((-112) $) NIL)) (-3619 (($ $ (-918)) 83)) (-2860 (($ (-1 |#1| (-564)) $) 80)) (-2961 (((-112) $) 26)) (-4267 (($ |#1| (-564)) 22) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2313 (($ (-1 |#1| |#1|) $) 75)) (-3023 (($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 13)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-4039 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-4238 (((-3 $ "failed") $ $ (-112)) 106)) (-4057 (($ $ $) 114)) (-3844 (((-1114) $) NIL)) (-1385 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 15)) (-3679 (((-1023 (-840 (-564))) $) 14)) (-3042 (($ $ (-564)) 47)) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2582 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-4382 ((|#1| $ (-564)) 61) (($ $ $) NIL (|has| (-564) (-1106)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-3475 (((-564) $) NIL)) (-2807 (($ $) 48)) (-3714 (((-859) $) NIL) (($ (-564)) 29) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 28 (|has| |#1| (-172)))) (-3181 ((|#1| $ (-564)) 60)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) 39 T CONST)) (-2390 ((|#1| $) NIL)) (-4087 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-2659 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3763 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-2745 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-1569 (($ $) 201 (|has| |#1| (-38 (-407 (-564)))))) (-3087 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2223 (($ $ (-407 (-564))) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3600 (($ $ |#1|) 156 (|has| |#1| (-38 (-407 (-564)))))) (-3375 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-4285 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-3673 (($ $) 203 (|has| |#1| (-38 (-407 (-564)))))) (-4170 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2475 (($ $) 199 (|has| |#1| (-38 (-407 (-564)))))) (-3398 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-1992 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-4318 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-2836 (($ $) 209 (|has| |#1| (-38 (-407 (-564)))))) (-3656 (($ $) 185 (|has| |#1| (-38 (-407 (-564)))))) (-2122 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-1337 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-1857 (($ $) 213 (|has| |#1| (-38 (-407 (-564)))))) (-1629 (($ $) 189 (|has| |#1| (-38 (-407 (-564)))))) (-1599 (($ $) 215 (|has| |#1| (-38 (-407 (-564)))))) (-3063 (($ $) 191 (|has| |#1| (-38 (-407 (-564)))))) (-2912 (($ $) 211 (|has| |#1| (-38 (-407 (-564)))))) (-2403 (($ $) 187 (|has| |#1| (-38 (-407 (-564)))))) (-3703 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-2874 (($ $) 183 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2441 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-4312 (($) 30 T CONST)) (-4323 (($) 40 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1720 (((-112) $ $) 73)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) 90) (($ $ $) 72)) (-1814 (($ $ $) 87)) (** (($ $ (-918)) NIL) (($ $ (-768)) 109)) (* (($ (-918) $) 97) (($ (-768) $) 95) (($ (-564) $) 92) (($ $ $) 103) (($ $ |#1|) NIL) (($ |#1| $) 121) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-594 |#1|) (-13 (-1237 |#1| (-564)) (-10 -8 (-15 -3023 ($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3679 ((-1023 (-840 (-564))) $)) (-15 -1385 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -3392 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2961 ((-112) $)) (-15 -2860 ($ (-1 |#1| (-564)) $)) (-15 -4238 ((-3 $ "failed") $ $ (-112))) (-15 -1835 ($ $)) (-15 -4057 ($ $ $)) (-15 -3994 ((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $)) (-15 -3600 ($ $ |#1|)) (-15 -2223 ($ $ (-407 (-564)))) (-15 -4285 ($ $)) (-15 -3375 ($ $)) (-15 -2745 ($ $)) (-15 -4318 ($ $)) (-15 -2659 ($ $)) (-15 -3398 ($ $)) (-15 -3087 ($ $)) (-15 -4170 ($ $)) (-15 -1337 ($ $)) (-15 -2874 ($ $)) (-15 -3656 ($ $)) (-15 -2403 ($ $)) (-15 -1629 ($ $)) (-15 -3063 ($ $)) (-15 -3763 ($ $)) (-15 -1992 ($ $)) (-15 -4087 ($ $)) (-15 -2475 ($ $)) (-15 -1569 ($ $)) (-15 -3673 ($ $)) (-15 -2122 ($ $)) (-15 -3703 ($ $)) (-15 -2836 ($ $)) (-15 -2912 ($ $)) (-15 -1857 ($ $)) (-15 -1599 ($ $))) |%noBranch|))) (-1046)) (T -594))
+((-2961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-3023 (*1 *1 *2 *3) (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1046)) (-5 *1 (-594 *4)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-3392 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) (-2860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) (-4238 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-1835 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))) (-4057 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))) (-3994 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6)))) (-5 *4 (-1023 (-840 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564))) (-4 *6 (-1046)) (-5 *2 (-859)) (-5 *1 (-594 *6)))) (-4039 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3600 (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2223 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1046)))) (-4285 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3375 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2745 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4318 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2659 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3087 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4170 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1337 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2874 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3656 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2403 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1629 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3063 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3763 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1992 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4087 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2475 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1569 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3673 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2122 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3703 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2836 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2912 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1857 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1599 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(-13 (-1237 |#1| (-564)) (-10 -8 (-15 -3023 ($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -3679 ((-1023 (-840 (-564))) $)) (-15 -1385 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -3392 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2961 ((-112) $)) (-15 -2860 ($ (-1 |#1| (-564)) $)) (-15 -4238 ((-3 $ "failed") $ $ (-112))) (-15 -1835 ($ $)) (-15 -4057 ($ $ $)) (-15 -3994 ((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $)) (-15 -3600 ($ $ |#1|)) (-15 -2223 ($ $ (-407 (-564)))) (-15 -4285 ($ $)) (-15 -3375 ($ $)) (-15 -2745 ($ $)) (-15 -4318 ($ $)) (-15 -2659 ($ $)) (-15 -3398 ($ $)) (-15 -3087 ($ $)) (-15 -4170 ($ $)) (-15 -1337 ($ $)) (-15 -2874 ($ $)) (-15 -3656 ($ $)) (-15 -2403 ($ $)) (-15 -1629 ($ $)) (-15 -3063 ($ $)) (-15 -3763 ($ $)) (-15 -1992 ($ $)) (-15 -4087 ($ $)) (-15 -2475 ($ $)) (-15 -1569 ($ $)) (-15 -3673 ($ $)) (-15 -2122 ($ $)) (-15 -3703 ($ $)) (-15 -2836 ($ $)) (-15 -2912 ($ $)) (-15 -1857 ($ $)) (-15 -1599 ($ $))) |%noBranch|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-3392 (($ (-1150 |#1|)) 9)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) 48)) (-2200 (((-112) $) 58)) (-1454 (((-768) $) 63) (((-768) $ (-768)) 62)) (-2340 (((-112) $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1347 (((-3 $ "failed") $ $) 50 (|has| |#1| (-556)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556)))) (-4252 (((-1150 |#1|) $) 29)) (-3379 (((-768)) 57 T CONST)) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) 10 T CONST)) (-4323 (($) 14 T CONST)) (-1720 (((-112) $ $) 28)) (-1828 (($ $) 36) (($ $ $) 16)) (-1814 (($ $ $) 31)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-564)) 42)))
+(((-595 |#1|) (-13 (-1046) (-10 -8 (-15 -4252 ((-1150 |#1|) $)) (-15 -3392 ($ (-1150 |#1|))) (-15 -2200 ((-112) $)) (-15 -1454 ((-768) $)) (-15 -1454 ((-768) $ (-768))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) (-1046)) (T -595))
+((-4252 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-3392 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-595 *3)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-1454 (*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))))
+(-13 (-1046) (-10 -8 (-15 -4252 ((-1150 |#1|) $)) (-15 -3392 ($ (-1150 |#1|))) (-15 -2200 ((-112) $)) (-15 -1454 ((-768) $)) (-15 -1454 ((-768) $ (-768))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|)))
+((-2313 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 15)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -2313 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1209) (-1209)) (T -596))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6)))))
+(-10 -7 (-15 -2313 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))))
+((-2313 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)) 20) (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|)) 19) (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 18)))
+(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -2313 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2313 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -2313 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -597))
+((-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-599 *8)) (-5 *1 (-597 *6 *7 *8)))))
+(-10 -7 (-15 -2313 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2313 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -2313 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|))))
+((-2179 ((|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))) 57)) (-2940 (((-169 |#2|) |#3|) 123)) (-2483 ((|#3| (-169 |#2|)) 46)) (-2619 ((|#2| |#3|) 21)) (-1879 ((|#3| |#2|) 35)))
+(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -2483 (|#3| (-169 |#2|))) (-15 -2619 (|#2| |#3|)) (-15 -1879 (|#3| |#2|)) (-15 -2940 ((-169 |#2|) |#3|)) (-15 -2179 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))))) (-13 (-556) (-847)) (-13 (-430 |#1|) (-999) (-1194)) (-13 (-430 (-169 |#1|)) (-999) (-1194))) (T -598))
+((-2179 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170))) (-4 *2 (-13 (-430 (-169 *5)) (-999) (-1194))) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-999) (-1194))))) (-2940 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))) (-1879 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-999) (-1194))))) (-2619 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-5 *1 (-598 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) (-5 *1 (-598 *4 *5 *2)))))
+(-10 -7 (-15 -2483 (|#3| (-169 |#2|))) (-15 -2619 (|#2| |#3|)) (-15 -1879 (|#3| |#2|)) (-15 -2940 ((-169 |#2|) |#3|)) (-15 -2179 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170)))))
+((-4148 (($ (-1 (-112) |#1|) $) 17)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4077 (($ (-1 |#1| |#1|) |#1|) 9)) (-4123 (($ (-1 (-112) |#1|) $) 13)) (-4136 (($ (-1 (-112) |#1|) $) 15)) (-3725 (((-1150 |#1|) $) 18)) (-3714 (((-859) $) NIL)))
+(((-599 |#1|) (-13 (-611 (-859)) (-10 -8 (-15 -2313 ($ (-1 |#1| |#1|) $)) (-15 -4123 ($ (-1 (-112) |#1|) $)) (-15 -4136 ($ (-1 (-112) |#1|) $)) (-15 -4148 ($ (-1 (-112) |#1|) $)) (-15 -4077 ($ (-1 |#1| |#1|) |#1|)) (-15 -3725 ((-1150 |#1|) $)))) (-1209)) (T -599))
+((-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-4123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-4136 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-4148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -2313 ($ (-1 |#1| |#1|) $)) (-15 -4123 ($ (-1 (-112) |#1|) $)) (-15 -4136 ($ (-1 (-112) |#1|) $)) (-15 -4148 ($ (-1 (-112) |#1|) $)) (-15 -4077 ($ (-1 |#1| |#1|) |#1|)) (-15 -3725 ((-1150 |#1|) $))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1532 (($ (-768)) NIL (|has| |#1| (-23)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-3303 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-2996 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-3564 (($ (-768) |#1|) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2636 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-4144 (((-112) $ (-768)) NIL)) (-3451 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2049 ((|#1| $) NIL (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2681 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3482 (($ $ $) NIL (|has| |#1| (-1046)))) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) NIL)) (-1865 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1828 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1814 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-600 |#1| |#2|) (-1257 |#1|) (-1209) (-564)) (T -600))
NIL
(-1257 |#1|)
-((-3476 (((-1264) $ |#2| |#2|) 36)) (-4065 ((|#2| $) 23)) (-1479 ((|#2| $) 21)) (-3513 (($ (-1 |#3| |#3|) $) 32)) (-2082 (($ (-1 |#3| |#3|) $) 30)) (-3073 ((|#3| $) 26)) (-2614 (($ $ |#3|) 33)) (-3471 (((-112) |#3| $) 17)) (-3599 (((-641 |#3|) $) 15)) (-4382 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -3476 ((-1264) |#1| |#2| |#2|)) (-15 -2614 (|#1| |#1| |#3|)) (-15 -3073 (|#3| |#1|)) (-15 -4065 (|#2| |#1|)) (-15 -1479 (|#2| |#1|)) (-15 -3471 ((-112) |#3| |#1|)) (-15 -3599 ((-641 |#3|) |#1|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -3513 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2082 (|#1| (-1 |#3| |#3|) |#1|))) (-602 |#2| |#3|) (-1094) (-1209)) (T -601))
+((-2399 (((-1264) $ |#2| |#2|) 36)) (-2994 ((|#2| $) 23)) (-2415 ((|#2| $) 21)) (-1988 (($ (-1 |#3| |#3|) $) 32)) (-2313 (($ (-1 |#3| |#3|) $) 30)) (-2049 ((|#3| $) 26)) (-3538 (($ $ |#3|) 33)) (-2338 (((-112) |#3| $) 17)) (-4121 (((-641 |#3|) $) 15)) (-4382 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -2399 ((-1264) |#1| |#2| |#2|)) (-15 -3538 (|#1| |#1| |#3|)) (-15 -2049 (|#3| |#1|)) (-15 -2994 (|#2| |#1|)) (-15 -2415 (|#2| |#1|)) (-15 -2338 ((-112) |#3| |#1|)) (-15 -4121 ((-641 |#3|) |#1|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -1988 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2313 (|#1| (-1 |#3| |#3|) |#1|))) (-602 |#2| |#3|) (-1094) (-1209)) (T -601))
NIL
-(-10 -8 (-15 -3476 ((-1264) |#1| |#2| |#2|)) (-15 -2614 (|#1| |#1| |#3|)) (-15 -3073 (|#3| |#1|)) (-15 -4065 (|#2| |#1|)) (-15 -1479 (|#2| |#1|)) (-15 -3471 ((-112) |#3| |#1|)) (-15 -3599 ((-641 |#3|) |#1|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -3513 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2082 (|#1| (-1 |#3| |#3|) |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-3476 (((-1264) $ |#1| |#1|) 40 (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) 8)) (-1881 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4412)))) (-3760 (($) 7 T CONST)) (-3528 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) 51)) (-3080 (((-641 |#2|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-4065 ((|#1| $) 43 (|has| |#1| (-847)))) (-3817 (((-641 |#2|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-1479 ((|#1| $) 44 (|has| |#1| (-847)))) (-3513 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#2| |#2|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#2| (-1094)))) (-1371 (((-641 |#1|) $) 46)) (-3629 (((-112) |#1| $) 47)) (-3802 (((-1114) $) 21 (|has| |#2| (-1094)))) (-3073 ((|#2| $) 42 (|has| |#1| (-847)))) (-2614 (($ $ |#2|) 41 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3815 (((-768) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4411))) (((-768) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#2| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+(-10 -8 (-15 -2399 ((-1264) |#1| |#2| |#2|)) (-15 -3538 (|#1| |#1| |#3|)) (-15 -2049 (|#3| |#1|)) (-15 -2994 (|#2| |#1|)) (-15 -2415 (|#2| |#1|)) (-15 -2338 ((-112) |#3| |#1|)) (-15 -4121 ((-641 |#3|) |#1|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -1988 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2313 (|#1| (-1 |#3| |#3|) |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-2399 (((-1264) $ |#1| |#1|) 40 (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) 8)) (-3868 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4413)))) (-3180 (($) 7 T CONST)) (-1998 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) 51)) (-4244 (((-641 |#2|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2994 ((|#1| $) 43 (|has| |#1| (-847)))) (-2572 (((-641 |#2|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412))))) (-2415 ((|#1| $) 44 (|has| |#1| (-847)))) (-1988 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#2| |#2|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#2| (-1094)))) (-3127 (((-641 |#1|) $) 46)) (-1338 (((-112) |#1| $) 47)) (-3844 (((-1114) $) 21 (|has| |#2| (-1094)))) (-2049 ((|#2| $) 42 (|has| |#1| (-847)))) (-3538 (($ $ |#2|) 41 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3855 (((-768) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4412))) (((-768) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#2| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-602 |#1| |#2|) (-140) (-1094) (-1209)) (T -602))
-((-3599 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *4)))) (-3629 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *3)))) (-3471 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-847)) (-4 *2 (-1209)))) (-2614 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-3476 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-1264)))))
-(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -3599 ((-641 |t#2|) $)) (-15 -3629 ((-112) |t#1| $)) (-15 -1371 ((-641 |t#1|) $)) (IF (|has| |t#2| (-1094)) (IF (|has| $ (-6 -4411)) (-15 -3471 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-15 -1479 (|t#1| $)) (-15 -4065 (|t#1| $)) (-15 -3073 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4412)) (PROGN (-15 -2614 ($ $ |t#2|)) (-15 -3476 ((-1264) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1094)) ((-611 (-859)) -4002 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-1094) |has| |#2| (-1094)) ((-1209) . T))
-((-1765 (((-859) $) 19) (($ (-129)) 13) (((-129) $) 14)))
+((-4121 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *4)))) (-1338 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *3)))) (-2338 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-847)) (-4 *2 (-1209)))) (-3538 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-2399 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-1264)))))
+(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -4121 ((-641 |t#2|) $)) (-15 -1338 ((-112) |t#1| $)) (-15 -3127 ((-641 |t#1|) $)) (IF (|has| |t#2| (-1094)) (IF (|has| $ (-6 -4412)) (-15 -2338 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-15 -2415 (|t#1| $)) (-15 -2994 (|t#1| $)) (-15 -2049 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4413)) (PROGN (-15 -3538 ($ $ |t#2|)) (-15 -2399 ((-1264) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1094)) ((-611 (-859)) -4012 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-1094) |has| |#2| (-1094)) ((-1209) . T))
+((-3714 (((-859) $) 19) (($ (-129)) 13) (((-129) $) 14)))
(((-603) (-13 (-611 (-859)) (-490 (-129)))) (T -603))
NIL
(-13 (-611 (-859)) (-490 (-129)))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 14) (($ (-641 (-1208))) 13)) (-2759 (((-641 (-1208)) $) 10)) (-1686 (((-112) $ $) NIL)))
-(((-604) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -1765 ($ (-641 (-1208)))) (-15 -2759 ((-641 (-1208)) $))))) (T -604))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))))
-(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -1765 ($ (-641 (-1208)))) (-15 -2759 ((-641 (-1208)) $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-1950 (((-3 $ "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3165 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3233 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3760 (($) NIL T CONST)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2661 (((-3 $ "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2685 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4349 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1725 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3828 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4089 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1864 (($ $ (-918)) NIL)) (-3158 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3261 (((-1166 |#1|) $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1870 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3660 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3202 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2910 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1926 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4224 (((-918)) NIL (|has| |#2| (-367 |#1|)))) (-1703 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2544 (($ $ (-918)) NIL)) (-2053 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2824 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3222 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4280 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3979 (((-3 $ "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3449 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3899 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1549 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3647 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3743 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3229 (($ $ (-918)) NIL)) (-4009 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2883 (((-1166 |#1|) $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2291 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1563 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3734 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4202 (((-1152) $) NIL)) (-1995 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2187 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1756 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3802 (((-1114) $) NIL)) (-3015 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4382 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-3072 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2127 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-4339 (((-641 (-949 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-949 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1762 (($ $ $) NIL)) (-2060 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1765 (((-859) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3941 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-2663 (((-641 (-1259 |#1|))) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1850 (($ $ $ $) NIL)) (-3730 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3021 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3008 (($ $ $) NIL)) (-1379 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3689 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2323 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4317 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) 24)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-605 |#1| |#2|) (-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -1765 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-741 |#1|)) (T -605))
-((-1765 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-741 *3)))))
-(-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -1765 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-4309 (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) 39)) (-1622 (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL) (($) NIL)) (-3476 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-1152) |#1|) 49)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 |#1| "failed") (-1152) $) 52)) (-3760 (($) NIL T CONST)) (-2559 (($ $ (-1152)) 25)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094))))) (-1907 (((-3 |#1| "failed") (-1152) $) 53) (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411))) (($ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL (|has| $ (-6 -4411)))) (-2359 (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411))) (($ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094))))) (-4367 (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094))))) (-3893 (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) 38)) (-3528 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-1152)) NIL)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411))) (((-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-1955 (($ $) 54)) (-1589 (($ (-388)) 23) (($ (-388) (-1152)) 22)) (-4363 (((-388) $) 40)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-1152) $) NIL (|has| (-1152) (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411))) (((-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (((-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094))))) (-1479 (((-1152) $) NIL (|has| (-1152) (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-3211 (((-641 (-1152)) $) 45)) (-4185 (((-112) (-1152) $) NIL)) (-3533 (((-1152) $) 41)) (-1833 (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL)) (-2098 (($ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL)) (-1371 (((-641 (-1152)) $) NIL)) (-3629 (((-112) (-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 ((|#1| $) NIL (|has| (-1152) (-847)))) (-2343 (((-3 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) "failed") (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (($ $ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 43)) (-4382 ((|#1| $ (-1152) |#1|) NIL) ((|#1| $ (-1152)) 48)) (-3784 (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL) (($) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (((-768) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (((-768) (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL)) (-1765 (((-859) $) 21)) (-3713 (($ $) 26)) (-2652 (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20)) (-2589 (((-768) $) 47 (|has| $ (-6 -4411)))))
-(((-606 |#1|) (-13 (-364 (-388) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4411) (-15 -1955 ($ $)))) (-1094)) (T -606))
-((-1955 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094)))))
-(-13 (-364 (-388) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4411) (-15 -1955 ($ $))))
-((-3675 (((-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) $) 16)) (-3211 (((-641 |#2|) $) 20)) (-4185 (((-112) |#2| $) 12)))
-(((-607 |#1| |#2| |#3|) (-10 -8 (-15 -3211 ((-641 |#2|) |#1|)) (-15 -4185 ((-112) |#2| |#1|)) (-15 -3675 ((-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|))) (-608 |#2| |#3|) (-1094) (-1094)) (T -607))
-NIL
-(-10 -8 (-15 -3211 ((-641 |#2|) |#1|)) (-15 -4185 ((-112) |#2| |#1|)) (-15 -3675 ((-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)))
-((-1754 (((-112) $ $) 19 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 45 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 55 (|has| $ (-6 -4411)))) (-1645 (((-3 |#2| "failed") |#1| $) 61)) (-3760 (($) 7 T CONST)) (-3104 (($ $) 58 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 46 (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 62)) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 54 (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 56 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 53 (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 52 (|has| $ (-6 -4411)))) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-3211 (((-641 |#1|) $) 63)) (-4185 (((-112) |#1| $) 64)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 39)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 40)) (-3802 (((-1114) $) 21 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 51)) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 41)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) 26 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 25 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 24 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 23 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-3784 (($) 49) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 48)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 31 (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 59 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 50)) (-1765 (((-859) $) 18 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859))))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 42)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 14) (($ (-641 (-1208))) 13)) (-1727 (((-641 (-1208)) $) 10)) (-1720 (((-112) $ $) NIL)))
+(((-604) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -3714 ($ (-641 (-1208)))) (-15 -1727 ((-641 (-1208)) $))))) (T -604))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))))
+(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -3714 ($ (-641 (-1208)))) (-15 -1727 ((-641 (-1208)) $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1425 (((-3 $ "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-2426 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1838 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3180 (($) NIL T CONST)) (-1830 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2911 (((-3 $ "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3102 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3693 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2921 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2684 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3176 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1842 (($ $ (-918)) NIL)) (-2345 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2119 (((-1166 |#1|) $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1907 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3448 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2790 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3566 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4272 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1595 (((-918)) NIL (|has| |#2| (-367 |#1|)))) (-3882 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4133 (($ $ (-918)) NIL)) (-3113 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2111 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1717 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1303 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1566 (((-3 $ "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3276 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2112 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1847 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1524 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3050 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1788 (($ $ (-918)) NIL)) (-3645 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1487 (((-1166 |#1|) $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3531 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1980 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2989 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1868 (((-1152) $) NIL)) (-3700 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1981 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3172 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3844 (((-1114) $) NIL)) (-1458 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4382 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-3867 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2374 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3602 (((-641 (-949 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-949 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3217 (($ $ $) NIL)) (-3168 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3714 (((-859) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4339 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-2919 (((-641 (-1259 |#1|))) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1687 (($ $ $ $) NIL)) (-2954 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1996 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1390 (($ $ $) NIL)) (-3808 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3738 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3851 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4312 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) 24)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-605 |#1| |#2|) (-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -3714 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-741 |#1|)) (T -605))
+((-3714 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-741 *3)))))
+(-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -3714 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
+((-3702 (((-112) $ $) NIL)) (-1551 (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) 39)) (-3553 (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL) (($) NIL)) (-2399 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-1152) |#1|) 49)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 |#1| "failed") (-1152) $) 52)) (-3180 (($) NIL T CONST)) (-4295 (($ $ (-1152)) 25)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094))))) (-4074 (((-3 |#1| "failed") (-1152) $) 53) (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412))) (($ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL (|has| $ (-6 -4412)))) (-2514 (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412))) (($ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094))))) (-1728 (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094))))) (-2047 (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) 38)) (-1998 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-1152)) NIL)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412))) (((-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-1469 (($ $) 54)) (-1721 (($ (-388)) 23) (($ (-388) (-1152)) 22)) (-4337 (((-388) $) 40)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412))) (((-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (((-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094))))) (-2415 (((-1152) $) NIL (|has| (-1152) (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413))) (($ (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-1922 (((-641 (-1152)) $) 45)) (-1690 (((-112) (-1152) $) NIL)) (-1665 (((-1152) $) 41)) (-2775 (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL)) (-2373 (($ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL)) (-3127 (((-641 (-1152)) $) NIL)) (-1338 (((-112) (-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 ((|#1| $) NIL (|has| (-1152) (-847)))) (-2905 (((-3 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) "failed") (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (($ $ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) 43)) (-4382 ((|#1| $ (-1152) |#1|) NIL) ((|#1| $ (-1152)) 48)) (-3372 (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL) (($) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (((-768) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (((-768) (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL)) (-3714 (((-859) $) 21)) (-3977 (($ $) 26)) (-3976 (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20)) (-2779 (((-768) $) 47 (|has| $ (-6 -4412)))))
+(((-606 |#1|) (-13 (-364 (-388) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4412) (-15 -1469 ($ $)))) (-1094)) (T -606))
+((-1469 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094)))))
+(-13 (-364 (-388) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4412) (-15 -1469 ($ $))))
+((-3601 (((-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) $) 16)) (-1922 (((-641 |#2|) $) 20)) (-1690 (((-112) |#2| $) 12)))
+(((-607 |#1| |#2| |#3|) (-10 -8 (-15 -1922 ((-641 |#2|) |#1|)) (-15 -1690 ((-112) |#2| |#1|)) (-15 -3601 ((-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|))) (-608 |#2| |#3|) (-1094) (-1094)) (T -607))
+NIL
+(-10 -8 (-15 -1922 ((-641 |#2|) |#1|)) (-15 -1690 ((-112) |#2| |#1|)) (-15 -3601 ((-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)))
+((-3702 (((-112) $ $) 19 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 45 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 55 (|has| $ (-6 -4412)))) (-3576 (((-3 |#2| "failed") |#1| $) 61)) (-3180 (($) 7 T CONST)) (-2084 (($ $) 58 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 47 (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 46 (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) 62)) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 54 (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 56 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 53 (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 52 (|has| $ (-6 -4412)))) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-1922 (((-641 |#1|) $) 63)) (-1690 (((-112) |#1| $) 64)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 39)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 40)) (-3844 (((-1114) $) 21 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 51)) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 41)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) 26 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 25 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 24 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 23 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3372 (($) 49) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 48)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 31 (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 59 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 50)) (-3714 (((-859) $) 18 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859))))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 42)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-608 |#1| |#2|) (-140) (-1094) (-1094)) (T -608))
-((-4185 (*1 *2 *3 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-1907 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1645 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(-13 (-229 (-2 (|:| -2351 |t#1|) (|:| -1327 |t#2|))) (-10 -8 (-15 -4185 ((-112) |t#1| $)) (-15 -3211 ((-641 |t#1|) $)) (-15 -1907 ((-3 |t#2| "failed") |t#1| $)) (-15 -1645 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T) ((-102) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) ((-611 (-859)) -4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) ((-1094) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) ((-1209) . T))
-((-2795 (((-610 |#2|) |#1|) 17)) (-2090 (((-3 |#1| "failed") (-610 |#2|)) 21)))
-(((-609 |#1| |#2|) (-10 -7 (-15 -2795 ((-610 |#2|) |#1|)) (-15 -2090 ((-3 |#1| "failed") (-610 |#2|)))) (-847) (-847)) (T -609))
-((-2090 (*1 *2 *3) (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-847)) (-4 *2 (-847)) (-5 *1 (-609 *2 *4)))) (-2795 (*1 *2 *3) (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-847)) (-4 *4 (-847)))))
-(-10 -7 (-15 -2795 ((-610 |#2|) |#1|)) (-15 -2090 ((-3 |#1| "failed") (-610 |#2|))))
-((-1754 (((-112) $ $) NIL)) (-2317 (((-3 (-1170) "failed") $) 46)) (-1436 (((-1264) $ (-768)) 26)) (-1356 (((-768) $) 25)) (-1826 (((-114) $) 12)) (-4363 (((-1170) $) 20)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-1583 (($ (-114) (-641 |#1|) (-768)) 36) (($ (-1170)) 37)) (-3559 (((-112) $ (-114)) 18) (((-112) $ (-1170)) 16)) (-1813 (((-768) $) 22)) (-3802 (((-1114) $) NIL)) (-2127 (((-889 (-564)) $) 90 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 97 (|has| |#1| (-612 (-889 (-379))))) (((-536) $) 83 (|has| |#1| (-612 (-536))))) (-1765 (((-859) $) 67)) (-2377 (((-641 |#1|) $) 24)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 50)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 52)))
-(((-610 |#1|) (-13 (-132) (-881 |#1|) (-10 -8 (-15 -4363 ((-1170) $)) (-15 -1826 ((-114) $)) (-15 -2377 ((-641 |#1|) $)) (-15 -1813 ((-768) $)) (-15 -1583 ($ (-114) (-641 |#1|) (-768))) (-15 -1583 ($ (-1170))) (-15 -2317 ((-3 (-1170) "failed") $)) (-15 -3559 ((-112) $ (-114))) (-15 -3559 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-847)) (T -610))
-((-4363 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-1583 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-847)) (-5 *1 (-610 *5)))) (-1583 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-2317 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-3559 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))) (-3559 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))))
-(-13 (-132) (-881 |#1|) (-10 -8 (-15 -4363 ((-1170) $)) (-15 -1826 ((-114) $)) (-15 -2377 ((-641 |#1|) $)) (-15 -1813 ((-768) $)) (-15 -1583 ($ (-114) (-641 |#1|) (-768))) (-15 -1583 ($ (-1170))) (-15 -2317 ((-3 (-1170) "failed") $)) (-15 -3559 ((-112) $ (-114))) (-15 -3559 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
-((-1765 ((|#1| $) 6)))
+((-1690 (*1 *2 *3 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-4074 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3576 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(-13 (-229 (-2 (|:| -1350 |t#1|) (|:| -2575 |t#2|))) (-10 -8 (-15 -1690 ((-112) |t#1| $)) (-15 -1922 ((-641 |t#1|) $)) (-15 -4074 ((-3 |t#2| "failed") |t#1| $)) (-15 -3576 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T) ((-102) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) ((-611 (-859)) -4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) ((-1094) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) ((-1209) . T))
+((-1812 (((-610 |#2|) |#1|) 17)) (-2291 (((-3 |#1| "failed") (-610 |#2|)) 21)))
+(((-609 |#1| |#2|) (-10 -7 (-15 -1812 ((-610 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed") (-610 |#2|)))) (-847) (-847)) (T -609))
+((-2291 (*1 *2 *3) (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-847)) (-4 *2 (-847)) (-5 *1 (-609 *2 *4)))) (-1812 (*1 *2 *3) (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-847)) (-4 *4 (-847)))))
+(-10 -7 (-15 -1812 ((-610 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed") (-610 |#2|))))
+((-3702 (((-112) $ $) NIL)) (-3774 (((-3 (-1170) "failed") $) 46)) (-1806 (((-1264) $ (-768)) 26)) (-3303 (((-768) $) 25)) (-2702 (((-114) $) 12)) (-4337 (((-1170) $) 20)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-1736 (($ (-114) (-641 |#1|) (-768)) 36) (($ (-1170)) 37)) (-1932 (((-112) $ (-114)) 18) (((-112) $ (-1170)) 16)) (-3694 (((-768) $) 22)) (-3844 (((-1114) $) NIL)) (-2374 (((-889 (-564)) $) 90 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 97 (|has| |#1| (-612 (-889 (-379))))) (((-536) $) 83 (|has| |#1| (-612 (-536))))) (-3714 (((-859) $) 67)) (-3130 (((-641 |#1|) $) 24)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 50)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 52)))
+(((-610 |#1|) (-13 (-132) (-881 |#1|) (-10 -8 (-15 -4337 ((-1170) $)) (-15 -2702 ((-114) $)) (-15 -3130 ((-641 |#1|) $)) (-15 -3694 ((-768) $)) (-15 -1736 ($ (-114) (-641 |#1|) (-768))) (-15 -1736 ($ (-1170))) (-15 -3774 ((-3 (-1170) "failed") $)) (-15 -1932 ((-112) $ (-114))) (-15 -1932 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-847)) (T -610))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-3130 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-1736 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-847)) (-5 *1 (-610 *5)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-3774 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))))
+(-13 (-132) (-881 |#1|) (-10 -8 (-15 -4337 ((-1170) $)) (-15 -2702 ((-114) $)) (-15 -3130 ((-641 |#1|) $)) (-15 -3694 ((-768) $)) (-15 -1736 ($ (-114) (-641 |#1|) (-768))) (-15 -1736 ($ (-1170))) (-15 -3774 ((-3 (-1170) "failed") $)) (-15 -1932 ((-112) $ (-114))) (-15 -1932 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
+((-3714 ((|#1| $) 6)))
(((-611 |#1|) (-140) (-1209)) (T -611))
-((-1765 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209)))))
-(-13 (-10 -8 (-15 -1765 (|t#1| $))))
-((-2127 ((|#1| $) 6)))
+((-3714 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209)))))
+(-13 (-10 -8 (-15 -3714 (|t#1| $))))
+((-2374 ((|#1| $) 6)))
(((-612 |#1|) (-140) (-1209)) (T -612))
-((-2127 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1209)))))
-(-13 (-10 -8 (-15 -2127 (|t#1| $))))
-((-3398 (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16)))
-(((-613 |#1| |#2|) (-10 -7 (-15 -3398 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3398 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -613))
-((-3398 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))) (-3398 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5)) (-5 *3 (-407 *5)))))
-(-10 -7 (-15 -3398 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3398 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|))))
-((-1765 (($ |#1|) 6)))
+((-2374 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1209)))))
+(-13 (-10 -8 (-15 -2374 (|t#1| $))))
+((-2879 (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16)))
+(((-613 |#1| |#2|) (-10 -7 (-15 -2879 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2879 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -613))
+((-2879 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))) (-2879 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5)) (-5 *3 (-407 *5)))))
+(-10 -7 (-15 -2879 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -2879 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|))))
+((-3714 (($ |#1|) 6)))
(((-614 |#1|) (-140) (-1209)) (T -614))
-((-1765 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209)))))
-(-13 (-10 -8 (-15 -1765 ($ |t#1|))))
-((-1754 (((-112) $ $) NIL)) (-3951 (($) 14 T CONST)) (-3773 (($) 15 T CONST)) (-4277 (($ $ $) 29)) (-4254 (($ $) 27)) (-4202 (((-1152) $) NIL)) (-3885 (($ $ $) 30)) (-3802 (((-1114) $) NIL)) (-2538 (($) 11 T CONST)) (-4058 (($ $ $) 31)) (-1765 (((-859) $) 35)) (-4305 (((-112) $ (|[\|\|]| -2538)) 24) (((-112) $ (|[\|\|]| -3951)) 26) (((-112) $ (|[\|\|]| -3773)) 21)) (-4266 (($ $ $) 28)) (-1686 (((-112) $ $) 18)))
-(((-615) (-13 (-964) (-10 -8 (-15 -2538 ($) -3246) (-15 -3951 ($) -3246) (-15 -3773 ($) -3246) (-15 -4305 ((-112) $ (|[\|\|]| -2538))) (-15 -4305 ((-112) $ (|[\|\|]| -3951))) (-15 -4305 ((-112) $ (|[\|\|]| -3773)))))) (T -615))
-((-2538 (*1 *1) (-5 *1 (-615))) (-3951 (*1 *1) (-5 *1 (-615))) (-3773 (*1 *1) (-5 *1 (-615))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2538)) (-5 *2 (-112)) (-5 *1 (-615)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3951)) (-5 *2 (-112)) (-5 *1 (-615)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3773)) (-5 *2 (-112)) (-5 *1 (-615)))))
-(-13 (-964) (-10 -8 (-15 -2538 ($) -3246) (-15 -3951 ($) -3246) (-15 -3773 ($) -3246) (-15 -4305 ((-112) $ (|[\|\|]| -2538))) (-15 -4305 ((-112) $ (|[\|\|]| -3951))) (-15 -4305 ((-112) $ (|[\|\|]| -3773)))))
-((-2127 (($ |#1|) 6)))
+((-3714 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209)))))
+(-13 (-10 -8 (-15 -3714 ($ |t#1|))))
+((-3702 (((-112) $ $) NIL)) (-3821 (($) 14 T CONST)) (-3803 (($) 15 T CONST)) (-4276 (($ $ $) 29)) (-4253 (($ $) 27)) (-1868 (((-1152) $) NIL)) (-1972 (($ $ $) 30)) (-3844 (((-1114) $) NIL)) (-2736 (($) 11 T CONST)) (-2951 (($ $ $) 31)) (-3714 (((-859) $) 35)) (-4301 (((-112) $ (|[\|\|]| -2736)) 24) (((-112) $ (|[\|\|]| -3821)) 26) (((-112) $ (|[\|\|]| -3803)) 21)) (-4264 (($ $ $) 28)) (-1720 (((-112) $ $) 18)))
+(((-615) (-13 (-964) (-10 -8 (-15 -2736 ($) -2222) (-15 -3821 ($) -2222) (-15 -3803 ($) -2222) (-15 -4301 ((-112) $ (|[\|\|]| -2736))) (-15 -4301 ((-112) $ (|[\|\|]| -3821))) (-15 -4301 ((-112) $ (|[\|\|]| -3803)))))) (T -615))
+((-2736 (*1 *1) (-5 *1 (-615))) (-3821 (*1 *1) (-5 *1 (-615))) (-3803 (*1 *1) (-5 *1 (-615))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2736)) (-5 *2 (-112)) (-5 *1 (-615)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3821)) (-5 *2 (-112)) (-5 *1 (-615)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3803)) (-5 *2 (-112)) (-5 *1 (-615)))))
+(-13 (-964) (-10 -8 (-15 -2736 ($) -2222) (-15 -3821 ($) -2222) (-15 -3803 ($) -2222) (-15 -4301 ((-112) $ (|[\|\|]| -2736))) (-15 -4301 ((-112) $ (|[\|\|]| -3821))) (-15 -4301 ((-112) $ (|[\|\|]| -3803)))))
+((-2374 (($ |#1|) 6)))
(((-616 |#1|) (-140) (-1209)) (T -616))
-((-2127 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1209)))))
-(-13 (-10 -8 (-15 -2127 ($ |t#1|))))
-((-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10)))
-(((-617 |#1| |#2|) (-10 -8 (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|))) (-618 |#2|) (-1046)) (T -617))
+((-2374 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1209)))))
+(-13 (-10 -8 (-15 -2374 ($ |t#1|))))
+((-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10)))
+(((-617 |#1| |#2|) (-10 -8 (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|))) (-618 |#2|) (-1046)) (T -617))
NIL
-(-10 -8 (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 36)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(-10 -8 (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 36)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
(((-618 |#1|) (-140) (-1046)) (T -618))
-((-1765 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1046)))))
-(-13 (-1046) (-644 |t#1|) (-10 -8 (-15 -1765 ($ |t#1|))))
+((-3714 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1046)))))
+(-13 (-1046) (-644 |t#1|) (-10 -8 (-15 -3714 ($ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3438 (((-564) $) NIL (|has| |#1| (-845)))) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-1751 (((-112) $) NIL (|has| |#1| (-845)))) (-2419 (((-112) $) NIL)) (-1507 ((|#1| $) 13)) (-2506 (((-112) $) NIL (|has| |#1| (-845)))) (-3571 (($ $ $) NIL (|has| |#1| (-845)))) (-1547 (($ $ $) NIL (|has| |#1| (-845)))) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1517 ((|#3| $) 15)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL)) (-1965 (((-768)) 20 T CONST)) (-2016 (($ $) NIL (|has| |#1| (-845)))) (-4317 (($) NIL T CONST)) (-4327 (($) 12 T CONST)) (-1738 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1793 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-619 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (-15 -1793 ($ $ |#3|)) (-15 -1793 ($ |#1| |#3|)) (-15 -1507 (|#1| $)) (-15 -1517 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-723) |#2|)) (T -619))
-((-1793 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-723) *4)))) (-1793 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-723) *4)))) (-1507 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-723) *3)))) (-1517 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (-15 -1793 ($ $ |#3|)) (-15 -1793 ($ |#1| |#3|)) (-15 -1507 (|#1| $)) (-15 -1517 (|#3| $))))
-((-2807 ((|#2| |#2| (-1170) (-1170)) 16)))
-(((-620 |#1| |#2|) (-10 -7 (-15 -2807 (|#2| |#2| (-1170) (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -620))
-((-2807 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-29 *4))))))
-(-10 -7 (-15 -2807 (|#2| |#2| (-1170) (-1170))))
-((-1754 (((-112) $ $) 64)) (-3976 (((-112) $) 58)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-1766 ((|#1| $) 55)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2436 (((-2 (|:| -4217 $) (|:| -3643 (-407 |#2|))) (-407 |#2|)) 110 (|has| |#1| (-363)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 98) (((-3 |#2| "failed") $) 94)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) 27)) (-1926 (((-3 $ "failed") $) 88)) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2261 (((-564) $) 22)) (-2419 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) 40)) (-4145 (($ |#1| (-564)) 24)) (-4323 ((|#1| $) 57)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 115 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (((-3 $ "failed") $ $) 92)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3712 (((-768) $) 114 (|has| |#1| (-363)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 113 (|has| |#1| (-363)))) (-3226 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3344 (((-564) $) 38)) (-2127 (((-407 |#2|) $) 47)) (-1765 (((-859) $) 69) (($ (-564)) 35) (($ $) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 34) (($ |#2|) 25)) (-1757 ((|#1| $ (-564)) 72)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) 32 T CONST)) (-1582 (((-112) $ $) NIL)) (-4317 (($) 9 T CONST)) (-4327 (($) 14 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1686 (((-112) $ $) 21)) (-1783 (($ $) 51) (($ $ $) NIL)) (-1771 (($ $ $) 89)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 29) (($ $ $) 49)))
-(((-621 |#1| |#2|) (-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1035 |#2|) (-10 -8 (-15 -3101 ((-112) $)) (-15 -3344 ((-564) $)) (-15 -2261 ((-564) $)) (-15 -4346 ($ $)) (-15 -4323 (|#1| $)) (-15 -1766 (|#1| $)) (-15 -1757 (|#1| $ (-564))) (-15 -4145 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2436 ((-2 (|:| -4217 $) (|:| -3643 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-556) (-1235 |#1|)) (T -621))
-((-3101 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-3344 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-2261 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-4346 (*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-4323 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-1766 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-2436 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -4217 (-621 *4 *5)) (|:| -3643 (-407 *5)))) (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5)))))
-(-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1035 |#2|) (-10 -8 (-15 -3101 ((-112) $)) (-15 -3344 ((-564) $)) (-15 -2261 ((-564) $)) (-15 -4346 ($ $)) (-15 -4323 (|#1| $)) (-15 -1766 (|#1| $)) (-15 -1757 (|#1| $ (-564))) (-15 -4145 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2436 ((-2 (|:| -4217 $) (|:| -3643 (-407 |#2|))) (-407 |#2|)))) |%noBranch|)))
-((-4389 (((-641 |#6|) (-641 |#4|) (-112)) 53)) (-4023 ((|#6| |#6|) 47)))
-(((-622 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4023 (|#6| |#6|)) (-15 -4389 ((-641 |#6|) (-641 |#4|) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2| |#3| |#4|)) (T -622))
-((-4389 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *10)) (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *10 (-1103 *5 *6 *7 *8)))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6)))))
-(-10 -7 (-15 -4023 (|#6| |#6|)) (-15 -4389 ((-641 |#6|) (-641 |#4|) (-112))))
-((-3952 (((-112) |#3| (-768) (-641 |#3|)) 32)) (-3799 (((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2362 (-641 (-2 (|:| |irr| |#4|) (|:| -1490 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)) 73)))
-(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 ((-112) |#3| (-768) (-641 |#3|))) (-15 -3799 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2362 (-641 (-2 (|:| |irr| |#4|) (|:| -1490 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)))) (-847) (-790) (-307) (-946 |#3| |#2| |#1|)) (T -623))
-((-3799 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2362 (-641 (-2 (|:| |irr| *10) (|:| -1490 (-564))))))) (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-847)) (-4 *3 (-307)) (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-790)) (-5 *2 (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3) (|:| |corrfact| (-641 (-1166 *3))))) (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3))))) (-3952 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-768)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-847)) (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) (-4 *8 (-946 *3 *7 *6)))))
-(-10 -7 (-15 -3952 ((-112) |#3| (-768) (-641 |#3|))) (-15 -3799 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2362 (-641 (-2 (|:| |irr| |#4|) (|:| -1490 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|))))
-((-1754 (((-112) $ $) NIL)) (-4324 (((-1129) $) 11)) (-4312 (((-1129) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-624) (-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1129) $))))) (T -624))
-((-4312 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))))
-(-13 (-1077) (-10 -8 (-15 -4312 ((-1129) $)) (-15 -4324 ((-1129) $))))
-((-1754 (((-112) $ $) NIL)) (-3265 (((-641 |#1|) $) NIL)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-2776 (($ $) 77)) (-2186 (((-660 |#1| |#2|) $) 60)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 81)) (-4240 (((-641 (-294 |#2|)) $ $) 42)) (-3802 (((-1114) $) NIL)) (-2152 (($ (-660 |#1| |#2|)) 56)) (-2502 (($ $ $) NIL)) (-1762 (($ $ $) NIL)) (-1765 (((-859) $) 66) (((-1274 |#1| |#2|) $) NIL) (((-1279 |#1| |#2|) $) 74)) (-4327 (($) 61 T CONST)) (-2852 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) 41)) (-3136 (((-641 (-660 |#1| |#2|)) (-641 |#1|)) 73)) (-3723 (((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $) 46)) (-1686 (((-112) $ $) 62)) (-1793 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 52)))
-(((-625 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -2152 ($ (-660 |#1| |#2|))) (-15 -2186 ((-660 |#1| |#2|) $)) (-15 -3723 ((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $)) (-15 -1765 ((-1274 |#1| |#2|) $)) (-15 -1765 ((-1279 |#1| |#2|) $)) (-15 -2776 ($ $)) (-15 -3265 ((-641 |#1|) $)) (-15 -3136 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -2852 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -4240 ((-641 (-294 |#2|)) $ $)))) (-847) (-13 (-172) (-714 (-407 (-564)))) (-918)) (T -625))
-((-2152 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) (-14 *5 (-918)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3723 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-890 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-2776 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-13 (-172) (-714 (-407 (-564))))) (-14 *4 (-918)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-660 *4 *5))) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-714 (-407 (-564))))) (-14 *6 (-918)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-4240 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))))
-(-13 (-473) (-10 -8 (-15 -2152 ($ (-660 |#1| |#2|))) (-15 -2186 ((-660 |#1| |#2|) $)) (-15 -3723 ((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $)) (-15 -1765 ((-1274 |#1| |#2|) $)) (-15 -1765 ((-1279 |#1| |#2|) $)) (-15 -2776 ($ $)) (-15 -3265 ((-641 |#1|) $)) (-15 -3136 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -2852 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -4240 ((-641 (-294 |#2|)) $ $))))
-((-4389 (((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)) 102) (((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112)) 76)) (-2075 (((-112) (-641 (-777 |#1| (-861 |#2|)))) 26)) (-3119 (((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)) 101)) (-1997 (((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112)) 75)) (-2067 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|)))) 30)) (-3749 (((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|)))) 29)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -2075 ((-112) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3749 ((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|))))) (-15 -2067 ((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))))) (-15 -1997 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -3119 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -4389 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -4389 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)))) (-452) (-641 (-1170))) (T -626))
-((-4389 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) (-5 *1 (-626 *5 *6)))) (-4389 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-626 *5 *6)))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) (-5 *1 (-626 *5 *6)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-626 *5 *6)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-3749 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-641 (-777 *4 (-861 *5)))) (-4 *4 (-452)) (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
-(-10 -7 (-15 -2075 ((-112) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3749 ((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|))))) (-15 -2067 ((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))))) (-15 -1997 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -3119 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -4389 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -4389 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))))
-((-3904 (($ $) 38)) (-3752 (($ $) 21)) (-3879 (($ $) 37)) (-3727 (($ $) 22)) (-3933 (($ $) 36)) (-3778 (($ $) 23)) (-1539 (($) 48)) (-2186 (($ $) 45)) (-1954 (($ $) 17)) (-3504 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6)) (-2152 (($ $) 46)) (-3677 (($ $) 15)) (-3714 (($ $) 16)) (-3949 (($ $) 35)) (-3789 (($ $) 24)) (-3918 (($ $) 34)) (-3765 (($ $) 25)) (-3891 (($ $) 33)) (-3739 (($ $) 26)) (-3991 (($ $) 44)) (-3827 (($ $) 32)) (-3963 (($ $) 43)) (-3801 (($ $) 31)) (-4020 (($ $) 42)) (-3854 (($ $) 30)) (-3586 (($ $) 41)) (-3867 (($ $) 29)) (-4005 (($ $) 40)) (-3840 (($ $) 28)) (-3977 (($ $) 39)) (-3814 (($ $) 27)) (-3377 (($ $) 19)) (-4024 (($ $) 20)) (-2451 (($ $) 18)) (** (($ $ $) 47)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3191 (((-564) $) NIL (|has| |#1| (-845)))) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-3137 (((-112) $) NIL (|has| |#1| (-845)))) (-2340 (((-112) $) NIL)) (-1655 ((|#1| $) 13)) (-2001 (((-112) $) NIL (|has| |#1| (-845)))) (-3428 (($ $ $) NIL (|has| |#1| (-845)))) (-3413 (($ $ $) NIL (|has| |#1| (-845)))) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1668 ((|#3| $) 15)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL)) (-3379 (((-768)) 20 T CONST)) (-3920 (($ $) NIL (|has| |#1| (-845)))) (-4312 (($) NIL T CONST)) (-4323 (($) 12 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1841 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-619 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (-15 -1841 ($ $ |#3|)) (-15 -1841 ($ |#1| |#3|)) (-15 -1655 (|#1| $)) (-15 -1668 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-723) |#2|)) (T -619))
+((-1841 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-723) *4)))) (-1841 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-723) *4)))) (-1655 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-723) *3)))) (-1668 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (-15 -1841 ($ $ |#3|)) (-15 -1841 ($ |#1| |#3|)) (-15 -1655 (|#1| $)) (-15 -1668 (|#3| $))))
+((-1949 ((|#2| |#2| (-1170) (-1170)) 16)))
+(((-620 |#1| |#2|) (-10 -7 (-15 -1949 (|#2| |#2| (-1170) (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -620))
+((-1949 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-29 *4))))))
+(-10 -7 (-15 -1949 (|#2| |#2| (-1170) (-1170))))
+((-3702 (((-112) $ $) 64)) (-1556 (((-112) $) 58)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-3244 ((|#1| $) 55)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2530 (((-2 (|:| -2024 $) (|:| -1495 (-407 |#2|))) (-407 |#2|)) 110 (|has| |#1| (-363)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 98) (((-3 |#2| "failed") $) 94)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) 27)) (-4272 (((-3 $ "failed") $) 88)) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1454 (((-564) $) 22)) (-2340 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2961 (((-112) $) 40)) (-4267 (($ |#1| (-564)) 24)) (-1345 ((|#1| $) 57)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 115 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-1347 (((-3 $ "failed") $ $) 92)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3966 (((-768) $) 114 (|has| |#1| (-363)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 113 (|has| |#1| (-363)))) (-2203 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3475 (((-564) $) 38)) (-2374 (((-407 |#2|) $) 47)) (-3714 (((-859) $) 69) (($ (-564)) 35) (($ $) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 34) (($ |#2|) 25)) (-3181 ((|#1| $ (-564)) 72)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) 32 T CONST)) (-3979 (((-112) $ $) NIL)) (-4312 (($) 9 T CONST)) (-4323 (($) 14 T CONST)) (-2238 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1720 (((-112) $ $) 21)) (-1828 (($ $) 51) (($ $ $) NIL)) (-1814 (($ $ $) 89)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 29) (($ $ $) 49)))
+(((-621 |#1| |#2|) (-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1035 |#2|) (-10 -8 (-15 -2961 ((-112) $)) (-15 -3475 ((-564) $)) (-15 -1454 ((-564) $)) (-15 -1374 ($ $)) (-15 -1345 (|#1| $)) (-15 -3244 (|#1| $)) (-15 -3181 (|#1| $ (-564))) (-15 -4267 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2530 ((-2 (|:| -2024 $) (|:| -1495 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-556) (-1235 |#1|)) (T -621))
+((-2961 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-3475 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-1454 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-1374 (*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-1345 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-3244 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-4267 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-2530 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -2024 (-621 *4 *5)) (|:| -1495 (-407 *5)))) (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5)))))
+(-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1035 |#2|) (-10 -8 (-15 -2961 ((-112) $)) (-15 -3475 ((-564) $)) (-15 -1454 ((-564) $)) (-15 -1374 ($ $)) (-15 -1345 (|#1| $)) (-15 -3244 (|#1| $)) (-15 -3181 (|#1| $ (-564))) (-15 -4267 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -2530 ((-2 (|:| -2024 $) (|:| -1495 (-407 |#2|))) (-407 |#2|)))) |%noBranch|)))
+((-4055 (((-641 |#6|) (-641 |#4|) (-112)) 53)) (-3765 ((|#6| |#6|) 47)))
+(((-622 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3765 (|#6| |#6|)) (-15 -4055 ((-641 |#6|) (-641 |#4|) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2| |#3| |#4|)) (T -622))
+((-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *10)) (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *10 (-1103 *5 *6 *7 *8)))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3765 (|#6| |#6|)) (-15 -4055 ((-641 |#6|) (-641 |#4|) (-112))))
+((-1308 (((-112) |#3| (-768) (-641 |#3|)) 32)) (-2406 (((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3020 (-641 (-2 (|:| |irr| |#4|) (|:| -2534 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)) 73)))
+(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1308 ((-112) |#3| (-768) (-641 |#3|))) (-15 -2406 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3020 (-641 (-2 (|:| |irr| |#4|) (|:| -2534 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)))) (-847) (-790) (-307) (-946 |#3| |#2| |#1|)) (T -623))
+((-2406 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3020 (-641 (-2 (|:| |irr| *10) (|:| -2534 (-564))))))) (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-847)) (-4 *3 (-307)) (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-790)) (-5 *2 (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3) (|:| |corrfact| (-641 (-1166 *3))))) (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3))))) (-1308 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-768)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-847)) (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) (-4 *8 (-946 *3 *7 *6)))))
+(-10 -7 (-15 -1308 ((-112) |#3| (-768) (-641 |#3|))) (-15 -2406 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3020 (-641 (-2 (|:| |irr| |#4|) (|:| -2534 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|))))
+((-3702 (((-112) $ $) NIL)) (-3119 (((-1129) $) 11)) (-3109 (((-1129) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-624) (-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1129) $))))) (T -624))
+((-3109 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))))
+(-13 (-1077) (-10 -8 (-15 -3109 ((-1129) $)) (-15 -3119 ((-1129) $))))
+((-3702 (((-112) $ $) NIL)) (-3441 (((-641 |#1|) $) NIL)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-2843 (($ $) 77)) (-2305 (((-660 |#1| |#2|) $) 60)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 81)) (-2211 (((-641 (-294 |#2|)) $ $) 42)) (-3844 (((-1114) $) NIL)) (-4130 (($ (-660 |#1| |#2|)) 56)) (-1953 (($ $ $) NIL)) (-3217 (($ $ $) NIL)) (-3714 (((-859) $) 66) (((-1274 |#1| |#2|) $) NIL) (((-1279 |#1| |#2|) $) 74)) (-4323 (($) 61 T CONST)) (-4234 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) 41)) (-3248 (((-641 (-660 |#1| |#2|)) (-641 |#1|)) 73)) (-2902 (((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $) 46)) (-1720 (((-112) $ $) 62)) (-1841 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 52)))
+(((-625 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -4130 ($ (-660 |#1| |#2|))) (-15 -2305 ((-660 |#1| |#2|) $)) (-15 -2902 ((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $)) (-15 -3714 ((-1274 |#1| |#2|) $)) (-15 -3714 ((-1279 |#1| |#2|) $)) (-15 -2843 ($ $)) (-15 -3441 ((-641 |#1|) $)) (-15 -3248 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -4234 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -2211 ((-641 (-294 |#2|)) $ $)))) (-847) (-13 (-172) (-714 (-407 (-564)))) (-918)) (T -625))
+((-4130 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) (-14 *5 (-918)))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-890 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-2843 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-13 (-172) (-714 (-407 (-564))))) (-14 *4 (-918)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-660 *4 *5))) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-714 (-407 (-564))))) (-14 *6 (-918)))) (-4234 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-2211 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))))
+(-13 (-473) (-10 -8 (-15 -4130 ($ (-660 |#1| |#2|))) (-15 -2305 ((-660 |#1| |#2|) $)) (-15 -2902 ((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $)) (-15 -3714 ((-1274 |#1| |#2|) $)) (-15 -3714 ((-1279 |#1| |#2|) $)) (-15 -2843 ($ $)) (-15 -3441 ((-641 |#1|) $)) (-15 -3248 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -4234 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -2211 ((-641 (-294 |#2|)) $ $))))
+((-4055 (((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)) 102) (((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112)) 76)) (-3297 (((-112) (-641 (-777 |#1| (-861 |#2|)))) 26)) (-3103 (((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)) 101)) (-3724 (((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112)) 75)) (-3222 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|)))) 30)) (-3095 (((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|)))) 29)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -3297 ((-112) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3095 ((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|))))) (-15 -3222 ((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3724 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -3103 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -4055 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -4055 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)))) (-452) (-641 (-1170))) (T -626))
+((-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) (-5 *1 (-626 *5 *6)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-626 *5 *6)))) (-3103 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) (-5 *1 (-626 *5 *6)))) (-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-626 *5 *6)))) (-3222 (*1 *2 *2) (-12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-3095 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-641 (-777 *4 (-861 *5)))) (-4 *4 (-452)) (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
+(-10 -7 (-15 -3297 ((-112) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3095 ((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|))))) (-15 -3222 ((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))))) (-15 -3724 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -3103 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -4055 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -4055 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))))
+((-2657 (($ $) 38)) (-2516 (($ $) 21)) (-2635 (($ $) 37)) (-2491 (($ $) 22)) (-2679 (($ $) 36)) (-2542 (($ $) 23)) (-1688 (($) 48)) (-2305 (($ $) 45)) (-3891 (($ $) 17)) (-2668 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6)) (-4130 (($ $) 46)) (-2444 (($ $) 15)) (-2478 (($ $) 16)) (-2692 (($ $) 35)) (-2557 (($ $) 24)) (-2669 (($ $) 34)) (-2529 (($ $) 25)) (-2647 (($ $) 33)) (-2502 (($ $) 26)) (-2728 (($ $) 44)) (-2595 (($ $) 32)) (-2704 (($ $) 43)) (-2566 (($ $) 31)) (-2751 (($ $) 42)) (-2615 (($ $) 30)) (-2053 (($ $) 41)) (-2626 (($ $) 29)) (-2740 (($ $) 40)) (-2605 (($ $) 28)) (-2716 (($ $) 39)) (-2577 (($ $) 27)) (-3840 (($ $) 19)) (-3777 (($ $) 20)) (-2689 (($ $) 18)) (** (($ $ $) 47)))
(((-627) (-140)) (T -627))
-((-4024 (*1 *1 *1) (-4 *1 (-627))) (-3377 (*1 *1 *1) (-4 *1 (-627))) (-2451 (*1 *1 *1) (-4 *1 (-627))) (-1954 (*1 *1 *1) (-4 *1 (-627))) (-3714 (*1 *1 *1) (-4 *1 (-627))) (-3677 (*1 *1 *1) (-4 *1 (-627))))
-(-13 (-956) (-1194) (-10 -8 (-15 -4024 ($ $)) (-15 -3377 ($ $)) (-15 -2451 ($ $)) (-15 -1954 ($ $)) (-15 -3714 ($ $)) (-15 -3677 ($ $))))
+((-3777 (*1 *1 *1) (-4 *1 (-627))) (-3840 (*1 *1 *1) (-4 *1 (-627))) (-2689 (*1 *1 *1) (-4 *1 (-627))) (-3891 (*1 *1 *1) (-4 *1 (-627))) (-2478 (*1 *1 *1) (-4 *1 (-627))) (-2444 (*1 *1 *1) (-4 *1 (-627))))
+(-13 (-956) (-1194) (-10 -8 (-15 -3777 ($ $)) (-15 -3840 ($ $)) (-15 -2689 ($ $)) (-15 -3891 ($ $)) (-15 -2478 ($ $)) (-15 -2444 ($ $))))
(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-956) . T) ((-1194) . T) ((-1197) . T))
-((-1826 (((-114) (-114)) 90)) (-1954 ((|#2| |#2|) 28)) (-3504 ((|#2| |#2| (-1086 |#2|)) 86) ((|#2| |#2| (-1170)) 50)) (-3677 ((|#2| |#2|) 27)) (-3714 ((|#2| |#2|) 29)) (-1573 (((-112) (-114)) 33)) (-3377 ((|#2| |#2|) 24)) (-4024 ((|#2| |#2|) 26)) (-2451 ((|#2| |#2|) 25)))
-(((-628 |#1| |#2|) (-10 -7 (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -4024 (|#2| |#2|)) (-15 -3377 (|#2| |#2|)) (-15 -2451 (|#2| |#2|)) (-15 -1954 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (-15 -3714 (|#2| |#2|)) (-15 -3504 (|#2| |#2| (-1170))) (-15 -3504 (|#2| |#2| (-1086 |#2|)))) (-13 (-847) (-556)) (-13 (-430 |#1|) (-999) (-1194))) (T -628))
-((-3504 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)))) (-3504 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))))) (-3714 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-3677 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-1954 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-2451 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *4)) (-4 *4 (-13 (-430 *3) (-999) (-1194))))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))))))
-(-10 -7 (-15 -1573 ((-112) (-114))) (-15 -1826 ((-114) (-114))) (-15 -4024 (|#2| |#2|)) (-15 -3377 (|#2| |#2|)) (-15 -2451 (|#2| |#2|)) (-15 -1954 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (-15 -3714 (|#2| |#2|)) (-15 -3504 (|#2| |#2| (-1170))) (-15 -3504 (|#2| |#2| (-1086 |#2|))))
-((-2193 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-2440 (((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 93)) (-2459 (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|)) 95) (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|)) 94)) (-2523 (((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|))) 138)) (-3960 (((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 108)) (-3315 (((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|))) 148)) (-2023 (((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|))) 72)) (-3324 (((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 48)) (-3356 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 64)) (-1775 (((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 116)))
-(((-629 |#1| |#2|) (-10 -7 (-15 -2523 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -3315 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -2440 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2459 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -2459 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -3324 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2023 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -1775 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3960 ((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3356 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -2193 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-641 (-1170)) (-452)) (T -629))
-((-2193 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))) (-3356 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-3960 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-861 *4)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-1775 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6)))) (-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6)) (-5 *1 (-629 *5 *6)))) (-3324 (*1 *2 *2) (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-2459 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))) (-3315 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564))))) (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5))))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-641 (-247 *4 *5))) (|:| |gvlist| (-641 (-564))))) (-5 *1 (-629 *4 *5)))))
-(-10 -7 (-15 -2523 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -3315 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -2440 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2459 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -2459 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -3324 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2023 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -1775 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3960 ((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3356 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -2193 ((-481 |#1| |#2|) (-247 |#1| |#2|))))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) NIL)) (-3476 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 (((-52) $ (-1152) (-52)) 16) (((-52) $ (-1170) (-52)) 17)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 (-52) "failed") (-1152) $) NIL)) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094))))) (-1907 (($ (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-3 (-52) "failed") (-1152) $) NIL)) (-2359 (($ (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $ (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094)))) (((-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $ (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-3528 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4412)))) (-3455 (((-52) $ (-1152)) NIL)) (-3080 (((-641 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-1955 (($ $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-1152) $) NIL (|has| (-1152) (-847)))) (-3817 (((-641 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-1479 (((-1152) $) NIL (|has| (-1152) (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3537 (($ (-388)) 9)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094))))) (-3211 (((-641 (-1152)) $) NIL)) (-4185 (((-112) (-1152) $) NIL)) (-1833 (((-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) $) NIL)) (-2098 (($ (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) $) NIL)) (-1371 (((-641 (-1152)) $) NIL)) (-3629 (((-112) (-1152) $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094))))) (-3073 (((-52) $) NIL (|has| (-1152) (-847)))) (-2343 (((-3 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) "failed") (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL)) (-2614 (($ $ (-52)) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094)))) (($ $ (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-3599 (((-641 (-52)) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 (((-52) $ (-1152)) 14) (((-52) $ (-1152) (-52)) NIL) (((-52) $ (-1170)) 15)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) NIL)) (-1765 (((-859) $) NIL (-4002 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 (-52))) (-1094))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-630) (-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -3537 ($ (-388))) (-15 -1955 ($ $)) (-15 -4382 ((-52) $ (-1170))) (-15 -1881 ((-52) $ (-1170) (-52)))))) (T -630))
-((-3537 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))) (-1955 (*1 *1 *1) (-5 *1 (-630))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630)))) (-1881 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630)))))
-(-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -3537 ($ (-388))) (-15 -1955 ($ $)) (-15 -4382 ((-52) $ (-1170))) (-15 -1881 ((-52) $ (-1170) (-52)))))
-((-1793 (($ $ |#2|) 10)))
-(((-631 |#1| |#2|) (-10 -8 (-15 -1793 (|#1| |#1| |#2|))) (-632 |#2|) (-172)) (T -631))
-NIL
-(-10 -8 (-15 -1793 (|#1| |#1| |#2|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1776 (($ $ $) 29)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 28 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-2702 (((-114) (-114)) 90)) (-3891 ((|#2| |#2|) 28)) (-2668 ((|#2| |#2| (-1086 |#2|)) 86) ((|#2| |#2| (-1170)) 50)) (-2444 ((|#2| |#2|) 27)) (-2478 ((|#2| |#2|) 29)) (-2068 (((-112) (-114)) 33)) (-3840 ((|#2| |#2|) 24)) (-3777 ((|#2| |#2|) 26)) (-2689 ((|#2| |#2|) 25)))
+(((-628 |#1| |#2|) (-10 -7 (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -3777 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -2689 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -2478 (|#2| |#2|)) (-15 -2668 (|#2| |#2| (-1170))) (-15 -2668 (|#2| |#2| (-1086 |#2|)))) (-13 (-847) (-556)) (-13 (-430 |#1|) (-999) (-1194))) (T -628))
+((-2668 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)))) (-2668 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))))) (-2478 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-2689 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-3777 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-2702 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *4)) (-4 *4 (-13 (-430 *3) (-999) (-1194))))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))))))
+(-10 -7 (-15 -2068 ((-112) (-114))) (-15 -2702 ((-114) (-114))) (-15 -3777 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -2689 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -2478 (|#2| |#2|)) (-15 -2668 (|#2| |#2| (-1170))) (-15 -2668 (|#2| |#2| (-1086 |#2|))))
+((-2046 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-2576 (((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 93)) (-2777 (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|)) 95) (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|)) 94)) (-2123 (((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|))) 138)) (-1411 (((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 108)) (-1369 (((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|))) 148)) (-2858 (((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|))) 72)) (-1476 (((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 48)) (-3606 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 64)) (-2183 (((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 116)))
+(((-629 |#1| |#2|) (-10 -7 (-15 -2123 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -1369 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -2576 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2777 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -2777 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -1476 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2858 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -2183 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -1411 ((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3606 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -2046 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-641 (-1170)) (-452)) (T -629))
+((-2046 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))) (-3606 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-1411 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-861 *4)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-2183 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6)))) (-2858 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6)) (-5 *1 (-629 *5 *6)))) (-1476 (*1 *2 *2) (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))) (-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-2777 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))) (-1369 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564))))) (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5))))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-641 (-247 *4 *5))) (|:| |gvlist| (-641 (-564))))) (-5 *1 (-629 *4 *5)))))
+(-10 -7 (-15 -2123 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -1369 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -2576 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2777 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -2777 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -1476 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -2858 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -2183 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -1411 ((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3606 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -2046 ((-481 |#1| |#2|) (-247 |#1| |#2|))))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) NIL)) (-2399 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 (((-52) $ (-1152) (-52)) 16) (((-52) $ (-1170) (-52)) 17)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 (-52) "failed") (-1152) $) NIL)) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094))))) (-4074 (($ (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-3 (-52) "failed") (-1152) $) NIL)) (-2514 (($ (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $ (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094)))) (((-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $ (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-1998 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4413)))) (-3593 (((-52) $ (-1152)) NIL)) (-4244 (((-641 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-641 (-52)) $) NIL (|has| $ (-6 -4412)))) (-1469 (($ $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2572 (((-641 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-641 (-52)) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-52) (-1094))))) (-2415 (((-1152) $) NIL (|has| (-1152) (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4413))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3582 (($ (-388)) 9)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094))))) (-1922 (((-641 (-1152)) $) NIL)) (-1690 (((-112) (-1152) $) NIL)) (-2775 (((-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) $) NIL)) (-2373 (($ (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) $) NIL)) (-3127 (((-641 (-1152)) $) NIL)) (-1338 (((-112) (-1152) $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094))))) (-2049 (((-52) $) NIL (|has| (-1152) (-847)))) (-2905 (((-3 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) "failed") (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL)) (-3538 (($ $ (-52)) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094)))) (($ $ (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-52) (-1094))))) (-4121 (((-641 (-52)) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 (((-52) $ (-1152)) 14) (((-52) $ (-1152) (-52)) NIL) (((-52) $ (-1170)) 15)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) NIL)) (-3714 (((-859) $) NIL (-4012 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 (-52))) (-1094))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-630) (-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -3582 ($ (-388))) (-15 -1469 ($ $)) (-15 -4382 ((-52) $ (-1170))) (-15 -3868 ((-52) $ (-1170) (-52)))))) (T -630))
+((-3582 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))) (-1469 (*1 *1 *1) (-5 *1 (-630))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630)))) (-3868 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630)))))
+(-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -3582 ($ (-388))) (-15 -1469 ($ $)) (-15 -4382 ((-52) $ (-1170))) (-15 -3868 ((-52) $ (-1170) (-52)))))
+((-1841 (($ $ |#2|) 10)))
+(((-631 |#1| |#2|) (-10 -8 (-15 -1841 (|#1| |#1| |#2|))) (-632 |#2|) (-172)) (T -631))
+NIL
+(-10 -8 (-15 -1841 (|#1| |#1| |#2|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3725 (($ $ $) 29)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 28 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-632 |#1|) (-140) (-172)) (T -632))
-((-1776 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) (-1793 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
-(-13 (-714 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1776 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -1793 ($ $ |t#1|)) |%noBranch|)))
+((-3725 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) (-1841 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
+(-13 (-714 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3725 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -1841 ($ $ |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-1052 |#1|) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-1950 (((-3 $ "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3165 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3233 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3760 (($) NIL T CONST)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2661 (((-3 $ "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2685 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4349 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1725 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3828 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4089 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1864 (($ $ (-918)) NIL)) (-3158 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3261 (((-1166 |#1|) $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1870 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3660 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3202 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2910 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1926 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4224 (((-918)) NIL (|has| |#2| (-367 |#1|)))) (-1703 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2544 (($ $ (-918)) NIL)) (-2053 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2824 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3222 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4280 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3979 (((-3 $ "failed")) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3449 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3899 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1549 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3647 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3743 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3229 (($ $ (-918)) NIL)) (-4009 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2883 (((-1166 |#1|) $) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2291 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1563 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3734 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4202 (((-1152) $) NIL)) (-1995 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2187 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1756 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3802 (((-1114) $) NIL)) (-3015 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4382 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-3072 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2127 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-4339 (((-641 (-949 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-949 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1762 (($ $ $) NIL)) (-2060 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1765 (((-859) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3941 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-2663 (((-641 (-1259 |#1|))) NIL (-4002 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1850 (($ $ $ $) NIL)) (-3730 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3021 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3008 (($ $ $) NIL)) (-1379 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3689 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2323 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4317 (($) 19 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) 20)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-633 |#1| |#2|) (-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -1765 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-741 |#1|)) (T -633))
-((-1765 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-741 *3)))))
-(-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -1765 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
-((-3797 (((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)) 105) (((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|))) 130)) (-4188 (((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|))) 135)))
-(((-634 |#1| |#2|) (-10 -7 (-15 -3797 ((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|)))) (-15 -4188 ((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|)))) (-15 -3797 ((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -634))
-((-3797 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-840 *3)) (-5 *1 (-634 *6 *3)))) (-4188 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-830 *3))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-830 *3)) (-5 *1 (-634 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-840 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (-840 *3) (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) "failed")) (-5 *1 (-634 *5 *3)))))
-(-10 -7 (-15 -3797 ((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|)))) (-15 -4188 ((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|)))) (-15 -3797 ((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152))))
-((-3797 (((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)) 85) (((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 20) (((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|)))) 35)) (-4188 (((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 23) (((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|)))) 43)))
-(((-635 |#1|) (-10 -7 (-15 -3797 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|))))) (-15 -3797 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -4188 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|))))) (-15 -4188 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -3797 ((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)))) (-452)) (T -635))
-((-3797 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-949 *6)))) (-5 *5 (-1152)) (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-840 *3)) (-5 *1 (-635 *6)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-452)) (-5 *2 (-830 *3)) (-5 *1 (-635 *5)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-830 (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-830 (-407 (-949 *5)))) (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5))))) (-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-840 *3) (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) "failed")) (-5 *1 (-635 *5)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-840 (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-840 (-407 (-949 *5))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 *5))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 *5))) "failed"))) "failed")) (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5))))))
-(-10 -7 (-15 -3797 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|))))) (-15 -3797 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -4188 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|))))) (-15 -4188 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -3797 ((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152))))
-((-3070 (((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|) 64 (-4254 (|has| |#1| (-363)))) (((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|) 49 (|has| |#1| (-363)))) (-3100 (((-112) (-1259 |#2|)) 33)) (-1704 (((-3 (-1259 |#1|) "failed") (-1259 |#2|)) 40)))
-(((-636 |#1| |#2|) (-10 -7 (-15 -3100 ((-112) (-1259 |#2|))) (-15 -1704 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -3070 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -3070 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|)))) (-556) (-637 |#1|)) (T -636))
-((-3070 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4254 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5))) (-5 *1 (-636 *5 *4)))) (-3070 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4)))) (-1704 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
-(-10 -7 (-15 -3100 ((-112) (-1259 |#2|))) (-15 -1704 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -3070 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -3070 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2620 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1425 (((-3 $ "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-2426 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1838 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3180 (($) NIL T CONST)) (-1830 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2911 (((-3 $ "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3102 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3693 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2921 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2684 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3176 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1842 (($ $ (-918)) NIL)) (-2345 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2119 (((-1166 |#1|) $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1907 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3448 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2790 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3566 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-4272 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1595 (((-918)) NIL (|has| |#2| (-367 |#1|)))) (-3882 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4133 (($ $ (-918)) NIL)) (-3113 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2111 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1717 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1303 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1566 (((-3 $ "failed")) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3276 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2112 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1847 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1524 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3050 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1788 (($ $ (-918)) NIL)) (-3645 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1487 (((-1166 |#1|) $) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3531 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1980 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2989 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1868 (((-1152) $) NIL)) (-3700 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1981 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3172 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3844 (((-1114) $) NIL)) (-1458 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4382 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-3867 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2374 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3602 (((-641 (-949 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-949 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3217 (($ $ $) NIL)) (-3168 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3714 (((-859) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4339 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-2919 (((-641 (-1259 |#1|))) NIL (-4012 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1687 (($ $ $ $) NIL)) (-2954 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1996 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1390 (($ $ $) NIL)) (-3808 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3738 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3851 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4312 (($) 19 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) 20)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-633 |#1| |#2|) (-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -3714 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-741 |#1|)) (T -633))
+((-3714 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-741 *3)))))
+(-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -3714 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|)))
+((-2386 (((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)) 105) (((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|))) 130)) (-1712 (((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|))) 135)))
+(((-634 |#1| |#2|) (-10 -7 (-15 -2386 ((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|)))) (-15 -1712 ((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|)))) (-15 -2386 ((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -634))
+((-2386 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-840 *3)) (-5 *1 (-634 *6 *3)))) (-1712 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-830 *3))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-830 *3)) (-5 *1 (-634 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2386 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-840 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (-840 *3) (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) "failed")) (-5 *1 (-634 *5 *3)))))
+(-10 -7 (-15 -2386 ((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|)))) (-15 -1712 ((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|)))) (-15 -2386 ((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152))))
+((-2386 (((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)) 85) (((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 20) (((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|)))) 35)) (-1712 (((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 23) (((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|)))) 43)))
+(((-635 |#1|) (-10 -7 (-15 -2386 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|))))) (-15 -2386 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -1712 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|))))) (-15 -1712 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2386 ((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)))) (-452)) (T -635))
+((-2386 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-949 *6)))) (-5 *5 (-1152)) (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-840 *3)) (-5 *1 (-635 *6)))) (-1712 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-452)) (-5 *2 (-830 *3)) (-5 *1 (-635 *5)))) (-1712 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-830 (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-830 (-407 (-949 *5)))) (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5))))) (-2386 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-840 *3) (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) "failed")) (-5 *1 (-635 *5)))) (-2386 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-840 (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-840 (-407 (-949 *5))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 *5))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 *5))) "failed"))) "failed")) (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5))))))
+(-10 -7 (-15 -2386 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|))))) (-15 -2386 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -1712 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|))))) (-15 -1712 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2386 ((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152))))
+((-3846 (((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|) 64 (-4253 (|has| |#1| (-363)))) (((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|) 49 (|has| |#1| (-363)))) (-2953 (((-112) (-1259 |#2|)) 33)) (-3894 (((-3 (-1259 |#1|) "failed") (-1259 |#2|)) 40)))
+(((-636 |#1| |#2|) (-10 -7 (-15 -2953 ((-112) (-1259 |#2|))) (-15 -3894 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -3846 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -3846 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|)))) (-556) (-637 |#1|)) (T -636))
+((-3846 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4253 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5))) (-5 *1 (-636 *5 *4)))) (-3846 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4)))) (-3894 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
+(-10 -7 (-15 -2953 ((-112) (-1259 |#2|))) (-15 -3894 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -3846 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -3846 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-3613 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-637 |#1|) (-140) (-1046)) (T -637))
-((-2620 (*1 *2 *3) (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1046)) (-5 *2 (-685 *4)))) (-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -1447 (-685 *5)) (|:| |vec| (-1259 *5)))))))
-(-13 (-1046) (-10 -8 (-15 -2620 ((-685 |t#1|) (-685 $))) (-15 -2620 ((-2 (|:| -1447 (-685 |t#1|)) (|:| |vec| (-1259 |t#1|))) (-685 $) (-1259 $)))))
+((-3613 (*1 *2 *3) (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1046)) (-5 *2 (-685 *4)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -1920 (-685 *5)) (|:| |vec| (-1259 *5)))))))
+(-13 (-1046) (-10 -8 (-15 -3613 ((-685 |t#1|) (-685 $))) (-15 -3613 ((-2 (|:| -1920 (-685 |t#1|)) (|:| |vec| (-1259 |t#1|))) (-685 $) (-1259 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-4299 ((|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|) 17) ((|#2| (-641 |#1|) (-641 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|)) 12)))
-(((-638 |#1| |#2|) (-10 -7 (-15 -4299 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -4299 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -4299 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -4299 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -4299 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -4299 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)))) (-1094) (-1209)) (T -638))
-((-4299 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-4299 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6)))) (-4299 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-4299 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094)) (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5)))) (-4299 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-4299 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6)))))
-(-10 -7 (-15 -4299 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -4299 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -4299 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -4299 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -4299 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -4299 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|))))
-((-4077 (((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 16)) (-4367 ((|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 18)) (-2082 (((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)) 13)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -4077 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -4367 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -2082 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)))) (-1209) (-1209)) (T -639))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-639 *5 *6)))) (-4367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-639 *5 *2)))) (-4077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5)))))
-(-10 -7 (-15 -4077 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -4367 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -2082 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|))))
-((-2082 (((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)) 21)))
-(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2082 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)))) (-1209) (-1209) (-1209)) (T -640))
-((-2082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-641 *6)) (-5 *5 (-641 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-641 *8)) (-5 *1 (-640 *6 *7 *8)))))
-(-10 -7 (-15 -2082 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) NIL)) (-2722 ((|#1| $) NIL)) (-1882 (($ $) NIL)) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3280 (($ $ (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2494 (($ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-3768 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-2293 (($ $ $) NIL (|has| $ (-6 -4412)))) (-3129 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-4318 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "rest" $) NIL (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-3010 (($ $ $) 36 (|has| |#1| (-1094)))) (-3000 (($ $ $) 40 (|has| |#1| (-1094)))) (-2989 (($ $ $) 43 (|has| |#1| (-1094)))) (-4194 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2711 ((|#1| $) NIL)) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3086 (($ $) 22) (($ $ (-768)) NIL)) (-3083 (($ $) NIL (|has| |#1| (-1094)))) (-3104 (($ $) 35 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1907 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2359 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1418 (((-112) $) NIL)) (-1356 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4241 (((-112) $) 11)) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2268 (($) 9)) (-1633 (($ (-768) |#1|) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1397 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4012 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 39 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2953 (($ |#1|) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3848 (((-641 |#1|) $) NIL)) (-2200 (((-112) $) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2376 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2098 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3412 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3073 ((|#1| $) 19) (($ $ (-768)) NIL)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-2141 (((-112) $) NIL)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) 38)) (-3845 (($) 37)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 41) ((|#1| $ (-564) |#1|) NIL)) (-3837 (((-564) $ $) NIL)) (-4183 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2008 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1867 (((-112) $) NIL)) (-2294 (($ $) NIL)) (-4207 (($ $) NIL (|has| $ (-6 -4412)))) (-2355 (((-768) $) NIL)) (-4119 (($ $) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) 52 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) NIL)) (-4156 (($ |#1| $) 12)) (-2478 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2817 (($ $ $) 34) (($ |#1| $) 42) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2514 (($ $ $) 13)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3886 (((-1152) $) 30 (|has| |#1| (-825))) (((-1152) $ (-112)) 31 (|has| |#1| (-825))) (((-1264) (-819) $) 32 (|has| |#1| (-825))) (((-1264) (-819) $ (-112)) 33 (|has| |#1| (-825)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-641 |#1|) (-13 (-662 |#1|) (-10 -8 (-15 -2268 ($)) (-15 -4241 ((-112) $)) (-15 -4156 ($ |#1| $)) (-15 -2514 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -3010 ($ $ $)) (-15 -3000 ($ $ $)) (-15 -2989 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1209)) (T -641))
-((-2268 (*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209)))) (-4156 (*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-2514 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-3010 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-3000 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-2989 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
-(-13 (-662 |#1|) (-10 -8 (-15 -2268 ($)) (-15 -4241 ((-112) $)) (-15 -4156 ($ |#1| $)) (-15 -2514 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -3010 ($ $ $)) (-15 -3000 ($ $ $)) (-15 -2989 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 11) (($ (-1175)) NIL) (((-1175) $) NIL) ((|#1| $) 8)) (-1686 (((-112) $ $) NIL)))
+((-1414 ((|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|) 17) ((|#2| (-641 |#1|) (-641 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|)) 12)))
+(((-638 |#1| |#2|) (-10 -7 (-15 -1414 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -1414 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -1414 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -1414 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -1414 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -1414 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)))) (-1094) (-1209)) (T -638))
+((-1414 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-1414 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6)))) (-1414 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-1414 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094)) (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5)))) (-1414 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6)))))
+(-10 -7 (-15 -1414 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -1414 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -1414 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -1414 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -1414 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -1414 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|))))
+((-3092 (((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 16)) (-1728 ((|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 18)) (-2313 (((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)) 13)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -3092 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -1728 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -2313 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)))) (-1209) (-1209)) (T -639))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-639 *5 *6)))) (-1728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-639 *5 *2)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5)))))
+(-10 -7 (-15 -3092 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -1728 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -2313 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|))))
+((-2313 (((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)) 21)))
+(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2313 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)))) (-1209) (-1209) (-1209)) (T -640))
+((-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-641 *6)) (-5 *5 (-641 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-641 *8)) (-5 *1 (-640 *6 *7 *8)))))
+(-10 -7 (-15 -2313 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) NIL)) (-2985 ((|#1| $) NIL)) (-3794 (($ $) NIL)) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-4140 (($ $ (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4194 (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2904 (($ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3242 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-3543 (($ $ $) NIL (|has| $ (-6 -4413)))) (-3186 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-1617 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4413))) (($ $ "rest" $) NIL (|has| $ (-6 -4413))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-1985 (($ $ $) 36 (|has| |#1| (-1094)))) (-1973 (($ $ $) 40 (|has| |#1| (-1094)))) (-1961 (($ $ $) 43 (|has| |#1| (-1094)))) (-1773 (($ (-1 (-112) |#1|) $) NIL)) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2976 ((|#1| $) NIL)) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2063 (($ $) 22) (($ $ (-768)) NIL)) (-2822 (($ $) NIL (|has| |#1| (-1094)))) (-2084 (($ $) 35 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4074 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2514 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-1635 (((-112) $) NIL)) (-3303 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-4241 (((-112) $) 11)) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2408 (($) 9)) (-3564 (($ (-768) |#1|) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-2573 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3678 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 39 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1929 (($ |#1|) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2523 (((-641 |#1|) $) NIL)) (-2120 (((-112) $) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2541 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2373 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2455 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2049 ((|#1| $) 19) (($ $ (-768)) NIL)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-2791 (((-112) $) NIL)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) 38)) (-2834 (($) 37)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 41) ((|#1| $ (-564) |#1|) NIL)) (-2774 (((-564) $ $) NIL)) (-2899 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2090 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-1875 (((-112) $) NIL)) (-3554 (($ $) NIL)) (-1911 (($ $) NIL (|has| $ (-6 -4413)))) (-2966 (((-768) $) NIL)) (-3414 (($ $) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) 52 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) NIL)) (-3053 (($ |#1| $) 12)) (-1711 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1865 (($ $ $) 34) (($ |#1| $) 42) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2712 (($ $ $) 13)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1983 (((-1152) $) 30 (|has| |#1| (-825))) (((-1152) $ (-112)) 31 (|has| |#1| (-825))) (((-1264) (-819) $) 32 (|has| |#1| (-825))) (((-1264) (-819) $ (-112)) 33 (|has| |#1| (-825)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-641 |#1|) (-13 (-662 |#1|) (-10 -8 (-15 -2408 ($)) (-15 -4241 ((-112) $)) (-15 -3053 ($ |#1| $)) (-15 -2712 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1985 ($ $ $)) (-15 -1973 ($ $ $)) (-15 -1961 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1209)) (T -641))
+((-2408 (*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209)))) (-3053 (*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-2712 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-1985 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-1973 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-1961 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
+(-13 (-662 |#1|) (-10 -8 (-15 -2408 ($)) (-15 -4241 ((-112) $)) (-15 -3053 ($ |#1| $)) (-15 -2712 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1985 ($ $ $)) (-15 -1973 ($ $ $)) (-15 -1961 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 11) (($ (-1175)) NIL) (((-1175) $) NIL) ((|#1| $) 8)) (-1720 (((-112) $ $) NIL)))
(((-642 |#1|) (-13 (-1077) (-611 |#1|)) (-1094)) (T -642))
NIL
(-13 (-1077) (-611 |#1|))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3094 (($ |#1| |#1| $) 46)) (-3263 (((-112) $ (-768)) NIL)) (-4194 (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3083 (($ $) 48)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1907 (($ |#1| $) 58 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 60 (|has| $ (-6 -4411)))) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3080 (((-641 |#1|) $) 9 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 37)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1833 ((|#1| $) 50)) (-2098 (($ |#1| $) 29) (($ |#1| $ (-768)) 45)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3389 ((|#1| $) 53)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 23)) (-3845 (($) 28)) (-1989 (((-112) $) 56)) (-4282 (((-641 (-2 (|:| -1327 |#1|) (|:| -3815 (-768)))) $) 68)) (-3784 (($) 26) (($ (-641 |#1|)) 19)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) 65 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) 20)) (-2127 (((-536) $) 34 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) NIL)) (-1765 (((-859) $) 14 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) 24)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 70 (|has| |#1| (-1094)))) (-2589 (((-768) $) 17 (|has| $ (-6 -4411)))))
-(((-643 |#1|) (-13 (-691 |#1|) (-10 -8 (-6 -4411) (-15 -1989 ((-112) $)) (-15 -3094 ($ |#1| |#1| $)))) (-1094)) (T -643))
-((-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094)))) (-3094 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094)))))
-(-13 (-691 |#1|) (-10 -8 (-6 -4411) (-15 -1989 ((-112) $)) (-15 -3094 ($ |#1| |#1| $))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23)))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2074 (($ |#1| |#1| $) 46)) (-2141 (((-112) $ (-768)) NIL)) (-1773 (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-2822 (($ $) 48)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4074 (($ |#1| $) 58 (|has| $ (-6 -4412))) (($ (-1 (-112) |#1|) $) 60 (|has| $ (-6 -4412)))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-4244 (((-641 |#1|) $) 9 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 37)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2775 ((|#1| $) 50)) (-2373 (($ |#1| $) 29) (($ |#1| $ (-768)) 45)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3950 ((|#1| $) 53)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 23)) (-2834 (($) 28)) (-3636 (((-112) $) 56)) (-1327 (((-641 (-2 (|:| -2575 |#1|) (|:| -3855 (-768)))) $) 68)) (-3372 (($) 26) (($ (-641 |#1|)) 19)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) 65 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) 20)) (-2374 (((-536) $) 34 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) NIL)) (-3714 (((-859) $) 14 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) 24)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 70 (|has| |#1| (-1094)))) (-2779 (((-768) $) 17 (|has| $ (-6 -4412)))))
+(((-643 |#1|) (-13 (-691 |#1|) (-10 -8 (-6 -4412) (-15 -3636 ((-112) $)) (-15 -2074 ($ |#1| |#1| $)))) (-1094)) (T -643))
+((-3636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094)))) (-2074 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094)))))
+(-13 (-691 |#1|) (-10 -8 (-6 -4412) (-15 -3636 ((-112) $)) (-15 -2074 ($ |#1| |#1| $))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23)))
(((-644 |#1|) (-140) (-1053)) (T -644))
((* (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1053)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768) $) 17)) (-4079 (($ $ |#1|) 69)) (-3852 (($ $) 39)) (-3716 (($ $) 37)) (-2013 (((-3 |#1| "failed") $) 61)) (-2064 ((|#1| $) NIL)) (-3414 (($ |#1| |#2| $) 78) (($ $ $) 80)) (-3563 (((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564)) 56)) (-2902 ((|#1| $ (-564)) 35)) (-2774 ((|#2| $ (-564)) 34)) (-2093 (($ (-1 |#1| |#1|) $) 41)) (-4143 (($ (-1 |#2| |#2|) $) 47)) (-1909 (($) 11)) (-1735 (($ |#1| |#2|) 24)) (-3597 (($ (-641 (-2 (|:| |gen| |#1|) (|:| -2152 |#2|)))) 25)) (-2099 (((-641 (-2 (|:| |gen| |#1|) (|:| -2152 |#2|))) $) 14)) (-1592 (($ |#1| $) 71)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2185 (((-112) $ $) 76)) (-1765 (((-859) $) 21) (($ |#1|) 18)) (-1686 (((-112) $ $) 27)))
-(((-645 |#1| |#2| |#3|) (-13 (-1094) (-1035 |#1|) (-10 -8 (-15 -3563 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564))) (-15 -2099 ((-641 (-2 (|:| |gen| |#1|) (|:| -2152 |#2|))) $)) (-15 -1735 ($ |#1| |#2|)) (-15 -3597 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -2152 |#2|))))) (-15 -2774 (|#2| $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -3716 ($ $)) (-15 -3852 ($ $)) (-15 -3042 ((-768) $)) (-15 -1909 ($)) (-15 -4079 ($ $ |#1|)) (-15 -1592 ($ |#1| $)) (-15 -3414 ($ |#1| |#2| $)) (-15 -3414 ($ $ $)) (-15 -2185 ((-112) $ $)) (-15 -4143 ($ (-1 |#2| |#2|) $)) (-15 -2093 ($ (-1 |#1| |#1|) $)))) (-1094) (-23) |#2|) (T -645))
-((-3563 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-564)) (-5 *2 (-859)) (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-1735 (*1 *1 *2 *3) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 *4)))) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)))) (-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5)) (-4 *4 (-1094)) (-14 *5 *2))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3716 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3852 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-1909 (*1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-4079 (*1 *1 *1 *2) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1592 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3414 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3414 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2185 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-4143 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)))) (-2093 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1094) (-1035 |#1|) (-10 -8 (-15 -3563 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564))) (-15 -2099 ((-641 (-2 (|:| |gen| |#1|) (|:| -2152 |#2|))) $)) (-15 -1735 ($ |#1| |#2|)) (-15 -3597 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -2152 |#2|))))) (-15 -2774 (|#2| $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -3716 ($ $)) (-15 -3852 ($ $)) (-15 -3042 ((-768) $)) (-15 -1909 ($)) (-15 -4079 ($ $ |#1|)) (-15 -1592 ($ |#1| $)) (-15 -3414 ($ |#1| |#2| $)) (-15 -3414 ($ $ $)) (-15 -2185 ((-112) $ $)) (-15 -4143 ($ (-1 |#2| |#2|) $)) (-15 -2093 ($ (-1 |#1| |#1|) $))))
-((-1479 (((-564) $) 29)) (-3412 (($ |#2| $ (-564)) 25) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) 12)) (-3629 (((-112) (-564) $) 16)) (-2817 (($ $ |#2|) 22) (($ |#2| $) 23) (($ $ $) NIL) (($ (-641 $)) NIL)))
-(((-646 |#1| |#2|) (-10 -8 (-15 -3412 (|#1| |#1| |#1| (-564))) (-15 -3412 (|#1| |#2| |#1| (-564))) (-15 -2817 (|#1| (-641 |#1|))) (-15 -2817 (|#1| |#1| |#1|)) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#2|)) (-15 -1479 ((-564) |#1|)) (-15 -1371 ((-641 (-564)) |#1|)) (-15 -3629 ((-112) (-564) |#1|))) (-647 |#2|) (-1209)) (T -646))
-NIL
-(-10 -8 (-15 -3412 (|#1| |#1| |#1| (-564))) (-15 -3412 (|#1| |#2| |#1| (-564))) (-15 -2817 (|#1| (-641 |#1|))) (-15 -2817 (|#1| |#1| |#1|)) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#2|)) (-15 -1479 ((-564) |#1|)) (-15 -1371 ((-641 (-564)) |#1|)) (-15 -3629 ((-112) (-564) |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3476 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) 8)) (-1881 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3104 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 51)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-1633 (($ (-768) |#1|) 69)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 43 (|has| (-564) (-847)))) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 44 (|has| (-564) (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-1371 (((-641 (-564)) $) 46)) (-3629 (((-112) (-564) $) 47)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3073 ((|#1| $) 42 (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2614 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2008 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 70)) (-2817 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768) $) 17)) (-3112 (($ $ |#1|) 69)) (-1651 (($ $) 39)) (-1923 (($ $) 37)) (-2224 (((-3 |#1| "failed") $) 61)) (-2376 ((|#1| $) NIL)) (-3590 (($ |#1| |#2| $) 78) (($ $ $) 80)) (-1978 (((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564)) 56)) (-3488 ((|#1| $ (-564)) 35)) (-2824 ((|#2| $ (-564)) 34)) (-2312 (($ (-1 |#1| |#1|) $) 41)) (-2558 (($ (-1 |#2| |#2|) $) 47)) (-4095 (($) 11)) (-3001 (($ |#1| |#2|) 24)) (-4098 (($ (-641 (-2 (|:| |gen| |#1|) (|:| -4130 |#2|)))) 25)) (-2384 (((-641 (-2 (|:| |gen| |#1|) (|:| -4130 |#2|))) $) 14)) (-4069 (($ |#1| $) 71)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1969 (((-112) $ $) 76)) (-3714 (((-859) $) 21) (($ |#1|) 18)) (-1720 (((-112) $ $) 27)))
+(((-645 |#1| |#2| |#3|) (-13 (-1094) (-1035 |#1|) (-10 -8 (-15 -1978 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564))) (-15 -2384 ((-641 (-2 (|:| |gen| |#1|) (|:| -4130 |#2|))) $)) (-15 -3001 ($ |#1| |#2|)) (-15 -4098 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -4130 |#2|))))) (-15 -2824 (|#2| $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -1923 ($ $)) (-15 -1651 ($ $)) (-15 -2018 ((-768) $)) (-15 -4095 ($)) (-15 -3112 ($ $ |#1|)) (-15 -4069 ($ |#1| $)) (-15 -3590 ($ |#1| |#2| $)) (-15 -3590 ($ $ $)) (-15 -1969 ((-112) $ $)) (-15 -2558 ($ (-1 |#2| |#2|) $)) (-15 -2312 ($ (-1 |#1| |#1|) $)))) (-1094) (-23) |#2|) (T -645))
+((-1978 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-564)) (-5 *2 (-859)) (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-3001 (*1 *1 *2 *3) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 *4)))) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)))) (-2824 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5)) (-4 *4 (-1094)) (-14 *5 *2))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1923 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1651 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-4095 (*1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3112 (*1 *1 *1 *2) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-4069 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3590 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3590 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1969 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-2558 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)))) (-2312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1094) (-1035 |#1|) (-10 -8 (-15 -1978 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564))) (-15 -2384 ((-641 (-2 (|:| |gen| |#1|) (|:| -4130 |#2|))) $)) (-15 -3001 ($ |#1| |#2|)) (-15 -4098 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -4130 |#2|))))) (-15 -2824 (|#2| $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -1923 ($ $)) (-15 -1651 ($ $)) (-15 -2018 ((-768) $)) (-15 -4095 ($)) (-15 -3112 ($ $ |#1|)) (-15 -4069 ($ |#1| $)) (-15 -3590 ($ |#1| |#2| $)) (-15 -3590 ($ $ $)) (-15 -1969 ((-112) $ $)) (-15 -2558 ($ (-1 |#2| |#2|) $)) (-15 -2312 ($ (-1 |#1| |#1|) $))))
+((-2415 (((-564) $) 29)) (-2455 (($ |#2| $ (-564)) 25) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) 12)) (-1338 (((-112) (-564) $) 16)) (-1865 (($ $ |#2|) 22) (($ |#2| $) 23) (($ $ $) NIL) (($ (-641 $)) NIL)))
+(((-646 |#1| |#2|) (-10 -8 (-15 -2455 (|#1| |#1| |#1| (-564))) (-15 -2455 (|#1| |#2| |#1| (-564))) (-15 -1865 (|#1| (-641 |#1|))) (-15 -1865 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#2|)) (-15 -2415 ((-564) |#1|)) (-15 -3127 ((-641 (-564)) |#1|)) (-15 -1338 ((-112) (-564) |#1|))) (-647 |#2|) (-1209)) (T -646))
+NIL
+(-10 -8 (-15 -2455 (|#1| |#1| |#1| (-564))) (-15 -2455 (|#1| |#2| |#1| (-564))) (-15 -1865 (|#1| (-641 |#1|))) (-15 -1865 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#2|)) (-15 -2415 ((-564) |#1|)) (-15 -3127 ((-641 (-564)) |#1|)) (-15 -1338 ((-112) (-564) |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2399 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) 8)) (-3868 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2084 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 51)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-3564 (($ (-768) |#1|) 69)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 43 (|has| (-564) (-847)))) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3127 (((-641 (-564)) $) 46)) (-1338 (((-112) (-564) $) 47)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2049 ((|#1| $) 42 (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3538 (($ $ |#1|) 41 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2090 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 70)) (-1865 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-647 |#1|) (-140) (-1209)) (T -647))
-((-1633 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2817 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-2817 (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-2817 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-2817 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2082 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2008 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2008 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3412 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-3412 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-1881 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4412)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))))
-(-13 (-602 (-564) |t#1|) (-151 |t#1|) (-10 -8 (-15 -1633 ($ (-768) |t#1|)) (-15 -2817 ($ $ |t#1|)) (-15 -2817 ($ |t#1| $)) (-15 -2817 ($ $ $)) (-15 -2817 ($ (-641 $))) (-15 -2082 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4382 ($ $ (-1226 (-564)))) (-15 -2008 ($ $ (-564))) (-15 -2008 ($ $ (-1226 (-564)))) (-15 -3412 ($ |t#1| $ (-564))) (-15 -3412 ($ $ $ (-564))) (IF (|has| $ (-6 -4412)) (-15 -1881 (|t#1| $ (-1226 (-564)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-4325 (((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) "failed") |#3| |#2| (-1170)) 44)))
-(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -4325 ((-3 (-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -4325 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956)) (-652 |#2|)) (T -648))
-((-4325 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2)))) (-4325 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3941 (-641 *4)))) (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4)))))
-(-10 -7 (-15 -4325 ((-3 (-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -4325 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-1513 (($ $) NIL (|has| |#1| (-363)))) (-3880 (($ $ $) NIL (|has| |#1| (-363)))) (-1602 (($ $ (-768)) NIL (|has| |#1| (-363)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2366 (($ $ $) NIL (|has| |#1| (-363)))) (-3546 (($ $ $) NIL (|has| |#1| (-363)))) (-2554 (($ $ $) NIL (|has| |#1| (-363)))) (-3075 (($ $ $) NIL (|has| |#1| (-363)))) (-1748 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-3327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3700 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#1| (-452)))) (-2419 (((-112) $) NIL)) (-4145 (($ |#1| (-768)) NIL)) (-1819 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-556)))) (-4125 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-556)))) (-3829 (((-768) $) NIL)) (-1655 (($ $ $) NIL (|has| |#1| (-363)))) (-2866 (($ $ $) NIL (|has| |#1| (-363)))) (-4253 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (($ $ $) NIL (|has| |#1| (-363)))) (-2405 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-1477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4052 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) NIL)) (-3870 (($ $ $) NIL (|has| |#1| (-363)))) (-3344 (((-768) $) NIL)) (-2712 ((|#1| $) NIL (|has| |#1| (-452)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-768)) NIL)) (-1965 (((-768)) NIL T CONST)) (-3021 ((|#1| $ |#1| |#1|) NIL)) (-1825 (($ $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($) NIL)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-3564 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-1865 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-1865 (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-1865 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-1865 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2090 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2090 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2455 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-2455 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3868 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4413)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))))
+(-13 (-602 (-564) |t#1|) (-151 |t#1|) (-10 -8 (-15 -3564 ($ (-768) |t#1|)) (-15 -1865 ($ $ |t#1|)) (-15 -1865 ($ |t#1| $)) (-15 -1865 ($ $ $)) (-15 -1865 ($ (-641 $))) (-15 -2313 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4382 ($ $ (-1226 (-564)))) (-15 -2090 ($ $ (-564))) (-15 -2090 ($ $ (-1226 (-564)))) (-15 -2455 ($ |t#1| $ (-564))) (-15 -2455 ($ $ $ (-564))) (IF (|has| $ (-6 -4413)) (-15 -3868 (|t#1| $ (-1226 (-564)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-3472 (((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) "failed") |#3| |#2| (-1170)) 44)))
+(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -3472 ((-3 (-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -3472 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956)) (-652 |#2|)) (T -648))
+((-3472 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2)))) (-3472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4339 (-641 *4)))) (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4)))))
+(-10 -7 (-15 -3472 ((-3 (-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -3472 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1497 (($ $) NIL (|has| |#1| (-363)))) (-1915 (($ $ $) NIL (|has| |#1| (-363)))) (-4162 (($ $ (-768)) NIL (|has| |#1| (-363)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-3055 (($ $ $) NIL (|has| |#1| (-363)))) (-1795 (($ $ $) NIL (|has| |#1| (-363)))) (-4239 (($ $ $) NIL (|has| |#1| (-363)))) (-3889 (($ $ $) NIL (|has| |#1| (-363)))) (-3107 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-1510 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3847 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#1| (-452)))) (-2340 (((-112) $) NIL)) (-4267 (($ |#1| (-768)) NIL)) (-2634 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-556)))) (-2368 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-556)))) (-2700 (((-768) $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-363)))) (-4386 (($ $ $) NIL (|has| |#1| (-363)))) (-4147 (($ $ $) NIL (|has| |#1| (-363)))) (-3194 (($ $ $) NIL (|has| |#1| (-363)))) (-3326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-2393 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4047 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) NIL)) (-1813 (($ $ $) NIL (|has| |#1| (-363)))) (-3475 (((-768) $) NIL)) (-3324 ((|#1| $) NIL (|has| |#1| (-452)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-768)) NIL)) (-3379 (((-768)) NIL T CONST)) (-1996 ((|#1| $ |#1| |#1|) NIL)) (-2690 (($ $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($) NIL)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-649 |#1|) (-652 |#1|) (-233)) (T -649))
NIL
(-652 |#1|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-1513 (($ $) NIL (|has| |#1| (-363)))) (-3880 (($ $ $) NIL (|has| |#1| (-363)))) (-1602 (($ $ (-768)) NIL (|has| |#1| (-363)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2366 (($ $ $) NIL (|has| |#1| (-363)))) (-3546 (($ $ $) NIL (|has| |#1| (-363)))) (-2554 (($ $ $) NIL (|has| |#1| (-363)))) (-3075 (($ $ $) NIL (|has| |#1| (-363)))) (-1748 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-3327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3700 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#1| (-452)))) (-2419 (((-112) $) NIL)) (-4145 (($ |#1| (-768)) NIL)) (-1819 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-556)))) (-4125 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-556)))) (-3829 (((-768) $) NIL)) (-1655 (($ $ $) NIL (|has| |#1| (-363)))) (-2866 (($ $ $) NIL (|has| |#1| (-363)))) (-4253 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (($ $ $) NIL (|has| |#1| (-363)))) (-2405 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-1477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4052 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3870 (($ $ $) NIL (|has| |#1| (-363)))) (-3344 (((-768) $) NIL)) (-2712 ((|#1| $) NIL (|has| |#1| (-452)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-768)) NIL)) (-1965 (((-768)) NIL T CONST)) (-3021 ((|#1| $ |#1| |#1|) NIL)) (-1825 (($ $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($) NIL)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-650 |#1| |#2|) (-13 (-652 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-644 |#1|) (-10 -8 (-15 -3226 ($ $))))) (T -650))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1497 (($ $) NIL (|has| |#1| (-363)))) (-1915 (($ $ $) NIL (|has| |#1| (-363)))) (-4162 (($ $ (-768)) NIL (|has| |#1| (-363)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-3055 (($ $ $) NIL (|has| |#1| (-363)))) (-1795 (($ $ $) NIL (|has| |#1| (-363)))) (-4239 (($ $ $) NIL (|has| |#1| (-363)))) (-3889 (($ $ $) NIL (|has| |#1| (-363)))) (-3107 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-1510 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3847 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#1| (-452)))) (-2340 (((-112) $) NIL)) (-4267 (($ |#1| (-768)) NIL)) (-2634 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-556)))) (-2368 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-556)))) (-2700 (((-768) $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-363)))) (-4386 (($ $ $) NIL (|has| |#1| (-363)))) (-4147 (($ $ $) NIL (|has| |#1| (-363)))) (-3194 (($ $ $) NIL (|has| |#1| (-363)))) (-3326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-2393 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4047 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1813 (($ $ $) NIL (|has| |#1| (-363)))) (-3475 (((-768) $) NIL)) (-3324 ((|#1| $) NIL (|has| |#1| (-452)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-768)) NIL)) (-3379 (((-768)) NIL T CONST)) (-1996 ((|#1| $ |#1| |#1|) NIL)) (-2690 (($ $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($) NIL)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-650 |#1| |#2|) (-13 (-652 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-644 |#1|) (-10 -8 (-15 -2203 ($ $))))) (T -650))
NIL
(-13 (-652 |#1|) (-286 |#2| |#2|))
-((-1513 (($ $) 29)) (-1825 (($ $) 27)) (-3190 (($) 13)))
-(((-651 |#1| |#2|) (-10 -8 (-15 -1513 (|#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -3190 (|#1|))) (-652 |#2|) (-1046)) (T -651))
+((-1497 (($ $) 29)) (-2690 (($ $) 27)) (-2238 (($) 13)))
+(((-651 |#1| |#2|) (-10 -8 (-15 -1497 (|#1| |#1|)) (-15 -2690 (|#1| |#1|)) (-15 -2238 (|#1|))) (-652 |#2|) (-1046)) (T -651))
NIL
-(-10 -8 (-15 -1513 (|#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -3190 (|#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-1513 (($ $) 81 (|has| |#1| (-363)))) (-3880 (($ $ $) 83 (|has| |#1| (-363)))) (-1602 (($ $ (-768)) 82 (|has| |#1| (-363)))) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2366 (($ $ $) 44 (|has| |#1| (-363)))) (-3546 (($ $ $) 45 (|has| |#1| (-363)))) (-2554 (($ $ $) 47 (|has| |#1| (-363)))) (-3075 (($ $ $) 42 (|has| |#1| (-363)))) (-1748 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 41 (|has| |#1| (-363)))) (-3327 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-3700 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 46 (|has| |#1| (-363)))) (-2013 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-2064 (((-564) $) 73 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 69)) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-2190 (($ $) 54 (|has| |#1| (-452)))) (-2419 (((-112) $) 31)) (-4145 (($ |#1| (-768)) 61)) (-1819 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 56 (|has| |#1| (-556)))) (-4125 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 57 (|has| |#1| (-556)))) (-3829 (((-768) $) 65)) (-1655 (($ $ $) 51 (|has| |#1| (-363)))) (-2866 (($ $ $) 52 (|has| |#1| (-363)))) (-4253 (($ $ $) 40 (|has| |#1| (-363)))) (-3130 (($ $ $) 49 (|has| |#1| (-363)))) (-2405 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 48 (|has| |#1| (-363)))) (-1477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4052 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 53 (|has| |#1| (-363)))) (-4323 ((|#1| $) 64)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1343 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) 86)) (-3870 (($ $ $) 80 (|has| |#1| (-363)))) (-3344 (((-768) $) 66)) (-2712 ((|#1| $) 55 (|has| |#1| (-452)))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 67)) (-4264 (((-641 |#1|) $) 60)) (-1757 ((|#1| $ (-768)) 62)) (-1965 (((-768)) 28 T CONST)) (-3021 ((|#1| $ |#1| |#1|) 59)) (-1825 (($ $) 84)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($) 85)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+(-10 -8 (-15 -1497 (|#1| |#1|)) (-15 -2690 (|#1| |#1|)) (-15 -2238 (|#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-1497 (($ $) 81 (|has| |#1| (-363)))) (-1915 (($ $ $) 83 (|has| |#1| (-363)))) (-4162 (($ $ (-768)) 82 (|has| |#1| (-363)))) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-3055 (($ $ $) 44 (|has| |#1| (-363)))) (-1795 (($ $ $) 45 (|has| |#1| (-363)))) (-4239 (($ $ $) 47 (|has| |#1| (-363)))) (-3889 (($ $ $) 42 (|has| |#1| (-363)))) (-3107 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 41 (|has| |#1| (-363)))) (-1510 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-3847 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 46 (|has| |#1| (-363)))) (-2224 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-2376 (((-564) $) 73 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 69)) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-2015 (($ $) 54 (|has| |#1| (-452)))) (-2340 (((-112) $) 31)) (-4267 (($ |#1| (-768)) 61)) (-2634 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 56 (|has| |#1| (-556)))) (-2368 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 57 (|has| |#1| (-556)))) (-2700 (((-768) $) 65)) (-3385 (($ $ $) 51 (|has| |#1| (-363)))) (-4386 (($ $ $) 52 (|has| |#1| (-363)))) (-4147 (($ $ $) 40 (|has| |#1| (-363)))) (-3194 (($ $ $) 49 (|has| |#1| (-363)))) (-3326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 48 (|has| |#1| (-363)))) (-2393 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4047 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 53 (|has| |#1| (-363)))) (-1345 ((|#1| $) 64)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1347 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) 86)) (-1813 (($ $ $) 80 (|has| |#1| (-363)))) (-3475 (((-768) $) 66)) (-3324 ((|#1| $) 55 (|has| |#1| (-452)))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 67)) (-4252 (((-641 |#1|) $) 60)) (-3181 ((|#1| $ (-768)) 62)) (-3379 (((-768)) 28 T CONST)) (-1996 ((|#1| $ |#1| |#1|) 59)) (-2690 (($ $) 84)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($) 85)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
(((-652 |#1|) (-140) (-1046)) (T -652))
-((-3190 (*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) (-1825 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) (-3880 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-652 *3)) (-4 *3 (-1046)) (-4 *3 (-363)))) (-1513 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3870 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(-13 (-849 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -3190 ($)) (-15 -1825 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -3880 ($ $ $)) (-15 -1602 ($ $ (-768))) (-15 -1513 ($ $)) (-15 -3870 ($ $ $))) |%noBranch|)))
+((-2238 (*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) (-2690 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) (-1915 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-652 *3)) (-4 *3 (-1046)) (-4 *3 (-363)))) (-1497 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1813 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(-13 (-849 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -2238 ($)) (-15 -2690 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -1915 ($ $ $)) (-15 -4162 ($ $ (-768))) (-15 -1497 ($ $)) (-15 -1813 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-849 |#1|) . T))
-((-2251 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 88 (|has| |#1| (-27)))) (-4006 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 87 (|has| |#1| (-27))) (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 19)))
-(((-653 |#1| |#2|) (-10 -7 (-15 -4006 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4006 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -2251 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -653))
-((-2251 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6)))) (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6))))))
-(-10 -7 (-15 -4006 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4006 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -2251 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-1513 (($ $) NIL (|has| |#1| (-363)))) (-3880 (($ $ $) 28 (|has| |#1| (-363)))) (-1602 (($ $ (-768)) 31 (|has| |#1| (-363)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2366 (($ $ $) NIL (|has| |#1| (-363)))) (-3546 (($ $ $) NIL (|has| |#1| (-363)))) (-2554 (($ $ $) NIL (|has| |#1| (-363)))) (-3075 (($ $ $) NIL (|has| |#1| (-363)))) (-1748 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-3327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3700 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#1| (-452)))) (-2419 (((-112) $) NIL)) (-4145 (($ |#1| (-768)) NIL)) (-1819 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-556)))) (-4125 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-556)))) (-3829 (((-768) $) NIL)) (-1655 (($ $ $) NIL (|has| |#1| (-363)))) (-2866 (($ $ $) NIL (|has| |#1| (-363)))) (-4253 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (($ $ $) NIL (|has| |#1| (-363)))) (-2405 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-1477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4052 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) 24)) (-3870 (($ $ $) 33 (|has| |#1| (-363)))) (-3344 (((-768) $) NIL)) (-2712 ((|#1| $) NIL (|has| |#1| (-452)))) (-1765 (((-859) $) 20) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-768)) NIL)) (-1965 (((-768)) NIL T CONST)) (-3021 ((|#1| $ |#1| |#1|) 23)) (-1825 (($ $) NIL)) (-4317 (($) 21 T CONST)) (-4327 (($) 8 T CONST)) (-3190 (($) NIL)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-1341 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 88 (|has| |#1| (-27)))) (-4139 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 87 (|has| |#1| (-27))) (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 19)))
+(((-653 |#1| |#2|) (-10 -7 (-15 -4139 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4139 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -1341 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -653))
+((-1341 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6)))) (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6))))))
+(-10 -7 (-15 -4139 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4139 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -1341 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1497 (($ $) NIL (|has| |#1| (-363)))) (-1915 (($ $ $) 28 (|has| |#1| (-363)))) (-4162 (($ $ (-768)) 31 (|has| |#1| (-363)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-3055 (($ $ $) NIL (|has| |#1| (-363)))) (-1795 (($ $ $) NIL (|has| |#1| (-363)))) (-4239 (($ $ $) NIL (|has| |#1| (-363)))) (-3889 (($ $ $) NIL (|has| |#1| (-363)))) (-3107 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-1510 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3847 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#1| (-452)))) (-2340 (((-112) $) NIL)) (-4267 (($ |#1| (-768)) NIL)) (-2634 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-556)))) (-2368 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-556)))) (-2700 (((-768) $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-363)))) (-4386 (($ $ $) NIL (|has| |#1| (-363)))) (-4147 (($ $ $) NIL (|has| |#1| (-363)))) (-3194 (($ $ $) NIL (|has| |#1| (-363)))) (-3326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-2393 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4047 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) 24)) (-1813 (($ $ $) 33 (|has| |#1| (-363)))) (-3475 (((-768) $) NIL)) (-3324 ((|#1| $) NIL (|has| |#1| (-452)))) (-3714 (((-859) $) 20) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-768)) NIL)) (-3379 (((-768)) NIL T CONST)) (-1996 ((|#1| $ |#1| |#1|) 23)) (-2690 (($ $) NIL)) (-4312 (($) 21 T CONST)) (-4323 (($) 8 T CONST)) (-2238 (($) NIL)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-654 |#1| |#2|) (-652 |#1|) (-1046) (-1 |#1| |#1|)) (T -654))
NIL
(-652 |#1|)
-((-3880 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-1602 ((|#2| |#2| (-768) (-1 |#1| |#1|)) 48)) (-3870 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
-(((-655 |#1| |#2|) (-10 -7 (-15 -3880 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1602 (|#2| |#2| (-768) (-1 |#1| |#1|))) (-15 -3870 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -655))
-((-3870 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4)))) (-1602 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5)))) (-3880 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4)))))
-(-10 -7 (-15 -3880 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1602 (|#2| |#2| (-768) (-1 |#1| |#1|))) (-15 -3870 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-3306 (($ $ $) 9)))
-(((-656 |#1|) (-10 -8 (-15 -3306 (|#1| |#1| |#1|))) (-657)) (T -656))
-NIL
-(-10 -8 (-15 -3306 (|#1| |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-1569 (($ $) 10)) (-3306 (($ $ $) 8)) (-1686 (((-112) $ $) 6)) (-3295 (($ $ $) 9)))
+((-1915 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-4162 ((|#2| |#2| (-768) (-1 |#1| |#1|)) 48)) (-1813 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
+(((-655 |#1| |#2|) (-10 -7 (-15 -1915 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4162 (|#2| |#2| (-768) (-1 |#1| |#1|))) (-15 -1813 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -655))
+((-1813 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4)))) (-4162 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5)))) (-1915 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4)))))
+(-10 -7 (-15 -1915 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4162 (|#2| |#2| (-768) (-1 |#1| |#1|))) (-15 -1813 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2284 (($ $ $) 9)))
+(((-656 |#1|) (-10 -8 (-15 -2284 (|#1| |#1| |#1|))) (-657)) (T -656))
+NIL
+(-10 -8 (-15 -2284 (|#1| |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1703 (($ $) 10)) (-2284 (($ $ $) 8)) (-1720 (((-112) $ $) 6)) (-2271 (($ $ $) 9)))
(((-657) (-140)) (T -657))
-((-1569 (*1 *1 *1) (-4 *1 (-657))) (-3295 (*1 *1 *1 *1) (-4 *1 (-657))) (-3306 (*1 *1 *1 *1) (-4 *1 (-657))))
-(-13 (-102) (-10 -8 (-15 -1569 ($ $)) (-15 -3295 ($ $ $)) (-15 -3306 ($ $ $))))
+((-1703 (*1 *1 *1) (-4 *1 (-657))) (-2271 (*1 *1 *1 *1) (-4 *1 (-657))) (-2284 (*1 *1 *1 *1) (-4 *1 (-657))))
+(-13 (-102) (-10 -8 (-15 -1703 ($ $)) (-15 -2271 ($ $ $)) (-15 -2284 ($ $ $))))
(((-102) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 15)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-1507 ((|#1| $) 21)) (-3571 (($ $ $) NIL (|has| |#1| (-788)))) (-1547 (($ $ $) NIL (|has| |#1| (-788)))) (-4202 (((-1152) $) 46)) (-3802 (((-1114) $) NIL)) (-1517 ((|#3| $) 22)) (-1765 (((-859) $) 41)) (-4317 (($) 10 T CONST)) (-1738 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1686 (((-112) $ $) 20)) (-1728 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1705 (((-112) $ $) 24 (|has| |#1| (-788)))) (-1793 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1783 (($ $) 17) (($ $ $) NIL)) (-1771 (($ $ $) 27)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-658 |#1| |#2| |#3|) (-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) (-15 -1793 ($ $ |#3|)) (-15 -1793 ($ |#1| |#3|)) (-15 -1507 (|#1| $)) (-15 -1517 (|#3| $)))) (-714 |#2|) (-172) (|SubsetCategory| (-723) |#2|)) (T -658))
-((-1793 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)) (-4 *2 (|SubsetCategory| (-723) *4)))) (-1793 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-714 *4)) (-4 *3 (|SubsetCategory| (-723) *4)))) (-1507 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-714 *3)) (-5 *1 (-658 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-723) *3)))) (-1517 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)))))
-(-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) (-15 -1793 ($ $ |#3|)) (-15 -1793 ($ |#1| |#3|)) (-15 -1507 (|#1| $)) (-15 -1517 (|#3| $))))
-((-1865 (((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)) 33)))
-(((-659 |#1|) (-10 -7 (-15 -1865 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)))) (-906)) (T -659))
-((-1865 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4)) (-4 *4 (-906)) (-5 *1 (-659 *4)))))
-(-10 -7 (-15 -1865 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3265 (((-641 |#1|) $) 84)) (-2496 (($ $ (-768)) 94)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2839 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 50)) (-2013 (((-3 (-668 |#1|) "failed") $) NIL)) (-2064 (((-668 |#1|) $) NIL)) (-4346 (($ $) 93)) (-3107 (((-768) $) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-2292 (($ (-668 |#1|) |#2|) 70)) (-2776 (($ $) 89)) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2558 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 49)) (-2536 (((-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4311 (((-668 |#1|) $) NIL)) (-4323 ((|#2| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2407 (($ $ |#1| $) 32) (($ $ (-641 |#1|) (-641 $)) 34)) (-3344 (((-768) $) 91)) (-1776 (($ $ $) 20) (($ (-668 |#1|) (-668 |#1|)) 79) (($ (-668 |#1|) $) 77) (($ $ (-668 |#1|)) 78)) (-1765 (((-859) $) NIL) (($ |#1|) 76) (((-1274 |#1| |#2|) $) 60) (((-1283 |#1| |#2|) $) 43) (($ (-668 |#1|)) 27)) (-4264 (((-641 |#2|) $) NIL)) (-1757 ((|#2| $ (-668 |#1|)) NIL)) (-1662 ((|#2| (-1283 |#1| |#2|) $) 45)) (-4317 (($) 23 T CONST)) (-3723 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3257 (((-3 $ "failed") (-1274 |#1| |#2|)) 62)) (-3032 (($ (-668 |#1|)) 14)) (-1686 (((-112) $ $) 46)) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $) 68) (($ $ $) NIL)) (-1771 (($ $ $) 31)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-668 |#1|)) NIL)))
-(((-660 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -3257 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -1776 ($ (-668 |#1|) (-668 |#1|))) (-15 -1776 ($ (-668 |#1|) $)) (-15 -1776 ($ $ (-668 |#1|))))) (-847) (-172)) (T -660))
-((-3257 (*1 *1 *2) (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *1 (-660 *3 *4)))) (-1776 (*1 *1 *2 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-1776 (*1 *1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))))
-(-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -3257 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -1776 ($ (-668 |#1|) (-668 |#1|))) (-15 -1776 ($ (-668 |#1|) $)) (-15 -1776 ($ $ (-668 |#1|)))))
-((-4310 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 60)) (-3606 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4194 (($ (-1 (-112) |#2|) $) 28)) (-3852 (($ $) 66)) (-3083 (($ $) 77)) (-1907 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 42)) (-4367 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 61) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 63)) (-1356 (((-564) |#2| $ (-564)) 74) (((-564) |#2| $) NIL) (((-564) (-1 (-112) |#2|) $) 55)) (-1633 (($ (-768) |#2|) 64)) (-1397 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-4012 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2082 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 65)) (-2953 (($ |#2|) 15)) (-2098 (($ $ $ (-564)) 41) (($ |#2| $ (-564)) 39)) (-2343 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 52)) (-4183 (($ $ (-1226 (-564))) 50) (($ $ (-564)) 43)) (-2286 (($ $ $ (-564)) 73)) (-1899 (($ $) 71)) (-1705 (((-112) $ $) 79)))
-(((-661 |#1| |#2|) (-10 -8 (-15 -2953 (|#1| |#2|)) (-15 -4183 (|#1| |#1| (-564))) (-15 -4183 (|#1| |#1| (-1226 (-564)))) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2098 (|#1| |#2| |#1| (-564))) (-15 -2098 (|#1| |#1| |#1| (-564))) (-15 -1397 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4194 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1907 (|#1| |#2| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -1397 (|#1| |#1| |#1|)) (-15 -4012 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4310 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1356 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1356 ((-564) |#2| |#1|)) (-15 -1356 ((-564) |#2| |#1| (-564))) (-15 -4012 (|#1| |#1| |#1|)) (-15 -4310 ((-112) |#1|)) (-15 -2286 (|#1| |#1| |#1| (-564))) (-15 -3852 (|#1| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3606 (|#1| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2343 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1633 (|#1| (-768) |#2|)) (-15 -2082 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1899 (|#1| |#1|))) (-662 |#2|) (-1209)) (T -661))
-NIL
-(-10 -8 (-15 -2953 (|#1| |#2|)) (-15 -4183 (|#1| |#1| (-564))) (-15 -4183 (|#1| |#1| (-1226 (-564)))) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2098 (|#1| |#2| |#1| (-564))) (-15 -2098 (|#1| |#1| |#1| (-564))) (-15 -1397 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4194 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1907 (|#1| |#2| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -1397 (|#1| |#1| |#1|)) (-15 -4012 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4310 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1356 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1356 ((-564) |#2| |#1|)) (-15 -1356 ((-564) |#2| |#1| (-564))) (-15 -4012 (|#1| |#1| |#1|)) (-15 -4310 ((-112) |#1|)) (-15 -2286 (|#1| |#1| |#1| (-564))) (-15 -3852 (|#1| |#1|)) (-15 -3606 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3606 (|#1| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4367 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2343 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1633 (|#1| (-768) |#2|)) (-15 -2082 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1899 (|#1| |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1451 ((|#1| $) 48)) (-2722 ((|#1| $) 65)) (-1882 (($ $) 67)) (-3476 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4412)))) (-3280 (($ $ (-564)) 52 (|has| $ (-6 -4412)))) (-4310 (((-112) $) 142 (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-3606 (($ $) 146 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4412)))) (-2494 (($ $) 141 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3263 (((-112) $ (-768)) 8)) (-3768 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-2293 (($ $ $) 56 (|has| $ (-6 -4412)))) (-3129 ((|#1| $ |#1|) 54 (|has| $ (-6 -4412)))) (-4318 ((|#1| $ |#1|) 58 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4412))) (($ $ "rest" $) 55 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-4194 (($ (-1 (-112) |#1|) $) 129)) (-2164 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4411)))) (-2711 ((|#1| $) 66)) (-3760 (($) 7 T CONST)) (-3852 (($ $) 144 (|has| $ (-6 -4412)))) (-3716 (($ $) 134)) (-3086 (($ $) 73) (($ $ (-768)) 71)) (-3083 (($ $) 131 (|has| |#1| (-1094)))) (-3104 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ |#1| $) 130 (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 125)) (-2359 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4411))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3528 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 87)) (-1418 (((-112) $) 83)) (-1356 (((-564) |#1| $ (-564)) 139 (|has| |#1| (-1094))) (((-564) |#1| $) 138 (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) 137)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 50)) (-2272 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-1633 (($ (-768) |#1|) 108)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 95 (|has| (-564) (-847)))) (-3571 (($ $ $) 147 (|has| |#1| (-847)))) (-1397 (($ $ $) 132 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-4012 (($ $ $) 140 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 94 (|has| (-564) (-847)))) (-1547 (($ $ $) 148 (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2953 (($ |#1|) 122)) (-2972 (((-112) $ (-768)) 10)) (-3848 (((-641 |#1|) $) 45)) (-2200 (((-112) $) 49)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2376 ((|#1| $) 70) (($ $ (-768)) 68)) (-2098 (($ $ $ (-564)) 127) (($ |#1| $ (-564)) 126)) (-3412 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-1371 (((-641 (-564)) $) 92)) (-3629 (((-112) (-564) $) 91)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3073 ((|#1| $) 76) (($ $ (-768)) 74)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2614 (($ $ |#1|) 96 (|has| $ (-6 -4412)))) (-2141 (((-112) $) 84)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) 90)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-3837 (((-564) $ $) 44)) (-4183 (($ $ (-1226 (-564))) 124) (($ $ (-564)) 123)) (-2008 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-1867 (((-112) $) 46)) (-2294 (($ $) 62)) (-4207 (($ $) 59 (|has| $ (-6 -4412)))) (-2355 (((-768) $) 63)) (-4119 (($ $) 64)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2286 (($ $ $ (-564)) 143 (|has| $ (-6 -4412)))) (-1899 (($ $) 13)) (-2127 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 107)) (-2478 (($ $ $) 61) (($ $ |#1|) 60)) (-2817 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) 51)) (-1740 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) 150 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 151 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1728 (((-112) $ $) 149 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 152 (|has| |#1| (-847)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 15)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1655 ((|#1| $) 21)) (-3428 (($ $ $) NIL (|has| |#1| (-788)))) (-3413 (($ $ $) NIL (|has| |#1| (-788)))) (-1868 (((-1152) $) 46)) (-3844 (((-1114) $) NIL)) (-1668 ((|#3| $) 22)) (-3714 (((-859) $) 41)) (-4312 (($) 10 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1720 (((-112) $ $) 20)) (-1769 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1746 (((-112) $ $) 24 (|has| |#1| (-788)))) (-1841 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1828 (($ $) 17) (($ $ $) NIL)) (-1814 (($ $ $) 27)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-658 |#1| |#2| |#3|) (-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) (-15 -1841 ($ $ |#3|)) (-15 -1841 ($ |#1| |#3|)) (-15 -1655 (|#1| $)) (-15 -1668 (|#3| $)))) (-714 |#2|) (-172) (|SubsetCategory| (-723) |#2|)) (T -658))
+((-1841 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)) (-4 *2 (|SubsetCategory| (-723) *4)))) (-1841 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-714 *4)) (-4 *3 (|SubsetCategory| (-723) *4)))) (-1655 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-714 *3)) (-5 *1 (-658 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-723) *3)))) (-1668 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)))))
+(-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) (-15 -1841 ($ $ |#3|)) (-15 -1841 ($ |#1| |#3|)) (-15 -1655 (|#1| $)) (-15 -1668 (|#3| $))))
+((-1853 (((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)) 33)))
+(((-659 |#1|) (-10 -7 (-15 -1853 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)))) (-906)) (T -659))
+((-1853 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4)) (-4 *4 (-906)) (-5 *1 (-659 *4)))))
+(-10 -7 (-15 -1853 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3441 (((-641 |#1|) $) 84)) (-1887 (($ $ (-768)) 94)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-4084 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 50)) (-2224 (((-3 (-668 |#1|) "failed") $) NIL)) (-2376 (((-668 |#1|) $) NIL)) (-1374 (($ $) 93)) (-2998 (((-768) $) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-2579 (($ (-668 |#1|) |#2|) 70)) (-2843 (($ $) 89)) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-4286 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 49)) (-4063 (((-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1330 (((-668 |#1|) $) NIL)) (-1345 ((|#2| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2582 (($ $ |#1| $) 32) (($ $ (-641 |#1|) (-641 $)) 34)) (-3475 (((-768) $) 91)) (-3725 (($ $ $) 20) (($ (-668 |#1|) (-668 |#1|)) 79) (($ (-668 |#1|) $) 77) (($ $ (-668 |#1|)) 78)) (-3714 (((-859) $) NIL) (($ |#1|) 76) (((-1274 |#1| |#2|) $) 60) (((-1283 |#1| |#2|) $) 43) (($ (-668 |#1|)) 27)) (-4252 (((-641 |#2|) $) NIL)) (-3181 ((|#2| $ (-668 |#1|)) NIL)) (-1817 ((|#2| (-1283 |#1| |#2|) $) 45)) (-4312 (($) 23 T CONST)) (-2902 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2093 (((-3 $ "failed") (-1274 |#1| |#2|)) 62)) (-3434 (($ (-668 |#1|)) 14)) (-1720 (((-112) $ $) 46)) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $) 68) (($ $ $) NIL)) (-1814 (($ $ $) 31)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-668 |#1|)) NIL)))
+(((-660 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -2093 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -3725 ($ (-668 |#1|) (-668 |#1|))) (-15 -3725 ($ (-668 |#1|) $)) (-15 -3725 ($ $ (-668 |#1|))))) (-847) (-172)) (T -660))
+((-2093 (*1 *1 *2) (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *1 (-660 *3 *4)))) (-3725 (*1 *1 *2 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-3725 (*1 *1 *2 *1) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-3725 (*1 *1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))))
+(-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -2093 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -3725 ($ (-668 |#1|) (-668 |#1|))) (-15 -3725 ($ (-668 |#1|) $)) (-15 -3725 ($ $ (-668 |#1|)))))
+((-1562 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 60)) (-4194 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1773 (($ (-1 (-112) |#2|) $) 28)) (-1651 (($ $) 66)) (-2822 (($ $) 77)) (-4074 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 42)) (-1728 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 61) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 63)) (-3303 (((-564) |#2| $ (-564)) 74) (((-564) |#2| $) NIL) (((-564) (-1 (-112) |#2|) $) 55)) (-3564 (($ (-768) |#2|) 64)) (-2573 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3678 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2313 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 65)) (-1929 (($ |#2|) 15)) (-2373 (($ $ $ (-564)) 41) (($ |#2| $ (-564)) 39)) (-2905 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 52)) (-2899 (($ $ (-1226 (-564))) 50) (($ $ (-564)) 43)) (-3474 (($ $ $ (-564)) 73)) (-3890 (($ $) 71)) (-1746 (((-112) $ $) 79)))
+(((-661 |#1| |#2|) (-10 -8 (-15 -1929 (|#1| |#2|)) (-15 -2899 (|#1| |#1| (-564))) (-15 -2899 (|#1| |#1| (-1226 (-564)))) (-15 -4074 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2373 (|#1| |#2| |#1| (-564))) (-15 -2373 (|#1| |#1| |#1| (-564))) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1773 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4074 (|#1| |#2| |#1|)) (-15 -2822 (|#1| |#1|)) (-15 -2573 (|#1| |#1| |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1562 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3303 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3303 ((-564) |#2| |#1|)) (-15 -3303 ((-564) |#2| |#1| (-564))) (-15 -3678 (|#1| |#1| |#1|)) (-15 -1562 ((-112) |#1|)) (-15 -3474 (|#1| |#1| |#1| (-564))) (-15 -1651 (|#1| |#1|)) (-15 -4194 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2905 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3564 (|#1| (-768) |#2|)) (-15 -2313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3890 (|#1| |#1|))) (-662 |#2|) (-1209)) (T -661))
+NIL
+(-10 -8 (-15 -1929 (|#1| |#2|)) (-15 -2899 (|#1| |#1| (-564))) (-15 -2899 (|#1| |#1| (-1226 (-564)))) (-15 -4074 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2373 (|#1| |#2| |#1| (-564))) (-15 -2373 (|#1| |#1| |#1| (-564))) (-15 -2573 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1773 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4074 (|#1| |#2| |#1|)) (-15 -2822 (|#1| |#1|)) (-15 -2573 (|#1| |#1| |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1562 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3303 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3303 ((-564) |#2| |#1|)) (-15 -3303 ((-564) |#2| |#1| (-564))) (-15 -3678 (|#1| |#1| |#1|)) (-15 -1562 ((-112) |#1|)) (-15 -3474 (|#1| |#1| |#1| (-564))) (-15 -1651 (|#1| |#1|)) (-15 -4194 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1728 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2905 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3564 (|#1| (-768) |#2|)) (-15 -2313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3890 (|#1| |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3387 ((|#1| $) 48)) (-2985 ((|#1| $) 65)) (-3794 (($ $) 67)) (-2399 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4413)))) (-4140 (($ $ (-564)) 52 (|has| $ (-6 -4413)))) (-1562 (((-112) $) 142 (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-4194 (($ $) 146 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4413)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4413)))) (-2904 (($ $) 141 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-2141 (((-112) $ (-768)) 8)) (-3242 ((|#1| $ |#1|) 39 (|has| $ (-6 -4413)))) (-3543 (($ $ $) 56 (|has| $ (-6 -4413)))) (-3186 ((|#1| $ |#1|) 54 (|has| $ (-6 -4413)))) (-1617 ((|#1| $ |#1|) 58 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4413))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4413))) (($ $ "rest" $) 55 (|has| $ (-6 -4413))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4413))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 41 (|has| $ (-6 -4413)))) (-1773 (($ (-1 (-112) |#1|) $) 129)) (-4148 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4412)))) (-2976 ((|#1| $) 66)) (-3180 (($) 7 T CONST)) (-1651 (($ $) 144 (|has| $ (-6 -4413)))) (-1923 (($ $) 134)) (-2063 (($ $) 73) (($ $ (-768)) 71)) (-2822 (($ $) 131 (|has| |#1| (-1094)))) (-2084 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ |#1| $) 130 (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 125)) (-2514 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4412))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1998 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 87)) (-1635 (((-112) $) 83)) (-3303 (((-564) |#1| $ (-564)) 139 (|has| |#1| (-1094))) (((-564) |#1| $) 138 (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) 137)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 50)) (-1543 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3564 (($ (-768) |#1|) 108)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 95 (|has| (-564) (-847)))) (-3428 (($ $ $) 147 (|has| |#1| (-847)))) (-2573 (($ $ $) 132 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3678 (($ $ $) 140 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 94 (|has| (-564) (-847)))) (-3413 (($ $ $) 148 (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1929 (($ |#1|) 122)) (-4144 (((-112) $ (-768)) 10)) (-2523 (((-641 |#1|) $) 45)) (-2120 (((-112) $) 49)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2541 ((|#1| $) 70) (($ $ (-768)) 68)) (-2373 (($ $ $ (-564)) 127) (($ |#1| $ (-564)) 126)) (-2455 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-3127 (((-641 (-564)) $) 92)) (-1338 (((-112) (-564) $) 91)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2049 ((|#1| $) 76) (($ $ (-768)) 74)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3538 (($ $ |#1|) 96 (|has| $ (-6 -4413)))) (-2791 (((-112) $) 84)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) 90)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-2774 (((-564) $ $) 44)) (-2899 (($ $ (-1226 (-564))) 124) (($ $ (-564)) 123)) (-2090 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-1875 (((-112) $) 46)) (-3554 (($ $) 62)) (-1911 (($ $) 59 (|has| $ (-6 -4413)))) (-2966 (((-768) $) 63)) (-3414 (($ $) 64)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3474 (($ $ $ (-564)) 143 (|has| $ (-6 -4413)))) (-3890 (($ $) 13)) (-2374 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 107)) (-1711 (($ $ $) 61) (($ $ |#1|) 60)) (-1865 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) 51)) (-3036 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) 150 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 151 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1769 (((-112) $ $) 149 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 152 (|has| |#1| (-847)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-662 |#1|) (-140) (-1209)) (T -662))
-((-2953 (*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209)))))
-(-13 (-1143 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -2953 ($ |t#1|))))
-(((-34) . T) ((-102) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1007 |#1|) . T) ((-1094) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T))
-((-4325 (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|))) 22) (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 14)) (-4224 (((-768) (-685 |#1|) (-1259 |#1|)) 30)) (-4118 (((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|)) 24)) (-4219 (((-112) (-685 |#1|) (-1259 |#1|)) 27)))
-(((-663 |#1|) (-10 -7 (-15 -4325 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -4325 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -4325 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -4325 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -4118 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -4219 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -4224 ((-768) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -663))
-((-4224 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-768)) (-5 *1 (-663 *5)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-663 *5)))) (-4118 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *1 (-663 *4)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3941 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3941 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3941 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -3941 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))))
-(-10 -7 (-15 -4325 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -4325 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -4325 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -4325 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -4118 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -4219 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -4224 ((-768) (-685 |#1|) (-1259 |#1|))))
-((-4325 (((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3941 (-641 |#3|)))) |#4| (-641 |#3|)) 65) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3941 (-641 |#3|))) |#4| |#3|) 59)) (-4224 (((-768) |#4| |#3|) 18)) (-4118 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4219 (((-112) |#4| |#3|) 14)))
-(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4325 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3941 (-641 |#3|))) |#4| |#3|)) (-15 -4325 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3941 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -4118 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4219 ((-112) |#4| |#3|)) (-15 -4224 ((-768) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4412))) (-13 (-373 |#1|) (-10 -7 (-6 -4412))) (-683 |#1| |#2| |#3|)) (T -664))
-((-4224 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-768)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-4219 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-112)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-4118 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4412)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))) (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2)))) (-4325 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-641 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3941 (-641 *7))))) (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7)) (-4 *3 (-683 *5 *6 *7)))) (-4325 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4)))) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))))
-(-10 -7 (-15 -4325 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3941 (-641 |#3|))) |#4| |#3|)) (-15 -4325 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3941 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -4118 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4219 ((-112) |#4| |#3|)) (-15 -4224 ((-768) |#4| |#3|)))
-((-2474 (((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -3941 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)) 54)))
-(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2474 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -3941 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)))) (-556) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -665))
-((-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed")) (|:| -3941 (-641 (-1259 (-407 *8)))))) (-5 *1 (-665 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2474 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -3941 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-1950 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3715 ((|#2| $) NIL)) (-2741 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3165 (((-1259 (-685 |#2|))) NIL) (((-1259 (-685 |#2|)) (-1259 $)) NIL)) (-2832 (((-112) $) NIL)) (-3233 (((-1259 $)) 44)) (-3263 (((-112) $ (-768)) NIL)) (-2460 (($ |#2|) NIL)) (-3760 (($) NIL T CONST)) (-1364 (($ $) NIL (|has| |#2| (-307)))) (-2698 (((-240 |#1| |#2|) $ (-564)) NIL)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-2661 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-2685 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-4349 ((|#2| $) NIL)) (-1725 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-4089 (((-1166 (-949 |#2|))) NIL (|has| |#2| (-363)))) (-1864 (($ $ (-918)) NIL)) (-3158 ((|#2| $) NIL)) (-3261 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-1870 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-3660 (((-1166 |#2|) $) NIL)) (-3202 (((-112)) NIL)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-2910 (($ (-1259 |#2|)) NIL) (($ (-1259 |#2|) (-1259 $)) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-4224 (((-768) $) NIL (|has| |#2| (-556))) (((-918)) 45)) (-3455 ((|#2| $ (-564) (-564)) NIL)) (-1703 (((-112)) NIL)) (-2544 (($ $ (-918)) NIL)) (-3080 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2419 (((-112) $) NIL)) (-4227 (((-768) $) NIL (|has| |#2| (-556)))) (-3798 (((-641 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-556)))) (-3383 (((-768) $) NIL)) (-2053 (((-112)) NIL)) (-3393 (((-768) $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-1893 ((|#2| $) NIL (|has| |#2| (-6 (-4413 "*"))))) (-1786 (((-564) $) NIL)) (-2810 (((-564) $) NIL)) (-3817 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3896 (((-564) $) NIL)) (-2104 (((-564) $) NIL)) (-1605 (($ (-641 (-641 |#2|))) NIL)) (-3513 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3671 (((-641 (-641 |#2|)) $) NIL)) (-2824 (((-112)) NIL)) (-3222 (((-112)) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4280 (((-3 (-2 (|:| |particular| $) (|:| -3941 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-3979 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3449 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-3899 ((|#2| $) NIL)) (-1549 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-3647 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-3743 (((-1166 (-949 |#2|))) NIL (|has| |#2| (-363)))) (-3229 (($ $ (-918)) NIL)) (-4009 ((|#2| $) NIL)) (-2883 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-2291 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-1563 (((-1166 |#2|) $) NIL)) (-3734 (((-112)) NIL)) (-4202 (((-1152) $) NIL)) (-1995 (((-112)) NIL)) (-2187 (((-112)) NIL)) (-1756 (((-112)) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-3802 (((-1114) $) NIL)) (-3015 (((-112)) NIL)) (-1343 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-1467 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) 30) ((|#2| $ (-564)) NIL)) (-3226 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3044 ((|#2| $) NIL)) (-3530 (($ (-641 |#2|)) NIL)) (-3883 (((-112) $) NIL)) (-3361 (((-240 |#1| |#2|) $) NIL)) (-2672 ((|#2| $) NIL (|has| |#2| (-6 (-4413 "*"))))) (-3815 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1899 (($ $) NIL)) (-3072 (((-685 |#2|) (-1259 $)) NIL) (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $ (-1259 $)) 33)) (-2127 (($ (-1259 |#2|)) NIL) (((-1259 |#2|) $) NIL)) (-4339 (((-641 (-949 |#2|))) NIL) (((-641 (-949 |#2|)) (-1259 $)) NIL)) (-1762 (($ $ $) NIL)) (-2060 (((-112)) NIL)) (-1709 (((-240 |#1| |#2|) $ (-564)) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) NIL)) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) 43)) (-2663 (((-641 (-1259 |#2|))) NIL (|has| |#2| (-556)))) (-1850 (($ $ $ $) NIL)) (-3730 (((-112)) NIL)) (-3021 (($ (-685 |#2|) $) NIL)) (-2237 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1509 (((-112) $) NIL)) (-3008 (($ $ $) NIL)) (-1379 (((-112)) NIL)) (-3689 (((-112)) NIL)) (-2323 (((-112)) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-1929 (*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209)))))
+(-13 (-1143 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -1929 ($ |t#1|))))
+(((-34) . T) ((-102) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1007 |#1|) . T) ((-1094) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T))
+((-3472 (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|))) 22) (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 14)) (-1595 (((-768) (-685 |#1|) (-1259 |#1|)) 30)) (-3405 (((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|)) 24)) (-2043 (((-112) (-685 |#1|) (-1259 |#1|)) 27)))
+(((-663 |#1|) (-10 -7 (-15 -3472 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -3472 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -3472 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -3472 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -3405 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2043 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -1595 ((-768) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -663))
+((-1595 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-768)) (-5 *1 (-663 *5)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-663 *5)))) (-3405 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *1 (-663 *4)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -4339 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -4339 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -4339 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -4339 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))))
+(-10 -7 (-15 -3472 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -3472 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -3472 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -3472 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -3405 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2043 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -1595 ((-768) (-685 |#1|) (-1259 |#1|))))
+((-3472 (((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4339 (-641 |#3|)))) |#4| (-641 |#3|)) 65) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4339 (-641 |#3|))) |#4| |#3|) 59)) (-1595 (((-768) |#4| |#3|) 18)) (-3405 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2043 (((-112) |#4| |#3|) 14)))
+(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3472 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4339 (-641 |#3|))) |#4| |#3|)) (-15 -3472 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4339 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -3405 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2043 ((-112) |#4| |#3|)) (-15 -1595 ((-768) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4413))) (-13 (-373 |#1|) (-10 -7 (-6 -4413))) (-683 |#1| |#2| |#3|)) (T -664))
+((-1595 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-5 *2 (-768)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-2043 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-5 *2 (-112)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-3405 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4413)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4413)))) (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2)))) (-3472 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-5 *2 (-641 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4339 (-641 *7))))) (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7)) (-4 *3 (-683 *5 *6 *7)))) (-3472 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4)))) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))))
+(-10 -7 (-15 -3472 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4339 (-641 |#3|))) |#4| |#3|)) (-15 -3472 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4339 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -3405 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2043 ((-112) |#4| |#3|)) (-15 -1595 ((-768) |#4| |#3|)))
+((-1667 (((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -4339 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)) 54)))
+(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1667 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -4339 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)))) (-556) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -665))
+((-1667 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed")) (|:| -4339 (-641 (-1259 (-407 *8)))))) (-5 *1 (-665 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1667 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -4339 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-1425 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3767 ((|#2| $) NIL)) (-2497 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2426 (((-1259 (-685 |#2|))) NIL) (((-1259 (-685 |#2|)) (-1259 $)) NIL)) (-2193 (((-112) $) NIL)) (-1838 (((-1259 $)) 44)) (-2141 (((-112) $ (-768)) NIL)) (-2787 (($ |#2|) NIL)) (-3180 (($) NIL T CONST)) (-3781 (($ $) NIL (|has| |#2| (-307)))) (-3207 (((-240 |#1| |#2|) $ (-564)) NIL)) (-1830 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-2911 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3102 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-3693 ((|#2| $) NIL)) (-2921 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-2684 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-3176 (((-1166 (-949 |#2|))) NIL (|has| |#2| (-363)))) (-1842 (($ $ (-918)) NIL)) (-2345 ((|#2| $) NIL)) (-2119 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-1907 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-3448 (((-1166 |#2|) $) NIL)) (-2790 (((-112)) NIL)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-3566 (($ (-1259 |#2|)) NIL) (($ (-1259 |#2|) (-1259 $)) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-1595 (((-768) $) NIL (|has| |#2| (-556))) (((-918)) 45)) (-3593 ((|#2| $ (-564) (-564)) NIL)) (-3882 (((-112)) NIL)) (-4133 (($ $ (-918)) NIL)) (-4244 (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2340 (((-112) $) NIL)) (-2099 (((-768) $) NIL (|has| |#2| (-556)))) (-2397 (((-641 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-556)))) (-3947 (((-768) $) NIL)) (-3113 (((-112)) NIL)) (-3956 (((-768) $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2125 ((|#2| $) NIL (|has| |#2| (-6 (-4414 "*"))))) (-2285 (((-564) $) NIL)) (-1984 (((-564) $) NIL)) (-2572 (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2083 (((-564) $) NIL)) (-2437 (((-564) $) NIL)) (-3469 (($ (-641 (-641 |#2|))) NIL)) (-1988 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3549 (((-641 (-641 |#2|)) $) NIL)) (-2111 (((-112)) NIL)) (-1717 (((-112)) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1303 (((-3 (-2 (|:| |particular| $) (|:| -4339 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-1566 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3276 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-2112 ((|#2| $) NIL)) (-1847 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-1524 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-3050 (((-1166 (-949 |#2|))) NIL (|has| |#2| (-363)))) (-1788 (($ $ (-918)) NIL)) (-3645 ((|#2| $) NIL)) (-1487 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-3531 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-1980 (((-1166 |#2|) $) NIL)) (-2989 (((-112)) NIL)) (-1868 (((-1152) $) NIL)) (-3700 (((-112)) NIL)) (-1981 (((-112)) NIL)) (-3172 (((-112)) NIL)) (-3577 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-3844 (((-1114) $) NIL)) (-1458 (((-112)) NIL)) (-1347 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-2280 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) 30) ((|#2| $ (-564)) NIL)) (-2203 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3558 ((|#2| $) NIL)) (-1634 (($ (-641 |#2|)) NIL)) (-1950 (((-112) $) NIL)) (-3666 (((-240 |#1| |#2|) $) NIL)) (-2990 ((|#2| $) NIL (|has| |#2| (-6 (-4414 "*"))))) (-3855 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-3890 (($ $) NIL)) (-3867 (((-685 |#2|) (-1259 $)) NIL) (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $ (-1259 $)) 33)) (-2374 (($ (-1259 |#2|)) NIL) (((-1259 |#2|) $) NIL)) (-3602 (((-641 (-949 |#2|))) NIL) (((-641 (-949 |#2|)) (-1259 $)) NIL)) (-3217 (($ $ $) NIL)) (-3168 (((-112)) NIL)) (-2811 (((-240 |#1| |#2|) $ (-564)) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) NIL)) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) 43)) (-2919 (((-641 (-1259 |#2|))) NIL (|has| |#2| (-556)))) (-1687 (($ $ $ $) NIL)) (-2954 (((-112)) NIL)) (-1996 (($ (-685 |#2|) $) NIL)) (-4289 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2718 (((-112) $) NIL)) (-1390 (($ $ $) NIL)) (-3808 (((-112)) NIL)) (-3738 (((-112)) NIL)) (-3851 (((-112)) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-666 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-417 |#2|)) (-918) (-172)) (T -666))
NIL
(-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-417 |#2|))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2870 (((-641 (-1129)) $) 10)) (-1765 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-667) (-13 (-1077) (-10 -8 (-15 -2870 ((-641 (-1129)) $))))) (T -667))
-((-2870 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667)))))
-(-13 (-1077) (-10 -8 (-15 -2870 ((-641 (-1129)) $))))
-((-1754 (((-112) $ $) NIL)) (-3265 (((-641 |#1|) $) NIL)) (-3549 (($ $) 66)) (-3564 (((-112) $) NIL)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2793 (((-3 $ "failed") (-816 |#1|)) 27)) (-2659 (((-112) (-816 |#1|)) 17)) (-4361 (($ (-816 |#1|)) 28)) (-2136 (((-112) $ $) 35)) (-2564 (((-918) $) 42)) (-3538 (($ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-4006 (((-641 $) (-816 |#1|)) 19)) (-1765 (((-859) $) 50) (($ |#1|) 39) (((-816 |#1|) $) 46) (((-673 |#1|) $) 51)) (-2043 (((-59 (-641 $)) (-641 |#1|) (-918)) 71)) (-3416 (((-641 $) (-641 |#1|) (-918)) 75)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 67)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 45)))
-(((-668 |#1|) (-13 (-847) (-1035 |#1|) (-10 -8 (-15 -3564 ((-112) $)) (-15 -3538 ($ $)) (-15 -3549 ($ $)) (-15 -2564 ((-918) $)) (-15 -2136 ((-112) $ $)) (-15 -1765 ((-816 |#1|) $)) (-15 -1765 ((-673 |#1|) $)) (-15 -4006 ((-641 $) (-816 |#1|))) (-15 -2659 ((-112) (-816 |#1|))) (-15 -4361 ($ (-816 |#1|))) (-15 -2793 ((-3 $ "failed") (-816 |#1|))) (-15 -3265 ((-641 |#1|) $)) (-15 -2043 ((-59 (-641 $)) (-641 |#1|) (-918))) (-15 -3416 ((-641 $) (-641 |#1|) (-918))))) (-847)) (T -668))
-((-3564 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-3538 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) (-3549 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-2136 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-668 *4))) (-5 *1 (-668 *4)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-112)) (-5 *1 (-668 *4)))) (-4361 (*1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))) (-2793 (*1 *1 *2) (|partial| -12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5)))))
-(-13 (-847) (-1035 |#1|) (-10 -8 (-15 -3564 ((-112) $)) (-15 -3538 ($ $)) (-15 -3549 ($ $)) (-15 -2564 ((-918) $)) (-15 -2136 ((-112) $ $)) (-15 -1765 ((-816 |#1|) $)) (-15 -1765 ((-673 |#1|) $)) (-15 -4006 ((-641 $) (-816 |#1|))) (-15 -2659 ((-112) (-816 |#1|))) (-15 -4361 ($ (-816 |#1|))) (-15 -2793 ((-3 $ "failed") (-816 |#1|))) (-15 -3265 ((-641 |#1|) $)) (-15 -2043 ((-59 (-641 $)) (-641 |#1|) (-918))) (-15 -3416 ((-641 $) (-641 |#1|) (-918)))))
-((-1451 ((|#2| $) 103)) (-1882 (($ $) 124)) (-3263 (((-112) $ (-768)) 35)) (-3086 (($ $) 112) (($ $ (-768)) 115)) (-1418 (((-112) $) 125)) (-4321 (((-641 $) $) 99)) (-2272 (((-112) $ $) 95)) (-2830 (((-112) $ (-768)) 33)) (-4065 (((-564) $) 69)) (-1479 (((-564) $) 68)) (-2972 (((-112) $ (-768)) 31)) (-2200 (((-112) $) 101)) (-2376 ((|#2| $) 116) (($ $ (-768)) 120)) (-3412 (($ $ $ (-564)) 86) (($ |#2| $ (-564)) 85)) (-1371 (((-641 (-564)) $) 67)) (-3629 (((-112) (-564) $) 61)) (-3073 ((|#2| $) NIL) (($ $ (-768)) 111)) (-2678 (($ $ (-564)) 127)) (-2141 (((-112) $) 126)) (-1467 (((-112) (-1 (-112) |#2|) $) 44)) (-3599 (((-641 |#2|) $) 48)) (-4382 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1226 (-564))) 82) ((|#2| $ (-564)) 59) ((|#2| $ (-564) |#2|) 60)) (-3837 (((-564) $ $) 94)) (-2008 (($ $ (-1226 (-564))) 81) (($ $ (-564)) 75)) (-1867 (((-112) $) 90)) (-2294 (($ $) 108)) (-2355 (((-768) $) 107)) (-4119 (($ $) 106)) (-1776 (($ (-641 |#2|)) 55)) (-3204 (($ $) 128)) (-3706 (((-641 $) $) 93)) (-1740 (((-112) $ $) 92)) (-2237 (((-112) (-1 (-112) |#2|) $) 43)) (-1686 (((-112) $ $) 20)) (-2589 (((-768) $) 41)))
-(((-669 |#1| |#2|) (-10 -8 (-15 -3204 (|#1| |#1|)) (-15 -2678 (|#1| |#1| (-564))) (-15 -1418 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -3599 ((-641 |#2|) |#1|)) (-15 -3629 ((-112) (-564) |#1|)) (-15 -1371 ((-641 (-564)) |#1|)) (-15 -1479 ((-564) |#1|)) (-15 -4065 ((-564) |#1|)) (-15 -1776 (|#1| (-641 |#2|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2008 (|#1| |#1| (-564))) (-15 -2008 (|#1| |#1| (-1226 (-564)))) (-15 -3412 (|#1| |#2| |#1| (-564))) (-15 -3412 (|#1| |#1| |#1| (-564))) (-15 -2294 (|#1| |#1|)) (-15 -2355 ((-768) |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -2376 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2376 (|#2| |#1|)) (-15 -3086 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -3086 (|#1| |#1|)) (-15 -3073 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -3073 (|#2| |#1|)) (-15 -2272 ((-112) |#1| |#1|)) (-15 -1740 ((-112) |#1| |#1|)) (-15 -3837 ((-564) |#1| |#1|)) (-15 -1867 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -1451 (|#2| |#1|)) (-15 -2200 ((-112) |#1|)) (-15 -4321 ((-641 |#1|) |#1|)) (-15 -3706 ((-641 |#1|) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2589 ((-768) |#1|)) (-15 -3263 ((-112) |#1| (-768))) (-15 -2830 ((-112) |#1| (-768))) (-15 -2972 ((-112) |#1| (-768)))) (-670 |#2|) (-1209)) (T -669))
-NIL
-(-10 -8 (-15 -3204 (|#1| |#1|)) (-15 -2678 (|#1| |#1| (-564))) (-15 -1418 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -3599 ((-641 |#2|) |#1|)) (-15 -3629 ((-112) (-564) |#1|)) (-15 -1371 ((-641 (-564)) |#1|)) (-15 -1479 ((-564) |#1|)) (-15 -4065 ((-564) |#1|)) (-15 -1776 (|#1| (-641 |#2|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2008 (|#1| |#1| (-564))) (-15 -2008 (|#1| |#1| (-1226 (-564)))) (-15 -3412 (|#1| |#2| |#1| (-564))) (-15 -3412 (|#1| |#1| |#1| (-564))) (-15 -2294 (|#1| |#1|)) (-15 -2355 ((-768) |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -2376 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2376 (|#2| |#1|)) (-15 -3086 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -3086 (|#1| |#1|)) (-15 -3073 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -3073 (|#2| |#1|)) (-15 -2272 ((-112) |#1| |#1|)) (-15 -1740 ((-112) |#1| |#1|)) (-15 -3837 ((-564) |#1| |#1|)) (-15 -1867 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -1451 (|#2| |#1|)) (-15 -2200 ((-112) |#1|)) (-15 -4321 ((-641 |#1|) |#1|)) (-15 -3706 ((-641 |#1|) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -1467 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2589 ((-768) |#1|)) (-15 -3263 ((-112) |#1| (-768))) (-15 -2830 ((-112) |#1| (-768))) (-15 -2972 ((-112) |#1| (-768))))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1451 ((|#1| $) 48)) (-2722 ((|#1| $) 65)) (-1882 (($ $) 67)) (-3476 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4412)))) (-3280 (($ $ (-564)) 52 (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) 8)) (-3768 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-2293 (($ $ $) 56 (|has| $ (-6 -4412)))) (-3129 ((|#1| $ |#1|) 54 (|has| $ (-6 -4412)))) (-4318 ((|#1| $ |#1|) 58 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4412))) (($ $ "rest" $) 55 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) 102)) (-2711 ((|#1| $) 66)) (-3760 (($) 7 T CONST)) (-2752 (($ $) 124)) (-3086 (($ $) 73) (($ $ (-768)) 71)) (-3104 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 103)) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3528 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 87)) (-1418 (((-112) $) 83)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2551 (((-768) $) 123)) (-4321 (((-641 $) $) 50)) (-2272 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-1633 (($ (-768) |#1|) 108)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 95 (|has| (-564) (-847)))) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 94 (|has| (-564) (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2972 (((-112) $ (-768)) 10)) (-3848 (((-641 |#1|) $) 45)) (-2200 (((-112) $) 49)) (-1922 (($ $) 126)) (-3502 (((-112) $) 127)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2376 ((|#1| $) 70) (($ $ (-768)) 68)) (-3412 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-1371 (((-641 (-564)) $) 92)) (-3629 (((-112) (-564) $) 91)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-4330 ((|#1| $) 125)) (-3073 ((|#1| $) 76) (($ $ (-768)) 74)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2614 (($ $ |#1|) 96 (|has| $ (-6 -4412)))) (-2678 (($ $ (-564)) 122)) (-2141 (((-112) $) 84)) (-1660 (((-112) $) 128)) (-3074 (((-112) $) 129)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) 90)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-3837 (((-564) $ $) 44)) (-2008 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-1867 (((-112) $) 46)) (-2294 (($ $) 62)) (-4207 (($ $) 59 (|has| $ (-6 -4412)))) (-2355 (((-768) $) 63)) (-4119 (($ $) 64)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 107)) (-2478 (($ $ $) 61 (|has| $ (-6 -4412))) (($ $ |#1|) 60 (|has| $ (-6 -4412)))) (-2817 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-3204 (($ $) 121)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) 51)) (-1740 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1334 (((-641 (-1129)) $) 10)) (-3714 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-667) (-13 (-1077) (-10 -8 (-15 -1334 ((-641 (-1129)) $))))) (T -667))
+((-1334 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667)))))
+(-13 (-1077) (-10 -8 (-15 -1334 ((-641 (-1129)) $))))
+((-3702 (((-112) $ $) NIL)) (-3441 (((-641 |#1|) $) NIL)) (-2592 (($ $) 66)) (-1989 (((-112) $) NIL)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1791 (((-3 $ "failed") (-816 |#1|)) 27)) (-2891 (((-112) (-816 |#1|)) 17)) (-3812 (($ (-816 |#1|)) 28)) (-2763 (((-112) $ $) 35)) (-3451 (((-918) $) 42)) (-2578 (($ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4139 (((-641 $) (-816 |#1|)) 19)) (-3714 (((-859) $) 50) (($ |#1|) 39) (((-816 |#1|) $) 46) (((-673 |#1|) $) 51)) (-3024 (((-59 (-641 $)) (-641 |#1|) (-918)) 71)) (-3012 (((-641 $) (-641 |#1|) (-918)) 75)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 67)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 45)))
+(((-668 |#1|) (-13 (-847) (-1035 |#1|) (-10 -8 (-15 -1989 ((-112) $)) (-15 -2578 ($ $)) (-15 -2592 ($ $)) (-15 -3451 ((-918) $)) (-15 -2763 ((-112) $ $)) (-15 -3714 ((-816 |#1|) $)) (-15 -3714 ((-673 |#1|) $)) (-15 -4139 ((-641 $) (-816 |#1|))) (-15 -2891 ((-112) (-816 |#1|))) (-15 -3812 ($ (-816 |#1|))) (-15 -1791 ((-3 $ "failed") (-816 |#1|))) (-15 -3441 ((-641 |#1|) $)) (-15 -3024 ((-59 (-641 $)) (-641 |#1|) (-918))) (-15 -3012 ((-641 $) (-641 |#1|) (-918))))) (-847)) (T -668))
+((-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-2578 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) (-2592 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-2763 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-668 *4))) (-5 *1 (-668 *4)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-112)) (-5 *1 (-668 *4)))) (-3812 (*1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))) (-1791 (*1 *1 *2) (|partial| -12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-3024 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5)))) (-3012 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5)))))
+(-13 (-847) (-1035 |#1|) (-10 -8 (-15 -1989 ((-112) $)) (-15 -2578 ($ $)) (-15 -2592 ($ $)) (-15 -3451 ((-918) $)) (-15 -2763 ((-112) $ $)) (-15 -3714 ((-816 |#1|) $)) (-15 -3714 ((-673 |#1|) $)) (-15 -4139 ((-641 $) (-816 |#1|))) (-15 -2891 ((-112) (-816 |#1|))) (-15 -3812 ($ (-816 |#1|))) (-15 -1791 ((-3 $ "failed") (-816 |#1|))) (-15 -3441 ((-641 |#1|) $)) (-15 -3024 ((-59 (-641 $)) (-641 |#1|) (-918))) (-15 -3012 ((-641 $) (-641 |#1|) (-918)))))
+((-3387 ((|#2| $) 103)) (-3794 (($ $) 124)) (-2141 (((-112) $ (-768)) 35)) (-2063 (($ $) 112) (($ $ (-768)) 115)) (-1635 (((-112) $) 125)) (-1647 (((-641 $) $) 99)) (-1543 (((-112) $ $) 95)) (-2173 (((-112) $ (-768)) 33)) (-2994 (((-564) $) 69)) (-2415 (((-564) $) 68)) (-4144 (((-112) $ (-768)) 31)) (-2120 (((-112) $) 101)) (-2541 ((|#2| $) 116) (($ $ (-768)) 120)) (-2455 (($ $ $ (-564)) 86) (($ |#2| $ (-564)) 85)) (-3127 (((-641 (-564)) $) 67)) (-1338 (((-112) (-564) $) 61)) (-2049 ((|#2| $) NIL) (($ $ (-768)) 111)) (-3042 (($ $ (-564)) 127)) (-2791 (((-112) $) 126)) (-2280 (((-112) (-1 (-112) |#2|) $) 44)) (-4121 (((-641 |#2|) $) 48)) (-4382 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1226 (-564))) 82) ((|#2| $ (-564)) 59) ((|#2| $ (-564) |#2|) 60)) (-2774 (((-564) $ $) 94)) (-2090 (($ $ (-1226 (-564))) 81) (($ $ (-564)) 75)) (-1875 (((-112) $) 90)) (-3554 (($ $) 108)) (-2966 (((-768) $) 107)) (-3414 (($ $) 106)) (-3725 (($ (-641 |#2|)) 55)) (-2807 (($ $) 128)) (-3914 (((-641 $) $) 93)) (-3036 (((-112) $ $) 92)) (-4289 (((-112) (-1 (-112) |#2|) $) 43)) (-1720 (((-112) $ $) 20)) (-2779 (((-768) $) 41)))
+(((-669 |#1| |#2|) (-10 -8 (-15 -2807 (|#1| |#1|)) (-15 -3042 (|#1| |#1| (-564))) (-15 -1635 ((-112) |#1|)) (-15 -2791 ((-112) |#1|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -4121 ((-641 |#2|) |#1|)) (-15 -1338 ((-112) (-564) |#1|)) (-15 -3127 ((-641 (-564)) |#1|)) (-15 -2415 ((-564) |#1|)) (-15 -2994 ((-564) |#1|)) (-15 -3725 (|#1| (-641 |#2|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2090 (|#1| |#1| (-564))) (-15 -2090 (|#1| |#1| (-1226 (-564)))) (-15 -2455 (|#1| |#2| |#1| (-564))) (-15 -2455 (|#1| |#1| |#1| (-564))) (-15 -3554 (|#1| |#1|)) (-15 -2966 ((-768) |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -2541 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2541 (|#2| |#1|)) (-15 -2063 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -2063 (|#1| |#1|)) (-15 -2049 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -2049 (|#2| |#1|)) (-15 -1543 ((-112) |#1| |#1|)) (-15 -3036 ((-112) |#1| |#1|)) (-15 -2774 ((-564) |#1| |#1|)) (-15 -1875 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3387 (|#2| |#1|)) (-15 -2120 ((-112) |#1|)) (-15 -1647 ((-641 |#1|) |#1|)) (-15 -3914 ((-641 |#1|) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2779 ((-768) |#1|)) (-15 -2141 ((-112) |#1| (-768))) (-15 -2173 ((-112) |#1| (-768))) (-15 -4144 ((-112) |#1| (-768)))) (-670 |#2|) (-1209)) (T -669))
+NIL
+(-10 -8 (-15 -2807 (|#1| |#1|)) (-15 -3042 (|#1| |#1| (-564))) (-15 -1635 ((-112) |#1|)) (-15 -2791 ((-112) |#1|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -4121 ((-641 |#2|) |#1|)) (-15 -1338 ((-112) (-564) |#1|)) (-15 -3127 ((-641 (-564)) |#1|)) (-15 -2415 ((-564) |#1|)) (-15 -2994 ((-564) |#1|)) (-15 -3725 (|#1| (-641 |#2|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2090 (|#1| |#1| (-564))) (-15 -2090 (|#1| |#1| (-1226 (-564)))) (-15 -2455 (|#1| |#2| |#1| (-564))) (-15 -2455 (|#1| |#1| |#1| (-564))) (-15 -3554 (|#1| |#1|)) (-15 -2966 ((-768) |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -2541 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2541 (|#2| |#1|)) (-15 -2063 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -2063 (|#1| |#1|)) (-15 -2049 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -2049 (|#2| |#1|)) (-15 -1543 ((-112) |#1| |#1|)) (-15 -3036 ((-112) |#1| |#1|)) (-15 -2774 ((-564) |#1| |#1|)) (-15 -1875 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3387 (|#2| |#1|)) (-15 -2120 ((-112) |#1|)) (-15 -1647 ((-641 |#1|) |#1|)) (-15 -3914 ((-641 |#1|) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -2280 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2779 ((-768) |#1|)) (-15 -2141 ((-112) |#1| (-768))) (-15 -2173 ((-112) |#1| (-768))) (-15 -4144 ((-112) |#1| (-768))))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3387 ((|#1| $) 48)) (-2985 ((|#1| $) 65)) (-3794 (($ $) 67)) (-2399 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4413)))) (-4140 (($ $ (-564)) 52 (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) 8)) (-3242 ((|#1| $ |#1|) 39 (|has| $ (-6 -4413)))) (-3543 (($ $ $) 56 (|has| $ (-6 -4413)))) (-3186 ((|#1| $ |#1|) 54 (|has| $ (-6 -4413)))) (-1617 ((|#1| $ |#1|) 58 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4413))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4413))) (($ $ "rest" $) 55 (|has| $ (-6 -4413))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4413))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 41 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) 102)) (-2976 ((|#1| $) 66)) (-3180 (($) 7 T CONST)) (-2621 (($ $) 124)) (-2063 (($ $) 73) (($ $ (-768)) 71)) (-2084 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 103)) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1998 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 87)) (-1635 (((-112) $) 83)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-4204 (((-768) $) 123)) (-1647 (((-641 $) $) 50)) (-1543 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3564 (($ (-768) |#1|) 108)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 95 (|has| (-564) (-847)))) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 94 (|has| (-564) (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4144 (((-112) $ (-768)) 10)) (-2523 (((-641 |#1|) $) 45)) (-2120 (((-112) $) 49)) (-4236 (($ $) 126)) (-2645 (((-112) $) 127)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2541 ((|#1| $) 70) (($ $ (-768)) 68)) (-2455 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-3127 (((-641 (-564)) $) 92)) (-1338 (((-112) (-564) $) 91)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3517 ((|#1| $) 125)) (-2049 ((|#1| $) 76) (($ $ (-768)) 74)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3538 (($ $ |#1|) 96 (|has| $ (-6 -4413)))) (-3042 (($ $ (-564)) 122)) (-2791 (((-112) $) 84)) (-3429 (((-112) $) 128)) (-3878 (((-112) $) 129)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) 90)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-2774 (((-564) $ $) 44)) (-2090 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-1875 (((-112) $) 46)) (-3554 (($ $) 62)) (-1911 (($ $) 59 (|has| $ (-6 -4413)))) (-2966 (((-768) $) 63)) (-3414 (($ $) 64)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 107)) (-1711 (($ $ $) 61 (|has| $ (-6 -4413))) (($ $ |#1|) 60 (|has| $ (-6 -4413)))) (-1865 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-2807 (($ $) 121)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) 51)) (-3036 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-670 |#1|) (-140) (-1209)) (T -670))
-((-2359 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-1922 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-4330 (*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-2752 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-2678 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
-(-13 (-1143 |t#1|) (-10 -8 (-15 -2359 ($ (-1 (-112) |t#1|) $)) (-15 -2164 ($ (-1 (-112) |t#1|) $)) (-15 -3074 ((-112) $)) (-15 -1660 ((-112) $)) (-15 -3502 ((-112) $)) (-15 -1922 ($ $)) (-15 -4330 (|t#1| $)) (-15 -2752 ($ $)) (-15 -2551 ((-768) $)) (-15 -2678 ($ $ (-564))) (-15 -3204 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1329 (($ (-768) (-768) (-768)) 55 (|has| |#1| (-1046)))) (-3263 (((-112) $ (-768)) NIL)) (-2287 ((|#1| $ (-768) (-768) (-768) |#1|) 49)) (-3760 (($) NIL T CONST)) (-3414 (($ $ $) 60 (|has| |#1| (-1046)))) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2797 (((-1259 (-768)) $) 12)) (-2586 (($ (-1170) $ $) 37)) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3958 (($ (-768)) 57 (|has| |#1| (-1046)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-768) (-768) (-768)) 46)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1776 (($ (-641 (-641 (-641 |#1|)))) 70)) (-1765 (($ (-955 (-955 (-955 |#1|)))) 23) (((-955 (-955 (-955 |#1|))) $) 19) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-671 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1046)) (PROGN (-15 -1329 ($ (-768) (-768) (-768))) (-15 -3958 ($ (-768))) (-15 -3414 ($ $ $))) |%noBranch|) (-15 -1776 ($ (-641 (-641 (-641 |#1|))))) (-15 -4382 (|#1| $ (-768) (-768) (-768))) (-15 -2287 (|#1| $ (-768) (-768) (-768) |#1|)) (-15 -1765 ($ (-955 (-955 (-955 |#1|))))) (-15 -1765 ((-955 (-955 (-955 |#1|))) $)) (-15 -2586 ($ (-1170) $ $)) (-15 -2797 ((-1259 (-768)) $)))) (-1094)) (T -671))
-((-1329 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) (-4 *3 (-1094)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) (-4 *3 (-1094)))) (-3414 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-1046)) (-4 *2 (-1094)))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-4382 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-2287 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-2586 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1259 (-768))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))))
-(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1046)) (PROGN (-15 -1329 ($ (-768) (-768) (-768))) (-15 -3958 ($ (-768))) (-15 -3414 ($ $ $))) |%noBranch|) (-15 -1776 ($ (-641 (-641 (-641 |#1|))))) (-15 -4382 (|#1| $ (-768) (-768) (-768))) (-15 -2287 (|#1| $ (-768) (-768) (-768) |#1|)) (-15 -1765 ($ (-955 (-955 (-955 |#1|))))) (-15 -1765 ((-955 (-955 (-955 |#1|))) $)) (-15 -2586 ($ (-1170) $ $)) (-15 -2797 ((-1259 (-768)) $))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-1821 (((-483) $) 10)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-1129) $) 12)) (-1686 (((-112) $ $) NIL)))
-(((-672) (-13 (-1077) (-10 -8 (-15 -1821 ((-483) $)) (-15 -4374 ((-1129) $))))) (T -672))
-((-1821 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672)))))
-(-13 (-1077) (-10 -8 (-15 -1821 ((-483) $)) (-15 -4374 ((-1129) $))))
-((-1754 (((-112) $ $) NIL)) (-3265 (((-641 |#1|) $) 15)) (-3549 (($ $) 19)) (-3564 (((-112) $) 20)) (-2013 (((-3 |#1| "failed") $) 23)) (-2064 ((|#1| $) 21)) (-3086 (($ $) 37)) (-2776 (($ $) 25)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2136 (((-112) $ $) 45)) (-2564 (((-918) $) 40)) (-3538 (($ $) 18)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 ((|#1| $) 36)) (-1765 (((-859) $) 32) (($ |#1|) 24) (((-816 |#1|) $) 28)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 13)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-673 |#1|) (-13 (-847) (-1035 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1765 ((-816 |#1|) $)) (-15 -3073 (|#1| $)) (-15 -3538 ($ $)) (-15 -2564 ((-918) $)) (-15 -2136 ((-112) $ $)) (-15 -2776 ($ $)) (-15 -3086 ($ $)) (-15 -3564 ((-112) $)) (-15 -3549 ($ $)) (-15 -3265 ((-641 |#1|) $)))) (-847)) (T -673))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-3073 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3538 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-2136 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-2776 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3086 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-3549 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))))
-(-13 (-847) (-1035 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1765 ((-816 |#1|) $)) (-15 -3073 (|#1| $)) (-15 -3538 ($ $)) (-15 -2564 ((-918) $)) (-15 -2136 ((-112) $ $)) (-15 -2776 ($ $)) (-15 -3086 ($ $)) (-15 -3564 ((-112) $)) (-15 -3549 ($ $)) (-15 -3265 ((-641 |#1|) $))))
-((-1432 ((|#1| (-1 |#1| (-768) |#1|) (-768) |#1|) 14)) (-2086 ((|#1| (-1 |#1| |#1|) (-768) |#1|) 12)))
-(((-674 |#1|) (-10 -7 (-15 -2086 (|#1| (-1 |#1| |#1|) (-768) |#1|)) (-15 -1432 (|#1| (-1 |#1| (-768) |#1|) (-768) |#1|))) (-1094)) (T -674))
-((-1432 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-768) *2)) (-5 *4 (-768)) (-4 *2 (-1094)) (-5 *1 (-674 *2)))) (-2086 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-768)) (-4 *2 (-1094)) (-5 *1 (-674 *2)))))
-(-10 -7 (-15 -2086 (|#1| (-1 |#1| |#1|) (-768) |#1|)) (-15 -1432 (|#1| (-1 |#1| (-768) |#1|) (-768) |#1|)))
-((-4260 ((|#2| |#1| |#2|) 9)) (-4247 ((|#1| |#1| |#2|) 8)))
-(((-675 |#1| |#2|) (-10 -7 (-15 -4247 (|#1| |#1| |#2|)) (-15 -4260 (|#2| |#1| |#2|))) (-1094) (-1094)) (T -675))
-((-4260 (*1 *2 *3 *2) (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-4247 (*1 *2 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -4247 (|#1| |#1| |#2|)) (-15 -4260 (|#2| |#1| |#2|)))
-((-2279 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-676 |#1| |#2| |#3|) (-10 -7 (-15 -2279 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1094) (-1094) (-1094)) (T -676))
-((-2279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2)))))
-(-10 -7 (-15 -2279 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-4284 (((-1208) $) 21)) (-4222 (((-641 (-1208)) $) 19)) (-2129 (($ (-641 (-1208)) (-1208)) 14)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 29) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 22) (($ (-1112)) 10)) (-1686 (((-112) $ $) NIL)))
-(((-677) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -1765 ($ (-1112))) (-15 -2129 ($ (-641 (-1208)) (-1208))) (-15 -4222 ((-641 (-1208)) $)) (-15 -4284 ((-1208) $))))) (T -677))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677)))) (-2129 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677)))))
-(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -1765 ($ (-1112))) (-15 -2129 ($ (-641 (-1208)) (-1208))) (-15 -4222 ((-641 (-1208)) $)) (-15 -4284 ((-1208) $))))
-((-1432 (((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)) 29)) (-3359 (((-1 |#1|) |#1|) 8)) (-1600 ((|#1| |#1|) 23)) (-3287 (((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-1765 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-768)) 26)))
-(((-678 |#1|) (-10 -7 (-15 -3359 ((-1 |#1|) |#1|)) (-15 -1765 ((-1 |#1|) |#1|)) (-15 -3287 (|#1| (-1 |#1| |#1|))) (-15 -3287 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -1600 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-768))) (-15 -1432 ((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)))) (-1094)) (T -678))
-((-1432 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-768) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *4 (-1094)) (-5 *1 (-678 *4)))) (-1600 (*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564)) (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-1765 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))) (-3359 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -3359 ((-1 |#1|) |#1|)) (-15 -1765 ((-1 |#1|) |#1|)) (-15 -3287 (|#1| (-1 |#1| |#1|))) (-15 -3287 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -1600 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-768))) (-15 -1432 ((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|))))
-((-1561 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2378 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3246 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2166 (((-1 |#2| |#1|) |#2|) 11)))
-(((-679 |#1| |#2|) (-10 -7 (-15 -2166 ((-1 |#2| |#1|) |#2|)) (-15 -2378 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3246 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1561 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1094) (-1094)) (T -679))
-((-1561 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)) (-4 *4 (-1094)))) (-2378 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5)))) (-2166 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -2166 ((-1 |#2| |#1|) |#2|)) (-15 -2378 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3246 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1561 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-4090 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2601 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3927 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3902 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2982 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -2601 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3927 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3902 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2982 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4090 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1094) (-1094) (-1094)) (T -680))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) (-5 *1 (-680 *5 *6 *7)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094)))) (-3927 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6)))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6)))))
-(-10 -7 (-15 -2601 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3927 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3902 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2982 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4090 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-4367 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2082 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-681 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2082 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2082 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4367 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1046) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-1046) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -681))
-((-4367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1046)) (-4 *2 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9)))) (-2082 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))))
-(-10 -7 (-15 -2082 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2082 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4367 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-1398 (($ (-768) (-768)) 43)) (-4093 (($ $ $) 71)) (-3659 (($ |#3|) 66) (($ $) 67)) (-2741 (((-112) $) 38)) (-3578 (($ $ (-564) (-564)) 81)) (-3871 (($ $ (-564) (-564)) 82)) (-2577 (($ $ (-564) (-564) (-564) (-564)) 87)) (-2963 (($ $) 69)) (-2832 (((-112) $) 15)) (-2683 (($ $ (-564) (-564) $) 88)) (-1881 ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) 86)) (-2460 (($ (-768) |#2|) 53)) (-1605 (($ (-641 (-641 |#2|))) 51)) (-3671 (((-641 (-641 |#2|)) $) 78)) (-2624 (($ $ $) 70)) (-1343 (((-3 $ "failed") $ |#2|) 120)) (-4382 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-3530 (($ (-641 |#2|)) 54) (($ (-641 $)) 56)) (-3883 (((-112) $) 28)) (-1765 (($ |#4|) 61) (((-859) $) NIL)) (-1509 (((-112) $) 40)) (-1793 (($ $ |#2|) 122)) (-1783 (($ $ $) 92) (($ $) 95)) (-1771 (($ $ $) 90)) (** (($ $ (-768)) 109) (($ $ (-564)) 127)) (* (($ $ $) 101) (($ |#2| $) 97) (($ $ |#2|) 98) (($ (-564) $) 100) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
-(((-682 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1765 ((-859) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1793 (|#1| |#1| |#2|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1| (-564) (-564) |#1|)) (-15 -2577 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -3871 (|#1| |#1| (-564) (-564))) (-15 -3578 (|#1| |#1| (-564) (-564))) (-15 -1881 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4382 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3671 ((-641 (-641 |#2|)) |#1|)) (-15 -4093 (|#1| |#1| |#1|)) (-15 -2624 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3659 (|#1| |#3|)) (-15 -1765 (|#1| |#4|)) (-15 -3530 (|#1| (-641 |#1|))) (-15 -3530 (|#1| (-641 |#2|))) (-15 -2460 (|#1| (-768) |#2|)) (-15 -1605 (|#1| (-641 (-641 |#2|)))) (-15 -1398 (|#1| (-768) (-768))) (-15 -1509 ((-112) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 -3883 ((-112) |#1|)) (-15 -2832 ((-112) |#1|)) (-15 -1881 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564)))) (-683 |#2| |#3| |#4|) (-1046) (-373 |#2|) (-373 |#2|)) (T -682))
-NIL
-(-10 -8 (-15 -1765 ((-859) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1793 (|#1| |#1| |#2|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -2683 (|#1| |#1| (-564) (-564) |#1|)) (-15 -2577 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -3871 (|#1| |#1| (-564) (-564))) (-15 -3578 (|#1| |#1| (-564) (-564))) (-15 -1881 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4382 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3671 ((-641 (-641 |#2|)) |#1|)) (-15 -4093 (|#1| |#1| |#1|)) (-15 -2624 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3659 (|#1| |#3|)) (-15 -1765 (|#1| |#4|)) (-15 -3530 (|#1| (-641 |#1|))) (-15 -3530 (|#1| (-641 |#2|))) (-15 -2460 (|#1| (-768) |#2|)) (-15 -1605 (|#1| (-641 (-641 |#2|)))) (-15 -1398 (|#1| (-768) (-768))) (-15 -1509 ((-112) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 -3883 ((-112) |#1|)) (-15 -2832 ((-112) |#1|)) (-15 -1881 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564))))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1398 (($ (-768) (-768)) 97)) (-4093 (($ $ $) 87)) (-3659 (($ |#2|) 91) (($ $) 90)) (-2741 (((-112) $) 99)) (-3578 (($ $ (-564) (-564)) 83)) (-3871 (($ $ (-564) (-564)) 82)) (-2577 (($ $ (-564) (-564) (-564) (-564)) 81)) (-2963 (($ $) 89)) (-2832 (((-112) $) 101)) (-3263 (((-112) $ (-768)) 8)) (-2683 (($ $ (-564) (-564) $) 80)) (-1881 ((|#1| $ (-564) (-564) |#1|) 44) (($ $ (-641 (-564)) (-641 (-564)) $) 84)) (-1470 (($ $ (-564) |#2|) 42)) (-3652 (($ $ (-564) |#3|) 41)) (-2460 (($ (-768) |#1|) 95)) (-3760 (($) 7 T CONST)) (-1364 (($ $) 67 (|has| |#1| (-307)))) (-2698 ((|#2| $ (-564)) 46)) (-4224 (((-768) $) 66 (|has| |#1| (-556)))) (-3528 ((|#1| $ (-564) (-564) |#1|) 43)) (-3455 ((|#1| $ (-564) (-564)) 48)) (-3080 (((-641 |#1|) $) 30)) (-4227 (((-768) $) 65 (|has| |#1| (-556)))) (-3798 (((-641 |#3|) $) 64 (|has| |#1| (-556)))) (-3383 (((-768) $) 51)) (-1633 (($ (-768) (-768) |#1|) 57)) (-3393 (((-768) $) 50)) (-2830 (((-112) $ (-768)) 9)) (-1893 ((|#1| $) 62 (|has| |#1| (-6 (-4413 "*"))))) (-1786 (((-564) $) 55)) (-2810 (((-564) $) 53)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (((-564) $) 54)) (-2104 (((-564) $) 52)) (-1605 (($ (-641 (-641 |#1|))) 96)) (-3513 (($ (-1 |#1| |#1|) $) 34)) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3671 (((-641 (-641 |#1|)) $) 86)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1675 (((-3 $ "failed") $) 61 (|has| |#1| (-363)))) (-2624 (($ $ $) 88)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2614 (($ $ |#1|) 56)) (-1343 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-556)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-3530 (($ (-641 |#1|)) 94) (($ (-641 $)) 93)) (-3883 (((-112) $) 100)) (-2672 ((|#1| $) 63 (|has| |#1| (-6 (-4413 "*"))))) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1709 ((|#3| $ (-564)) 45)) (-1765 (($ |#3|) 92) (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1509 (((-112) $) 98)) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1793 (($ $ |#1|) 68 (|has| |#1| (-363)))) (-1783 (($ $ $) 78) (($ $) 77)) (-1771 (($ $ $) 79)) (** (($ $ (-768)) 70) (($ $ (-564)) 60 (|has| |#1| (-363)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-564) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-4148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-4236 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-2621 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-2807 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
+(-13 (-1143 |t#1|) (-10 -8 (-15 -2514 ($ (-1 (-112) |t#1|) $)) (-15 -4148 ($ (-1 (-112) |t#1|) $)) (-15 -3878 ((-112) $)) (-15 -3429 ((-112) $)) (-15 -2645 ((-112) $)) (-15 -4236 ($ $)) (-15 -3517 (|t#1| $)) (-15 -2621 ($ $)) (-15 -4204 ((-768) $)) (-15 -3042 ($ $ (-564))) (-15 -2807 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2342 (($ (-768) (-768) (-768)) 55 (|has| |#1| (-1046)))) (-2141 (((-112) $ (-768)) NIL)) (-3486 ((|#1| $ (-768) (-768) (-768) |#1|) 49)) (-3180 (($) NIL T CONST)) (-3590 (($ $ $) 60 (|has| |#1| (-1046)))) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1840 (((-1259 (-768)) $) 12)) (-1472 (($ (-1170) $ $) 37)) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1388 (($ (-768)) 57 (|has| |#1| (-1046)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-768) (-768) (-768)) 46)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-3725 (($ (-641 (-641 (-641 |#1|)))) 70)) (-3714 (($ (-955 (-955 (-955 |#1|)))) 23) (((-955 (-955 (-955 |#1|))) $) 19) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-671 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1046)) (PROGN (-15 -2342 ($ (-768) (-768) (-768))) (-15 -1388 ($ (-768))) (-15 -3590 ($ $ $))) |%noBranch|) (-15 -3725 ($ (-641 (-641 (-641 |#1|))))) (-15 -4382 (|#1| $ (-768) (-768) (-768))) (-15 -3486 (|#1| $ (-768) (-768) (-768) |#1|)) (-15 -3714 ($ (-955 (-955 (-955 |#1|))))) (-15 -3714 ((-955 (-955 (-955 |#1|))) $)) (-15 -1472 ($ (-1170) $ $)) (-15 -1840 ((-1259 (-768)) $)))) (-1094)) (T -671))
+((-2342 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) (-4 *3 (-1094)))) (-1388 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) (-4 *3 (-1094)))) (-3590 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-1046)) (-4 *2 (-1094)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-4382 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-3486 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-1472 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-1259 (-768))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))))
+(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1046)) (PROGN (-15 -2342 ($ (-768) (-768) (-768))) (-15 -1388 ($ (-768))) (-15 -3590 ($ $ $))) |%noBranch|) (-15 -3725 ($ (-641 (-641 (-641 |#1|))))) (-15 -4382 (|#1| $ (-768) (-768) (-768))) (-15 -3486 (|#1| $ (-768) (-768) (-768) |#1|)) (-15 -3714 ($ (-955 (-955 (-955 |#1|))))) (-15 -3714 ((-955 (-955 (-955 |#1|))) $)) (-15 -1472 ($ (-1170) $ $)) (-15 -1840 ((-1259 (-768)) $))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-2655 (((-483) $) 10)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-1129) $) 12)) (-1720 (((-112) $ $) NIL)))
+(((-672) (-13 (-1077) (-10 -8 (-15 -2655 ((-483) $)) (-15 -4347 ((-1129) $))))) (T -672))
+((-2655 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672)))))
+(-13 (-1077) (-10 -8 (-15 -2655 ((-483) $)) (-15 -4347 ((-1129) $))))
+((-3702 (((-112) $ $) NIL)) (-3441 (((-641 |#1|) $) 15)) (-2592 (($ $) 19)) (-1989 (((-112) $) 20)) (-2224 (((-3 |#1| "failed") $) 23)) (-2376 ((|#1| $) 21)) (-2063 (($ $) 37)) (-2843 (($ $) 25)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2763 (((-112) $ $) 45)) (-3451 (((-918) $) 40)) (-2578 (($ $) 18)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 ((|#1| $) 36)) (-3714 (((-859) $) 32) (($ |#1|) 24) (((-816 |#1|) $) 28)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 13)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-673 |#1|) (-13 (-847) (-1035 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3714 ((-816 |#1|) $)) (-15 -2049 (|#1| $)) (-15 -2578 ($ $)) (-15 -3451 ((-918) $)) (-15 -2763 ((-112) $ $)) (-15 -2843 ($ $)) (-15 -2063 ($ $)) (-15 -1989 ((-112) $)) (-15 -2592 ($ $)) (-15 -3441 ((-641 |#1|) $)))) (-847)) (T -673))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-2049 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-2578 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-2763 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-2843 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-2063 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-2592 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))))
+(-13 (-847) (-1035 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3714 ((-816 |#1|) $)) (-15 -2049 (|#1| $)) (-15 -2578 ($ $)) (-15 -3451 ((-918) $)) (-15 -2763 ((-112) $ $)) (-15 -2843 ($ $)) (-15 -2063 ($ $)) (-15 -1989 ((-112) $)) (-15 -2592 ($ $)) (-15 -3441 ((-641 |#1|) $))))
+((-1774 ((|#1| (-1 |#1| (-768) |#1|) (-768) |#1|) 14)) (-4048 ((|#1| (-1 |#1| |#1|) (-768) |#1|) 12)))
+(((-674 |#1|) (-10 -7 (-15 -4048 (|#1| (-1 |#1| |#1|) (-768) |#1|)) (-15 -1774 (|#1| (-1 |#1| (-768) |#1|) (-768) |#1|))) (-1094)) (T -674))
+((-1774 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-768) *2)) (-5 *4 (-768)) (-4 *2 (-1094)) (-5 *1 (-674 *2)))) (-4048 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-768)) (-4 *2 (-1094)) (-5 *1 (-674 *2)))))
+(-10 -7 (-15 -4048 (|#1| (-1 |#1| |#1|) (-768) |#1|)) (-15 -1774 (|#1| (-1 |#1| (-768) |#1|) (-768) |#1|)))
+((-1370 ((|#2| |#1| |#2|) 9)) (-1355 ((|#1| |#1| |#2|) 8)))
+(((-675 |#1| |#2|) (-10 -7 (-15 -1355 (|#1| |#1| |#2|)) (-15 -1370 (|#2| |#1| |#2|))) (-1094) (-1094)) (T -675))
+((-1370 (*1 *2 *3 *2) (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1355 (*1 *2 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -1355 (|#1| |#1| |#2|)) (-15 -1370 (|#2| |#1| |#2|)))
+((-2551 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-676 |#1| |#2| |#3|) (-10 -7 (-15 -2551 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1094) (-1094) (-1094)) (T -676))
+((-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2)))))
+(-10 -7 (-15 -2551 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-3155 (((-1208) $) 21)) (-3108 (((-641 (-1208)) $) 19)) (-2697 (($ (-641 (-1208)) (-1208)) 14)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 29) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 22) (($ (-1112)) 10)) (-1720 (((-112) $ $) NIL)))
+(((-677) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -3714 ($ (-1112))) (-15 -2697 ($ (-641 (-1208)) (-1208))) (-15 -3108 ((-641 (-1208)) $)) (-15 -3155 ((-1208) $))))) (T -677))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677)))) (-2697 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677)))))
+(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -3714 ($ (-1112))) (-15 -2697 ($ (-641 (-1208)) (-1208))) (-15 -3108 ((-641 (-1208)) $)) (-15 -3155 ((-1208) $))))
+((-1774 (((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)) 29)) (-3644 (((-1 |#1|) |#1|) 8)) (-3532 ((|#1| |#1|) 23)) (-4220 (((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-3714 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-768)) 26)))
+(((-678 |#1|) (-10 -7 (-15 -3644 ((-1 |#1|) |#1|)) (-15 -3714 ((-1 |#1|) |#1|)) (-15 -4220 (|#1| (-1 |#1| |#1|))) (-15 -4220 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -3532 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-768))) (-15 -1774 ((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)))) (-1094)) (T -678))
+((-1774 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-768) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *4 (-1094)) (-5 *1 (-678 *4)))) (-3532 (*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564)) (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -3644 ((-1 |#1|) |#1|)) (-15 -3714 ((-1 |#1|) |#1|)) (-15 -4220 (|#1| (-1 |#1| |#1|))) (-15 -4220 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -3532 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-768))) (-15 -1774 ((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|))))
+((-1956 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3136 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2222 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1766 (((-1 |#2| |#1|) |#2|) 11)))
+(((-679 |#1| |#2|) (-10 -7 (-15 -1766 ((-1 |#2| |#1|) |#2|)) (-15 -3136 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2222 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1956 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1094) (-1094)) (T -679))
+((-1956 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)) (-4 *4 (-1094)))) (-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5)))) (-1766 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -1766 ((-1 |#2| |#1|) |#2|)) (-15 -3136 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2222 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1956 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-3184 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3401 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4199 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2143 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4227 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -3401 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4199 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2143 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4227 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3184 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1094) (-1094) (-1094)) (T -680))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) (-5 *1 (-680 *5 *6 *7)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094)))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6)))))
+(-10 -7 (-15 -3401 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4199 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2143 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4227 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3184 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-1728 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2313 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-681 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2313 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2313 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1728 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1046) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-1046) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -681))
+((-1728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1046)) (-4 *2 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9)))) (-2313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))))
+(-10 -7 (-15 -2313 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2313 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1728 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-1532 (($ (-768) (-768)) 43)) (-3202 (($ $ $) 71)) (-3437 (($ |#3|) 66) (($ $) 67)) (-2497 (((-112) $) 38)) (-2113 (($ $ (-564) (-564)) 81)) (-1826 (($ $ (-564) (-564)) 82)) (-1379 (($ $ (-564) (-564) (-564) (-564)) 87)) (-4050 (($ $) 69)) (-2193 (((-112) $) 15)) (-3088 (($ $ (-564) (-564) $) 88)) (-3868 ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) 86)) (-2787 (($ (-768) |#2|) 53)) (-3469 (($ (-641 (-641 |#2|))) 51)) (-3549 (((-641 (-641 |#2|)) $) 78)) (-3661 (($ $ $) 70)) (-1347 (((-3 $ "failed") $ |#2|) 120)) (-4382 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-1634 (($ (-641 |#2|)) 54) (($ (-641 $)) 56)) (-1950 (((-112) $) 28)) (-3714 (($ |#4|) 61) (((-859) $) NIL)) (-2718 (((-112) $) 40)) (-1841 (($ $ |#2|) 122)) (-1828 (($ $ $) 92) (($ $) 95)) (-1814 (($ $ $) 90)) (** (($ $ (-768)) 109) (($ $ (-564)) 127)) (* (($ $ $) 101) (($ |#2| $) 97) (($ $ |#2|) 98) (($ (-564) $) 100) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
+(((-682 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3714 ((-859) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1841 (|#1| |#1| |#2|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -3088 (|#1| |#1| (-564) (-564) |#1|)) (-15 -1379 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -1826 (|#1| |#1| (-564) (-564))) (-15 -2113 (|#1| |#1| (-564) (-564))) (-15 -3868 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4382 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3549 ((-641 (-641 |#2|)) |#1|)) (-15 -3202 (|#1| |#1| |#1|)) (-15 -3661 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -3437 (|#1| |#1|)) (-15 -3437 (|#1| |#3|)) (-15 -3714 (|#1| |#4|)) (-15 -1634 (|#1| (-641 |#1|))) (-15 -1634 (|#1| (-641 |#2|))) (-15 -2787 (|#1| (-768) |#2|)) (-15 -3469 (|#1| (-641 (-641 |#2|)))) (-15 -1532 (|#1| (-768) (-768))) (-15 -2718 ((-112) |#1|)) (-15 -2497 ((-112) |#1|)) (-15 -1950 ((-112) |#1|)) (-15 -2193 ((-112) |#1|)) (-15 -3868 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564)))) (-683 |#2| |#3| |#4|) (-1046) (-373 |#2|) (-373 |#2|)) (T -682))
+NIL
+(-10 -8 (-15 -3714 ((-859) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1841 (|#1| |#1| |#2|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -3088 (|#1| |#1| (-564) (-564) |#1|)) (-15 -1379 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -1826 (|#1| |#1| (-564) (-564))) (-15 -2113 (|#1| |#1| (-564) (-564))) (-15 -3868 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4382 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3549 ((-641 (-641 |#2|)) |#1|)) (-15 -3202 (|#1| |#1| |#1|)) (-15 -3661 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -3437 (|#1| |#1|)) (-15 -3437 (|#1| |#3|)) (-15 -3714 (|#1| |#4|)) (-15 -1634 (|#1| (-641 |#1|))) (-15 -1634 (|#1| (-641 |#2|))) (-15 -2787 (|#1| (-768) |#2|)) (-15 -3469 (|#1| (-641 (-641 |#2|)))) (-15 -1532 (|#1| (-768) (-768))) (-15 -2718 ((-112) |#1|)) (-15 -2497 ((-112) |#1|)) (-15 -1950 ((-112) |#1|)) (-15 -2193 ((-112) |#1|)) (-15 -3868 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564))))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1532 (($ (-768) (-768)) 97)) (-3202 (($ $ $) 87)) (-3437 (($ |#2|) 91) (($ $) 90)) (-2497 (((-112) $) 99)) (-2113 (($ $ (-564) (-564)) 83)) (-1826 (($ $ (-564) (-564)) 82)) (-1379 (($ $ (-564) (-564) (-564) (-564)) 81)) (-4050 (($ $) 89)) (-2193 (((-112) $) 101)) (-2141 (((-112) $ (-768)) 8)) (-3088 (($ $ (-564) (-564) $) 80)) (-3868 ((|#1| $ (-564) (-564) |#1|) 44) (($ $ (-641 (-564)) (-641 (-564)) $) 84)) (-2310 (($ $ (-564) |#2|) 42)) (-1571 (($ $ (-564) |#3|) 41)) (-2787 (($ (-768) |#1|) 95)) (-3180 (($) 7 T CONST)) (-3781 (($ $) 67 (|has| |#1| (-307)))) (-3207 ((|#2| $ (-564)) 46)) (-1595 (((-768) $) 66 (|has| |#1| (-556)))) (-1998 ((|#1| $ (-564) (-564) |#1|) 43)) (-3593 ((|#1| $ (-564) (-564)) 48)) (-4244 (((-641 |#1|) $) 30)) (-2099 (((-768) $) 65 (|has| |#1| (-556)))) (-2397 (((-641 |#3|) $) 64 (|has| |#1| (-556)))) (-3947 (((-768) $) 51)) (-3564 (($ (-768) (-768) |#1|) 57)) (-3956 (((-768) $) 50)) (-2173 (((-112) $ (-768)) 9)) (-2125 ((|#1| $) 62 (|has| |#1| (-6 (-4414 "*"))))) (-2285 (((-564) $) 55)) (-1984 (((-564) $) 53)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2083 (((-564) $) 54)) (-2437 (((-564) $) 52)) (-3469 (($ (-641 (-641 |#1|))) 96)) (-1988 (($ (-1 |#1| |#1|) $) 34)) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3549 (((-641 (-641 |#1|)) $) 86)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3577 (((-3 $ "failed") $) 61 (|has| |#1| (-363)))) (-3661 (($ $ $) 88)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3538 (($ $ |#1|) 56)) (-1347 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-556)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-1634 (($ (-641 |#1|)) 94) (($ (-641 $)) 93)) (-1950 (((-112) $) 100)) (-2990 ((|#1| $) 63 (|has| |#1| (-6 (-4414 "*"))))) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2811 ((|#3| $ (-564)) 45)) (-3714 (($ |#3|) 92) (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-2718 (((-112) $) 98)) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1841 (($ $ |#1|) 68 (|has| |#1| (-363)))) (-1828 (($ $ $) 78) (($ $) 77)) (-1814 (($ $ $) 79)) (** (($ $ (-768)) 70) (($ $ (-564)) 60 (|has| |#1| (-363)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-564) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-683 |#1| |#2| |#3|) (-140) (-1046) (-373 |t#1|) (-373 |t#1|)) (T -683))
-((-2832 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1398 (*1 *1 *2 *2) (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1605 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2460 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1765 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-3659 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-3659 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2963 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2624 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-4093 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3))))) (-4382 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1881 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3578 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3871 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2577 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2683 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1771 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1783 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1783 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1046)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1343 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) (-1793 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-1364 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) (-1675 (*1 *1 *1) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -2832 ((-112) $)) (-15 -3883 ((-112) $)) (-15 -2741 ((-112) $)) (-15 -1509 ((-112) $)) (-15 -1398 ($ (-768) (-768))) (-15 -1605 ($ (-641 (-641 |t#1|)))) (-15 -2460 ($ (-768) |t#1|)) (-15 -3530 ($ (-641 |t#1|))) (-15 -3530 ($ (-641 $))) (-15 -1765 ($ |t#3|)) (-15 -3659 ($ |t#2|)) (-15 -3659 ($ $)) (-15 -2963 ($ $)) (-15 -2624 ($ $ $)) (-15 -4093 ($ $ $)) (-15 -3671 ((-641 (-641 |t#1|)) $)) (-15 -4382 ($ $ (-641 (-564)) (-641 (-564)))) (-15 -1881 ($ $ (-641 (-564)) (-641 (-564)) $)) (-15 -3578 ($ $ (-564) (-564))) (-15 -3871 ($ $ (-564) (-564))) (-15 -2577 ($ $ (-564) (-564) (-564) (-564))) (-15 -2683 ($ $ (-564) (-564) $)) (-15 -1771 ($ $ $)) (-15 -1783 ($ $ $)) (-15 -1783 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-564) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-768))) (IF (|has| |t#1| (-556)) (-15 -1343 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1793 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -1364 ($ $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -4224 ((-768) $)) (-15 -4227 ((-768) $)) (-15 -3798 ((-641 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4413 "*"))) (PROGN (-15 -2672 (|t#1| $)) (-15 -1893 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -1675 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-57 |#1| |#2| |#3|) . T) ((-1209) . T))
-((-1364 ((|#4| |#4|) 96 (|has| |#1| (-307)))) (-4224 (((-768) |#4|) 125 (|has| |#1| (-556)))) (-4227 (((-768) |#4|) 100 (|has| |#1| (-556)))) (-3798 (((-641 |#3|) |#4|) 107 (|has| |#1| (-556)))) (-1886 (((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|) 139 (|has| |#1| (-307)))) (-1893 ((|#1| |#4|) 56)) (-1545 (((-3 |#4| "failed") |#4|) 88 (|has| |#1| (-556)))) (-1675 (((-3 |#4| "failed") |#4|) 104 (|has| |#1| (-363)))) (-3467 ((|#4| |#4|) 92 (|has| |#1| (-556)))) (-1778 ((|#4| |#4| |#1| (-564) (-564)) 64)) (-1949 ((|#4| |#4| (-564) (-564)) 59)) (-4173 ((|#4| |#4| |#1| (-564) (-564)) 69)) (-2672 ((|#1| |#4|) 102)) (-1825 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 93 (|has| |#1| (-556)))))
-(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2672 (|#1| |#4|)) (-15 -1893 (|#1| |#4|)) (-15 -1949 (|#4| |#4| (-564) (-564))) (-15 -1778 (|#4| |#4| |#1| (-564) (-564))) (-15 -4173 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -4224 ((-768) |#4|)) (-15 -4227 ((-768) |#4|)) (-15 -3798 ((-641 |#3|) |#4|)) (-15 -3467 (|#4| |#4|)) (-15 -1545 ((-3 |#4| "failed") |#4|)) (-15 -1825 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -1364 (|#4| |#4|)) (-15 -1886 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1675 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -684))
-((-1675 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1886 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5)))) (-1364 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1825 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1545 (*1 *2 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3798 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-4227 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-4224 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-4173 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-1778 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-1949 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2)) (-4 *2 (-683 *4 *5 *6)))) (-1893 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-2672 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))))
-(-10 -7 (-15 -2672 (|#1| |#4|)) (-15 -1893 (|#1| |#4|)) (-15 -1949 (|#4| |#4| (-564) (-564))) (-15 -1778 (|#4| |#4| |#1| (-564) (-564))) (-15 -4173 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -4224 ((-768) |#4|)) (-15 -4227 ((-768) |#4|)) (-15 -3798 ((-641 |#3|) |#4|)) (-15 -3467 (|#4| |#4|)) (-15 -1545 ((-3 |#4| "failed") |#4|)) (-15 -1825 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -1364 (|#4| |#4|)) (-15 -1886 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1675 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1398 (($ (-768) (-768)) 63)) (-4093 (($ $ $) NIL)) (-3659 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-2741 (((-112) $) NIL)) (-3578 (($ $ (-564) (-564)) 21)) (-3871 (($ $ (-564) (-564)) NIL)) (-2577 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-2963 (($ $) NIL)) (-2832 (((-112) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2683 (($ $ (-564) (-564) $) NIL)) (-1881 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-1470 (($ $ (-564) (-1259 |#1|)) NIL)) (-3652 (($ $ (-564) (-1259 |#1|)) NIL)) (-2460 (($ (-768) |#1|) 36)) (-3760 (($) NIL T CONST)) (-1364 (($ $) 45 (|has| |#1| (-307)))) (-2698 (((-1259 |#1|) $ (-564)) NIL)) (-4224 (((-768) $) 47 (|has| |#1| (-556)))) (-3528 ((|#1| $ (-564) (-564) |#1|) 68)) (-3455 ((|#1| $ (-564) (-564)) NIL)) (-3080 (((-641 |#1|) $) NIL)) (-4227 (((-768) $) 49 (|has| |#1| (-556)))) (-3798 (((-641 (-1259 |#1|)) $) 52 (|has| |#1| (-556)))) (-3383 (((-768) $) 31)) (-1633 (($ (-768) (-768) |#1|) 27)) (-3393 (((-768) $) 32)) (-2830 (((-112) $ (-768)) NIL)) (-1893 ((|#1| $) 43 (|has| |#1| (-6 (-4413 "*"))))) (-1786 (((-564) $) 10)) (-2810 (((-564) $) 11)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (((-564) $) 14)) (-2104 (((-564) $) 64)) (-1605 (($ (-641 (-641 |#1|))) NIL)) (-3513 (($ (-1 |#1| |#1|) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3671 (((-641 (-641 |#1|)) $) 75)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1675 (((-3 $ "failed") $) 59 (|has| |#1| (-363)))) (-2624 (($ $ $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2614 (($ $ |#1|) NIL)) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-3530 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL) (($ (-1259 |#1|)) 69)) (-3883 (((-112) $) NIL)) (-2672 ((|#1| $) 41 (|has| |#1| (-6 (-4413 "*"))))) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-2127 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1709 (((-1259 |#1|) $ (-564)) NIL)) (-1765 (($ (-1259 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1509 (((-112) $) NIL)) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $ $) NIL) (($ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-768)) 37) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 23) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) NIL) (((-1259 |#1|) (-1259 |#1|) $) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-685 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -3530 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1675 ((-3 $ "failed") $)) |%noBranch|))) (-1046)) (T -685))
-((-1675 (*1 *1 *1) (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1046)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-685 *3)))))
-(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -3530 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1675 ((-3 $ "failed") $)) |%noBranch|)))
-((-2321 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 37)) (-1925 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 34)) (-2615 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768)) 43)) (-3717 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 27)) (-2515 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 31) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 29)) (-1873 (((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|)) 33)) (-2328 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 25)) (** (((-685 |#1|) (-685 |#1|) (-768)) 46)))
-(((-686 |#1|) (-10 -7 (-15 -2328 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3717 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2515 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2515 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1873 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -1925 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -2321 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2615 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768))) (-15 ** ((-685 |#1|) (-685 |#1|) (-768)))) (-1046)) (T -686))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-686 *4)))) (-2615 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-686 *4)))) (-2321 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1925 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1873 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-2515 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-2515 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-3717 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-2328 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
-(-10 -7 (-15 -2328 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3717 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2515 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2515 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1873 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -1925 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -2321 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2615 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768))) (-15 ** ((-685 |#1|) (-685 |#1|) (-768))))
-((-2013 (((-3 |#1| "failed") $) 17)) (-2064 ((|#1| $) NIL)) (-2509 (($) 7 T CONST)) (-3181 (($ |#1|) 8)) (-1765 (($ |#1|) 15) (((-859) $) 22)) (-4305 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -2509)) 11)) (-1924 ((|#1| $) 14)))
-(((-687 |#1|) (-13 (-1254) (-1035 |#1|) (-611 (-859)) (-10 -8 (-15 -3181 ($ |#1|)) (-15 -4305 ((-112) $ (|[\|\|]| |#1|))) (-15 -4305 ((-112) $ (|[\|\|]| -2509))) (-15 -1924 (|#1| $)) (-15 -2509 ($) -3246))) (-611 (-859))) (T -687))
-((-3181 (*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-859))) (-5 *2 (-112)) (-5 *1 (-687 *4)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2509)) (-5 *2 (-112)) (-5 *1 (-687 *4)) (-4 *4 (-611 (-859))))) (-1924 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) (-2509 (*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))))
-(-13 (-1254) (-1035 |#1|) (-611 (-859)) (-10 -8 (-15 -3181 ($ |#1|)) (-15 -4305 ((-112) $ (|[\|\|]| |#1|))) (-15 -4305 ((-112) $ (|[\|\|]| -2509))) (-15 -1924 (|#1| $)) (-15 -2509 ($) -3246)))
-((-1455 ((|#2| |#2| |#4|) 33)) (-2146 (((-685 |#2|) |#3| |#4|) 39)) (-3236 (((-685 |#2|) |#2| |#4|) 38)) (-2414 (((-1259 |#2|) |#2| |#4|) 16)) (-2423 ((|#2| |#3| |#4|) 32)) (-1651 (((-685 |#2|) |#3| |#4| (-768) (-768)) 50)) (-2818 (((-685 |#2|) |#2| |#4| (-768)) 49)))
-(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2414 ((-1259 |#2|) |#2| |#4|)) (-15 -2423 (|#2| |#3| |#4|)) (-15 -1455 (|#2| |#2| |#4|)) (-15 -3236 ((-685 |#2|) |#2| |#4|)) (-15 -2818 ((-685 |#2|) |#2| |#4| (-768))) (-15 -2146 ((-685 |#2|) |#3| |#4|)) (-15 -1651 ((-685 |#2|) |#3| |#4| (-768) (-768)))) (-1094) (-897 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4411)))) (T -688))
-((-1651 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *7 (-897 *6)) (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4411)))))) (-2146 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-897 *5)) (-5 *2 (-685 *6)) (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))) (-2818 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *3 (-897 *6)) (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4411)))))) (-3236 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-685 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))) (-1455 (*1 *2 *2 *3) (-12 (-4 *4 (-1094)) (-4 *2 (-897 *4)) (-5 *1 (-688 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4411)))))) (-2423 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *2 (-897 *5)) (-5 *1 (-688 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))) (-2414 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-1259 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))))
-(-10 -7 (-15 -2414 ((-1259 |#2|) |#2| |#4|)) (-15 -2423 (|#2| |#3| |#4|)) (-15 -1455 (|#2| |#2| |#4|)) (-15 -3236 ((-685 |#2|) |#2| |#4|)) (-15 -2818 ((-685 |#2|) |#2| |#4| (-768))) (-15 -2146 ((-685 |#2|) |#3| |#4|)) (-15 -1651 ((-685 |#2|) |#3| |#4| (-768) (-768))))
-((-3470 (((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)) 20)) (-3946 ((|#1| (-685 |#2|)) 9)) (-4149 (((-685 |#1|) (-685 |#2|)) 18)))
-(((-689 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| (-685 |#2|))) (-15 -4149 ((-685 |#1|) (-685 |#2|))) (-15 -3470 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)))) (-556) (-989 |#1|)) (T -689))
-((-3470 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4))) (-5 *1 (-689 *4 *5)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-689 *2 *4)))))
-(-10 -7 (-15 -3946 (|#1| (-685 |#2|))) (-15 -4149 ((-685 |#1|) (-685 |#2|))) (-15 -3470 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3124 (((-685 (-695))) NIL) (((-685 (-695)) (-1259 $)) NIL)) (-3715 (((-695) $) NIL)) (-3904 (($ $) NIL (|has| (-695) (-1194)))) (-3752 (($ $) NIL (|has| (-695) (-1194)))) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-695) (-349)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-1368 (($ $) NIL (-4002 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-3981 (((-418 $) $) NIL (-4002 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-4019 (($ $) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194))))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-3385 (((-112) $ $) NIL (|has| (-695) (-307)))) (-3042 (((-768)) NIL (|has| (-695) (-368)))) (-3879 (($ $) NIL (|has| (-695) (-1194)))) (-3727 (($ $) NIL (|has| (-695) (-1194)))) (-3933 (($ $) NIL (|has| (-695) (-1194)))) (-3778 (($ $) NIL (|has| (-695) (-1194)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-695) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-1035 (-407 (-564)))))) (-2064 (((-564) $) NIL) (((-695) $) NIL) (((-407 (-564)) $) NIL (|has| (-695) (-1035 (-407 (-564)))))) (-2910 (($ (-1259 (-695))) NIL) (($ (-1259 (-695)) (-1259 $)) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-695) (-349)))) (-1387 (($ $ $) NIL (|has| (-695) (-307)))) (-1663 (((-685 (-695)) $) NIL) (((-685 (-695)) $ (-1259 $)) NIL)) (-2620 (((-685 (-695)) (-685 $)) NIL) (((-2 (|:| -1447 (-685 (-695))) (|:| |vec| (-1259 (-695)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-695) (-637 (-564)))) (((-685 (-564)) (-685 $)) NIL (|has| (-695) (-637 (-564))))) (-4367 (((-3 $ "failed") (-407 (-1166 (-695)))) NIL (|has| (-695) (-363))) (($ (-1166 (-695))) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-4032 (((-695) $) 29)) (-1978 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-545)))) (-2709 (((-112) $) NIL (|has| (-695) (-545)))) (-3424 (((-407 (-564)) $) NIL (|has| (-695) (-545)))) (-4224 (((-918)) NIL)) (-2542 (($) NIL (|has| (-695) (-368)))) (-1366 (($ $ $) NIL (|has| (-695) (-307)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| (-695) (-307)))) (-1990 (($) NIL (|has| (-695) (-349)))) (-3242 (((-112) $) NIL (|has| (-695) (-349)))) (-2184 (($ $) NIL (|has| (-695) (-349))) (($ $ (-768)) NIL (|has| (-695) (-349)))) (-3241 (((-112) $) NIL (-4002 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-2476 (((-2 (|:| |r| (-695)) (|:| |phi| (-695))) $) NIL (-12 (|has| (-695) (-1055)) (|has| (-695) (-1194))))) (-1539 (($) NIL (|has| (-695) (-1194)))) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-695) (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-695) (-883 (-564))))) (-2261 (((-830 (-918)) $) NIL (|has| (-695) (-349))) (((-918) $) NIL (|has| (-695) (-349)))) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194))))) (-1779 (((-695) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| (-695) (-349)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-2513 (((-1166 (-695)) $) NIL (|has| (-695) (-363)))) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2082 (($ (-1 (-695) (-695)) $) NIL)) (-2209 (((-918) $) NIL (|has| (-695) (-368)))) (-2186 (($ $) NIL (|has| (-695) (-1194)))) (-4358 (((-1166 (-695)) $) NIL)) (-2488 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| (-695) (-363)))) (-1611 (($) NIL (|has| (-695) (-349)) CONST)) (-1403 (($ (-918)) NIL (|has| (-695) (-368)))) (-3889 (($) NIL)) (-4045 (((-695) $) 31)) (-3802 (((-1114) $) NIL)) (-1502 (($) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-695) (-307)))) (-2527 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| (-695) (-349)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-4006 (((-418 $) $) NIL (-4002 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-695) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| (-695) (-307)))) (-1343 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-695)) NIL (|has| (-695) (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-2152 (($ $) NIL (|has| (-695) (-1194)))) (-2407 (($ $ (-1170) (-695)) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-1170)) (-641 (-695))) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-294 (-695)))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-294 (-695))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-695) (-695)) NIL (|has| (-695) (-309 (-695)))) (($ $ (-641 (-695)) (-641 (-695))) NIL (|has| (-695) (-309 (-695))))) (-3712 (((-768) $) NIL (|has| (-695) (-307)))) (-4382 (($ $ (-695)) NIL (|has| (-695) (-286 (-695) (-695))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| (-695) (-307)))) (-1938 (((-695)) NIL) (((-695) (-1259 $)) NIL)) (-1504 (((-3 (-768) "failed") $ $) NIL (|has| (-695) (-349))) (((-768) $) NIL (|has| (-695) (-349)))) (-3226 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-768)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-2836 (((-685 (-695)) (-1259 $) (-1 (-695) (-695))) NIL (|has| (-695) (-363)))) (-1916 (((-1166 (-695))) NIL)) (-3949 (($ $) NIL (|has| (-695) (-1194)))) (-3789 (($ $) NIL (|has| (-695) (-1194)))) (-3726 (($) NIL (|has| (-695) (-349)))) (-3918 (($ $) NIL (|has| (-695) (-1194)))) (-3765 (($ $) NIL (|has| (-695) (-1194)))) (-3891 (($ $) NIL (|has| (-695) (-1194)))) (-3739 (($ $) NIL (|has| (-695) (-1194)))) (-3072 (((-685 (-695)) (-1259 $)) NIL) (((-1259 (-695)) $) NIL) (((-685 (-695)) (-1259 $) (-1259 $)) NIL) (((-1259 (-695)) $ (-1259 $)) NIL)) (-2127 (((-536) $) NIL (|has| (-695) (-612 (-536)))) (((-169 (-225)) $) NIL (|has| (-695) (-1019))) (((-169 (-379)) $) NIL (|has| (-695) (-1019))) (((-889 (-379)) $) NIL (|has| (-695) (-612 (-889 (-379))))) (((-889 (-564)) $) NIL (|has| (-695) (-612 (-889 (-564))))) (($ (-1166 (-695))) NIL) (((-1166 (-695)) $) NIL) (($ (-1259 (-695))) NIL) (((-1259 (-695)) $) NIL)) (-2502 (($ $) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-4002 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-906))) (|has| (-695) (-349))))) (-2305 (($ (-695) (-695)) 12)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-695)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-564))) 19) (($ (-169 (-695))) 28) (($ (-169 (-697))) 25) (((-169 (-379)) $) 33) (($ (-407 (-564))) NIL (-4002 (|has| (-695) (-1035 (-407 (-564)))) (|has| (-695) (-363))))) (-2864 (($ $) NIL (|has| (-695) (-349))) (((-3 $ "failed") $) NIL (-4002 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-906))) (|has| (-695) (-145))))) (-3216 (((-1166 (-695)) $) NIL)) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $)) NIL)) (-3991 (($ $) NIL (|has| (-695) (-1194)))) (-3827 (($ $) NIL (|has| (-695) (-1194)))) (-1582 (((-112) $ $) NIL)) (-3963 (($ $) NIL (|has| (-695) (-1194)))) (-3801 (($ $) NIL (|has| (-695) (-1194)))) (-4020 (($ $) NIL (|has| (-695) (-1194)))) (-3854 (($ $) NIL (|has| (-695) (-1194)))) (-2377 (((-695) $) NIL (|has| (-695) (-1194)))) (-3586 (($ $) NIL (|has| (-695) (-1194)))) (-3867 (($ $) NIL (|has| (-695) (-1194)))) (-4005 (($ $) NIL (|has| (-695) (-1194)))) (-3840 (($ $) NIL (|has| (-695) (-1194)))) (-3977 (($ $) NIL (|has| (-695) (-1194)))) (-3814 (($ $) NIL (|has| (-695) (-1194)))) (-2016 (($ $) NIL (|has| (-695) (-1055)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-768)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL (|has| (-695) (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ $) NIL (|has| (-695) (-1194))) (($ $ (-407 (-564))) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194)))) (($ $ (-564)) NIL (|has| (-695) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-695) $) NIL) (($ $ (-695)) NIL) (($ (-407 (-564)) $) NIL (|has| (-695) (-363))) (($ $ (-407 (-564))) NIL (|has| (-695) (-363)))))
-(((-690) (-13 (-387) (-166 (-695)) (-10 -8 (-15 -1765 ($ (-169 (-379)))) (-15 -1765 ($ (-169 (-564)))) (-15 -1765 ($ (-169 (-695)))) (-15 -1765 ($ (-169 (-697)))) (-15 -1765 ((-169 (-379)) $))))) (T -690))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))))
-(-13 (-387) (-166 (-695)) (-10 -8 (-15 -1765 ($ (-169 (-379)))) (-15 -1765 ($ (-169 (-564)))) (-15 -1765 ($ (-169 (-695)))) (-15 -1765 ($ (-169 (-697)))) (-15 -1765 ((-169 (-379)) $))))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-4194 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3083 (($ $) 62)) (-3104 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2359 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4282 (((-641 (-2 (|:| -1327 |#1|) (|:| -3815 (-768)))) $) 61)) (-3784 (($) 49) (($ (-641 |#1|)) 48)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 50)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) 42)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-2193 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1532 (*1 *1 *2 *2) (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2787 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3714 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-3437 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-3437 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-4050 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3661 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3202 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3))))) (-4382 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3868 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2113 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1826 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1379 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3088 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1814 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1828 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1828 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1046)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1347 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) (-1841 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5)))) (-2990 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4414 "*"))) (-4 *2 (-1046)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4414 "*"))) (-4 *2 (-1046)))) (-3577 (*1 *1 *1) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4413) (-6 -4412) (-15 -2193 ((-112) $)) (-15 -1950 ((-112) $)) (-15 -2497 ((-112) $)) (-15 -2718 ((-112) $)) (-15 -1532 ($ (-768) (-768))) (-15 -3469 ($ (-641 (-641 |t#1|)))) (-15 -2787 ($ (-768) |t#1|)) (-15 -1634 ($ (-641 |t#1|))) (-15 -1634 ($ (-641 $))) (-15 -3714 ($ |t#3|)) (-15 -3437 ($ |t#2|)) (-15 -3437 ($ $)) (-15 -4050 ($ $)) (-15 -3661 ($ $ $)) (-15 -3202 ($ $ $)) (-15 -3549 ((-641 (-641 |t#1|)) $)) (-15 -4382 ($ $ (-641 (-564)) (-641 (-564)))) (-15 -3868 ($ $ (-641 (-564)) (-641 (-564)) $)) (-15 -2113 ($ $ (-564) (-564))) (-15 -1826 ($ $ (-564) (-564))) (-15 -1379 ($ $ (-564) (-564) (-564) (-564))) (-15 -3088 ($ $ (-564) (-564) $)) (-15 -1814 ($ $ $)) (-15 -1828 ($ $ $)) (-15 -1828 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-564) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-768))) (IF (|has| |t#1| (-556)) (-15 -1347 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1841 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -3781 ($ $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1595 ((-768) $)) (-15 -2099 ((-768) $)) (-15 -2397 ((-641 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4414 "*"))) (PROGN (-15 -2990 (|t#1| $)) (-15 -2125 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -3577 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-57 |#1| |#2| |#3|) . T) ((-1209) . T))
+((-3781 ((|#4| |#4|) 96 (|has| |#1| (-307)))) (-1595 (((-768) |#4|) 125 (|has| |#1| (-556)))) (-2099 (((-768) |#4|) 100 (|has| |#1| (-556)))) (-2397 (((-641 |#3|) |#4|) 107 (|has| |#1| (-556)))) (-2051 (((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|) 139 (|has| |#1| (-307)))) (-2125 ((|#1| |#4|) 56)) (-1809 (((-3 |#4| "failed") |#4|) 88 (|has| |#1| (-556)))) (-3577 (((-3 |#4| "failed") |#4|) 104 (|has| |#1| (-363)))) (-2296 ((|#4| |#4|) 92 (|has| |#1| (-556)))) (-2206 ((|#4| |#4| |#1| (-564) (-564)) 64)) (-1416 ((|#4| |#4| (-564) (-564)) 59)) (-2815 ((|#4| |#4| |#1| (-564) (-564)) 69)) (-2990 ((|#1| |#4|) 102)) (-2690 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 93 (|has| |#1| (-556)))))
+(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2990 (|#1| |#4|)) (-15 -2125 (|#1| |#4|)) (-15 -1416 (|#4| |#4| (-564) (-564))) (-15 -2206 (|#4| |#4| |#1| (-564) (-564))) (-15 -2815 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -1595 ((-768) |#4|)) (-15 -2099 ((-768) |#4|)) (-15 -2397 ((-641 |#3|) |#4|)) (-15 -2296 (|#4| |#4|)) (-15 -1809 ((-3 |#4| "failed") |#4|)) (-15 -2690 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3781 (|#4| |#4|)) (-15 -2051 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3577 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -684))
+((-3577 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2051 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5)))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2690 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1809 (*1 *2 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2397 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2099 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1595 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2815 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-2206 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-1416 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2)) (-4 *2 (-683 *4 *5 *6)))) (-2125 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-2990 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))))
+(-10 -7 (-15 -2990 (|#1| |#4|)) (-15 -2125 (|#1| |#4|)) (-15 -1416 (|#4| |#4| (-564) (-564))) (-15 -2206 (|#4| |#4| |#1| (-564) (-564))) (-15 -2815 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -1595 ((-768) |#4|)) (-15 -2099 ((-768) |#4|)) (-15 -2397 ((-641 |#3|) |#4|)) (-15 -2296 (|#4| |#4|)) (-15 -1809 ((-3 |#4| "failed") |#4|)) (-15 -2690 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3781 (|#4| |#4|)) (-15 -2051 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3577 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1532 (($ (-768) (-768)) 63)) (-3202 (($ $ $) NIL)) (-3437 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-2497 (((-112) $) NIL)) (-2113 (($ $ (-564) (-564)) 21)) (-1826 (($ $ (-564) (-564)) NIL)) (-1379 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-4050 (($ $) NIL)) (-2193 (((-112) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3088 (($ $ (-564) (-564) $) NIL)) (-3868 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-2310 (($ $ (-564) (-1259 |#1|)) NIL)) (-1571 (($ $ (-564) (-1259 |#1|)) NIL)) (-2787 (($ (-768) |#1|) 36)) (-3180 (($) NIL T CONST)) (-3781 (($ $) 45 (|has| |#1| (-307)))) (-3207 (((-1259 |#1|) $ (-564)) NIL)) (-1595 (((-768) $) 47 (|has| |#1| (-556)))) (-1998 ((|#1| $ (-564) (-564) |#1|) 68)) (-3593 ((|#1| $ (-564) (-564)) NIL)) (-4244 (((-641 |#1|) $) NIL)) (-2099 (((-768) $) 49 (|has| |#1| (-556)))) (-2397 (((-641 (-1259 |#1|)) $) 52 (|has| |#1| (-556)))) (-3947 (((-768) $) 31)) (-3564 (($ (-768) (-768) |#1|) 27)) (-3956 (((-768) $) 32)) (-2173 (((-112) $ (-768)) NIL)) (-2125 ((|#1| $) 43 (|has| |#1| (-6 (-4414 "*"))))) (-2285 (((-564) $) 10)) (-1984 (((-564) $) 11)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2083 (((-564) $) 14)) (-2437 (((-564) $) 64)) (-3469 (($ (-641 (-641 |#1|))) NIL)) (-1988 (($ (-1 |#1| |#1|) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3549 (((-641 (-641 |#1|)) $) 75)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3577 (((-3 $ "failed") $) 59 (|has| |#1| (-363)))) (-3661 (($ $ $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3538 (($ $ |#1|) NIL)) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-1634 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL) (($ (-1259 |#1|)) 69)) (-1950 (((-112) $) NIL)) (-2990 ((|#1| $) 41 (|has| |#1| (-6 (-4414 "*"))))) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-2374 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-2811 (((-1259 |#1|) $ (-564)) NIL)) (-3714 (($ (-1259 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2718 (((-112) $) NIL)) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-768)) 37) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 23) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) NIL) (((-1259 |#1|) (-1259 |#1|) $) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-685 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -1634 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3577 ((-3 $ "failed") $)) |%noBranch|))) (-1046)) (T -685))
+((-3577 (*1 *1 *1) (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1046)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-685 *3)))))
+(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -1634 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3577 ((-3 $ "failed") $)) |%noBranch|)))
+((-3828 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 37)) (-4260 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 34)) (-3548 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768)) 43)) (-3986 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 27)) (-2050 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 31) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 29)) (-1941 (((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|)) 33)) (-3896 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 25)) (** (((-685 |#1|) (-685 |#1|) (-768)) 46)))
+(((-686 |#1|) (-10 -7 (-15 -3896 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3986 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2050 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2050 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1941 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -4260 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -3828 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3548 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768))) (-15 ** ((-685 |#1|) (-685 |#1|) (-768)))) (-1046)) (T -686))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-686 *4)))) (-3548 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-686 *4)))) (-3828 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-4260 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1941 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-2050 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-2050 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-3986 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-3896 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
+(-10 -7 (-15 -3896 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3986 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2050 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2050 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1941 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -4260 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -3828 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3548 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768))) (-15 ** ((-685 |#1|) (-685 |#1|) (-768))))
+((-2224 (((-3 |#1| "failed") $) 17)) (-2376 ((|#1| $) NIL)) (-1553 (($) 7 T CONST)) (-2585 (($ |#1|) 8)) (-3714 (($ |#1|) 15) (((-859) $) 22)) (-4301 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -1553)) 11)) (-3921 ((|#1| $) 14)))
+(((-687 |#1|) (-13 (-1254) (-1035 |#1|) (-611 (-859)) (-10 -8 (-15 -2585 ($ |#1|)) (-15 -4301 ((-112) $ (|[\|\|]| |#1|))) (-15 -4301 ((-112) $ (|[\|\|]| -1553))) (-15 -3921 (|#1| $)) (-15 -1553 ($) -2222))) (-611 (-859))) (T -687))
+((-2585 (*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-859))) (-5 *2 (-112)) (-5 *1 (-687 *4)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1553)) (-5 *2 (-112)) (-5 *1 (-687 *4)) (-4 *4 (-611 (-859))))) (-3921 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) (-1553 (*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))))
+(-13 (-1254) (-1035 |#1|) (-611 (-859)) (-10 -8 (-15 -2585 ($ |#1|)) (-15 -4301 ((-112) $ (|[\|\|]| |#1|))) (-15 -4301 ((-112) $ (|[\|\|]| -1553))) (-15 -3921 (|#1| $)) (-15 -1553 ($) -2222)))
+((-2159 ((|#2| |#2| |#4|) 33)) (-1576 (((-685 |#2|) |#3| |#4|) 39)) (-1871 (((-685 |#2|) |#2| |#4|) 38)) (-2286 (((-1259 |#2|) |#2| |#4|) 16)) (-2389 ((|#2| |#3| |#4|) 32)) (-3352 (((-685 |#2|) |#3| |#4| (-768) (-768)) 50)) (-2059 (((-685 |#2|) |#2| |#4| (-768)) 49)))
+(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2286 ((-1259 |#2|) |#2| |#4|)) (-15 -2389 (|#2| |#3| |#4|)) (-15 -2159 (|#2| |#2| |#4|)) (-15 -1871 ((-685 |#2|) |#2| |#4|)) (-15 -2059 ((-685 |#2|) |#2| |#4| (-768))) (-15 -1576 ((-685 |#2|) |#3| |#4|)) (-15 -3352 ((-685 |#2|) |#3| |#4| (-768) (-768)))) (-1094) (-897 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4412)))) (T -688))
+((-3352 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *7 (-897 *6)) (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4412)))))) (-1576 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-897 *5)) (-5 *2 (-685 *6)) (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))))) (-2059 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *3 (-897 *6)) (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4412)))))) (-1871 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-685 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))))) (-2159 (*1 *2 *2 *3) (-12 (-4 *4 (-1094)) (-4 *2 (-897 *4)) (-5 *1 (-688 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4412)))))) (-2389 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *2 (-897 *5)) (-5 *1 (-688 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))))) (-2286 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-1259 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))))))
+(-10 -7 (-15 -2286 ((-1259 |#2|) |#2| |#4|)) (-15 -2389 (|#2| |#3| |#4|)) (-15 -2159 (|#2| |#2| |#4|)) (-15 -1871 ((-685 |#2|) |#2| |#4|)) (-15 -2059 ((-685 |#2|) |#2| |#4| (-768))) (-15 -1576 ((-685 |#2|) |#3| |#4|)) (-15 -3352 ((-685 |#2|) |#3| |#4| (-768) (-768))))
+((-2328 (((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)) 20)) (-4376 ((|#1| (-685 |#2|)) 9)) (-2606 (((-685 |#1|) (-685 |#2|)) 18)))
+(((-689 |#1| |#2|) (-10 -7 (-15 -4376 (|#1| (-685 |#2|))) (-15 -2606 ((-685 |#1|) (-685 |#2|))) (-15 -2328 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)))) (-556) (-989 |#1|)) (T -689))
+((-2328 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4))) (-5 *1 (-689 *4 *5)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5)))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-689 *2 *4)))))
+(-10 -7 (-15 -4376 (|#1| (-685 |#2|))) (-15 -2606 ((-685 |#1|) (-685 |#2|))) (-15 -2328 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-3150 (((-685 (-695))) NIL) (((-685 (-695)) (-1259 $)) NIL)) (-3767 (((-695) $) NIL)) (-2657 (($ $) NIL (|has| (-695) (-1194)))) (-2516 (($ $) NIL (|has| (-695) (-1194)))) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-695) (-349)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-1328 (($ $) NIL (-4012 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-1592 (((-418 $) $) NIL (-4012 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-4152 (($ $) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194))))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-3907 (((-112) $ $) NIL (|has| (-695) (-307)))) (-2018 (((-768)) NIL (|has| (-695) (-368)))) (-2635 (($ $) NIL (|has| (-695) (-1194)))) (-2491 (($ $) NIL (|has| (-695) (-1194)))) (-2679 (($ $) NIL (|has| (-695) (-1194)))) (-2542 (($ $) NIL (|has| (-695) (-1194)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-695) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-1035 (-407 (-564)))))) (-2376 (((-564) $) NIL) (((-695) $) NIL) (((-407 (-564)) $) NIL (|has| (-695) (-1035 (-407 (-564)))))) (-3566 (($ (-1259 (-695))) NIL) (($ (-1259 (-695)) (-1259 $)) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-695) (-349)))) (-1399 (($ $ $) NIL (|has| (-695) (-307)))) (-3439 (((-685 (-695)) $) NIL) (((-685 (-695)) $ (-1259 $)) NIL)) (-3613 (((-685 (-695)) (-685 $)) NIL) (((-2 (|:| -1920 (-685 (-695))) (|:| |vec| (-1259 (-695)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-695) (-637 (-564)))) (((-685 (-564)) (-685 $)) NIL (|has| (-695) (-637 (-564))))) (-1728 (((-3 $ "failed") (-407 (-1166 (-695)))) NIL (|has| (-695) (-363))) (($ (-1166 (-695))) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-4164 (((-695) $) 29)) (-3502 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-545)))) (-3309 (((-112) $) NIL (|has| (-695) (-545)))) (-3074 (((-407 (-564)) $) NIL (|has| (-695) (-545)))) (-1595 (((-918)) NIL)) (-2939 (($) NIL (|has| (-695) (-368)))) (-1371 (($ $ $) NIL (|has| (-695) (-307)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| (-695) (-307)))) (-3648 (($) NIL (|has| (-695) (-349)))) (-1937 (((-112) $) NIL (|has| (-695) (-349)))) (-1957 (($ $) NIL (|has| (-695) (-349))) (($ $ (-768)) NIL (|has| (-695) (-349)))) (-1926 (((-112) $) NIL (-4012 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-1685 (((-2 (|:| |r| (-695)) (|:| |phi| (-695))) $) NIL (-12 (|has| (-695) (-1055)) (|has| (-695) (-1194))))) (-1688 (($) NIL (|has| (-695) (-1194)))) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-695) (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-695) (-883 (-564))))) (-1454 (((-830 (-918)) $) NIL (|has| (-695) (-349))) (((-918) $) NIL (|has| (-695) (-349)))) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194))))) (-2217 (((-695) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| (-695) (-349)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-2041 (((-1166 (-695)) $) NIL (|has| (-695) (-363)))) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2313 (($ (-1 (-695) (-695)) $) NIL)) (-4031 (((-918) $) NIL (|has| (-695) (-368)))) (-2305 (($ $) NIL (|has| (-695) (-1194)))) (-1714 (((-1166 (-695)) $) NIL)) (-2688 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| (-695) (-363)))) (-3304 (($) NIL (|has| (-695) (-349)) CONST)) (-3338 (($ (-918)) NIL (|has| (-695) (-368)))) (-2016 (($) NIL)) (-4175 (((-695) $) 31)) (-3844 (((-1114) $) NIL)) (-1729 (($) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-695) (-307)))) (-2727 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| (-695) (-349)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-4139 (((-418 $) $) NIL (-4012 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-695) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| (-695) (-307)))) (-1347 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-695)) NIL (|has| (-695) (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-4130 (($ $) NIL (|has| (-695) (-1194)))) (-2582 (($ $ (-1170) (-695)) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-1170)) (-641 (-695))) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-294 (-695)))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-294 (-695))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-695) (-695)) NIL (|has| (-695) (-309 (-695)))) (($ $ (-641 (-695)) (-641 (-695))) NIL (|has| (-695) (-309 (-695))))) (-3966 (((-768) $) NIL (|has| (-695) (-307)))) (-4382 (($ $ (-695)) NIL (|has| (-695) (-286 (-695) (-695))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| (-695) (-307)))) (-4378 (((-695)) NIL) (((-695) (-1259 $)) NIL)) (-2671 (((-3 (-768) "failed") $ $) NIL (|has| (-695) (-349))) (((-768) $) NIL (|has| (-695) (-349)))) (-2203 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-768)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-2227 (((-685 (-695)) (-1259 $) (-1 (-695) (-695))) NIL (|has| (-695) (-363)))) (-4180 (((-1166 (-695))) NIL)) (-2692 (($ $) NIL (|has| (-695) (-1194)))) (-2557 (($ $) NIL (|has| (-695) (-1194)))) (-2927 (($) NIL (|has| (-695) (-349)))) (-2669 (($ $) NIL (|has| (-695) (-1194)))) (-2529 (($ $) NIL (|has| (-695) (-1194)))) (-2647 (($ $) NIL (|has| (-695) (-1194)))) (-2502 (($ $) NIL (|has| (-695) (-1194)))) (-3867 (((-685 (-695)) (-1259 $)) NIL) (((-1259 (-695)) $) NIL) (((-685 (-695)) (-1259 $) (-1259 $)) NIL) (((-1259 (-695)) $ (-1259 $)) NIL)) (-2374 (((-536) $) NIL (|has| (-695) (-612 (-536)))) (((-169 (-225)) $) NIL (|has| (-695) (-1019))) (((-169 (-379)) $) NIL (|has| (-695) (-1019))) (((-889 (-379)) $) NIL (|has| (-695) (-612 (-889 (-379))))) (((-889 (-564)) $) NIL (|has| (-695) (-612 (-889 (-564))))) (($ (-1166 (-695))) NIL) (((-1166 (-695)) $) NIL) (($ (-1259 (-695))) NIL) (((-1259 (-695)) $) NIL)) (-1953 (($ $) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-4012 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-906))) (|has| (-695) (-349))))) (-2453 (($ (-695) (-695)) 12)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-695)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-564))) 19) (($ (-169 (-695))) 28) (($ (-169 (-697))) 25) (((-169 (-379)) $) 33) (($ (-407 (-564))) NIL (-4012 (|has| (-695) (-1035 (-407 (-564)))) (|has| (-695) (-363))))) (-4363 (($ $) NIL (|has| (-695) (-349))) (((-3 $ "failed") $) NIL (-4012 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-906))) (|has| (-695) (-145))))) (-1650 (((-1166 (-695)) $) NIL)) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $)) NIL)) (-2728 (($ $) NIL (|has| (-695) (-1194)))) (-2595 (($ $) NIL (|has| (-695) (-1194)))) (-3979 (((-112) $ $) NIL)) (-2704 (($ $) NIL (|has| (-695) (-1194)))) (-2566 (($ $) NIL (|has| (-695) (-1194)))) (-2751 (($ $) NIL (|has| (-695) (-1194)))) (-2615 (($ $) NIL (|has| (-695) (-1194)))) (-3130 (((-695) $) NIL (|has| (-695) (-1194)))) (-2053 (($ $) NIL (|has| (-695) (-1194)))) (-2626 (($ $) NIL (|has| (-695) (-1194)))) (-2740 (($ $) NIL (|has| (-695) (-1194)))) (-2605 (($ $) NIL (|has| (-695) (-1194)))) (-2716 (($ $) NIL (|has| (-695) (-1194)))) (-2577 (($ $) NIL (|has| (-695) (-1194)))) (-3920 (($ $) NIL (|has| (-695) (-1055)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-768)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL (|has| (-695) (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ $) NIL (|has| (-695) (-1194))) (($ $ (-407 (-564))) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194)))) (($ $ (-564)) NIL (|has| (-695) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-695) $) NIL) (($ $ (-695)) NIL) (($ (-407 (-564)) $) NIL (|has| (-695) (-363))) (($ $ (-407 (-564))) NIL (|has| (-695) (-363)))))
+(((-690) (-13 (-387) (-166 (-695)) (-10 -8 (-15 -3714 ($ (-169 (-379)))) (-15 -3714 ($ (-169 (-564)))) (-15 -3714 ($ (-169 (-695)))) (-15 -3714 ($ (-169 (-697)))) (-15 -3714 ((-169 (-379)) $))))) (T -690))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))))
+(-13 (-387) (-166 (-695)) (-10 -8 (-15 -3714 ($ (-169 (-379)))) (-15 -3714 ($ (-169 (-564)))) (-15 -3714 ($ (-169 (-695)))) (-15 -3714 ($ (-169 (-697)))) (-15 -3714 ((-169 (-379)) $))))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-1773 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2822 (($ $) 62)) (-2084 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ |#1| $) 47 (|has| $ (-6 -4412))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4412)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4412)))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-1327 (((-641 (-2 (|:| -2575 |#1|) (|:| -3855 (-768)))) $) 61)) (-3372 (($) 49) (($ (-641 |#1|)) 48)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 50)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) 42)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-691 |#1|) (-140) (-1094)) (T -691))
-((-2098 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-3083 (*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-4282 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094)) (-5 *2 (-641 (-2 (|:| -1327 *3) (|:| -3815 (-768))))))))
-(-13 (-235 |t#1|) (-10 -8 (-15 -2098 ($ |t#1| $ (-768))) (-15 -3083 ($ $)) (-15 -4282 ((-641 (-2 (|:| -1327 |t#1|) (|:| -3815 (-768)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-2344 (((-641 |#1|) (-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))) (-564)) 65)) (-2732 ((|#1| |#1| (-564)) 61)) (-2527 ((|#1| |#1| |#1| (-564)) 45)) (-4006 (((-641 |#1|) |#1| (-564)) 48)) (-3317 ((|#1| |#1| (-564) |#1| (-564)) 39)) (-3711 (((-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))) |#1| (-564)) 60)))
-(((-692 |#1|) (-10 -7 (-15 -2527 (|#1| |#1| |#1| (-564))) (-15 -2732 (|#1| |#1| (-564))) (-15 -4006 ((-641 |#1|) |#1| (-564))) (-15 -3711 ((-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))) |#1| (-564))) (-15 -2344 ((-641 |#1|) (-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))) (-564))) (-15 -3317 (|#1| |#1| (-564) |#1| (-564)))) (-1235 (-564))) (T -692))
-((-3317 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| -4006 *5) (|:| -3344 (-564))))) (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5)) (-5 *1 (-692 *5)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -4006 *3) (|:| -3344 *4)))) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-2732 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-2527 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))))
-(-10 -7 (-15 -2527 (|#1| |#1| |#1| (-564))) (-15 -2732 (|#1| |#1| (-564))) (-15 -4006 ((-641 |#1|) |#1| (-564))) (-15 -3711 ((-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))) |#1| (-564))) (-15 -2344 ((-641 |#1|) (-641 (-2 (|:| -4006 |#1|) (|:| -3344 (-564)))) (-564))) (-15 -3317 (|#1| |#1| (-564) |#1| (-564))))
-((-3884 (((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2131 (((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 56) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 58) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 60)) (-4141 (((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263))) NIL)) (-4050 (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 61)))
-(((-693) (-10 -7 (-15 -2131 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2131 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2131 ((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4050 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4141 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3884 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -693))
-((-3884 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *1 (-693)))) (-4141 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-4050 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-2131 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693)))) (-2131 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-2131 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))))
-(-10 -7 (-15 -2131 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2131 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2131 ((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4050 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4141 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3884 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-4006 (((-418 (-1166 |#4|)) (-1166 |#4|)) 89) (((-418 |#4|) |#4|) 269)))
-(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4006 ((-418 |#4|) |#4|)) (-15 -4006 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-847) (-790) (-349) (-946 |#3| |#2| |#1|)) (T -694))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
-(-10 -7 (-15 -4006 ((-418 |#4|) |#4|)) (-15 -4006 ((-418 (-1166 |#4|)) (-1166 |#4|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 99)) (-4328 (((-564) $) 34)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3742 (($ $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-4019 (($ $) NIL)) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL)) (-3760 (($) NIL T CONST)) (-3039 (($ $) NIL)) (-2013 (((-3 (-564) "failed") $) 88) (((-3 (-407 (-564)) "failed") $) 28) (((-3 (-379) "failed") $) 85)) (-2064 (((-564) $) 90) (((-407 (-564)) $) 82) (((-379) $) 83)) (-1387 (($ $ $) 111)) (-1926 (((-3 $ "failed") $) 102)) (-1366 (($ $ $) 110)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-2269 (((-918)) 92) (((-918) (-918)) 91)) (-1751 (((-112) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-2261 (((-564) $) NIL)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL)) (-1779 (($ $) NIL)) (-2506 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4049 (((-564) (-564)) 96) (((-564)) 97)) (-3571 (($ $ $) NIL) (($) NIL (-12 (-4254 (|has| $ (-6 -4394))) (-4254 (|has| $ (-6 -4402)))))) (-1780 (((-564) (-564)) 94) (((-564)) 95)) (-1547 (($ $ $) NIL) (($) NIL (-12 (-4254 (|has| $ (-6 -4394))) (-4254 (|has| $ (-6 -4402)))))) (-2137 (((-564) $) 17)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 106)) (-3913 (((-918) (-564)) NIL (|has| $ (-6 -4402)))) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL)) (-2677 (($ $) NIL)) (-2139 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-918)) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) 107)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3747 (((-564) $) 24)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 109)) (-1824 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-3807 (((-918) (-564)) NIL (|has| $ (-6 -4402)))) (-2127 (((-379) $) NIL) (((-225) $) NIL) (((-889 (-379)) $) NIL)) (-1765 (((-859) $) 67) (($ (-564)) 78) (($ $) NIL) (($ (-407 (-564))) 81) (($ (-564)) 78) (($ (-407 (-564))) 81) (($ (-379)) 75) (((-379) $) 65) (($ (-697)) 70)) (-1965 (((-768)) 121 T CONST)) (-2827 (($ (-564) (-564) (-918)) 58)) (-2991 (($ $) NIL)) (-2941 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-2743 (((-918)) 45) (((-918) (-918)) 93)) (-1582 (((-112) $ $) NIL)) (-2016 (($ $) NIL)) (-4317 (($) 37 T CONST)) (-4327 (($) 18 T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 98)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 120)) (-1793 (($ $ $) 80)) (-1783 (($ $) 117) (($ $ $) 118)) (-1771 (($ $ $) 116)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 105)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 112) (($ $ $) 103) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-695) (-13 (-404) (-387) (-363) (-1035 (-379)) (-1035 (-407 (-564))) (-147) (-10 -8 (-15 -2269 ((-918) (-918))) (-15 -2269 ((-918))) (-15 -2743 ((-918) (-918))) (-15 -1780 ((-564) (-564))) (-15 -1780 ((-564))) (-15 -4049 ((-564) (-564))) (-15 -4049 ((-564))) (-15 -1765 ((-379) $)) (-15 -1765 ($ (-697))) (-15 -2137 ((-564) $)) (-15 -3747 ((-564) $)) (-15 -2827 ($ (-564) (-564) (-918)))))) (T -695))
-((-3747 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2269 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-2743 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-1780 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-1780 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-4049 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695)))) (-2827 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-5 *1 (-695)))))
-(-13 (-404) (-387) (-363) (-1035 (-379)) (-1035 (-407 (-564))) (-147) (-10 -8 (-15 -2269 ((-918) (-918))) (-15 -2269 ((-918))) (-15 -2743 ((-918) (-918))) (-15 -1780 ((-564) (-564))) (-15 -1780 ((-564))) (-15 -4049 ((-564) (-564))) (-15 -4049 ((-564))) (-15 -1765 ((-379) $)) (-15 -1765 ($ (-697))) (-15 -2137 ((-564) $)) (-15 -3747 ((-564) $)) (-15 -2827 ($ (-564) (-564) (-918)))))
-((-2275 (((-685 |#1|) (-685 |#1|) |#1| |#1|) 87)) (-1364 (((-685 |#1|) (-685 |#1|) |#1|) 67)) (-3612 (((-685 |#1|) (-685 |#1|) |#1|) 88)) (-4094 (((-685 |#1|) (-685 |#1|)) 68)) (-1886 (((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|) 86)))
-(((-696 |#1|) (-10 -7 (-15 -4094 ((-685 |#1|) (-685 |#1|))) (-15 -1364 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -3612 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2275 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -1886 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|))) (-307)) (T -696))
-((-1886 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-696 *3)) (-4 *3 (-307)))) (-2275 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-3612 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-1364 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
-(-10 -7 (-15 -4094 ((-685 |#1|) (-685 |#1|))) (-15 -1364 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -3612 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2275 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -1886 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3823 (($ $ $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $ $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL)) (-2980 (($ $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) 31)) (-2064 (((-564) $) 29)) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1978 (((-3 (-407 (-564)) "failed") $) NIL)) (-2709 (((-112) $) NIL)) (-3424 (((-407 (-564)) $) NIL)) (-2542 (($ $) NIL) (($) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-4043 (($ $ $ $) NIL)) (-4071 (($ $ $) NIL)) (-1751 (((-112) $) NIL)) (-2314 (($ $ $) NIL)) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2419 (((-112) $) NIL)) (-1629 (((-112) $) NIL)) (-3374 (((-3 $ "failed") $) NIL)) (-2506 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2676 (($ $ $ $) NIL)) (-3571 (($ $ $) NIL)) (-4316 (((-918) (-918)) 10) (((-918)) 9)) (-1547 (($ $ $) NIL)) (-2600 (($ $) NIL)) (-2564 (($ $) NIL)) (-2488 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-4233 (($ $ $) NIL)) (-1611 (($) NIL T CONST)) (-2311 (($ $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1613 (($ $) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1518 (((-112) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) NIL) (($ $ (-768)) NIL)) (-3312 (($ $) NIL)) (-1899 (($ $) NIL)) (-2127 (((-225) $) NIL) (((-379) $) NIL) (((-889 (-564)) $) NIL) (((-536) $) NIL) (((-564) $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) 28) (($ $) NIL) (($ (-564)) 28) (((-316 $) (-316 (-564))) 18)) (-1965 (((-768)) NIL T CONST)) (-2775 (((-112) $ $) NIL)) (-1939 (($ $ $) NIL)) (-2743 (($) NIL)) (-1582 (((-112) $ $) NIL)) (-1903 (($ $ $ $) NIL)) (-2016 (($ $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $) NIL) (($ $ (-768)) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
-(((-697) (-13 (-387) (-545) (-10 -8 (-15 -4316 ((-918) (-918))) (-15 -4316 ((-918))) (-15 -1765 ((-316 $) (-316 (-564))))))) (T -697))
-((-4316 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) (-4316 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697)))))
-(-13 (-387) (-545) (-10 -8 (-15 -4316 ((-918) (-918))) (-15 -4316 ((-918))) (-15 -1765 ((-316 $) (-316 (-564))))))
-((-3036 (((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)) 19)) (-1696 (((-1 |#4| |#2| |#3|) (-1170)) 12)))
-(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1696 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -3036 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)))) (-612 (-536)) (-1209) (-1209) (-1209)) (T -698))
-((-3036 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209)))))
-(-10 -7 (-15 -1696 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -3036 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170))))
-((-1754 (((-112) $ $) NIL)) (-1436 (((-1264) $ (-768)) 14)) (-1356 (((-768) $) 12)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 18) (($ |#1|) 24) ((|#1| $) 15)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 28)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 27)))
+((-2373 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-2822 (*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-1327 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094)) (-5 *2 (-641 (-2 (|:| -2575 *3) (|:| -3855 (-768))))))))
+(-13 (-235 |t#1|) (-10 -8 (-15 -2373 ($ |t#1| $ (-768))) (-15 -2822 ($ $)) (-15 -1327 ((-641 (-2 (|:| -2575 |t#1|) (|:| -3855 (-768)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-2915 (((-641 |#1|) (-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))) (-564)) 65)) (-2407 ((|#1| |#1| (-564)) 61)) (-2727 ((|#1| |#1| |#1| (-564)) 45)) (-4139 (((-641 |#1|) |#1| (-564)) 48)) (-1397 ((|#1| |#1| (-564) |#1| (-564)) 39)) (-3955 (((-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))) |#1| (-564)) 60)))
+(((-692 |#1|) (-10 -7 (-15 -2727 (|#1| |#1| |#1| (-564))) (-15 -2407 (|#1| |#1| (-564))) (-15 -4139 ((-641 |#1|) |#1| (-564))) (-15 -3955 ((-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))) |#1| (-564))) (-15 -2915 ((-641 |#1|) (-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))) (-564))) (-15 -1397 (|#1| |#1| (-564) |#1| (-564)))) (-1235 (-564))) (T -692))
+((-1397 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| -4139 *5) (|:| -3475 (-564))))) (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5)) (-5 *1 (-692 *5)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -4139 *3) (|:| -3475 *4)))) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-2407 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-2727 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))))
+(-10 -7 (-15 -2727 (|#1| |#1| |#1| (-564))) (-15 -2407 (|#1| |#1| (-564))) (-15 -4139 ((-641 |#1|) |#1| (-564))) (-15 -3955 ((-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))) |#1| (-564))) (-15 -2915 ((-641 |#1|) (-641 (-2 (|:| -4139 |#1|) (|:| -3475 (-564)))) (-564))) (-15 -1397 (|#1| |#1| (-564) |#1| (-564))))
+((-1959 (((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2720 (((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 56) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 58) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 60)) (-2531 (((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263))) NIL)) (-4024 (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 61)))
+(((-693) (-10 -7 (-15 -2720 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2720 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2720 ((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4024 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2531 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -1959 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -693))
+((-1959 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *1 (-693)))) (-2531 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-4024 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-2720 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693)))) (-2720 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-2720 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))))
+(-10 -7 (-15 -2720 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2720 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2720 ((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -4024 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -2531 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -1959 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-4139 (((-418 (-1166 |#4|)) (-1166 |#4|)) 89) (((-418 |#4|) |#4|) 269)))
+(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-418 |#4|) |#4|)) (-15 -4139 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-847) (-790) (-349) (-946 |#3| |#2| |#1|)) (T -694))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
+(-10 -7 (-15 -4139 ((-418 |#4|) |#4|)) (-15 -4139 ((-418 (-1166 |#4|)) (-1166 |#4|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 99)) (-3494 (((-564) $) 34)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-3043 (($ $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-4152 (($ $) NIL)) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL)) (-3180 (($) NIL T CONST)) (-3513 (($ $) NIL)) (-2224 (((-3 (-564) "failed") $) 88) (((-3 (-407 (-564)) "failed") $) 28) (((-3 (-379) "failed") $) 85)) (-2376 (((-564) $) 90) (((-407 (-564)) $) 82) (((-379) $) 83)) (-1399 (($ $ $) 111)) (-4272 (((-3 $ "failed") $) 102)) (-1371 (($ $ $) 110)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3173 (((-918)) 92) (((-918) (-918)) 91)) (-3137 (((-112) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-1454 (((-564) $) NIL)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL)) (-2217 (($ $) NIL)) (-2001 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4013 (((-564) (-564)) 96) (((-564)) 97)) (-3428 (($ $ $) NIL) (($) NIL (-12 (-4253 (|has| $ (-6 -4395))) (-4253 (|has| $ (-6 -4403)))))) (-2230 (((-564) (-564)) 94) (((-564)) 95)) (-3413 (($ $ $) NIL) (($) NIL (-12 (-4253 (|has| $ (-6 -4395))) (-4253 (|has| $ (-6 -4403)))))) (-2371 (((-564) $) 17)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 106)) (-2250 (((-918) (-564)) NIL (|has| $ (-6 -4403)))) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL)) (-3034 (($ $) NIL)) (-2244 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-918)) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) 107)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3078 (((-564) $) 24)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 109)) (-2678 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4403)))) (-2474 (((-918) (-564)) NIL (|has| $ (-6 -4403)))) (-2374 (((-379) $) NIL) (((-225) $) NIL) (((-889 (-379)) $) NIL)) (-3714 (((-859) $) 67) (($ (-564)) 78) (($ $) NIL) (($ (-407 (-564))) 81) (($ (-564)) 78) (($ (-407 (-564))) 81) (($ (-379)) 75) (((-379) $) 65) (($ (-697)) 70)) (-3379 (((-768)) 121 T CONST)) (-2144 (($ (-564) (-564) (-918)) 58)) (-4296 (($ $) NIL)) (-3929 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4403)))) (-3270 (((-918)) 45) (((-918) (-918)) 93)) (-3979 (((-112) $ $) NIL)) (-3920 (($ $) NIL)) (-4312 (($) 37 T CONST)) (-4323 (($) 18 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 98)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 120)) (-1841 (($ $ $) 80)) (-1828 (($ $) 117) (($ $ $) 118)) (-1814 (($ $ $) 116)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 105)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 112) (($ $ $) 103) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-695) (-13 (-404) (-387) (-363) (-1035 (-379)) (-1035 (-407 (-564))) (-147) (-10 -8 (-15 -3173 ((-918) (-918))) (-15 -3173 ((-918))) (-15 -3270 ((-918) (-918))) (-15 -2230 ((-564) (-564))) (-15 -2230 ((-564))) (-15 -4013 ((-564) (-564))) (-15 -4013 ((-564))) (-15 -3714 ((-379) $)) (-15 -3714 ($ (-697))) (-15 -2371 ((-564) $)) (-15 -3078 ((-564) $)) (-15 -2144 ($ (-564) (-564) (-918)))))) (T -695))
+((-3078 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-3173 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-2230 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2230 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-4013 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695)))) (-2144 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-5 *1 (-695)))))
+(-13 (-404) (-387) (-363) (-1035 (-379)) (-1035 (-407 (-564))) (-147) (-10 -8 (-15 -3173 ((-918) (-918))) (-15 -3173 ((-918))) (-15 -3270 ((-918) (-918))) (-15 -2230 ((-564) (-564))) (-15 -2230 ((-564))) (-15 -4013 ((-564) (-564))) (-15 -4013 ((-564))) (-15 -3714 ((-379) $)) (-15 -3714 ($ (-697))) (-15 -2371 ((-564) $)) (-15 -3078 ((-564) $)) (-15 -2144 ($ (-564) (-564) (-918)))))
+((-3384 (((-685 |#1|) (-685 |#1|) |#1| |#1|) 87)) (-3781 (((-685 |#1|) (-685 |#1|) |#1|) 67)) (-4261 (((-685 |#1|) (-685 |#1|) |#1|) 88)) (-3212 (((-685 |#1|) (-685 |#1|)) 68)) (-2051 (((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|) 86)))
+(((-696 |#1|) (-10 -7 (-15 -3212 ((-685 |#1|) (-685 |#1|))) (-15 -3781 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -4261 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -3384 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -2051 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|))) (-307)) (T -696))
+((-2051 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-696 *3)) (-4 *3 (-307)))) (-3384 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-4261 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-3781 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-3212 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
+(-10 -7 (-15 -3212 ((-685 |#1|) (-685 |#1|))) (-15 -3781 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -4261 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -3384 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -2051 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-2642 (($ $ $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3944 (($ $ $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL)) (-2490 (($ $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) 31)) (-2376 (((-564) $) 29)) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-3502 (((-3 (-407 (-564)) "failed") $) NIL)) (-3309 (((-112) $) NIL)) (-3074 (((-407 (-564)) $) NIL)) (-2939 (($ $) NIL) (($) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3973 (($ $ $ $) NIL)) (-3039 (($ $ $) NIL)) (-3137 (((-112) $) NIL)) (-3742 (($ $ $) NIL)) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2340 (((-112) $) NIL)) (-1329 (((-112) $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2001 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3026 (($ $ $ $) NIL)) (-3428 (($ $ $) NIL)) (-1606 (((-918) (-918)) 10) (((-918)) 9)) (-3413 (($ $ $) NIL)) (-1568 (($ $) NIL)) (-3451 (($ $) NIL)) (-2688 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-2148 (($ $ $) NIL)) (-3304 (($) NIL T CONST)) (-4324 (($ $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4265 (($ $) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1542 (((-112) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) NIL) (($ $ (-768)) NIL)) (-2021 (($ $) NIL)) (-3890 (($ $) NIL)) (-2374 (((-225) $) NIL) (((-379) $) NIL) (((-889 (-564)) $) NIL) (((-536) $) NIL) (((-564) $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) 28) (($ $) NIL) (($ (-564)) 28) (((-316 $) (-316 (-564))) 18)) (-3379 (((-768)) NIL T CONST)) (-2833 (((-112) $ $) NIL)) (-4389 (($ $ $) NIL)) (-3270 (($) NIL)) (-3979 (((-112) $ $) NIL)) (-4037 (($ $ $ $) NIL)) (-3920 (($ $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $) NIL) (($ $ (-768)) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
+(((-697) (-13 (-387) (-545) (-10 -8 (-15 -1606 ((-918) (-918))) (-15 -1606 ((-918))) (-15 -3714 ((-316 $) (-316 (-564))))))) (T -697))
+((-1606 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) (-1606 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697)))))
+(-13 (-387) (-545) (-10 -8 (-15 -1606 ((-918) (-918))) (-15 -1606 ((-918))) (-15 -3714 ((-316 $) (-316 (-564))))))
+((-3479 (((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)) 19)) (-3802 (((-1 |#4| |#2| |#3|) (-1170)) 12)))
+(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3802 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -3479 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)))) (-612 (-536)) (-1209) (-1209) (-1209)) (T -698))
+((-3479 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209)))))
+(-10 -7 (-15 -3802 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -3479 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170))))
+((-3702 (((-112) $ $) NIL)) (-1806 (((-1264) $ (-768)) 14)) (-3303 (((-768) $) 12)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 18) (($ |#1|) 24) ((|#1| $) 15)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 28)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 27)))
(((-699 |#1|) (-13 (-132) (-490 |#1|)) (-1094)) (T -699))
NIL
(-13 (-132) (-490 |#1|))
-((-3442 (((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)) 36) (((-1 (-225) (-225)) |#1| (-1170)) 41)))
-(((-700 |#1|) (-10 -7 (-15 -3442 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -3442 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)))) (-612 (-536))) (T -700))
-((-3442 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))))
-(-10 -7 (-15 -3442 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -3442 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170))))
-((-2387 (((-1170) |#1| (-1170) (-641 (-1170))) 10) (((-1170) |#1| (-1170) (-1170) (-1170)) 13) (((-1170) |#1| (-1170) (-1170)) 12) (((-1170) |#1| (-1170)) 11)))
-(((-701 |#1|) (-10 -7 (-15 -2387 ((-1170) |#1| (-1170))) (-15 -2387 ((-1170) |#1| (-1170) (-1170))) (-15 -2387 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -2387 ((-1170) |#1| (-1170) (-641 (-1170))))) (-612 (-536))) (T -701))
-((-2387 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2387 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2387 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2387 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))))
-(-10 -7 (-15 -2387 ((-1170) |#1| (-1170))) (-15 -2387 ((-1170) |#1| (-1170) (-1170))) (-15 -2387 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -2387 ((-1170) |#1| (-1170) (-641 (-1170)))))
-((-2217 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-702 |#1| |#2|) (-10 -7 (-15 -2217 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1209) (-1209)) (T -702))
-((-2217 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-702 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209)))))
-(-10 -7 (-15 -2217 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-1792 (((-1 |#3| |#2|) (-1170)) 11)) (-3036 (((-1 |#3| |#2|) |#1| (-1170)) 21)))
-(((-703 |#1| |#2| |#3|) (-10 -7 (-15 -1792 ((-1 |#3| |#2|) (-1170))) (-15 -3036 ((-1 |#3| |#2|) |#1| (-1170)))) (-612 (-536)) (-1209) (-1209)) (T -703))
-((-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *3 *5 *6)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))))
-(-10 -7 (-15 -1792 ((-1 |#3| |#2|) (-1170))) (-15 -3036 ((-1 |#3| |#2|) |#1| (-1170))))
-((-3696 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|) 94)) (-4384 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|) 112)) (-4104 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|) 47)))
-(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4104 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -4384 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|)) (-15 -3696 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -704))
-((-3696 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13)) (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13)) (-5 *7 (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| *13))))) (-5 *8 (-641 (-768))) (-5 *9 (-1259 (-641 (-1166 *10)))) (-4 *12 (-847)) (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12)) (-4 *11 (-790)) (-5 *1 (-704 *11 *12 *10 *13)))) (-4384 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9))) (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-768))) (-4 *11 (-847)) (-4 *9 (-307)) (-4 *12 (-946 *9 *10 *11)) (-4 *10 (-790)) (-5 *2 (-641 (-1166 *12))) (-5 *1 (-704 *10 *11 *9 *12)) (-5 *3 (-1166 *12)))) (-4104 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11)) (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-768))) (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-847)) (-4 *8 (-307)) (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-790)) (-5 *1 (-704 *9 *10 *8 *11)))))
-(-10 -7 (-15 -4104 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -4384 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|)) (-15 -3696 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4346 (($ $) 42)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4145 (($ |#1| (-768)) 40)) (-3829 (((-768) $) 44)) (-4323 ((|#1| $) 43)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3344 (((-768) $) 45)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 39 (|has| |#1| (-172)))) (-1757 ((|#1| $ (-768)) 41)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
+((-3208 (((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)) 36) (((-1 (-225) (-225)) |#1| (-1170)) 41)))
+(((-700 |#1|) (-10 -7 (-15 -3208 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -3208 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)))) (-612 (-536))) (T -700))
+((-3208 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-3208 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))))
+(-10 -7 (-15 -3208 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -3208 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170))))
+((-2553 (((-1170) |#1| (-1170) (-641 (-1170))) 10) (((-1170) |#1| (-1170) (-1170) (-1170)) 13) (((-1170) |#1| (-1170) (-1170)) 12) (((-1170) |#1| (-1170)) 11)))
+(((-701 |#1|) (-10 -7 (-15 -2553 ((-1170) |#1| (-1170))) (-15 -2553 ((-1170) |#1| (-1170) (-1170))) (-15 -2553 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -2553 ((-1170) |#1| (-1170) (-641 (-1170))))) (-612 (-536))) (T -701))
+((-2553 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2553 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2553 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2553 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))))
+(-10 -7 (-15 -2553 ((-1170) |#1| (-1170))) (-15 -2553 ((-1170) |#1| (-1170) (-1170))) (-15 -2553 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -2553 ((-1170) |#1| (-1170) (-641 (-1170)))))
+((-4217 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-702 |#1| |#2|) (-10 -7 (-15 -4217 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1209) (-1209)) (T -702))
+((-4217 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-702 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209)))))
+(-10 -7 (-15 -4217 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2351 (((-1 |#3| |#2|) (-1170)) 11)) (-3479 (((-1 |#3| |#2|) |#1| (-1170)) 21)))
+(((-703 |#1| |#2| |#3|) (-10 -7 (-15 -2351 ((-1 |#3| |#2|) (-1170))) (-15 -3479 ((-1 |#3| |#2|) |#1| (-1170)))) (-612 (-536)) (-1209) (-1209)) (T -703))
+((-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *3 *5 *6)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))))
+(-10 -7 (-15 -2351 ((-1 |#3| |#2|) (-1170))) (-15 -3479 ((-1 |#3| |#2|) |#1| (-1170))))
+((-3792 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|) 94)) (-4007 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|) 112)) (-3277 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|) 47)))
+(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3277 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -4007 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|)) (-15 -3792 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -704))
+((-3792 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13)) (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13)) (-5 *7 (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| *13))))) (-5 *8 (-641 (-768))) (-5 *9 (-1259 (-641 (-1166 *10)))) (-4 *12 (-847)) (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12)) (-4 *11 (-790)) (-5 *1 (-704 *11 *12 *10 *13)))) (-4007 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9))) (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-768))) (-4 *11 (-847)) (-4 *9 (-307)) (-4 *12 (-946 *9 *10 *11)) (-4 *10 (-790)) (-5 *2 (-641 (-1166 *12))) (-5 *1 (-704 *10 *11 *9 *12)) (-5 *3 (-1166 *12)))) (-3277 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11)) (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-768))) (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-847)) (-4 *8 (-307)) (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-790)) (-5 *1 (-704 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3277 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -4007 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|)) (-15 -3792 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1374 (($ $) 42)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-4267 (($ |#1| (-768)) 40)) (-2700 (((-768) $) 44)) (-1345 ((|#1| $) 43)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3475 (((-768) $) 45)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 39 (|has| |#1| (-172)))) (-3181 ((|#1| $ (-768)) 41)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46)))
(((-705 |#1|) (-140) (-1046)) (T -705))
-((-3344 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-4346 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))))
-(-13 (-1046) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3344 ((-768) $)) (-15 -3829 ((-768) $)) (-15 -4323 (|t#1| $)) (-15 -4346 ($ $)) (-15 -1757 (|t#1| $ (-768))) (-15 -4145 ($ |t#1| (-768)))))
+((-3475 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-1374 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-4267 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))))
+(-13 (-1046) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3475 ((-768) $)) (-15 -2700 ((-768) $)) (-15 -1345 (|t#1| $)) (-15 -1374 ($ $)) (-15 -3181 (|t#1| $ (-768))) (-15 -4267 ($ |t#1| (-768)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2082 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-706 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2082 (|#6| (-1 |#4| |#1|) |#3|))) (-556) (-1235 |#1|) (-1235 (-407 |#2|)) (-556) (-1235 |#4|) (-1235 (-407 |#5|))) (T -706))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1235 *5)) (-4 *2 (-1235 (-407 *8))) (-5 *1 (-706 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6))) (-4 *8 (-1235 *7)))))
-(-10 -7 (-15 -2082 (|#6| (-1 |#4| |#1|) |#3|)))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2218 (((-1152) (-859)) 39)) (-3463 (((-1264) (-1152)) 32)) (-2938 (((-1152) (-859)) 28)) (-2194 (((-1152) (-859)) 29)) (-1765 (((-859) $) NIL) (((-1152) (-859)) 27)) (-1686 (((-112) $ $) NIL)))
-(((-707) (-13 (-1094) (-10 -7 (-15 -1765 ((-1152) (-859))) (-15 -2938 ((-1152) (-859))) (-15 -2194 ((-1152) (-859))) (-15 -2218 ((-1152) (-859))) (-15 -3463 ((-1264) (-1152)))))) (T -707))
-((-1765 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-707)))))
-(-13 (-1094) (-10 -7 (-15 -1765 ((-1152) (-859))) (-15 -2938 ((-1152) (-859))) (-15 -2194 ((-1152) (-859))) (-15 -2218 ((-1152) (-859))) (-15 -3463 ((-1264) (-1152)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-1387 (($ $ $) NIL)) (-4367 (($ |#1| |#2|) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-2419 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4022 ((|#2| $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3174 (((-3 $ "failed") $ $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) ((|#1| $) NIL)) (-1965 (((-768)) NIL T CONST)) (-1582 (((-112) $ $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-708 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -4022 (|#2| $)) (-15 -1765 (|#1| $)) (-15 -4367 ($ |#1| |#2|)) (-15 -3174 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -708))
-((-4022 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-708 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1765 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4367 (*1 *1 *2 *3) (-12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3174 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-363) (-10 -8 (-15 -4022 (|#2| $)) (-15 -1765 (|#1| $)) (-15 -4367 ($ |#1| |#2|)) (-15 -3174 ((-3 $ "failed") $ $))))
-((-1754 (((-112) $ $) 91)) (-3976 (((-112) $) 36)) (-4128 (((-1259 |#1|) $ (-768)) NIL)) (-4170 (((-641 (-1076)) $) NIL)) (-2112 (($ (-1166 |#1|)) NIL)) (-3964 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2673 (($ $ $) NIL (|has| |#1| (-556)))) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1368 (($ $) NIL (|has| |#1| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3042 (((-768)) 55 (|has| |#1| (-368)))) (-3995 (($ $ (-768)) NIL)) (-1692 (($ $ (-768)) NIL)) (-2869 ((|#2| |#2|) 51)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2064 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL)) (-4267 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) 39)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4367 (($ |#2|) 49)) (-1926 (((-3 $ "failed") $) 100)) (-2542 (($) 60 (|has| |#1| (-368)))) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3020 (($ $ $) NIL)) (-1506 (($ $ $) NIL (|has| |#1| (-556)))) (-3363 (((-2 (|:| -1662 |#1|) (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-556)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2190 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#1| (-906)))) (-1490 (((-955 $)) 93)) (-2877 (($ $ |#1| (-768) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2261 (((-768) $ $) NIL (|has| |#1| (-556)))) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-4157 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-2300 (($ $ (-768)) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-768)) 87) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-1076)) NIL) (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-4022 ((|#2|) 52)) (-3829 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2964 (($ (-1 (-768) (-768)) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2418 (((-1166 |#1|) $) NIL)) (-2022 (((-3 (-1076) "failed") $) NIL)) (-2209 (((-918) $) NIL (|has| |#1| (-368)))) (-4358 ((|#2| $) 48)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) 34)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4202 (((-1152) $) NIL)) (-2724 (((-2 (|:| -3741 $) (|:| -2746 $)) $ (-768)) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-1076)) (|:| -3747 (-768))) "failed") $) NIL)) (-3591 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1611 (($) NIL (|has| |#1| (-1145)) CONST)) (-1403 (($ (-918)) NIL (|has| |#1| (-368)))) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#1| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4008 (($ $) 92 (|has| |#1| (-349)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-906)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-4135 (((-3 $ "failed") $ (-768)) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 101 (|has| |#1| (-363)))) (-1938 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3226 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3344 (((-768) $) 37) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2712 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-4003 (((-955 $)) 41)) (-3154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-1765 (((-859) $) 70) (($ (-564)) NIL) (($ |#1|) 67) (($ (-1076)) NIL) (($ |#2|) 77) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-768)) 72) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) 25 T CONST)) (-2948 (((-1259 |#1|) $) 85)) (-1357 (($ (-1259 |#1|)) 59)) (-4327 (($) 8 T CONST)) (-3190 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4072 (((-1259 |#1|) $) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) 78)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) 81) (($ $ $) NIL)) (-1771 (($ $ $) 38)) (** (($ $ (-918)) NIL) (($ $ (-768)) 95)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 66) (($ $ $) 84) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 64) (($ $ |#1|) NIL)))
-(((-709 |#1| |#2|) (-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -2869 (|#2| |#2|)) (-15 -4022 (|#2|)) (-15 -4367 ($ |#2|)) (-15 -4358 (|#2| $)) (-15 -2948 ((-1259 |#1|) $)) (-15 -1357 ($ (-1259 |#1|))) (-15 -4072 ((-1259 |#1|) $)) (-15 -1490 ((-955 $))) (-15 -4003 ((-955 $))) (IF (|has| |#1| (-349)) (-15 -4008 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1046) (-1235 |#1|)) (T -709))
-((-2869 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) (-4022 (*1 *2) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) (-4367 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) (-4358 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) (-2948 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-4072 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-1490 (*1 *2) (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-4003 (*1 *2) (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-4008 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1046)) (-5 *1 (-709 *2 *3)) (-4 *3 (-1235 *2)))))
-(-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -2869 (|#2| |#2|)) (-15 -4022 (|#2|)) (-15 -4367 ($ |#2|)) (-15 -4358 (|#2| $)) (-15 -2948 ((-1259 |#1|) $)) (-15 -1357 ($ (-1259 |#1|))) (-15 -4072 ((-1259 |#1|) $)) (-15 -1490 ((-955 $))) (-15 -4003 ((-955 $))) (IF (|has| |#1| (-349)) (-15 -4008 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 ((|#1| $) 13)) (-3802 (((-1114) $) NIL)) (-3747 ((|#2| $) 12)) (-1776 (($ |#1| |#2|) 16)) (-1765 (((-859) $) NIL) (($ (-2 (|:| -1403 |#1|) (|:| -3747 |#2|))) 15) (((-2 (|:| -1403 |#1|) (|:| -3747 |#2|)) $) 14)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 11)))
-(((-710 |#1| |#2| |#3|) (-13 (-847) (-490 (-2 (|:| -1403 |#1|) (|:| -3747 |#2|))) (-10 -8 (-15 -3747 (|#2| $)) (-15 -1403 (|#1| $)) (-15 -1776 ($ |#1| |#2|)))) (-847) (-1094) (-1 (-112) (-2 (|:| -1403 |#1|) (|:| -3747 |#2|)) (-2 (|:| -1403 |#1|) (|:| -3747 |#2|)))) (T -710))
-((-3747 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-710 *3 *2 *4)) (-4 *3 (-847)) (-14 *4 (-1 (-112) (-2 (|:| -1403 *3) (|:| -3747 *2)) (-2 (|:| -1403 *3) (|:| -3747 *2)))))) (-1403 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-710 *2 *3 *4)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -1403 *2) (|:| -3747 *3)) (-2 (|:| -1403 *2) (|:| -3747 *3)))))) (-1776 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -1403 *2) (|:| -3747 *3)) (-2 (|:| -1403 *2) (|:| -3747 *3)))))))
-(-13 (-847) (-490 (-2 (|:| -1403 |#1|) (|:| -3747 |#2|))) (-10 -8 (-15 -3747 (|#2| $)) (-15 -1403 (|#1| $)) (-15 -1776 ($ |#1| |#2|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 66)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-2064 ((|#1| $) NIL) (((-114) $) 39)) (-1926 (((-3 $ "failed") $) 106)) (-1344 ((|#2| (-114) |#2|) 92)) (-2419 (((-112) $) NIL)) (-3804 (($ |#1| (-361 (-114))) 14)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3360 (($ $ (-1 |#2| |#2|)) 65)) (-1984 (($ $ (-1 |#2| |#2|)) 44)) (-4382 ((|#2| $ |#2|) 33)) (-3820 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-1765 (((-859) $) 73) (($ (-564)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) 37 T CONST)) (-1825 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-4317 (($) 21 T CONST)) (-4327 (($) 9 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) 48) (($ $ $) NIL)) (-1771 (($ $ $) 83)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) 64)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172)))))
-(((-711 |#1| |#2|) (-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -1825 ($ $)) (-15 -1825 ($ $ $)) (-15 -3820 (|#1| |#1|))) |%noBranch|) (-15 -1984 ($ $ (-1 |#2| |#2|))) (-15 -3360 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -1344 (|#2| (-114) |#2|)) (-15 -3804 ($ |#1| (-361 (-114)))))) (-1046) (-644 |#1|)) (T -711))
-((-1825 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-1825 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-3820 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-1984 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)))) (-3360 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *5)) (-4 *5 (-644 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)) (-4 *4 (-644 *3)))) (-1344 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *2)) (-4 *2 (-644 *4)))) (-3804 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1046)) (-5 *1 (-711 *2 *4)) (-4 *4 (-644 *2)))))
-(-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -1825 ($ $)) (-15 -1825 ($ $ $)) (-15 -3820 (|#1| |#1|))) |%noBranch|) (-15 -1984 ($ $ (-1 |#2| |#2|))) (-15 -3360 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -1344 (|#2| (-114) |#2|)) (-15 -3804 ($ |#1| (-361 (-114))))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 33)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-4367 (($ |#1| |#2|) 25)) (-1926 (((-3 $ "failed") $) 51)) (-2419 (((-112) $) 35)) (-4022 ((|#2| $) 12)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 52)) (-3802 (((-1114) $) NIL)) (-3174 (((-3 $ "failed") $ $) 50)) (-1765 (((-859) $) 24) (($ (-564)) 19) ((|#1| $) 13)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 16 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 41)) (-1783 (($ $) 46) (($ $ $) 40)) (-1771 (($ $ $) 43)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 21) (($ $ $) 20)))
-(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-1046) (-10 -8 (-15 -4022 (|#2| $)) (-15 -1765 (|#1| $)) (-15 -4367 ($ |#1| |#2|)) (-15 -3174 ((-3 $ "failed") $ $)) (-15 -1926 ((-3 $ "failed") $)) (-15 -4272 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712))
-((-1926 (*1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4022 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1765 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4367 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3174 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4272 (*1 *1 *1) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1046) (-10 -8 (-15 -4022 (|#2| $)) (-15 -1765 (|#1| $)) (-15 -4367 ($ |#1| |#2|)) (-15 -3174 ((-3 $ "failed") $ $)) (-15 -1926 ((-3 $ "failed") $)) (-15 -4272 ($ $))))
+((-2313 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-706 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2313 (|#6| (-1 |#4| |#1|) |#3|))) (-556) (-1235 |#1|) (-1235 (-407 |#2|)) (-556) (-1235 |#4|) (-1235 (-407 |#5|))) (T -706))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1235 *5)) (-4 *2 (-1235 (-407 *8))) (-5 *1 (-706 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6))) (-4 *8 (-1235 *7)))))
+(-10 -7 (-15 -2313 (|#6| (-1 |#4| |#1|) |#3|)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4112 (((-1152) (-859)) 39)) (-3512 (((-1264) (-1152)) 32)) (-3898 (((-1152) (-859)) 28)) (-2060 (((-1152) (-859)) 29)) (-3714 (((-859) $) NIL) (((-1152) (-859)) 27)) (-1720 (((-112) $ $) NIL)))
+(((-707) (-13 (-1094) (-10 -7 (-15 -3714 ((-1152) (-859))) (-15 -3898 ((-1152) (-859))) (-15 -2060 ((-1152) (-859))) (-15 -4112 ((-1152) (-859))) (-15 -3512 ((-1264) (-1152)))))) (T -707))
+((-3714 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-707)))))
+(-13 (-1094) (-10 -7 (-15 -3714 ((-1152) (-859))) (-15 -3898 ((-1152) (-859))) (-15 -2060 ((-1152) (-859))) (-15 -4112 ((-1152) (-859))) (-15 -3512 ((-1264) (-1152)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-1399 (($ $ $) NIL)) (-1728 (($ |#1| |#2|) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-2340 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3756 ((|#2| $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2519 (((-3 $ "failed") $ $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) ((|#1| $) NIL)) (-3379 (((-768)) NIL T CONST)) (-3979 (((-112) $ $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-708 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -3756 (|#2| $)) (-15 -3714 (|#1| $)) (-15 -1728 ($ |#1| |#2|)) (-15 -2519 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -708))
+((-3756 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-708 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3714 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1728 (*1 *1 *2 *3) (-12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2519 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-363) (-10 -8 (-15 -3756 (|#2| $)) (-15 -3714 (|#1| $)) (-15 -1728 ($ |#1| |#2|)) (-15 -2519 ((-3 $ "failed") $ $))))
+((-3702 (((-112) $ $) 91)) (-1556 (((-112) $) 36)) (-2401 (((-1259 |#1|) $ (-768)) NIL)) (-4292 (((-641 (-1076)) $) NIL)) (-2522 (($ (-1166 |#1|)) NIL)) (-4103 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3000 (($ $ $) NIL (|has| |#1| (-556)))) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1328 (($ $) NIL (|has| |#1| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2018 (((-768)) 55 (|has| |#1| (-368)))) (-3522 (($ $ (-768)) NIL)) (-3752 (($ $ (-768)) NIL)) (-1321 ((|#2| |#2|) 51)) (-2530 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2376 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL)) (-4275 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) 39)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1728 (($ |#2|) 49)) (-4272 (((-3 $ "failed") $) 100)) (-2939 (($) 60 (|has| |#1| (-368)))) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $ $) NIL)) (-2696 (($ $ $) NIL (|has| |#1| (-556)))) (-3686 (((-2 (|:| -1817 |#1|) (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-556)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2015 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#1| (-906)))) (-2534 (((-955 $)) 93)) (-1423 (($ $ |#1| (-768) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1454 (((-768) $ $) NIL (|has| |#1| (-556)))) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-4279 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-3619 (($ $ (-768)) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-768)) 87) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-1076)) NIL) (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-3756 ((|#2|) 52)) (-2700 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-4062 (($ (-1 (-768) (-768)) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2329 (((-1166 |#1|) $) NIL)) (-2848 (((-3 (-1076) "failed") $) NIL)) (-4031 (((-918) $) NIL (|has| |#1| (-368)))) (-1714 ((|#2| $) 48)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) 34)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1868 (((-1152) $) NIL)) (-2315 (((-2 (|:| -3031 $) (|:| -2550 $)) $ (-768)) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-1076)) (|:| -3078 (-768))) "failed") $) NIL)) (-4039 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3304 (($) NIL (|has| |#1| (-1145)) CONST)) (-3338 (($ (-918)) NIL (|has| |#1| (-368)))) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#1| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3632 (($ $) 92 (|has| |#1| (-349)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-2458 (((-3 $ "failed") $ (-768)) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 101 (|has| |#1| (-363)))) (-4378 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-2203 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3475 (((-768) $) 37) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3324 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3595 (((-955 $)) 41)) (-2301 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-3714 (((-859) $) 70) (($ (-564)) NIL) (($ |#1|) 67) (($ (-1076)) NIL) (($ |#2|) 77) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-768)) 72) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) 25 T CONST)) (-4002 (((-1259 |#1|) $) 85)) (-2676 (($ (-1259 |#1|)) 59)) (-4323 (($) 8 T CONST)) (-2238 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3047 (((-1259 |#1|) $) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) 78)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) 81) (($ $ $) NIL)) (-1814 (($ $ $) 38)) (** (($ $ (-918)) NIL) (($ $ (-768)) 95)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 66) (($ $ $) 84) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 64) (($ $ |#1|) NIL)))
+(((-709 |#1| |#2|) (-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -1321 (|#2| |#2|)) (-15 -3756 (|#2|)) (-15 -1728 ($ |#2|)) (-15 -1714 (|#2| $)) (-15 -4002 ((-1259 |#1|) $)) (-15 -2676 ($ (-1259 |#1|))) (-15 -3047 ((-1259 |#1|) $)) (-15 -2534 ((-955 $))) (-15 -3595 ((-955 $))) (IF (|has| |#1| (-349)) (-15 -3632 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1046) (-1235 |#1|)) (T -709))
+((-1321 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) (-3756 (*1 *2) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) (-1728 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) (-1714 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) (-4002 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-2676 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-3047 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-2534 (*1 *2) (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-3595 (*1 *2) (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-3632 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1046)) (-5 *1 (-709 *2 *3)) (-4 *3 (-1235 *2)))))
+(-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -1321 (|#2| |#2|)) (-15 -3756 (|#2|)) (-15 -1728 ($ |#2|)) (-15 -1714 (|#2| $)) (-15 -4002 ((-1259 |#1|) $)) (-15 -2676 ($ (-1259 |#1|))) (-15 -3047 ((-1259 |#1|) $)) (-15 -2534 ((-955 $))) (-15 -3595 ((-955 $))) (IF (|has| |#1| (-349)) (-15 -3632 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|)))
+((-3702 (((-112) $ $) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 ((|#1| $) 13)) (-3844 (((-1114) $) NIL)) (-3078 ((|#2| $) 12)) (-3725 (($ |#1| |#2|) 16)) (-3714 (((-859) $) NIL) (($ (-2 (|:| -3338 |#1|) (|:| -3078 |#2|))) 15) (((-2 (|:| -3338 |#1|) (|:| -3078 |#2|)) $) 14)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 11)))
+(((-710 |#1| |#2| |#3|) (-13 (-847) (-490 (-2 (|:| -3338 |#1|) (|:| -3078 |#2|))) (-10 -8 (-15 -3078 (|#2| $)) (-15 -3338 (|#1| $)) (-15 -3725 ($ |#1| |#2|)))) (-847) (-1094) (-1 (-112) (-2 (|:| -3338 |#1|) (|:| -3078 |#2|)) (-2 (|:| -3338 |#1|) (|:| -3078 |#2|)))) (T -710))
+((-3078 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-710 *3 *2 *4)) (-4 *3 (-847)) (-14 *4 (-1 (-112) (-2 (|:| -3338 *3) (|:| -3078 *2)) (-2 (|:| -3338 *3) (|:| -3078 *2)))))) (-3338 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-710 *2 *3 *4)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -3338 *2) (|:| -3078 *3)) (-2 (|:| -3338 *2) (|:| -3078 *3)))))) (-3725 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -3338 *2) (|:| -3078 *3)) (-2 (|:| -3338 *2) (|:| -3078 *3)))))))
+(-13 (-847) (-490 (-2 (|:| -3338 |#1|) (|:| -3078 |#2|))) (-10 -8 (-15 -3078 (|#2| $)) (-15 -3338 (|#1| $)) (-15 -3725 ($ |#1| |#2|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 66)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-2376 ((|#1| $) NIL) (((-114) $) 39)) (-4272 (((-3 $ "failed") $) 106)) (-2469 ((|#2| (-114) |#2|) 92)) (-2340 (((-112) $) NIL)) (-2438 (($ |#1| (-361 (-114))) 14)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3654 (($ $ (-1 |#2| |#2|)) 65)) (-3571 (($ $ (-1 |#2| |#2|)) 44)) (-4382 ((|#2| $ |#2|) 33)) (-2611 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-3714 (((-859) $) 73) (($ (-564)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) 37 T CONST)) (-2690 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-4312 (($) 21 T CONST)) (-4323 (($) 9 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) 48) (($ $ $) NIL)) (-1814 (($ $ $) 83)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) 64)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172)))))
+(((-711 |#1| |#2|) (-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2690 ($ $)) (-15 -2690 ($ $ $)) (-15 -2611 (|#1| |#1|))) |%noBranch|) (-15 -3571 ($ $ (-1 |#2| |#2|))) (-15 -3654 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2469 (|#2| (-114) |#2|)) (-15 -2438 ($ |#1| (-361 (-114)))))) (-1046) (-644 |#1|)) (T -711))
+((-2690 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-2690 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-2611 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-3571 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *5)) (-4 *5 (-644 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)) (-4 *4 (-644 *3)))) (-2469 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *2)) (-4 *2 (-644 *4)))) (-2438 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1046)) (-5 *1 (-711 *2 *4)) (-4 *4 (-644 *2)))))
+(-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2690 ($ $)) (-15 -2690 ($ $ $)) (-15 -2611 (|#1| |#1|))) |%noBranch|) (-15 -3571 ($ $ (-1 |#2| |#2|))) (-15 -3654 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2469 (|#2| (-114) |#2|)) (-15 -2438 ($ |#1| (-361 (-114))))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 33)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1728 (($ |#1| |#2|) 25)) (-4272 (((-3 $ "failed") $) 51)) (-2340 (((-112) $) 35)) (-3756 ((|#2| $) 12)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 52)) (-3844 (((-1114) $) NIL)) (-2519 (((-3 $ "failed") $ $) 50)) (-3714 (((-859) $) 24) (($ (-564)) 19) ((|#1| $) 13)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 16 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 41)) (-1828 (($ $) 46) (($ $ $) 40)) (-1814 (($ $ $) 43)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 21) (($ $ $) 20)))
+(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-1046) (-10 -8 (-15 -3756 (|#2| $)) (-15 -3714 (|#1| $)) (-15 -1728 ($ |#1| |#2|)) (-15 -2519 ((-3 $ "failed") $ $)) (-15 -4272 ((-3 $ "failed") $)) (-15 -1295 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712))
+((-4272 (*1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3756 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3714 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1728 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2519 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1295 (*1 *1 *1) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1046) (-10 -8 (-15 -3756 (|#2| $)) (-15 -3714 (|#1| $)) (-15 -1728 ($ |#1| |#2|)) (-15 -2519 ((-3 $ "failed") $ $)) (-15 -4272 ((-3 $ "failed") $)) (-15 -1295 ($ $))))
((* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
(((-713 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-714 |#2|) (-172)) (T -713))
NIL
(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-714 |#1|) (-140) (-172)) (T -714))
NIL
(-13 (-111 |t#1| |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-1052 |#1|) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-2980 (($ |#1|) 17) (($ $ |#1|) 20)) (-3427 (($ |#1|) 18) (($ $ |#1|) 21)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2419 (((-112) $) NIL)) (-4152 (($ |#1| |#1| |#1| |#1|) 8)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 16)) (-3802 (((-1114) $) NIL)) (-2407 ((|#1| $ |#1|) 24) (((-830 |#1|) $ (-830 |#1|)) 32)) (-2502 (($ $ $) NIL)) (-1762 (($ $ $) NIL)) (-1765 (((-859) $) 39)) (-4327 (($) 9 T CONST)) (-1686 (((-112) $ $) 48)) (-1793 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 14)))
-(((-715 |#1|) (-13 (-473) (-10 -8 (-15 -4152 ($ |#1| |#1| |#1| |#1|)) (-15 -2980 ($ |#1|)) (-15 -3427 ($ |#1|)) (-15 -1926 ($)) (-15 -2980 ($ $ |#1|)) (-15 -3427 ($ $ |#1|)) (-15 -1926 ($ $)) (-15 -2407 (|#1| $ |#1|)) (-15 -2407 ((-830 |#1|) $ (-830 |#1|))))) (-363)) (T -715))
-((-4152 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2980 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3427 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-1926 (*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3427 (*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-1926 (*1 *1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2407 (*1 *2 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2407 (*1 *2 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *3 (-363)) (-5 *1 (-715 *3)))))
-(-13 (-473) (-10 -8 (-15 -4152 ($ |#1| |#1| |#1| |#1|)) (-15 -2980 ($ |#1|)) (-15 -3427 ($ |#1|)) (-15 -1926 ($)) (-15 -2980 ($ $ |#1|)) (-15 -3427 ($ $ |#1|)) (-15 -1926 ($ $)) (-15 -2407 (|#1| $ |#1|)) (-15 -2407 ((-830 |#1|) $ (-830 |#1|)))))
-((-1864 (($ $ (-918)) 21)) (-3229 (($ $ (-918)) 22)) (** (($ $ (-918)) 10)))
-(((-716 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-918))) (-15 -3229 (|#1| |#1| (-918))) (-15 -1864 (|#1| |#1| (-918)))) (-717)) (T -716))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-918))) (-15 -3229 (|#1| |#1| (-918))) (-15 -1864 (|#1| |#1| (-918))))
-((-1754 (((-112) $ $) 7)) (-1864 (($ $ (-918)) 15)) (-3229 (($ $ (-918)) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)) (** (($ $ (-918)) 13)) (* (($ $ $) 16)))
+((-3702 (((-112) $ $) NIL)) (-2490 (($ |#1|) 17) (($ $ |#1|) 20)) (-3099 (($ |#1|) 18) (($ $ |#1|) 21)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2340 (((-112) $) NIL)) (-2637 (($ |#1| |#1| |#1| |#1|) 8)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 16)) (-3844 (((-1114) $) NIL)) (-2582 ((|#1| $ |#1|) 24) (((-830 |#1|) $ (-830 |#1|)) 32)) (-1953 (($ $ $) NIL)) (-3217 (($ $ $) NIL)) (-3714 (((-859) $) 39)) (-4323 (($) 9 T CONST)) (-1720 (((-112) $ $) 48)) (-1841 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 14)))
+(((-715 |#1|) (-13 (-473) (-10 -8 (-15 -2637 ($ |#1| |#1| |#1| |#1|)) (-15 -2490 ($ |#1|)) (-15 -3099 ($ |#1|)) (-15 -4272 ($)) (-15 -2490 ($ $ |#1|)) (-15 -3099 ($ $ |#1|)) (-15 -4272 ($ $)) (-15 -2582 (|#1| $ |#1|)) (-15 -2582 ((-830 |#1|) $ (-830 |#1|))))) (-363)) (T -715))
+((-2637 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2490 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3099 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-4272 (*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2490 (*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3099 (*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-4272 (*1 *1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2582 (*1 *2 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2582 (*1 *2 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *3 (-363)) (-5 *1 (-715 *3)))))
+(-13 (-473) (-10 -8 (-15 -2637 ($ |#1| |#1| |#1| |#1|)) (-15 -2490 ($ |#1|)) (-15 -3099 ($ |#1|)) (-15 -4272 ($)) (-15 -2490 ($ $ |#1|)) (-15 -3099 ($ $ |#1|)) (-15 -4272 ($ $)) (-15 -2582 (|#1| $ |#1|)) (-15 -2582 ((-830 |#1|) $ (-830 |#1|)))))
+((-1842 (($ $ (-918)) 21)) (-1788 (($ $ (-918)) 22)) (** (($ $ (-918)) 10)))
+(((-716 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-918))) (-15 -1788 (|#1| |#1| (-918))) (-15 -1842 (|#1| |#1| (-918)))) (-717)) (T -716))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-918))) (-15 -1788 (|#1| |#1| (-918))) (-15 -1842 (|#1| |#1| (-918))))
+((-3702 (((-112) $ $) 7)) (-1842 (($ $ (-918)) 15)) (-1788 (($ $ (-918)) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)) (** (($ $ (-918)) 13)) (* (($ $ $) 16)))
(((-717) (-140)) (T -717))
-((* (*1 *1 *1 *1) (-4 *1 (-717))) (-1864 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) (-3229 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))))
-(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 -1864 ($ $ (-918))) (-15 -3229 ($ $ (-918))) (-15 ** ($ $ (-918)))))
+((* (*1 *1 *1 *1) (-4 *1 (-717))) (-1842 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) (-1788 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))))
+(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 -1842 ($ $ (-918))) (-15 -1788 ($ $ (-918))) (-15 ** ($ $ (-918)))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1864 (($ $ (-918)) NIL) (($ $ (-768)) 21)) (-2419 (((-112) $) 10)) (-3229 (($ $ (-918)) NIL) (($ $ (-768)) 22)) (** (($ $ (-918)) NIL) (($ $ (-768)) 16)))
-(((-718 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-768))) (-15 -3229 (|#1| |#1| (-768))) (-15 -1864 (|#1| |#1| (-768))) (-15 -2419 ((-112) |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 -3229 (|#1| |#1| (-918))) (-15 -1864 (|#1| |#1| (-918)))) (-719)) (T -718))
+((-1842 (($ $ (-918)) NIL) (($ $ (-768)) 21)) (-2340 (((-112) $) 10)) (-1788 (($ $ (-918)) NIL) (($ $ (-768)) 22)) (** (($ $ (-918)) NIL) (($ $ (-768)) 16)))
+(((-718 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-768))) (-15 -1788 (|#1| |#1| (-768))) (-15 -1842 (|#1| |#1| (-768))) (-15 -2340 ((-112) |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 -1788 (|#1| |#1| (-918))) (-15 -1842 (|#1| |#1| (-918)))) (-719)) (T -718))
NIL
-(-10 -8 (-15 ** (|#1| |#1| (-768))) (-15 -3229 (|#1| |#1| (-768))) (-15 -1864 (|#1| |#1| (-768))) (-15 -2419 ((-112) |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 -3229 (|#1| |#1| (-918))) (-15 -1864 (|#1| |#1| (-918))))
-((-1754 (((-112) $ $) 7)) (-3828 (((-3 $ "failed") $) 17)) (-1864 (($ $ (-918)) 15) (($ $ (-768)) 22)) (-1926 (((-3 $ "failed") $) 19)) (-2419 (((-112) $) 23)) (-3647 (((-3 $ "failed") $) 18)) (-3229 (($ $ (-918)) 14) (($ $ (-768)) 21)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4327 (($) 24 T CONST)) (-1686 (((-112) $ $) 6)) (** (($ $ (-918)) 13) (($ $ (-768)) 20)) (* (($ $ $) 16)))
+(-10 -8 (-15 ** (|#1| |#1| (-768))) (-15 -1788 (|#1| |#1| (-768))) (-15 -1842 (|#1| |#1| (-768))) (-15 -2340 ((-112) |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 -1788 (|#1| |#1| (-918))) (-15 -1842 (|#1| |#1| (-918))))
+((-3702 (((-112) $ $) 7)) (-2684 (((-3 $ "failed") $) 17)) (-1842 (($ $ (-918)) 15) (($ $ (-768)) 22)) (-4272 (((-3 $ "failed") $) 19)) (-2340 (((-112) $) 23)) (-1524 (((-3 $ "failed") $) 18)) (-1788 (($ $ (-918)) 14) (($ $ (-768)) 21)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4323 (($) 24 T CONST)) (-1720 (((-112) $ $) 6)) (** (($ $ (-918)) 13) (($ $ (-768)) 20)) (* (($ $ $) 16)))
(((-719) (-140)) (T -719))
-((-4327 (*1 *1) (-4 *1 (-719))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-719)) (-5 *2 (-112)))) (-1864 (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (-3229 (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (-1926 (*1 *1 *1) (|partial| -4 *1 (-719))) (-3647 (*1 *1 *1) (|partial| -4 *1 (-719))) (-3828 (*1 *1 *1) (|partial| -4 *1 (-719))))
-(-13 (-717) (-10 -8 (-15 (-4327) ($) -3246) (-15 -2419 ((-112) $)) (-15 -1864 ($ $ (-768))) (-15 -3229 ($ $ (-768))) (-15 ** ($ $ (-768))) (-15 -1926 ((-3 $ "failed") $)) (-15 -3647 ((-3 $ "failed") $)) (-15 -3828 ((-3 $ "failed") $))))
+((-4323 (*1 *1) (-4 *1 (-719))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-719)) (-5 *2 (-112)))) (-1842 (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (-1788 (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (-4272 (*1 *1 *1) (|partial| -4 *1 (-719))) (-1524 (*1 *1 *1) (|partial| -4 *1 (-719))) (-2684 (*1 *1 *1) (|partial| -4 *1 (-719))))
+(-13 (-717) (-10 -8 (-15 (-4323) ($) -2222) (-15 -2340 ((-112) $)) (-15 -1842 ($ $ (-768))) (-15 -1788 ($ $ (-768))) (-15 ** ($ $ (-768))) (-15 -4272 ((-3 $ "failed") $)) (-15 -1524 ((-3 $ "failed") $)) (-15 -2684 ((-3 $ "failed") $))))
(((-102) . T) ((-611 (-859)) . T) ((-717) . T) ((-1094) . T))
-((-3042 (((-768)) 42)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2064 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 23)) (-4367 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 53)) (-1926 (((-3 $ "failed") $) 73)) (-2542 (($) 47)) (-1779 ((|#2| $) 21)) (-1502 (($) 18)) (-3226 (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-2836 (((-685 |#2|) (-1259 $) (-1 |#2| |#2|)) 68)) (-2127 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3216 ((|#3| $) 39)) (-3941 (((-1259 $)) 36)))
-(((-720 |#1| |#2| |#3|) (-10 -8 (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2542 (|#1|)) (-15 -3042 ((-768))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2836 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -4367 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2127 (|#1| |#3|)) (-15 -4367 (|#1| |#3|)) (-15 -1502 (|#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2127 (|#3| |#1|)) (-15 -2127 (|#1| (-1259 |#2|))) (-15 -2127 ((-1259 |#2|) |#1|)) (-15 -3941 ((-1259 |#1|))) (-15 -3216 (|#3| |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -1926 ((-3 |#1| "failed") |#1|))) (-721 |#2| |#3|) (-172) (-1235 |#2|)) (T -720))
-((-3042 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-768)) (-5 *1 (-720 *3 *4 *5)) (-4 *3 (-721 *4 *5)))))
-(-10 -8 (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2542 (|#1|)) (-15 -3042 ((-768))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2836 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -4367 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2127 (|#1| |#3|)) (-15 -4367 (|#1| |#3|)) (-15 -1502 (|#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2127 (|#3| |#1|)) (-15 -2127 (|#1| (-1259 |#2|))) (-15 -2127 ((-1259 |#2|) |#1|)) (-15 -3941 ((-1259 |#1|))) (-15 -3216 (|#3| |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -1926 ((-3 |#1| "failed") |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 93 (|has| |#1| (-363)))) (-1840 (($ $) 94 (|has| |#1| (-363)))) (-4035 (((-112) $) 96 (|has| |#1| (-363)))) (-3124 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3715 ((|#1| $) 53)) (-2590 (((-1182 (-918) (-768)) (-564)) 146 (|has| |#1| (-349)))) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 113 (|has| |#1| (-363)))) (-3981 (((-418 $) $) 114 (|has| |#1| (-363)))) (-3385 (((-112) $ $) 104 (|has| |#1| (-363)))) (-3042 (((-768)) 87 (|has| |#1| (-368)))) (-3760 (($) 17 T CONST)) (-2013 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-2064 (((-564) $) 168 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 165)) (-2910 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-1387 (($ $ $) 108 (|has| |#1| (-363)))) (-1663 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-2620 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-4367 (($ |#2|) 157) (((-3 $ "failed") (-407 |#2|)) 154 (|has| |#1| (-363)))) (-1926 (((-3 $ "failed") $) 33)) (-4224 (((-918)) 55)) (-2542 (($) 90 (|has| |#1| (-368)))) (-1366 (($ $ $) 107 (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 102 (|has| |#1| (-363)))) (-1990 (($) 148 (|has| |#1| (-349)))) (-3242 (((-112) $) 149 (|has| |#1| (-349)))) (-2184 (($ $ (-768)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-3241 (((-112) $) 115 (|has| |#1| (-363)))) (-2261 (((-918) $) 151 (|has| |#1| (-349))) (((-830 (-918)) $) 137 (|has| |#1| (-349)))) (-2419 (((-112) $) 31)) (-1779 ((|#1| $) 52)) (-3374 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-363)))) (-2513 ((|#2| $) 45 (|has| |#1| (-363)))) (-2209 (((-918) $) 89 (|has| |#1| (-368)))) (-4358 ((|#2| $) 155)) (-2488 (($ (-641 $)) 100 (|has| |#1| (-363))) (($ $ $) 99 (|has| |#1| (-363)))) (-4202 (((-1152) $) 9)) (-4272 (($ $) 116 (|has| |#1| (-363)))) (-1611 (($) 142 (|has| |#1| (-349)) CONST)) (-1403 (($ (-918)) 88 (|has| |#1| (-368)))) (-3802 (((-1114) $) 10)) (-1502 (($) 159)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| |#1| (-363)))) (-2527 (($ (-641 $)) 98 (|has| |#1| (-363))) (($ $ $) 97 (|has| |#1| (-363)))) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) 145 (|has| |#1| (-349)))) (-4006 (((-418 $) $) 112 (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 109 (|has| |#1| (-363)))) (-1343 (((-3 $ "failed") $ $) 92 (|has| |#1| (-363)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-363)))) (-3712 (((-768) $) 105 (|has| |#1| (-363)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 106 (|has| |#1| (-363)))) (-1938 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-1504 (((-768) $) 150 (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) 138 (|has| |#1| (-349)))) (-3226 (($ $) 136 (-4002 (-4266 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) 134 (-4002 (-4266 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 132 (-4266 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 131 (-4266 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-768)) 130 (-4266 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-768))) 129 (-4266 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-768)) 122 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-363)))) (-2836 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-1916 ((|#2|) 158)) (-3726 (($) 147 (|has| |#1| (-349)))) (-3072 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2127 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| |#1| (-349)))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-363))) (($ (-407 (-564))) 86 (-4002 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-2864 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-3216 ((|#2| $) 46)) (-1965 (((-768)) 28 T CONST)) (-3941 (((-1259 $)) 68)) (-1582 (((-112) $ $) 95 (|has| |#1| (-363)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $) 135 (-4002 (-4266 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) 133 (-4002 (-4266 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 128 (-4266 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 127 (-4266 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-768)) 126 (-4266 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-768))) 125 (-4266 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-768)) 124 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-363)))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ $) 120 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363)))))
+((-2018 (((-768)) 42)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2376 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 23)) (-1728 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 53)) (-4272 (((-3 $ "failed") $) 73)) (-2939 (($) 47)) (-2217 ((|#2| $) 21)) (-1729 (($) 18)) (-2203 (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-2227 (((-685 |#2|) (-1259 $) (-1 |#2| |#2|)) 68)) (-2374 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1650 ((|#3| $) 39)) (-4339 (((-1259 $)) 36)))
+(((-720 |#1| |#2| |#3|) (-10 -8 (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2939 (|#1|)) (-15 -2018 ((-768))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2227 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -1728 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2374 (|#1| |#3|)) (-15 -1728 (|#1| |#3|)) (-15 -1729 (|#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2374 (|#3| |#1|)) (-15 -2374 (|#1| (-1259 |#2|))) (-15 -2374 ((-1259 |#2|) |#1|)) (-15 -4339 ((-1259 |#1|))) (-15 -1650 (|#3| |#1|)) (-15 -2217 (|#2| |#1|)) (-15 -4272 ((-3 |#1| "failed") |#1|))) (-721 |#2| |#3|) (-172) (-1235 |#2|)) (T -720))
+((-2018 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-768)) (-5 *1 (-720 *3 *4 *5)) (-4 *3 (-721 *4 *5)))))
+(-10 -8 (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2939 (|#1|)) (-15 -2018 ((-768))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2227 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -1728 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2374 (|#1| |#3|)) (-15 -1728 (|#1| |#3|)) (-15 -1729 (|#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2374 (|#3| |#1|)) (-15 -2374 (|#1| (-1259 |#2|))) (-15 -2374 ((-1259 |#2|) |#1|)) (-15 -4339 ((-1259 |#1|))) (-15 -1650 (|#3| |#1|)) (-15 -2217 (|#2| |#1|)) (-15 -4272 ((-3 |#1| "failed") |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 93 (|has| |#1| (-363)))) (-1582 (($ $) 94 (|has| |#1| (-363)))) (-3897 (((-112) $) 96 (|has| |#1| (-363)))) (-3150 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3767 ((|#1| $) 53)) (-1494 (((-1182 (-918) (-768)) (-564)) 146 (|has| |#1| (-349)))) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 113 (|has| |#1| (-363)))) (-1592 (((-418 $) $) 114 (|has| |#1| (-363)))) (-3907 (((-112) $ $) 104 (|has| |#1| (-363)))) (-2018 (((-768)) 87 (|has| |#1| (-368)))) (-3180 (($) 17 T CONST)) (-2224 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-2376 (((-564) $) 168 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 165)) (-3566 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-1399 (($ $ $) 108 (|has| |#1| (-363)))) (-3439 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-3613 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-1728 (($ |#2|) 157) (((-3 $ "failed") (-407 |#2|)) 154 (|has| |#1| (-363)))) (-4272 (((-3 $ "failed") $) 33)) (-1595 (((-918)) 55)) (-2939 (($) 90 (|has| |#1| (-368)))) (-1371 (($ $ $) 107 (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 102 (|has| |#1| (-363)))) (-3648 (($) 148 (|has| |#1| (-349)))) (-1937 (((-112) $) 149 (|has| |#1| (-349)))) (-1957 (($ $ (-768)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-1926 (((-112) $) 115 (|has| |#1| (-363)))) (-1454 (((-918) $) 151 (|has| |#1| (-349))) (((-830 (-918)) $) 137 (|has| |#1| (-349)))) (-2340 (((-112) $) 31)) (-2217 ((|#1| $) 52)) (-3804 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-363)))) (-2041 ((|#2| $) 45 (|has| |#1| (-363)))) (-4031 (((-918) $) 89 (|has| |#1| (-368)))) (-1714 ((|#2| $) 155)) (-2688 (($ (-641 $)) 100 (|has| |#1| (-363))) (($ $ $) 99 (|has| |#1| (-363)))) (-1868 (((-1152) $) 9)) (-1295 (($ $) 116 (|has| |#1| (-363)))) (-3304 (($) 142 (|has| |#1| (-349)) CONST)) (-3338 (($ (-918)) 88 (|has| |#1| (-368)))) (-3844 (((-1114) $) 10)) (-1729 (($) 159)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| |#1| (-363)))) (-2727 (($ (-641 $)) 98 (|has| |#1| (-363))) (($ $ $) 97 (|has| |#1| (-363)))) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) 145 (|has| |#1| (-349)))) (-4139 (((-418 $) $) 112 (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 109 (|has| |#1| (-363)))) (-1347 (((-3 $ "failed") $ $) 92 (|has| |#1| (-363)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-363)))) (-3966 (((-768) $) 105 (|has| |#1| (-363)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 106 (|has| |#1| (-363)))) (-4378 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-2671 (((-768) $) 150 (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) 138 (|has| |#1| (-349)))) (-2203 (($ $) 136 (-4012 (-4264 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) 134 (-4012 (-4264 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 132 (-4264 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 131 (-4264 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-768)) 130 (-4264 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-768))) 129 (-4264 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-768)) 122 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-363)))) (-2227 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-4180 ((|#2|) 158)) (-2927 (($) 147 (|has| |#1| (-349)))) (-3867 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2374 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| |#1| (-349)))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-363))) (($ (-407 (-564))) 86 (-4012 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4363 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-1650 ((|#2| $) 46)) (-3379 (((-768)) 28 T CONST)) (-4339 (((-1259 $)) 68)) (-3979 (((-112) $ $) 95 (|has| |#1| (-363)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $) 135 (-4012 (-4264 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) 133 (-4012 (-4264 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 128 (-4264 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 127 (-4264 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-768)) 126 (-4264 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-768))) 125 (-4264 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-768)) 124 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-363)))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ $) 120 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363)))))
(((-721 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -721))
-((-1502 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-721 *2 *3)) (-4 *3 (-1235 *2)))) (-1916 (*1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-4367 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) (-2127 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) (-4358 (*1 *2 *1) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-4367 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-721 *3 *4)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-721 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *5)))))
-(-13 (-409 |t#1| |t#2|) (-172) (-612 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -1502 ($)) (-15 -1916 (|t#2|)) (-15 -4367 ($ |t#2|)) (-15 -2127 ($ |t#2|)) (-15 -4358 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -4367 ((-3 $ "failed") (-407 |t#2|))) (-15 -2836 ((-685 |t#1|) (-1259 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4002 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) . T) ((-612 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -4002 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4002 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-556) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 #0#) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-714 |#1|) . T) ((-714 $) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170)))) ((-917) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1213) -4002 (|has| |#1| (-349)) (|has| |#1| (-363))))
-((-3760 (($) 11)) (-1926 (((-3 $ "failed") $) 14)) (-2419 (((-112) $) 10)) (** (($ $ (-918)) NIL) (($ $ (-768)) 20)))
-(((-722 |#1|) (-10 -8 (-15 -1926 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 -2419 ((-112) |#1|)) (-15 -3760 (|#1|)) (-15 ** (|#1| |#1| (-918)))) (-723)) (T -722))
-NIL
-(-10 -8 (-15 -1926 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 -2419 ((-112) |#1|)) (-15 -3760 (|#1|)) (-15 ** (|#1| |#1| (-918))))
-((-1754 (((-112) $ $) 7)) (-3760 (($) 18 T CONST)) (-1926 (((-3 $ "failed") $) 15)) (-2419 (((-112) $) 17)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4327 (($) 19 T CONST)) (-1686 (((-112) $ $) 6)) (** (($ $ (-918)) 13) (($ $ (-768)) 16)) (* (($ $ $) 14)))
+((-1729 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-721 *2 *3)) (-4 *3 (-1235 *2)))) (-4180 (*1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-1728 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) (-2374 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-1728 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-721 *3 *4)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-721 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *5)))))
+(-13 (-409 |t#1| |t#2|) (-172) (-612 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -1729 ($)) (-15 -4180 (|t#2|)) (-15 -1728 ($ |t#2|)) (-15 -2374 ($ |t#2|)) (-15 -1714 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -1728 ((-3 $ "failed") (-407 |t#2|))) (-15 -2227 ((-685 |t#1|) (-1259 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4012 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) . T) ((-612 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -4012 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4012 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-556) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 #0#) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-714 |#1|) . T) ((-714 $) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170)))) ((-917) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1213) -4012 (|has| |#1| (-349)) (|has| |#1| (-363))))
+((-3180 (($) 11)) (-4272 (((-3 $ "failed") $) 14)) (-2340 (((-112) $) 10)) (** (($ $ (-918)) NIL) (($ $ (-768)) 20)))
+(((-722 |#1|) (-10 -8 (-15 -4272 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 -2340 ((-112) |#1|)) (-15 -3180 (|#1|)) (-15 ** (|#1| |#1| (-918)))) (-723)) (T -722))
+NIL
+(-10 -8 (-15 -4272 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 -2340 ((-112) |#1|)) (-15 -3180 (|#1|)) (-15 ** (|#1| |#1| (-918))))
+((-3702 (((-112) $ $) 7)) (-3180 (($) 18 T CONST)) (-4272 (((-3 $ "failed") $) 15)) (-2340 (((-112) $) 17)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4323 (($) 19 T CONST)) (-1720 (((-112) $ $) 6)) (** (($ $ (-918)) 13) (($ $ (-768)) 16)) (* (($ $ $) 14)))
(((-723) (-140)) (T -723))
-((-4327 (*1 *1) (-4 *1 (-723))) (-3760 (*1 *1) (-4 *1 (-723))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-768)))) (-1926 (*1 *1 *1) (|partial| -4 *1 (-723))))
-(-13 (-1106) (-10 -8 (-15 (-4327) ($) -3246) (-15 -3760 ($) -3246) (-15 -2419 ((-112) $)) (-15 ** ($ $ (-768))) (-15 -1926 ((-3 $ "failed") $))))
+((-4323 (*1 *1) (-4 *1 (-723))) (-3180 (*1 *1) (-4 *1 (-723))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-768)))) (-4272 (*1 *1 *1) (|partial| -4 *1 (-723))))
+(-13 (-1106) (-10 -8 (-15 (-4323) ($) -2222) (-15 -3180 ($) -2222) (-15 -2340 ((-112) $)) (-15 ** ($ $ (-768))) (-15 -4272 ((-3 $ "failed") $))))
(((-102) . T) ((-611 (-859)) . T) ((-1106) . T) ((-1094) . T))
-((-2803 (((-2 (|:| -4336 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-1654 (((-2 (|:| -4336 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1974 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-1770 (((-2 (|:| |poly| |#2|) (|:| -4336 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 48)))
-(((-724 |#1| |#2|) (-10 -7 (-15 -1654 ((-2 (|:| -4336 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2803 ((-2 (|:| -4336 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1974 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -1770 ((-2 (|:| |poly| |#2|) (|:| -4336 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -724))
-((-1770 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4336 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-724 *5 *6)) (-5 *3 (-407 *6)))) (-1974 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-724 *5 *2)) (-4 *5 (-363)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -4336 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-724 *5 *3)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -4336 *3) (|:| |special| *3))) (-5 *1 (-724 *5 *3)))))
-(-10 -7 (-15 -1654 ((-2 (|:| -4336 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2803 ((-2 (|:| -4336 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1974 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -1770 ((-2 (|:| |poly| |#2|) (|:| -4336 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|))))
-((-4356 ((|#7| (-641 |#5|) |#6|) NIL)) (-2082 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2082 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4356 (|#7| (-641 |#5|) |#6|))) (-847) (-790) (-790) (-1046) (-1046) (-946 |#4| |#2| |#1|) (-946 |#5| |#3| |#1|)) (T -725))
-((-4356 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *9)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *8 (-1046)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) (-4 *4 (-946 *8 *6 *5)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1046)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) (-4 *4 (-946 *8 *6 *5)))))
-(-10 -7 (-15 -2082 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4356 (|#7| (-641 |#5|) |#6|)))
-((-2082 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-726 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2082 (|#7| (-1 |#2| |#1|) |#6|))) (-847) (-847) (-790) (-790) (-1046) (-946 |#5| |#3| |#1|) (-946 |#5| |#4| |#2|)) (T -726))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-4 *7 (-790)) (-4 *9 (-1046)) (-4 *2 (-946 *9 *8 *6)) (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-790)) (-4 *4 (-946 *9 *7 *5)))))
-(-10 -7 (-15 -2082 (|#7| (-1 |#2| |#1|) |#6|)))
-((-4006 (((-418 |#4|) |#4|) 42)))
-(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4006 ((-418 |#4|) |#4|))) (-790) (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170))))) (-307) (-946 (-949 |#3|) |#1| |#2|)) (T -727))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-946 (-949 *6) *4 *5)))))
-(-10 -7 (-15 -4006 ((-418 |#4|) |#4|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-861 |#1|)) $) NIL)) (-3964 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1840 (($ $) NIL (|has| |#2| (-556)))) (-4035 (((-112) $) NIL (|has| |#2| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1368 (($ $) NIL (|has| |#2| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2064 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-4267 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-4346 (($ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#2| (-906)))) (-2877 (($ $ |#2| (-531 (-861 |#1|)) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-4157 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#2| (-531 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-861 |#1|)) NIL)) (-3829 (((-531 (-861 |#1|)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-3571 (($ $ $) NIL (|has| |#2| (-847)))) (-1547 (($ $ $) NIL (|has| |#2| (-847)))) (-2964 (($ (-1 (-531 (-861 |#1|)) (-531 (-861 |#1|))) $) NIL)) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2022 (((-3 (-861 |#1|) "failed") $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#2| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-4202 (((-1152) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -3747 (-768))) "failed") $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#2| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1343 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-1938 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-3226 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-3344 (((-531 (-861 |#1|)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2712 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ $) NIL (|has| |#2| (-556))) (($ (-407 (-564))) NIL (-4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))))) (-4264 (((-641 |#2|) $) NIL)) (-1757 ((|#2| $ (-531 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1738 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+((-1905 (((-2 (|:| -3139 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3374 (((-2 (|:| -3139 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3457 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-3282 (((-2 (|:| |poly| |#2|) (|:| -3139 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 48)))
+(((-724 |#1| |#2|) (-10 -7 (-15 -3374 ((-2 (|:| -3139 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1905 ((-2 (|:| -3139 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3457 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3282 ((-2 (|:| |poly| |#2|) (|:| -3139 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -724))
+((-3282 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3139 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-724 *5 *6)) (-5 *3 (-407 *6)))) (-3457 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-724 *5 *2)) (-4 *5 (-363)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3139 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-724 *5 *3)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3139 *3) (|:| |special| *3))) (-5 *1 (-724 *5 *3)))))
+(-10 -7 (-15 -3374 ((-2 (|:| -3139 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1905 ((-2 (|:| -3139 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3457 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3282 ((-2 (|:| |poly| |#2|) (|:| -3139 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|))))
+((-3210 ((|#7| (-641 |#5|) |#6|) NIL)) (-2313 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2313 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3210 (|#7| (-641 |#5|) |#6|))) (-847) (-790) (-790) (-1046) (-1046) (-946 |#4| |#2| |#1|) (-946 |#5| |#3| |#1|)) (T -725))
+((-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *9)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *8 (-1046)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) (-4 *4 (-946 *8 *6 *5)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1046)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) (-4 *4 (-946 *8 *6 *5)))))
+(-10 -7 (-15 -2313 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3210 (|#7| (-641 |#5|) |#6|)))
+((-2313 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-726 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2313 (|#7| (-1 |#2| |#1|) |#6|))) (-847) (-847) (-790) (-790) (-1046) (-946 |#5| |#3| |#1|) (-946 |#5| |#4| |#2|)) (T -726))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-4 *7 (-790)) (-4 *9 (-1046)) (-4 *2 (-946 *9 *8 *6)) (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-790)) (-4 *4 (-946 *9 *7 *5)))))
+(-10 -7 (-15 -2313 (|#7| (-1 |#2| |#1|) |#6|)))
+((-4139 (((-418 |#4|) |#4|) 42)))
+(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-418 |#4|) |#4|))) (-790) (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170))))) (-307) (-946 (-949 |#3|) |#1| |#2|)) (T -727))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-946 (-949 *6) *4 *5)))))
+(-10 -7 (-15 -4139 ((-418 |#4|) |#4|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-861 |#1|)) $) NIL)) (-4103 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1582 (($ $) NIL (|has| |#2| (-556)))) (-3897 (((-112) $) NIL (|has| |#2| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1328 (($ $) NIL (|has| |#2| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2376 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-4275 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-1374 (($ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#2| (-906)))) (-1423 (($ $ |#2| (-531 (-861 |#1|)) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-4279 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#2| (-531 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-861 |#1|)) NIL)) (-2700 (((-531 (-861 |#1|)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-3428 (($ $ $) NIL (|has| |#2| (-847)))) (-3413 (($ $ $) NIL (|has| |#2| (-847)))) (-4062 (($ (-1 (-531 (-861 |#1|)) (-531 (-861 |#1|))) $) NIL)) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-2848 (((-3 (-861 |#1|) "failed") $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#2| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1868 (((-1152) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -3078 (-768))) "failed") $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#2| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1347 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-4378 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-2203 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-3475 (((-531 (-861 |#1|)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3324 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ $) NIL (|has| |#2| (-556))) (($ (-407 (-564))) NIL (-4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))))) (-4252 (((-641 |#2|) $) NIL)) (-3181 ((|#2| $ (-531 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
(((-728 |#1| |#2|) (-946 |#2| (-531 (-861 |#1|)) (-861 |#1|)) (-641 (-1170)) (-1046)) (T -728))
NIL
(-946 |#2| (-531 (-861 |#1|)) (-861 |#1|))
-((-2047 (((-2 (|:| -3382 (-949 |#3|)) (|:| -3851 (-949 |#3|))) |#4|) 14)) (-3189 ((|#4| |#4| |#2|) 33)) (-2208 ((|#4| (-407 (-949 |#3|)) |#2|) 64)) (-2439 ((|#4| (-1166 (-949 |#3|)) |#2|) 80)) (-3558 ((|#4| (-1166 |#4|) |#2|) 51)) (-4366 ((|#4| |#4| |#2|) 54)) (-4006 (((-418 |#4|) |#4|) 40)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2047 ((-2 (|:| -3382 (-949 |#3|)) (|:| -3851 (-949 |#3|))) |#4|)) (-15 -4366 (|#4| |#4| |#2|)) (-15 -3558 (|#4| (-1166 |#4|) |#2|)) (-15 -3189 (|#4| |#4| |#2|)) (-15 -2439 (|#4| (-1166 (-949 |#3|)) |#2|)) (-15 -2208 (|#4| (-407 (-949 |#3|)) |#2|)) (-15 -4006 ((-418 |#4|) |#4|))) (-790) (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)))) (-556) (-946 (-407 (-949 |#3|)) |#1| |#2|)) (T -729))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))) (-2208 (*1 *2 *3 *4) (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-5 *3 (-407 (-949 *6))) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))))) (-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-949 *6))) (-4 *6 (-556)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))))) (-3189 (*1 *2 *2 *3) (-12 (-4 *4 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) (-3558 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))) (-4 *6 (-556)))) (-4366 (*1 *2 *2 *3) (-12 (-4 *4 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) (-2047 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-2 (|:| -3382 (-949 *6)) (|:| -3851 (-949 *6)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))))
-(-10 -7 (-15 -2047 ((-2 (|:| -3382 (-949 |#3|)) (|:| -3851 (-949 |#3|))) |#4|)) (-15 -4366 (|#4| |#4| |#2|)) (-15 -3558 (|#4| (-1166 |#4|) |#2|)) (-15 -3189 (|#4| |#4| |#2|)) (-15 -2439 (|#4| (-1166 (-949 |#3|)) |#2|)) (-15 -2208 (|#4| (-407 (-949 |#3|)) |#2|)) (-15 -4006 ((-418 |#4|) |#4|)))
-((-4006 (((-418 |#4|) |#4|) 54)))
-(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4006 ((-418 |#4|) |#4|))) (-790) (-847) (-13 (-307) (-147)) (-946 (-407 |#3|) |#1| |#2|)) (T -730))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-946 (-407 *6) *4 *5)))))
-(-10 -7 (-15 -4006 ((-418 |#4|) |#4|)))
-((-2082 (((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)) 18)))
-(((-731 |#1| |#2| |#3|) (-10 -7 (-15 -2082 ((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)))) (-1046) (-1046) (-723)) (T -731))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5 *7)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *7 (-723)) (-5 *2 (-732 *6 *7)) (-5 *1 (-731 *5 *6 *7)))))
-(-10 -7 (-15 -2082 ((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 39)) (-3219 (((-641 (-2 (|:| -1662 |#1|) (|:| -2292 |#2|))) $) 40)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3042 (((-768)) 22 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-2064 ((|#2| $) NIL) ((|#1| $) NIL)) (-4346 (($ $) 104 (|has| |#2| (-847)))) (-1926 (((-3 $ "failed") $) 87)) (-2542 (($) 51 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) 72)) (-2791 (((-641 $) $) 55)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| |#2|) 17)) (-2082 (($ (-1 |#1| |#1|) $) 70)) (-2209 (((-918) $) 46 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-4311 ((|#2| $) 103 (|has| |#2| (-847)))) (-4323 ((|#1| $) 102 (|has| |#2| (-847)))) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) 38 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 101) (($ (-564)) 61) (($ |#2|) 58) (($ |#1|) 59) (($ (-641 (-2 (|:| -1662 |#1|) (|:| -2292 |#2|)))) 11)) (-4264 (((-641 |#1|) $) 57)) (-1757 ((|#1| $ |#2|) 115)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-4317 (($) 12 T CONST)) (-4327 (($) 47 T CONST)) (-1686 (((-112) $ $) 107)) (-1783 (($ $) 63) (($ $ $) NIL)) (-1771 (($ $ $) 36)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 68) (($ $ $) 118) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-732 |#1| |#2|) (-13 (-1046) (-1035 |#2|) (-1035 |#1|) (-10 -8 (-15 -4145 ($ |#1| |#2|)) (-15 -1757 (|#1| $ |#2|)) (-15 -1765 ($ (-641 (-2 (|:| -1662 |#1|) (|:| -2292 |#2|))))) (-15 -3219 ((-641 (-2 (|:| -1662 |#1|) (|:| -2292 |#2|))) $)) (-15 -2082 ($ (-1 |#1| |#1|) $)) (-15 -3101 ((-112) $)) (-15 -4264 ((-641 |#1|) $)) (-15 -2791 ((-641 $) $)) (-15 -3107 ((-768) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-847)) (PROGN (-15 -4311 (|#2| $)) (-15 -4323 (|#1| $)) (-15 -4346 ($ $))) |%noBranch|))) (-1046) (-723)) (T -732))
-((-4145 (*1 *1 *2 *3) (-12 (-5 *1 (-732 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-723)))) (-1757 (*1 *2 *1 *3) (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-723)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1662 *3) (|:| -2292 *4)))) (-4 *3 (-1046)) (-4 *4 (-723)) (-5 *1 (-732 *3 *4)))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -1662 *3) (|:| -2292 *4)))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-732 *3 *4)) (-4 *4 (-723)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-641 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-4311 (*1 *2 *1) (-12 (-4 *2 (-723)) (-4 *2 (-847)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1046)))) (-4323 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *3 (-723)))) (-4346 (*1 *1 *1) (-12 (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1046)) (-4 *3 (-723)))))
-(-13 (-1046) (-1035 |#2|) (-1035 |#1|) (-10 -8 (-15 -4145 ($ |#1| |#2|)) (-15 -1757 (|#1| $ |#2|)) (-15 -1765 ($ (-641 (-2 (|:| -1662 |#1|) (|:| -2292 |#2|))))) (-15 -3219 ((-641 (-2 (|:| -1662 |#1|) (|:| -2292 |#2|))) $)) (-15 -2082 ($ (-1 |#1| |#1|) $)) (-15 -3101 ((-112) $)) (-15 -4264 ((-641 |#1|) $)) (-15 -2791 ((-641 $) $)) (-15 -3107 ((-768) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-847)) (PROGN (-15 -4311 (|#2| $)) (-15 -4323 (|#1| $)) (-15 -4346 ($ $))) |%noBranch|)))
-((-1754 (((-112) $ $) 19)) (-3423 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2032 (($ $ $) 72)) (-2723 (((-112) $ $) 73)) (-3263 (((-112) $ (-768)) 8)) (-3581 (($ (-641 |#1|)) 68) (($) 67)) (-4194 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3083 (($ $) 62)) (-3104 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2359 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2081 (((-112) $ $) 64)) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22)) (-1617 (($ $ $) 69)) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-3802 (((-1114) $) 21)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4282 (((-641 (-2 (|:| -1327 |#1|) (|:| -3815 (-768)))) $) 61)) (-2003 (($ $ |#1|) 71) (($ $ $) 70)) (-3784 (($) 49) (($ (-641 |#1|)) 48)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 50)) (-1765 (((-859) $) 18)) (-4086 (($ (-641 |#1|)) 66) (($) 65)) (-2652 (($ (-641 |#1|)) 42)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20)) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3058 (((-2 (|:| -3884 (-949 |#3|)) (|:| -1641 (-949 |#3|))) |#4|) 14)) (-2672 ((|#4| |#4| |#2|) 33)) (-4021 ((|#4| (-407 (-949 |#3|)) |#2|) 64)) (-2564 ((|#4| (-1166 (-949 |#3|)) |#2|) 80)) (-1919 ((|#4| (-1166 |#4|) |#2|) 51)) (-3860 ((|#4| |#4| |#2|) 54)) (-4139 (((-418 |#4|) |#4|) 40)))
+(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3058 ((-2 (|:| -3884 (-949 |#3|)) (|:| -1641 (-949 |#3|))) |#4|)) (-15 -3860 (|#4| |#4| |#2|)) (-15 -1919 (|#4| (-1166 |#4|) |#2|)) (-15 -2672 (|#4| |#4| |#2|)) (-15 -2564 (|#4| (-1166 (-949 |#3|)) |#2|)) (-15 -4021 (|#4| (-407 (-949 |#3|)) |#2|)) (-15 -4139 ((-418 |#4|) |#4|))) (-790) (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)))) (-556) (-946 (-407 (-949 |#3|)) |#1| |#2|)) (T -729))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))) (-4021 (*1 *2 *3 *4) (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-5 *3 (-407 (-949 *6))) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-949 *6))) (-4 *6 (-556)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))))) (-2672 (*1 *2 *2 *3) (-12 (-4 *4 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) (-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))) (-4 *6 (-556)))) (-3860 (*1 *2 *2 *3) (-12 (-4 *4 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) (-3058 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-2 (|:| -3884 (-949 *6)) (|:| -1641 (-949 *6)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))))
+(-10 -7 (-15 -3058 ((-2 (|:| -3884 (-949 |#3|)) (|:| -1641 (-949 |#3|))) |#4|)) (-15 -3860 (|#4| |#4| |#2|)) (-15 -1919 (|#4| (-1166 |#4|) |#2|)) (-15 -2672 (|#4| |#4| |#2|)) (-15 -2564 (|#4| (-1166 (-949 |#3|)) |#2|)) (-15 -4021 (|#4| (-407 (-949 |#3|)) |#2|)) (-15 -4139 ((-418 |#4|) |#4|)))
+((-4139 (((-418 |#4|) |#4|) 54)))
+(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-418 |#4|) |#4|))) (-790) (-847) (-13 (-307) (-147)) (-946 (-407 |#3|) |#1| |#2|)) (T -730))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-946 (-407 *6) *4 *5)))))
+(-10 -7 (-15 -4139 ((-418 |#4|) |#4|)))
+((-2313 (((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)) 18)))
+(((-731 |#1| |#2| |#3|) (-10 -7 (-15 -2313 ((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)))) (-1046) (-1046) (-723)) (T -731))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5 *7)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *7 (-723)) (-5 *2 (-732 *6 *7)) (-5 *1 (-731 *5 *6 *7)))))
+(-10 -7 (-15 -2313 ((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 39)) (-1681 (((-641 (-2 (|:| -1817 |#1|) (|:| -2579 |#2|))) $) 40)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2018 (((-768)) 22 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-2376 ((|#2| $) NIL) ((|#1| $) NIL)) (-1374 (($ $) 104 (|has| |#2| (-847)))) (-4272 (((-3 $ "failed") $) 87)) (-2939 (($) 51 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) 72)) (-1767 (((-641 $) $) 55)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| |#2|) 17)) (-2313 (($ (-1 |#1| |#1|) $) 70)) (-4031 (((-918) $) 46 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-1330 ((|#2| $) 103 (|has| |#2| (-847)))) (-1345 ((|#1| $) 102 (|has| |#2| (-847)))) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) 38 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 101) (($ (-564)) 61) (($ |#2|) 58) (($ |#1|) 59) (($ (-641 (-2 (|:| -1817 |#1|) (|:| -2579 |#2|)))) 11)) (-4252 (((-641 |#1|) $) 57)) (-3181 ((|#1| $ |#2|) 115)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-4312 (($) 12 T CONST)) (-4323 (($) 47 T CONST)) (-1720 (((-112) $ $) 107)) (-1828 (($ $) 63) (($ $ $) NIL)) (-1814 (($ $ $) 36)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 68) (($ $ $) 118) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-732 |#1| |#2|) (-13 (-1046) (-1035 |#2|) (-1035 |#1|) (-10 -8 (-15 -4267 ($ |#1| |#2|)) (-15 -3181 (|#1| $ |#2|)) (-15 -3714 ($ (-641 (-2 (|:| -1817 |#1|) (|:| -2579 |#2|))))) (-15 -1681 ((-641 (-2 (|:| -1817 |#1|) (|:| -2579 |#2|))) $)) (-15 -2313 ($ (-1 |#1| |#1|) $)) (-15 -2961 ((-112) $)) (-15 -4252 ((-641 |#1|) $)) (-15 -1767 ((-641 $) $)) (-15 -2998 ((-768) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-847)) (PROGN (-15 -1330 (|#2| $)) (-15 -1345 (|#1| $)) (-15 -1374 ($ $))) |%noBranch|))) (-1046) (-723)) (T -732))
+((-4267 (*1 *1 *2 *3) (-12 (-5 *1 (-732 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-723)))) (-3181 (*1 *2 *1 *3) (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-723)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1817 *3) (|:| -2579 *4)))) (-4 *3 (-1046)) (-4 *4 (-723)) (-5 *1 (-732 *3 *4)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -1817 *3) (|:| -2579 *4)))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-732 *3 *4)) (-4 *4 (-723)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-641 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-1330 (*1 *2 *1) (-12 (-4 *2 (-723)) (-4 *2 (-847)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1046)))) (-1345 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *3 (-723)))) (-1374 (*1 *1 *1) (-12 (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1046)) (-4 *3 (-723)))))
+(-13 (-1046) (-1035 |#2|) (-1035 |#1|) (-10 -8 (-15 -4267 ($ |#1| |#2|)) (-15 -3181 (|#1| $ |#2|)) (-15 -3714 ($ (-641 (-2 (|:| -1817 |#1|) (|:| -2579 |#2|))))) (-15 -1681 ((-641 (-2 (|:| -1817 |#1|) (|:| -2579 |#2|))) $)) (-15 -2313 ($ (-1 |#1| |#1|) $)) (-15 -2961 ((-112) $)) (-15 -4252 ((-641 |#1|) $)) (-15 -1767 ((-641 $) $)) (-15 -2998 ((-768) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-847)) (PROGN (-15 -1330 (|#2| $)) (-15 -1345 (|#1| $)) (-15 -1374 ($ $))) |%noBranch|)))
+((-3702 (((-112) $ $) 19)) (-3452 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2935 (($ $ $) 72)) (-2303 (((-112) $ $) 73)) (-2141 (((-112) $ (-768)) 8)) (-3633 (($ (-641 |#1|)) 68) (($) 67)) (-1773 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2822 (($ $) 62)) (-2084 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ |#1| $) 47 (|has| $ (-6 -4412))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4412)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4412)))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2214 (((-112) $ $) 64)) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22)) (-4302 (($ $ $) 69)) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-3844 (((-1114) $) 21)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-1327 (((-641 (-2 (|:| -2575 |#1|) (|:| -3855 (-768)))) $) 61)) (-3796 (($ $ |#1|) 71) (($ $ $) 70)) (-3372 (($) 49) (($ (-641 |#1|)) 48)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 50)) (-3714 (((-859) $) 18)) (-4208 (($ (-641 |#1|)) 66) (($) 65)) (-3976 (($ (-641 |#1|)) 42)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20)) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-733 |#1|) (-140) (-1094)) (T -733))
NIL
(-13 (-691 |t#1|) (-1092 |t#1|))
(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T))
-((-1754 (((-112) $ $) NIL)) (-3423 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 94)) (-2032 (($ $ $) 98)) (-2723 (((-112) $ $) 104)) (-3263 (((-112) $ (-768)) NIL)) (-3581 (($ (-641 |#1|)) 26) (($) 17)) (-4194 (($ (-1 (-112) |#1|) $) 82 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3083 (($ $) 84)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1907 (($ |#1| $) 70 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4411))) (($ |#1| $ (-564)) 75) (($ (-1 (-112) |#1|) $ (-564)) 78)) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (($ |#1| $ (-564)) 80) (($ (-1 (-112) |#1|) $ (-564)) 81)) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3080 (((-641 |#1|) $) 32 (|has| $ (-6 -4411)))) (-2081 (((-112) $ $) 103)) (-1365 (($) 15) (($ |#1|) 28) (($ (-641 |#1|)) 23)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) 38)) (-3675 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) 87 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 88)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-1617 (($ $ $) 96)) (-1833 ((|#1| $) 62)) (-2098 (($ |#1| $) 63) (($ |#1| $ (-768)) 85)) (-3802 (((-1114) $) NIL)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3389 ((|#1| $) 61)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 56)) (-3845 (($) 14)) (-4282 (((-641 (-2 (|:| -1327 |#1|) (|:| -3815 (-768)))) $) 55)) (-2003 (($ $ |#1|) NIL) (($ $ $) 97)) (-3784 (($) 16) (($ (-641 |#1|)) 25)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) 68 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) 79)) (-2127 (((-536) $) 36 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 22)) (-1765 (((-859) $) 49)) (-4086 (($ (-641 |#1|)) 27) (($) 18)) (-2652 (($ (-641 |#1|)) 24)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 102)) (-2589 (((-768) $) 67 (|has| $ (-6 -4411)))))
-(((-734 |#1|) (-13 (-733 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -1365 ($)) (-15 -1365 ($ |#1|)) (-15 -1365 ($ (-641 |#1|))) (-15 -3817 ((-641 |#1|) $)) (-15 -2359 ($ |#1| $ (-564))) (-15 -2359 ($ (-1 (-112) |#1|) $ (-564))) (-15 -1907 ($ |#1| $ (-564))) (-15 -1907 ($ (-1 (-112) |#1|) $ (-564))))) (-1094)) (T -734))
-((-1365 (*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-1365 (*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-734 *3)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-734 *3)) (-4 *3 (-1094)))) (-2359 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-2359 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-734 *4)))) (-1907 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-1907 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-734 *4)))))
-(-13 (-733 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -1365 ($)) (-15 -1365 ($ |#1|)) (-15 -1365 ($ (-641 |#1|))) (-15 -3817 ((-641 |#1|) $)) (-15 -2359 ($ |#1| $ (-564))) (-15 -2359 ($ (-1 (-112) |#1|) $ (-564))) (-15 -1907 ($ |#1| $ (-564))) (-15 -1907 ($ (-1 (-112) |#1|) $ (-564)))))
-((-4300 (((-1264) (-1152)) 8)))
-(((-735) (-10 -7 (-15 -4300 ((-1264) (-1152))))) (T -735))
-((-4300 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-735)))))
-(-10 -7 (-15 -4300 ((-1264) (-1152))))
-((-3668 (((-641 |#1|) (-641 |#1|) (-641 |#1|)) 15)))
-(((-736 |#1|) (-10 -7 (-15 -3668 ((-641 |#1|) (-641 |#1|) (-641 |#1|)))) (-847)) (T -736))
-((-3668 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-736 *3)))))
-(-10 -7 (-15 -3668 ((-641 |#1|) (-641 |#1|) (-641 |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4170 (((-641 |#2|) $) 139)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 132 (|has| |#1| (-556)))) (-1840 (($ $) 131 (|has| |#1| (-556)))) (-4035 (((-112) $) 129 (|has| |#1| (-556)))) (-3904 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 71 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) 19)) (-4019 (($ $) 70 (|has| |#1| (-38 (-407 (-564)))))) (-3879 (($ $) 87 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 72 (|has| |#1| (-38 (-407 (-564)))))) (-3933 (($ $) 86 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 73 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) 17 T CONST)) (-4346 (($ $) 123)) (-1926 (((-3 $ "failed") $) 33)) (-4191 (((-949 |#1|) $ (-768)) 101) (((-949 |#1|) $ (-768) (-768)) 100)) (-1459 (((-112) $) 140)) (-1539 (($) 98 (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-768) $ |#2|) 103) (((-768) $ |#2| (-768)) 102)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 69 (|has| |#1| (-38 (-407 (-564)))))) (-3101 (((-112) $) 121)) (-4145 (($ $ (-641 |#2|) (-641 (-531 |#2|))) 138) (($ $ |#2| (-531 |#2|)) 137) (($ |#1| (-531 |#2|)) 122) (($ $ |#2| (-768)) 105) (($ $ (-641 |#2|) (-641 (-768))) 104)) (-2082 (($ (-1 |#1| |#1|) $) 120)) (-2186 (($ $) 95 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) 118)) (-4323 ((|#1| $) 117)) (-4202 (((-1152) $) 9)) (-3591 (($ $ |#2|) 99 (|has| |#1| (-38 (-407 (-564)))))) (-3802 (((-1114) $) 10)) (-2678 (($ $ (-768)) 106)) (-1343 (((-3 $ "failed") $ $) 133 (|has| |#1| (-556)))) (-2152 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (($ $ |#2| $) 114) (($ $ (-641 |#2|) (-641 $)) 113) (($ $ (-641 (-294 $))) 112) (($ $ (-294 $)) 111) (($ $ $ $) 110) (($ $ (-641 $) (-641 $)) 109)) (-3226 (($ $ |#2|) 42) (($ $ (-641 |#2|)) 41) (($ $ |#2| (-768)) 40) (($ $ (-641 |#2|) (-641 (-768))) 39)) (-3344 (((-531 |#2|) $) 119)) (-3949 (($ $) 85 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 74 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 84 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 75 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 83 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 76 (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) 141)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 136 (|has| |#1| (-172))) (($ $) 134 (|has| |#1| (-556))) (($ (-407 (-564))) 126 (|has| |#1| (-38 (-407 (-564)))))) (-1757 ((|#1| $ (-531 |#2|)) 124) (($ $ |#2| (-768)) 108) (($ $ (-641 |#2|) (-641 (-768))) 107)) (-2864 (((-3 $ "failed") $) 135 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-3991 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) 130 (|has| |#1| (-556)))) (-3963 (($ $) 93 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 80 (|has| |#1| (-38 (-407 (-564)))))) (-3586 (($ $) 91 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 79 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 78 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 89 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 77 (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ |#2|) 38) (($ $ (-641 |#2|)) 37) (($ $ |#2| (-768)) 36) (($ $ (-641 |#2|) (-641 (-768))) 35)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 125 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ $) 97 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 68 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 128 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 127 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
+((-3702 (((-112) $ $) NIL)) (-3452 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 94)) (-2935 (($ $ $) 98)) (-2303 (((-112) $ $) 104)) (-2141 (((-112) $ (-768)) NIL)) (-3633 (($ (-641 |#1|)) 26) (($) 17)) (-1773 (($ (-1 (-112) |#1|) $) 82 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-2822 (($ $) 84)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4074 (($ |#1| $) 70 (|has| $ (-6 -4412))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4412))) (($ |#1| $ (-564)) 75) (($ (-1 (-112) |#1|) $ (-564)) 78)) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (($ |#1| $ (-564)) 80) (($ (-1 (-112) |#1|) $ (-564)) 81)) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-4244 (((-641 |#1|) $) 32 (|has| $ (-6 -4412)))) (-2214 (((-112) $ $) 103)) (-3793 (($) 15) (($ |#1|) 28) (($ (-641 |#1|)) 23)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) 38)) (-3601 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) 87 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 88)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-4302 (($ $ $) 96)) (-2775 ((|#1| $) 62)) (-2373 (($ |#1| $) 63) (($ |#1| $ (-768)) 85)) (-3844 (((-1114) $) NIL)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3950 ((|#1| $) 61)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 56)) (-2834 (($) 14)) (-1327 (((-641 (-2 (|:| -2575 |#1|) (|:| -3855 (-768)))) $) 55)) (-3796 (($ $ |#1|) NIL) (($ $ $) 97)) (-3372 (($) 16) (($ (-641 |#1|)) 25)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) 68 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) 79)) (-2374 (((-536) $) 36 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 22)) (-3714 (((-859) $) 49)) (-4208 (($ (-641 |#1|)) 27) (($) 18)) (-3976 (($ (-641 |#1|)) 24)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 102)) (-2779 (((-768) $) 67 (|has| $ (-6 -4412)))))
+(((-734 |#1|) (-13 (-733 |#1|) (-10 -8 (-6 -4412) (-6 -4413) (-15 -3793 ($)) (-15 -3793 ($ |#1|)) (-15 -3793 ($ (-641 |#1|))) (-15 -2572 ((-641 |#1|) $)) (-15 -2514 ($ |#1| $ (-564))) (-15 -2514 ($ (-1 (-112) |#1|) $ (-564))) (-15 -4074 ($ |#1| $ (-564))) (-15 -4074 ($ (-1 (-112) |#1|) $ (-564))))) (-1094)) (T -734))
+((-3793 (*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-3793 (*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-734 *3)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-734 *3)) (-4 *3 (-1094)))) (-2514 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-2514 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-734 *4)))) (-4074 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-4074 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-734 *4)))))
+(-13 (-733 |#1|) (-10 -8 (-6 -4412) (-6 -4413) (-15 -3793 ($)) (-15 -3793 ($ |#1|)) (-15 -3793 ($ (-641 |#1|))) (-15 -2572 ((-641 |#1|) $)) (-15 -2514 ($ |#1| $ (-564))) (-15 -2514 ($ (-1 (-112) |#1|) $ (-564))) (-15 -4074 ($ |#1| $ (-564))) (-15 -4074 ($ (-1 (-112) |#1|) $ (-564)))))
+((-3106 (((-1264) (-1152)) 8)))
+(((-735) (-10 -7 (-15 -3106 ((-1264) (-1152))))) (T -735))
+((-3106 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-735)))))
+(-10 -7 (-15 -3106 ((-1264) (-1152))))
+((-3526 (((-641 |#1|) (-641 |#1|) (-641 |#1|)) 15)))
+(((-736 |#1|) (-10 -7 (-15 -3526 ((-641 |#1|) (-641 |#1|) (-641 |#1|)))) (-847)) (T -736))
+((-3526 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-736 *3)))))
+(-10 -7 (-15 -3526 ((-641 |#1|) (-641 |#1|) (-641 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4292 (((-641 |#2|) $) 139)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 132 (|has| |#1| (-556)))) (-1582 (($ $) 131 (|has| |#1| (-556)))) (-3897 (((-112) $) 129 (|has| |#1| (-556)))) (-2657 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 71 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) 19)) (-4152 (($ $) 70 (|has| |#1| (-38 (-407 (-564)))))) (-2635 (($ $) 87 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 72 (|has| |#1| (-38 (-407 (-564)))))) (-2679 (($ $) 86 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 73 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) 17 T CONST)) (-1374 (($ $) 123)) (-4272 (((-3 $ "failed") $) 33)) (-3357 (((-949 |#1|) $ (-768)) 101) (((-949 |#1|) $ (-768) (-768)) 100)) (-2200 (((-112) $) 140)) (-1688 (($) 98 (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-768) $ |#2|) 103) (((-768) $ |#2| (-768)) 102)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 69 (|has| |#1| (-38 (-407 (-564)))))) (-2961 (((-112) $) 121)) (-4267 (($ $ (-641 |#2|) (-641 (-531 |#2|))) 138) (($ $ |#2| (-531 |#2|)) 137) (($ |#1| (-531 |#2|)) 122) (($ $ |#2| (-768)) 105) (($ $ (-641 |#2|) (-641 (-768))) 104)) (-2313 (($ (-1 |#1| |#1|) $) 120)) (-2305 (($ $) 95 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) 118)) (-1345 ((|#1| $) 117)) (-1868 (((-1152) $) 9)) (-4039 (($ $ |#2|) 99 (|has| |#1| (-38 (-407 (-564)))))) (-3844 (((-1114) $) 10)) (-3042 (($ $ (-768)) 106)) (-1347 (((-3 $ "failed") $ $) 133 (|has| |#1| (-556)))) (-4130 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (($ $ |#2| $) 114) (($ $ (-641 |#2|) (-641 $)) 113) (($ $ (-641 (-294 $))) 112) (($ $ (-294 $)) 111) (($ $ $ $) 110) (($ $ (-641 $) (-641 $)) 109)) (-2203 (($ $ |#2|) 42) (($ $ (-641 |#2|)) 41) (($ $ |#2| (-768)) 40) (($ $ (-641 |#2|) (-641 (-768))) 39)) (-3475 (((-531 |#2|) $) 119)) (-2692 (($ $) 85 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 74 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 84 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 75 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 83 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 76 (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) 141)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 136 (|has| |#1| (-172))) (($ $) 134 (|has| |#1| (-556))) (($ (-407 (-564))) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3181 ((|#1| $ (-531 |#2|)) 124) (($ $ |#2| (-768)) 108) (($ $ (-641 |#2|) (-641 (-768))) 107)) (-4363 (((-3 $ "failed") $) 135 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-2728 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) 130 (|has| |#1| (-556)))) (-2704 (($ $) 93 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 80 (|has| |#1| (-38 (-407 (-564)))))) (-2053 (($ $) 91 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 79 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 78 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 89 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 77 (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ |#2|) 38) (($ $ (-641 |#2|)) 37) (($ $ |#2| (-768)) 36) (($ $ (-641 |#2|) (-641 (-768))) 35)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 125 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ $) 97 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 68 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 128 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 127 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 116) (($ $ |#1|) 115)))
(((-737 |#1| |#2|) (-140) (-1046) (-847)) (T -737))
-((-1757 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) (-4 *2 (-847)))) (-1757 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-2678 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-737 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-847)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) (-4 *2 (-847)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-2261 (*1 *2 *1 *3) (-12 (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *2 (-768)))) (-2261 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-768)) (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)))) (-4191 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)) (-5 *2 (-949 *4)))) (-4191 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)) (-5 *2 (-949 *4)))) (-3591 (*1 *1 *1 *2) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847)) (-4 *3 (-38 (-407 (-564)))))))
-(-13 (-897 |t#2|) (-970 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -1757 ($ $ |t#2| (-768))) (-15 -1757 ($ $ (-641 |t#2|) (-641 (-768)))) (-15 -2678 ($ $ (-768))) (-15 -4145 ($ $ |t#2| (-768))) (-15 -4145 ($ $ (-641 |t#2|) (-641 (-768)))) (-15 -2261 ((-768) $ |t#2|)) (-15 -2261 ((-768) $ |t#2| (-768))) (-15 -4191 ((-949 |t#1|) $ (-768))) (-15 -4191 ((-949 |t#1|) $ (-768) (-768))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $ |t#2|)) (-6 (-999)) (-6 (-1194))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-290) |has| |#1| (-556)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 |#2|) . T) ((-970 |#1| #0# |#2|) . T) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))))
-((-4006 (((-418 (-1166 |#4|)) (-1166 |#4|)) 30) (((-418 |#4|) |#4|) 26)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4006 ((-418 |#4|) |#4|)) (-15 -4006 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-847) (-790) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -738))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
-(-10 -7 (-15 -4006 ((-418 |#4|) |#4|)) (-15 -4006 ((-418 (-1166 |#4|)) (-1166 |#4|))))
-((-3999 (((-418 |#4|) |#4| |#2|) 142)) (-3328 (((-418 |#4|) |#4|) NIL)) (-3981 (((-418 (-1166 |#4|)) (-1166 |#4|)) 127) (((-418 |#4|) |#4|) 52)) (-1499 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -4006 (-1166 |#4|)) (|:| -3747 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 81)) (-3350 (((-1166 |#3|) (-1166 |#3|) (-564)) 167)) (-1848 (((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768)) 75)) (-4358 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|)) 79)) (-2140 (((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 27)) (-2288 (((-2 (|:| -3808 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564)) 72)) (-2363 (((-564) (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564))))) 163)) (-1584 ((|#4| (-564) (-418 |#4|)) 73)) (-4287 (((-112) (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564)))) (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564))))) NIL)))
-(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3981 ((-418 |#4|) |#4|)) (-15 -3981 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3328 ((-418 |#4|) |#4|)) (-15 -2363 ((-564) (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564)))))) (-15 -3999 ((-418 |#4|) |#4| |#2|)) (-15 -2288 ((-2 (|:| -3808 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -1499 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -4006 (-1166 |#4|)) (|:| -3747 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2140 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -1584 (|#4| (-564) (-418 |#4|))) (-15 -4287 ((-112) (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564)))) (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564)))))) (-15 -4358 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|))) (-15 -1848 ((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768))) (-15 -3350 ((-1166 |#3|) (-1166 |#3|) (-564)))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -739))
-((-3350 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-847)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-4 *8 (-307)) (-5 *2 (-641 (-768))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *5 (-768)))) (-4358 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10)) (-5 *7 (-641 (-768))) (-5 *8 (-641 *11)) (-4 *10 (-847)) (-4 *11 (-307)) (-4 *9 (-790)) (-4 *5 (-946 *11 *9 *10)) (-5 *2 (-641 (-1166 *5))) (-5 *1 (-739 *9 *10 *11 *5)) (-5 *3 (-1166 *5)))) (-4287 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-2 (|:| -4006 (-1166 *6)) (|:| -3747 (-564))))) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-946 *7 *5 *6)) (-5 *1 (-739 *5 *6 *7 *2)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-307)))) (-2140 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-5 *2 (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8)) (|:| |Lfact| (-641 (-2 (|:| -4006 (-1166 *8)) (|:| -3747 (-564))))) (|:| |ctpol| *8))) (-5 *1 (-739 *6 *7 *8 *9)))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *6 (-790)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-641 (-2 (|:| -4006 (-1166 *9)) (|:| -3747 (-564))))))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)))) (-2288 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-564)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| -3808 (-1166 *9)) (|:| |polval| (-1166 *8)))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8)))) (-3999 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4006 (-1166 *6)) (|:| -3747 (-564))))) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))) (-3981 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3981 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))))
-(-10 -7 (-15 -3981 ((-418 |#4|) |#4|)) (-15 -3981 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3328 ((-418 |#4|) |#4|)) (-15 -2363 ((-564) (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564)))))) (-15 -3999 ((-418 |#4|) |#4| |#2|)) (-15 -2288 ((-2 (|:| -3808 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -1499 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -4006 (-1166 |#4|)) (|:| -3747 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2140 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -1584 (|#4| (-564) (-418 |#4|))) (-15 -4287 ((-112) (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564)))) (-641 (-2 (|:| -4006 (-1166 |#3|)) (|:| -3747 (-564)))))) (-15 -4358 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|))) (-15 -1848 ((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768))) (-15 -3350 ((-1166 |#3|) (-1166 |#3|) (-564))))
-((-2544 (($ $ (-918)) 17)))
-(((-740 |#1| |#2|) (-10 -8 (-15 -2544 (|#1| |#1| (-918)))) (-741 |#2|) (-172)) (T -740))
-NIL
-(-10 -8 (-15 -2544 (|#1| |#1| (-918))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1864 (($ $ (-918)) 28)) (-2544 (($ $ (-918)) 33)) (-3229 (($ $ (-918)) 29)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1762 (($ $ $) 25)) (-1765 (((-859) $) 11)) (-1850 (($ $ $ $) 26)) (-3008 (($ $ $) 24)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-3181 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) (-4 *2 (-847)))) (-3181 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-737 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-847)))) (-4267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) (-4 *2 (-847)))) (-4267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-1454 (*1 *2 *1 *3) (-12 (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *2 (-768)))) (-1454 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-768)) (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)))) (-3357 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)) (-5 *2 (-949 *4)))) (-3357 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)) (-5 *2 (-949 *4)))) (-4039 (*1 *1 *1 *2) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847)) (-4 *3 (-38 (-407 (-564)))))))
+(-13 (-897 |t#2|) (-970 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -3181 ($ $ |t#2| (-768))) (-15 -3181 ($ $ (-641 |t#2|) (-641 (-768)))) (-15 -3042 ($ $ (-768))) (-15 -4267 ($ $ |t#2| (-768))) (-15 -4267 ($ $ (-641 |t#2|) (-641 (-768)))) (-15 -1454 ((-768) $ |t#2|)) (-15 -1454 ((-768) $ |t#2| (-768))) (-15 -3357 ((-949 |t#1|) $ (-768))) (-15 -3357 ((-949 |t#1|) $ (-768) (-768))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $ |t#2|)) (-6 (-999)) (-6 (-1194))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-290) |has| |#1| (-556)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 |#2|) . T) ((-970 |#1| #0# |#2|) . T) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))))
+((-4139 (((-418 (-1166 |#4|)) (-1166 |#4|)) 30) (((-418 |#4|) |#4|) 26)))
+(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-418 |#4|) |#4|)) (-15 -4139 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-847) (-790) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -738))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
+(-10 -7 (-15 -4139 ((-418 |#4|) |#4|)) (-15 -4139 ((-418 (-1166 |#4|)) (-1166 |#4|))))
+((-3567 (((-418 |#4|) |#4| |#2|) 142)) (-1518 (((-418 |#4|) |#4|) NIL)) (-1592 (((-418 (-1166 |#4|)) (-1166 |#4|)) 127) (((-418 |#4|) |#4|) 52)) (-2628 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -4139 (-1166 |#4|)) (|:| -3078 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 81)) (-3542 (((-1166 |#3|) (-1166 |#3|) (-564)) 167)) (-1666 (((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768)) 75)) (-1714 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|)) 79)) (-2782 (((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 27)) (-3498 (((-2 (|:| -2485 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564)) 72)) (-3029 (((-564) (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564))))) 163)) (-3989 ((|#4| (-564) (-418 |#4|)) 73)) (-1354 (((-112) (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564)))) (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564))))) NIL)))
+(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1592 ((-418 |#4|) |#4|)) (-15 -1592 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1518 ((-418 |#4|) |#4|)) (-15 -3029 ((-564) (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564)))))) (-15 -3567 ((-418 |#4|) |#4| |#2|)) (-15 -3498 ((-2 (|:| -2485 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -2628 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -4139 (-1166 |#4|)) (|:| -3078 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2782 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -3989 (|#4| (-564) (-418 |#4|))) (-15 -1354 ((-112) (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564)))) (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564)))))) (-15 -1714 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|))) (-15 -1666 ((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768))) (-15 -3542 ((-1166 |#3|) (-1166 |#3|) (-564)))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -739))
+((-3542 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-847)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-4 *8 (-307)) (-5 *2 (-641 (-768))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *5 (-768)))) (-1714 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10)) (-5 *7 (-641 (-768))) (-5 *8 (-641 *11)) (-4 *10 (-847)) (-4 *11 (-307)) (-4 *9 (-790)) (-4 *5 (-946 *11 *9 *10)) (-5 *2 (-641 (-1166 *5))) (-5 *1 (-739 *9 *10 *11 *5)) (-5 *3 (-1166 *5)))) (-1354 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-2 (|:| -4139 (-1166 *6)) (|:| -3078 (-564))))) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-3989 (*1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-946 *7 *5 *6)) (-5 *1 (-739 *5 *6 *7 *2)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-307)))) (-2782 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-5 *2 (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8)) (|:| |Lfact| (-641 (-2 (|:| -4139 (-1166 *8)) (|:| -3078 (-564))))) (|:| |ctpol| *8))) (-5 *1 (-739 *6 *7 *8 *9)))) (-2628 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *6 (-790)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-641 (-2 (|:| -4139 (-1166 *9)) (|:| -3078 (-564))))))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)))) (-3498 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-564)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| -2485 (-1166 *9)) (|:| |polval| (-1166 *8)))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8)))) (-3567 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4139 (-1166 *6)) (|:| -3078 (-564))))) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))) (-1592 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-1592 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))))
+(-10 -7 (-15 -1592 ((-418 |#4|) |#4|)) (-15 -1592 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1518 ((-418 |#4|) |#4|)) (-15 -3029 ((-564) (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564)))))) (-15 -3567 ((-418 |#4|) |#4| |#2|)) (-15 -3498 ((-2 (|:| -2485 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -2628 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -4139 (-1166 |#4|)) (|:| -3078 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2782 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -3989 (|#4| (-564) (-418 |#4|))) (-15 -1354 ((-112) (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564)))) (-641 (-2 (|:| -4139 (-1166 |#3|)) (|:| -3078 (-564)))))) (-15 -1714 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|))) (-15 -1666 ((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768))) (-15 -3542 ((-1166 |#3|) (-1166 |#3|) (-564))))
+((-4133 (($ $ (-918)) 17)))
+(((-740 |#1| |#2|) (-10 -8 (-15 -4133 (|#1| |#1| (-918)))) (-741 |#2|) (-172)) (T -740))
+NIL
+(-10 -8 (-15 -4133 (|#1| |#1| (-918))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1842 (($ $ (-918)) 28)) (-4133 (($ $ (-918)) 33)) (-1788 (($ $ (-918)) 29)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3217 (($ $ $) 25)) (-3714 (((-859) $) 11)) (-1687 (($ $ $ $) 26)) (-1390 (($ $ $) 24)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-741 |#1|) (-140) (-172)) (T -741))
-((-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-741 *3)) (-4 *3 (-172)))))
-(-13 (-758) (-714 |t#1|) (-10 -8 (-15 -2544 ($ $ (-918)))))
+((-4133 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-741 *3)) (-4 *3 (-172)))))
+(-13 (-758) (-714 |t#1|) (-10 -8 (-15 -4133 ($ $ (-918)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-717) . T) ((-758) . T) ((-1052 |#1|) . T) ((-1094) . T))
-((-2341 (((-1032) (-685 (-225)) (-564) (-112) (-564)) 25)) (-3793 (((-1032) (-685 (-225)) (-564) (-112) (-564)) 24)))
-(((-742) (-10 -7 (-15 -3793 ((-1032) (-685 (-225)) (-564) (-112) (-564))) (-15 -2341 ((-1032) (-685 (-225)) (-564) (-112) (-564))))) (T -742))
-((-2341 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-742)))) (-3793 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-742)))))
-(-10 -7 (-15 -3793 ((-1032) (-685 (-225)) (-564) (-112) (-564))) (-15 -2341 ((-1032) (-685 (-225)) (-564) (-112) (-564))))
-((-2027 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-1511 (((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-4197 (((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) 32)))
-(((-743) (-10 -7 (-15 -4197 ((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -1511 ((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2027 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -743))
-((-2027 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1032)) (-5 *1 (-743)))) (-1511 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1032)) (-5 *1 (-743)))) (-4197 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) (-5 *2 (-1032)) (-5 *1 (-743)))))
-(-10 -7 (-15 -4197 ((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -1511 ((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2027 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))
-((-1601 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 34)) (-1900 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 33)) (-3570 (((-1032) (-564) (-685 (-225)) (-564)) 32)) (-3737 (((-1032) (-564) (-685 (-225)) (-564)) 31)) (-3996 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 30)) (-2461 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-4210 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-3352 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-1977 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-4342 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-2072 (((-1032) (-564) (-685 (-225)) (-564)) 22)) (-2978 (((-1032) (-564) (-685 (-225)) (-564)) 21)))
-(((-744) (-10 -7 (-15 -2978 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -2072 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -4342 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1977 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3352 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4210 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2461 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3996 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3737 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3570 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -1900 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -1601 ((-1032) (-564) (-564) (-685 (-225)) (-564))))) (T -744))
-((-1601 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-1900 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3570 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3737 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3996 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2461 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-4210 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3352 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-1977 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-4342 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2072 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2978 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))))
-(-10 -7 (-15 -2978 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -2072 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -4342 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1977 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3352 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4210 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2461 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3996 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3737 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3570 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -1900 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -1601 ((-1032) (-564) (-564) (-685 (-225)) (-564))))
-((-3220 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1541 (((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564)) 51)) (-1552 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2357 (((-1032) (-225) (-225) (-564) (-564) (-564) (-564)) 46)) (-1307 (((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-2091 (((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-2477 (((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-2651 (((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-3767 (((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) 38)) (-4133 (((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) 37)) (-3357 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) 33)) (-4390 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) 32)))
-(((-745) (-10 -7 (-15 -4390 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -3357 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -4133 ((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -3767 ((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -2651 ((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2477 ((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2091 ((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1307 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2357 ((-1032) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -1552 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1541 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -3220 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -745))
-((-3220 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1541 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1552 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2357 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1307 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2091 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2477 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2651 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3767 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-4133 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3357 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-4390 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) (-5 *2 (-1032)) (-5 *1 (-745)))))
-(-10 -7 (-15 -4390 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -3357 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -4133 ((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -3767 ((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))) (-15 -2651 ((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2477 ((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2091 ((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1307 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2357 ((-1032) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -1552 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1541 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -3220 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))
-((-4150 (((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2070 (((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3453 (((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-1446 (((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-3210 (((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-1330 (((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3637 (((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-3314 (((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-746) (-10 -7 (-15 -3314 ((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3637 ((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -1330 ((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3210 ((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1446 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3453 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -2070 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -2070 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -4150 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -746))
-((-4150 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2070 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2070 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3453 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-1446 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3210 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-1330 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3637 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3314 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
-(-10 -7 (-15 -3314 ((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3637 ((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -1330 ((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3210 ((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1446 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3453 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -2070 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -2070 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -4150 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-2174 (((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564)) 45)) (-3580 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-4004 (((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 23)))
-(((-747) (-10 -7 (-15 -4004 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3580 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2174 ((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564))))) (T -747))
-((-2174 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-747)))) (-3580 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1032)) (-5 *1 (-747)))) (-4004 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-747)))))
-(-10 -7 (-15 -4004 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3580 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2174 ((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564))))
-((-1524 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564)) 35)) (-2849 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564)) 34)) (-2524 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564)) 33)) (-3307 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-3562 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-3255 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564)) 27)) (-3847 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 24)) (-3503 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 23)) (-3420 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 22)) (-2971 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 21)))
-(((-748) (-10 -7 (-15 -2971 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3420 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3503 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3847 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3255 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -3562 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3307 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2524 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2849 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -1524 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564))))) (T -748))
-((-1524 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2849 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2524 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3307 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3562 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3255 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3847 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3503 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3420 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2971 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))))
-(-10 -7 (-15 -2971 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3420 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3503 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3847 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3255 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -3562 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3307 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2524 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2849 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -1524 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564))))
-((-4245 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 45)) (-3681 (((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564)) 44)) (-3213 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 43)) (-1414 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 42)) (-3721 (((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564)) 41)) (-2594 (((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 40)) (-3759 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564)) 39)) (-3331 (((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564))) 38)) (-2482 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 35)) (-3403 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564)) 34)) (-1795 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564)) 33)) (-3674 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 32)) (-1319 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564)) 31)) (-2786 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564)) 30)) (-3718 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 29)) (-2106 (((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564)) 28)) (-1520 (((-1032) (-564) (-685 (-225)) (-225) (-564)) 24)) (-1643 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 21)))
-(((-749) (-10 -7 (-15 -1643 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1520 ((-1032) (-564) (-685 (-225)) (-225) (-564))) (-15 -2106 ((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -3718 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2786 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -1319 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -3674 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1795 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -3403 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -2482 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3331 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -3759 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -2594 ((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3721 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1414 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3213 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3681 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4245 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))))) (T -749))
-((-4245 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3681 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3213 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1414 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3721 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2594 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3759 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3331 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2482 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3403 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1795 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3674 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1319 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2786 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3718 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2106 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1520 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1643 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))))
-(-10 -7 (-15 -1643 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1520 ((-1032) (-564) (-685 (-225)) (-225) (-564))) (-15 -2106 ((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -3718 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2786 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -1319 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -3674 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1795 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -3403 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -2482 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3331 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -3759 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -2594 ((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3721 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1414 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3213 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3681 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4245 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))))
-((-4082 (((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564)) 63)) (-3284 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1758 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-4100 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564)) 51)) (-1741 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2238 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-4352 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3634 (((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-750) (-10 -7 (-15 -3634 ((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4352 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -2238 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -1741 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4100 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -1758 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3284 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4082 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564))))) (T -750))
-((-4082 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3284 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-1758 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-4100 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-1741 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-2238 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-4352 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3634 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))))
-(-10 -7 (-15 -3634 ((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4352 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -2238 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -1741 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4100 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -1758 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -3284 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4082 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564))))
-((-4379 (((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 47)) (-1525 (((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564)) 46)) (-2309 (((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 45)) (-2245 (((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 40)) (-2231 (((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564)) 39)) (-1653 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-564)) 36)) (-3555 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564)) 35)) (-2276 (((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564)) 34)) (-3796 (((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564)) 33)) (-2535 (((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564)) 32)))
-(((-751) (-10 -7 (-15 -2535 ((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -3796 ((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -2276 ((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -3555 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -1653 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2231 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -2245 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2309 ((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1525 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -4379 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -751))
-((-4379 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-1525 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2309 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2245 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2231 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-1653 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3555 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2276 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3796 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225))) (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2535 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225))) (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-751)))))
-(-10 -7 (-15 -2535 ((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -3796 ((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -2276 ((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -3555 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -1653 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2231 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -2245 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2309 ((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1525 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -4379 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))
-((-2497 (((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 80)) (-1630 (((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 69)) (-2940 (((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-3589 (((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 37)) (-1615 (((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564)) 33)) (-3381 (((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 30)) (-1426 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-1742 (((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-1554 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-4354 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564)) 26)) (-3302 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 25)) (-3642 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-1373 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-4063 (((-1032) (-685 (-225)) (-564) (-564) (-564) (-564)) 22)) (-3625 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 21)))
-(((-752) (-10 -7 (-15 -3625 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -4063 ((-1032) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -1373 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3642 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3302 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -4354 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -1554 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1742 ((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1426 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3381 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -1615 ((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -3589 ((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2940 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2940 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1630 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2497 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -752))
-((-2497 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1630 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2940 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2940 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3589 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1615 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3381 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1426 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1742 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1554 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-4354 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3302 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3642 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1373 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-4063 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3625 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))))
-(-10 -7 (-15 -3625 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -4063 ((-1032) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -1373 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3642 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3302 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -4354 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -1554 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1742 ((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1426 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3381 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -1615 ((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -3589 ((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2940 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2940 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1630 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2497 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))
-((-1546 (((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 64)) (-2116 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564)) 60)) (-3843 (((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2468 (((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 37)) (-2447 (((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564)) 36)) (-2829 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 33)) (-1690 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225))) 32)) (-3682 (((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564)) 28)) (-4107 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 27)) (-1975 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 26)) (-4124 (((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 22)))
-(((-753) (-10 -7 (-15 -4124 ((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1975 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -4107 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3682 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -1690 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -2829 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2447 ((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2468 ((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3843 ((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2116 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -1546 ((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -753))
-((-1546 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2116 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3843 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2468 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2447 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2829 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-1690 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3682 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-4107 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-1975 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-4124 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-753)))))
-(-10 -7 (-15 -4124 ((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1975 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -4107 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3682 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -1690 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -2829 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2447 ((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2468 ((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -3843 ((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2116 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -1546 ((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))
-((-3638 (((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225))) 29)) (-1523 (((-1032) (-1152) (-564) (-564) (-685 (-225))) 28)) (-4114 (((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225))) 27)) (-3894 (((-1032) (-564) (-564) (-564) (-685 (-225))) 21)))
-(((-754) (-10 -7 (-15 -3894 ((-1032) (-564) (-564) (-564) (-685 (-225)))) (-15 -4114 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -1523 ((-1032) (-1152) (-564) (-564) (-685 (-225)))) (-15 -3638 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)))))) (T -754))
-((-3638 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))) (-1523 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))) (-4114 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-754)))) (-3894 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))))
-(-10 -7 (-15 -3894 ((-1032) (-564) (-564) (-564) (-685 (-225)))) (-15 -4114 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -1523 ((-1032) (-1152) (-564) (-564) (-685 (-225)))) (-15 -3638 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)))))
-((-4258 (((-1032) (-225) (-225) (-225) (-225) (-564)) 62)) (-1433 (((-1032) (-225) (-225) (-225) (-564)) 61)) (-1644 (((-1032) (-225) (-225) (-225) (-564)) 60)) (-4095 (((-1032) (-225) (-225) (-564)) 59)) (-4165 (((-1032) (-225) (-564)) 58)) (-3115 (((-1032) (-225) (-564)) 57)) (-2469 (((-1032) (-225) (-564)) 56)) (-2840 (((-1032) (-225) (-564)) 55)) (-2933 (((-1032) (-225) (-564)) 54)) (-1380 (((-1032) (-225) (-564)) 53)) (-1746 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 52)) (-3176 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 51)) (-1385 (((-1032) (-225) (-564)) 50)) (-1587 (((-1032) (-225) (-564)) 49)) (-1424 (((-1032) (-225) (-564)) 48)) (-4041 (((-1032) (-225) (-564)) 47)) (-2635 (((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564)) 46)) (-1891 (((-1032) (-1152) (-169 (-225)) (-1152) (-564)) 45)) (-3057 (((-1032) (-1152) (-169 (-225)) (-1152) (-564)) 44)) (-2361 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 43)) (-3003 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 42)) (-3882 (((-1032) (-225) (-564)) 39)) (-1308 (((-1032) (-225) (-564)) 38)) (-3093 (((-1032) (-225) (-564)) 37)) (-1636 (((-1032) (-225) (-564)) 36)) (-2044 (((-1032) (-225) (-564)) 35)) (-3554 (((-1032) (-225) (-564)) 34)) (-1596 (((-1032) (-225) (-564)) 33)) (-4255 (((-1032) (-225) (-564)) 32)) (-2202 (((-1032) (-225) (-564)) 31)) (-2517 (((-1032) (-225) (-564)) 30)) (-2308 (((-1032) (-225) (-225) (-225) (-564)) 29)) (-4061 (((-1032) (-225) (-564)) 28)) (-3544 (((-1032) (-225) (-564)) 27)) (-3931 (((-1032) (-225) (-564)) 26)) (-3757 (((-1032) (-225) (-564)) 25)) (-2611 (((-1032) (-225) (-564)) 24)) (-3774 (((-1032) (-169 (-225)) (-564)) 21)))
-(((-755) (-10 -7 (-15 -3774 ((-1032) (-169 (-225)) (-564))) (-15 -2611 ((-1032) (-225) (-564))) (-15 -3757 ((-1032) (-225) (-564))) (-15 -3931 ((-1032) (-225) (-564))) (-15 -3544 ((-1032) (-225) (-564))) (-15 -4061 ((-1032) (-225) (-564))) (-15 -2308 ((-1032) (-225) (-225) (-225) (-564))) (-15 -2517 ((-1032) (-225) (-564))) (-15 -2202 ((-1032) (-225) (-564))) (-15 -4255 ((-1032) (-225) (-564))) (-15 -1596 ((-1032) (-225) (-564))) (-15 -3554 ((-1032) (-225) (-564))) (-15 -2044 ((-1032) (-225) (-564))) (-15 -1636 ((-1032) (-225) (-564))) (-15 -3093 ((-1032) (-225) (-564))) (-15 -1308 ((-1032) (-225) (-564))) (-15 -3882 ((-1032) (-225) (-564))) (-15 -3003 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2361 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3057 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -1891 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2635 ((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -4041 ((-1032) (-225) (-564))) (-15 -1424 ((-1032) (-225) (-564))) (-15 -1587 ((-1032) (-225) (-564))) (-15 -1385 ((-1032) (-225) (-564))) (-15 -3176 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -1746 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -1380 ((-1032) (-225) (-564))) (-15 -2933 ((-1032) (-225) (-564))) (-15 -2840 ((-1032) (-225) (-564))) (-15 -2469 ((-1032) (-225) (-564))) (-15 -3115 ((-1032) (-225) (-564))) (-15 -4165 ((-1032) (-225) (-564))) (-15 -4095 ((-1032) (-225) (-225) (-564))) (-15 -1644 ((-1032) (-225) (-225) (-225) (-564))) (-15 -1433 ((-1032) (-225) (-225) (-225) (-564))) (-15 -4258 ((-1032) (-225) (-225) (-225) (-225) (-564))))) (T -755))
-((-4258 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1433 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1644 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4095 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3115 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2469 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2933 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1380 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1746 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3176 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1385 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1424 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2635 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1891 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3057 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2361 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3003 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3554 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1596 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4255 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2517 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2308 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3757 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(-10 -7 (-15 -3774 ((-1032) (-169 (-225)) (-564))) (-15 -2611 ((-1032) (-225) (-564))) (-15 -3757 ((-1032) (-225) (-564))) (-15 -3931 ((-1032) (-225) (-564))) (-15 -3544 ((-1032) (-225) (-564))) (-15 -4061 ((-1032) (-225) (-564))) (-15 -2308 ((-1032) (-225) (-225) (-225) (-564))) (-15 -2517 ((-1032) (-225) (-564))) (-15 -2202 ((-1032) (-225) (-564))) (-15 -4255 ((-1032) (-225) (-564))) (-15 -1596 ((-1032) (-225) (-564))) (-15 -3554 ((-1032) (-225) (-564))) (-15 -2044 ((-1032) (-225) (-564))) (-15 -1636 ((-1032) (-225) (-564))) (-15 -3093 ((-1032) (-225) (-564))) (-15 -1308 ((-1032) (-225) (-564))) (-15 -3882 ((-1032) (-225) (-564))) (-15 -3003 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2361 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3057 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -1891 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2635 ((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -4041 ((-1032) (-225) (-564))) (-15 -1424 ((-1032) (-225) (-564))) (-15 -1587 ((-1032) (-225) (-564))) (-15 -1385 ((-1032) (-225) (-564))) (-15 -3176 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -1746 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -1380 ((-1032) (-225) (-564))) (-15 -2933 ((-1032) (-225) (-564))) (-15 -2840 ((-1032) (-225) (-564))) (-15 -2469 ((-1032) (-225) (-564))) (-15 -3115 ((-1032) (-225) (-564))) (-15 -4165 ((-1032) (-225) (-564))) (-15 -4095 ((-1032) (-225) (-225) (-564))) (-15 -1644 ((-1032) (-225) (-225) (-225) (-564))) (-15 -1433 ((-1032) (-225) (-225) (-225) (-564))) (-15 -4258 ((-1032) (-225) (-225) (-225) (-225) (-564))))
-((-4123 (((-1264)) 21)) (-4025 (((-1152)) 32)) (-3139 (((-1152)) 31)) (-3009 (((-1098) (-1170) (-685 (-564))) 46) (((-1098) (-1170) (-685 (-225))) 42)) (-1492 (((-112)) 19)) (-4372 (((-1152) (-1152)) 35)))
-(((-756) (-10 -7 (-15 -3139 ((-1152))) (-15 -4025 ((-1152))) (-15 -4372 ((-1152) (-1152))) (-15 -3009 ((-1098) (-1170) (-685 (-225)))) (-15 -3009 ((-1098) (-1170) (-685 (-564)))) (-15 -1492 ((-112))) (-15 -4123 ((-1264))))) (T -756))
-((-4123 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-756)))) (-1492 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-756)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098)) (-5 *1 (-756)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098)) (-5 *1 (-756)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))) (-4025 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))) (-3139 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))))
-(-10 -7 (-15 -3139 ((-1152))) (-15 -4025 ((-1152))) (-15 -4372 ((-1152) (-1152))) (-15 -3009 ((-1098) (-1170) (-685 (-225)))) (-15 -3009 ((-1098) (-1170) (-685 (-564)))) (-15 -1492 ((-112))) (-15 -4123 ((-1264))))
-((-1762 (($ $ $) 10)) (-1850 (($ $ $ $) 9)) (-3008 (($ $ $) 12)))
-(((-757 |#1|) (-10 -8 (-15 -3008 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1| |#1|)) (-15 -1850 (|#1| |#1| |#1| |#1|))) (-758)) (T -757))
-NIL
-(-10 -8 (-15 -3008 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1| |#1|)) (-15 -1850 (|#1| |#1| |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1864 (($ $ (-918)) 28)) (-3229 (($ $ (-918)) 29)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1762 (($ $ $) 25)) (-1765 (((-859) $) 11)) (-1850 (($ $ $ $) 26)) (-3008 (($ $ $) 24)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27)))
+((-2887 (((-1032) (-685 (-225)) (-564) (-112) (-564)) 25)) (-2336 (((-1032) (-685 (-225)) (-564) (-112) (-564)) 24)))
+(((-742) (-10 -7 (-15 -2336 ((-1032) (-685 (-225)) (-564) (-112) (-564))) (-15 -2887 ((-1032) (-685 (-225)) (-564) (-112) (-564))))) (T -742))
+((-2887 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-742)))) (-2336 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-742)))))
+(-10 -7 (-15 -2336 ((-1032) (-685 (-225)) (-564) (-112) (-564))) (-15 -2887 ((-1032) (-685 (-225)) (-564) (-112) (-564))))
+((-2892 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-2743 (((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-1807 (((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) 32)))
+(((-743) (-10 -7 (-15 -1807 ((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -2743 ((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2892 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -743))
+((-2892 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1032)) (-5 *1 (-743)))) (-2743 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1032)) (-5 *1 (-743)))) (-1807 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) (-5 *2 (-1032)) (-5 *1 (-743)))))
+(-10 -7 (-15 -1807 ((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -2743 ((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2892 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))
+((-4149 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 34)) (-4003 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 33)) (-2042 (((-1032) (-564) (-685 (-225)) (-564)) 32)) (-3018 (((-1032) (-564) (-685 (-225)) (-564)) 31)) (-3533 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 30)) (-2796 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-1945 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-3552 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-3490 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-3640 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-3269 (((-1032) (-564) (-685 (-225)) (-564)) 22)) (-4201 (((-1032) (-564) (-685 (-225)) (-564)) 21)))
+(((-744) (-10 -7 (-15 -4201 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3269 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3640 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3490 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3552 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1945 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2796 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3533 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3018 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -2042 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -4003 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -4149 ((-1032) (-564) (-564) (-685 (-225)) (-564))))) (T -744))
+((-4149 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-4003 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2042 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3018 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3533 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2796 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-1945 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3552 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3490 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3640 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3269 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-4201 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))))
+(-10 -7 (-15 -4201 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3269 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3640 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3490 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3552 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1945 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2796 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3533 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3018 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -2042 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -4003 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -4149 ((-1032) (-564) (-564) (-685 (-225)) (-564))))
+((-1694 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1764 (((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564)) 51)) (-1870 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2984 (((-1032) (-225) (-225) (-564) (-564) (-564) (-564)) 46)) (-2115 (((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-2300 (((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-1699 (((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-3967 (((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-3233 (((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) 38)) (-2446 (((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) 37)) (-3616 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) 33)) (-4068 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) 32)))
+(((-745) (-10 -7 (-15 -4068 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -3616 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -2446 ((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -3233 ((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -3967 ((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1699 ((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2300 ((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2115 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2984 ((-1032) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -1870 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1764 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -1694 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -745))
+((-1694 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1764 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1870 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2984 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2115 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2300 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1699 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3967 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3233 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2446 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3616 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-4068 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) (-5 *2 (-1032)) (-5 *1 (-745)))))
+(-10 -7 (-15 -4068 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -3616 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -2446 ((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -3233 ((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))) (-15 -3967 ((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1699 ((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2300 ((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2115 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2984 ((-1032) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -1870 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1764 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -1694 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))
+((-2617 (((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3249 (((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3311 (((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-1910 (((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-1609 (((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2355 (((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1428 (((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-1356 (((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-746) (-10 -7 (-15 -1356 ((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1428 ((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2355 ((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1609 ((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1910 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3311 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3249 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3249 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2617 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -746))
+((-2617 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3249 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3249 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3311 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-1910 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1032)) (-5 *1 (-746)))) (-1609 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2355 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-1428 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-1356 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
+(-10 -7 (-15 -1356 ((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1428 ((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2355 ((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1609 ((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1910 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3311 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3249 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3249 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2617 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-1849 (((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564)) 45)) (-2137 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-3608 (((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 23)))
+(((-747) (-10 -7 (-15 -3608 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2137 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -1849 ((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564))))) (T -747))
+((-1849 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-747)))) (-2137 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1032)) (-5 *1 (-747)))) (-3608 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-747)))))
+(-10 -7 (-15 -3608 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2137 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -1849 ((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564))))
+((-1597 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564)) 35)) (-4200 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564)) 34)) (-2138 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564)) 33)) (-4384 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-1963 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-2070 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564)) 27)) (-2851 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 24)) (-2654 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 23)) (-3045 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 22)) (-4131 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 21)))
+(((-748) (-10 -7 (-15 -4131 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3045 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2654 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2851 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2070 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -1963 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4384 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2138 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -4200 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -1597 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564))))) (T -748))
+((-1597 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-4200 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2138 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-4384 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-1963 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2070 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2851 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2654 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3045 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-4131 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))))
+(-10 -7 (-15 -4131 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3045 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2654 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2851 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2070 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -1963 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4384 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2138 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -4200 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -1597 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564))))
+((-2256 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 45)) (-3651 (((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564)) 44)) (-1630 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 43)) (-1605 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 42)) (-2885 (((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564)) 41)) (-1525 (((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 40)) (-3170 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564)) 39)) (-3361 (((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564))) 38)) (-1761 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 35)) (-2922 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564)) 34)) (-2377 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564)) 33)) (-3585 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 32)) (-2245 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564)) 31)) (-1707 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564)) 30)) (-3995 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 29)) (-2461 (((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564)) 28)) (-1552 (((-1032) (-564) (-685 (-225)) (-225) (-564)) 24)) (-1464 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 21)))
+(((-749) (-10 -7 (-15 -1464 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1552 ((-1032) (-564) (-685 (-225)) (-225) (-564))) (-15 -2461 ((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -3995 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -1707 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -2245 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -3585 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2377 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -2922 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -1761 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3361 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -3170 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -1525 ((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -2885 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1605 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1630 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3651 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2256 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))))) (T -749))
+((-2256 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3651 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1630 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1605 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2885 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1525 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3170 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3361 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1761 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2922 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2377 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3585 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2245 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1707 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3995 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2461 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1552 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1464 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))))
+(-10 -7 (-15 -1464 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1552 ((-1032) (-564) (-685 (-225)) (-225) (-564))) (-15 -2461 ((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -3995 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -1707 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -2245 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -3585 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2377 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -2922 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -1761 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3361 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -3170 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -1525 ((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -2885 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1605 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1630 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -3651 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2256 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))))
+((-3131 (((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564)) 63)) (-4186 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3189 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-3257 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564)) 51)) (-3044 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-4303 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3728 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1407 (((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-750) (-10 -7 (-15 -1407 ((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3728 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -4303 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -3044 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -3257 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -3189 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -4186 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3131 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564))))) (T -750))
+((-3131 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-4186 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3189 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3257 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3044 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-4303 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3728 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-1407 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))))
+(-10 -7 (-15 -1407 ((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3728 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -4303 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -3044 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -3257 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -3189 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -4186 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -3131 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564))))
+((-3968 (((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 47)) (-1607 (((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564)) 46)) (-3708 (((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 45)) (-4372 (((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 40)) (-4232 (((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564)) 39)) (-3363 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-564)) 36)) (-1886 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564)) 35)) (-3393 (((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564)) 34)) (-2375 (((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564)) 33)) (-4052 (((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564)) 32)))
+(((-751) (-10 -7 (-15 -4052 ((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -2375 ((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -3393 ((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -1886 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -3363 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -4232 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -4372 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3708 ((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1607 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3968 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -751))
+((-3968 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-1607 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3708 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-4372 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-4232 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3363 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-1886 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3393 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2375 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225))) (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-4052 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225))) (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-751)))))
+(-10 -7 (-15 -4052 ((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -2375 ((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -3393 ((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -1886 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -3363 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -4232 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -4372 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3708 ((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1607 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3968 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))
+((-1898 (((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 80)) (-1342 (((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 69)) (-3918 (((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-2197 (((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 37)) (-4290 (((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564)) 33)) (-3874 (((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 30)) (-1713 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-3052 (((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-1880 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-3751 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564)) 26)) (-4346 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 25)) (-1481 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-4114 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-2977 (((-1032) (-685 (-225)) (-564) (-564) (-564) (-564)) 22)) (-4390 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 21)))
+(((-752) (-10 -7 (-15 -4390 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -2977 ((-1032) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -4114 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1481 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4346 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -3751 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -1880 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3052 ((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1713 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3874 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -4290 ((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -2197 ((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3918 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -3918 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1342 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1898 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -752))
+((-1898 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1342 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3918 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3918 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2197 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-4290 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3874 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1713 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3052 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1880 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3751 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-4346 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1481 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-4114 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2977 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-4390 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))))
+(-10 -7 (-15 -4390 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -2977 ((-1032) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -4114 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1481 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4346 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -3751 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -1880 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3052 ((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1713 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3874 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -4290 ((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -2197 ((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3918 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -3918 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1342 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1898 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))
+((-1823 (((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 64)) (-2570 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564)) 60)) (-2817 (((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1614 (((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 37)) (-2646 (((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564)) 36)) (-2163 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 33)) (-3729 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225))) 32)) (-3662 (((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564)) 28)) (-3305 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 27)) (-3467 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 26)) (-2356 (((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 22)))
+(((-753) (-10 -7 (-15 -2356 ((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3467 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3305 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3662 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -3729 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -2163 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2646 ((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1614 ((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -2817 ((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2570 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -1823 ((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -753))
+((-1823 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2570 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2817 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-1614 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2646 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2163 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3729 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3662 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3305 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3467 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2356 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-753)))))
+(-10 -7 (-15 -2356 ((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -3467 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3305 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3662 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -3729 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -2163 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2646 ((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1614 ((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -2817 ((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -2570 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -1823 ((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))
+((-1438 (((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225))) 29)) (-1588 (((-1032) (-1152) (-564) (-564) (-685 (-225))) 28)) (-3367 (((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225))) 27)) (-2061 (((-1032) (-564) (-564) (-564) (-685 (-225))) 21)))
+(((-754) (-10 -7 (-15 -2061 ((-1032) (-564) (-564) (-564) (-685 (-225)))) (-15 -3367 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -1588 ((-1032) (-1152) (-564) (-564) (-685 (-225)))) (-15 -1438 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)))))) (T -754))
+((-1438 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))) (-1588 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))) (-3367 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-754)))) (-2061 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))))
+(-10 -7 (-15 -2061 ((-1032) (-564) (-564) (-564) (-685 (-225)))) (-15 -3367 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -1588 ((-1032) (-1152) (-564) (-564) (-685 (-225)))) (-15 -1438 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)))))
+((-4195 (((-1032) (-225) (-225) (-225) (-225) (-564)) 62)) (-1786 (((-1032) (-225) (-225) (-225) (-564)) 61)) (-3300 (((-1032) (-225) (-225) (-225) (-564)) 60)) (-3220 (((-1032) (-225) (-225) (-564)) 59)) (-2761 (((-1032) (-225) (-564)) 58)) (-3066 (((-1032) (-225) (-564)) 57)) (-1625 (((-1032) (-225) (-564)) 56)) (-4093 (((-1032) (-225) (-564)) 55)) (-3841 (((-1032) (-225) (-564)) 54)) (-4028 (((-1032) (-225) (-564)) 53)) (-3089 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 52)) (-2536 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 51)) (-3418 (((-1032) (-225) (-564)) 50)) (-4020 (((-1032) (-225) (-564)) 49)) (-1691 (((-1032) (-225) (-564)) 48)) (-3953 (((-1032) (-225) (-564)) 47)) (-3784 (((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564)) 46)) (-2105 (((-1032) (-1152) (-169 (-225)) (-1152) (-564)) 45)) (-3701 (((-1032) (-1152) (-169 (-225)) (-1152) (-564)) 44)) (-3013 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 43)) (-1323 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 42)) (-1938 (((-1032) (-225) (-564)) 39)) (-2126 (((-1032) (-225) (-564)) 38)) (-2900 (((-1032) (-225) (-564)) 37)) (-1398 (((-1032) (-225) (-564)) 36)) (-3032 (((-1032) (-225) (-564)) 35)) (-1876 (((-1032) (-225) (-564)) 34)) (-4102 (((-1032) (-225) (-564)) 33)) (-4160 (((-1032) (-225) (-564)) 32)) (-2142 (((-1032) (-225) (-564)) 31)) (-2065 (((-1032) (-225) (-564)) 30)) (-3697 (((-1032) (-225) (-225) (-225) (-564)) 29)) (-2959 (((-1032) (-225) (-564)) 28)) (-1772 (((-1032) (-225) (-564)) 27)) (-4246 (((-1032) (-225) (-564)) 26)) (-3152 (((-1032) (-225) (-564)) 25)) (-3501 (((-1032) (-225) (-564)) 24)) (-3289 (((-1032) (-169 (-225)) (-564)) 21)))
+(((-755) (-10 -7 (-15 -3289 ((-1032) (-169 (-225)) (-564))) (-15 -3501 ((-1032) (-225) (-564))) (-15 -3152 ((-1032) (-225) (-564))) (-15 -4246 ((-1032) (-225) (-564))) (-15 -1772 ((-1032) (-225) (-564))) (-15 -2959 ((-1032) (-225) (-564))) (-15 -3697 ((-1032) (-225) (-225) (-225) (-564))) (-15 -2065 ((-1032) (-225) (-564))) (-15 -2142 ((-1032) (-225) (-564))) (-15 -4160 ((-1032) (-225) (-564))) (-15 -4102 ((-1032) (-225) (-564))) (-15 -1876 ((-1032) (-225) (-564))) (-15 -3032 ((-1032) (-225) (-564))) (-15 -1398 ((-1032) (-225) (-564))) (-15 -2900 ((-1032) (-225) (-564))) (-15 -2126 ((-1032) (-225) (-564))) (-15 -1938 ((-1032) (-225) (-564))) (-15 -1323 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3013 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3701 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2105 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -3784 ((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3953 ((-1032) (-225) (-564))) (-15 -1691 ((-1032) (-225) (-564))) (-15 -4020 ((-1032) (-225) (-564))) (-15 -3418 ((-1032) (-225) (-564))) (-15 -2536 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3089 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -4028 ((-1032) (-225) (-564))) (-15 -3841 ((-1032) (-225) (-564))) (-15 -4093 ((-1032) (-225) (-564))) (-15 -1625 ((-1032) (-225) (-564))) (-15 -3066 ((-1032) (-225) (-564))) (-15 -2761 ((-1032) (-225) (-564))) (-15 -3220 ((-1032) (-225) (-225) (-564))) (-15 -3300 ((-1032) (-225) (-225) (-225) (-564))) (-15 -1786 ((-1032) (-225) (-225) (-225) (-564))) (-15 -4195 ((-1032) (-225) (-225) (-225) (-225) (-564))))) (T -755))
+((-4195 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1786 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3300 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3220 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3089 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2536 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3418 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4020 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3784 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2105 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3701 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3013 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1323 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1938 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2126 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1398 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3032 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3697 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1772 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3289 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(-10 -7 (-15 -3289 ((-1032) (-169 (-225)) (-564))) (-15 -3501 ((-1032) (-225) (-564))) (-15 -3152 ((-1032) (-225) (-564))) (-15 -4246 ((-1032) (-225) (-564))) (-15 -1772 ((-1032) (-225) (-564))) (-15 -2959 ((-1032) (-225) (-564))) (-15 -3697 ((-1032) (-225) (-225) (-225) (-564))) (-15 -2065 ((-1032) (-225) (-564))) (-15 -2142 ((-1032) (-225) (-564))) (-15 -4160 ((-1032) (-225) (-564))) (-15 -4102 ((-1032) (-225) (-564))) (-15 -1876 ((-1032) (-225) (-564))) (-15 -3032 ((-1032) (-225) (-564))) (-15 -1398 ((-1032) (-225) (-564))) (-15 -2900 ((-1032) (-225) (-564))) (-15 -2126 ((-1032) (-225) (-564))) (-15 -1938 ((-1032) (-225) (-564))) (-15 -1323 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3013 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3701 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2105 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -3784 ((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3953 ((-1032) (-225) (-564))) (-15 -1691 ((-1032) (-225) (-564))) (-15 -4020 ((-1032) (-225) (-564))) (-15 -3418 ((-1032) (-225) (-564))) (-15 -2536 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3089 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -4028 ((-1032) (-225) (-564))) (-15 -3841 ((-1032) (-225) (-564))) (-15 -4093 ((-1032) (-225) (-564))) (-15 -1625 ((-1032) (-225) (-564))) (-15 -3066 ((-1032) (-225) (-564))) (-15 -2761 ((-1032) (-225) (-564))) (-15 -3220 ((-1032) (-225) (-225) (-564))) (-15 -3300 ((-1032) (-225) (-225) (-225) (-564))) (-15 -1786 ((-1032) (-225) (-225) (-225) (-564))) (-15 -4195 ((-1032) (-225) (-225) (-225) (-225) (-564))))
+((-2343 (((-1264)) 21)) (-3790 (((-1152)) 32)) (-3278 (((-1152)) 31)) (-1403 (((-1098) (-1170) (-685 (-564))) 46) (((-1098) (-1170) (-685 (-225))) 42)) (-3364 (((-112)) 19)) (-3915 (((-1152) (-1152)) 35)))
+(((-756) (-10 -7 (-15 -3278 ((-1152))) (-15 -3790 ((-1152))) (-15 -3915 ((-1152) (-1152))) (-15 -1403 ((-1098) (-1170) (-685 (-225)))) (-15 -1403 ((-1098) (-1170) (-685 (-564)))) (-15 -3364 ((-112))) (-15 -2343 ((-1264))))) (T -756))
+((-2343 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-756)))) (-3364 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-756)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098)) (-5 *1 (-756)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098)) (-5 *1 (-756)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))) (-3790 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))) (-3278 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))))
+(-10 -7 (-15 -3278 ((-1152))) (-15 -3790 ((-1152))) (-15 -3915 ((-1152) (-1152))) (-15 -1403 ((-1098) (-1170) (-685 (-225)))) (-15 -1403 ((-1098) (-1170) (-685 (-564)))) (-15 -3364 ((-112))) (-15 -2343 ((-1264))))
+((-3217 (($ $ $) 10)) (-1687 (($ $ $ $) 9)) (-1390 (($ $ $) 12)))
+(((-757 |#1|) (-10 -8 (-15 -1390 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -1687 (|#1| |#1| |#1| |#1|))) (-758)) (T -757))
+NIL
+(-10 -8 (-15 -1390 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -1687 (|#1| |#1| |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1842 (($ $ (-918)) 28)) (-1788 (($ $ (-918)) 29)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3217 (($ $ $) 25)) (-3714 (((-859) $) 11)) (-1687 (($ $ $ $) 26)) (-1390 (($ $ $) 24)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27)))
(((-758) (-140)) (T -758))
-((-1850 (*1 *1 *1 *1 *1) (-4 *1 (-758))) (-1762 (*1 *1 *1 *1) (-4 *1 (-758))) (-3008 (*1 *1 *1 *1) (-4 *1 (-758))))
-(-13 (-21) (-717) (-10 -8 (-15 -1850 ($ $ $ $)) (-15 -1762 ($ $ $)) (-15 -3008 ($ $ $))))
+((-1687 (*1 *1 *1 *1 *1) (-4 *1 (-758))) (-3217 (*1 *1 *1 *1) (-4 *1 (-758))) (-1390 (*1 *1 *1 *1) (-4 *1 (-758))))
+(-13 (-21) (-717) (-10 -8 (-15 -1687 ($ $ $ $)) (-15 -3217 ($ $ $)) (-15 -1390 ($ $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-717) . T) ((-1094) . T))
-((-1765 (((-859) $) NIL) (($ (-564)) 10)))
-(((-759 |#1|) (-10 -8 (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|))) (-760)) (T -759))
+((-3714 (((-859) $) NIL) (($ (-564)) 10)))
+(((-759 |#1|) (-10 -8 (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|))) (-760)) (T -759))
NIL
-(-10 -8 (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-3828 (((-3 $ "failed") $) 40)) (-1864 (($ $ (-918)) 28) (($ $ (-768)) 35)) (-1926 (((-3 $ "failed") $) 38)) (-2419 (((-112) $) 34)) (-3647 (((-3 $ "failed") $) 39)) (-3229 (($ $ (-918)) 29) (($ $ (-768)) 36)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1762 (($ $ $) 25)) (-1765 (((-859) $) 11) (($ (-564)) 31)) (-1965 (((-768)) 32 T CONST)) (-1850 (($ $ $ $) 26)) (-3008 (($ $ $) 24)) (-4317 (($) 18 T CONST)) (-4327 (($) 33 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 30) (($ $ (-768)) 37)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27)))
+(-10 -8 (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-2684 (((-3 $ "failed") $) 40)) (-1842 (($ $ (-918)) 28) (($ $ (-768)) 35)) (-4272 (((-3 $ "failed") $) 38)) (-2340 (((-112) $) 34)) (-1524 (((-3 $ "failed") $) 39)) (-1788 (($ $ (-918)) 29) (($ $ (-768)) 36)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3217 (($ $ $) 25)) (-3714 (((-859) $) 11) (($ (-564)) 31)) (-3379 (((-768)) 32 T CONST)) (-1687 (($ $ $ $) 26)) (-1390 (($ $ $) 24)) (-4312 (($) 18 T CONST)) (-4323 (($) 33 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 30) (($ $ (-768)) 37)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27)))
(((-760) (-140)) (T -760))
-((-1965 (*1 *2) (-12 (-4 *1 (-760)) (-5 *2 (-768)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-760)))))
-(-13 (-758) (-719) (-10 -8 (-15 -1965 ((-768)) -3246) (-15 -1765 ($ (-564)))))
+((-3379 (*1 *2) (-12 (-4 *1 (-760)) (-5 *2 (-768)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-760)))))
+(-13 (-758) (-719) (-10 -8 (-15 -3379 ((-768)) -2222) (-15 -3714 ($ (-564)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-717) . T) ((-719) . T) ((-758) . T) ((-1094) . T))
-((-1325 (((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|) 33)) (-3030 (((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|) 23)) (-3216 (((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170)) 20) (((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564))))) 19)))
-(((-761 |#1|) (-10 -7 (-15 -3216 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -3216 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -3030 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -1325 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|))) (-13 (-363) (-845))) (T -761))
-((-1325 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 *4))))))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))) (-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))) (-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170)) (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *5)) (-4 *5 (-13 (-363) (-845))))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))))
-(-10 -7 (-15 -3216 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -3216 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -3030 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -1325 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|)))
-((-3028 (((-174 (-564)) |#1|) 27)))
-(((-762 |#1|) (-10 -7 (-15 -3028 ((-174 (-564)) |#1|))) (-404)) (T -762))
-((-3028 (*1 *2 *3) (-12 (-5 *2 (-174 (-564))) (-5 *1 (-762 *3)) (-4 *3 (-404)))))
-(-10 -7 (-15 -3028 ((-174 (-564)) |#1|)))
-((-1655 ((|#1| |#1| |#1|) 28)) (-2866 ((|#1| |#1| |#1|) 27)) (-4253 ((|#1| |#1| |#1|) 38)) (-3130 ((|#1| |#1| |#1|) 34)) (-1477 (((-3 |#1| "failed") |#1| |#1|) 31)) (-4052 (((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|) 26)))
-(((-763 |#1| |#2|) (-10 -7 (-15 -4052 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -1477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 -4253 (|#1| |#1| |#1|))) (-705 |#2|) (-363)) (T -763))
-((-4253 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-3130 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-1477 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-1655 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-2866 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-4052 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-763 *3 *4)) (-4 *3 (-705 *4)))))
-(-10 -7 (-15 -4052 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -1477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 -4253 (|#1| |#1| |#1|)))
-((-1794 (((-687 (-1217)) $ (-1217)) 26)) (-3224 (((-687 (-549)) $ (-549)) 25)) (-3620 (((-768) $ (-128)) 27)) (-2507 (((-687 (-129)) $ (-129)) 24)) (-1659 (((-687 (-1217)) $) 12)) (-2842 (((-687 (-1215)) $) 8)) (-3076 (((-687 (-1214)) $) 10)) (-1396 (((-687 (-549)) $) 13)) (-3410 (((-687 (-547)) $) 9)) (-2011 (((-687 (-546)) $) 11)) (-2248 (((-768) $ (-128)) 7)) (-2021 (((-687 (-129)) $) 14)) (-1880 (((-112) $) 31)) (-3611 (((-687 $) |#1| (-951)) 32)) (-3713 (($ $) 6)))
+((-2308 (((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|) 33)) (-3416 (((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|) 23)) (-1650 (((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170)) 20) (((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564))))) 19)))
+(((-761 |#1|) (-10 -7 (-15 -1650 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -1650 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -3416 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -2308 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|))) (-13 (-363) (-845))) (T -761))
+((-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 *4))))))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))) (-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))) (-1650 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170)) (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *5)) (-4 *5 (-13 (-363) (-845))))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))))
+(-10 -7 (-15 -1650 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -1650 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -3416 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -2308 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|)))
+((-3399 (((-174 (-564)) |#1|) 27)))
+(((-762 |#1|) (-10 -7 (-15 -3399 ((-174 (-564)) |#1|))) (-404)) (T -762))
+((-3399 (*1 *2 *3) (-12 (-5 *2 (-174 (-564))) (-5 *1 (-762 *3)) (-4 *3 (-404)))))
+(-10 -7 (-15 -3399 ((-174 (-564)) |#1|)))
+((-3385 ((|#1| |#1| |#1|) 28)) (-4386 ((|#1| |#1| |#1|) 27)) (-4147 ((|#1| |#1| |#1|) 38)) (-3194 ((|#1| |#1| |#1|) 34)) (-2393 (((-3 |#1| "failed") |#1| |#1|) 31)) (-4047 (((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|) 26)))
+(((-763 |#1| |#2|) (-10 -7 (-15 -4047 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -4386 (|#1| |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -2393 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3194 (|#1| |#1| |#1|)) (-15 -4147 (|#1| |#1| |#1|))) (-705 |#2|) (-363)) (T -763))
+((-4147 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-3194 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-2393 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-4386 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-4047 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-763 *3 *4)) (-4 *3 (-705 *4)))))
+(-10 -7 (-15 -4047 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -4386 (|#1| |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -2393 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3194 (|#1| |#1| |#1|)) (-15 -4147 (|#1| |#1| |#1|)))
+((-2363 (((-687 (-1217)) $ (-1217)) 26)) (-1742 (((-687 (-549)) $ (-549)) 25)) (-4332 (((-768) $ (-128)) 27)) (-2010 (((-687 (-129)) $ (-129)) 24)) (-3420 (((-687 (-1217)) $) 12)) (-4117 (((-687 (-1215)) $) 8)) (-3900 (((-687 (-1214)) $) 10)) (-1540 (((-687 (-549)) $) 13)) (-2983 (((-687 (-547)) $) 9)) (-3877 (((-687 (-546)) $) 11)) (-1306 (((-768) $ (-128)) 7)) (-2839 (((-687 (-129)) $) 14)) (-2008 (((-112) $) 31)) (-4251 (((-687 $) |#1| (-951)) 32)) (-3977 (($ $) 6)))
(((-764 |#1|) (-140) (-1094)) (T -764))
-((-3611 (*1 *2 *3 *4) (-12 (-5 *4 (-951)) (-4 *3 (-1094)) (-5 *2 (-687 *1)) (-4 *1 (-764 *3)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-764 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(-13 (-576) (-10 -8 (-15 -3611 ((-687 $) |t#1| (-951))) (-15 -1880 ((-112) $))))
+((-4251 (*1 *2 *3 *4) (-12 (-5 *4 (-951)) (-4 *3 (-1094)) (-5 *2 (-687 *1)) (-4 *1 (-764 *3)))) (-2008 (*1 *2 *1) (-12 (-4 *1 (-764 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(-13 (-576) (-10 -8 (-15 -4251 ((-687 $) |t#1| (-951))) (-15 -2008 ((-112) $))))
(((-173) . T) ((-527) . T) ((-576) . T) ((-857) . T))
-((-4018 (((-2 (|:| -3941 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)) 71)) (-1791 (((-2 (|:| -3941 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) 69)) (-1938 (((-564)) 85)))
-(((-765 |#1| |#2|) (-10 -7 (-15 -1938 ((-564))) (-15 -1791 ((-2 (|:| -3941 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -4018 ((-2 (|:| -3941 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)))) (-1235 (-564)) (-409 (-564) |#1|)) (T -765))
-((-4018 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-765 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1791 (*1 *2) (-12 (-4 *3 (-1235 (-564))) (-5 *2 (-2 (|:| -3941 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) (-5 *1 (-765 *3 *4)) (-4 *4 (-409 (-564) *3)))) (-1938 (*1 *2) (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-765 *3 *4)) (-4 *4 (-409 *2 *3)))))
-(-10 -7 (-15 -1938 ((-564))) (-15 -1791 ((-2 (|:| -3941 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -4018 ((-2 (|:| -3941 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564))))
-((-1754 (((-112) $ $) NIL)) (-2064 (((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 20) (($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1686 (((-112) $ $) NIL)))
-(((-766) (-13 (-1094) (-10 -8 (-15 -1765 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1765 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1765 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2064 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -766))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-766)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-766)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-766)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-766)))))
-(-13 (-1094) (-10 -8 (-15 -1765 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1765 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1765 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2064 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
-((-1981 (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))) 18) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170))) 17)) (-4325 (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))) 20) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170))) 19)))
-(((-767 |#1|) (-10 -7 (-15 -1981 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -1981 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))))) (-556)) (T -767))
-((-4325 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) (-1981 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))))
-(-10 -7 (-15 -1981 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -1981 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3382 (($ $ $) 12)) (-3936 (((-3 $ "failed") $ $) 16)) (-2980 (($ $ (-564)) 13)) (-3760 (($) NIL T CONST)) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($ $) NIL)) (-1366 (($ $ $) NIL)) (-2419 (((-112) $) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2527 (($ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1765 (((-859) $) NIL)) (-4317 (($) 6 T CONST)) (-4327 (($) NIL T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ $ $) NIL)))
-(((-768) (-13 (-790) (-723) (-10 -8 (-15 -1366 ($ $ $)) (-15 -1387 ($ $ $)) (-15 -2527 ($ $ $)) (-15 -1959 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -1343 ((-3 $ "failed") $ $)) (-15 -2980 ($ $ (-564))) (-15 -2542 ($ $)) (-6 (-4413 "*"))))) (T -768))
-((-1366 (*1 *1 *1 *1) (-5 *1 (-768))) (-1387 (*1 *1 *1 *1) (-5 *1 (-768))) (-2527 (*1 *1 *1 *1) (-5 *1 (-768))) (-1959 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3741 (-768)) (|:| -2746 (-768)))) (-5 *1 (-768)))) (-1343 (*1 *1 *1 *1) (|partial| -5 *1 (-768))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-768)))) (-2542 (*1 *1 *1) (-5 *1 (-768))))
-(-13 (-790) (-723) (-10 -8 (-15 -1366 ($ $ $)) (-15 -1387 ($ $ $)) (-15 -2527 ($ $ $)) (-15 -1959 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -1343 ((-3 $ "failed") $ $)) (-15 -2980 ($ $ (-564))) (-15 -2542 ($ $)) (-6 (-4413 "*"))))
+((-3733 (((-2 (|:| -4339 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)) 71)) (-2339 (((-2 (|:| -4339 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) 69)) (-4378 (((-564)) 85)))
+(((-765 |#1| |#2|) (-10 -7 (-15 -4378 ((-564))) (-15 -2339 ((-2 (|:| -4339 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -3733 ((-2 (|:| -4339 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)))) (-1235 (-564)) (-409 (-564) |#1|)) (T -765))
+((-3733 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-765 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2339 (*1 *2) (-12 (-4 *3 (-1235 (-564))) (-5 *2 (-2 (|:| -4339 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) (-5 *1 (-765 *3 *4)) (-4 *4 (-409 (-564) *3)))) (-4378 (*1 *2) (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-765 *3 *4)) (-4 *4 (-409 *2 *3)))))
+(-10 -7 (-15 -4378 ((-564))) (-15 -2339 ((-2 (|:| -4339 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -3733 ((-2 (|:| -4339 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564))))
+((-3702 (((-112) $ $) NIL)) (-2376 (((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 20) (($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1720 (((-112) $ $) NIL)))
+(((-766) (-13 (-1094) (-10 -8 (-15 -3714 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3714 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3714 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2376 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -766))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-766)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-766)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-766)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-766)))))
+(-13 (-1094) (-10 -8 (-15 -3714 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3714 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3714 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2376 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
+((-3536 (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))) 18) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170))) 17)) (-3472 (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))) 20) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170))) 19)))
+(((-767 |#1|) (-10 -7 (-15 -3536 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -3536 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))))) (-556)) (T -767))
+((-3472 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))))
+(-10 -7 (-15 -3536 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -3536 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3884 (($ $ $) 12)) (-4281 (((-3 $ "failed") $ $) 16)) (-2490 (($ $ (-564)) 13)) (-3180 (($) NIL T CONST)) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($ $) NIL)) (-1371 (($ $ $) NIL)) (-2340 (((-112) $) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2727 (($ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-3714 (((-859) $) NIL)) (-4312 (($) 6 T CONST)) (-4323 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ $ $) NIL)))
+(((-768) (-13 (-790) (-723) (-10 -8 (-15 -1371 ($ $ $)) (-15 -1399 ($ $ $)) (-15 -2727 ($ $ $)) (-15 -3329 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -1347 ((-3 $ "failed") $ $)) (-15 -2490 ($ $ (-564))) (-15 -2939 ($ $)) (-6 (-4414 "*"))))) (T -768))
+((-1371 (*1 *1 *1 *1) (-5 *1 (-768))) (-1399 (*1 *1 *1 *1) (-5 *1 (-768))) (-2727 (*1 *1 *1 *1) (-5 *1 (-768))) (-3329 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3031 (-768)) (|:| -2550 (-768)))) (-5 *1 (-768)))) (-1347 (*1 *1 *1 *1) (|partial| -5 *1 (-768))) (-2490 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-768)))) (-2939 (*1 *1 *1) (-5 *1 (-768))))
+(-13 (-790) (-723) (-10 -8 (-15 -1371 ($ $ $)) (-15 -1399 ($ $ $)) (-15 -2727 ($ $ $)) (-15 -3329 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -1347 ((-3 $ "failed") $ $)) (-15 -2490 ($ $ (-564))) (-15 -2939 ($ $)) (-6 (-4414 "*"))))
((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-4325 (((-3 |#2| "failed") |#2| |#2| (-114) (-1170)) 37)))
-(((-769 |#1| |#2|) (-10 -7 (-15 -4325 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -769))
-((-4325 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-769 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-956))))))
-(-10 -7 (-15 -4325 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170))))
-((-1765 (((-771) |#1|) 8)))
-(((-770 |#1|) (-10 -7 (-15 -1765 ((-771) |#1|))) (-1209)) (T -770))
-((-1765 (*1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-770 *3)) (-4 *3 (-1209)))))
-(-10 -7 (-15 -1765 ((-771) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 7)) (-1686 (((-112) $ $) 9)))
+((-3472 (((-3 |#2| "failed") |#2| |#2| (-114) (-1170)) 37)))
+(((-769 |#1| |#2|) (-10 -7 (-15 -3472 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -769))
+((-3472 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-769 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-956))))))
+(-10 -7 (-15 -3472 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170))))
+((-3714 (((-771) |#1|) 8)))
+(((-770 |#1|) (-10 -7 (-15 -3714 ((-771) |#1|))) (-1209)) (T -770))
+((-3714 (*1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-770 *3)) (-4 *3 (-1209)))))
+(-10 -7 (-15 -3714 ((-771) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 7)) (-1720 (((-112) $ $) 9)))
(((-771) (-1094)) (T -771))
NIL
(-1094)
-((-1779 ((|#2| |#4|) 35)))
-(((-772 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1779 (|#2| |#4|))) (-452) (-1235 |#1|) (-721 |#1| |#2|) (-1235 |#3|)) (T -772))
-((-1779 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-721 *4 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-772 *4 *2 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -1779 (|#2| |#4|)))
-((-1926 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2154 (((-1264) (-1152) (-1152) |#4| |#5|) 33)) (-1768 ((|#4| |#4| |#5|) 73)) (-4168 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#5|) 78)) (-1753 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|) 16)))
-(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1926 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1768 (|#4| |#4| |#5|)) (-15 -4168 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -2154 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -1753 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -773))
-((-1753 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4)))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2154 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *4 (-1060 *6 *7 *8)) (-5 *2 (-1264)) (-5 *1 (-773 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4)))) (-4168 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1768 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *2 (-1060 *4 *5 *6)) (-5 *1 (-773 *4 *5 *6 *2 *3)) (-4 *3 (-1066 *4 *5 *6 *2)))) (-1926 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(-10 -7 (-15 -1926 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1768 (|#4| |#4| |#5|)) (-15 -4168 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -2154 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -1753 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|)))
-((-2013 (((-3 (-1166 (-1166 |#1|)) "failed") |#4|) 53)) (-3111 (((-641 |#4|) |#4|) 24)) (-1560 ((|#4| |#4|) 19)))
-(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3111 ((-641 |#4|) |#4|)) (-15 -2013 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -1560 (|#4| |#4|))) (-349) (-329 |#1|) (-1235 |#2|) (-1235 |#3|) (-918)) (T -774))
-((-1560 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4)) (-5 *1 (-774 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-918)))) (-2013 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-918)))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-641 *3)) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-918)))))
-(-10 -7 (-15 -3111 ((-641 |#4|) |#4|)) (-15 -2013 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -1560 (|#4| |#4|)))
-((-2403 (((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|)) 74)) (-3552 (((-641 (-768)) |#1|) 20)))
-(((-775 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2403 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -3552 ((-641 (-768)) |#1|))) (-1235 |#4|) (-790) (-847) (-307) (-946 |#4| |#2| |#3|)) (T -775))
-((-3552 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-641 (-768))) (-5 *1 (-775 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *6)) (-4 *7 (-946 *6 *4 *5)))) (-2403 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1235 *9)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-307)) (-4 *10 (-946 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-641 (-1166 *10))) (|:| |dterm| (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| *10))))) (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10)))) (-5 *1 (-775 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6)) (-5 *5 (-641 *10)))))
-(-10 -7 (-15 -2403 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -3552 ((-641 (-768)) |#1|)))
-((-3112 (((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|) 31)) (-3895 (((-641 |#1|) (-685 (-407 (-564))) |#1|) 21)) (-3216 (((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170)) 18) (((-949 (-407 (-564))) (-685 (-407 (-564)))) 17)))
-(((-776 |#1|) (-10 -7 (-15 -3216 ((-949 (-407 (-564))) (-685 (-407 (-564))))) (-15 -3216 ((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -3895 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -3112 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|))) (-13 (-363) (-845))) (T -776))
-((-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 (-2 (|:| |outval| *4) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *4)))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) (-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170)) (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-363) (-845))))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))))
-(-10 -7 (-15 -3216 ((-949 (-407 (-564))) (-685 (-407 (-564))))) (-15 -3216 ((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -3895 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -3112 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 36)) (-4170 (((-641 |#2|) $) NIL)) (-3964 (((-1166 $) $ |#2|) NIL) (((-1166 |#1|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 |#2|)) NIL)) (-1882 (($ $) 30)) (-3989 (((-112) $ $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2673 (($ $ $) 108 (|has| |#1| (-556)))) (-3228 (((-641 $) $ $) 121 (|has| |#1| (-556)))) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1368 (($ $) NIL (|has| |#1| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (((-3 $ "failed") (-949 (-564))) NIL (-4002 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4254 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (((-3 $ "failed") (-949 |#1|)) NIL (-4002 (-12 (|has| |#2| (-612 (-1170))) (-4254 (|has| |#1| (-38 (-407 (-564))))) (-4254 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4254 (|has| |#1| (-38 (-407 (-564))))) (-4254 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-4254 (|has| |#1| (-989 (-564))))))) (((-3 (-1119 |#1| |#2|) "failed") $) 21)) (-2064 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#2| $) NIL) (($ (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-949 (-564))) NIL (-4002 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4254 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-949 |#1|)) NIL (-4002 (-12 (|has| |#2| (-612 (-1170))) (-4254 (|has| |#1| (-38 (-407 (-564))))) (-4254 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4254 (|has| |#1| (-38 (-407 (-564))))) (-4254 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-4254 (|has| |#1| (-989 (-564))))))) (((-1119 |#1| |#2|) $) NIL)) (-4267 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-556)))) (-4346 (($ $) NIL) (($ $ |#2|) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4269 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2814 (((-112) $) NIL)) (-3363 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 79)) (-2206 (($ $) 134 (|has| |#1| (-452)))) (-2190 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#1| (-906)))) (-3248 (($ $) NIL (|has| |#1| (-556)))) (-1641 (($ $) NIL (|has| |#1| (-556)))) (-1912 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-1465 (($ $ $) 77) (($ $ $ |#2|) NIL)) (-2877 (($ $ |#1| (-531 |#2|) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2419 (((-112) $) 56)) (-3107 (((-768) $) NIL)) (-2415 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-1837 (($ $ $ $ $) 105 (|has| |#1| (-556)))) (-3162 ((|#2| $) 22)) (-4157 (($ (-1166 |#1|) |#2|) NIL) (($ (-1166 $) |#2|) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-768)) 38) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2778 (($ $ $) 62)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ |#2|) NIL)) (-1534 (((-112) $) NIL)) (-3829 (((-531 |#2|) $) NIL) (((-768) $ |#2|) NIL) (((-641 (-768)) $ (-641 |#2|)) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1999 (((-768) $) 23)) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2964 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2022 (((-3 |#2| "failed") $) NIL)) (-1393 (($ $) NIL (|has| |#1| (-452)))) (-3006 (($ $) NIL (|has| |#1| (-452)))) (-1346 (((-641 $) $) NIL)) (-1567 (($ $) 39)) (-3041 (($ $) NIL (|has| |#1| (-452)))) (-2714 (((-641 $) $) 43)) (-3127 (($ $) 41)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4092 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2213 (-768))) $ $) 94)) (-2240 (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $) 76) (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $ |#2|) NIL)) (-4239 (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -2746 $)) $ $) NIL) (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -2746 $)) $ $ |#2|) NIL)) (-2706 (($ $ $) 81) (($ $ $ |#2|) NIL)) (-3289 (($ $ $) 84) (($ $ $ |#2|) NIL)) (-4202 (((-1152) $) NIL)) (-1489 (($ $ $) 123 (|has| |#1| (-556)))) (-3249 (((-641 $) $) 32)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| |#2|) (|:| -3747 (-768))) "failed") $) NIL)) (-3561 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-3874 (($ $ $) NIL)) (-1611 (($ $) 24)) (-3862 (((-112) $ $) NIL)) (-1512 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-3491 (($ $ $) NIL)) (-1821 (($ $) 26)) (-3802 (((-1114) $) NIL)) (-3058 (((-2 (|:| -2527 $) (|:| |coef2| $)) $ $) 114 (|has| |#1| (-556)))) (-2320 (((-2 (|:| -2527 $) (|:| |coef1| $)) $ $) 111 (|has| |#1| (-556)))) (-4285 (((-112) $) 55)) (-4298 ((|#1| $) 57)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2527 ((|#1| |#1| $) 131 (|has| |#1| (-452))) (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1544 (((-2 (|:| -2527 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 117 (|has| |#1| (-556)))) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-556)))) (-3983 (($ $ |#1|) 127 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2342 (($ $ |#1|) 126 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-641 |#2|) (-641 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-641 |#2|) (-641 $)) NIL)) (-1938 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3226 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-3344 (((-531 |#2|) $) NIL) (((-768) $ |#2|) 45) (((-641 (-768)) $ (-641 |#2|)) NIL)) (-2981 (($ $) NIL)) (-3288 (($ $) 35)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) (($ (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-949 (-564))) NIL (-4002 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4254 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-949 |#1|)) NIL (|has| |#2| (-612 (-1170)))) (((-1152) $) NIL (-12 (|has| |#1| (-1035 (-564))) (|has| |#2| (-612 (-1170))))) (((-949 |#1|) $) NIL (|has| |#2| (-612 (-1170))))) (-2712 ((|#1| $) 130 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-949 |#1|) $) NIL (|has| |#2| (-612 (-1170)))) (((-1119 |#1| |#2|) $) 18) (($ (-1119 |#1| |#2|)) 19) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-768)) 47) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) 13 T CONST)) (-4315 (((-3 (-112) "failed") $ $) NIL)) (-4327 (($) 37 T CONST)) (-1557 (($ $ $ $ (-768)) 103 (|has| |#1| (-556)))) (-2303 (($ $ $ (-768)) 102 (|has| |#1| (-556)))) (-3190 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) 73)) (-1771 (($ $ $) 83)) (** (($ $ (-918)) NIL) (($ $ (-768)) 69)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 61) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 60) (($ $ |#1|) NIL)))
+((-2217 ((|#2| |#4|) 35)))
+(((-772 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2217 (|#2| |#4|))) (-452) (-1235 |#1|) (-721 |#1| |#2|) (-1235 |#3|)) (T -772))
+((-2217 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-721 *4 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-772 *4 *2 *5 *3)) (-4 *3 (-1235 *5)))))
+(-10 -7 (-15 -2217 (|#2| |#4|)))
+((-4272 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1649 (((-1264) (-1152) (-1152) |#4| |#5|) 33)) (-3264 ((|#4| |#4| |#5|) 73)) (-2780 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#5|) 78)) (-3154 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|) 16)))
+(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4272 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3264 (|#4| |#4| |#5|)) (-15 -2780 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -1649 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -3154 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -773))
+((-3154 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4)))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1649 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *4 (-1060 *6 *7 *8)) (-5 *2 (-1264)) (-5 *1 (-773 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4)))) (-2780 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3264 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *2 (-1060 *4 *5 *6)) (-5 *1 (-773 *4 *5 *6 *2 *3)) (-4 *3 (-1066 *4 *5 *6 *2)))) (-4272 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(-10 -7 (-15 -4272 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3264 (|#4| |#4| |#5|)) (-15 -2780 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -1649 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -3154 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|)))
+((-2224 (((-3 (-1166 (-1166 |#1|)) "failed") |#4|) 53)) (-3033 (((-641 |#4|) |#4|) 24)) (-1946 ((|#4| |#4|) 19)))
+(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3033 ((-641 |#4|) |#4|)) (-15 -2224 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -1946 (|#4| |#4|))) (-349) (-329 |#1|) (-1235 |#2|) (-1235 |#3|) (-918)) (T -774))
+((-1946 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4)) (-5 *1 (-774 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-918)))) (-2224 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-918)))) (-3033 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-641 *3)) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-918)))))
+(-10 -7 (-15 -3033 ((-641 |#4|) |#4|)) (-15 -2224 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -1946 (|#4| |#4|)))
+((-3320 (((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|)) 74)) (-1854 (((-641 (-768)) |#1|) 20)))
+(((-775 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3320 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -1854 ((-641 (-768)) |#1|))) (-1235 |#4|) (-790) (-847) (-307) (-946 |#4| |#2| |#3|)) (T -775))
+((-1854 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-641 (-768))) (-5 *1 (-775 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *6)) (-4 *7 (-946 *6 *4 *5)))) (-3320 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1235 *9)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-307)) (-4 *10 (-946 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-641 (-1166 *10))) (|:| |dterm| (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| *10))))) (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10)))) (-5 *1 (-775 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6)) (-5 *5 (-641 *10)))))
+(-10 -7 (-15 -3320 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -1854 ((-641 (-768)) |#1|)))
+((-3041 (((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|) 31)) (-2072 (((-641 |#1|) (-685 (-407 (-564))) |#1|) 21)) (-1650 (((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170)) 18) (((-949 (-407 (-564))) (-685 (-407 (-564)))) 17)))
+(((-776 |#1|) (-10 -7 (-15 -1650 ((-949 (-407 (-564))) (-685 (-407 (-564))))) (-15 -1650 ((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -2072 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -3041 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|))) (-13 (-363) (-845))) (T -776))
+((-3041 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 (-2 (|:| |outval| *4) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *4)))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) (-2072 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) (-1650 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170)) (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-363) (-845))))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))))
+(-10 -7 (-15 -1650 ((-949 (-407 (-564))) (-685 (-407 (-564))))) (-15 -1650 ((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -2072 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -3041 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 36)) (-4292 (((-641 |#2|) $) NIL)) (-4103 (((-1166 $) $ |#2|) NIL) (((-1166 |#1|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 |#2|)) NIL)) (-3794 (($ $) 30)) (-3464 (((-112) $ $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3000 (($ $ $) 108 (|has| |#1| (-556)))) (-1778 (((-641 $) $ $) 121 (|has| |#1| (-556)))) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1328 (($ $) NIL (|has| |#1| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (((-3 $ "failed") (-949 (-564))) NIL (-4012 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4253 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (((-3 $ "failed") (-949 |#1|)) NIL (-4012 (-12 (|has| |#2| (-612 (-1170))) (-4253 (|has| |#1| (-38 (-407 (-564))))) (-4253 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4253 (|has| |#1| (-38 (-407 (-564))))) (-4253 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-4253 (|has| |#1| (-989 (-564))))))) (((-3 (-1119 |#1| |#2|) "failed") $) 21)) (-2376 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#2| $) NIL) (($ (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-949 (-564))) NIL (-4012 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4253 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-949 |#1|)) NIL (-4012 (-12 (|has| |#2| (-612 (-1170))) (-4253 (|has| |#1| (-38 (-407 (-564))))) (-4253 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4253 (|has| |#1| (-38 (-407 (-564))))) (-4253 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-4253 (|has| |#1| (-989 (-564))))))) (((-1119 |#1| |#2|) $) NIL)) (-4275 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-556)))) (-1374 (($ $) NIL) (($ $ |#2|) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4300 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2029 (((-112) $) NIL)) (-3686 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 79)) (-3999 (($ $) 134 (|has| |#1| (-452)))) (-2015 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#1| (-906)))) (-1993 (($ $) NIL (|has| |#1| (-556)))) (-1441 (($ $) NIL (|has| |#1| (-556)))) (-4132 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-2257 (($ $ $) 77) (($ $ $ |#2|) NIL)) (-1423 (($ $ |#1| (-531 |#2|) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2340 (((-112) $) 56)) (-2998 (((-768) $) NIL)) (-2297 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-1558 (($ $ $ $ $) 105 (|has| |#1| (-556)))) (-2394 ((|#2| $) 22)) (-4279 (($ (-1166 |#1|) |#2|) NIL) (($ (-1166 $) |#2|) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-768)) 38) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2859 (($ $ $) 62)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ |#2|) NIL)) (-1692 (((-112) $) NIL)) (-2700 (((-531 |#2|) $) NIL) (((-768) $ |#2|) NIL) (((-641 (-768)) $ (-641 |#2|)) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3747 (((-768) $) 23)) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-4062 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2848 (((-3 |#2| "failed") $) NIL)) (-2040 (($ $) NIL (|has| |#1| (-452)))) (-1365 (($ $) NIL (|has| |#1| (-452)))) (-2493 (((-641 $) $) NIL)) (-2013 (($ $) 39)) (-3537 (($ $) NIL (|has| |#1| (-452)))) (-3341 (((-641 $) $) 43)) (-3178 (($ $) 41)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3192 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4071 (-768))) $ $) 94)) (-4327 (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $) 76) (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $ |#2|) NIL)) (-2199 (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -2550 $)) $ $) NIL) (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -2550 $)) $ $ |#2|) NIL)) (-3281 (($ $ $) 81) (($ $ $ |#2|) NIL)) (-4245 (($ $ $) 84) (($ $ $ |#2|) NIL)) (-1868 (((-1152) $) NIL)) (-2521 (($ $ $) 123 (|has| |#1| (-556)))) (-2005 (((-641 $) $) 32)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| |#2|) (|:| -3078 (-768))) "failed") $) NIL)) (-1954 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-1863 (($ $ $) NIL)) (-3304 (($ $) 24)) (-1733 (((-112) $ $) NIL)) (-1485 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-2543 (($ $ $) NIL)) (-2655 (($ $) 26)) (-3844 (((-1114) $) NIL)) (-3713 (((-2 (|:| -2727 $) (|:| |coef2| $)) $ $) 114 (|has| |#1| (-556)))) (-3817 (((-2 (|:| -2727 $) (|:| |coef1| $)) $ $) 111 (|has| |#1| (-556)))) (-1304 (((-112) $) 55)) (-1316 ((|#1| $) 57)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2727 ((|#1| |#1| $) 131 (|has| |#1| (-452))) (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1798 (((-2 (|:| -2727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 117 (|has| |#1| (-556)))) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-556)))) (-1611 (($ $ |#1|) 127 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2897 (($ $ |#1|) 126 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-641 |#2|) (-641 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-641 |#2|) (-641 $)) NIL)) (-4378 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-2203 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-3475 (((-531 |#2|) $) NIL) (((-768) $ |#2|) 45) (((-641 (-768)) $ (-641 |#2|)) NIL)) (-4213 (($ $) NIL)) (-4233 (($ $) 35)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) (($ (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-949 (-564))) NIL (-4012 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4253 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-949 |#1|)) NIL (|has| |#2| (-612 (-1170)))) (((-1152) $) NIL (-12 (|has| |#1| (-1035 (-564))) (|has| |#2| (-612 (-1170))))) (((-949 |#1|) $) NIL (|has| |#2| (-612 (-1170))))) (-3324 ((|#1| $) 130 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-949 |#1|) $) NIL (|has| |#2| (-612 (-1170)))) (((-1119 |#1| |#2|) $) 18) (($ (-1119 |#1| |#2|)) 19) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-768)) 47) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) 13 T CONST)) (-1596 (((-3 (-112) "failed") $ $) NIL)) (-4323 (($) 37 T CONST)) (-1912 (($ $ $ $ (-768)) 103 (|has| |#1| (-556)))) (-3655 (($ $ $ (-768)) 102 (|has| |#1| (-556)))) (-2238 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) 73)) (-1814 (($ $ $) 83)) (** (($ $ (-918)) NIL) (($ $ (-768)) 69)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 61) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 60) (($ $ |#1|) NIL)))
(((-777 |#1| |#2|) (-13 (-1060 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1035 (-1119 |#1| |#2|))) (-1046) (-847)) (T -777))
NIL
(-13 (-1060 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1035 (-1119 |#1| |#2|)))
-((-2082 (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)) 13)))
-(((-778 |#1| |#2|) (-10 -7 (-15 -2082 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)))) (-1046) (-1046)) (T -778))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6)))))
-(-10 -7 (-15 -2082 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 12)) (-4128 (((-1259 |#1|) $ (-768)) NIL)) (-4170 (((-641 (-1076)) $) NIL)) (-2112 (($ (-1166 |#1|)) NIL)) (-3964 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3567 (((-641 $) $ $) 54 (|has| |#1| (-556)))) (-2673 (($ $ $) 50 (|has| |#1| (-556)))) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1368 (($ $) NIL (|has| |#1| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3995 (($ $ (-768)) NIL)) (-1692 (($ $ (-768)) NIL)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL) (((-3 (-1166 |#1|) "failed") $) 10)) (-2064 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL) (((-1166 |#1|) $) NIL)) (-4267 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3020 (($ $ $) NIL)) (-1506 (($ $ $) 87 (|has| |#1| (-556)))) (-3363 (((-2 (|:| -1662 |#1|) (|:| -3741 $) (|:| -2746 $)) $ $) 86 (|has| |#1| (-556)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2190 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#1| (-906)))) (-2877 (($ $ |#1| (-768) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2261 (((-768) $ $) NIL (|has| |#1| (-556)))) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-4157 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-2300 (($ $ (-768)) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2778 (($ $ $) 27)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-1076)) NIL) (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3829 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2964 (($ (-1 (-768) (-768)) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2418 (((-1166 |#1|) $) NIL)) (-2022 (((-3 (-1076) "failed") $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4092 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2213 (-768))) $ $) 37)) (-3901 (($ $ $) 41)) (-2664 (($ $ $) 47)) (-2240 (((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $) 46)) (-4202 (((-1152) $) NIL)) (-1489 (($ $ $) 56 (|has| |#1| (-556)))) (-2724 (((-2 (|:| -3741 $) (|:| -2746 $)) $ (-768)) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-1076)) (|:| -3747 (-768))) "failed") $) NIL)) (-3591 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1611 (($) NIL (|has| |#1| (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-3058 (((-2 (|:| -2527 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-556)))) (-2320 (((-2 (|:| -2527 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-556)))) (-2719 (((-2 (|:| -4267 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-556)))) (-3788 (((-2 (|:| -4267 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-556)))) (-4285 (((-112) $) 13)) (-4298 ((|#1| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2198 (($ $ (-768) |#1| $) 26)) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1544 (((-2 (|:| -2527 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-556)))) (-2632 (((-2 (|:| -4267 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-556)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-4135 (((-3 $ "failed") $ (-768)) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-1938 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3226 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3344 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2712 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1076)) NIL) (((-1166 |#1|) $) 7) (($ (-1166 |#1|)) 8) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) 28 T CONST)) (-4327 (($) 32 T CONST)) (-3190 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) 40) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-779 |#1|) (-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1035 (-1166 |#1|)) (-10 -8 (-15 -2198 ($ $ (-768) |#1| $)) (-15 -2778 ($ $ $)) (-15 -4092 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2213 (-768))) $ $)) (-15 -3901 ($ $ $)) (-15 -2240 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -2664 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -3567 ((-641 $) $ $)) (-15 -1489 ($ $ $)) (-15 -1544 ((-2 (|:| -2527 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2320 ((-2 (|:| -2527 $) (|:| |coef1| $)) $ $)) (-15 -3058 ((-2 (|:| -2527 $) (|:| |coef2| $)) $ $)) (-15 -2632 ((-2 (|:| -4267 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3788 ((-2 (|:| -4267 |#1|) (|:| |coef1| $)) $ $)) (-15 -2719 ((-2 (|:| -4267 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1046)) (T -779))
-((-2198 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-2778 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-4092 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-779 *3)) (|:| |polden| *3) (|:| -2213 (-768)))) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-3901 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-2240 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1662 *3) (|:| |gap| (-768)) (|:| -3741 (-779 *3)) (|:| -2746 (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-2664 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-3567 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-779 *3))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-1489 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-556)) (-4 *2 (-1046)))) (-1544 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2527 (-779 *3)) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2320 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2527 (-779 *3)) (|:| |coef1| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-3058 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2527 (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2632 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4267 *3) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-3788 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4267 *3) (|:| |coef1| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2719 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4267 *3) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
-(-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1035 (-1166 |#1|)) (-10 -8 (-15 -2198 ($ $ (-768) |#1| $)) (-15 -2778 ($ $ $)) (-15 -4092 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2213 (-768))) $ $)) (-15 -3901 ($ $ $)) (-15 -2240 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -2664 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -3567 ((-641 $) $ $)) (-15 -1489 ($ $ $)) (-15 -1544 ((-2 (|:| -2527 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2320 ((-2 (|:| -2527 $) (|:| |coef1| $)) $ $)) (-15 -3058 ((-2 (|:| -2527 $) (|:| |coef2| $)) $ $)) (-15 -2632 ((-2 (|:| -4267 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3788 ((-2 (|:| -4267 |#1|) (|:| |coef1| $)) $ $)) (-15 -2719 ((-2 (|:| -4267 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-2835 ((|#1| (-768) |#1|) 33 (|has| |#1| (-38 (-407 (-564)))))) (-2871 ((|#1| (-768) |#1|) 23)) (-2170 ((|#1| (-768) |#1|) 35 (|has| |#1| (-38 (-407 (-564)))))))
-(((-780 |#1|) (-10 -7 (-15 -2871 (|#1| (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2170 (|#1| (-768) |#1|)) (-15 -2835 (|#1| (-768) |#1|))) |%noBranch|)) (-172)) (T -780))
-((-2835 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-2170 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-2871 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -2871 (|#1| (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -2170 (|#1| (-768) |#1|)) (-15 -2835 (|#1| (-768) |#1|))) |%noBranch|))
-((-1754 (((-112) $ $) 7)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |#4|)))) (-641 |#4|)) 85)) (-4389 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4170 (((-641 |#3|) $) 33)) (-1747 (((-112) $) 26)) (-2197 (((-112) $) 17 (|has| |#1| (-556)))) (-1940 (((-112) |#4| $) 101) (((-112) $) 97)) (-3993 ((|#4| |#4| $) 92)) (-1368 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| $) 126)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) 27)) (-3263 (((-112) $ (-768)) 44)) (-2164 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-3760 (($) 45 T CONST)) (-4177 (((-112) $) 22 (|has| |#1| (-556)))) (-3911 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2694 (((-112) $ $) 23 (|has| |#1| (-556)))) (-1378 (((-112) $) 25 (|has| |#1| (-556)))) (-3207 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2254 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) 36)) (-2064 (($ (-641 |#4|)) 35)) (-3086 (((-3 $ "failed") $) 82)) (-2758 ((|#4| |#4| $) 89)) (-3104 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4269 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3621 ((|#4| |#4| $) 87)) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2058 (((-2 (|:| -3439 (-641 |#4|)) (|:| -1589 (-641 |#4|))) $) 105)) (-1456 (((-112) |#4| $) 136)) (-2097 (((-112) |#4| $) 133)) (-2432 (((-112) |#4| $) 137) (((-112) $) 134)) (-3080 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-2415 (((-112) |#4| $) 104) (((-112) $) 103)) (-3162 ((|#3| $) 34)) (-2830 (((-112) $ (-768)) 43)) (-3817 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 47)) (-4343 (((-641 |#3|) $) 32)) (-1853 (((-112) |#3| $) 31)) (-2972 (((-112) $ (-768)) 42)) (-4202 (((-1152) $) 9)) (-4181 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-1489 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| |#4| $) 127)) (-2376 (((-3 |#4| "failed") $) 83)) (-2298 (((-641 $) |#4| $) 129)) (-3866 (((-3 (-112) (-641 $)) |#4| $) 132)) (-4214 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1617 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-1829 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-3277 (((-641 |#4|) $) 107)) (-3561 (((-112) |#4| $) 99) (((-112) $) 95)) (-3874 ((|#4| |#4| $) 90)) (-3862 (((-112) $ $) 110)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1512 (((-112) |#4| $) 100) (((-112) $) 96)) (-3491 ((|#4| |#4| $) 91)) (-3802 (((-1114) $) 10)) (-3073 (((-3 |#4| "failed") $) 84)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3159 (((-3 $ "failed") $ |#4|) 78)) (-2678 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-1467 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) 38)) (-2742 (((-112) $) 41)) (-3845 (($) 40)) (-3344 (((-768) $) 106)) (-3815 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-1899 (($ $) 39)) (-2127 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) 60)) (-2318 (($ $ |#3|) 28)) (-1869 (($ $ |#3|) 30)) (-3430 (($ $) 88)) (-1845 (($ $ |#3|) 29)) (-1765 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1597 (((-768) $) 76 (|has| |#3| (-368)))) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1599 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3602 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-2237 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-2380 (((-641 |#3|) $) 81)) (-1759 (((-112) |#4| $) 135)) (-3623 (((-112) |#3| $) 80)) (-1686 (((-112) $ $) 6)) (-2589 (((-768) $) 46 (|has| $ (-6 -4411)))))
+((-2313 (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)) 13)))
+(((-778 |#1| |#2|) (-10 -7 (-15 -2313 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)))) (-1046) (-1046)) (T -778))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6)))))
+(-10 -7 (-15 -2313 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 12)) (-2401 (((-1259 |#1|) $ (-768)) NIL)) (-4292 (((-641 (-1076)) $) NIL)) (-2522 (($ (-1166 |#1|)) NIL)) (-4103 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2009 (((-641 $) $ $) 54 (|has| |#1| (-556)))) (-3000 (($ $ $) 50 (|has| |#1| (-556)))) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1328 (($ $) NIL (|has| |#1| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3522 (($ $ (-768)) NIL)) (-3752 (($ $ (-768)) NIL)) (-2530 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL) (((-3 (-1166 |#1|) "failed") $) 10)) (-2376 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL) (((-1166 |#1|) $) NIL)) (-4275 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $ $) NIL)) (-2696 (($ $ $) 87 (|has| |#1| (-556)))) (-3686 (((-2 (|:| -1817 |#1|) (|:| -3031 $) (|:| -2550 $)) $ $) 86 (|has| |#1| (-556)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2015 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#1| (-906)))) (-1423 (($ $ |#1| (-768) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1454 (((-768) $ $) NIL (|has| |#1| (-556)))) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-4279 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-3619 (($ $ (-768)) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2859 (($ $ $) 27)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-1076)) NIL) (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2700 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-4062 (($ (-1 (-768) (-768)) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2329 (((-1166 |#1|) $) NIL)) (-2848 (((-3 (-1076) "failed") $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3192 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4071 (-768))) $ $) 37)) (-2132 (($ $ $) 41)) (-2928 (($ $ $) 47)) (-4327 (((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $) 46)) (-1868 (((-1152) $) NIL)) (-2521 (($ $ $) 56 (|has| |#1| (-556)))) (-2315 (((-2 (|:| -3031 $) (|:| -2550 $)) $ (-768)) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-1076)) (|:| -3078 (-768))) "failed") $) NIL)) (-4039 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3304 (($) NIL (|has| |#1| (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-3713 (((-2 (|:| -2727 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-556)))) (-3817 (((-2 (|:| -2727 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-556)))) (-2272 (((-2 (|:| -4275 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-556)))) (-2293 (((-2 (|:| -4275 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-556)))) (-1304 (((-112) $) 13)) (-1316 ((|#1| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2102 (($ $ (-768) |#1| $) 26)) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1798 (((-2 (|:| -2727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-556)))) (-3749 (((-2 (|:| -4275 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-556)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-2458 (((-3 $ "failed") $ (-768)) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-4378 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-2203 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3475 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3324 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-2301 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1076)) NIL) (((-1166 |#1|) $) 7) (($ (-1166 |#1|)) 8) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) 28 T CONST)) (-4323 (($) 32 T CONST)) (-2238 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) 40) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-779 |#1|) (-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1035 (-1166 |#1|)) (-10 -8 (-15 -2102 ($ $ (-768) |#1| $)) (-15 -2859 ($ $ $)) (-15 -3192 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4071 (-768))) $ $)) (-15 -2132 ($ $ $)) (-15 -4327 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -2928 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -2009 ((-641 $) $ $)) (-15 -2521 ($ $ $)) (-15 -1798 ((-2 (|:| -2727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3817 ((-2 (|:| -2727 $) (|:| |coef1| $)) $ $)) (-15 -3713 ((-2 (|:| -2727 $) (|:| |coef2| $)) $ $)) (-15 -3749 ((-2 (|:| -4275 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2293 ((-2 (|:| -4275 |#1|) (|:| |coef1| $)) $ $)) (-15 -2272 ((-2 (|:| -4275 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1046)) (T -779))
+((-2102 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-2859 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-3192 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-779 *3)) (|:| |polden| *3) (|:| -4071 (-768)))) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-2132 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-4327 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1817 *3) (|:| |gap| (-768)) (|:| -3031 (-779 *3)) (|:| -2550 (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-2928 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-2009 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-779 *3))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2521 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-556)) (-4 *2 (-1046)))) (-1798 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2727 (-779 *3)) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-3817 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2727 (-779 *3)) (|:| |coef1| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-3713 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2727 (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-3749 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4275 *3) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2293 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4275 *3) (|:| |coef1| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2272 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4275 *3) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
+(-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1035 (-1166 |#1|)) (-10 -8 (-15 -2102 ($ $ (-768) |#1| $)) (-15 -2859 ($ $ $)) (-15 -3192 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4071 (-768))) $ $)) (-15 -2132 ($ $ $)) (-15 -4327 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -2928 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -2009 ((-641 $) $ $)) (-15 -2521 ($ $ $)) (-15 -1798 ((-2 (|:| -2727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3817 ((-2 (|:| -2727 $) (|:| |coef1| $)) $ $)) (-15 -3713 ((-2 (|:| -2727 $) (|:| |coef2| $)) $ $)) (-15 -3749 ((-2 (|:| -4275 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2293 ((-2 (|:| -4275 |#1|) (|:| |coef1| $)) $ $)) (-15 -2272 ((-2 (|:| -4275 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2215 ((|#1| (-768) |#1|) 33 (|has| |#1| (-38 (-407 (-564)))))) (-1343 ((|#1| (-768) |#1|) 23)) (-1799 ((|#1| (-768) |#1|) 35 (|has| |#1| (-38 (-407 (-564)))))))
+(((-780 |#1|) (-10 -7 (-15 -1343 (|#1| (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -1799 (|#1| (-768) |#1|)) (-15 -2215 (|#1| (-768) |#1|))) |%noBranch|)) (-172)) (T -780))
+((-2215 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-1799 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-1343 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -1343 (|#1| (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -1799 (|#1| (-768) |#1|)) (-15 -2215 (|#1| (-768) |#1|))) |%noBranch|))
+((-3702 (((-112) $ $) 7)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |#4|)))) (-641 |#4|)) 85)) (-4055 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4292 (((-641 |#3|) $) 33)) (-3097 (((-112) $) 26)) (-2092 (((-112) $) 17 (|has| |#1| (-556)))) (-1300 (((-112) |#4| $) 101) (((-112) $) 97)) (-3500 ((|#4| |#4| $) 92)) (-1328 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| $) 126)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) 27)) (-2141 (((-112) $ (-768)) 44)) (-4148 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4412))) (((-3 |#4| "failed") $ |#3|) 79)) (-3180 (($) 45 T CONST)) (-2846 (((-112) $) 22 (|has| |#1| (-556)))) (-2228 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3171 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3798 (((-112) $) 25 (|has| |#1| (-556)))) (-1578 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1373 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) 36)) (-2376 (($ (-641 |#4|)) 35)) (-2063 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-2084 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4344 ((|#4| |#4| $) 87)) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4412))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3151 (((-2 (|:| -3489 (-641 |#4|)) (|:| -1721 (-641 |#4|))) $) 105)) (-2169 (((-112) |#4| $) 136)) (-2358 (((-112) |#4| $) 133)) (-2479 (((-112) |#4| $) 137) (((-112) $) 134)) (-4244 (((-641 |#4|) $) 52 (|has| $ (-6 -4412)))) (-2297 (((-112) |#4| $) 104) (((-112) $) 103)) (-2394 ((|#3| $) 34)) (-2173 (((-112) $ (-768)) 43)) (-2572 (((-641 |#4|) $) 53 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 47)) (-3652 (((-641 |#3|) $) 32)) (-1722 (((-112) |#3| $) 31)) (-4144 (((-112) $ (-768)) 42)) (-1868 (((-1152) $) 9)) (-2881 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2521 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| |#4| $) 127)) (-2541 (((-3 |#4| "failed") $) 83)) (-3607 (((-641 $) |#4| $) 129)) (-1779 (((-3 (-112) (-641 $)) |#4| $) 132)) (-1990 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4302 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2737 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4104 (((-641 |#4|) $) 107)) (-1954 (((-112) |#4| $) 99) (((-112) $) 95)) (-1863 ((|#4| |#4| $) 90)) (-1733 (((-112) $ $) 110)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1485 (((-112) |#4| $) 100) (((-112) $) 96)) (-2543 ((|#4| |#4| $) 91)) (-3844 (((-1114) $) 10)) (-2049 (((-3 |#4| "failed") $) 84)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2359 (((-3 $ "failed") $ |#4|) 78)) (-3042 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-2280 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) 38)) (-2510 (((-112) $) 41)) (-2834 (($) 40)) (-3475 (((-768) $) 106)) (-3855 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4412)))) (-3890 (($ $) 39)) (-2374 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) 60)) (-3789 (($ $ |#3|) 28)) (-1896 (($ $ |#3|) 30)) (-3121 (($ $) 88)) (-1632 (($ $ |#3|) 29)) (-3714 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4113 (((-768) $) 76 (|has| |#3| (-368)))) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4138 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-4158 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-4289 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4412)))) (-3148 (((-641 |#3|) $) 81)) (-3199 (((-112) |#4| $) 135)) (-4368 (((-112) |#3| $) 80)) (-1720 (((-112) $ $) 6)) (-2779 (((-768) $) 46 (|has| $ (-6 -4412)))))
(((-781 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -781))
NIL
(-13 (-1066 |t#1| |t#2| |t#3| |t#4|))
(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T))
-((-1790 (((-3 (-379) "failed") (-316 |#1|) (-918)) 62 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-379) "failed") (-407 (-949 |#1|)) (-918)) 41 (|has| |#1| (-556))) (((-3 (-379) "failed") (-407 (-949 |#1|))) 40 (|has| |#1| (-556))) (((-3 (-379) "failed") (-949 |#1|) (-918)) 31 (|has| |#1| (-1046))) (((-3 (-379) "failed") (-949 |#1|)) 30 (|has| |#1| (-1046)))) (-4375 (((-379) (-316 |#1|) (-918)) 99 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-379) (-407 (-949 |#1|)) (-918)) 91 (|has| |#1| (-556))) (((-379) (-407 (-949 |#1|))) 90 (|has| |#1| (-556))) (((-379) (-949 |#1|) (-918)) 86 (|has| |#1| (-1046))) (((-379) (-949 |#1|)) 85 (|has| |#1| (-1046))) (((-379) |#1| (-918)) 76) (((-379) |#1|) 22)) (-3178 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)) 71 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-918)) 63 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918)) 46 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|)))) 45 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918)) 39 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 |#1|))) 38 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)) 28 (|has| |#1| (-1046))) (((-3 (-169 (-379)) "failed") (-949 |#1|)) 26 (|has| |#1| (-1046))) (((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-949 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-3916 (((-169 (-379)) (-316 (-169 |#1|)) (-918)) 102 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 |#1|) (-918)) 100 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918)) 93 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 (-169 |#1|)))) 92 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 |#1|)) (-918)) 89 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 |#1|))) 88 (|has| |#1| (-556))) (((-169 (-379)) (-949 |#1|) (-918)) 84 (|has| |#1| (-1046))) (((-169 (-379)) (-949 |#1|)) 83 (|has| |#1| (-1046))) (((-169 (-379)) (-949 (-169 |#1|)) (-918)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-949 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-918)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-918)) 27) (((-169 (-379)) |#1|) 25)))
-(((-782 |#1|) (-10 -7 (-15 -4375 ((-379) |#1|)) (-15 -4375 ((-379) |#1| (-918))) (-15 -3916 ((-169 (-379)) |#1|)) (-15 -3916 ((-169 (-379)) |#1| (-918))) (IF (|has| |#1| (-172)) (PROGN (-15 -3916 ((-169 (-379)) (-169 |#1|))) (-15 -3916 ((-169 (-379)) (-169 |#1|) (-918))) (-15 -3916 ((-169 (-379)) (-949 (-169 |#1|)))) (-15 -3916 ((-169 (-379)) (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -4375 ((-379) (-949 |#1|))) (-15 -4375 ((-379) (-949 |#1|) (-918))) (-15 -3916 ((-169 (-379)) (-949 |#1|))) (-15 -3916 ((-169 (-379)) (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -4375 ((-379) (-407 (-949 |#1|)))) (-15 -4375 ((-379) (-407 (-949 |#1|)) (-918))) (-15 -3916 ((-169 (-379)) (-407 (-949 |#1|)))) (-15 -3916 ((-169 (-379)) (-407 (-949 |#1|)) (-918))) (-15 -3916 ((-169 (-379)) (-407 (-949 (-169 |#1|))))) (-15 -3916 ((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -4375 ((-379) (-316 |#1|))) (-15 -4375 ((-379) (-316 |#1|) (-918))) (-15 -3916 ((-169 (-379)) (-316 |#1|))) (-15 -3916 ((-169 (-379)) (-316 |#1|) (-918))) (-15 -3916 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -3916 ((-169 (-379)) (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3178 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -1790 ((-3 (-379) "failed") (-949 |#1|))) (-15 -1790 ((-3 (-379) "failed") (-949 |#1|) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-949 |#1|))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -1790 ((-3 (-379) "failed") (-407 (-949 |#1|)))) (-15 -1790 ((-3 (-379) "failed") (-407 (-949 |#1|)) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -1790 ((-3 (-379) "failed") (-316 |#1|))) (-15 -1790 ((-3 (-379) "failed") (-316 |#1|) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|)) (-612 (-379))) (T -782))
-((-3178 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3178 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3178 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3178 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-1790 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-1790 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3178 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3178 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3178 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3178 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-1790 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-1790 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3178 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3178 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-1790 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-1790 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3178 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3178 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) (-3916 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2)))) (-4375 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2)))))
-(-10 -7 (-15 -4375 ((-379) |#1|)) (-15 -4375 ((-379) |#1| (-918))) (-15 -3916 ((-169 (-379)) |#1|)) (-15 -3916 ((-169 (-379)) |#1| (-918))) (IF (|has| |#1| (-172)) (PROGN (-15 -3916 ((-169 (-379)) (-169 |#1|))) (-15 -3916 ((-169 (-379)) (-169 |#1|) (-918))) (-15 -3916 ((-169 (-379)) (-949 (-169 |#1|)))) (-15 -3916 ((-169 (-379)) (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -4375 ((-379) (-949 |#1|))) (-15 -4375 ((-379) (-949 |#1|) (-918))) (-15 -3916 ((-169 (-379)) (-949 |#1|))) (-15 -3916 ((-169 (-379)) (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -4375 ((-379) (-407 (-949 |#1|)))) (-15 -4375 ((-379) (-407 (-949 |#1|)) (-918))) (-15 -3916 ((-169 (-379)) (-407 (-949 |#1|)))) (-15 -3916 ((-169 (-379)) (-407 (-949 |#1|)) (-918))) (-15 -3916 ((-169 (-379)) (-407 (-949 (-169 |#1|))))) (-15 -3916 ((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -4375 ((-379) (-316 |#1|))) (-15 -4375 ((-379) (-316 |#1|) (-918))) (-15 -3916 ((-169 (-379)) (-316 |#1|))) (-15 -3916 ((-169 (-379)) (-316 |#1|) (-918))) (-15 -3916 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -3916 ((-169 (-379)) (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3178 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -1790 ((-3 (-379) "failed") (-949 |#1|))) (-15 -1790 ((-3 (-379) "failed") (-949 |#1|) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-949 |#1|))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -1790 ((-3 (-379) "failed") (-407 (-949 |#1|)))) (-15 -1790 ((-3 (-379) "failed") (-407 (-949 |#1|)) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -1790 ((-3 (-379) "failed") (-316 |#1|))) (-15 -1790 ((-3 (-379) "failed") (-316 |#1|) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-918))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -3178 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|))
-((-3658 (((-918) (-1152)) 90)) (-3203 (((-3 (-379) "failed") (-1152)) 35)) (-3457 (((-379) (-1152)) 33)) (-3137 (((-918) (-1152)) 62)) (-3206 (((-1152) (-918)) 76)) (-2004 (((-1152) (-918)) 61)))
-(((-783) (-10 -7 (-15 -2004 ((-1152) (-918))) (-15 -3137 ((-918) (-1152))) (-15 -3206 ((-1152) (-918))) (-15 -3658 ((-918) (-1152))) (-15 -3457 ((-379) (-1152))) (-15 -3203 ((-3 (-379) "failed") (-1152))))) (T -783))
-((-3203 (*1 *2 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))))
-(-10 -7 (-15 -2004 ((-1152) (-918))) (-15 -3137 ((-918) (-1152))) (-15 -3206 ((-1152) (-918))) (-15 -3658 ((-918) (-1152))) (-15 -3457 ((-379) (-1152))) (-15 -3203 ((-3 (-379) "failed") (-1152))))
-((-1754 (((-112) $ $) 7)) (-3443 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 15) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 13)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)))
+((-2326 (((-3 (-379) "failed") (-316 |#1|) (-918)) 62 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-379) "failed") (-407 (-949 |#1|)) (-918)) 41 (|has| |#1| (-556))) (((-3 (-379) "failed") (-407 (-949 |#1|))) 40 (|has| |#1| (-556))) (((-3 (-379) "failed") (-949 |#1|) (-918)) 31 (|has| |#1| (-1046))) (((-3 (-379) "failed") (-949 |#1|)) 30 (|has| |#1| (-1046)))) (-3525 (((-379) (-316 |#1|) (-918)) 99 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-379) (-407 (-949 |#1|)) (-918)) 91 (|has| |#1| (-556))) (((-379) (-407 (-949 |#1|))) 90 (|has| |#1| (-556))) (((-379) (-949 |#1|) (-918)) 86 (|has| |#1| (-1046))) (((-379) (-949 |#1|)) 85 (|has| |#1| (-1046))) (((-379) |#1| (-918)) 76) (((-379) |#1|) 22)) (-2560 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)) 71 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-918)) 63 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918)) 46 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|)))) 45 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918)) 39 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 |#1|))) 38 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)) 28 (|has| |#1| (-1046))) (((-3 (-169 (-379)) "failed") (-949 |#1|)) 26 (|has| |#1| (-1046))) (((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-949 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-4070 (((-169 (-379)) (-316 (-169 |#1|)) (-918)) 102 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 |#1|) (-918)) 100 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918)) 93 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 (-169 |#1|)))) 92 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 |#1|)) (-918)) 89 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 |#1|))) 88 (|has| |#1| (-556))) (((-169 (-379)) (-949 |#1|) (-918)) 84 (|has| |#1| (-1046))) (((-169 (-379)) (-949 |#1|)) 83 (|has| |#1| (-1046))) (((-169 (-379)) (-949 (-169 |#1|)) (-918)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-949 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-918)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-918)) 27) (((-169 (-379)) |#1|) 25)))
+(((-782 |#1|) (-10 -7 (-15 -3525 ((-379) |#1|)) (-15 -3525 ((-379) |#1| (-918))) (-15 -4070 ((-169 (-379)) |#1|)) (-15 -4070 ((-169 (-379)) |#1| (-918))) (IF (|has| |#1| (-172)) (PROGN (-15 -4070 ((-169 (-379)) (-169 |#1|))) (-15 -4070 ((-169 (-379)) (-169 |#1|) (-918))) (-15 -4070 ((-169 (-379)) (-949 (-169 |#1|)))) (-15 -4070 ((-169 (-379)) (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -3525 ((-379) (-949 |#1|))) (-15 -3525 ((-379) (-949 |#1|) (-918))) (-15 -4070 ((-169 (-379)) (-949 |#1|))) (-15 -4070 ((-169 (-379)) (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3525 ((-379) (-407 (-949 |#1|)))) (-15 -3525 ((-379) (-407 (-949 |#1|)) (-918))) (-15 -4070 ((-169 (-379)) (-407 (-949 |#1|)))) (-15 -4070 ((-169 (-379)) (-407 (-949 |#1|)) (-918))) (-15 -4070 ((-169 (-379)) (-407 (-949 (-169 |#1|))))) (-15 -4070 ((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -3525 ((-379) (-316 |#1|))) (-15 -3525 ((-379) (-316 |#1|) (-918))) (-15 -4070 ((-169 (-379)) (-316 |#1|))) (-15 -4070 ((-169 (-379)) (-316 |#1|) (-918))) (-15 -4070 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -4070 ((-169 (-379)) (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2560 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -2326 ((-3 (-379) "failed") (-949 |#1|))) (-15 -2326 ((-3 (-379) "failed") (-949 |#1|) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-949 |#1|))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2326 ((-3 (-379) "failed") (-407 (-949 |#1|)))) (-15 -2326 ((-3 (-379) "failed") (-407 (-949 |#1|)) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -2326 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2326 ((-3 (-379) "failed") (-316 |#1|) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|)) (-612 (-379))) (T -782))
+((-2560 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-2560 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2560 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-2560 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2326 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-2326 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-2560 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-2560 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2560 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-2560 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2326 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-2326 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-2560 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-2560 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-2326 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-2326 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-2560 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-2560 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) (-4070 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) (-3525 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2)))) (-3525 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2)))))
+(-10 -7 (-15 -3525 ((-379) |#1|)) (-15 -3525 ((-379) |#1| (-918))) (-15 -4070 ((-169 (-379)) |#1|)) (-15 -4070 ((-169 (-379)) |#1| (-918))) (IF (|has| |#1| (-172)) (PROGN (-15 -4070 ((-169 (-379)) (-169 |#1|))) (-15 -4070 ((-169 (-379)) (-169 |#1|) (-918))) (-15 -4070 ((-169 (-379)) (-949 (-169 |#1|)))) (-15 -4070 ((-169 (-379)) (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -3525 ((-379) (-949 |#1|))) (-15 -3525 ((-379) (-949 |#1|) (-918))) (-15 -4070 ((-169 (-379)) (-949 |#1|))) (-15 -4070 ((-169 (-379)) (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3525 ((-379) (-407 (-949 |#1|)))) (-15 -3525 ((-379) (-407 (-949 |#1|)) (-918))) (-15 -4070 ((-169 (-379)) (-407 (-949 |#1|)))) (-15 -4070 ((-169 (-379)) (-407 (-949 |#1|)) (-918))) (-15 -4070 ((-169 (-379)) (-407 (-949 (-169 |#1|))))) (-15 -4070 ((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -3525 ((-379) (-316 |#1|))) (-15 -3525 ((-379) (-316 |#1|) (-918))) (-15 -4070 ((-169 (-379)) (-316 |#1|))) (-15 -4070 ((-169 (-379)) (-316 |#1|) (-918))) (-15 -4070 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -4070 ((-169 (-379)) (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2560 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -2326 ((-3 (-379) "failed") (-949 |#1|))) (-15 -2326 ((-3 (-379) "failed") (-949 |#1|) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-949 |#1|))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2326 ((-3 (-379) "failed") (-407 (-949 |#1|)))) (-15 -2326 ((-3 (-379) "failed") (-407 (-949 |#1|)) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -2326 ((-3 (-379) "failed") (-316 |#1|))) (-15 -2326 ((-3 (-379) "failed") (-316 |#1|) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-918))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2560 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|))
+((-3423 (((-918) (-1152)) 90)) (-2798 (((-3 (-379) "failed") (-1152)) 35)) (-3335 (((-379) (-1152)) 33)) (-3260 (((-918) (-1152)) 62)) (-1564 (((-1152) (-918)) 76)) (-3809 (((-1152) (-918)) 61)))
+(((-783) (-10 -7 (-15 -3809 ((-1152) (-918))) (-15 -3260 ((-918) (-1152))) (-15 -1564 ((-1152) (-918))) (-15 -3423 ((-918) (-1152))) (-15 -3335 ((-379) (-1152))) (-15 -2798 ((-3 (-379) "failed") (-1152))))) (T -783))
+((-2798 (*1 *2 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))))
+(-10 -7 (-15 -3809 ((-1152) (-918))) (-15 -3260 ((-918) (-1152))) (-15 -1564 ((-1152) (-918))) (-15 -3423 ((-918) (-1152))) (-15 -3335 ((-379) (-1152))) (-15 -2798 ((-3 (-379) "failed") (-1152))))
+((-3702 (((-112) $ $) 7)) (-3218 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 15) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 13)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)))
(((-784) (-140)) (T -784))
-((-1657 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032)))))) (-3443 (*1 *2 *3 *2) (-12 (-4 *1 (-784)) (-5 *2 (-1032)) (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-1657 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032)))))) (-3443 (*1 *2 *3 *2) (-12 (-4 *1 (-784)) (-5 *2 (-1032)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
-(-13 (-1094) (-10 -7 (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3443 ((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3443 ((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)))))
+((-3402 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032)))))) (-3218 (*1 *2 *3 *2) (-12 (-4 *1 (-784)) (-5 *2 (-1032)) (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-3402 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032)))))) (-3218 (*1 *2 *3 *2) (-12 (-4 *1 (-784)) (-5 *2 (-1032)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+(-13 (-1094) (-10 -7 (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3218 ((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3218 ((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1407 (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 54) (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 51)) (-3247 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 60)) (-1543 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 49)) (-2470 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 62) (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 61)))
-(((-785) (-10 -7 (-15 -2470 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -2470 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -1543 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1407 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1407 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3247 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))))) (T -785))
-((-3247 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1407 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1407 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1543 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-2470 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-2470 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))))
-(-10 -7 (-15 -2470 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -2470 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -1543 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1407 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1407 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3247 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))))
-((-4238 (((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 65)) (-3967 (((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 42)) (-1598 (((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 64)) (-4332 (((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 40)) (-4161 (((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 63)) (-3091 (((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 26)) (-1516 (((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 43)) (-3758 (((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 41)) (-3231 (((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 39)))
-(((-786) (-10 -7 (-15 -3231 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3758 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1516 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3091 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4332 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3967 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4161 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1598 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4238 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))) (T -786))
-((-4238 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-1598 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-4161 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-3967 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-4332 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-3091 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-1516 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-3758 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-3231 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))))
-(-10 -7 (-15 -3231 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3758 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1516 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3091 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4332 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3967 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4161 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1598 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4238 ((-2 (|:| -1451 (-379)) (|:| -1919 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))
-((-3095 (((-1204 |#1|) |#1| (-225) (-564)) 68)))
-(((-787 |#1|) (-10 -7 (-15 -3095 ((-1204 |#1|) |#1| (-225) (-564)))) (-971)) (T -787))
-((-3095 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3)) (-5 *1 (-787 *3)) (-4 *3 (-971)))))
-(-10 -7 (-15 -3095 ((-1204 |#1|) |#1| (-225) (-564))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 24)) (-3936 (((-3 $ "failed") $ $) 26)) (-3760 (($) 23 T CONST)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 22 T CONST)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1783 (($ $ $) 28) (($ $) 27)) (-1771 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25) (($ (-564) $) 29)))
+((-1538 (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 54) (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 51)) (-1982 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 60)) (-1787 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 49)) (-1633 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 62) (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 61)))
+(((-785) (-10 -7 (-15 -1633 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1633 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -1787 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1538 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1538 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -1982 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))))) (T -785))
+((-1982 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1538 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1538 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1787 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1633 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1633 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))))
+(-10 -7 (-15 -1633 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1633 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -1787 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1538 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1538 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -1982 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))))
+((-2187 (((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 65)) (-1455 (((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 42)) (-4125 (((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 64)) (-3540 (((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 40)) (-2717 (((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 63)) (-2883 (((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 26)) (-1529 (((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 43)) (-3163 (((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 41)) (-1810 (((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 39)))
+(((-786) (-10 -7 (-15 -1810 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3163 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1529 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2883 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3540 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1455 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2717 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4125 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2187 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))) (T -786))
+((-2187 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-4125 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2717 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-1455 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-3540 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2883 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-1529 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-3163 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-1810 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))))
+(-10 -7 (-15 -1810 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3163 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1529 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2883 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3540 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -1455 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2717 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -4125 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2187 ((-2 (|:| -3387 (-379)) (|:| -2000 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))
+((-2910 (((-1204 |#1|) |#1| (-225) (-564)) 68)))
+(((-787 |#1|) (-10 -7 (-15 -2910 ((-1204 |#1|) |#1| (-225) (-564)))) (-971)) (T -787))
+((-2910 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3)) (-5 *1 (-787 *3)) (-4 *3 (-971)))))
+(-10 -7 (-15 -2910 ((-1204 |#1|) |#1| (-225) (-564))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 24)) (-4281 (((-3 $ "failed") $ $) 26)) (-3180 (($) 23 T CONST)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1828 (($ $ $) 28) (($ $) 27)) (-1814 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25) (($ (-564) $) 29)))
(((-788) (-140)) (T -788))
NIL
(-13 (-792) (-21))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-847) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 24)) (-3760 (($) 23 T CONST)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 22 T CONST)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1771 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 24)) (-3180 (($) 23 T CONST)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1814 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25)))
(((-789) (-140)) (T -789))
NIL
(-13 (-791) (-23))
(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-791) . T) ((-847) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 24)) (-3382 (($ $ $) 27)) (-3936 (((-3 $ "failed") $ $) 26)) (-3760 (($) 23 T CONST)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 22 T CONST)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1771 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 24)) (-3884 (($ $ $) 27)) (-4281 (((-3 $ "failed") $ $) 26)) (-3180 (($) 23 T CONST)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1814 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25)))
(((-790) (-140)) (T -790))
-((-3382 (*1 *1 *1 *1) (-4 *1 (-790))))
-(-13 (-792) (-10 -8 (-15 -3382 ($ $ $))))
+((-3884 (*1 *1 *1 *1) (-4 *1 (-790))))
+(-13 (-792) (-10 -8 (-15 -3884 ($ $ $))))
(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-847) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 7)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1771 (($ $ $) 20)) (* (($ (-918) $) 21)))
+((-3702 (((-112) $ $) 7)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1814 (($ $ $) 20)) (* (($ (-918) $) 21)))
(((-791) (-140)) (T -791))
NIL
(-13 (-847) (-25))
(((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-847) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 24)) (-3936 (((-3 $ "failed") $ $) 26)) (-3760 (($) 23 T CONST)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 22 T CONST)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1771 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 24)) (-4281 (((-3 $ "failed") $ $) 26)) (-3180 (($) 23 T CONST)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1814 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25)))
(((-792) (-140)) (T -792))
NIL
(-13 (-789) (-131))
(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-789) . T) ((-791) . T) ((-847) . T) ((-1094) . T))
-((-3976 (((-112) $) 42)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2064 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 43)) (-1978 (((-3 (-407 (-564)) "failed") $) 78)) (-2709 (((-112) $) 72)) (-3424 (((-407 (-564)) $) 76)) (-1779 ((|#2| $) 26)) (-2082 (($ (-1 |#2| |#2|) $) 23)) (-4272 (($ $) 58)) (-2127 (((-536) $) 67)) (-2502 (($ $) 21)) (-1765 (((-859) $) 53) (($ (-564)) 40) (($ |#2|) 38) (($ (-407 (-564))) NIL)) (-1965 (((-768)) 10)) (-2016 ((|#2| $) 71)) (-1686 (((-112) $ $) 30)) (-1705 (((-112) $ $) 69)) (-1783 (($ $) 32) (($ $ $) NIL)) (-1771 (($ $ $) 31)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-793 |#1| |#2|) (-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -4272 (|#1| |#1|)) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -3976 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|))) (-794 |#2|) (-172)) (T -793))
-((-1965 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-793 *3 *4)) (-4 *3 (-794 *4)))))
-(-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -4272 (|#1| |#1|)) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -3976 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3042 (((-768)) 52 (|has| |#1| (-368)))) (-3760 (($) 17 T CONST)) (-2013 (((-3 (-564) "failed") $) 94 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 91 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 88)) (-2064 (((-564) $) 93 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 90 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 89)) (-1926 (((-3 $ "failed") $) 33)) (-4032 ((|#1| $) 78)) (-1978 (((-3 (-407 (-564)) "failed") $) 65 (|has| |#1| (-545)))) (-2709 (((-112) $) 67 (|has| |#1| (-545)))) (-3424 (((-407 (-564)) $) 66 (|has| |#1| (-545)))) (-2542 (($) 55 (|has| |#1| (-368)))) (-2419 (((-112) $) 31)) (-2799 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-1779 ((|#1| $) 70)) (-3571 (($ $ $) 61 (|has| |#1| (-847)))) (-1547 (($ $ $) 60 (|has| |#1| (-847)))) (-2082 (($ (-1 |#1| |#1|) $) 80)) (-2209 (((-918) $) 54 (|has| |#1| (-368)))) (-4202 (((-1152) $) 9)) (-4272 (($ $) 64 (|has| |#1| (-363)))) (-1403 (($ (-918)) 53 (|has| |#1| (-368)))) (-1505 ((|#1| $) 75)) (-2912 ((|#1| $) 76)) (-4276 ((|#1| $) 77)) (-3957 ((|#1| $) 71)) (-3824 ((|#1| $) 72)) (-2701 ((|#1| $) 73)) (-1394 ((|#1| $) 74)) (-3802 (((-1114) $) 10)) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) 86 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 84 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 83 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 82 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 81 (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) 87 (|has| |#1| (-286 |#1| |#1|)))) (-2127 (((-536) $) 62 (|has| |#1| (-612 (-536))))) (-2502 (($ $) 79)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 92 (|has| |#1| (-1035 (-407 (-564)))))) (-2864 (((-3 $ "failed") $) 63 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-2016 ((|#1| $) 68 (|has| |#1| (-1055)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1738 (((-112) $ $) 58 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 57 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 59 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 56 (|has| |#1| (-847)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-1556 (((-112) $) 42)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2376 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 43)) (-3502 (((-3 (-407 (-564)) "failed") $) 78)) (-3309 (((-112) $) 72)) (-3074 (((-407 (-564)) $) 76)) (-2217 ((|#2| $) 26)) (-2313 (($ (-1 |#2| |#2|) $) 23)) (-1295 (($ $) 58)) (-2374 (((-536) $) 67)) (-1953 (($ $) 21)) (-3714 (((-859) $) 53) (($ (-564)) 40) (($ |#2|) 38) (($ (-407 (-564))) NIL)) (-3379 (((-768)) 10)) (-3920 ((|#2| $) 71)) (-1720 (((-112) $ $) 30)) (-1746 (((-112) $ $) 69)) (-1828 (($ $) 32) (($ $ $) NIL)) (-1814 (($ $ $) 31)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-793 |#1| |#2|) (-10 -8 (-15 -1746 ((-112) |#1| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -1295 (|#1| |#1|)) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3920 (|#2| |#1|)) (-15 -2217 (|#2| |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -1556 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|))) (-794 |#2|) (-172)) (T -793))
+((-3379 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-793 *3 *4)) (-4 *3 (-794 *4)))))
+(-10 -8 (-15 -1746 ((-112) |#1| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -1295 (|#1| |#1|)) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3920 (|#2| |#1|)) (-15 -2217 (|#2| |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -1556 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-2018 (((-768)) 52 (|has| |#1| (-368)))) (-3180 (($) 17 T CONST)) (-2224 (((-3 (-564) "failed") $) 94 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 91 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 88)) (-2376 (((-564) $) 93 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 90 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 89)) (-4272 (((-3 $ "failed") $) 33)) (-4164 ((|#1| $) 78)) (-3502 (((-3 (-407 (-564)) "failed") $) 65 (|has| |#1| (-545)))) (-3309 (((-112) $) 67 (|has| |#1| (-545)))) (-3074 (((-407 (-564)) $) 66 (|has| |#1| (-545)))) (-2939 (($) 55 (|has| |#1| (-368)))) (-2340 (((-112) $) 31)) (-1862 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-2217 ((|#1| $) 70)) (-3428 (($ $ $) 61 (|has| |#1| (-847)))) (-3413 (($ $ $) 60 (|has| |#1| (-847)))) (-2313 (($ (-1 |#1| |#1|) $) 80)) (-4031 (((-918) $) 54 (|has| |#1| (-368)))) (-1868 (((-1152) $) 9)) (-1295 (($ $) 64 (|has| |#1| (-363)))) (-3338 (($ (-918)) 53 (|has| |#1| (-368)))) (-2683 ((|#1| $) 75)) (-3596 ((|#1| $) 76)) (-4369 ((|#1| $) 77)) (-1375 ((|#1| $) 71)) (-2653 ((|#1| $) 72)) (-3234 ((|#1| $) 73)) (-2052 ((|#1| $) 74)) (-3844 (((-1114) $) 10)) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) 86 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 84 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 83 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 82 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 81 (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) 87 (|has| |#1| (-286 |#1| |#1|)))) (-2374 (((-536) $) 62 (|has| |#1| (-612 (-536))))) (-1953 (($ $) 79)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 92 (|has| |#1| (-1035 (-407 (-564)))))) (-4363 (((-3 $ "failed") $) 63 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-3920 ((|#1| $) 68 (|has| |#1| (-1055)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1781 (((-112) $ $) 58 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 57 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 59 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 56 (|has| |#1| (-847)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-794 |#1|) (-140) (-172)) (T -794))
-((-2502 (*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2799 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-1978 (*1 *2 *1) (|partial| -12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-4272 (*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
-(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -2502 ($ $)) (-15 -4032 (|t#1| $)) (-15 -4276 (|t#1| $)) (-15 -2912 (|t#1| $)) (-15 -1505 (|t#1| $)) (-15 -1394 (|t#1| $)) (-15 -2701 (|t#1| $)) (-15 -3824 (|t#1| $)) (-15 -3957 (|t#1| $)) (-15 -1779 (|t#1| $)) (-15 -2799 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -2016 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -4272 ($ $)) |%noBranch|)))
+((-1953 (*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2653 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-1862 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3502 (*1 *2 *1) (|partial| -12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-1295 (*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
+(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -1953 ($ $)) (-15 -4164 (|t#1| $)) (-15 -4369 (|t#1| $)) (-15 -3596 (|t#1| $)) (-15 -2683 (|t#1| $)) (-15 -2052 (|t#1| $)) (-15 -3234 (|t#1| $)) (-15 -2653 (|t#1| $)) (-15 -1375 (|t#1| $)) (-15 -2217 (|t#1| $)) (-15 -1862 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -3920 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1295 ($ $)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2082 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-795 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 (|#3| (-1 |#4| |#2|) |#1|))) (-794 |#2|) (-172) (-794 |#4|) (-172)) (T -795))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-794 *6)) (-5 *1 (-795 *4 *5 *2 *6)) (-4 *4 (-794 *5)))))
-(-10 -7 (-15 -2082 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3042 (((-768)) NIL (|has| |#1| (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL) (((-3 (-996 |#1|) "failed") $) 35) (((-3 (-564) "failed") $) NIL (-4002 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL (-4002 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-2064 ((|#1| $) NIL) (((-996 |#1|) $) 33) (((-564) $) NIL (-4002 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564))))) (((-407 (-564)) $) NIL (-4002 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-1926 (((-3 $ "failed") $) NIL)) (-4032 ((|#1| $) 16)) (-1978 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2709 (((-112) $) NIL (|has| |#1| (-545)))) (-3424 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2542 (($) NIL (|has| |#1| (-368)))) (-2419 (((-112) $) NIL)) (-2799 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-996 |#1|) (-996 |#1|)) 29)) (-1779 ((|#1| $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2209 (((-918) $) NIL (|has| |#1| (-368)))) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-1403 (($ (-918)) NIL (|has| |#1| (-368)))) (-1505 ((|#1| $) 22)) (-2912 ((|#1| $) 20)) (-4276 ((|#1| $) 18)) (-3957 ((|#1| $) 26)) (-3824 ((|#1| $) 25)) (-2701 ((|#1| $) 24)) (-1394 ((|#1| $) 23)) (-3802 (((-1114) $) NIL)) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2502 (($ $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-996 |#1|)) 30) (($ (-407 (-564))) NIL (-4002 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-2016 ((|#1| $) NIL (|has| |#1| (-1055)))) (-4317 (($) 8 T CONST)) (-4327 (($) 12 T CONST)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-796 |#1|) (-13 (-794 |#1|) (-411 (-996 |#1|)) (-10 -8 (-15 -2799 ($ (-996 |#1|) (-996 |#1|))))) (-172)) (T -796))
-((-2799 (*1 *1 *2 *2) (-12 (-5 *2 (-996 *3)) (-4 *3 (-172)) (-5 *1 (-796 *3)))))
-(-13 (-794 |#1|) (-411 (-996 |#1|)) (-10 -8 (-15 -2799 ($ (-996 |#1|) (-996 |#1|)))))
-((-1754 (((-112) $ $) 7)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4129 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13)) (-1686 (((-112) $ $) 6)))
+((-2313 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-795 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 (|#3| (-1 |#4| |#2|) |#1|))) (-794 |#2|) (-172) (-794 |#4|) (-172)) (T -795))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-794 *6)) (-5 *1 (-795 *4 *5 *2 *6)) (-4 *4 (-794 *5)))))
+(-10 -7 (-15 -2313 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2018 (((-768)) NIL (|has| |#1| (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL) (((-3 (-996 |#1|) "failed") $) 35) (((-3 (-564) "failed") $) NIL (-4012 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL (-4012 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-2376 ((|#1| $) NIL) (((-996 |#1|) $) 33) (((-564) $) NIL (-4012 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564))))) (((-407 (-564)) $) NIL (-4012 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4272 (((-3 $ "failed") $) NIL)) (-4164 ((|#1| $) 16)) (-3502 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-3309 (((-112) $) NIL (|has| |#1| (-545)))) (-3074 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2939 (($) NIL (|has| |#1| (-368)))) (-2340 (((-112) $) NIL)) (-1862 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-996 |#1|) (-996 |#1|)) 29)) (-2217 ((|#1| $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4031 (((-918) $) NIL (|has| |#1| (-368)))) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-3338 (($ (-918)) NIL (|has| |#1| (-368)))) (-2683 ((|#1| $) 22)) (-3596 ((|#1| $) 20)) (-4369 ((|#1| $) 18)) (-1375 ((|#1| $) 26)) (-2653 ((|#1| $) 25)) (-3234 ((|#1| $) 24)) (-2052 ((|#1| $) 23)) (-3844 (((-1114) $) NIL)) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1953 (($ $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-996 |#1|)) 30) (($ (-407 (-564))) NIL (-4012 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-3920 ((|#1| $) NIL (|has| |#1| (-1055)))) (-4312 (($) 8 T CONST)) (-4323 (($) 12 T CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-796 |#1|) (-13 (-794 |#1|) (-411 (-996 |#1|)) (-10 -8 (-15 -1862 ($ (-996 |#1|) (-996 |#1|))))) (-172)) (T -796))
+((-1862 (*1 *1 *2 *2) (-12 (-5 *2 (-996 *3)) (-4 *3 (-172)) (-5 *1 (-796 *3)))))
+(-13 (-794 |#1|) (-411 (-996 |#1|)) (-10 -8 (-15 -1862 ($ (-996 |#1|) (-996 |#1|)))))
+((-3702 (((-112) $ $) 7)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-2413 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13)) (-1720 (((-112) $ $) 6)))
(((-797) (-140)) (T -797))
-((-1657 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)))))) (-4129 (*1 *2 *3) (-12 (-4 *1 (-797)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1032)))))
-(-13 (-1094) (-10 -7 (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4129 ((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+((-3402 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)))))) (-2413 (*1 *2 *3) (-12 (-4 *1 (-797)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1032)))))
+(-13 (-1094) (-10 -7 (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2413 ((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-2541 (((-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) |#3| |#2| (-1170)) 19)))
-(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2541 ((-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) |#3| |#2| (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956)) (-652 |#2|)) (T -798))
-((-2541 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3941 (-641 *4)))) (-5 *1 (-798 *6 *4 *3)) (-4 *3 (-652 *4)))))
-(-10 -7 (-15 -2541 ((-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) |#3| |#2| (-1170))))
-((-4325 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170)) 18) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3941 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170)) 24) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3941 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170)) 26) (((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170)) 37) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3941 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170)) 35)))
-(((-799 |#1| |#2|) (-10 -7 (-15 -4325 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3941 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -4325 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -4325 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3941 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -4325 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3941 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -4325 ((-3 (-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -4325 ((-3 (-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -4325 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -4325 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -799))
-((-4325 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-799 *6 *2)))) (-4325 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-5 *1 (-799 *6 *2)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))))) (-4325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3941 (-641 *3))) *3 "failed")) (-5 *1 (-799 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-956))))) (-4325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3941 (-641 *7))) *7 "failed")) (-5 *1 (-799 *6 *7)))) (-4325 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -3941 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)))) (-4325 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -3941 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)))) (-4325 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170)) (-4 *6 (-13 (-29 *5) (-1194) (-956))) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-1259 *6))) (-5 *1 (-799 *5 *6)))) (-4325 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -3941 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)) (-5 *4 (-1259 *7)))))
-(-10 -7 (-15 -4325 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3941 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -4325 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -4325 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3941 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -4325 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -3941 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -4325 ((-3 (-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -4325 ((-3 (-2 (|:| |particular| |#2|) (|:| -3941 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -4325 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -4325 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|))))
-((-2630 (($) 9)) (-1858 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-3211 (((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-2098 (($ (-2 (|:| -2351 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-4360 (($ (-641 (-2 (|:| -2351 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-2401 (((-1264)) 12)))
-(((-800) (-10 -8 (-15 -2630 ($)) (-15 -2401 ((-1264))) (-15 -3211 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4360 ($ (-641 (-2 (|:| -2351 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2098 ($ (-2 (|:| -2351 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1858 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -800))
-((-1858 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-800)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2351 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-800)))) (-4360 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2351 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-800)))) (-3211 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-800)))) (-2401 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-800)))) (-2630 (*1 *1) (-5 *1 (-800))))
-(-10 -8 (-15 -2630 ($)) (-15 -2401 ((-1264))) (-15 -3211 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4360 ($ (-641 (-2 (|:| -2351 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2098 ($ (-2 (|:| -2351 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -1327 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1858 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-1410 ((|#2| |#2| (-1170)) 17)) (-2421 ((|#2| |#2| (-1170)) 56)) (-3691 (((-1 |#2| |#2|) (-1170)) 11)))
-(((-801 |#1| |#2|) (-10 -7 (-15 -1410 (|#2| |#2| (-1170))) (-15 -2421 (|#2| |#2| (-1170))) (-15 -3691 ((-1 |#2| |#2|) (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -801))
-((-3691 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-13 (-29 *4) (-1194) (-956))))) (-2421 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))) (-1410 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))))
-(-10 -7 (-15 -1410 (|#2| |#2| (-1170))) (-15 -2421 (|#2| |#2| (-1170))) (-15 -3691 ((-1 |#2| |#2|) (-1170))))
-((-4325 (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379)) 131) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379)) 132) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379)) 134) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379)) 136) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379)) 137) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379))) 139) (((-1032) (-805) (-1058)) 123) (((-1032) (-805)) 124)) (-1657 (((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058)) 83) (((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805)) 85)))
-(((-802) (-10 -7 (-15 -4325 ((-1032) (-805))) (-15 -4325 ((-1032) (-805) (-1058))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058))))) (T -802))
-((-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-802)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-802)))) (-4325 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-4325 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-4325 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-4325 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-4325 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-4325 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1032)) (-5 *1 (-802)))))
-(-10 -7 (-15 -4325 ((-1032) (-805))) (-15 -4325 ((-1032) (-805) (-1058))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -4325 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058))))
-((-3354 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3941 (-641 |#4|))) (-649 |#4|) |#4|) 35)))
-(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3354 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3941 (-641 |#4|))) (-649 |#4|) |#4|))) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -803))
-((-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4)))) (-5 *1 (-803 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3354 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3941 (-641 |#4|))) (-649 |#4|) |#4|)))
-((-3470 (((-2 (|:| -2076 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))) 53)) (-1485 (((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#4| |#2|) 62) (((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#4|) 61) (((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#3| |#2|) 20) (((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#3|) 21)) (-3725 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3600 ((|#2| |#3| (-641 (-407 |#2|))) 113) (((-3 |#2| "failed") |#3| (-407 |#2|)) 109)))
-(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3600 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -3600 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -1485 ((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#3|)) (-15 -1485 ((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#3| |#2|)) (-15 -3725 (|#2| |#3| |#1|)) (-15 -1485 ((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#4|)) (-15 -1485 ((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#4| |#2|)) (-15 -3725 (|#2| |#4| |#1|)) (-15 -3470 ((-2 (|:| -2076 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -804))
-((-3470 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -2076 *7) (|:| |rh| (-641 (-407 *6))))) (-5 *1 (-804 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6))) (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6))))) (-3725 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-652 *2)) (-4 *3 (-652 (-407 *2))))) (-1485 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3415 *4) (|:| -3566 *4)))) (-5 *1 (-804 *5 *4 *6 *3)) (-4 *6 (-652 *4)) (-4 *3 (-652 (-407 *4))))) (-1485 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -3415 *5) (|:| -3566 *5)))) (-5 *1 (-804 *4 *5 *6 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 (-407 *5))))) (-3725 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2))))) (-1485 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3415 *4) (|:| -3566 *4)))) (-5 *1 (-804 *5 *4 *3 *6)) (-4 *3 (-652 *4)) (-4 *6 (-652 (-407 *4))))) (-1485 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -3415 *5) (|:| -3566 *5)))) (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-804 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 (-407 *2))))) (-3600 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-804 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 *4)))))
-(-10 -7 (-15 -3600 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -3600 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -1485 ((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#3|)) (-15 -1485 ((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#3| |#2|)) (-15 -3725 (|#2| |#3| |#1|)) (-15 -1485 ((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#4|)) (-15 -1485 ((-641 (-2 (|:| -3415 |#2|) (|:| -3566 |#2|))) |#4| |#2|)) (-15 -3725 (|#2| |#4| |#1|)) (-15 -3470 ((-2 (|:| -2076 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|)))))
-((-1754 (((-112) $ $) NIL)) (-2064 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1686 (((-112) $ $) NIL)))
-(((-805) (-13 (-1094) (-10 -8 (-15 -1765 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2064 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -805))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-805)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-805)))))
-(-13 (-1094) (-10 -8 (-15 -1765 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2064 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
-((-3670 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -2076 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|)) 157)) (-3672 (((-641 (-2 (|:| |poly| |#2|) (|:| -2076 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 56)) (-3164 (((-641 (-2 (|:| |deg| (-768)) (|:| -2076 |#2|))) |#3|) 126)) (-3541 ((|#2| |#3|) 45)) (-1488 (((-641 (-2 (|:| -3246 |#1|) (|:| -2076 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 104)) (-3858 ((|#3| |#3| (-407 |#2|)) 75) ((|#3| |#3| |#2|) 101)))
-(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3541 (|#2| |#3|)) (-15 -3164 ((-641 (-2 (|:| |deg| (-768)) (|:| -2076 |#2|))) |#3|)) (-15 -1488 ((-641 (-2 (|:| -3246 |#1|) (|:| -2076 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3672 ((-641 (-2 (|:| |poly| |#2|) (|:| -2076 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3670 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -2076 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3858 (|#3| |#3| |#2|)) (-15 -3858 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1035 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -806))
-((-3858 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *1 (-806 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3)))) (-3858 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-1235 *4)) (-5 *1 (-806 *4 *3 *2 *5)) (-4 *2 (-652 *3)) (-4 *5 (-652 (-407 *3))))) (-3670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -2076 *3)))) (-5 *1 (-806 *6 *7 *3 *8)) (-4 *3 (-652 *7)) (-4 *8 (-652 (-407 *7))))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -2076 *3)))) (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-1488 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3246 *5) (|:| -2076 *3)))) (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-3164 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -2076 *5)))) (-5 *1 (-806 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-3541 (*1 *2 *3) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2))))))
-(-10 -7 (-15 -3541 (|#2| |#3|)) (-15 -3164 ((-641 (-2 (|:| |deg| (-768)) (|:| -2076 |#2|))) |#3|)) (-15 -1488 ((-641 (-2 (|:| -3246 |#1|) (|:| -2076 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3672 ((-641 (-2 (|:| |poly| |#2|) (|:| -2076 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3670 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -2076 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3858 (|#3| |#3| |#2|)) (-15 -3858 (|#3| |#3| (-407 |#2|))))
-((-1671 (((-2 (|:| -3941 (-641 (-407 |#2|))) (|:| -1447 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|))) 151) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3941 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|)) 150) (((-2 (|:| -3941 (-641 (-407 |#2|))) (|:| -1447 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|))) 145) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3941 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|)) 143)) (-1328 ((|#2| (-650 |#2| (-407 |#2|))) 93) ((|#2| (-649 (-407 |#2|))) 96)))
-(((-807 |#1| |#2|) (-10 -7 (-15 -1671 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3941 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -1671 ((-2 (|:| -3941 (-641 (-407 |#2|))) (|:| -1447 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -1671 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3941 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -1671 ((-2 (|:| -3941 (-641 (-407 |#2|))) (|:| -1447 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -1328 (|#2| (-649 (-407 |#2|)))) (-15 -1328 (|#2| (-650 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -807))
-((-1328 (*1 *2 *3) (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) (-1328 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| -3941 (-641 (-407 *6))) (|:| -1447 (-685 *5)))) (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4)))) (-5 *1 (-807 *5 *6)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| -3941 (-641 (-407 *6))) (|:| -1447 (-685 *5)))) (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4)))) (-5 *1 (-807 *5 *6)))))
-(-10 -7 (-15 -1671 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3941 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -1671 ((-2 (|:| -3941 (-641 (-407 |#2|))) (|:| -1447 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -1671 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3941 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -1671 ((-2 (|:| -3941 (-641 (-407 |#2|))) (|:| -1447 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -1328 (|#2| (-649 (-407 |#2|)))) (-15 -1328 (|#2| (-650 |#2| (-407 |#2|)))))
-((-4137 (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|) 52)))
-(((-808 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4137 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|))) (-363) (-652 |#1|) (-1235 |#1|) (-721 |#1| |#3|) (-652 |#4|)) (T -808))
-((-4137 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-721 *5 *7)) (-5 *2 (-2 (|:| -1447 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-808 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4)))))
-(-10 -7 (-15 -4137 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|)))
-((-3670 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -2076 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-3270 (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 170 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|))) 167 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|))) 169 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 39) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 37)) (-3672 (((-641 (-2 (|:| |poly| |#2|) (|:| -2076 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 99)))
-(((-809 |#1| |#2|) (-10 -7 (-15 -3270 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -3270 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3270 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -3270 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3670 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -2076 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3672 ((-641 (-2 (|:| |poly| |#2|) (|:| -2076 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3270 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -3270 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3270 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -3270 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -809))
-((-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-3270 (*1 *2 *3) (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) (-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-3270 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -2076 (-650 *6 (-407 *6)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-3670 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *6)) (|:| -2076 (-650 *6 (-407 *6)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-3270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) (-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-3270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) (-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))))
-(-10 -7 (-15 -3270 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -3270 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3270 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -3270 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3670 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -2076 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3672 ((-641 (-2 (|:| |poly| |#2|) (|:| -2076 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3270 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -3270 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3270 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -3270 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|))
-((-2653 (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|)) 109) (((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -2076 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|)) 15)) (-1981 (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3941 (-641 |#1|))) |#2| |#1|)) 115)) (-4325 (((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -3941 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3941 (-641 |#1|))) "failed") |#2| |#1|)) 52)))
-(((-810 |#1| |#2|) (-10 -7 (-15 -2653 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -2076 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -2653 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -4325 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -3941 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3941 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -1981 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3941 (-641 |#1|))) |#2| |#1|)))) (-363) (-652 |#1|)) (T -810))
-((-1981 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3941 (-641 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *6) "failed")) (|:| -3941 (-641 (-1259 *6))))) (-5 *1 (-810 *6 *7)) (-5 *4 (-1259 *6)))) (-4325 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3941 (-641 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -3941 (-685 *6)))) (-5 *1 (-810 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6)))) (-2653 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-652 *5)) (-5 *2 (-2 (|:| -1447 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5)))) (-2653 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-685 *5)) (|:| |eqs| (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -2076 *6) (|:| |rh| *5)))))) (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *6 (-652 *5)))))
-(-10 -7 (-15 -2653 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -2076 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -2653 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -4325 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -3941 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3941 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -1981 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -3941 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3941 (-641 |#1|))) |#2| |#1|))))
-((-1767 (((-685 |#1|) (-641 |#1|) (-768)) 14) (((-685 |#1|) (-641 |#1|)) 15)) (-4159 (((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|)) 39)) (-4118 (((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)) 46)))
-(((-811 |#1| |#2|) (-10 -7 (-15 -1767 ((-685 |#1|) (-641 |#1|))) (-15 -1767 ((-685 |#1|) (-641 |#1|) (-768))) (-15 -4159 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -4118 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -811))
-((-4118 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-811 *2 *3)) (-4 *3 (-652 *2)))) (-4159 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4)) (-5 *1 (-811 *4 *3)) (-4 *3 (-652 *4)))) (-1767 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-363)) (-5 *2 (-685 *5)) (-5 *1 (-811 *5 *6)) (-4 *6 (-652 *5)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)) (-5 *1 (-811 *4 *5)) (-4 *5 (-652 *4)))))
-(-10 -7 (-15 -1767 ((-685 |#1|) (-641 |#1|))) (-15 -1767 ((-685 |#1|) (-641 |#1|) (-768))) (-15 -4159 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -4118 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|))))
-((-1754 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-3976 (((-112) $) NIL (|has| |#2| (-131)))) (-3473 (($ (-918)) NIL (|has| |#2| (-1046)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3382 (($ $ $) NIL (|has| |#2| (-790)))) (-3936 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3263 (((-112) $ (-768)) NIL)) (-3042 (((-768)) NIL (|has| |#2| (-368)))) (-3438 (((-564) $) NIL (|has| |#2| (-845)))) (-1881 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-2064 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-2620 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-1926 (((-3 $ "failed") $) NIL (|has| |#2| (-723)))) (-2542 (($) NIL (|has| |#2| (-368)))) (-3528 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ (-564)) NIL)) (-1751 (((-112) $) NIL (|has| |#2| (-845)))) (-3080 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2419 (((-112) $) NIL (|has| |#2| (-723)))) (-2506 (((-112) $) NIL (|has| |#2| (-845)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-3817 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-3513 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2209 (((-918) $) NIL (|has| |#2| (-368)))) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#2| (-1094)))) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-1403 (($ (-918)) NIL (|has| |#2| (-368)))) (-3802 (((-1114) $) NIL (|has| |#2| (-1094)))) (-3073 ((|#2| $) NIL (|has| (-564) (-847)))) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-4158 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-4059 (($ (-1259 |#2|)) NIL)) (-3850 (((-134)) NIL (|has| |#2| (-363)))) (-3226 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-3815 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-4002 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-1965 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-2237 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2016 (($ $) NIL (|has| |#2| (-845)))) (-4317 (($) NIL (|has| |#2| (-131)) CONST)) (-4327 (($) NIL (|has| |#2| (-723)) CONST)) (-3190 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1738 (((-112) $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1715 (((-112) $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1686 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1728 (((-112) $ $) NIL (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1705 (((-112) $ $) 11 (-4002 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1771 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) NIL (|has| |#2| (-723))) (($ $ |#2|) NIL (|has| |#2| (-723))) (($ |#2| $) NIL (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-4109 (((-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) |#3| |#2| (-1170)) 19)))
+(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -4109 ((-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) |#3| |#2| (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956)) (-652 |#2|)) (T -798))
+((-4109 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4339 (-641 *4)))) (-5 *1 (-798 *6 *4 *3)) (-4 *3 (-652 *4)))))
+(-10 -7 (-15 -4109 ((-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) |#3| |#2| (-1170))))
+((-3472 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170)) 18) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4339 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170)) 24) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4339 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170)) 26) (((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170)) 37) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4339 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170)) 35)))
+(((-799 |#1| |#2|) (-10 -7 (-15 -3472 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4339 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -3472 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -3472 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4339 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -3472 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4339 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -3472 ((-3 (-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -3472 ((-3 (-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -3472 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -3472 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -799))
+((-3472 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-799 *6 *2)))) (-3472 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-5 *1 (-799 *6 *2)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))))) (-3472 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4339 (-641 *3))) *3 "failed")) (-5 *1 (-799 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-956))))) (-3472 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4339 (-641 *7))) *7 "failed")) (-5 *1 (-799 *6 *7)))) (-3472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -4339 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)))) (-3472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -4339 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)))) (-3472 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170)) (-4 *6 (-13 (-29 *5) (-1194) (-956))) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-1259 *6))) (-5 *1 (-799 *5 *6)))) (-3472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -4339 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)) (-5 *4 (-1259 *7)))))
+(-10 -7 (-15 -3472 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4339 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -3472 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -3472 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4339 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -3472 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4339 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -3472 ((-3 (-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -3472 ((-3 (-2 (|:| |particular| |#2|) (|:| -4339 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -3472 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -3472 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|))))
+((-3727 (($) 9)) (-1770 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1922 (((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-2373 (($ (-2 (|:| -1350 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-3800 (($ (-641 (-2 (|:| -1350 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-3302 (((-1264)) 12)))
+(((-800) (-10 -8 (-15 -3727 ($)) (-15 -3302 ((-1264))) (-15 -1922 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3800 ($ (-641 (-2 (|:| -1350 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2373 ($ (-2 (|:| -1350 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1770 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -800))
+((-1770 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-800)))) (-2373 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1350 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-800)))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1350 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-800)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-800)))) (-3302 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-800)))) (-3727 (*1 *1) (-5 *1 (-800))))
+(-10 -8 (-15 -3727 ($)) (-15 -3302 ((-1264))) (-15 -1922 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3800 ($ (-641 (-2 (|:| -1350 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2373 ($ (-2 (|:| -1350 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2575 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1770 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-1890 ((|#2| |#2| (-1170)) 17)) (-2364 ((|#2| |#2| (-1170)) 56)) (-3750 (((-1 |#2| |#2|) (-1170)) 11)))
+(((-801 |#1| |#2|) (-10 -7 (-15 -1890 (|#2| |#2| (-1170))) (-15 -2364 (|#2| |#2| (-1170))) (-15 -3750 ((-1 |#2| |#2|) (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -801))
+((-3750 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-13 (-29 *4) (-1194) (-956))))) (-2364 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))) (-1890 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))))
+(-10 -7 (-15 -1890 (|#2| |#2| (-1170))) (-15 -2364 (|#2| |#2| (-1170))) (-15 -3750 ((-1 |#2| |#2|) (-1170))))
+((-3472 (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379)) 131) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379)) 132) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379)) 134) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379)) 136) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379)) 137) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379))) 139) (((-1032) (-805) (-1058)) 123) (((-1032) (-805)) 124)) (-3402 (((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058)) 83) (((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805)) 85)))
+(((-802) (-10 -7 (-15 -3472 ((-1032) (-805))) (-15 -3472 ((-1032) (-805) (-1058))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058))))) (T -802))
+((-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-802)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-802)))) (-3472 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-3472 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-3472 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-3472 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-3472 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-3472 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1032)) (-5 *1 (-802)))))
+(-10 -7 (-15 -3472 ((-1032) (-805))) (-15 -3472 ((-1032) (-805) (-1058))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -3472 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058))))
+((-3578 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4339 (-641 |#4|))) (-649 |#4|) |#4|) 35)))
+(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3578 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4339 (-641 |#4|))) (-649 |#4|) |#4|))) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -803))
+((-3578 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4)))) (-5 *1 (-803 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3578 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4339 (-641 |#4|))) (-649 |#4|) |#4|)))
+((-2328 (((-2 (|:| -4035 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))) 53)) (-2482 (((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#4| |#2|) 62) (((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#4|) 61) (((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#3| |#2|) 20) (((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#3|) 21)) (-2920 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4134 ((|#2| |#3| (-641 (-407 |#2|))) 113) (((-3 |#2| "failed") |#3| (-407 |#2|)) 109)))
+(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4134 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -4134 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -2482 ((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#3|)) (-15 -2482 ((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#3| |#2|)) (-15 -2920 (|#2| |#3| |#1|)) (-15 -2482 ((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#4|)) (-15 -2482 ((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#4| |#2|)) (-15 -2920 (|#2| |#4| |#1|)) (-15 -2328 ((-2 (|:| -4035 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -804))
+((-2328 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -4035 *7) (|:| |rh| (-641 (-407 *6))))) (-5 *1 (-804 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6))) (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6))))) (-2920 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-652 *2)) (-4 *3 (-652 (-407 *2))))) (-2482 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2390 *4) (|:| -2538 *4)))) (-5 *1 (-804 *5 *4 *6 *3)) (-4 *6 (-652 *4)) (-4 *3 (-652 (-407 *4))))) (-2482 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2390 *5) (|:| -2538 *5)))) (-5 *1 (-804 *4 *5 *6 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 (-407 *5))))) (-2920 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2))))) (-2482 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2390 *4) (|:| -2538 *4)))) (-5 *1 (-804 *5 *4 *3 *6)) (-4 *3 (-652 *4)) (-4 *6 (-652 (-407 *4))))) (-2482 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2390 *5) (|:| -2538 *5)))) (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-4134 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-804 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 (-407 *2))))) (-4134 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-804 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 *4)))))
+(-10 -7 (-15 -4134 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -4134 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -2482 ((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#3|)) (-15 -2482 ((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#3| |#2|)) (-15 -2920 (|#2| |#3| |#1|)) (-15 -2482 ((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#4|)) (-15 -2482 ((-641 (-2 (|:| -2390 |#2|) (|:| -2538 |#2|))) |#4| |#2|)) (-15 -2920 (|#2| |#4| |#1|)) (-15 -2328 ((-2 (|:| -4035 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|)))))
+((-3702 (((-112) $ $) NIL)) (-2376 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1720 (((-112) $ $) NIL)))
+(((-805) (-13 (-1094) (-10 -8 (-15 -3714 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2376 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -805))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-805)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-805)))))
+(-13 (-1094) (-10 -8 (-15 -3714 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2376 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
+((-3539 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4035 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|)) 157)) (-3559 (((-641 (-2 (|:| |poly| |#2|) (|:| -4035 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 56)) (-2417 (((-641 (-2 (|:| |deg| (-768)) (|:| -4035 |#2|))) |#3|) 126)) (-1737 ((|#2| |#3|) 45)) (-2506 (((-641 (-2 (|:| -2222 |#1|) (|:| -4035 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 104)) (-1683 ((|#3| |#3| (-407 |#2|)) 75) ((|#3| |#3| |#2|) 101)))
+(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1737 (|#2| |#3|)) (-15 -2417 ((-641 (-2 (|:| |deg| (-768)) (|:| -4035 |#2|))) |#3|)) (-15 -2506 ((-641 (-2 (|:| -2222 |#1|) (|:| -4035 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3559 ((-641 (-2 (|:| |poly| |#2|) (|:| -4035 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3539 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4035 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1683 (|#3| |#3| |#2|)) (-15 -1683 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1035 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -806))
+((-1683 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *1 (-806 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3)))) (-1683 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-1235 *4)) (-5 *1 (-806 *4 *3 *2 *5)) (-4 *2 (-652 *3)) (-4 *5 (-652 (-407 *3))))) (-3539 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -4035 *3)))) (-5 *1 (-806 *6 *7 *3 *8)) (-4 *3 (-652 *7)) (-4 *8 (-652 (-407 *7))))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4035 *3)))) (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2222 *5) (|:| -4035 *3)))) (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-2417 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -4035 *5)))) (-5 *1 (-806 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-1737 (*1 *2 *3) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2))))))
+(-10 -7 (-15 -1737 (|#2| |#3|)) (-15 -2417 ((-641 (-2 (|:| |deg| (-768)) (|:| -4035 |#2|))) |#3|)) (-15 -2506 ((-641 (-2 (|:| -2222 |#1|) (|:| -4035 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3559 ((-641 (-2 (|:| |poly| |#2|) (|:| -4035 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -3539 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4035 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1683 (|#3| |#3| |#2|)) (-15 -1683 (|#3| |#3| (-407 |#2|))))
+((-3530 (((-2 (|:| -4339 (-641 (-407 |#2|))) (|:| -1920 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|))) 151) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4339 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|)) 150) (((-2 (|:| -4339 (-641 (-407 |#2|))) (|:| -1920 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|))) 145) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4339 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|)) 143)) (-2331 ((|#2| (-650 |#2| (-407 |#2|))) 93) ((|#2| (-649 (-407 |#2|))) 96)))
+(((-807 |#1| |#2|) (-10 -7 (-15 -3530 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4339 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -3530 ((-2 (|:| -4339 (-641 (-407 |#2|))) (|:| -1920 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3530 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4339 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -3530 ((-2 (|:| -4339 (-641 (-407 |#2|))) (|:| -1920 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -2331 (|#2| (-649 (-407 |#2|)))) (-15 -2331 (|#2| (-650 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -807))
+((-2331 (*1 *2 *3) (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| -4339 (-641 (-407 *6))) (|:| -1920 (-685 *5)))) (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4)))) (-5 *1 (-807 *5 *6)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| -4339 (-641 (-407 *6))) (|:| -1920 (-685 *5)))) (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4)))) (-5 *1 (-807 *5 *6)))))
+(-10 -7 (-15 -3530 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4339 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -3530 ((-2 (|:| -4339 (-641 (-407 |#2|))) (|:| -1920 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -3530 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4339 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -3530 ((-2 (|:| -4339 (-641 (-407 |#2|))) (|:| -1920 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -2331 (|#2| (-649 (-407 |#2|)))) (-15 -2331 (|#2| (-650 |#2| (-407 |#2|)))))
+((-2481 (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|) 52)))
+(((-808 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2481 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|))) (-363) (-652 |#1|) (-1235 |#1|) (-721 |#1| |#3|) (-652 |#4|)) (T -808))
+((-2481 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-721 *5 *7)) (-5 *2 (-2 (|:| -1920 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-808 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4)))))
+(-10 -7 (-15 -2481 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|)))
+((-3539 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4035 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-4022 (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 170 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|))) 167 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|))) 169 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 39) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 37)) (-3559 (((-641 (-2 (|:| |poly| |#2|) (|:| -4035 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 99)))
+(((-809 |#1| |#2|) (-10 -7 (-15 -4022 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -4022 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4022 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -4022 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3539 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4035 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3559 ((-641 (-2 (|:| |poly| |#2|) (|:| -4035 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4022 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -4022 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4022 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -4022 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -809))
+((-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4035 (-650 *6 (-407 *6)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *6)) (|:| -4035 (-650 *6 (-407 *6)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-4022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-4022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))))
+(-10 -7 (-15 -4022 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -4022 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4022 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -4022 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -3539 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4035 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3559 ((-641 (-2 (|:| |poly| |#2|) (|:| -4035 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4022 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -4022 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -4022 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -4022 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|))
+((-3987 (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|)) 109) (((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -4035 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|)) 15)) (-3536 (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4339 (-641 |#1|))) |#2| |#1|)) 115)) (-3472 (((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -4339 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4339 (-641 |#1|))) "failed") |#2| |#1|)) 52)))
+(((-810 |#1| |#2|) (-10 -7 (-15 -3987 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -4035 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -3987 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -3472 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -4339 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4339 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -3536 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4339 (-641 |#1|))) |#2| |#1|)))) (-363) (-652 |#1|)) (T -810))
+((-3536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4339 (-641 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *6) "failed")) (|:| -4339 (-641 (-1259 *6))))) (-5 *1 (-810 *6 *7)) (-5 *4 (-1259 *6)))) (-3472 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4339 (-641 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -4339 (-685 *6)))) (-5 *1 (-810 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6)))) (-3987 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-652 *5)) (-5 *2 (-2 (|:| -1920 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5)))) (-3987 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-685 *5)) (|:| |eqs| (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -4035 *6) (|:| |rh| *5)))))) (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *6 (-652 *5)))))
+(-10 -7 (-15 -3987 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -4035 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -3987 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -3472 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -4339 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4339 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -3536 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4339 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4339 (-641 |#1|))) |#2| |#1|))))
+((-3254 (((-685 |#1|) (-641 |#1|) (-768)) 14) (((-685 |#1|) (-641 |#1|)) 15)) (-2693 (((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|)) 39)) (-3405 (((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)) 46)))
+(((-811 |#1| |#2|) (-10 -7 (-15 -3254 ((-685 |#1|) (-641 |#1|))) (-15 -3254 ((-685 |#1|) (-641 |#1|) (-768))) (-15 -2693 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -3405 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -811))
+((-3405 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-811 *2 *3)) (-4 *3 (-652 *2)))) (-2693 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4)) (-5 *1 (-811 *4 *3)) (-4 *3 (-652 *4)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-363)) (-5 *2 (-685 *5)) (-5 *1 (-811 *5 *6)) (-4 *6 (-652 *5)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)) (-5 *1 (-811 *4 *5)) (-4 *5 (-652 *4)))))
+(-10 -7 (-15 -3254 ((-685 |#1|) (-641 |#1|))) (-15 -3254 ((-685 |#1|) (-641 |#1|) (-768))) (-15 -2693 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -3405 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|))))
+((-3702 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1556 (((-112) $) NIL (|has| |#2| (-131)))) (-2366 (($ (-918)) NIL (|has| |#2| (-1046)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-3884 (($ $ $) NIL (|has| |#2| (-790)))) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2141 (((-112) $ (-768)) NIL)) (-2018 (((-768)) NIL (|has| |#2| (-368)))) (-3191 (((-564) $) NIL (|has| |#2| (-845)))) (-3868 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-2376 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-3613 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-4272 (((-3 $ "failed") $) NIL (|has| |#2| (-723)))) (-2939 (($) NIL (|has| |#2| (-368)))) (-1998 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ (-564)) NIL)) (-3137 (((-112) $) NIL (|has| |#2| (-845)))) (-4244 (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2340 (((-112) $) NIL (|has| |#2| (-723)))) (-2001 (((-112) $) NIL (|has| |#2| (-845)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2572 (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1988 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-4031 (((-918) $) NIL (|has| |#2| (-368)))) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#2| (-1094)))) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3338 (($ (-918)) NIL (|has| |#2| (-368)))) (-3844 (((-1114) $) NIL (|has| |#2| (-1094)))) (-2049 ((|#2| $) NIL (|has| (-564) (-847)))) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-2681 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-4184 (($ (-1259 |#2|)) NIL)) (-2869 (((-134)) NIL (|has| |#2| (-363)))) (-2203 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-3855 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-4012 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-3379 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-4289 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-3920 (($ $) NIL (|has| |#2| (-845)))) (-4312 (($) NIL (|has| |#2| (-131)) CONST)) (-4323 (($) NIL (|has| |#2| (-723)) CONST)) (-2238 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1781 (((-112) $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1758 (((-112) $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1720 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1769 (((-112) $ $) NIL (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1746 (((-112) $ $) 11 (-4012 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1814 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) NIL (|has| |#2| (-723))) (($ $ |#2|) NIL (|has| |#2| (-723))) (($ |#2| $) NIL (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-812 |#1| |#2| |#3|) (-238 |#1| |#2|) (-768) (-790) (-1 (-112) (-1259 |#2|) (-1259 |#2|))) (T -812))
NIL
(-238 |#1| |#2|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-2703 (((-641 (-768)) $) NIL) (((-641 (-768)) $ (-1170)) NIL)) (-3703 (((-768) $) NIL) (((-768) $ (-1170)) NIL)) (-4170 (((-641 (-815 (-1170))) $) NIL)) (-3964 (((-1166 $) $ (-815 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-815 (-1170)))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1368 (($ $) NIL (|has| |#1| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2647 (($ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-815 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-2064 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-815 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-4267 (($ $ $ (-815 (-1170))) NIL (|has| |#1| (-172)))) (-4346 (($ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#1| (-452))) (($ $ (-815 (-1170))) NIL (|has| |#1| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#1| (-906)))) (-2877 (($ $ |#1| (-531 (-815 (-1170))) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-815 (-1170)) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-815 (-1170)) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2261 (((-768) $ (-1170)) NIL) (((-768) $) NIL)) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-4157 (($ (-1166 |#1|) (-815 (-1170))) NIL) (($ (-1166 $) (-815 (-1170))) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-531 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-815 (-1170))) NIL)) (-3829 (((-531 (-815 (-1170))) $) NIL) (((-768) $ (-815 (-1170))) NIL) (((-641 (-768)) $ (-641 (-815 (-1170)))) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2964 (($ (-1 (-531 (-815 (-1170))) (-531 (-815 (-1170)))) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2753 (((-1 $ (-768)) (-1170)) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-2022 (((-3 (-815 (-1170)) "failed") $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-1370 (((-815 (-1170)) $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4202 (((-1152) $) NIL)) (-2757 (((-112) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-815 (-1170))) (|:| -3747 (-768))) "failed") $) NIL)) (-2345 (($ $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#1| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-815 (-1170)) |#1|) NIL) (($ $ (-641 (-815 (-1170))) (-641 |#1|)) NIL) (($ $ (-815 (-1170)) $) NIL) (($ $ (-641 (-815 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-1938 (($ $ (-815 (-1170))) NIL (|has| |#1| (-172)))) (-3226 (($ $ (-815 (-1170))) NIL) (($ $ (-641 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3013 (((-641 (-1170)) $) NIL)) (-3344 (((-531 (-815 (-1170))) $) NIL) (((-768) $ (-815 (-1170))) NIL) (((-641 (-768)) $ (-641 (-815 (-1170)))) NIL) (((-768) $ (-1170)) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2712 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-815 (-1170))) NIL (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-815 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-531 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-815 (-1170))) NIL) (($ $ (-641 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3250 (((-641 (-768)) $) NIL) (((-641 (-768)) $ (-1170)) NIL)) (-3879 (((-768) $) NIL) (((-768) $ (-1170)) NIL)) (-4292 (((-641 (-815 (-1170))) $) NIL)) (-4103 (((-1166 $) $ (-815 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-815 (-1170)))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1328 (($ $) NIL (|has| |#1| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3923 (($ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-815 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-2376 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-815 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-4275 (($ $ $ (-815 (-1170))) NIL (|has| |#1| (-172)))) (-1374 (($ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#1| (-452))) (($ $ (-815 (-1170))) NIL (|has| |#1| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#1| (-906)))) (-1423 (($ $ |#1| (-531 (-815 (-1170))) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-815 (-1170)) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-815 (-1170)) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1454 (((-768) $ (-1170)) NIL) (((-768) $) NIL)) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-4279 (($ (-1166 |#1|) (-815 (-1170))) NIL) (($ (-1166 $) (-815 (-1170))) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-531 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-815 (-1170))) NIL)) (-2700 (((-531 (-815 (-1170))) $) NIL) (((-768) $ (-815 (-1170))) NIL) (((-641 (-768)) $ (-641 (-815 (-1170)))) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-4062 (($ (-1 (-531 (-815 (-1170))) (-531 (-815 (-1170)))) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2632 (((-1 $ (-768)) (-1170)) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-2848 (((-3 (-815 (-1170)) "failed") $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-3258 (((-815 (-1170)) $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1868 (((-1152) $) NIL)) (-2674 (((-112) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-815 (-1170))) (|:| -3078 (-768))) "failed") $) NIL)) (-4370 (($ $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#1| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-815 (-1170)) |#1|) NIL) (($ $ (-641 (-815 (-1170))) (-641 |#1|)) NIL) (($ $ (-815 (-1170)) $) NIL) (($ $ (-641 (-815 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-4378 (($ $ (-815 (-1170))) NIL (|has| |#1| (-172)))) (-2203 (($ $ (-815 (-1170))) NIL) (($ $ (-641 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1435 (((-641 (-1170)) $) NIL)) (-3475 (((-531 (-815 (-1170))) $) NIL) (((-768) $ (-815 (-1170))) NIL) (((-641 (-768)) $ (-641 (-815 (-1170)))) NIL) (((-768) $ (-1170)) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3324 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-815 (-1170))) NIL (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-815 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-531 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-815 (-1170))) NIL) (($ $ (-641 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-813 |#1|) (-13 (-253 |#1| (-1170) (-815 (-1170)) (-531 (-815 (-1170)))) (-1035 (-1119 |#1| (-1170)))) (-1046)) (T -813))
NIL
(-13 (-253 |#1| (-1170) (-815 (-1170)) (-531 (-815 (-1170)))) (-1035 (-1119 |#1| (-1170))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-1840 (($ $) NIL (|has| |#2| (-363)))) (-4035 (((-112) $) NIL (|has| |#2| (-363)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| |#2| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#2| (-363)))) (-3385 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3760 (($) NIL T CONST)) (-1387 (($ $ $) NIL (|has| |#2| (-363)))) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL (|has| |#2| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-3241 (((-112) $) NIL (|has| |#2| (-363)))) (-2419 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2488 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 20 (|has| |#2| (-363)))) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-4006 (((-418 $) $) NIL (|has| |#2| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#2| (-363)))) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-3712 (((-768) $) NIL (|has| |#2| (-363)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#2| (-363)))) (-3226 (($ $ (-768)) NIL) (($ $) 13)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-564))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-1965 (((-768)) NIL T CONST)) (-1582 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) 15 (|has| |#2| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL) (($ $ (-564)) 18 (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-564))) NIL (|has| |#2| (-363)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-1582 (($ $) NIL (|has| |#2| (-363)))) (-3897 (((-112) $) NIL (|has| |#2| (-363)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| |#2| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#2| (-363)))) (-3907 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3180 (($) NIL T CONST)) (-1399 (($ $ $) NIL (|has| |#2| (-363)))) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL (|has| |#2| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-1926 (((-112) $) NIL (|has| |#2| (-363)))) (-2340 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2688 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 20 (|has| |#2| (-363)))) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-4139 (((-418 $) $) NIL (|has| |#2| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#2| (-363)))) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-3966 (((-768) $) NIL (|has| |#2| (-363)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#2| (-363)))) (-2203 (($ $ (-768)) NIL) (($ $) 13)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-564))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-3379 (((-768)) NIL T CONST)) (-3979 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) 15 (|has| |#2| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL) (($ $ (-564)) 18 (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-564))) NIL (|has| |#2| (-363)))))
(((-814 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1094) (-897 |#1|) |#1|) (T -814))
NIL
(-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-3703 (((-768) $) NIL)) (-3657 ((|#1| $) 10)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-2261 (((-768) $) 11)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2753 (($ |#1| (-768)) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3226 (($ $) NIL) (($ $ (-768)) NIL)) (-1765 (((-859) $) NIL) (($ |#1|) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-3879 (((-768) $) NIL)) (-3832 ((|#1| $) 10)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-1454 (((-768) $) 11)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2632 (($ |#1| (-768)) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2203 (($ $) NIL) (($ $ (-768)) NIL)) (-3714 (((-859) $) NIL) (($ |#1|) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
(((-815 |#1|) (-266 |#1|) (-847)) (T -815))
NIL
(-266 |#1|)
-((-1754 (((-112) $ $) NIL)) (-3265 (((-641 |#1|) $) 38)) (-3042 (((-768) $) NIL)) (-3760 (($) NIL T CONST)) (-2839 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-3086 (($ $) 42)) (-1926 (((-3 $ "failed") $) NIL)) (-3615 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2419 (((-112) $) NIL)) (-2902 ((|#1| $ (-564)) NIL)) (-2774 (((-768) $ (-564)) NIL)) (-2776 (($ $) 51)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2558 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2136 (((-112) $ $) 49)) (-2564 (((-768) $) 34)) (-4202 (((-1152) $) NIL)) (-3125 (($ $ $) NIL)) (-3215 (($ $ $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 ((|#1| $) 41)) (-2362 (((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-768)))) $) NIL)) (-1354 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1765 (((-859) $) NIL) (($ |#1|) NIL)) (-4327 (($) 20 T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 50)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ |#1| (-768)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-816 |#1|) (-13 (-843) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -3073 (|#1| $)) (-15 -3086 ($ $)) (-15 -2776 ($ $)) (-15 -2136 ((-112) $ $)) (-15 -3215 ($ $ $)) (-15 -3125 ($ $ $)) (-15 -2558 ((-3 $ "failed") $ $)) (-15 -2839 ((-3 $ "failed") $ $)) (-15 -2558 ((-3 $ "failed") $ |#1|)) (-15 -2839 ((-3 $ "failed") $ |#1|)) (-15 -1354 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3615 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3042 ((-768) $)) (-15 -2774 ((-768) $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -2362 ((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-768)))) $)) (-15 -2564 ((-768) $)) (-15 -3265 ((-641 |#1|) $)))) (-847)) (T -816))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3073 (*1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3086 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2776 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2136 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-3215 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3125 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2558 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2839 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2558 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2839 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-1354 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |rm| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-3615 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |mm| (-816 *3)) (|:| |rm| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-816 *4)) (-4 *4 (-847)))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 (-768))))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-816 *3)) (-4 *3 (-847)))))
-(-13 (-843) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -3073 (|#1| $)) (-15 -3086 ($ $)) (-15 -2776 ($ $)) (-15 -2136 ((-112) $ $)) (-15 -3215 ($ $ $)) (-15 -3125 ($ $ $)) (-15 -2558 ((-3 $ "failed") $ $)) (-15 -2839 ((-3 $ "failed") $ $)) (-15 -2558 ((-3 $ "failed") $ |#1|)) (-15 -2839 ((-3 $ "failed") $ |#1|)) (-15 -1354 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3615 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3042 ((-768) $)) (-15 -2774 ((-768) $ (-564))) (-15 -2902 (|#1| $ (-564))) (-15 -2362 ((-641 (-2 (|:| |gen| |#1|) (|:| -2152 (-768)))) $)) (-15 -2564 ((-768) $)) (-15 -3265 ((-641 |#1|) $))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-3438 (((-564) $) 54)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-1751 (((-112) $) 52)) (-2419 (((-112) $) 31)) (-2506 (((-112) $) 53)) (-3571 (($ $ $) 51)) (-1547 (($ $ $) 50)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1343 (((-3 $ "failed") $ $) 43)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-2016 (($ $) 55)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1738 (((-112) $ $) 48)) (-1715 (((-112) $ $) 47)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 49)) (-1705 (((-112) $ $) 46)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3702 (((-112) $ $) NIL)) (-3441 (((-641 |#1|) $) 38)) (-2018 (((-768) $) NIL)) (-3180 (($) NIL T CONST)) (-4084 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-2063 (($ $) 42)) (-4272 (((-3 $ "failed") $) NIL)) (-4298 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2340 (((-112) $) NIL)) (-3488 ((|#1| $ (-564)) NIL)) (-2824 (((-768) $ (-564)) NIL)) (-2843 (($ $) 51)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-4286 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2763 (((-112) $ $) 49)) (-3451 (((-768) $) 34)) (-1868 (((-1152) $) NIL)) (-3161 (($ $ $) NIL)) (-1640 (($ $ $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 ((|#1| $) 41)) (-3020 (((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-768)))) $) NIL)) (-1357 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3714 (((-859) $) NIL) (($ |#1|) NIL)) (-4323 (($) 20 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 50)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ |#1| (-768)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-816 |#1|) (-13 (-843) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -2049 (|#1| $)) (-15 -2063 ($ $)) (-15 -2843 ($ $)) (-15 -2763 ((-112) $ $)) (-15 -1640 ($ $ $)) (-15 -3161 ($ $ $)) (-15 -4286 ((-3 $ "failed") $ $)) (-15 -4084 ((-3 $ "failed") $ $)) (-15 -4286 ((-3 $ "failed") $ |#1|)) (-15 -4084 ((-3 $ "failed") $ |#1|)) (-15 -1357 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2018 ((-768) $)) (-15 -2824 ((-768) $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -3020 ((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-768)))) $)) (-15 -3451 ((-768) $)) (-15 -3441 ((-641 |#1|) $)))) (-847)) (T -816))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2049 (*1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2063 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2843 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2763 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-1640 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3161 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-4286 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-4084 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-4286 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-4084 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-1357 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |rm| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-4298 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |mm| (-816 *3)) (|:| |rm| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-2824 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-816 *4)) (-4 *4 (-847)))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 (-768))))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-816 *3)) (-4 *3 (-847)))))
+(-13 (-843) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -2049 (|#1| $)) (-15 -2063 ($ $)) (-15 -2843 ($ $)) (-15 -2763 ((-112) $ $)) (-15 -1640 ($ $ $)) (-15 -3161 ($ $ $)) (-15 -4286 ((-3 $ "failed") $ $)) (-15 -4084 ((-3 $ "failed") $ $)) (-15 -4286 ((-3 $ "failed") $ |#1|)) (-15 -4084 ((-3 $ "failed") $ |#1|)) (-15 -1357 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2018 ((-768) $)) (-15 -2824 ((-768) $ (-564))) (-15 -3488 (|#1| $ (-564))) (-15 -3020 ((-641 (-2 (|:| |gen| |#1|) (|:| -4130 (-768)))) $)) (-15 -3451 ((-768) $)) (-15 -3441 ((-641 |#1|) $))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-3191 (((-564) $) 54)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-3137 (((-112) $) 52)) (-2340 (((-112) $) 31)) (-2001 (((-112) $) 53)) (-3428 (($ $ $) 51)) (-3413 (($ $ $) 50)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1347 (((-3 $ "failed") $ $) 43)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-3920 (($ $) 55)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1781 (((-112) $ $) 48)) (-1758 (((-112) $ $) 47)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 49)) (-1746 (((-112) $ $) 46)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-817) (-140)) (T -817))
NIL
(-13 (-556) (-845))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1895 (($ (-1114)) 7)) (-3096 (((-112) $ (-1152) (-1114)) 15)) (-1710 (((-819) $) 12)) (-1993 (((-819) $) 11)) (-2028 (((-1264) $) 9)) (-2717 (((-112) $ (-1114)) 16)))
-(((-818) (-10 -8 (-15 -1895 ($ (-1114))) (-15 -2028 ((-1264) $)) (-15 -1993 ((-819) $)) (-15 -1710 ((-819) $)) (-15 -3096 ((-112) $ (-1152) (-1114))) (-15 -2717 ((-112) $ (-1114))))) (T -818))
-((-2717 (*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))) (-3096 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-818)))))
-(-10 -8 (-15 -1895 ($ (-1114))) (-15 -2028 ((-1264) $)) (-15 -1993 ((-819) $)) (-15 -1710 ((-819) $)) (-15 -3096 ((-112) $ (-1152) (-1114))) (-15 -2717 ((-112) $ (-1114))))
-((-3619 (((-1264) $ (-820)) 12)) (-4014 (((-1264) $ (-1170)) 32)) (-3928 (((-1264) $ (-1152) (-1152)) 34)) (-1811 (((-1264) $ (-1152)) 33)) (-2894 (((-1264) $) 19)) (-3305 (((-1264) $ (-564)) 28)) (-3029 (((-1264) $ (-225)) 30)) (-3217 (((-1264) $) 18)) (-2756 (((-1264) $) 26)) (-1608 (((-1264) $) 25)) (-2337 (((-1264) $) 23)) (-4190 (((-1264) $) 24)) (-2495 (((-1264) $) 22)) (-1558 (((-1264) $) 21)) (-2789 (((-1264) $) 20)) (-3733 (((-1264) $) 16)) (-1782 (((-1264) $) 17)) (-1892 (((-1264) $) 15)) (-1807 (((-1264) $) 14)) (-2612 (((-1264) $) 13)) (-4243 (($ (-1152) (-820)) 9)) (-3193 (($ (-1152) (-1152) (-820)) 8)) (-2949 (((-1170) $) 51)) (-4017 (((-1170) $) 55)) (-2382 (((-2 (|:| |cd| (-1152)) (|:| -4363 (-1152))) $) 54)) (-1917 (((-1152) $) 52)) (-1726 (((-1264) $) 41)) (-2205 (((-564) $) 49)) (-4294 (((-225) $) 50)) (-3296 (((-1264) $) 40)) (-3366 (((-1264) $) 48)) (-2518 (((-1264) $) 47)) (-2932 (((-1264) $) 45)) (-2195 (((-1264) $) 46)) (-2009 (((-1264) $) 44)) (-4098 (((-1264) $) 43)) (-2417 (((-1264) $) 42)) (-3746 (((-1264) $) 38)) (-2280 (((-1264) $) 39)) (-2162 (((-1264) $) 37)) (-1781 (((-1264) $) 36)) (-4244 (((-1264) $) 35)) (-2878 (((-1264) $) 11)))
-(((-819) (-10 -8 (-15 -3193 ($ (-1152) (-1152) (-820))) (-15 -4243 ($ (-1152) (-820))) (-15 -2878 ((-1264) $)) (-15 -3619 ((-1264) $ (-820))) (-15 -2612 ((-1264) $)) (-15 -1807 ((-1264) $)) (-15 -1892 ((-1264) $)) (-15 -3733 ((-1264) $)) (-15 -1782 ((-1264) $)) (-15 -3217 ((-1264) $)) (-15 -2894 ((-1264) $)) (-15 -2789 ((-1264) $)) (-15 -1558 ((-1264) $)) (-15 -2495 ((-1264) $)) (-15 -2337 ((-1264) $)) (-15 -4190 ((-1264) $)) (-15 -1608 ((-1264) $)) (-15 -2756 ((-1264) $)) (-15 -3305 ((-1264) $ (-564))) (-15 -3029 ((-1264) $ (-225))) (-15 -4014 ((-1264) $ (-1170))) (-15 -1811 ((-1264) $ (-1152))) (-15 -3928 ((-1264) $ (-1152) (-1152))) (-15 -4244 ((-1264) $)) (-15 -1781 ((-1264) $)) (-15 -2162 ((-1264) $)) (-15 -3746 ((-1264) $)) (-15 -2280 ((-1264) $)) (-15 -3296 ((-1264) $)) (-15 -1726 ((-1264) $)) (-15 -2417 ((-1264) $)) (-15 -4098 ((-1264) $)) (-15 -2009 ((-1264) $)) (-15 -2932 ((-1264) $)) (-15 -2195 ((-1264) $)) (-15 -2518 ((-1264) $)) (-15 -3366 ((-1264) $)) (-15 -2205 ((-564) $)) (-15 -4294 ((-225) $)) (-15 -2949 ((-1170) $)) (-15 -1917 ((-1152) $)) (-15 -2382 ((-2 (|:| |cd| (-1152)) (|:| -4363 (-1152))) $)) (-15 -4017 ((-1170) $)))) (T -819))
-((-4017 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -4363 (-1152)))) (-5 *1 (-819)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-819)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-819)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3746 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4244 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3928 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-1811 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-4014 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-3029 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-3305 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3619 (*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4243 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))) (-3193 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))))
-(-10 -8 (-15 -3193 ($ (-1152) (-1152) (-820))) (-15 -4243 ($ (-1152) (-820))) (-15 -2878 ((-1264) $)) (-15 -3619 ((-1264) $ (-820))) (-15 -2612 ((-1264) $)) (-15 -1807 ((-1264) $)) (-15 -1892 ((-1264) $)) (-15 -3733 ((-1264) $)) (-15 -1782 ((-1264) $)) (-15 -3217 ((-1264) $)) (-15 -2894 ((-1264) $)) (-15 -2789 ((-1264) $)) (-15 -1558 ((-1264) $)) (-15 -2495 ((-1264) $)) (-15 -2337 ((-1264) $)) (-15 -4190 ((-1264) $)) (-15 -1608 ((-1264) $)) (-15 -2756 ((-1264) $)) (-15 -3305 ((-1264) $ (-564))) (-15 -3029 ((-1264) $ (-225))) (-15 -4014 ((-1264) $ (-1170))) (-15 -1811 ((-1264) $ (-1152))) (-15 -3928 ((-1264) $ (-1152) (-1152))) (-15 -4244 ((-1264) $)) (-15 -1781 ((-1264) $)) (-15 -2162 ((-1264) $)) (-15 -3746 ((-1264) $)) (-15 -2280 ((-1264) $)) (-15 -3296 ((-1264) $)) (-15 -1726 ((-1264) $)) (-15 -2417 ((-1264) $)) (-15 -4098 ((-1264) $)) (-15 -2009 ((-1264) $)) (-15 -2932 ((-1264) $)) (-15 -2195 ((-1264) $)) (-15 -2518 ((-1264) $)) (-15 -3366 ((-1264) $)) (-15 -2205 ((-564) $)) (-15 -4294 ((-225) $)) (-15 -2949 ((-1170) $)) (-15 -1917 ((-1152) $)) (-15 -2382 ((-2 (|:| |cd| (-1152)) (|:| -4363 (-1152))) $)) (-15 -4017 ((-1170) $)))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 13)) (-3478 (($) 16)) (-3298 (($) 14)) (-3630 (($) 17)) (-2970 (($) 15)) (-1686 (((-112) $ $) 9)))
-(((-820) (-13 (-1094) (-10 -8 (-15 -3298 ($)) (-15 -3478 ($)) (-15 -3630 ($)) (-15 -2970 ($))))) (T -820))
-((-3298 (*1 *1) (-5 *1 (-820))) (-3478 (*1 *1) (-5 *1 (-820))) (-3630 (*1 *1) (-5 *1 (-820))) (-2970 (*1 *1) (-5 *1 (-820))))
-(-13 (-1094) (-10 -8 (-15 -3298 ($)) (-15 -3478 ($)) (-15 -3630 ($)) (-15 -2970 ($))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 23) (($ (-1170)) 19)) (-4333 (((-112) $) 10)) (-1906 (((-112) $) 9)) (-1386 (((-112) $) 11)) (-1331 (((-112) $) 8)) (-1686 (((-112) $ $) 21)))
-(((-821) (-13 (-1094) (-10 -8 (-15 -1765 ($ (-1170))) (-15 -1331 ((-112) $)) (-15 -1906 ((-112) $)) (-15 -4333 ((-112) $)) (-15 -1386 ((-112) $))))) (T -821))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-821)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
-(-13 (-1094) (-10 -8 (-15 -1765 ($ (-1170))) (-15 -1331 ((-112) $)) (-15 -1906 ((-112) $)) (-15 -4333 ((-112) $)) (-15 -1386 ((-112) $))))
-((-1754 (((-112) $ $) NIL)) (-1694 (($ (-821) (-641 (-1170))) 32)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3167 (((-821) $) 33)) (-4056 (((-641 (-1170)) $) 34)) (-1765 (((-859) $) 31)) (-1686 (((-112) $ $) NIL)))
-(((-822) (-13 (-1094) (-10 -8 (-15 -3167 ((-821) $)) (-15 -4056 ((-641 (-1170)) $)) (-15 -1694 ($ (-821) (-641 (-1170))))))) (T -822))
-((-3167 (*1 *2 *1) (-12 (-5 *2 (-821)) (-5 *1 (-822)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-822)))) (-1694 (*1 *1 *2 *3) (-12 (-5 *2 (-821)) (-5 *3 (-641 (-1170))) (-5 *1 (-822)))))
-(-13 (-1094) (-10 -8 (-15 -3167 ((-821) $)) (-15 -4056 ((-641 (-1170)) $)) (-15 -1694 ($ (-821) (-641 (-1170))))))
-((-3886 (((-1264) (-819) (-316 |#1|) (-112)) 24) (((-1264) (-819) (-316 |#1|)) 90) (((-1152) (-316 |#1|) (-112)) 89) (((-1152) (-316 |#1|)) 88)))
-(((-823 |#1|) (-10 -7 (-15 -3886 ((-1152) (-316 |#1|))) (-15 -3886 ((-1152) (-316 |#1|) (-112))) (-15 -3886 ((-1264) (-819) (-316 |#1|))) (-15 -3886 ((-1264) (-819) (-316 |#1|) (-112)))) (-13 (-825) (-847) (-1046))) (T -823))
-((-3886 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-819)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) (-5 *1 (-823 *6)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) (-5 *1 (-823 *5)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) (-5 *1 (-823 *5)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) (-5 *1 (-823 *4)))))
-(-10 -7 (-15 -3886 ((-1152) (-316 |#1|))) (-15 -3886 ((-1152) (-316 |#1|) (-112))) (-15 -3886 ((-1264) (-819) (-316 |#1|))) (-15 -3886 ((-1264) (-819) (-316 |#1|) (-112))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 10)) (-3351 (($ |#1|) 9)) (-2419 (((-112) $) NIL)) (-4145 (($ |#2| (-768)) NIL)) (-3829 (((-768) $) NIL)) (-4323 ((|#2| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3226 (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3344 (((-768) $) NIL)) (-1765 (((-859) $) 17) (($ (-564)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-1757 ((|#2| $ (-768)) NIL)) (-1965 (((-768)) NIL T CONST)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-824 |#1| |#2|) (-13 (-705 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3351 ($ |#1|)) (-15 -3775 (|#1| $)))) (-705 |#2|) (-1046)) (T -824))
-((-3351 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-824 *2 *3)) (-4 *2 (-705 *3)))) (-3775 (*1 *2 *1) (-12 (-4 *2 (-705 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1046)))))
-(-13 (-705 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3351 ($ |#1|)) (-15 -3775 (|#1| $))))
-((-3886 (((-1264) (-819) $ (-112)) 9) (((-1264) (-819) $) 8) (((-1152) $ (-112)) 7) (((-1152) $) 6)))
+((-3965 (($ (-1114)) 7)) (-2918 (((-112) $ (-1152) (-1114)) 15)) (-2818 (((-819) $) 12)) (-3680 (((-819) $) 11)) (-2901 (((-1264) $) 9)) (-3373 (((-112) $ (-1114)) 16)))
+(((-818) (-10 -8 (-15 -3965 ($ (-1114))) (-15 -2901 ((-1264) $)) (-15 -3680 ((-819) $)) (-15 -2818 ((-819) $)) (-15 -2918 ((-112) $ (-1152) (-1114))) (-15 -3373 ((-112) $ (-1114))))) (T -818))
+((-3373 (*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))) (-2918 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-818)))))
+(-10 -8 (-15 -3965 ($ (-1114))) (-15 -2901 ((-1264) $)) (-15 -3680 ((-819) $)) (-15 -2818 ((-819) $)) (-15 -2918 ((-112) $ (-1152) (-1114))) (-15 -3373 ((-112) $ (-1114))))
+((-4320 (((-1264) $ (-820)) 12)) (-3699 (((-1264) $ (-1170)) 32)) (-4210 (((-1264) $ (-1152) (-1152)) 34)) (-2555 (((-1264) $ (-1152)) 33)) (-1600 (((-1264) $) 19)) (-4373 (((-1264) $ (-564)) 28)) (-3407 (((-1264) $ (-225)) 30)) (-1662 (((-1264) $) 18)) (-2663 (((-1264) $) 26)) (-4221 (((-1264) $) 25)) (-2853 (((-1264) $) 23)) (-1740 (((-1264) $) 24)) (-1877 (((-1264) $) 22)) (-1924 (((-1264) $) 21)) (-1745 (((-1264) $) 20)) (-2981 (((-1264) $) 16)) (-2252 (((-1264) $) 17)) (-2114 (((-1264) $) 15)) (-2500 (((-1264) $) 14)) (-3515 (((-1264) $) 13)) (-2234 (($ (-1152) (-820)) 9)) (-2707 (($ (-1152) (-1152) (-820)) 8)) (-4014 (((-1170) $) 51)) (-3721 (((-1170) $) 55)) (-3166 (((-2 (|:| |cd| (-1152)) (|:| -4337 (-1152))) $) 54)) (-4190 (((-1152) $) 52)) (-2930 (((-1264) $) 41)) (-2170 (((-564) $) 49)) (-1429 (((-225) $) 50)) (-4291 (((-1264) $) 40)) (-3719 (((-1264) $) 48)) (-2077 (((-1264) $) 47)) (-3831 (((-1264) $) 45)) (-2071 (((-1264) $) 46)) (-3857 (((-1264) $) 44)) (-3239 (((-1264) $) 43)) (-2318 (((-1264) $) 42)) (-3067 (((-1264) $) 38)) (-3411 (((-1264) $) 39)) (-1731 (((-1264) $) 37)) (-2242 (((-1264) $) 36)) (-2246 (((-1264) $) 35)) (-1433 (((-1264) $) 11)))
+(((-819) (-10 -8 (-15 -2707 ($ (-1152) (-1152) (-820))) (-15 -2234 ($ (-1152) (-820))) (-15 -1433 ((-1264) $)) (-15 -4320 ((-1264) $ (-820))) (-15 -3515 ((-1264) $)) (-15 -2500 ((-1264) $)) (-15 -2114 ((-1264) $)) (-15 -2981 ((-1264) $)) (-15 -2252 ((-1264) $)) (-15 -1662 ((-1264) $)) (-15 -1600 ((-1264) $)) (-15 -1745 ((-1264) $)) (-15 -1924 ((-1264) $)) (-15 -1877 ((-1264) $)) (-15 -2853 ((-1264) $)) (-15 -1740 ((-1264) $)) (-15 -4221 ((-1264) $)) (-15 -2663 ((-1264) $)) (-15 -4373 ((-1264) $ (-564))) (-15 -3407 ((-1264) $ (-225))) (-15 -3699 ((-1264) $ (-1170))) (-15 -2555 ((-1264) $ (-1152))) (-15 -4210 ((-1264) $ (-1152) (-1152))) (-15 -2246 ((-1264) $)) (-15 -2242 ((-1264) $)) (-15 -1731 ((-1264) $)) (-15 -3067 ((-1264) $)) (-15 -3411 ((-1264) $)) (-15 -4291 ((-1264) $)) (-15 -2930 ((-1264) $)) (-15 -2318 ((-1264) $)) (-15 -3239 ((-1264) $)) (-15 -3857 ((-1264) $)) (-15 -3831 ((-1264) $)) (-15 -2071 ((-1264) $)) (-15 -2077 ((-1264) $)) (-15 -3719 ((-1264) $)) (-15 -2170 ((-564) $)) (-15 -1429 ((-225) $)) (-15 -4014 ((-1170) $)) (-15 -4190 ((-1152) $)) (-15 -3166 ((-2 (|:| |cd| (-1152)) (|:| -4337 (-1152))) $)) (-15 -3721 ((-1170) $)))) (T -819))
+((-3721 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -4337 (-1152)))) (-5 *1 (-819)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-819)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-819)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2318 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4210 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-2555 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-3699 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-3407 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-4373 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4320 (*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2234 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))) (-2707 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))))
+(-10 -8 (-15 -2707 ($ (-1152) (-1152) (-820))) (-15 -2234 ($ (-1152) (-820))) (-15 -1433 ((-1264) $)) (-15 -4320 ((-1264) $ (-820))) (-15 -3515 ((-1264) $)) (-15 -2500 ((-1264) $)) (-15 -2114 ((-1264) $)) (-15 -2981 ((-1264) $)) (-15 -2252 ((-1264) $)) (-15 -1662 ((-1264) $)) (-15 -1600 ((-1264) $)) (-15 -1745 ((-1264) $)) (-15 -1924 ((-1264) $)) (-15 -1877 ((-1264) $)) (-15 -2853 ((-1264) $)) (-15 -1740 ((-1264) $)) (-15 -4221 ((-1264) $)) (-15 -2663 ((-1264) $)) (-15 -4373 ((-1264) $ (-564))) (-15 -3407 ((-1264) $ (-225))) (-15 -3699 ((-1264) $ (-1170))) (-15 -2555 ((-1264) $ (-1152))) (-15 -4210 ((-1264) $ (-1152) (-1152))) (-15 -2246 ((-1264) $)) (-15 -2242 ((-1264) $)) (-15 -1731 ((-1264) $)) (-15 -3067 ((-1264) $)) (-15 -3411 ((-1264) $)) (-15 -4291 ((-1264) $)) (-15 -2930 ((-1264) $)) (-15 -2318 ((-1264) $)) (-15 -3239 ((-1264) $)) (-15 -3857 ((-1264) $)) (-15 -3831 ((-1264) $)) (-15 -2071 ((-1264) $)) (-15 -2077 ((-1264) $)) (-15 -3719 ((-1264) $)) (-15 -2170 ((-564) $)) (-15 -1429 ((-225) $)) (-15 -4014 ((-1170) $)) (-15 -4190 ((-1152) $)) (-15 -3166 ((-2 (|:| |cd| (-1152)) (|:| -4337 (-1152))) $)) (-15 -3721 ((-1170) $)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 13)) (-2411 (($) 16)) (-4315 (($) 14)) (-1351 (($) 17)) (-4119 (($) 15)) (-1720 (((-112) $ $) 9)))
+(((-820) (-13 (-1094) (-10 -8 (-15 -4315 ($)) (-15 -2411 ($)) (-15 -1351 ($)) (-15 -4119 ($))))) (T -820))
+((-4315 (*1 *1) (-5 *1 (-820))) (-2411 (*1 *1) (-5 *1 (-820))) (-1351 (*1 *1) (-5 *1 (-820))) (-4119 (*1 *1) (-5 *1 (-820))))
+(-13 (-1094) (-10 -8 (-15 -4315 ($)) (-15 -2411 ($)) (-15 -1351 ($)) (-15 -4119 ($))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 23) (($ (-1170)) 19)) (-3550 (((-112) $) 10)) (-4064 (((-112) $) 9)) (-3427 (((-112) $) 11)) (-2367 (((-112) $) 8)) (-1720 (((-112) $ $) 21)))
+(((-821) (-13 (-1094) (-10 -8 (-15 -3714 ($ (-1170))) (-15 -2367 ((-112) $)) (-15 -4064 ((-112) $)) (-15 -3550 ((-112) $)) (-15 -3427 ((-112) $))))) (T -821))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-821)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
+(-13 (-1094) (-10 -8 (-15 -3714 ($ (-1170))) (-15 -2367 ((-112) $)) (-15 -4064 ((-112) $)) (-15 -3550 ((-112) $)) (-15 -3427 ((-112) $))))
+((-3702 (((-112) $ $) NIL)) (-3773 (($ (-821) (-641 (-1170))) 32)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2436 (((-821) $) 33)) (-2933 (((-641 (-1170)) $) 34)) (-3714 (((-859) $) 31)) (-1720 (((-112) $ $) NIL)))
+(((-822) (-13 (-1094) (-10 -8 (-15 -2436 ((-821) $)) (-15 -2933 ((-641 (-1170)) $)) (-15 -3773 ($ (-821) (-641 (-1170))))))) (T -822))
+((-2436 (*1 *2 *1) (-12 (-5 *2 (-821)) (-5 *1 (-822)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-822)))) (-3773 (*1 *1 *2 *3) (-12 (-5 *2 (-821)) (-5 *3 (-641 (-1170))) (-5 *1 (-822)))))
+(-13 (-1094) (-10 -8 (-15 -2436 ((-821) $)) (-15 -2933 ((-641 (-1170)) $)) (-15 -3773 ($ (-821) (-641 (-1170))))))
+((-1983 (((-1264) (-819) (-316 |#1|) (-112)) 24) (((-1264) (-819) (-316 |#1|)) 90) (((-1152) (-316 |#1|) (-112)) 89) (((-1152) (-316 |#1|)) 88)))
+(((-823 |#1|) (-10 -7 (-15 -1983 ((-1152) (-316 |#1|))) (-15 -1983 ((-1152) (-316 |#1|) (-112))) (-15 -1983 ((-1264) (-819) (-316 |#1|))) (-15 -1983 ((-1264) (-819) (-316 |#1|) (-112)))) (-13 (-825) (-847) (-1046))) (T -823))
+((-1983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-819)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) (-5 *1 (-823 *6)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) (-5 *1 (-823 *5)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) (-5 *1 (-823 *5)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) (-5 *1 (-823 *4)))))
+(-10 -7 (-15 -1983 ((-1152) (-316 |#1|))) (-15 -1983 ((-1152) (-316 |#1|) (-112))) (-15 -1983 ((-1264) (-819) (-316 |#1|))) (-15 -1983 ((-1264) (-819) (-316 |#1|) (-112))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-3298 ((|#1| $) 10)) (-3395 (($ |#1|) 9)) (-2340 (((-112) $) NIL)) (-4267 (($ |#2| (-768)) NIL)) (-2700 (((-768) $) NIL)) (-1345 ((|#2| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2203 (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3475 (((-768) $) NIL)) (-3714 (((-859) $) 17) (($ (-564)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-3181 ((|#2| $ (-768)) NIL)) (-3379 (((-768)) NIL T CONST)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-824 |#1| |#2|) (-13 (-705 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3395 ($ |#1|)) (-15 -3298 (|#1| $)))) (-705 |#2|) (-1046)) (T -824))
+((-3395 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-824 *2 *3)) (-4 *2 (-705 *3)))) (-3298 (*1 *2 *1) (-12 (-4 *2 (-705 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1046)))))
+(-13 (-705 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3395 ($ |#1|)) (-15 -3298 (|#1| $))))
+((-1983 (((-1264) (-819) $ (-112)) 9) (((-1264) (-819) $) 8) (((-1152) $ (-112)) 7) (((-1152) $) 6)))
(((-825) (-140)) (T -825))
-((-3886 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1264)))) (-3886 (*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *2 (-1264)))) (-3886 (*1 *2 *1 *3) (-12 (-4 *1 (-825)) (-5 *3 (-112)) (-5 *2 (-1152)))) (-3886 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-1152)))))
-(-13 (-10 -8 (-15 -3886 ((-1152) $)) (-15 -3886 ((-1152) $ (-112))) (-15 -3886 ((-1264) (-819) $)) (-15 -3886 ((-1264) (-819) $ (-112)))))
-((-1896 (((-312) (-1152) (-1152)) 12)) (-2802 (((-112) (-1152) (-1152)) 33)) (-2420 (((-112) (-1152)) 32)) (-4116 (((-52) (-1152)) 25)) (-2369 (((-52) (-1152)) 23)) (-2977 (((-52) (-819)) 17)) (-3509 (((-641 (-1152)) (-1152)) 28)) (-2645 (((-641 (-1152))) 27)))
-(((-826) (-10 -7 (-15 -2977 ((-52) (-819))) (-15 -2369 ((-52) (-1152))) (-15 -4116 ((-52) (-1152))) (-15 -2645 ((-641 (-1152)))) (-15 -3509 ((-641 (-1152)) (-1152))) (-15 -2420 ((-112) (-1152))) (-15 -2802 ((-112) (-1152) (-1152))) (-15 -1896 ((-312) (-1152) (-1152))))) (T -826))
-((-1896 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-826)))) (-2802 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))) (-3509 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)) (-5 *3 (-1152)))) (-2645 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-826)))))
-(-10 -7 (-15 -2977 ((-52) (-819))) (-15 -2369 ((-52) (-1152))) (-15 -4116 ((-52) (-1152))) (-15 -2645 ((-641 (-1152)))) (-15 -3509 ((-641 (-1152)) (-1152))) (-15 -2420 ((-112) (-1152))) (-15 -2802 ((-112) (-1152) (-1152))) (-15 -1896 ((-312) (-1152) (-1152))))
-((-1754 (((-112) $ $) 19)) (-3423 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2032 (($ $ $) 72)) (-2723 (((-112) $ $) 73)) (-3263 (((-112) $ (-768)) 8)) (-3581 (($ (-641 |#1|)) 68) (($) 67)) (-4194 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3083 (($ $) 62)) (-3104 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2359 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2081 (((-112) $ $) 64)) (-2830 (((-112) $ (-768)) 9)) (-3571 ((|#1| $) 78)) (-1397 (($ $ $) 81)) (-4012 (($ $ $) 80)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1547 ((|#1| $) 79)) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22)) (-1617 (($ $ $) 69)) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-3802 (((-1114) $) 21)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4282 (((-641 (-2 (|:| -1327 |#1|) (|:| -3815 (-768)))) $) 61)) (-2003 (($ $ |#1|) 71) (($ $ $) 70)) (-3784 (($) 49) (($ (-641 |#1|)) 48)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 50)) (-1765 (((-859) $) 18)) (-4086 (($ (-641 |#1|)) 66) (($) 65)) (-2652 (($ (-641 |#1|)) 42)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20)) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-1983 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1264)))) (-1983 (*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *2 (-1264)))) (-1983 (*1 *2 *1 *3) (-12 (-4 *1 (-825)) (-5 *3 (-112)) (-5 *2 (-1152)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-1152)))))
+(-13 (-10 -8 (-15 -1983 ((-1152) $)) (-15 -1983 ((-1152) $ (-112))) (-15 -1983 ((-1264) (-819) $)) (-15 -1983 ((-1264) (-819) $ (-112)))))
+((-3974 (((-312) (-1152) (-1152)) 12)) (-1895 (((-112) (-1152) (-1152)) 33)) (-2352 (((-112) (-1152)) 32)) (-3388 (((-52) (-1152)) 25)) (-3073 (((-52) (-1152)) 23)) (-4191 (((-52) (-819)) 17)) (-2715 (((-641 (-1152)) (-1152)) 28)) (-3902 (((-641 (-1152))) 27)))
+(((-826) (-10 -7 (-15 -4191 ((-52) (-819))) (-15 -3073 ((-52) (-1152))) (-15 -3388 ((-52) (-1152))) (-15 -3902 ((-641 (-1152)))) (-15 -2715 ((-641 (-1152)) (-1152))) (-15 -2352 ((-112) (-1152))) (-15 -1895 ((-112) (-1152) (-1152))) (-15 -3974 ((-312) (-1152) (-1152))))) (T -826))
+((-3974 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-826)))) (-1895 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))) (-2715 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)) (-5 *3 (-1152)))) (-3902 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-826)))))
+(-10 -7 (-15 -4191 ((-52) (-819))) (-15 -3073 ((-52) (-1152))) (-15 -3388 ((-52) (-1152))) (-15 -3902 ((-641 (-1152)))) (-15 -2715 ((-641 (-1152)) (-1152))) (-15 -2352 ((-112) (-1152))) (-15 -1895 ((-112) (-1152) (-1152))) (-15 -3974 ((-312) (-1152) (-1152))))
+((-3702 (((-112) $ $) 19)) (-3452 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2935 (($ $ $) 72)) (-2303 (((-112) $ $) 73)) (-2141 (((-112) $ (-768)) 8)) (-3633 (($ (-641 |#1|)) 68) (($) 67)) (-1773 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2822 (($ $) 62)) (-2084 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ |#1| $) 47 (|has| $ (-6 -4412))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4412)))) (-2514 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4412)))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2214 (((-112) $ $) 64)) (-2173 (((-112) $ (-768)) 9)) (-3428 ((|#1| $) 78)) (-2573 (($ $ $) 81)) (-3678 (($ $ $) 80)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3413 ((|#1| $) 79)) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22)) (-4302 (($ $ $) 69)) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-3844 (((-1114) $) 21)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-1327 (((-641 (-2 (|:| -2575 |#1|) (|:| -3855 (-768)))) $) 61)) (-3796 (($ $ |#1|) 71) (($ $ $) 70)) (-3372 (($) 49) (($ (-641 |#1|)) 48)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 50)) (-3714 (((-859) $) 18)) (-4208 (($ (-641 |#1|)) 66) (($) 65)) (-3976 (($ (-641 |#1|)) 42)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20)) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-827 |#1|) (-140) (-847)) (T -827))
-((-3571 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-847)))))
-(-13 (-733 |t#1|) (-965 |t#1|) (-10 -8 (-15 -3571 (|t#1| $))))
+((-3428 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-847)))))
+(-13 (-733 |t#1|) (-965 |t#1|) (-10 -8 (-15 -3428 (|t#1| $))))
(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-733 |#1|) . T) ((-965 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T))
-((-1936 (((-1264) (-1114) (-1114)) 48)) (-2636 (((-1264) (-818) (-52)) 45)) (-1920 (((-52) (-818)) 16)))
-(((-828) (-10 -7 (-15 -1920 ((-52) (-818))) (-15 -2636 ((-1264) (-818) (-52))) (-15 -1936 ((-1264) (-1114) (-1114))))) (T -828))
-((-1936 (*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-828)))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-828)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-828)))))
-(-10 -7 (-15 -1920 ((-52) (-818))) (-15 -2636 ((-1264) (-818) (-52))) (-15 -1936 ((-1264) (-1114) (-1114))))
-((-2082 (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)) 12) (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)) 13)))
-(((-829 |#1| |#2|) (-10 -7 (-15 -2082 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|))) (-15 -2082 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)))) (-1094) (-1094)) (T -829))
-((-2082 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-829 *5 *6)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6)))))
-(-10 -7 (-15 -2082 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|))) (-15 -2082 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL (|has| |#1| (-21)))) (-3936 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3438 (((-564) $) NIL (|has| |#1| (-845)))) (-3760 (($) NIL (|has| |#1| (-21)) CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 15)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 9)) (-1926 (((-3 $ "failed") $) 42 (|has| |#1| (-845)))) (-1978 (((-3 (-407 (-564)) "failed") $) 52 (|has| |#1| (-545)))) (-2709 (((-112) $) 46 (|has| |#1| (-545)))) (-3424 (((-407 (-564)) $) 49 (|has| |#1| (-545)))) (-1751 (((-112) $) NIL (|has| |#1| (-845)))) (-2419 (((-112) $) NIL (|has| |#1| (-845)))) (-2506 (((-112) $) NIL (|has| |#1| (-845)))) (-3571 (($ $ $) NIL (|has| |#1| (-845)))) (-1547 (($ $ $) NIL (|has| |#1| (-845)))) (-4202 (((-1152) $) NIL)) (-1551 (($) 13)) (-2365 (((-112) $) 12)) (-3802 (((-1114) $) NIL)) (-3386 (((-112) $) 11)) (-1765 (((-859) $) 18) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-4002 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))))) (-1965 (((-768)) 36 (|has| |#1| (-845)) CONST)) (-2016 (($ $) NIL (|has| |#1| (-845)))) (-4317 (($) 23 (|has| |#1| (-21)) CONST)) (-4327 (($) 33 (|has| |#1| (-845)) CONST)) (-1738 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1686 (((-112) $ $) 21)) (-1728 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1705 (((-112) $ $) 45 (|has| |#1| (-845)))) (-1783 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-1771 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-918)) NIL (|has| |#1| (-845))) (($ $ (-768)) NIL (|has| |#1| (-845)))) (* (($ $ $) 39 (|has| |#1| (-845))) (($ (-564) $) 27 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-21)))))
-(((-830 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1551 ($)) (-15 -3386 ((-112) $)) (-15 -2365 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -830))
-((-1551 (*1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1094)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-1978 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))))
-(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1551 ($)) (-15 -3386 ((-112) $)) (-15 -2365 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
-((-1765 (((-859) $) 11)))
-(((-831 |#1| |#2|) (-10 -8 (-15 -1765 ((-859) |#1|))) (-832 |#2|) (-1094)) (T -831))
-NIL
-(-10 -8 (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-4363 ((|#1| $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-2189 (((-55) $) 13)) (-1686 (((-112) $ $) 6)))
+((-4353 (((-1264) (-1114) (-1114)) 48)) (-3797 (((-1264) (-818) (-52)) 45)) (-4212 (((-52) (-818)) 16)))
+(((-828) (-10 -7 (-15 -4212 ((-52) (-818))) (-15 -3797 ((-1264) (-818) (-52))) (-15 -4353 ((-1264) (-1114) (-1114))))) (T -828))
+((-4353 (*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-828)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-828)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-828)))))
+(-10 -7 (-15 -4212 ((-52) (-818))) (-15 -3797 ((-1264) (-818) (-52))) (-15 -4353 ((-1264) (-1114) (-1114))))
+((-2313 (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)) 12) (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)) 13)))
+(((-829 |#1| |#2|) (-10 -7 (-15 -2313 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|))) (-15 -2313 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)))) (-1094) (-1094)) (T -829))
+((-2313 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-829 *5 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6)))))
+(-10 -7 (-15 -2313 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|))) (-15 -2313 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL (|has| |#1| (-21)))) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3191 (((-564) $) NIL (|has| |#1| (-845)))) (-3180 (($) NIL (|has| |#1| (-21)) CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 15)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 9)) (-4272 (((-3 $ "failed") $) 42 (|has| |#1| (-845)))) (-3502 (((-3 (-407 (-564)) "failed") $) 52 (|has| |#1| (-545)))) (-3309 (((-112) $) 46 (|has| |#1| (-545)))) (-3074 (((-407 (-564)) $) 49 (|has| |#1| (-545)))) (-3137 (((-112) $) NIL (|has| |#1| (-845)))) (-2340 (((-112) $) NIL (|has| |#1| (-845)))) (-2001 (((-112) $) NIL (|has| |#1| (-845)))) (-3428 (($ $ $) NIL (|has| |#1| (-845)))) (-3413 (($ $ $) NIL (|has| |#1| (-845)))) (-1868 (((-1152) $) NIL)) (-1700 (($) 13)) (-3046 (((-112) $) 12)) (-3844 (((-1114) $) NIL)) (-3916 (((-112) $) 11)) (-3714 (((-859) $) 18) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-4012 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))))) (-3379 (((-768)) 36 (|has| |#1| (-845)) CONST)) (-3920 (($ $) NIL (|has| |#1| (-845)))) (-4312 (($) 23 (|has| |#1| (-21)) CONST)) (-4323 (($) 33 (|has| |#1| (-845)) CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1720 (((-112) $ $) 21)) (-1769 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1746 (((-112) $ $) 45 (|has| |#1| (-845)))) (-1828 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-1814 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-918)) NIL (|has| |#1| (-845))) (($ $ (-768)) NIL (|has| |#1| (-845)))) (* (($ $ $) 39 (|has| |#1| (-845))) (($ (-564) $) 27 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-21)))))
+(((-830 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1700 ($)) (-15 -3916 ((-112) $)) (-15 -3046 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -830))
+((-1700 (*1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1094)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3502 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))))
+(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1700 ($)) (-15 -3916 ((-112) $)) (-15 -3046 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
+((-3714 (((-859) $) 11)))
+(((-831 |#1| |#2|) (-10 -8 (-15 -3714 ((-859) |#1|))) (-832 |#2|) (-1094)) (T -831))
+NIL
+(-10 -8 (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-4337 ((|#1| $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-2004 (((-55) $) 13)) (-1720 (((-112) $ $) 6)))
(((-832 |#1|) (-140) (-1094)) (T -832))
-((-4363 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1094)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55)))))
-(-13 (-1094) (-10 -8 (-15 -4363 (|t#1| $)) (-15 -2189 ((-55) $))))
+((-4337 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1094)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55)))))
+(-13 (-1094) (-10 -8 (-15 -4337 (|t#1| $)) (-15 -2004 ((-55) $))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2064 ((|#1| $) NIL) (((-114) $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1344 ((|#1| (-114) |#1|) NIL)) (-2419 (((-112) $) NIL)) (-3804 (($ |#1| (-361 (-114))) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3360 (($ $ (-1 |#1| |#1|)) NIL)) (-1984 (($ $ (-1 |#1| |#1|)) NIL)) (-4382 ((|#1| $ |#1|) NIL)) (-3820 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-1825 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-833 |#1|) (-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -1825 ($ $)) (-15 -1825 ($ $ $)) (-15 -3820 (|#1| |#1|))) |%noBranch|) (-15 -1984 ($ $ (-1 |#1| |#1|))) (-15 -3360 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -1344 (|#1| (-114) |#1|)) (-15 -3804 ($ |#1| (-361 (-114)))))) (-1046)) (T -833))
-((-1825 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-1825 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-3820 (*1 *2 *2) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-1984 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))) (-3360 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-833 *4)) (-4 *4 (-1046)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-833 *3)) (-4 *3 (-1046)))) (-1344 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-833 *2)) (-4 *2 (-1046)))) (-3804 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-833 *2)) (-4 *2 (-1046)))))
-(-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -1825 ($ $)) (-15 -1825 ($ $ $)) (-15 -3820 (|#1| |#1|))) |%noBranch|) (-15 -1984 ($ $ (-1 |#1| |#1|))) (-15 -3360 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -1344 (|#1| (-114) |#1|)) (-15 -3804 ($ |#1| (-361 (-114))))))
-((-3365 (((-214 (-502)) (-1152)) 9)))
-(((-834) (-10 -7 (-15 -3365 ((-214 (-502)) (-1152))))) (T -834))
-((-3365 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-834)))))
-(-10 -7 (-15 -3365 ((-214 (-502)) (-1152))))
-((-1754 (((-112) $ $) NIL)) (-4187 (((-1112) $) 10)) (-4363 (((-506) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1776 (($ (-506) (-1112)) 8)) (-1765 (((-859) $) 25)) (-2189 (((-55) $) 20)) (-1686 (((-112) $ $) 12)))
-(((-835) (-13 (-832 (-506)) (-10 -8 (-15 -4187 ((-1112) $)) (-15 -1776 ($ (-506) (-1112)))))) (T -835))
-((-4187 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-835)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-835)))))
-(-13 (-832 (-506)) (-10 -8 (-15 -4187 ((-1112) $)) (-15 -1776 ($ (-506) (-1112)))))
-((-1754 (((-112) $ $) 7)) (-2373 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) 14) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 13)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 16) (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) 15)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2376 ((|#1| $) NIL) (((-114) $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2469 ((|#1| (-114) |#1|) NIL)) (-2340 (((-112) $) NIL)) (-2438 (($ |#1| (-361 (-114))) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3654 (($ $ (-1 |#1| |#1|)) NIL)) (-3571 (($ $ (-1 |#1| |#1|)) NIL)) (-4382 ((|#1| $ |#1|) NIL)) (-2611 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-2690 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-833 |#1|) (-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2690 ($ $)) (-15 -2690 ($ $ $)) (-15 -2611 (|#1| |#1|))) |%noBranch|) (-15 -3571 ($ $ (-1 |#1| |#1|))) (-15 -3654 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2469 (|#1| (-114) |#1|)) (-15 -2438 ($ |#1| (-361 (-114)))))) (-1046)) (T -833))
+((-2690 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-2690 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-2611 (*1 *2 *2) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-3571 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-833 *4)) (-4 *4 (-1046)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-833 *3)) (-4 *3 (-1046)))) (-2469 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-833 *2)) (-4 *2 (-1046)))) (-2438 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-833 *2)) (-4 *2 (-1046)))))
+(-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2690 ($ $)) (-15 -2690 ($ $ $)) (-15 -2611 (|#1| |#1|))) |%noBranch|) (-15 -3571 ($ $ (-1 |#1| |#1|))) (-15 -3654 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -2469 (|#1| (-114) |#1|)) (-15 -2438 ($ |#1| (-361 (-114))))))
+((-3709 (((-214 (-502)) (-1152)) 9)))
+(((-834) (-10 -7 (-15 -3709 ((-214 (-502)) (-1152))))) (T -834))
+((-3709 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-834)))))
+(-10 -7 (-15 -3709 ((-214 (-502)) (-1152))))
+((-3702 (((-112) $ $) NIL)) (-4299 (((-1112) $) 10)) (-4337 (((-506) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3725 (($ (-506) (-1112)) 8)) (-3714 (((-859) $) 25)) (-2004 (((-55) $) 20)) (-1720 (((-112) $ $) 12)))
+(((-835) (-13 (-832 (-506)) (-10 -8 (-15 -4299 ((-1112) $)) (-15 -3725 ($ (-506) (-1112)))))) (T -835))
+((-4299 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-835)))) (-3725 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-835)))))
+(-13 (-832 (-506)) (-10 -8 (-15 -4299 ((-1112) $)) (-15 -3725 ($ (-506) (-1112)))))
+((-3702 (((-112) $ $) 7)) (-3098 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) 14) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 13)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 16) (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) 15)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)))
(((-836) (-140)) (T -836))
-((-1657 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)))))) (-1657 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)))))) (-2373 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) (-5 *2 (-1032)))) (-2373 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *2 (-1032)))))
-(-13 (-1094) (-10 -7 (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) (-15 -2373 ((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) (-15 -2373 ((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))))))
+((-3402 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)))))) (-3402 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)))))) (-3098 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) (-5 *2 (-1032)))) (-3098 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *2 (-1032)))))
+(-13 (-1094) (-10 -7 (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) (-15 -3098 ((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) (-15 -3098 ((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-2404 (((-1032) (-641 (-316 (-379))) (-641 (-379))) 169) (((-1032) (-316 (-379)) (-641 (-379))) 167) (((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379)))) 165) (((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379)))) 163) (((-1032) (-838)) 128) (((-1032) (-838) (-1058)) 127)) (-1657 (((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058)) 88) (((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838)) 90)) (-2816 (((-1032) (-641 (-316 (-379))) (-641 (-379))) 170) (((-1032) (-838)) 153)))
-(((-837) (-10 -7 (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058))) (-15 -2404 ((-1032) (-838) (-1058))) (-15 -2404 ((-1032) (-838))) (-15 -2816 ((-1032) (-838))) (-15 -2404 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379))))) (-15 -2404 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379))))) (-15 -2404 ((-1032) (-316 (-379)) (-641 (-379)))) (-15 -2404 ((-1032) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2816 ((-1032) (-641 (-316 (-379))) (-641 (-379)))))) (T -837))
-((-2816 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2404 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2404 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2404 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-837)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-837)))))
-(-10 -7 (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058))) (-15 -2404 ((-1032) (-838) (-1058))) (-15 -2404 ((-1032) (-838))) (-15 -2816 ((-1032) (-838))) (-15 -2404 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379))))) (-15 -2404 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379))))) (-15 -2404 ((-1032) (-316 (-379)) (-641 (-379)))) (-15 -2404 ((-1032) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2816 ((-1032) (-641 (-316 (-379))) (-641 (-379)))))
-((-1754 (((-112) $ $) NIL)) (-2064 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) $) 21)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 14) (($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))))) 18)) (-1686 (((-112) $ $) NIL)))
-(((-838) (-13 (-1094) (-10 -8 (-15 -1765 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -1765 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) (-15 -1765 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))))) (-15 -2064 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) $))))) (T -838))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *1 (-838)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))) (-5 *1 (-838)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))))) (-5 *1 (-838)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225))))))) (-5 *1 (-838)))))
-(-13 (-1094) (-10 -8 (-15 -1765 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -1765 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) (-15 -1765 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))))) (-15 -2064 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))) $))))
-((-2082 (((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)) 13) (((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|)) 14)))
-(((-839 |#1| |#2|) (-10 -7 (-15 -2082 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|))) (-15 -2082 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)))) (-1094) (-1094)) (T -839))
-((-2082 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-840 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-839 *5 *6)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-840 *6)) (-5 *1 (-839 *5 *6)))))
-(-10 -7 (-15 -2082 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|))) (-15 -2082 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL (|has| |#1| (-21)))) (-2438 (((-1114) $) 31)) (-3936 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3438 (((-564) $) NIL (|has| |#1| (-845)))) (-3760 (($) NIL (|has| |#1| (-21)) CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 18)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 9)) (-1926 (((-3 $ "failed") $) 55 (|has| |#1| (-845)))) (-1978 (((-3 (-407 (-564)) "failed") $) 62 (|has| |#1| (-545)))) (-2709 (((-112) $) 57 (|has| |#1| (-545)))) (-3424 (((-407 (-564)) $) 60 (|has| |#1| (-545)))) (-1751 (((-112) $) NIL (|has| |#1| (-845)))) (-1553 (($) 14)) (-2419 (((-112) $) NIL (|has| |#1| (-845)))) (-2506 (((-112) $) NIL (|has| |#1| (-845)))) (-1564 (($) 16)) (-3571 (($ $ $) NIL (|has| |#1| (-845)))) (-1547 (($ $ $) NIL (|has| |#1| (-845)))) (-4202 (((-1152) $) NIL)) (-2365 (((-112) $) 12)) (-3802 (((-1114) $) NIL)) (-3386 (((-112) $) 11)) (-1765 (((-859) $) 24) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-4002 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))))) (-1965 (((-768)) 49 (|has| |#1| (-845)) CONST)) (-2016 (($ $) NIL (|has| |#1| (-845)))) (-4317 (($) 36 (|has| |#1| (-21)) CONST)) (-4327 (($) 46 (|has| |#1| (-845)) CONST)) (-1738 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1686 (((-112) $ $) 34)) (-1728 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1705 (((-112) $ $) 56 (|has| |#1| (-845)))) (-1783 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1771 (($ $ $) 44 (|has| |#1| (-21)))) (** (($ $ (-918)) NIL (|has| |#1| (-845))) (($ $ (-768)) NIL (|has| |#1| (-845)))) (* (($ $ $) 52 (|has| |#1| (-845))) (($ (-564) $) 40 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-21)))))
-(((-840 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1553 ($)) (-15 -1564 ($)) (-15 -3386 ((-112) $)) (-15 -2365 ((-112) $)) (-15 -2438 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -840))
-((-1553 (*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))) (-1564 (*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-2438 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-1978 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))))
-(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1553 ($)) (-15 -1564 ($)) (-15 -3386 ((-112) $)) (-15 -2365 ((-112) $)) (-15 -2438 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
-((-1754 (((-112) $ $) 7)) (-3042 (((-768)) 22)) (-2542 (($) 25)) (-3571 (($ $ $) 13) (($) 21 T CONST)) (-1547 (($ $ $) 14) (($) 20 T CONST)) (-2209 (((-918) $) 24)) (-4202 (((-1152) $) 9)) (-1403 (($ (-918)) 23)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+((-2589 (((-1032) (-641 (-316 (-379))) (-641 (-379))) 169) (((-1032) (-316 (-379)) (-641 (-379))) 167) (((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379)))) 165) (((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379)))) 163) (((-1032) (-838)) 128) (((-1032) (-838) (-1058)) 127)) (-3402 (((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058)) 88) (((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838)) 90)) (-2048 (((-1032) (-641 (-316 (-379))) (-641 (-379))) 170) (((-1032) (-838)) 153)))
+(((-837) (-10 -7 (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058))) (-15 -2589 ((-1032) (-838) (-1058))) (-15 -2589 ((-1032) (-838))) (-15 -2048 ((-1032) (-838))) (-15 -2589 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379))))) (-15 -2589 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379))))) (-15 -2589 ((-1032) (-316 (-379)) (-641 (-379)))) (-15 -2589 ((-1032) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2048 ((-1032) (-641 (-316 (-379))) (-641 (-379)))))) (T -837))
+((-2048 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2589 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2589 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-837)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-837)))))
+(-10 -7 (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058))) (-15 -2589 ((-1032) (-838) (-1058))) (-15 -2589 ((-1032) (-838))) (-15 -2048 ((-1032) (-838))) (-15 -2589 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379))))) (-15 -2589 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379))))) (-15 -2589 ((-1032) (-316 (-379)) (-641 (-379)))) (-15 -2589 ((-1032) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2048 ((-1032) (-641 (-316 (-379))) (-641 (-379)))))
+((-3702 (((-112) $ $) NIL)) (-2376 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) $) 21)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 14) (($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))))) 18)) (-1720 (((-112) $ $) NIL)))
+(((-838) (-13 (-1094) (-10 -8 (-15 -3714 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3714 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) (-15 -3714 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))))) (-15 -2376 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) $))))) (T -838))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *1 (-838)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))) (-5 *1 (-838)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))))) (-5 *1 (-838)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225))))))) (-5 *1 (-838)))))
+(-13 (-1094) (-10 -8 (-15 -3714 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3714 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) (-15 -3714 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))))) (-15 -2376 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))) $))))
+((-2313 (((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)) 13) (((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|)) 14)))
+(((-839 |#1| |#2|) (-10 -7 (-15 -2313 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|))) (-15 -2313 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)))) (-1094) (-1094)) (T -839))
+((-2313 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-840 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-839 *5 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-840 *6)) (-5 *1 (-839 *5 *6)))))
+(-10 -7 (-15 -2313 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|))) (-15 -2313 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL (|has| |#1| (-21)))) (-2554 (((-1114) $) 31)) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3191 (((-564) $) NIL (|has| |#1| (-845)))) (-3180 (($) NIL (|has| |#1| (-21)) CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 18)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 9)) (-4272 (((-3 $ "failed") $) 55 (|has| |#1| (-845)))) (-3502 (((-3 (-407 (-564)) "failed") $) 62 (|has| |#1| (-545)))) (-3309 (((-112) $) 57 (|has| |#1| (-545)))) (-3074 (((-407 (-564)) $) 60 (|has| |#1| (-545)))) (-3137 (((-112) $) NIL (|has| |#1| (-845)))) (-1577 (($) 14)) (-2340 (((-112) $) NIL (|has| |#1| (-845)))) (-2001 (((-112) $) NIL (|has| |#1| (-845)))) (-1589 (($) 16)) (-3428 (($ $ $) NIL (|has| |#1| (-845)))) (-3413 (($ $ $) NIL (|has| |#1| (-845)))) (-1868 (((-1152) $) NIL)) (-3046 (((-112) $) 12)) (-3844 (((-1114) $) NIL)) (-3916 (((-112) $) 11)) (-3714 (((-859) $) 24) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-4012 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))))) (-3379 (((-768)) 49 (|has| |#1| (-845)) CONST)) (-3920 (($ $) NIL (|has| |#1| (-845)))) (-4312 (($) 36 (|has| |#1| (-21)) CONST)) (-4323 (($) 46 (|has| |#1| (-845)) CONST)) (-1781 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1720 (((-112) $ $) 34)) (-1769 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1746 (((-112) $ $) 56 (|has| |#1| (-845)))) (-1828 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1814 (($ $ $) 44 (|has| |#1| (-21)))) (** (($ $ (-918)) NIL (|has| |#1| (-845))) (($ $ (-768)) NIL (|has| |#1| (-845)))) (* (($ $ $) 52 (|has| |#1| (-845))) (($ (-564) $) 40 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-21)))))
+(((-840 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1577 ($)) (-15 -1589 ($)) (-15 -3916 ((-112) $)) (-15 -3046 ((-112) $)) (-15 -2554 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -840))
+((-1577 (*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))) (-1589 (*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-3502 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))))
+(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1577 ($)) (-15 -1589 ($)) (-15 -3916 ((-112) $)) (-15 -3046 ((-112) $)) (-15 -2554 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
+((-3702 (((-112) $ $) 7)) (-2018 (((-768)) 22)) (-2939 (($) 25)) (-3428 (($ $ $) 13) (($) 21 T CONST)) (-3413 (($ $ $) 14) (($) 20 T CONST)) (-4031 (((-918) $) 24)) (-1868 (((-1152) $) 9)) (-3338 (($ (-918)) 23)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
(((-841) (-140)) (T -841))
-((-3571 (*1 *1) (-4 *1 (-841))) (-1547 (*1 *1) (-4 *1 (-841))))
-(-13 (-847) (-368) (-10 -8 (-15 -3571 ($) -3246) (-15 -1547 ($) -3246)))
+((-3428 (*1 *1) (-4 *1 (-841))) (-3413 (*1 *1) (-4 *1 (-841))))
+(-13 (-847) (-368) (-10 -8 (-15 -3428 ($) -2222) (-15 -3413 ($) -2222)))
(((-102) . T) ((-611 (-859)) . T) ((-368) . T) ((-847) . T) ((-1094) . T))
-((-4373 (((-112) (-1259 |#2|) (-1259 |#2|)) 23)) (-3662 (((-112) (-1259 |#2|) (-1259 |#2|)) 24)) (-1462 (((-112) (-1259 |#2|) (-1259 |#2|)) 20)))
-(((-842 |#1| |#2|) (-10 -7 (-15 -1462 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -4373 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3662 ((-112) (-1259 |#2|) (-1259 |#2|)))) (-768) (-789)) (T -842))
-((-3662 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))) (-4373 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))) (-1462 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))))
-(-10 -7 (-15 -1462 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -4373 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3662 ((-112) (-1259 |#2|) (-1259 |#2|))))
-((-1754 (((-112) $ $) 7)) (-3760 (($) 23 T CONST)) (-1926 (((-3 $ "failed") $) 26)) (-2419 (((-112) $) 24)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4327 (($) 22 T CONST)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (** (($ $ (-918)) 21) (($ $ (-768)) 25)) (* (($ $ $) 20)))
+((-3925 (((-112) (-1259 |#2|) (-1259 |#2|)) 23)) (-3470 (((-112) (-1259 |#2|) (-1259 |#2|)) 24)) (-2236 (((-112) (-1259 |#2|) (-1259 |#2|)) 20)))
+(((-842 |#1| |#2|) (-10 -7 (-15 -2236 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3925 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3470 ((-112) (-1259 |#2|) (-1259 |#2|)))) (-768) (-789)) (T -842))
+((-3470 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))) (-3925 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))) (-2236 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))))
+(-10 -7 (-15 -2236 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3925 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -3470 ((-112) (-1259 |#2|) (-1259 |#2|))))
+((-3702 (((-112) $ $) 7)) (-3180 (($) 23 T CONST)) (-4272 (((-3 $ "failed") $) 26)) (-2340 (((-112) $) 24)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4323 (($) 22 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (** (($ $ (-918)) 21) (($ $ (-768)) 25)) (* (($ $ $) 20)))
(((-843) (-140)) (T -843))
NIL
(-13 (-854) (-723))
(((-102) . T) ((-611 (-859)) . T) ((-723) . T) ((-854) . T) ((-847) . T) ((-1106) . T) ((-1094) . T))
-((-3438 (((-564) $) 20)) (-1751 (((-112) $) 10)) (-2506 (((-112) $) 11)) (-2016 (($ $) 22)))
-(((-844 |#1|) (-10 -8 (-15 -2016 (|#1| |#1|)) (-15 -3438 ((-564) |#1|)) (-15 -2506 ((-112) |#1|)) (-15 -1751 ((-112) |#1|))) (-845)) (T -844))
+((-3191 (((-564) $) 20)) (-3137 (((-112) $) 10)) (-2001 (((-112) $) 11)) (-3920 (($ $) 22)))
+(((-844 |#1|) (-10 -8 (-15 -3920 (|#1| |#1|)) (-15 -3191 ((-564) |#1|)) (-15 -2001 ((-112) |#1|)) (-15 -3137 ((-112) |#1|))) (-845)) (T -844))
NIL
-(-10 -8 (-15 -2016 (|#1| |#1|)) (-15 -3438 ((-564) |#1|)) (-15 -2506 ((-112) |#1|)) (-15 -1751 ((-112) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 24)) (-3936 (((-3 $ "failed") $ $) 26)) (-3438 (((-564) $) 34)) (-3760 (($) 23 T CONST)) (-1926 (((-3 $ "failed") $) 39)) (-1751 (((-112) $) 36)) (-2419 (((-112) $) 41)) (-2506 (((-112) $) 35)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 43)) (-1965 (((-768)) 44 T CONST)) (-2016 (($ $) 33)) (-4317 (($) 22 T CONST)) (-4327 (($) 42 T CONST)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (-1783 (($ $ $) 28) (($ $) 27)) (-1771 (($ $ $) 20)) (** (($ $ (-768)) 40) (($ $ (-918)) 37)) (* (($ (-918) $) 21) (($ (-768) $) 25) (($ (-564) $) 29) (($ $ $) 38)))
+(-10 -8 (-15 -3920 (|#1| |#1|)) (-15 -3191 ((-564) |#1|)) (-15 -2001 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 24)) (-4281 (((-3 $ "failed") $ $) 26)) (-3191 (((-564) $) 34)) (-3180 (($) 23 T CONST)) (-4272 (((-3 $ "failed") $) 39)) (-3137 (((-112) $) 36)) (-2340 (((-112) $) 41)) (-2001 (((-112) $) 35)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 43)) (-3379 (((-768)) 44 T CONST)) (-3920 (($ $) 33)) (-4312 (($) 22 T CONST)) (-4323 (($) 42 T CONST)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (-1828 (($ $ $) 28) (($ $) 27)) (-1814 (($ $ $) 20)) (** (($ $ (-768)) 40) (($ $ (-918)) 37)) (* (($ (-918) $) 21) (($ (-768) $) 25) (($ (-564) $) 29) (($ $ $) 38)))
(((-845) (-140)) (T -845))
-((-1751 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-564)))) (-2016 (*1 *1 *1) (-4 *1 (-845))))
-(-13 (-788) (-1046) (-723) (-10 -8 (-15 -1751 ((-112) $)) (-15 -2506 ((-112) $)) (-15 -3438 ((-564) $)) (-15 -2016 ($ $))))
+((-3137 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-564)))) (-3920 (*1 *1 *1) (-4 *1 (-845))))
+(-13 (-788) (-1046) (-723) (-10 -8 (-15 -3137 ((-112) $)) (-15 -2001 ((-112) $)) (-15 -3191 ((-564) $)) (-15 -3920 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-847) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-3571 (($ $ $) 10)) (-1547 (($ $ $) 9)) (-1738 (((-112) $ $) 12)) (-1715 (((-112) $ $) 11)) (-1728 (((-112) $ $) 13)))
-(((-846 |#1|) (-10 -8 (-15 -3571 (|#1| |#1| |#1|)) (-15 -1547 (|#1| |#1| |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -1738 ((-112) |#1| |#1|)) (-15 -1715 ((-112) |#1| |#1|))) (-847)) (T -846))
+((-3428 (($ $ $) 10)) (-3413 (($ $ $) 9)) (-1781 (((-112) $ $) 12)) (-1758 (((-112) $ $) 11)) (-1769 (((-112) $ $) 13)))
+(((-846 |#1|) (-10 -8 (-15 -3428 (|#1| |#1| |#1|)) (-15 -3413 (|#1| |#1| |#1|)) (-15 -1769 ((-112) |#1| |#1|)) (-15 -1781 ((-112) |#1| |#1|)) (-15 -1758 ((-112) |#1| |#1|))) (-847)) (T -846))
NIL
-(-10 -8 (-15 -3571 (|#1| |#1| |#1|)) (-15 -1547 (|#1| |#1| |#1|)) (-15 -1728 ((-112) |#1| |#1|)) (-15 -1738 ((-112) |#1| |#1|)) (-15 -1715 ((-112) |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)))
+(-10 -8 (-15 -3428 (|#1| |#1| |#1|)) (-15 -3413 (|#1| |#1| |#1|)) (-15 -1769 ((-112) |#1| |#1|)) (-15 -1781 ((-112) |#1| |#1|)) (-15 -1758 ((-112) |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)))
(((-847) (-140)) (T -847))
-((-1705 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1715 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1738 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1728 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1547 (*1 *1 *1 *1) (-4 *1 (-847))) (-3571 (*1 *1 *1 *1) (-4 *1 (-847))))
-(-13 (-1094) (-10 -8 (-15 -1705 ((-112) $ $)) (-15 -1715 ((-112) $ $)) (-15 -1738 ((-112) $ $)) (-15 -1728 ((-112) $ $)) (-15 -1547 ($ $ $)) (-15 -3571 ($ $ $))))
+((-1746 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1758 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1781 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1769 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-3413 (*1 *1 *1 *1) (-4 *1 (-847))) (-3428 (*1 *1 *1 *1) (-4 *1 (-847))))
+(-13 (-1094) (-10 -8 (-15 -1746 ((-112) $ $)) (-15 -1758 ((-112) $ $)) (-15 -1781 ((-112) $ $)) (-15 -1769 ((-112) $ $)) (-15 -3413 ($ $ $)) (-15 -3428 ($ $ $))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-2366 (($ $ $) 49)) (-3546 (($ $ $) 48)) (-2554 (($ $ $) 46)) (-3075 (($ $ $) 55)) (-1748 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 50)) (-3327 (((-3 $ "failed") $ $) 53)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2190 (($ $) 39)) (-1655 (($ $ $) 43)) (-2866 (($ $ $) 42)) (-4253 (($ $ $) 51)) (-3130 (($ $ $) 57)) (-2405 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 45)) (-1477 (((-3 $ "failed") $ $) 52)) (-1343 (((-3 $ "failed") $ |#2|) 32)) (-2712 ((|#2| $) 36)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#2|) 13)) (-4264 (((-641 |#2|) $) 21)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-848 |#1| |#2|) (-10 -8 (-15 -4253 (|#1| |#1| |#1|)) (-15 -1748 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1502 |#1|)) |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -3327 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| |#1|)) (-15 -2405 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1502 |#1|)) |#1| |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 -1477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4264 ((-641 |#2|) |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1765 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1765 ((-859) |#1|))) (-849 |#2|) (-1046)) (T -848))
+((-3055 (($ $ $) 49)) (-1795 (($ $ $) 48)) (-4239 (($ $ $) 46)) (-3889 (($ $ $) 55)) (-3107 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 50)) (-1510 (((-3 $ "failed") $ $) 53)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2015 (($ $) 39)) (-3385 (($ $ $) 43)) (-4386 (($ $ $) 42)) (-4147 (($ $ $) 51)) (-3194 (($ $ $) 57)) (-3326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 45)) (-2393 (((-3 $ "failed") $ $) 52)) (-1347 (((-3 $ "failed") $ |#2|) 32)) (-3324 ((|#2| $) 36)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#2|) 13)) (-4252 (((-641 |#2|) $) 21)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-848 |#1| |#2|) (-10 -8 (-15 -4147 (|#1| |#1| |#1|)) (-15 -3107 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1729 |#1|)) |#1| |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -1510 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -1795 (|#1| |#1| |#1|)) (-15 -4239 (|#1| |#1| |#1|)) (-15 -3326 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1729 |#1|)) |#1| |#1|)) (-15 -3194 (|#1| |#1| |#1|)) (-15 -2393 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -4386 (|#1| |#1| |#1|)) (-15 -2015 (|#1| |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4252 ((-641 |#2|) |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3714 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -3714 ((-859) |#1|))) (-849 |#2|) (-1046)) (T -848))
NIL
-(-10 -8 (-15 -4253 (|#1| |#1| |#1|)) (-15 -1748 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1502 |#1|)) |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -3327 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| |#1|)) (-15 -2405 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1502 |#1|)) |#1| |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 -1477 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -1343 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4264 ((-641 |#2|) |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1765 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2366 (($ $ $) 44 (|has| |#1| (-363)))) (-3546 (($ $ $) 45 (|has| |#1| (-363)))) (-2554 (($ $ $) 47 (|has| |#1| (-363)))) (-3075 (($ $ $) 42 (|has| |#1| (-363)))) (-1748 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 41 (|has| |#1| (-363)))) (-3327 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-3700 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 46 (|has| |#1| (-363)))) (-2013 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-2064 (((-564) $) 73 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 69)) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-2190 (($ $) 54 (|has| |#1| (-452)))) (-2419 (((-112) $) 31)) (-4145 (($ |#1| (-768)) 61)) (-1819 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 56 (|has| |#1| (-556)))) (-4125 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 57 (|has| |#1| (-556)))) (-3829 (((-768) $) 65)) (-1655 (($ $ $) 51 (|has| |#1| (-363)))) (-2866 (($ $ $) 52 (|has| |#1| (-363)))) (-4253 (($ $ $) 40 (|has| |#1| (-363)))) (-3130 (($ $ $) 49 (|has| |#1| (-363)))) (-2405 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 48 (|has| |#1| (-363)))) (-1477 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4052 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 53 (|has| |#1| (-363)))) (-4323 ((|#1| $) 64)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1343 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-3344 (((-768) $) 66)) (-2712 ((|#1| $) 55 (|has| |#1| (-452)))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 67)) (-4264 (((-641 |#1|) $) 60)) (-1757 ((|#1| $ (-768)) 62)) (-1965 (((-768)) 28 T CONST)) (-3021 ((|#1| $ |#1| |#1|) 59)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
+(-10 -8 (-15 -4147 (|#1| |#1| |#1|)) (-15 -3107 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1729 |#1|)) |#1| |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -1510 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -1795 (|#1| |#1| |#1|)) (-15 -4239 (|#1| |#1| |#1|)) (-15 -3326 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1729 |#1|)) |#1| |#1|)) (-15 -3194 (|#1| |#1| |#1|)) (-15 -2393 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -4386 (|#1| |#1| |#1|)) (-15 -2015 (|#1| |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -1347 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4252 ((-641 |#2|) |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3714 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-3055 (($ $ $) 44 (|has| |#1| (-363)))) (-1795 (($ $ $) 45 (|has| |#1| (-363)))) (-4239 (($ $ $) 47 (|has| |#1| (-363)))) (-3889 (($ $ $) 42 (|has| |#1| (-363)))) (-3107 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 41 (|has| |#1| (-363)))) (-1510 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-3847 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 46 (|has| |#1| (-363)))) (-2224 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-2376 (((-564) $) 73 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 69)) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-2015 (($ $) 54 (|has| |#1| (-452)))) (-2340 (((-112) $) 31)) (-4267 (($ |#1| (-768)) 61)) (-2634 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 56 (|has| |#1| (-556)))) (-2368 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 57 (|has| |#1| (-556)))) (-2700 (((-768) $) 65)) (-3385 (($ $ $) 51 (|has| |#1| (-363)))) (-4386 (($ $ $) 52 (|has| |#1| (-363)))) (-4147 (($ $ $) 40 (|has| |#1| (-363)))) (-3194 (($ $ $) 49 (|has| |#1| (-363)))) (-3326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 48 (|has| |#1| (-363)))) (-2393 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4047 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 53 (|has| |#1| (-363)))) (-1345 ((|#1| $) 64)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1347 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-3475 (((-768) $) 66)) (-3324 ((|#1| $) 55 (|has| |#1| (-452)))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 67)) (-4252 (((-641 |#1|) $) 60)) (-3181 ((|#1| $ (-768)) 62)) (-3379 (((-768)) 28 T CONST)) (-1996 ((|#1| $ |#1| |#1|) 59)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75)))
(((-849 |#1|) (-140) (-1046)) (T -849))
-((-3344 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-4346 (*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-641 *3)))) (-3021 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-1343 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-4125 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-849 *3)))) (-1819 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-849 *3)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-2190 (*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-4052 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-849 *3)))) (-2866 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1655 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1477 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3130 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-2405 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1502 *1))) (-4 *1 (-849 *3)))) (-2554 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3700 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-849 *3)))) (-3546 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-2366 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3327 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3075 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1748 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1502 *1))) (-4 *1 (-849 *3)))) (-4253 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(-13 (-1046) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -3344 ((-768) $)) (-15 -3829 ((-768) $)) (-15 -4323 (|t#1| $)) (-15 -4346 ($ $)) (-15 -1757 (|t#1| $ (-768))) (-15 -4145 ($ |t#1| (-768))) (-15 -4264 ((-641 |t#1|) $)) (-15 -3021 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1343 ((-3 $ "failed") $ |t#1|)) (-15 -4125 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -1819 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2712 (|t#1| $)) (-15 -2190 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -4052 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -2866 ($ $ $)) (-15 -1655 ($ $ $)) (-15 -1477 ((-3 $ "failed") $ $)) (-15 -3130 ($ $ $)) (-15 -2405 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $)) (-15 -2554 ($ $ $)) (-15 -3700 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -3546 ($ $ $)) (-15 -2366 ($ $ $)) (-15 -3327 ((-3 $ "failed") $ $)) (-15 -3075 ($ $ $)) (-15 -1748 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $)) (-15 -4253 ($ $ $))) |%noBranch|)))
+((-3475 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-1374 (*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-4267 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-641 *3)))) (-1996 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-1347 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-2368 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-849 *3)))) (-2634 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-849 *3)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-2015 (*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-4047 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-849 *3)))) (-4386 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3385 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-2393 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3194 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3326 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1729 *1))) (-4 *1 (-849 *3)))) (-4239 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3847 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-849 *3)))) (-1795 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3055 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1510 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3889 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3107 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1729 *1))) (-4 *1 (-849 *3)))) (-4147 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(-13 (-1046) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -3475 ((-768) $)) (-15 -2700 ((-768) $)) (-15 -1345 (|t#1| $)) (-15 -1374 ($ $)) (-15 -3181 (|t#1| $ (-768))) (-15 -4267 ($ |t#1| (-768))) (-15 -4252 ((-641 |t#1|) $)) (-15 -1996 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1347 ((-3 $ "failed") $ |t#1|)) (-15 -2368 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -2634 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3324 (|t#1| $)) (-15 -2015 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -4047 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -4386 ($ $ $)) (-15 -3385 ($ $ $)) (-15 -2393 ((-3 $ "failed") $ $)) (-15 -3194 ($ $ $)) (-15 -3326 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $)) (-15 -4239 ($ $ $)) (-15 -3847 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -1795 ($ $ $)) (-15 -3055 ($ $ $)) (-15 -1510 ((-3 $ "failed") $ $)) (-15 -3889 ($ $ $)) (-15 -3107 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $)) (-15 -4147 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2253 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3700 (((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-363)))) (-1819 (((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-556)))) (-4125 (((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-556)))) (-4052 (((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-363)))) (-3021 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
-(((-850 |#1| |#2|) (-10 -7 (-15 -2253 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3021 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -4125 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1819 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4052 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3700 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1046) (-849 |#1|)) (T -850))
-((-3700 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-4052 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-1819 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-4125 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-3021 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1046)) (-5 *1 (-850 *2 *3)) (-4 *3 (-849 *2)))) (-2253 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1046)) (-5 *1 (-850 *5 *2)) (-4 *2 (-849 *5)))))
-(-10 -7 (-15 -2253 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3021 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -4125 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1819 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4052 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3700 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2366 (($ $ $) NIL (|has| |#1| (-363)))) (-3546 (($ $ $) NIL (|has| |#1| (-363)))) (-2554 (($ $ $) NIL (|has| |#1| (-363)))) (-3075 (($ $ $) NIL (|has| |#1| (-363)))) (-1748 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-3327 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3700 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 34 (|has| |#1| (-363)))) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#1| (-452)))) (-3563 (((-859) $ (-859)) NIL)) (-2419 (((-112) $) NIL)) (-4145 (($ |#1| (-768)) NIL)) (-1819 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 30 (|has| |#1| (-556)))) (-4125 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 28 (|has| |#1| (-556)))) (-3829 (((-768) $) NIL)) (-1655 (($ $ $) NIL (|has| |#1| (-363)))) (-2866 (($ $ $) NIL (|has| |#1| (-363)))) (-4253 (($ $ $) NIL (|has| |#1| (-363)))) (-3130 (($ $ $) NIL (|has| |#1| (-363)))) (-2405 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-1477 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4052 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 32 (|has| |#1| (-363)))) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-3344 (((-768) $) NIL)) (-2712 ((|#1| $) NIL (|has| |#1| (-452)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-768)) NIL)) (-1965 (((-768)) NIL T CONST)) (-3021 ((|#1| $ |#1| |#1|) 15)) (-4317 (($) NIL T CONST)) (-4327 (($) 23 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) 19) (($ $ (-768)) 24)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-851 |#1| |#2| |#3|) (-13 (-849 |#1|) (-10 -8 (-15 -3563 ((-859) $ (-859))))) (-1046) (-99 |#1|) (-1 |#1| |#1|)) (T -851))
-((-3563 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-851 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-849 |#1|) (-10 -8 (-15 -3563 ((-859) $ (-859)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2366 (($ $ $) NIL (|has| |#2| (-363)))) (-3546 (($ $ $) NIL (|has| |#2| (-363)))) (-2554 (($ $ $) NIL (|has| |#2| (-363)))) (-3075 (($ $ $) NIL (|has| |#2| (-363)))) (-1748 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#2| (-363)))) (-3327 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3700 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#2| (-363)))) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#2| (-452)))) (-2419 (((-112) $) NIL)) (-4145 (($ |#2| (-768)) 17)) (-1819 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#2| (-556)))) (-4125 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#2| (-556)))) (-3829 (((-768) $) NIL)) (-1655 (($ $ $) NIL (|has| |#2| (-363)))) (-2866 (($ $ $) NIL (|has| |#2| (-363)))) (-4253 (($ $ $) NIL (|has| |#2| (-363)))) (-3130 (($ $ $) NIL (|has| |#2| (-363)))) (-2405 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#2| (-363)))) (-1477 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-4052 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#2| (-363)))) (-4323 ((|#2| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1343 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-3344 (((-768) $) NIL)) (-2712 ((|#2| $) NIL (|has| |#2| (-452)))) (-1765 (((-859) $) 24) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (($ (-1255 |#1|)) 19)) (-4264 (((-641 |#2|) $) NIL)) (-1757 ((|#2| $ (-768)) NIL)) (-1965 (((-768)) NIL T CONST)) (-3021 ((|#2| $ |#2| |#2|) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) 13 T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+((-2528 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3847 (((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-363)))) (-2634 (((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-556)))) (-2368 (((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-556)))) (-4047 (((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-363)))) (-1996 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
+(((-850 |#1| |#2|) (-10 -7 (-15 -2528 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1996 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2368 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2634 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4047 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3847 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1046) (-849 |#1|)) (T -850))
+((-3847 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-4047 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-2634 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-2368 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-1996 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1046)) (-5 *1 (-850 *2 *3)) (-4 *3 (-849 *2)))) (-2528 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1046)) (-5 *1 (-850 *5 *2)) (-4 *2 (-849 *5)))))
+(-10 -7 (-15 -2528 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1996 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -2368 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2634 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4047 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3847 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-3055 (($ $ $) NIL (|has| |#1| (-363)))) (-1795 (($ $ $) NIL (|has| |#1| (-363)))) (-4239 (($ $ $) NIL (|has| |#1| (-363)))) (-3889 (($ $ $) NIL (|has| |#1| (-363)))) (-3107 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-1510 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3847 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 34 (|has| |#1| (-363)))) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#1| (-452)))) (-1978 (((-859) $ (-859)) NIL)) (-2340 (((-112) $) NIL)) (-4267 (($ |#1| (-768)) NIL)) (-2634 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 30 (|has| |#1| (-556)))) (-2368 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 28 (|has| |#1| (-556)))) (-2700 (((-768) $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-363)))) (-4386 (($ $ $) NIL (|has| |#1| (-363)))) (-4147 (($ $ $) NIL (|has| |#1| (-363)))) (-3194 (($ $ $) NIL (|has| |#1| (-363)))) (-3326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-2393 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4047 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 32 (|has| |#1| (-363)))) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-3475 (((-768) $) NIL)) (-3324 ((|#1| $) NIL (|has| |#1| (-452)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-768)) NIL)) (-3379 (((-768)) NIL T CONST)) (-1996 ((|#1| $ |#1| |#1|) 15)) (-4312 (($) NIL T CONST)) (-4323 (($) 23 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) 19) (($ $ (-768)) 24)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-851 |#1| |#2| |#3|) (-13 (-849 |#1|) (-10 -8 (-15 -1978 ((-859) $ (-859))))) (-1046) (-99 |#1|) (-1 |#1| |#1|)) (T -851))
+((-1978 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-851 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-849 |#1|) (-10 -8 (-15 -1978 ((-859) $ (-859)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-3055 (($ $ $) NIL (|has| |#2| (-363)))) (-1795 (($ $ $) NIL (|has| |#2| (-363)))) (-4239 (($ $ $) NIL (|has| |#2| (-363)))) (-3889 (($ $ $) NIL (|has| |#2| (-363)))) (-3107 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#2| (-363)))) (-1510 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3847 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#2| (-363)))) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#2| (-452)))) (-2340 (((-112) $) NIL)) (-4267 (($ |#2| (-768)) 17)) (-2634 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#2| (-556)))) (-2368 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#2| (-556)))) (-2700 (((-768) $) NIL)) (-3385 (($ $ $) NIL (|has| |#2| (-363)))) (-4386 (($ $ $) NIL (|has| |#2| (-363)))) (-4147 (($ $ $) NIL (|has| |#2| (-363)))) (-3194 (($ $ $) NIL (|has| |#2| (-363)))) (-3326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#2| (-363)))) (-2393 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-4047 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#2| (-363)))) (-1345 ((|#2| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1347 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-3475 (((-768) $) NIL)) (-3324 ((|#2| $) NIL (|has| |#2| (-452)))) (-3714 (((-859) $) 24) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (($ (-1255 |#1|)) 19)) (-4252 (((-641 |#2|) $) NIL)) (-3181 ((|#2| $ (-768)) NIL)) (-3379 (((-768)) NIL T CONST)) (-1996 ((|#2| $ |#2| |#2|) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) 13 T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
(((-852 |#1| |#2| |#3| |#4|) (-13 (-849 |#2|) (-614 (-1255 |#1|))) (-1170) (-1046) (-99 |#2|) (-1 |#2| |#2|)) (T -852))
NIL
(-13 (-849 |#2|) (-614 (-1255 |#1|)))
-((-1649 ((|#1| (-768) |#1|) 48 (|has| |#1| (-38 (-407 (-564)))))) (-4251 ((|#1| (-768) (-768) |#1|) 39) ((|#1| (-768) |#1|) 27)) (-1299 ((|#1| (-768) |#1|) 43)) (-4029 ((|#1| (-768) |#1|) 41)) (-1773 ((|#1| (-768) |#1|) 40)))
-(((-853 |#1|) (-10 -7 (-15 -1773 (|#1| (-768) |#1|)) (-15 -4029 (|#1| (-768) |#1|)) (-15 -1299 (|#1| (-768) |#1|)) (-15 -4251 (|#1| (-768) |#1|)) (-15 -4251 (|#1| (-768) (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -1649 (|#1| (-768) |#1|)) |%noBranch|)) (-172)) (T -853))
-((-1649 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-4251 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-4251 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-1299 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-4029 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-1773 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -1773 (|#1| (-768) |#1|)) (-15 -4029 (|#1| (-768) |#1|)) (-15 -1299 (|#1| (-768) |#1|)) (-15 -4251 (|#1| (-768) |#1|)) (-15 -4251 (|#1| (-768) (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -1649 (|#1| (-768) |#1|)) |%noBranch|))
-((-1754 (((-112) $ $) 7)) (-3571 (($ $ $) 13)) (-1547 (($ $ $) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1738 (((-112) $ $) 16)) (-1715 (((-112) $ $) 17)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 15)) (-1705 (((-112) $ $) 18)) (** (($ $ (-918)) 21)) (* (($ $ $) 20)))
+((-3333 ((|#1| (-768) |#1|) 48 (|has| |#1| (-38 (-407 (-564)))))) (-4122 ((|#1| (-768) (-768) |#1|) 39) ((|#1| (-768) |#1|) 27)) (-3635 ((|#1| (-768) |#1|) 43)) (-3842 ((|#1| (-768) |#1|) 41)) (-2164 ((|#1| (-768) |#1|) 40)))
+(((-853 |#1|) (-10 -7 (-15 -2164 (|#1| (-768) |#1|)) (-15 -3842 (|#1| (-768) |#1|)) (-15 -3635 (|#1| (-768) |#1|)) (-15 -4122 (|#1| (-768) |#1|)) (-15 -4122 (|#1| (-768) (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3333 (|#1| (-768) |#1|)) |%noBranch|)) (-172)) (T -853))
+((-3333 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-4122 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-4122 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-3635 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-3842 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-2164 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -2164 (|#1| (-768) |#1|)) (-15 -3842 (|#1| (-768) |#1|)) (-15 -3635 (|#1| (-768) |#1|)) (-15 -4122 (|#1| (-768) |#1|)) (-15 -4122 (|#1| (-768) (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3333 (|#1| (-768) |#1|)) |%noBranch|))
+((-3702 (((-112) $ $) 7)) (-3428 (($ $ $) 13)) (-3413 (($ $ $) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1781 (((-112) $ $) 16)) (-1758 (((-112) $ $) 17)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 15)) (-1746 (((-112) $ $) 18)) (** (($ $ (-918)) 21)) (* (($ $ $) 20)))
(((-854) (-140)) (T -854))
NIL
(-13 (-847) (-1106))
(((-102) . T) ((-611 (-859)) . T) ((-847) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-1451 (((-564) $) 14)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 20) (($ (-564)) 13)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 9)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 11)))
-(((-855) (-13 (-847) (-10 -8 (-15 -1765 ($ (-564))) (-15 -1451 ((-564) $))))) (T -855))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-855)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-855)))))
-(-13 (-847) (-10 -8 (-15 -1765 ($ (-564))) (-15 -1451 ((-564) $))))
-((-1794 (((-687 (-1217)) $ (-1217)) 15)) (-3224 (((-687 (-549)) $ (-549)) 12)) (-3620 (((-768) $ (-128)) 30)))
-(((-856 |#1|) (-10 -8 (-15 -3620 ((-768) |#1| (-128))) (-15 -1794 ((-687 (-1217)) |#1| (-1217))) (-15 -3224 ((-687 (-549)) |#1| (-549)))) (-857)) (T -856))
-NIL
-(-10 -8 (-15 -3620 ((-768) |#1| (-128))) (-15 -1794 ((-687 (-1217)) |#1| (-1217))) (-15 -3224 ((-687 (-549)) |#1| (-549))))
-((-1794 (((-687 (-1217)) $ (-1217)) 8)) (-3224 (((-687 (-549)) $ (-549)) 9)) (-3620 (((-768) $ (-128)) 7)) (-2507 (((-687 (-129)) $ (-129)) 10)) (-3713 (($ $) 6)))
+((-3702 (((-112) $ $) NIL)) (-3387 (((-564) $) 14)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 20) (($ (-564)) 13)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 9)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 11)))
+(((-855) (-13 (-847) (-10 -8 (-15 -3714 ($ (-564))) (-15 -3387 ((-564) $))))) (T -855))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-855)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-855)))))
+(-13 (-847) (-10 -8 (-15 -3714 ($ (-564))) (-15 -3387 ((-564) $))))
+((-2363 (((-687 (-1217)) $ (-1217)) 15)) (-1742 (((-687 (-549)) $ (-549)) 12)) (-4332 (((-768) $ (-128)) 30)))
+(((-856 |#1|) (-10 -8 (-15 -4332 ((-768) |#1| (-128))) (-15 -2363 ((-687 (-1217)) |#1| (-1217))) (-15 -1742 ((-687 (-549)) |#1| (-549)))) (-857)) (T -856))
+NIL
+(-10 -8 (-15 -4332 ((-768) |#1| (-128))) (-15 -2363 ((-687 (-1217)) |#1| (-1217))) (-15 -1742 ((-687 (-549)) |#1| (-549))))
+((-2363 (((-687 (-1217)) $ (-1217)) 8)) (-1742 (((-687 (-549)) $ (-549)) 9)) (-4332 (((-768) $ (-128)) 7)) (-2010 (((-687 (-129)) $ (-129)) 10)) (-3977 (($ $) 6)))
(((-857) (-140)) (T -857))
-((-2507 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-129))) (-5 *3 (-129)))) (-3224 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-549))) (-5 *3 (-549)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217)))) (-3620 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-128)) (-5 *2 (-768)))))
-(-13 (-173) (-10 -8 (-15 -2507 ((-687 (-129)) $ (-129))) (-15 -3224 ((-687 (-549)) $ (-549))) (-15 -1794 ((-687 (-1217)) $ (-1217))) (-15 -3620 ((-768) $ (-128)))))
+((-2010 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-129))) (-5 *3 (-129)))) (-1742 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-549))) (-5 *3 (-549)))) (-2363 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217)))) (-4332 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-128)) (-5 *2 (-768)))))
+(-13 (-173) (-10 -8 (-15 -2010 ((-687 (-129)) $ (-129))) (-15 -1742 ((-687 (-549)) $ (-549))) (-15 -2363 ((-687 (-1217)) $ (-1217))) (-15 -4332 ((-768) $ (-128)))))
(((-173) . T))
-((-1794 (((-687 (-1217)) $ (-1217)) NIL)) (-3224 (((-687 (-549)) $ (-549)) NIL)) (-3620 (((-768) $ (-128)) NIL)) (-2507 (((-687 (-129)) $ (-129)) 21)) (-4162 (($ (-388)) 12) (($ (-1152)) 14)) (-2408 (((-112) $) 18)) (-1765 (((-859) $) 25)) (-3713 (($ $) 22)))
-(((-858) (-13 (-857) (-611 (-859)) (-10 -8 (-15 -4162 ($ (-388))) (-15 -4162 ($ (-1152))) (-15 -2408 ((-112) $))))) (T -858))
-((-4162 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))))
-(-13 (-857) (-611 (-859)) (-10 -8 (-15 -4162 ($ (-388))) (-15 -4162 ($ (-1152))) (-15 -2408 ((-112) $))))
-((-1754 (((-112) $ $) NIL) (($ $ $) 86)) (-2331 (($ $ $) 126)) (-2579 (((-564) $) 31) (((-564)) 36)) (-1320 (($ (-564)) 54)) (-2782 (($ $ $) 55) (($ (-641 $)) 85)) (-1491 (($ $ (-641 $)) 83)) (-4205 (((-564) $) 34)) (-1930 (($ $ $) 74)) (-1334 (($ $) 141) (($ $ $) 142) (($ $ $ $) 143)) (-2169 (((-564) $) 33)) (-1637 (($ $ $) 73)) (-1961 (($ $) 115)) (-3195 (($ $ $) 130)) (-2790 (($ (-641 $)) 62)) (-2576 (($ $ (-641 $)) 80)) (-3432 (($ (-564) (-564)) 56)) (-2806 (($ $) 127) (($ $ $) 128)) (-3549 (($ $ (-564)) 43) (($ $) 46)) (-1387 (($ $ $) 98)) (-3490 (($ $ $) 133)) (-2956 (($ $) 116)) (-1366 (($ $ $) 99)) (-2085 (($ $) 144) (($ $ $) 145) (($ $ $ $) 146)) (-3291 (((-1264) $) 10)) (-3819 (($ $) 119) (($ $ (-768)) 123)) (-4257 (($ $ $) 76)) (-1745 (($ $ $) 75)) (-4000 (($ $ (-641 $)) 111)) (-3903 (($ $ $) 114)) (-3782 (($ (-641 $)) 60)) (-2696 (($ $) 71) (($ (-641 $)) 72)) (-3180 (($ $ $) 124)) (-1944 (($ $) 117)) (-3493 (($ $ $) 129)) (-3563 (($ (-564)) 21) (($ (-1170)) 23) (($ (-1152)) 30) (($ (-225)) 25)) (-4277 (($ $ $) 102)) (-4254 (($ $) 103)) (-2763 (((-1264) (-1152)) 15)) (-4091 (($ (-1152)) 14)) (-1605 (($ (-641 (-641 $))) 59)) (-3538 (($ $ (-564)) 42) (($ $) 45)) (-4202 (((-1152) $) NIL)) (-3755 (($ $ $) 132)) (-1410 (($ $) 147) (($ $ $) 148) (($ $ $ $) 149)) (-2588 (((-112) $) 109)) (-2875 (($ $ (-641 $)) 112) (($ $ $ $) 113)) (-2410 (($ (-564)) 39)) (-1813 (((-564) $) 32) (((-564)) 35)) (-1736 (($ $ $) 40) (($ (-641 $)) 84)) (-3802 (((-1114) $) NIL)) (-1343 (($ $ $) 100)) (-3845 (($) 13)) (-4382 (($ $ (-641 $)) 110)) (-3832 (((-1152) (-1152)) 8)) (-4158 (($ $) 118) (($ $ (-768)) 122)) (-1354 (($ $ $) 97)) (-3226 (($ $ (-768)) 140)) (-2029 (($ (-641 $)) 61)) (-1765 (((-859) $) 19)) (-3415 (($ $ (-564)) 41) (($ $) 44)) (-3316 (($ $) 69) (($ (-641 $)) 70)) (-4086 (($ $) 67) (($ (-641 $)) 68)) (-1719 (($ $) 125)) (-3465 (($ (-641 $)) 66)) (-1939 (($ $ $) 106)) (-3910 (($ $ $) 131)) (-4266 (($ $ $) 101)) (-2167 (($ $ $) 104) (($ $) 105)) (-1738 (($ $ $) 90)) (-1715 (($ $ $) 88)) (-1686 (((-112) $ $) 16) (($ $ $) 17)) (-1728 (($ $ $) 89)) (-1705 (($ $ $) 87)) (-1793 (($ $ $) 95)) (-1783 (($ $ $) 92) (($ $) 93)) (-1771 (($ $ $) 91)) (** (($ $ $) 96)) (* (($ $ $) 94)))
-(((-859) (-13 (-1094) (-10 -8 (-15 -3291 ((-1264) $)) (-15 -4091 ($ (-1152))) (-15 -2763 ((-1264) (-1152))) (-15 -3563 ($ (-564))) (-15 -3563 ($ (-1170))) (-15 -3563 ($ (-1152))) (-15 -3563 ($ (-225))) (-15 -3845 ($)) (-15 -3832 ((-1152) (-1152))) (-15 -2579 ((-564) $)) (-15 -1813 ((-564) $)) (-15 -2579 ((-564))) (-15 -1813 ((-564))) (-15 -2169 ((-564) $)) (-15 -4205 ((-564) $)) (-15 -2410 ($ (-564))) (-15 -1320 ($ (-564))) (-15 -3432 ($ (-564) (-564))) (-15 -3538 ($ $ (-564))) (-15 -3549 ($ $ (-564))) (-15 -3415 ($ $ (-564))) (-15 -3538 ($ $)) (-15 -3549 ($ $)) (-15 -3415 ($ $)) (-15 -1736 ($ $ $)) (-15 -2782 ($ $ $)) (-15 -1736 ($ (-641 $))) (-15 -2782 ($ (-641 $))) (-15 -4000 ($ $ (-641 $))) (-15 -2875 ($ $ (-641 $))) (-15 -2875 ($ $ $ $)) (-15 -3903 ($ $ $)) (-15 -2588 ((-112) $)) (-15 -4382 ($ $ (-641 $))) (-15 -1961 ($ $)) (-15 -3755 ($ $ $)) (-15 -1719 ($ $)) (-15 -1605 ($ (-641 (-641 $)))) (-15 -2331 ($ $ $)) (-15 -2806 ($ $)) (-15 -2806 ($ $ $)) (-15 -3493 ($ $ $)) (-15 -3195 ($ $ $)) (-15 -3910 ($ $ $)) (-15 -3490 ($ $ $)) (-15 -3226 ($ $ (-768))) (-15 -1939 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -1930 ($ $ $)) (-15 -1745 ($ $ $)) (-15 -4257 ($ $ $)) (-15 -2576 ($ $ (-641 $))) (-15 -1491 ($ $ (-641 $))) (-15 -2956 ($ $)) (-15 -4158 ($ $)) (-15 -4158 ($ $ (-768))) (-15 -3819 ($ $)) (-15 -3819 ($ $ (-768))) (-15 -1944 ($ $)) (-15 -3180 ($ $ $)) (-15 -1334 ($ $)) (-15 -1334 ($ $ $)) (-15 -1334 ($ $ $ $)) (-15 -2085 ($ $)) (-15 -2085 ($ $ $)) (-15 -2085 ($ $ $ $)) (-15 -1410 ($ $)) (-15 -1410 ($ $ $)) (-15 -1410 ($ $ $ $)) (-15 -4086 ($ $)) (-15 -4086 ($ (-641 $))) (-15 -3316 ($ $)) (-15 -3316 ($ (-641 $))) (-15 -2696 ($ $)) (-15 -2696 ($ (-641 $))) (-15 -3782 ($ (-641 $))) (-15 -2029 ($ (-641 $))) (-15 -2790 ($ (-641 $))) (-15 -3465 ($ (-641 $))) (-15 -1686 ($ $ $)) (-15 -1754 ($ $ $)) (-15 -1705 ($ $ $)) (-15 -1715 ($ $ $)) (-15 -1728 ($ $ $)) (-15 -1738 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1783 ($ $ $)) (-15 -1783 ($ $)) (-15 * ($ $ $)) (-15 -1793 ($ $ $)) (-15 ** ($ $ $)) (-15 -1354 ($ $ $)) (-15 -1387 ($ $ $)) (-15 -1366 ($ $ $)) (-15 -1343 ($ $ $)) (-15 -4266 ($ $ $)) (-15 -4277 ($ $ $)) (-15 -4254 ($ $)) (-15 -2167 ($ $ $)) (-15 -2167 ($ $))))) (T -859))
-((-3291 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-859)))) (-4091 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-2763 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-859)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859)))) (-3845 (*1 *1) (-5 *1 (-859))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2579 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-1813 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-1320 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3432 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3549 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3415 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3538 (*1 *1 *1) (-5 *1 (-859))) (-3549 (*1 *1 *1) (-5 *1 (-859))) (-3415 (*1 *1 *1) (-5 *1 (-859))) (-1736 (*1 *1 *1 *1) (-5 *1 (-859))) (-2782 (*1 *1 *1 *1) (-5 *1 (-859))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-4000 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2875 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2875 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-3903 (*1 *1 *1 *1) (-5 *1 (-859))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1961 (*1 *1 *1) (-5 *1 (-859))) (-3755 (*1 *1 *1 *1) (-5 *1 (-859))) (-1719 (*1 *1 *1) (-5 *1 (-859))) (-1605 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-859)))) (-2331 (*1 *1 *1 *1) (-5 *1 (-859))) (-2806 (*1 *1 *1) (-5 *1 (-859))) (-2806 (*1 *1 *1 *1) (-5 *1 (-859))) (-3493 (*1 *1 *1 *1) (-5 *1 (-859))) (-3195 (*1 *1 *1 *1) (-5 *1 (-859))) (-3910 (*1 *1 *1 *1) (-5 *1 (-859))) (-3490 (*1 *1 *1 *1) (-5 *1 (-859))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-1939 (*1 *1 *1 *1) (-5 *1 (-859))) (-1637 (*1 *1 *1 *1) (-5 *1 (-859))) (-1930 (*1 *1 *1 *1) (-5 *1 (-859))) (-1745 (*1 *1 *1 *1) (-5 *1 (-859))) (-4257 (*1 *1 *1 *1) (-5 *1 (-859))) (-2576 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1491 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2956 (*1 *1 *1) (-5 *1 (-859))) (-4158 (*1 *1 *1) (-5 *1 (-859))) (-4158 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-3819 (*1 *1 *1) (-5 *1 (-859))) (-3819 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-1944 (*1 *1 *1) (-5 *1 (-859))) (-3180 (*1 *1 *1 *1) (-5 *1 (-859))) (-1334 (*1 *1 *1) (-5 *1 (-859))) (-1334 (*1 *1 *1 *1) (-5 *1 (-859))) (-1334 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-2085 (*1 *1 *1) (-5 *1 (-859))) (-2085 (*1 *1 *1 *1) (-5 *1 (-859))) (-2085 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-1410 (*1 *1 *1) (-5 *1 (-859))) (-1410 (*1 *1 *1 *1) (-5 *1 (-859))) (-1410 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-4086 (*1 *1 *1) (-5 *1 (-859))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3316 (*1 *1 *1) (-5 *1 (-859))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2696 (*1 *1 *1) (-5 *1 (-859))) (-2696 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2790 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3465 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1686 (*1 *1 *1 *1) (-5 *1 (-859))) (-1754 (*1 *1 *1 *1) (-5 *1 (-859))) (-1705 (*1 *1 *1 *1) (-5 *1 (-859))) (-1715 (*1 *1 *1 *1) (-5 *1 (-859))) (-1728 (*1 *1 *1 *1) (-5 *1 (-859))) (-1738 (*1 *1 *1 *1) (-5 *1 (-859))) (-1771 (*1 *1 *1 *1) (-5 *1 (-859))) (-1783 (*1 *1 *1 *1) (-5 *1 (-859))) (-1783 (*1 *1 *1) (-5 *1 (-859))) (* (*1 *1 *1 *1) (-5 *1 (-859))) (-1793 (*1 *1 *1 *1) (-5 *1 (-859))) (** (*1 *1 *1 *1) (-5 *1 (-859))) (-1354 (*1 *1 *1 *1) (-5 *1 (-859))) (-1387 (*1 *1 *1 *1) (-5 *1 (-859))) (-1366 (*1 *1 *1 *1) (-5 *1 (-859))) (-1343 (*1 *1 *1 *1) (-5 *1 (-859))) (-4266 (*1 *1 *1 *1) (-5 *1 (-859))) (-4277 (*1 *1 *1 *1) (-5 *1 (-859))) (-4254 (*1 *1 *1) (-5 *1 (-859))) (-2167 (*1 *1 *1 *1) (-5 *1 (-859))) (-2167 (*1 *1 *1) (-5 *1 (-859))))
-(-13 (-1094) (-10 -8 (-15 -3291 ((-1264) $)) (-15 -4091 ($ (-1152))) (-15 -2763 ((-1264) (-1152))) (-15 -3563 ($ (-564))) (-15 -3563 ($ (-1170))) (-15 -3563 ($ (-1152))) (-15 -3563 ($ (-225))) (-15 -3845 ($)) (-15 -3832 ((-1152) (-1152))) (-15 -2579 ((-564) $)) (-15 -1813 ((-564) $)) (-15 -2579 ((-564))) (-15 -1813 ((-564))) (-15 -2169 ((-564) $)) (-15 -4205 ((-564) $)) (-15 -2410 ($ (-564))) (-15 -1320 ($ (-564))) (-15 -3432 ($ (-564) (-564))) (-15 -3538 ($ $ (-564))) (-15 -3549 ($ $ (-564))) (-15 -3415 ($ $ (-564))) (-15 -3538 ($ $)) (-15 -3549 ($ $)) (-15 -3415 ($ $)) (-15 -1736 ($ $ $)) (-15 -2782 ($ $ $)) (-15 -1736 ($ (-641 $))) (-15 -2782 ($ (-641 $))) (-15 -4000 ($ $ (-641 $))) (-15 -2875 ($ $ (-641 $))) (-15 -2875 ($ $ $ $)) (-15 -3903 ($ $ $)) (-15 -2588 ((-112) $)) (-15 -4382 ($ $ (-641 $))) (-15 -1961 ($ $)) (-15 -3755 ($ $ $)) (-15 -1719 ($ $)) (-15 -1605 ($ (-641 (-641 $)))) (-15 -2331 ($ $ $)) (-15 -2806 ($ $)) (-15 -2806 ($ $ $)) (-15 -3493 ($ $ $)) (-15 -3195 ($ $ $)) (-15 -3910 ($ $ $)) (-15 -3490 ($ $ $)) (-15 -3226 ($ $ (-768))) (-15 -1939 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -1930 ($ $ $)) (-15 -1745 ($ $ $)) (-15 -4257 ($ $ $)) (-15 -2576 ($ $ (-641 $))) (-15 -1491 ($ $ (-641 $))) (-15 -2956 ($ $)) (-15 -4158 ($ $)) (-15 -4158 ($ $ (-768))) (-15 -3819 ($ $)) (-15 -3819 ($ $ (-768))) (-15 -1944 ($ $)) (-15 -3180 ($ $ $)) (-15 -1334 ($ $)) (-15 -1334 ($ $ $)) (-15 -1334 ($ $ $ $)) (-15 -2085 ($ $)) (-15 -2085 ($ $ $)) (-15 -2085 ($ $ $ $)) (-15 -1410 ($ $)) (-15 -1410 ($ $ $)) (-15 -1410 ($ $ $ $)) (-15 -4086 ($ $)) (-15 -4086 ($ (-641 $))) (-15 -3316 ($ $)) (-15 -3316 ($ (-641 $))) (-15 -2696 ($ $)) (-15 -2696 ($ (-641 $))) (-15 -3782 ($ (-641 $))) (-15 -2029 ($ (-641 $))) (-15 -2790 ($ (-641 $))) (-15 -3465 ($ (-641 $))) (-15 -1686 ($ $ $)) (-15 -1754 ($ $ $)) (-15 -1705 ($ $ $)) (-15 -1715 ($ $ $)) (-15 -1728 ($ $ $)) (-15 -1738 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1783 ($ $ $)) (-15 -1783 ($ $)) (-15 * ($ $ $)) (-15 -1793 ($ $ $)) (-15 ** ($ $ $)) (-15 -1354 ($ $ $)) (-15 -1387 ($ $ $)) (-15 -1366 ($ $ $)) (-15 -1343 ($ $ $)) (-15 -4266 ($ $ $)) (-15 -4277 ($ $ $)) (-15 -4254 ($ $)) (-15 -2167 ($ $ $)) (-15 -2167 ($ $))))
-((-1333 (((-1264) (-641 (-52))) 24)) (-1874 (((-1264) (-1152) (-859)) 14) (((-1264) (-859)) 9) (((-1264) (-1152)) 11)))
-(((-860) (-10 -7 (-15 -1874 ((-1264) (-1152))) (-15 -1874 ((-1264) (-859))) (-15 -1874 ((-1264) (-1152) (-859))) (-15 -1333 ((-1264) (-641 (-52)))))) (T -860))
-((-1333 (*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-860)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-860)))))
-(-10 -7 (-15 -1874 ((-1264) (-1152))) (-15 -1874 ((-1264) (-859))) (-15 -1874 ((-1264) (-1152) (-859))) (-15 -1333 ((-1264) (-641 (-52)))))
-((-1754 (((-112) $ $) NIL)) (-3657 (((-3 $ "failed") (-1170)) 39)) (-3042 (((-768)) 32)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) 29)) (-4202 (((-1152) $) 46)) (-1403 (($ (-918)) 28)) (-3802 (((-1114) $) NIL)) (-2127 (((-1170) $) 13) (((-536) $) 19) (((-889 (-379)) $) 26) (((-889 (-564)) $) 22)) (-1765 (((-859) $) 16)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 43)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 41)))
-(((-861 |#1|) (-13 (-841) (-612 (-1170)) (-612 (-536)) (-612 (-889 (-379))) (-612 (-889 (-564))) (-10 -8 (-15 -3657 ((-3 $ "failed") (-1170))))) (-641 (-1170))) (T -861))
-((-3657 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-861 *3)) (-14 *3 (-641 *2)))))
-(-13 (-841) (-612 (-1170)) (-612 (-536)) (-612 (-889 (-379))) (-612 (-889 (-564))) (-10 -8 (-15 -3657 ((-3 $ "failed") (-1170)))))
-((-1754 (((-112) $ $) NIL)) (-4363 (((-506) $) 9)) (-3817 (((-641 (-439)) $) 13)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 21)) (-1686 (((-112) $ $) 16)))
-(((-862) (-13 (-1094) (-10 -8 (-15 -4363 ((-506) $)) (-15 -3817 ((-641 (-439)) $))))) (T -862))
-((-4363 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-862)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-862)))))
-(-13 (-1094) (-10 -8 (-15 -4363 ((-506) $)) (-15 -3817 ((-641 (-439)) $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-949 |#1|)) NIL) (((-949 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-1965 (((-768)) NIL T CONST)) (-3451 (((-1264) (-768)) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-863 |#1| |#2| |#3| |#4|) (-13 (-1046) (-490 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1793 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3451 ((-1264) (-768))))) (-1046) (-641 (-1170)) (-641 (-768)) (-768)) (T -863))
-((-1793 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-863 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-768))) (-14 *5 (-768)))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-863 *4 *5 *6 *7)) (-4 *4 (-1046)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3)) (-14 *7 *3))))
-(-13 (-1046) (-490 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1793 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3451 ((-1264) (-768)))))
-((-2954 (((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|) 43)) (-4057 (((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|) 34)))
-(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|)) (-15 -2954 ((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|))) (-363) (-1250 |#1|) (-1235 |#1|)) (T -864))
-((-2954 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))) (-4057 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))))
-(-10 -7 (-15 -4057 ((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|)) (-15 -2954 ((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|)))
-((-4057 (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)) 30) (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) 28)))
-(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -4057 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)))) (-363) (-1170) |#1|) (T -865))
-((-4057 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-865 *5 *6 *7)))) (-4057 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-865 *5 *6 *7)))))
-(-10 -7 (-15 -4057 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -4057 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-4019 (($ $ (-564)) 63)) (-3385 (((-112) $ $) 60)) (-3760 (($) 17 T CONST)) (-2806 (($ (-1166 (-564)) (-564)) 62)) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-1798 (($ $) 65)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-2261 (((-768) $) 70)) (-2419 (((-112) $) 31)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-4022 (((-564)) 67)) (-2942 (((-564) $) 66)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2678 (($ $ (-564)) 69)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-1824 (((-1150 (-564)) $) 71)) (-3204 (($ $) 68)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-2299 (((-564) $ (-564)) 64)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-2363 (((-687 (-1217)) $ (-1217)) NIL)) (-1742 (((-687 (-549)) $ (-549)) NIL)) (-4332 (((-768) $ (-128)) NIL)) (-2010 (((-687 (-129)) $ (-129)) 21)) (-2729 (($ (-388)) 12) (($ (-1152)) 14)) (-3346 (((-112) $) 18)) (-3714 (((-859) $) 25)) (-3977 (($ $) 22)))
+(((-858) (-13 (-857) (-611 (-859)) (-10 -8 (-15 -2729 ($ (-388))) (-15 -2729 ($ (-1152))) (-15 -3346 ((-112) $))))) (T -858))
+((-2729 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858)))) (-2729 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))))
+(-13 (-857) (-611 (-859)) (-10 -8 (-15 -2729 ($ (-388))) (-15 -2729 ($ (-1152))) (-15 -3346 ((-112) $))))
+((-3702 (((-112) $ $) NIL) (($ $ $) 86)) (-3928 (($ $ $) 126)) (-1615 (((-564) $) 31) (((-564)) 36)) (-2255 (($ (-564)) 54)) (-1663 (($ $ $) 55) (($ (-641 $)) 85)) (-2546 (($ $ (-641 $)) 83)) (-1888 (((-564) $) 34)) (-2470 (($ $ $) 74)) (-3064 (($ $) 141) (($ $ $) 142) (($ $ $ $) 143)) (-1789 (((-564) $) 33)) (-1410 (($ $ $) 73)) (-3963 (($ $) 115)) (-2732 (($ $ $) 130)) (-1756 (($ (-641 $)) 62)) (-3463 (($ $ (-641 $)) 80)) (-3138 (($ (-564) (-564)) 56)) (-1939 (($ $) 127) (($ $ $) 128)) (-2592 (($ $ (-564)) 43) (($ $) 46)) (-1399 (($ $ $) 98)) (-2527 (($ $ $) 133)) (-3975 (($ $) 116)) (-1371 (($ $ $) 99)) (-2248 (($ $) 144) (($ $ $) 145) (($ $ $ $) 146)) (-2335 (((-1264) $) 10)) (-2601 (($ $) 119) (($ $ (-768)) 123)) (-4183 (($ $ $) 76)) (-3080 (($ $ $) 75)) (-2893 (($ $ (-641 $)) 111)) (-2152 (($ $ $) 114)) (-3350 (($ (-641 $)) 60)) (-3187 (($ $) 71) (($ (-641 $)) 72)) (-2571 (($ $ $) 124)) (-1349 (($ $) 117)) (-2556 (($ $ $) 129)) (-1978 (($ (-564)) 21) (($ (-1170)) 23) (($ (-1152)) 30) (($ (-225)) 25)) (-4276 (($ $ $) 102)) (-4253 (($ $) 103)) (-2734 (((-1264) (-1152)) 15)) (-3006 (($ (-1152)) 14)) (-3469 (($ (-641 (-641 $))) 59)) (-2578 (($ $ (-564)) 42) (($ $) 45)) (-1868 (((-1152) $) NIL)) (-2789 (($ $ $) 132)) (-1890 (($ $) 147) (($ $ $) 148) (($ $ $ $) 149)) (-1554 (((-112) $) 109)) (-1401 (($ $ (-641 $)) 112) (($ $ $ $) 113)) (-2243 (($ (-564)) 39)) (-3694 (((-564) $) 32) (((-564)) 35)) (-3011 (($ $ $) 40) (($ (-641 $)) 84)) (-3844 (((-1114) $) NIL)) (-1347 (($ $ $) 100)) (-2834 (($) 13)) (-4382 (($ $ (-641 $)) 110)) (-2733 (((-1152) (-1152)) 8)) (-2681 (($ $) 118) (($ $ (-768)) 122)) (-1357 (($ $ $) 97)) (-2203 (($ $ (-768)) 140)) (-2909 (($ (-641 $)) 61)) (-3714 (((-859) $) 19)) (-2390 (($ $ (-564)) 41) (($ $) 44)) (-1386 (($ $) 69) (($ (-641 $)) 70)) (-4208 (($ $) 67) (($ (-641 $)) 68)) (-3146 (($ $) 125)) (-2275 (($ (-641 $)) 66)) (-4389 (($ $ $) 106)) (-2216 (($ $ $) 131)) (-4264 (($ $ $) 101)) (-4223 (($ $ $) 104) (($ $) 105)) (-1781 (($ $ $) 90)) (-1758 (($ $ $) 88)) (-1720 (((-112) $ $) 16) (($ $ $) 17)) (-1769 (($ $ $) 89)) (-1746 (($ $ $) 87)) (-1841 (($ $ $) 95)) (-1828 (($ $ $) 92) (($ $) 93)) (-1814 (($ $ $) 91)) (** (($ $ $) 96)) (* (($ $ $) 94)))
+(((-859) (-13 (-1094) (-10 -8 (-15 -2335 ((-1264) $)) (-15 -3006 ($ (-1152))) (-15 -2734 ((-1264) (-1152))) (-15 -1978 ($ (-564))) (-15 -1978 ($ (-1170))) (-15 -1978 ($ (-1152))) (-15 -1978 ($ (-225))) (-15 -2834 ($)) (-15 -2733 ((-1152) (-1152))) (-15 -1615 ((-564) $)) (-15 -3694 ((-564) $)) (-15 -1615 ((-564))) (-15 -3694 ((-564))) (-15 -1789 ((-564) $)) (-15 -1888 ((-564) $)) (-15 -2243 ($ (-564))) (-15 -2255 ($ (-564))) (-15 -3138 ($ (-564) (-564))) (-15 -2578 ($ $ (-564))) (-15 -2592 ($ $ (-564))) (-15 -2390 ($ $ (-564))) (-15 -2578 ($ $)) (-15 -2592 ($ $)) (-15 -2390 ($ $)) (-15 -3011 ($ $ $)) (-15 -1663 ($ $ $)) (-15 -3011 ($ (-641 $))) (-15 -1663 ($ (-641 $))) (-15 -2893 ($ $ (-641 $))) (-15 -1401 ($ $ (-641 $))) (-15 -1401 ($ $ $ $)) (-15 -2152 ($ $ $)) (-15 -1554 ((-112) $)) (-15 -4382 ($ $ (-641 $))) (-15 -3963 ($ $)) (-15 -2789 ($ $ $)) (-15 -3146 ($ $)) (-15 -3469 ($ (-641 (-641 $)))) (-15 -3928 ($ $ $)) (-15 -1939 ($ $)) (-15 -1939 ($ $ $)) (-15 -2556 ($ $ $)) (-15 -2732 ($ $ $)) (-15 -2216 ($ $ $)) (-15 -2527 ($ $ $)) (-15 -2203 ($ $ (-768))) (-15 -4389 ($ $ $)) (-15 -1410 ($ $ $)) (-15 -2470 ($ $ $)) (-15 -3080 ($ $ $)) (-15 -4183 ($ $ $)) (-15 -3463 ($ $ (-641 $))) (-15 -2546 ($ $ (-641 $))) (-15 -3975 ($ $)) (-15 -2681 ($ $)) (-15 -2681 ($ $ (-768))) (-15 -2601 ($ $)) (-15 -2601 ($ $ (-768))) (-15 -1349 ($ $)) (-15 -2571 ($ $ $)) (-15 -3064 ($ $)) (-15 -3064 ($ $ $)) (-15 -3064 ($ $ $ $)) (-15 -2248 ($ $)) (-15 -2248 ($ $ $)) (-15 -2248 ($ $ $ $)) (-15 -1890 ($ $)) (-15 -1890 ($ $ $)) (-15 -1890 ($ $ $ $)) (-15 -4208 ($ $)) (-15 -4208 ($ (-641 $))) (-15 -1386 ($ $)) (-15 -1386 ($ (-641 $))) (-15 -3187 ($ $)) (-15 -3187 ($ (-641 $))) (-15 -3350 ($ (-641 $))) (-15 -2909 ($ (-641 $))) (-15 -1756 ($ (-641 $))) (-15 -2275 ($ (-641 $))) (-15 -1720 ($ $ $)) (-15 -3702 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -1758 ($ $ $)) (-15 -1769 ($ $ $)) (-15 -1781 ($ $ $)) (-15 -1814 ($ $ $)) (-15 -1828 ($ $ $)) (-15 -1828 ($ $)) (-15 * ($ $ $)) (-15 -1841 ($ $ $)) (-15 ** ($ $ $)) (-15 -1357 ($ $ $)) (-15 -1399 ($ $ $)) (-15 -1371 ($ $ $)) (-15 -1347 ($ $ $)) (-15 -4264 ($ $ $)) (-15 -4276 ($ $ $)) (-15 -4253 ($ $)) (-15 -4223 ($ $ $)) (-15 -4223 ($ $))))) (T -859))
+((-2335 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-859)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859)))) (-1978 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-1978 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-859)))) (-1978 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-1978 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859)))) (-2834 (*1 *1) (-5 *1 (-859))) (-2733 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-1615 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3694 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2243 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3138 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2592 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2390 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2578 (*1 *1 *1) (-5 *1 (-859))) (-2592 (*1 *1 *1) (-5 *1 (-859))) (-2390 (*1 *1 *1) (-5 *1 (-859))) (-3011 (*1 *1 *1 *1) (-5 *1 (-859))) (-1663 (*1 *1 *1 *1) (-5 *1 (-859))) (-3011 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1663 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2893 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1401 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-2152 (*1 *1 *1 *1) (-5 *1 (-859))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3963 (*1 *1 *1) (-5 *1 (-859))) (-2789 (*1 *1 *1 *1) (-5 *1 (-859))) (-3146 (*1 *1 *1) (-5 *1 (-859))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-859)))) (-3928 (*1 *1 *1 *1) (-5 *1 (-859))) (-1939 (*1 *1 *1) (-5 *1 (-859))) (-1939 (*1 *1 *1 *1) (-5 *1 (-859))) (-2556 (*1 *1 *1 *1) (-5 *1 (-859))) (-2732 (*1 *1 *1 *1) (-5 *1 (-859))) (-2216 (*1 *1 *1 *1) (-5 *1 (-859))) (-2527 (*1 *1 *1 *1) (-5 *1 (-859))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-4389 (*1 *1 *1 *1) (-5 *1 (-859))) (-1410 (*1 *1 *1 *1) (-5 *1 (-859))) (-2470 (*1 *1 *1 *1) (-5 *1 (-859))) (-3080 (*1 *1 *1 *1) (-5 *1 (-859))) (-4183 (*1 *1 *1 *1) (-5 *1 (-859))) (-3463 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2546 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3975 (*1 *1 *1) (-5 *1 (-859))) (-2681 (*1 *1 *1) (-5 *1 (-859))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-2601 (*1 *1 *1) (-5 *1 (-859))) (-2601 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-1349 (*1 *1 *1) (-5 *1 (-859))) (-2571 (*1 *1 *1 *1) (-5 *1 (-859))) (-3064 (*1 *1 *1) (-5 *1 (-859))) (-3064 (*1 *1 *1 *1) (-5 *1 (-859))) (-3064 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-2248 (*1 *1 *1) (-5 *1 (-859))) (-2248 (*1 *1 *1 *1) (-5 *1 (-859))) (-2248 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-1890 (*1 *1 *1) (-5 *1 (-859))) (-1890 (*1 *1 *1 *1) (-5 *1 (-859))) (-1890 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-4208 (*1 *1 *1) (-5 *1 (-859))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1386 (*1 *1 *1) (-5 *1 (-859))) (-1386 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3187 (*1 *1 *1) (-5 *1 (-859))) (-3187 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3350 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2909 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1756 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1720 (*1 *1 *1 *1) (-5 *1 (-859))) (-3702 (*1 *1 *1 *1) (-5 *1 (-859))) (-1746 (*1 *1 *1 *1) (-5 *1 (-859))) (-1758 (*1 *1 *1 *1) (-5 *1 (-859))) (-1769 (*1 *1 *1 *1) (-5 *1 (-859))) (-1781 (*1 *1 *1 *1) (-5 *1 (-859))) (-1814 (*1 *1 *1 *1) (-5 *1 (-859))) (-1828 (*1 *1 *1 *1) (-5 *1 (-859))) (-1828 (*1 *1 *1) (-5 *1 (-859))) (* (*1 *1 *1 *1) (-5 *1 (-859))) (-1841 (*1 *1 *1 *1) (-5 *1 (-859))) (** (*1 *1 *1 *1) (-5 *1 (-859))) (-1357 (*1 *1 *1 *1) (-5 *1 (-859))) (-1399 (*1 *1 *1 *1) (-5 *1 (-859))) (-1371 (*1 *1 *1 *1) (-5 *1 (-859))) (-1347 (*1 *1 *1 *1) (-5 *1 (-859))) (-4264 (*1 *1 *1 *1) (-5 *1 (-859))) (-4276 (*1 *1 *1 *1) (-5 *1 (-859))) (-4253 (*1 *1 *1) (-5 *1 (-859))) (-4223 (*1 *1 *1 *1) (-5 *1 (-859))) (-4223 (*1 *1 *1) (-5 *1 (-859))))
+(-13 (-1094) (-10 -8 (-15 -2335 ((-1264) $)) (-15 -3006 ($ (-1152))) (-15 -2734 ((-1264) (-1152))) (-15 -1978 ($ (-564))) (-15 -1978 ($ (-1170))) (-15 -1978 ($ (-1152))) (-15 -1978 ($ (-225))) (-15 -2834 ($)) (-15 -2733 ((-1152) (-1152))) (-15 -1615 ((-564) $)) (-15 -3694 ((-564) $)) (-15 -1615 ((-564))) (-15 -3694 ((-564))) (-15 -1789 ((-564) $)) (-15 -1888 ((-564) $)) (-15 -2243 ($ (-564))) (-15 -2255 ($ (-564))) (-15 -3138 ($ (-564) (-564))) (-15 -2578 ($ $ (-564))) (-15 -2592 ($ $ (-564))) (-15 -2390 ($ $ (-564))) (-15 -2578 ($ $)) (-15 -2592 ($ $)) (-15 -2390 ($ $)) (-15 -3011 ($ $ $)) (-15 -1663 ($ $ $)) (-15 -3011 ($ (-641 $))) (-15 -1663 ($ (-641 $))) (-15 -2893 ($ $ (-641 $))) (-15 -1401 ($ $ (-641 $))) (-15 -1401 ($ $ $ $)) (-15 -2152 ($ $ $)) (-15 -1554 ((-112) $)) (-15 -4382 ($ $ (-641 $))) (-15 -3963 ($ $)) (-15 -2789 ($ $ $)) (-15 -3146 ($ $)) (-15 -3469 ($ (-641 (-641 $)))) (-15 -3928 ($ $ $)) (-15 -1939 ($ $)) (-15 -1939 ($ $ $)) (-15 -2556 ($ $ $)) (-15 -2732 ($ $ $)) (-15 -2216 ($ $ $)) (-15 -2527 ($ $ $)) (-15 -2203 ($ $ (-768))) (-15 -4389 ($ $ $)) (-15 -1410 ($ $ $)) (-15 -2470 ($ $ $)) (-15 -3080 ($ $ $)) (-15 -4183 ($ $ $)) (-15 -3463 ($ $ (-641 $))) (-15 -2546 ($ $ (-641 $))) (-15 -3975 ($ $)) (-15 -2681 ($ $)) (-15 -2681 ($ $ (-768))) (-15 -2601 ($ $)) (-15 -2601 ($ $ (-768))) (-15 -1349 ($ $)) (-15 -2571 ($ $ $)) (-15 -3064 ($ $)) (-15 -3064 ($ $ $)) (-15 -3064 ($ $ $ $)) (-15 -2248 ($ $)) (-15 -2248 ($ $ $)) (-15 -2248 ($ $ $ $)) (-15 -1890 ($ $)) (-15 -1890 ($ $ $)) (-15 -1890 ($ $ $ $)) (-15 -4208 ($ $)) (-15 -4208 ($ (-641 $))) (-15 -1386 ($ $)) (-15 -1386 ($ (-641 $))) (-15 -3187 ($ $)) (-15 -3187 ($ (-641 $))) (-15 -3350 ($ (-641 $))) (-15 -2909 ($ (-641 $))) (-15 -1756 ($ (-641 $))) (-15 -2275 ($ (-641 $))) (-15 -1720 ($ $ $)) (-15 -3702 ($ $ $)) (-15 -1746 ($ $ $)) (-15 -1758 ($ $ $)) (-15 -1769 ($ $ $)) (-15 -1781 ($ $ $)) (-15 -1814 ($ $ $)) (-15 -1828 ($ $ $)) (-15 -1828 ($ $)) (-15 * ($ $ $)) (-15 -1841 ($ $ $)) (-15 ** ($ $ $)) (-15 -1357 ($ $ $)) (-15 -1399 ($ $ $)) (-15 -1371 ($ $ $)) (-15 -1347 ($ $ $)) (-15 -4264 ($ $ $)) (-15 -4276 ($ $ $)) (-15 -4253 ($ $)) (-15 -4223 ($ $ $)) (-15 -4223 ($ $))))
+((-3226 (((-1264) (-641 (-52))) 24)) (-3783 (((-1264) (-1152) (-859)) 14) (((-1264) (-859)) 9) (((-1264) (-1152)) 11)))
+(((-860) (-10 -7 (-15 -3783 ((-1264) (-1152))) (-15 -3783 ((-1264) (-859))) (-15 -3783 ((-1264) (-1152) (-859))) (-15 -3226 ((-1264) (-641 (-52)))))) (T -860))
+((-3226 (*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-860)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-860)))))
+(-10 -7 (-15 -3783 ((-1264) (-1152))) (-15 -3783 ((-1264) (-859))) (-15 -3783 ((-1264) (-1152) (-859))) (-15 -3226 ((-1264) (-641 (-52)))))
+((-3702 (((-112) $ $) NIL)) (-3832 (((-3 $ "failed") (-1170)) 39)) (-2018 (((-768)) 32)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) 29)) (-1868 (((-1152) $) 46)) (-3338 (($ (-918)) 28)) (-3844 (((-1114) $) NIL)) (-2374 (((-1170) $) 13) (((-536) $) 19) (((-889 (-379)) $) 26) (((-889 (-564)) $) 22)) (-3714 (((-859) $) 16)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 43)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 41)))
+(((-861 |#1|) (-13 (-841) (-612 (-1170)) (-612 (-536)) (-612 (-889 (-379))) (-612 (-889 (-564))) (-10 -8 (-15 -3832 ((-3 $ "failed") (-1170))))) (-641 (-1170))) (T -861))
+((-3832 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-861 *3)) (-14 *3 (-641 *2)))))
+(-13 (-841) (-612 (-1170)) (-612 (-536)) (-612 (-889 (-379))) (-612 (-889 (-564))) (-10 -8 (-15 -3832 ((-3 $ "failed") (-1170)))))
+((-3702 (((-112) $ $) NIL)) (-4337 (((-506) $) 9)) (-2572 (((-641 (-439)) $) 13)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 21)) (-1720 (((-112) $ $) 16)))
+(((-862) (-13 (-1094) (-10 -8 (-15 -4337 ((-506) $)) (-15 -2572 ((-641 (-439)) $))))) (T -862))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-862)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-862)))))
+(-13 (-1094) (-10 -8 (-15 -4337 ((-506) $)) (-15 -2572 ((-641 (-439)) $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-949 |#1|)) NIL) (((-949 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3379 (((-768)) NIL T CONST)) (-3294 (((-1264) (-768)) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1841 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-863 |#1| |#2| |#3| |#4|) (-13 (-1046) (-490 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1841 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3294 ((-1264) (-768))))) (-1046) (-641 (-1170)) (-641 (-768)) (-768)) (T -863))
+((-1841 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-863 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-768))) (-14 *5 (-768)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-863 *4 *5 *6 *7)) (-4 *4 (-1046)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3)) (-14 *7 *3))))
+(-13 (-1046) (-490 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1841 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3294 ((-1264) (-768)))))
+((-4060 (((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|) 43)) (-2943 (((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|) 34)))
+(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -2943 ((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|)) (-15 -4060 ((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|))) (-363) (-1250 |#1|) (-1235 |#1|)) (T -864))
+((-4060 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))) (-2943 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))))
+(-10 -7 (-15 -2943 ((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|)) (-15 -4060 ((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|)))
+((-2943 (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)) 30) (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) 28)))
+(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -2943 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -2943 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)))) (-363) (-1170) |#1|) (T -865))
+((-2943 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-865 *5 *6 *7)))) (-2943 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-865 *5 *6 *7)))))
+(-10 -7 (-15 -2943 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -2943 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-4152 (($ $ (-564)) 63)) (-3907 (((-112) $ $) 60)) (-3180 (($) 17 T CONST)) (-1939 (($ (-1166 (-564)) (-564)) 62)) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-2409 (($ $) 65)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-1454 (((-768) $) 70)) (-2340 (((-112) $) 31)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3756 (((-564)) 67)) (-3941 (((-564) $) 66)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3042 (($ $ (-564)) 69)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-2678 (((-1150 (-564)) $) 71)) (-2807 (($ $) 68)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-2441 (((-564) $ (-564)) 64)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-866 |#1|) (-140) (-564)) (T -866))
-((-1824 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1150 (-564))))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-768)))) (-2678 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-3204 (*1 *1 *1) (-4 *1 (-866 *2))) (-4022 (*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-1798 (*1 *1 *1) (-4 *1 (-866 *2))) (-2299 (*1 *2 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-4019 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-2806 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-866 *4)))))
-(-13 (-307) (-147) (-10 -8 (-15 -1824 ((-1150 (-564)) $)) (-15 -2261 ((-768) $)) (-15 -2678 ($ $ (-564))) (-15 -3204 ($ $)) (-15 -4022 ((-564))) (-15 -2942 ((-564) $)) (-15 -1798 ($ $)) (-15 -2299 ((-564) $ (-564))) (-15 -4019 ($ $ (-564))) (-15 -2806 ($ (-1166 (-564)) (-564)))))
+((-2678 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1150 (-564))))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-768)))) (-3042 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-2807 (*1 *1 *1) (-4 *1 (-866 *2))) (-3756 (*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-2409 (*1 *1 *1) (-4 *1 (-866 *2))) (-2441 (*1 *2 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-4152 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-866 *4)))))
+(-13 (-307) (-147) (-10 -8 (-15 -2678 ((-1150 (-564)) $)) (-15 -1454 ((-768) $)) (-15 -3042 ($ $ (-564))) (-15 -2807 ($ $)) (-15 -3756 ((-564))) (-15 -3941 ((-564) $)) (-15 -2409 ($ $)) (-15 -2441 ((-564) $ (-564))) (-15 -4152 ($ $ (-564))) (-15 -1939 ($ (-1166 (-564)) (-564)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-4019 (($ $ (-564)) NIL)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-2806 (($ (-1166 (-564)) (-564)) NIL)) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1798 (($ $) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-2261 (((-768) $) NIL)) (-2419 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4022 (((-564)) NIL)) (-2942 (((-564) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2678 (($ $ (-564)) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1824 (((-1150 (-564)) $) NIL)) (-3204 (($ $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-1965 (((-768)) NIL T CONST)) (-1582 (((-112) $ $) NIL)) (-2299 (((-564) $ (-564)) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-4152 (($ $ (-564)) NIL)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-1939 (($ (-1166 (-564)) (-564)) NIL)) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2409 (($ $) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1454 (((-768) $) NIL)) (-2340 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3756 (((-564)) NIL)) (-3941 (((-564) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3042 (($ $ (-564)) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2678 (((-1150 (-564)) $) NIL)) (-2807 (($ $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3379 (((-768)) NIL T CONST)) (-3979 (((-112) $ $) NIL)) (-2441 (((-564) $ (-564)) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
(((-867 |#1|) (-866 |#1|) (-564)) (T -867))
NIL
(-866 |#1|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL (|has| (-867 |#1|) (-817)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-867 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-564))))) (-2064 (((-867 |#1|) $) NIL) (((-1170) $) NIL (|has| (-867 |#1|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-867 |#1|) (-1035 (-564)))) (((-564) $) NIL (|has| (-867 |#1|) (-1035 (-564))))) (-3881 (($ $) NIL) (($ (-564) $) NIL)) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| (-867 |#1|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-867 |#1|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-867 |#1|))) (|:| |vec| (-1259 (-867 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-867 |#1|)) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-867 |#1|) (-545)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1751 (((-112) $) NIL (|has| (-867 |#1|) (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-867 |#1|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-867 |#1|) (-883 (-379))))) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-1507 (((-867 |#1|) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| (-867 |#1|) (-1145)))) (-2506 (((-112) $) NIL (|has| (-867 |#1|) (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL (|has| (-867 |#1|) (-847)))) (-1547 (($ $ $) NIL (|has| (-867 |#1|) (-847)))) (-2082 (($ (-1 (-867 |#1|) (-867 |#1|)) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-867 |#1|) (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL (|has| (-867 |#1|) (-307)))) (-2677 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2407 (($ $ (-641 (-867 |#1|)) (-641 (-867 |#1|))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-867 |#1|) (-867 |#1|)) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-294 (-867 |#1|))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-641 (-294 (-867 |#1|)))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-641 (-1170)) (-641 (-867 |#1|))) NIL (|has| (-867 |#1|) (-514 (-1170) (-867 |#1|)))) (($ $ (-1170) (-867 |#1|)) NIL (|has| (-867 |#1|) (-514 (-1170) (-867 |#1|))))) (-3712 (((-768) $) NIL)) (-4382 (($ $ (-867 |#1|)) NIL (|has| (-867 |#1|) (-286 (-867 |#1|) (-867 |#1|))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) NIL (|has| (-867 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-867 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1 (-867 |#1|) (-867 |#1|)) (-768)) NIL) (($ $ (-1 (-867 |#1|) (-867 |#1|))) NIL)) (-3762 (($ $) NIL)) (-1517 (((-867 |#1|) $) NIL)) (-2127 (((-889 (-564)) $) NIL (|has| (-867 |#1|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-867 |#1|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-867 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-867 |#1|) (-1019))) (((-225) $) NIL (|has| (-867 |#1|) (-1019)))) (-3028 (((-174 (-407 (-564))) $) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-867 |#1|) (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-867 |#1|)) NIL) (($ (-1170)) NIL (|has| (-867 |#1|) (-1035 (-1170))))) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| (-867 |#1|) (-906))) (|has| (-867 |#1|) (-145))))) (-1965 (((-768)) NIL T CONST)) (-2991 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-545)))) (-1582 (((-112) $ $) NIL)) (-2299 (((-407 (-564)) $ (-564)) NIL)) (-2016 (($ $) NIL (|has| (-867 |#1|) (-817)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-867 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-867 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1 (-867 |#1|) (-867 |#1|)) (-768)) NIL) (($ $ (-1 (-867 |#1|) (-867 |#1|))) NIL)) (-1738 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1705 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1793 (($ $ $) NIL) (($ (-867 |#1|) (-867 |#1|)) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-867 |#1|) $) NIL) (($ $ (-867 |#1|)) NIL)))
-(((-868 |#1|) (-13 (-989 (-867 |#1|)) (-10 -8 (-15 -2299 ((-407 (-564)) $ (-564))) (-15 -3028 ((-174 (-407 (-564))) $)) (-15 -3881 ($ $)) (-15 -3881 ($ (-564) $)))) (-564)) (T -868))
-((-2299 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-868 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3)) (-14 *3 (-564)))) (-3881 (*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-14 *2 (-564)))) (-3881 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-868 *3)) (-14 *3 *2))))
-(-13 (-989 (-867 |#1|)) (-10 -8 (-15 -2299 ((-407 (-564)) $ (-564))) (-15 -3028 ((-174 (-407 (-564))) $)) (-15 -3881 ($ $)) (-15 -3881 ($ (-564) $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 ((|#2| $) NIL (|has| |#2| (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL (|has| |#2| (-817)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| |#2| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564))))) (-2064 ((|#2| $) NIL) (((-1170) $) NIL (|has| |#2| (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-564)))) (((-564) $) NIL (|has| |#2| (-1035 (-564))))) (-3881 (($ $) 35) (($ (-564) $) 38)) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) 63)) (-2542 (($) NIL (|has| |#2| (-545)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1751 (((-112) $) NIL (|has| |#2| (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#2| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#2| (-883 (-379))))) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-1507 ((|#2| $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-2506 (((-112) $) NIL (|has| |#2| (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL (|has| |#2| (-847)))) (-1547 (($ $ $) NIL (|has| |#2| (-847)))) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 59)) (-1611 (($) NIL (|has| |#2| (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL (|has| |#2| (-307)))) (-2677 ((|#2| $) NIL (|has| |#2| (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2407 (($ $ (-641 |#2|) (-641 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (|has| |#2| (-514 (-1170) |#2|))) (($ $ (-1170) |#2|) NIL (|has| |#2| (-514 (-1170) |#2|)))) (-3712 (((-768) $) NIL)) (-4382 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) NIL (|has| |#2| (-233))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3762 (($ $) NIL)) (-1517 ((|#2| $) NIL)) (-2127 (((-889 (-564)) $) NIL (|has| |#2| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#2| (-612 (-889 (-379))))) (((-536) $) NIL (|has| |#2| (-612 (-536)))) (((-379) $) NIL (|has| |#2| (-1019))) (((-225) $) NIL (|has| |#2| (-1019)))) (-3028 (((-174 (-407 (-564))) $) 77)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1765 (((-859) $) 106) (($ (-564)) 20) (($ $) NIL) (($ (-407 (-564))) 25) (($ |#2|) 19) (($ (-1170)) NIL (|has| |#2| (-1035 (-1170))))) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2991 ((|#2| $) NIL (|has| |#2| (-545)))) (-1582 (((-112) $ $) NIL)) (-2299 (((-407 (-564)) $ (-564)) 70)) (-2016 (($ $) NIL (|has| |#2| (-817)))) (-4317 (($) 15 T CONST)) (-4327 (($) 17 T CONST)) (-3190 (($ $) NIL (|has| |#2| (-233))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1738 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1686 (((-112) $ $) 45)) (-1728 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1793 (($ $ $) 24) (($ |#2| |#2|) 64)) (-1783 (($ $) 49) (($ $ $) 51)) (-1771 (($ $ $) 47)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 60)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 52) (($ $ $) 54) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#2| $) 65) (($ $ |#2|) NIL)))
-(((-869 |#1| |#2|) (-13 (-989 |#2|) (-10 -8 (-15 -2299 ((-407 (-564)) $ (-564))) (-15 -3028 ((-174 (-407 (-564))) $)) (-15 -3881 ($ $)) (-15 -3881 ($ (-564) $)))) (-564) (-866 |#1|)) (T -869))
-((-2299 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-869 *4 *5)) (-5 *3 (-564)) (-4 *5 (-866 *4)))) (-3028 (*1 *2 *1) (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3)))) (-3881 (*1 *1 *1) (-12 (-14 *2 (-564)) (-5 *1 (-869 *2 *3)) (-4 *3 (-866 *2)))) (-3881 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3)))))
-(-13 (-989 |#2|) (-10 -8 (-15 -2299 ((-407 (-564)) $ (-564))) (-15 -3028 ((-174 (-407 (-564))) $)) (-15 -3881 ($ $)) (-15 -3881 ($ (-564) $))))
-((-1754 (((-112) $ $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-2711 ((|#2| $) 12)) (-1434 (($ |#1| |#2|) 9)) (-4202 (((-1152) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-3802 (((-1114) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-3073 ((|#1| $) 11)) (-1776 (($ |#1| |#2|) 10)) (-1765 (((-859) $) 18 (-4002 (-12 (|has| |#1| (-611 (-859))) (|has| |#2| (-611 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) (-1686 (((-112) $ $) 23 (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))))
-(((-870 |#1| |#2|) (-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-859))) (IF (|has| |#2| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -1434 ($ |#1| |#2|)) (-15 -1776 ($ |#1| |#2|)) (-15 -3073 (|#1| $)) (-15 -2711 (|#2| $)))) (-1209) (-1209)) (T -870))
-((-1434 (*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-3073 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1209)))) (-2711 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1209)))))
-(-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-859))) (IF (|has| |#2| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -1434 ($ |#1| |#2|)) (-15 -1776 ($ |#1| |#2|)) (-15 -3073 (|#1| $)) (-15 -2711 (|#2| $))))
-((-1754 (((-112) $ $) NIL)) (-1304 (((-564) $) 16)) (-3545 (($ (-157)) 13)) (-2897 (($ (-157)) 14)) (-4202 (((-1152) $) NIL)) (-3955 (((-157) $) 15)) (-3802 (((-1114) $) NIL)) (-2592 (($ (-157)) 11)) (-2616 (($ (-157)) 10)) (-1765 (((-859) $) 24) (($ (-157)) 17)) (-1857 (($ (-157)) 12)) (-1686 (((-112) $ $) NIL)))
-(((-871) (-13 (-1094) (-10 -8 (-15 -2616 ($ (-157))) (-15 -2592 ($ (-157))) (-15 -1857 ($ (-157))) (-15 -3545 ($ (-157))) (-15 -2897 ($ (-157))) (-15 -3955 ((-157) $)) (-15 -1304 ((-564) $)) (-15 -1765 ($ (-157)))))) (T -871))
-((-2616 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1857 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-2897 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-871)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
-(-13 (-1094) (-10 -8 (-15 -2616 ($ (-157))) (-15 -2592 ($ (-157))) (-15 -1857 ($ (-157))) (-15 -3545 ($ (-157))) (-15 -2897 ($ (-157))) (-15 -3955 ((-157) $)) (-15 -1304 ((-564) $)) (-15 -1765 ($ (-157)))))
-((-1765 (((-316 (-564)) (-407 (-949 (-48)))) 23) (((-316 (-564)) (-949 (-48))) 18)))
-(((-872) (-10 -7 (-15 -1765 ((-316 (-564)) (-949 (-48)))) (-15 -1765 ((-316 (-564)) (-407 (-949 (-48))))))) (T -872))
-((-1765 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 (-48)))) (-5 *2 (-316 (-564))) (-5 *1 (-872)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-949 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-872)))))
-(-10 -7 (-15 -1765 ((-316 (-564)) (-949 (-48)))) (-15 -1765 ((-316 (-564)) (-407 (-949 (-48))))))
-((-2082 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 15)))
-(((-873 |#1| |#2|) (-10 -7 (-15 -2082 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-1209) (-1209)) (T -873))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6)))))
-(-10 -7 (-15 -2082 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|))))
-((-2528 (($ |#1| |#1|) 8)) (-4105 ((|#1| $ (-768)) 15)))
-(((-874 |#1|) (-10 -8 (-15 -2528 ($ |#1| |#1|)) (-15 -4105 (|#1| $ (-768)))) (-1209)) (T -874))
-((-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-874 *2)) (-4 *2 (-1209)))) (-2528 (*1 *1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1209)))))
-(-10 -8 (-15 -2528 ($ |#1| |#1|)) (-15 -4105 (|#1| $ (-768))))
-((-2082 (((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)) 15)))
-(((-875 |#1| |#2|) (-10 -7 (-15 -2082 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) (-1209) (-1209)) (T -875))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-876 *6)) (-5 *1 (-875 *5 *6)))))
-(-10 -7 (-15 -2082 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|))))
-((-2528 (($ |#1| |#1| |#1|) 8)) (-4105 ((|#1| $ (-768)) 15)))
-(((-876 |#1|) (-10 -8 (-15 -2528 ($ |#1| |#1| |#1|)) (-15 -4105 (|#1| $ (-768)))) (-1209)) (T -876))
-((-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-876 *2)) (-4 *2 (-1209)))) (-2528 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1209)))))
-(-10 -8 (-15 -2528 ($ |#1| |#1| |#1|)) (-15 -4105 (|#1| $ (-768))))
-((-3860 (((-641 (-1175)) (-1152)) 9)))
-(((-877) (-10 -7 (-15 -3860 ((-641 (-1175)) (-1152))))) (T -877))
-((-3860 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-877)))))
-(-10 -7 (-15 -3860 ((-641 (-1175)) (-1152))))
-((-2082 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15)))
-(((-878 |#1| |#2|) (-10 -7 (-15 -2082 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1209) (-1209)) (T -878))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))))
-(-10 -7 (-15 -2082 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))
-((-3065 (($ |#1| |#1| |#1|) 8)) (-4105 ((|#1| $ (-768)) 15)))
-(((-879 |#1|) (-10 -8 (-15 -3065 ($ |#1| |#1| |#1|)) (-15 -4105 (|#1| $ (-768)))) (-1209)) (T -879))
-((-4105 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-879 *2)) (-4 *2 (-1209)))) (-3065 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1209)))))
-(-10 -8 (-15 -3065 ($ |#1| |#1| |#1|)) (-15 -4105 (|#1| $ (-768))))
-((-3200 (((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564)))) 47)) (-1996 (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 43)) (-1508 (((-1150 (-641 (-564))) (-641 (-564))) 57) (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 55)) (-1474 (((-1150 (-641 (-564))) (-564)) 58)) (-1970 (((-1150 (-641 (-564))) (-564) (-564)) 34) (((-1150 (-641 (-564))) (-564)) 23) (((-1150 (-641 (-564))) (-564) (-564) (-564)) 19)) (-4306 (((-1150 (-641 (-564))) (-1150 (-641 (-564)))) 41)) (-2502 (((-641 (-564)) (-641 (-564))) 40)))
-(((-880) (-10 -7 (-15 -1970 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -1970 ((-1150 (-641 (-564))) (-564))) (-15 -1970 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -2502 ((-641 (-564)) (-641 (-564)))) (-15 -4306 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -1996 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -3200 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -1508 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -1508 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -1474 ((-1150 (-641 (-564))) (-564))))) (T -880))
-((-1474 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-1508 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-1508 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-3200 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564))) (-5 *1 (-880)))) (-1996 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-4306 (*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-880)))) (-1970 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-1970 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-1970 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))))
-(-10 -7 (-15 -1970 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -1970 ((-1150 (-641 (-564))) (-564))) (-15 -1970 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -2502 ((-641 (-564)) (-641 (-564)))) (-15 -4306 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -1996 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -3200 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -1508 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -1508 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -1474 ((-1150 (-641 (-564))) (-564))))
-((-2127 (((-889 (-379)) $) 9 (|has| |#1| (-612 (-889 (-379))))) (((-889 (-564)) $) 8 (|has| |#1| (-612 (-889 (-564)))))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL (|has| (-867 |#1|) (-817)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-867 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-564))))) (-2376 (((-867 |#1|) $) NIL) (((-1170) $) NIL (|has| (-867 |#1|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-867 |#1|) (-1035 (-564)))) (((-564) $) NIL (|has| (-867 |#1|) (-1035 (-564))))) (-1928 (($ $) NIL) (($ (-564) $) NIL)) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| (-867 |#1|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-867 |#1|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-867 |#1|))) (|:| |vec| (-1259 (-867 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-867 |#1|)) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-867 |#1|) (-545)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| (-867 |#1|) (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-867 |#1|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-867 |#1|) (-883 (-379))))) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL)) (-1655 (((-867 |#1|) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| (-867 |#1|) (-1145)))) (-2001 (((-112) $) NIL (|has| (-867 |#1|) (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL (|has| (-867 |#1|) (-847)))) (-3413 (($ $ $) NIL (|has| (-867 |#1|) (-847)))) (-2313 (($ (-1 (-867 |#1|) (-867 |#1|)) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-867 |#1|) (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL (|has| (-867 |#1|) (-307)))) (-3034 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2582 (($ $ (-641 (-867 |#1|)) (-641 (-867 |#1|))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-867 |#1|) (-867 |#1|)) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-294 (-867 |#1|))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-641 (-294 (-867 |#1|)))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-641 (-1170)) (-641 (-867 |#1|))) NIL (|has| (-867 |#1|) (-514 (-1170) (-867 |#1|)))) (($ $ (-1170) (-867 |#1|)) NIL (|has| (-867 |#1|) (-514 (-1170) (-867 |#1|))))) (-3966 (((-768) $) NIL)) (-4382 (($ $ (-867 |#1|)) NIL (|has| (-867 |#1|) (-286 (-867 |#1|) (-867 |#1|))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) NIL (|has| (-867 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-867 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1 (-867 |#1|) (-867 |#1|)) (-768)) NIL) (($ $ (-1 (-867 |#1|) (-867 |#1|))) NIL)) (-3197 (($ $) NIL)) (-1668 (((-867 |#1|) $) NIL)) (-2374 (((-889 (-564)) $) NIL (|has| (-867 |#1|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-867 |#1|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-867 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-867 |#1|) (-1019))) (((-225) $) NIL (|has| (-867 |#1|) (-1019)))) (-3399 (((-174 (-407 (-564))) $) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-867 |#1|) (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-867 |#1|)) NIL) (($ (-1170)) NIL (|has| (-867 |#1|) (-1035 (-1170))))) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| (-867 |#1|) (-906))) (|has| (-867 |#1|) (-145))))) (-3379 (((-768)) NIL T CONST)) (-4296 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-545)))) (-3979 (((-112) $ $) NIL)) (-2441 (((-407 (-564)) $ (-564)) NIL)) (-3920 (($ $) NIL (|has| (-867 |#1|) (-817)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $) NIL (|has| (-867 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-867 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1 (-867 |#1|) (-867 |#1|)) (-768)) NIL) (($ $ (-1 (-867 |#1|) (-867 |#1|))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1746 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1841 (($ $ $) NIL) (($ (-867 |#1|) (-867 |#1|)) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-867 |#1|) $) NIL) (($ $ (-867 |#1|)) NIL)))
+(((-868 |#1|) (-13 (-989 (-867 |#1|)) (-10 -8 (-15 -2441 ((-407 (-564)) $ (-564))) (-15 -3399 ((-174 (-407 (-564))) $)) (-15 -1928 ($ $)) (-15 -1928 ($ (-564) $)))) (-564)) (T -868))
+((-2441 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-868 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3)) (-14 *3 (-564)))) (-1928 (*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-14 *2 (-564)))) (-1928 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-868 *3)) (-14 *3 *2))))
+(-13 (-989 (-867 |#1|)) (-10 -8 (-15 -2441 ((-407 (-564)) $ (-564))) (-15 -3399 ((-174 (-407 (-564))) $)) (-15 -1928 ($ $)) (-15 -1928 ($ (-564) $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 ((|#2| $) NIL (|has| |#2| (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL (|has| |#2| (-817)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| |#2| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564))))) (-2376 ((|#2| $) NIL) (((-1170) $) NIL (|has| |#2| (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-564)))) (((-564) $) NIL (|has| |#2| (-1035 (-564))))) (-1928 (($ $) 35) (($ (-564) $) 38)) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) 63)) (-2939 (($) NIL (|has| |#2| (-545)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3137 (((-112) $) NIL (|has| |#2| (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#2| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#2| (-883 (-379))))) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL)) (-1655 ((|#2| $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-2001 (((-112) $) NIL (|has| |#2| (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL (|has| |#2| (-847)))) (-3413 (($ $ $) NIL (|has| |#2| (-847)))) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 59)) (-3304 (($) NIL (|has| |#2| (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL (|has| |#2| (-307)))) (-3034 ((|#2| $) NIL (|has| |#2| (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2582 (($ $ (-641 |#2|) (-641 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (|has| |#2| (-514 (-1170) |#2|))) (($ $ (-1170) |#2|) NIL (|has| |#2| (-514 (-1170) |#2|)))) (-3966 (((-768) $) NIL)) (-4382 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) NIL (|has| |#2| (-233))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3197 (($ $) NIL)) (-1668 ((|#2| $) NIL)) (-2374 (((-889 (-564)) $) NIL (|has| |#2| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#2| (-612 (-889 (-379))))) (((-536) $) NIL (|has| |#2| (-612 (-536)))) (((-379) $) NIL (|has| |#2| (-1019))) (((-225) $) NIL (|has| |#2| (-1019)))) (-3399 (((-174 (-407 (-564))) $) 77)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3714 (((-859) $) 106) (($ (-564)) 20) (($ $) NIL) (($ (-407 (-564))) 25) (($ |#2|) 19) (($ (-1170)) NIL (|has| |#2| (-1035 (-1170))))) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3379 (((-768)) NIL T CONST)) (-4296 ((|#2| $) NIL (|has| |#2| (-545)))) (-3979 (((-112) $ $) NIL)) (-2441 (((-407 (-564)) $ (-564)) 70)) (-3920 (($ $) NIL (|has| |#2| (-817)))) (-4312 (($) 15 T CONST)) (-4323 (($) 17 T CONST)) (-2238 (($ $) NIL (|has| |#2| (-233))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1720 (((-112) $ $) 45)) (-1769 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1841 (($ $ $) 24) (($ |#2| |#2|) 64)) (-1828 (($ $) 49) (($ $ $) 51)) (-1814 (($ $ $) 47)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 60)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 52) (($ $ $) 54) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#2| $) 65) (($ $ |#2|) NIL)))
+(((-869 |#1| |#2|) (-13 (-989 |#2|) (-10 -8 (-15 -2441 ((-407 (-564)) $ (-564))) (-15 -3399 ((-174 (-407 (-564))) $)) (-15 -1928 ($ $)) (-15 -1928 ($ (-564) $)))) (-564) (-866 |#1|)) (T -869))
+((-2441 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-869 *4 *5)) (-5 *3 (-564)) (-4 *5 (-866 *4)))) (-3399 (*1 *2 *1) (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3)))) (-1928 (*1 *1 *1) (-12 (-14 *2 (-564)) (-5 *1 (-869 *2 *3)) (-4 *3 (-866 *2)))) (-1928 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3)))))
+(-13 (-989 |#2|) (-10 -8 (-15 -2441 ((-407 (-564)) $ (-564))) (-15 -3399 ((-174 (-407 (-564))) $)) (-15 -1928 ($ $)) (-15 -1928 ($ (-564) $))))
+((-3702 (((-112) $ $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-2976 ((|#2| $) 12)) (-3369 (($ |#1| |#2|) 9)) (-1868 (((-1152) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-3844 (((-1114) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-2049 ((|#1| $) 11)) (-3725 (($ |#1| |#2|) 10)) (-3714 (((-859) $) 18 (-4012 (-12 (|has| |#1| (-611 (-859))) (|has| |#2| (-611 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) (-1720 (((-112) $ $) 23 (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))))
+(((-870 |#1| |#2|) (-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-859))) (IF (|has| |#2| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -3369 ($ |#1| |#2|)) (-15 -3725 ($ |#1| |#2|)) (-15 -2049 (|#1| $)) (-15 -2976 (|#2| $)))) (-1209) (-1209)) (T -870))
+((-3369 (*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-3725 (*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-2049 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1209)))) (-2976 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1209)))))
+(-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-859))) (IF (|has| |#2| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -3369 ($ |#1| |#2|)) (-15 -3725 ($ |#1| |#2|)) (-15 -2049 (|#1| $)) (-15 -2976 (|#2| $))))
+((-3702 (((-112) $ $) NIL)) (-2929 (((-564) $) 16)) (-1784 (($ (-157)) 13)) (-3433 (($ (-157)) 14)) (-1868 (((-1152) $) NIL)) (-1346 (((-157) $) 15)) (-3844 (((-1114) $) NIL)) (-2880 (($ (-157)) 11)) (-3560 (($ (-157)) 10)) (-3714 (((-859) $) 24) (($ (-157)) 17)) (-1903 (($ (-157)) 12)) (-1720 (((-112) $ $) NIL)))
+(((-871) (-13 (-1094) (-10 -8 (-15 -3560 ($ (-157))) (-15 -2880 ($ (-157))) (-15 -1903 ($ (-157))) (-15 -1784 ($ (-157))) (-15 -3433 ($ (-157))) (-15 -1346 ((-157) $)) (-15 -2929 ((-564) $)) (-15 -3714 ($ (-157)))))) (T -871))
+((-3560 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-871)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
+(-13 (-1094) (-10 -8 (-15 -3560 ($ (-157))) (-15 -2880 ($ (-157))) (-15 -1903 ($ (-157))) (-15 -1784 ($ (-157))) (-15 -3433 ($ (-157))) (-15 -1346 ((-157) $)) (-15 -2929 ((-564) $)) (-15 -3714 ($ (-157)))))
+((-3714 (((-316 (-564)) (-407 (-949 (-48)))) 23) (((-316 (-564)) (-949 (-48))) 18)))
+(((-872) (-10 -7 (-15 -3714 ((-316 (-564)) (-949 (-48)))) (-15 -3714 ((-316 (-564)) (-407 (-949 (-48))))))) (T -872))
+((-3714 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 (-48)))) (-5 *2 (-316 (-564))) (-5 *1 (-872)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-949 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-872)))))
+(-10 -7 (-15 -3714 ((-316 (-564)) (-949 (-48)))) (-15 -3714 ((-316 (-564)) (-407 (-949 (-48))))))
+((-2313 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 15)))
+(((-873 |#1| |#2|) (-10 -7 (-15 -2313 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-1209) (-1209)) (T -873))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6)))))
+(-10 -7 (-15 -2313 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|))))
+((-2157 (($ |#1| |#1|) 8)) (-3285 ((|#1| $ (-768)) 15)))
+(((-874 |#1|) (-10 -8 (-15 -2157 ($ |#1| |#1|)) (-15 -3285 (|#1| $ (-768)))) (-1209)) (T -874))
+((-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-874 *2)) (-4 *2 (-1209)))) (-2157 (*1 *1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1209)))))
+(-10 -8 (-15 -2157 ($ |#1| |#1|)) (-15 -3285 (|#1| $ (-768))))
+((-2313 (((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)) 15)))
+(((-875 |#1| |#2|) (-10 -7 (-15 -2313 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) (-1209) (-1209)) (T -875))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-876 *6)) (-5 *1 (-875 *5 *6)))))
+(-10 -7 (-15 -2313 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|))))
+((-2157 (($ |#1| |#1| |#1|) 8)) (-3285 ((|#1| $ (-768)) 15)))
+(((-876 |#1|) (-10 -8 (-15 -2157 ($ |#1| |#1| |#1|)) (-15 -3285 (|#1| $ (-768)))) (-1209)) (T -876))
+((-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-876 *2)) (-4 *2 (-1209)))) (-2157 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1209)))))
+(-10 -8 (-15 -2157 ($ |#1| |#1| |#1|)) (-15 -3285 (|#1| $ (-768))))
+((-1708 (((-641 (-1175)) (-1152)) 9)))
+(((-877) (-10 -7 (-15 -1708 ((-641 (-1175)) (-1152))))) (T -877))
+((-1708 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-877)))))
+(-10 -7 (-15 -1708 ((-641 (-1175)) (-1152))))
+((-2313 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15)))
+(((-878 |#1| |#2|) (-10 -7 (-15 -2313 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1209) (-1209)) (T -878))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))))
+(-10 -7 (-15 -2313 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))
+((-3795 (($ |#1| |#1| |#1|) 8)) (-3285 ((|#1| $ (-768)) 15)))
+(((-879 |#1|) (-10 -8 (-15 -3795 ($ |#1| |#1| |#1|)) (-15 -3285 (|#1| $ (-768)))) (-1209)) (T -879))
+((-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-879 *2)) (-4 *2 (-1209)))) (-3795 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1209)))))
+(-10 -8 (-15 -3795 ($ |#1| |#1| |#1|)) (-15 -3285 (|#1| $ (-768))))
+((-2783 (((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564)))) 47)) (-3712 (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 43)) (-2706 (((-1150 (-641 (-564))) (-641 (-564))) 57) (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 55)) (-2357 (((-1150 (-641 (-564))) (-564)) 58)) (-3417 (((-1150 (-641 (-564))) (-564) (-564)) 34) (((-1150 (-641 (-564))) (-564)) 23) (((-1150 (-641 (-564))) (-564) (-564) (-564)) 19)) (-1516 (((-1150 (-641 (-564))) (-1150 (-641 (-564)))) 41)) (-1953 (((-641 (-564)) (-641 (-564))) 40)))
+(((-880) (-10 -7 (-15 -3417 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -3417 ((-1150 (-641 (-564))) (-564))) (-15 -3417 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -1953 ((-641 (-564)) (-641 (-564)))) (-15 -1516 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -3712 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -2783 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -2706 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -2706 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -2357 ((-1150 (-641 (-564))) (-564))))) (T -880))
+((-2357 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-2706 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-2783 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564))) (-5 *1 (-880)))) (-3712 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-1516 (*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)))) (-1953 (*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-880)))) (-3417 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-3417 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-3417 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))))
+(-10 -7 (-15 -3417 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -3417 ((-1150 (-641 (-564))) (-564))) (-15 -3417 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -1953 ((-641 (-564)) (-641 (-564)))) (-15 -1516 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -3712 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -2783 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -2706 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -2706 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -2357 ((-1150 (-641 (-564))) (-564))))
+((-2374 (((-889 (-379)) $) 9 (|has| |#1| (-612 (-889 (-379))))) (((-889 (-564)) $) 8 (|has| |#1| (-612 (-889 (-564)))))))
(((-881 |#1|) (-140) (-1209)) (T -881))
NIL
(-13 (-10 -7 (IF (|has| |t#1| (-612 (-889 (-564)))) (-6 (-612 (-889 (-564)))) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-379)))) (-6 (-612 (-889 (-379)))) |%noBranch|)))
(((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))))
-((-1754 (((-112) $ $) NIL)) (-1633 (($) 14)) (-3800 (($ (-886 |#1| |#2|) (-886 |#1| |#3|)) 28)) (-1822 (((-886 |#1| |#3|) $) 16)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3761 (((-112) $) 22)) (-1966 (($) 19)) (-1765 (((-859) $) 31)) (-3694 (((-886 |#1| |#2|) $) 15)) (-1686 (((-112) $ $) 26)))
-(((-882 |#1| |#2| |#3|) (-13 (-1094) (-10 -8 (-15 -3761 ((-112) $)) (-15 -1966 ($)) (-15 -1633 ($)) (-15 -3800 ($ (-886 |#1| |#2|) (-886 |#1| |#3|))) (-15 -3694 ((-886 |#1| |#2|) $)) (-15 -1822 ((-886 |#1| |#3|) $)))) (-1094) (-1094) (-662 |#2|)) (T -882))
-((-3761 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-1966 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-1633 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-3800 (*1 *1 *2 *3) (-12 (-5 *2 (-886 *4 *5)) (-5 *3 (-886 *4 *6)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-882 *4 *5 *6)))) (-3694 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *4)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-1822 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *5)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))))
-(-13 (-1094) (-10 -8 (-15 -3761 ((-112) $)) (-15 -1966 ($)) (-15 -1633 ($)) (-15 -3800 ($ (-886 |#1| |#2|) (-886 |#1| |#3|))) (-15 -3694 ((-886 |#1| |#2|) $)) (-15 -1822 ((-886 |#1| |#3|) $))))
-((-1754 (((-112) $ $) 7)) (-2549 (((-886 |#1| $) $ (-889 |#1|) (-886 |#1| $)) 13)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)))
+((-3702 (((-112) $ $) NIL)) (-3564 (($) 14)) (-2418 (($ (-886 |#1| |#2|) (-886 |#1| |#3|)) 28)) (-3235 (((-886 |#1| |#3|) $) 16)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3188 (((-112) $) 22)) (-2062 (($) 19)) (-3714 (((-859) $) 31)) (-3771 (((-886 |#1| |#2|) $) 15)) (-1720 (((-112) $ $) 26)))
+(((-882 |#1| |#2| |#3|) (-13 (-1094) (-10 -8 (-15 -3188 ((-112) $)) (-15 -2062 ($)) (-15 -3564 ($)) (-15 -2418 ($ (-886 |#1| |#2|) (-886 |#1| |#3|))) (-15 -3771 ((-886 |#1| |#2|) $)) (-15 -3235 ((-886 |#1| |#3|) $)))) (-1094) (-1094) (-662 |#2|)) (T -882))
+((-3188 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-2062 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-3564 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-2418 (*1 *1 *2 *3) (-12 (-5 *2 (-886 *4 *5)) (-5 *3 (-886 *4 *6)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-882 *4 *5 *6)))) (-3771 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *4)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-3235 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *5)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))))
+(-13 (-1094) (-10 -8 (-15 -3188 ((-112) $)) (-15 -2062 ($)) (-15 -3564 ($)) (-15 -2418 ($ (-886 |#1| |#2|) (-886 |#1| |#3|))) (-15 -3771 ((-886 |#1| |#2|) $)) (-15 -3235 ((-886 |#1| |#3|) $))))
+((-3702 (((-112) $ $) 7)) (-4181 (((-886 |#1| $) $ (-889 |#1|) (-886 |#1| $)) 13)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)))
(((-883 |#1|) (-140) (-1094)) (T -883))
-((-2549 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-886 *4 *1)) (-5 *3 (-889 *4)) (-4 *1 (-883 *4)) (-4 *4 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -2549 ((-886 |t#1| $) $ (-889 |t#1|) (-886 |t#1| $)))))
+((-4181 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-886 *4 *1)) (-5 *3 (-889 *4)) (-4 *1 (-883 *4)) (-4 *4 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -4181 ((-886 |t#1| $) $ (-889 |t#1|) (-886 |t#1| $)))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-3559 (((-112) (-641 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-1835 (((-886 |#1| |#2|) |#2| |#3|) 44 (-12 (-4254 (|has| |#2| (-1035 (-1170)))) (-4254 (|has| |#2| (-1046))))) (((-641 (-294 (-949 |#2|))) |#2| |#3|) 43 (-12 (|has| |#2| (-1046)) (-4254 (|has| |#2| (-1035 (-1170)))))) (((-641 (-294 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1035 (-1170)))) (((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|) 20)))
-(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -3559 ((-112) |#2| |#3|)) (-15 -3559 ((-112) (-641 |#2|) |#3|)) (-15 -1835 ((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1835 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1046)) (-15 -1835 ((-641 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -1835 ((-886 |#1| |#2|) |#2| |#3|))))) (-1094) (-883 |#1|) (-612 (-889 |#1|))) (T -884))
-((-1835 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-886 *5 *3)) (-5 *1 (-884 *5 *3 *4)) (-4254 (-4 *3 (-1035 (-1170)))) (-4254 (-4 *3 (-1046))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-1835 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-949 *3)))) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1046)) (-4254 (-4 *3 (-1035 (-1170)))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-1835 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1035 (-1170))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-1835 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-5 *2 (-882 *5 *6 (-641 *6))) (-5 *1 (-884 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-889 *5))))) (-3559 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-4 *6 (-883 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *6 *4)) (-4 *4 (-612 (-889 *5))))) (-3559 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))))
-(-10 -7 (-15 -3559 ((-112) |#2| |#3|)) (-15 -3559 ((-112) (-641 |#2|) |#3|)) (-15 -1835 ((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1835 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1046)) (-15 -1835 ((-641 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -1835 ((-886 |#1| |#2|) |#2| |#3|)))))
-((-2082 (((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)) 22)))
-(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -2082 ((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)))) (-1094) (-1094) (-1094)) (T -885))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-886 *5 *6)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-886 *5 *7)) (-5 *1 (-885 *5 *6 *7)))))
-(-10 -7 (-15 -2082 ((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|))))
-((-1754 (((-112) $ $) NIL)) (-3423 (($ $ $) 40)) (-3126 (((-3 (-112) "failed") $ (-889 |#1|)) 37)) (-1633 (($) 12)) (-4202 (((-1152) $) NIL)) (-3097 (($ (-889 |#1|) |#2| $) 20)) (-3802 (((-1114) $) NIL)) (-1533 (((-3 |#2| "failed") (-889 |#1|) $) 51)) (-3761 (((-112) $) 15)) (-1966 (($) 13)) (-4101 (((-641 (-2 (|:| -2351 (-1170)) (|:| -1327 |#2|))) $) 25)) (-1776 (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 |#2|)))) 23)) (-1765 (((-859) $) 45)) (-2246 (($ (-889 |#1|) |#2| $ |#2|) 49)) (-2296 (($ (-889 |#1|) |#2| $) 48)) (-1686 (((-112) $ $) 42)))
-(((-886 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3761 ((-112) $)) (-15 -1966 ($)) (-15 -1633 ($)) (-15 -3423 ($ $ $)) (-15 -1533 ((-3 |#2| "failed") (-889 |#1|) $)) (-15 -2296 ($ (-889 |#1|) |#2| $)) (-15 -3097 ($ (-889 |#1|) |#2| $)) (-15 -2246 ($ (-889 |#1|) |#2| $ |#2|)) (-15 -4101 ((-641 (-2 (|:| -2351 (-1170)) (|:| -1327 |#2|))) $)) (-15 -1776 ($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 |#2|))))) (-15 -3126 ((-3 (-112) "failed") $ (-889 |#1|))))) (-1094) (-1094)) (T -886))
-((-3761 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1966 (*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1633 (*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3423 (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1533 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) (-5 *1 (-886 *4 *2)))) (-2296 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-3097 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-2246 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 *4)))) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 *4)))) (-4 *4 (-1094)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)))) (-3126 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -3761 ((-112) $)) (-15 -1966 ($)) (-15 -1633 ($)) (-15 -3423 ($ $ $)) (-15 -1533 ((-3 |#2| "failed") (-889 |#1|) $)) (-15 -2296 ($ (-889 |#1|) |#2| $)) (-15 -3097 ($ (-889 |#1|) |#2| $)) (-15 -2246 ($ (-889 |#1|) |#2| $ |#2|)) (-15 -4101 ((-641 (-2 (|:| -2351 (-1170)) (|:| -1327 |#2|))) $)) (-15 -1776 ($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 |#2|))))) (-15 -3126 ((-3 (-112) "failed") $ (-889 |#1|)))))
-((-4134 (((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|))) 32) (((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|))) 46) (((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|)) 35)) (-3126 (((-112) (-641 |#2|) (-889 |#1|)) 42) (((-112) |#2| (-889 |#1|)) 36)) (-3978 (((-1 (-112) |#2|) (-889 |#1|)) 16)) (-4054 (((-641 |#2|) (-889 |#1|)) 24)) (-3322 (((-889 |#1|) (-889 |#1|) |#2|) 20)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -4134 ((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|))) (-15 -4134 ((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -4134 ((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -3978 ((-1 (-112) |#2|) (-889 |#1|))) (-15 -3126 ((-112) |#2| (-889 |#1|))) (-15 -3126 ((-112) (-641 |#2|) (-889 |#1|))) (-15 -3322 ((-889 |#1|) (-889 |#1|) |#2|)) (-15 -4054 ((-641 |#2|) (-889 |#1|)))) (-1094) (-1209)) (T -887))
-((-4054 (*1 *2 *3) (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) (-3322 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1209)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3)) (-4 *3 (-1209)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) (-4134 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-889 *5)) (-5 *3 (-641 (-1170))) (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-887 *5 *6)))) (-4134 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))) (-4134 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))))
-(-10 -7 (-15 -4134 ((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|))) (-15 -4134 ((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -4134 ((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -3978 ((-1 (-112) |#2|) (-889 |#1|))) (-15 -3126 ((-112) |#2| (-889 |#1|))) (-15 -3126 ((-112) (-641 |#2|) (-889 |#1|))) (-15 -3322 ((-889 |#1|) (-889 |#1|) |#2|)) (-15 -4054 ((-641 |#2|) (-889 |#1|))))
-((-2082 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 19)))
-(((-888 |#1| |#2|) (-10 -7 (-15 -2082 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1094) (-1094)) (T -888))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))))
-(-10 -7 (-15 -2082 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|))))
-((-1754 (((-112) $ $) NIL)) (-2036 (($ $ (-641 (-52))) 73)) (-4170 (((-641 $) $) 137)) (-3367 (((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $) 29)) (-2416 (((-112) $) 34)) (-1335 (($ $ (-641 (-1170)) (-52)) 30)) (-2271 (($ $ (-641 (-52))) 72)) (-2013 (((-3 |#1| "failed") $) 70) (((-3 (-1170) "failed") $) 161)) (-2064 ((|#1| $) 67) (((-1170) $) NIL)) (-2312 (($ $) 125)) (-1555 (((-112) $) 54)) (-2390 (((-641 (-52)) $) 49)) (-1359 (($ (-1170) (-112) (-112) (-112)) 74)) (-1897 (((-3 (-641 $) "failed") (-641 $)) 81)) (-3875 (((-112) $) 57)) (-1415 (((-112) $) 56)) (-4202 (((-1152) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) 40)) (-1760 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 47)) (-3221 (((-3 (-2 (|:| |val| $) (|:| -3747 $)) "failed") $) 96)) (-1295 (((-3 (-641 $) "failed") $) 39)) (-2304 (((-3 (-641 $) "failed") $ (-114)) 123) (((-3 (-2 (|:| -3351 (-114)) (|:| |arg| (-641 $))) "failed") $) 106)) (-2114 (((-3 (-641 $) "failed") $) 41)) (-1691 (((-3 (-2 (|:| |val| $) (|:| -3747 (-768))) "failed") $) 44)) (-2876 (((-112) $) 33)) (-3802 (((-1114) $) NIL)) (-3051 (((-112) $) 27)) (-3278 (((-112) $) 51)) (-3531 (((-641 (-52)) $) 129)) (-1363 (((-112) $) 55)) (-4382 (($ (-114) (-641 $)) 103)) (-2057 (((-768) $) 32)) (-1899 (($ $) 71)) (-2127 (($ (-641 $)) 68)) (-2813 (((-112) $) 31)) (-1765 (((-859) $) 62) (($ |#1|) 23) (($ (-1170)) 75)) (-3322 (($ $ (-52)) 128)) (-4317 (($) 102 T CONST)) (-4327 (($) 82 T CONST)) (-1686 (((-112) $ $) 92)) (-1793 (($ $ $) 116)) (-1771 (($ $ $) 120)) (** (($ $ (-768)) 114) (($ $ $) 63)) (* (($ $ $) 121)))
-(((-889 |#1|) (-13 (-1094) (-1035 |#1|) (-1035 (-1170)) (-10 -8 (-15 0 ($) -3246) (-15 1 ($) -3246) (-15 -1295 ((-3 (-641 $) "failed") $)) (-15 -1964 ((-3 (-641 $) "failed") $)) (-15 -2304 ((-3 (-641 $) "failed") $ (-114))) (-15 -2304 ((-3 (-2 (|:| -3351 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -1691 ((-3 (-2 (|:| |val| $) (|:| -3747 (-768))) "failed") $)) (-15 -1760 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2114 ((-3 (-641 $) "failed") $)) (-15 -3221 ((-3 (-2 (|:| |val| $) (|:| -3747 $)) "failed") $)) (-15 -4382 ($ (-114) (-641 $))) (-15 -1771 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ $)) (-15 -1793 ($ $ $)) (-15 -2057 ((-768) $)) (-15 -2127 ($ (-641 $))) (-15 -1899 ($ $)) (-15 -2876 ((-112) $)) (-15 -1555 ((-112) $)) (-15 -2416 ((-112) $)) (-15 -2813 ((-112) $)) (-15 -1363 ((-112) $)) (-15 -1415 ((-112) $)) (-15 -3875 ((-112) $)) (-15 -3278 ((-112) $)) (-15 -2390 ((-641 (-52)) $)) (-15 -2271 ($ $ (-641 (-52)))) (-15 -2036 ($ $ (-641 (-52)))) (-15 -1359 ($ (-1170) (-112) (-112) (-112))) (-15 -1335 ($ $ (-641 (-1170)) (-52))) (-15 -3367 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -3051 ((-112) $)) (-15 -2312 ($ $)) (-15 -3322 ($ $ (-52))) (-15 -3531 ((-641 (-52)) $)) (-15 -4170 ((-641 $) $)) (-15 -1897 ((-3 (-641 $) "failed") (-641 $))))) (-1094)) (T -889))
-((-4317 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-4327 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1295 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1964 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2304 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-889 *4))) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-2304 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3351 (-114)) (|:| |arg| (-641 (-889 *3))))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1691 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -3747 (-768)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1760 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-889 *3)) (|:| |den| (-889 *3)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2114 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3221 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -3747 (-889 *3)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-4382 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-889 *4))) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-1771 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1793 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1899 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2271 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2036 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1359 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-1335 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2312 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1897 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(-13 (-1094) (-1035 |#1|) (-1035 (-1170)) (-10 -8 (-15 (-4317) ($) -3246) (-15 (-4327) ($) -3246) (-15 -1295 ((-3 (-641 $) "failed") $)) (-15 -1964 ((-3 (-641 $) "failed") $)) (-15 -2304 ((-3 (-641 $) "failed") $ (-114))) (-15 -2304 ((-3 (-2 (|:| -3351 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -1691 ((-3 (-2 (|:| |val| $) (|:| -3747 (-768))) "failed") $)) (-15 -1760 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2114 ((-3 (-641 $) "failed") $)) (-15 -3221 ((-3 (-2 (|:| |val| $) (|:| -3747 $)) "failed") $)) (-15 -4382 ($ (-114) (-641 $))) (-15 -1771 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ $)) (-15 -1793 ($ $ $)) (-15 -2057 ((-768) $)) (-15 -2127 ($ (-641 $))) (-15 -1899 ($ $)) (-15 -2876 ((-112) $)) (-15 -1555 ((-112) $)) (-15 -2416 ((-112) $)) (-15 -2813 ((-112) $)) (-15 -1363 ((-112) $)) (-15 -1415 ((-112) $)) (-15 -3875 ((-112) $)) (-15 -3278 ((-112) $)) (-15 -2390 ((-641 (-52)) $)) (-15 -2271 ($ $ (-641 (-52)))) (-15 -2036 ($ $ (-641 (-52)))) (-15 -1359 ($ (-1170) (-112) (-112) (-112))) (-15 -1335 ($ $ (-641 (-1170)) (-52))) (-15 -3367 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -3051 ((-112) $)) (-15 -2312 ($ $)) (-15 -3322 ($ $ (-52))) (-15 -3531 ((-641 (-52)) $)) (-15 -4170 ((-641 $) $)) (-15 -1897 ((-3 (-641 $) "failed") (-641 $)))))
-((-1754 (((-112) $ $) NIL)) (-3265 (((-641 |#1|) $) 19)) (-3564 (((-112) $) 49)) (-2013 (((-3 (-668 |#1|) "failed") $) 56)) (-2064 (((-668 |#1|) $) 54)) (-3086 (($ $) 23)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2564 (((-768) $) 61)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 (((-668 |#1|) $) 21)) (-1765 (((-859) $) 47) (($ (-668 |#1|)) 26) (((-816 |#1|) $) 36) (($ |#1|) 25)) (-4327 (($) 9 T CONST)) (-3723 (((-641 (-668 |#1|)) $) 28)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 12)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 67)))
-(((-890 |#1|) (-13 (-847) (-1035 (-668 |#1|)) (-10 -8 (-15 1 ($) -3246) (-15 -1765 ((-816 |#1|) $)) (-15 -1765 ($ |#1|)) (-15 -3073 ((-668 |#1|) $)) (-15 -2564 ((-768) $)) (-15 -3723 ((-641 (-668 |#1|)) $)) (-15 -3086 ($ $)) (-15 -3564 ((-112) $)) (-15 -3265 ((-641 |#1|) $)))) (-847)) (T -890))
-((-4327 (*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-1765 (*1 *1 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-3723 (*1 *2 *1) (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-3086 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))))
-(-13 (-847) (-1035 (-668 |#1|)) (-10 -8 (-15 (-4327) ($) -3246) (-15 -1765 ((-816 |#1|) $)) (-15 -1765 ($ |#1|)) (-15 -3073 ((-668 |#1|) $)) (-15 -2564 ((-768) $)) (-15 -3723 ((-641 (-668 |#1|)) $)) (-15 -3086 ($ $)) (-15 -3564 ((-112) $)) (-15 -3265 ((-641 |#1|) $))))
-((-1979 ((|#1| |#1| |#1|) 19)))
-(((-891 |#1| |#2|) (-10 -7 (-15 -1979 (|#1| |#1| |#1|))) (-1235 |#2|) (-1046)) (T -891))
-((-1979 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1235 *3)))))
-(-10 -7 (-15 -1979 (|#1| |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-1657 (((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 14)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-3961 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 13)) (-1686 (((-112) $ $) 6)))
+((-1932 (((-112) (-641 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-1536 (((-886 |#1| |#2|) |#2| |#3|) 44 (-12 (-4253 (|has| |#2| (-1035 (-1170)))) (-4253 (|has| |#2| (-1046))))) (((-641 (-294 (-949 |#2|))) |#2| |#3|) 43 (-12 (|has| |#2| (-1046)) (-4253 (|has| |#2| (-1035 (-1170)))))) (((-641 (-294 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1035 (-1170)))) (((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|) 20)))
+(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -1932 ((-112) |#2| |#3|)) (-15 -1932 ((-112) (-641 |#2|) |#3|)) (-15 -1536 ((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1536 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1046)) (-15 -1536 ((-641 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -1536 ((-886 |#1| |#2|) |#2| |#3|))))) (-1094) (-883 |#1|) (-612 (-889 |#1|))) (T -884))
+((-1536 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-886 *5 *3)) (-5 *1 (-884 *5 *3 *4)) (-4253 (-4 *3 (-1035 (-1170)))) (-4253 (-4 *3 (-1046))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-1536 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-949 *3)))) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1046)) (-4253 (-4 *3 (-1035 (-1170)))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-1536 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1035 (-1170))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-1536 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-5 *2 (-882 *5 *6 (-641 *6))) (-5 *1 (-884 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-889 *5))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-4 *6 (-883 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *6 *4)) (-4 *4 (-612 (-889 *5))))) (-1932 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))))
+(-10 -7 (-15 -1932 ((-112) |#2| |#3|)) (-15 -1932 ((-112) (-641 |#2|) |#3|)) (-15 -1536 ((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1035 (-1170))) (-15 -1536 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1046)) (-15 -1536 ((-641 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -1536 ((-886 |#1| |#2|) |#2| |#3|)))))
+((-2313 (((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)) 22)))
+(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -2313 ((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)))) (-1094) (-1094) (-1094)) (T -885))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-886 *5 *6)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-886 *5 *7)) (-5 *1 (-885 *5 *6 *7)))))
+(-10 -7 (-15 -2313 ((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|))))
+((-3702 (((-112) $ $) NIL)) (-3452 (($ $ $) 40)) (-3169 (((-3 (-112) "failed") $ (-889 |#1|)) 37)) (-3564 (($) 12)) (-1868 (((-1152) $) NIL)) (-2926 (($ (-889 |#1|) |#2| $) 20)) (-3844 (((-1114) $) NIL)) (-1680 (((-3 |#2| "failed") (-889 |#1|) $) 51)) (-3188 (((-112) $) 15)) (-2062 (($) 13)) (-4222 (((-641 (-2 (|:| -1350 (-1170)) (|:| -2575 |#2|))) $) 25)) (-3725 (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 |#2|)))) 23)) (-3714 (((-859) $) 45)) (-4385 (($ (-889 |#1|) |#2| $ |#2|) 49)) (-3579 (($ (-889 |#1|) |#2| $) 48)) (-1720 (((-112) $ $) 42)))
+(((-886 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3188 ((-112) $)) (-15 -2062 ($)) (-15 -3564 ($)) (-15 -3452 ($ $ $)) (-15 -1680 ((-3 |#2| "failed") (-889 |#1|) $)) (-15 -3579 ($ (-889 |#1|) |#2| $)) (-15 -2926 ($ (-889 |#1|) |#2| $)) (-15 -4385 ($ (-889 |#1|) |#2| $ |#2|)) (-15 -4222 ((-641 (-2 (|:| -1350 (-1170)) (|:| -2575 |#2|))) $)) (-15 -3725 ($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 |#2|))))) (-15 -3169 ((-3 (-112) "failed") $ (-889 |#1|))))) (-1094) (-1094)) (T -886))
+((-3188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2062 (*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3564 (*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3452 (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1680 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) (-5 *1 (-886 *4 *2)))) (-3579 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-2926 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-4385 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 *4)))) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 *4)))) (-4 *4 (-1094)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)))) (-3169 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -3188 ((-112) $)) (-15 -2062 ($)) (-15 -3564 ($)) (-15 -3452 ($ $ $)) (-15 -1680 ((-3 |#2| "failed") (-889 |#1|) $)) (-15 -3579 ($ (-889 |#1|) |#2| $)) (-15 -2926 ($ (-889 |#1|) |#2| $)) (-15 -4385 ($ (-889 |#1|) |#2| $ |#2|)) (-15 -4222 ((-641 (-2 (|:| -1350 (-1170)) (|:| -2575 |#2|))) $)) (-15 -3725 ($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 |#2|))))) (-15 -3169 ((-3 (-112) "failed") $ (-889 |#1|)))))
+((-2828 (((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|))) 32) (((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|))) 46) (((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|)) 35)) (-3169 (((-112) (-641 |#2|) (-889 |#1|)) 42) (((-112) |#2| (-889 |#1|)) 36)) (-2638 (((-1 (-112) |#2|) (-889 |#1|)) 16)) (-2916 (((-641 |#2|) (-889 |#1|)) 24)) (-1453 (((-889 |#1|) (-889 |#1|) |#2|) 20)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -2828 ((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|))) (-15 -2828 ((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -2828 ((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -2638 ((-1 (-112) |#2|) (-889 |#1|))) (-15 -3169 ((-112) |#2| (-889 |#1|))) (-15 -3169 ((-112) (-641 |#2|) (-889 |#1|))) (-15 -1453 ((-889 |#1|) (-889 |#1|) |#2|)) (-15 -2916 ((-641 |#2|) (-889 |#1|)))) (-1094) (-1209)) (T -887))
+((-2916 (*1 *2 *3) (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) (-1453 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1209)))) (-3169 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6)))) (-3169 (*1 *2 *3 *4) (-12 (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3)) (-4 *3 (-1209)))) (-2638 (*1 *2 *3) (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) (-2828 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-889 *5)) (-5 *3 (-641 (-1170))) (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-887 *5 *6)))) (-2828 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))) (-2828 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))))
+(-10 -7 (-15 -2828 ((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|))) (-15 -2828 ((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -2828 ((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -2638 ((-1 (-112) |#2|) (-889 |#1|))) (-15 -3169 ((-112) |#2| (-889 |#1|))) (-15 -3169 ((-112) (-641 |#2|) (-889 |#1|))) (-15 -1453 ((-889 |#1|) (-889 |#1|) |#2|)) (-15 -2916 ((-641 |#2|) (-889 |#1|))))
+((-2313 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 19)))
+(((-888 |#1| |#2|) (-10 -7 (-15 -2313 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1094) (-1094)) (T -888))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))))
+(-10 -7 (-15 -2313 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|))))
+((-3702 (((-112) $ $) NIL)) (-2960 (($ $ (-641 (-52))) 73)) (-4292 (((-641 $) $) 137)) (-3730 (((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $) 29)) (-2307 (((-112) $) 34)) (-2381 (($ $ (-641 (-1170)) (-52)) 30)) (-1533 (($ $ (-641 (-52))) 72)) (-2224 (((-3 |#1| "failed") $) 70) (((-3 (-1170) "failed") $) 161)) (-2376 ((|#1| $) 67) (((-1170) $) NIL)) (-3720 (($ $) 125)) (-1891 (((-112) $) 54)) (-3219 (((-641 (-52)) $) 49)) (-3813 (($ (-1170) (-112) (-112) (-112)) 74)) (-3985 (((-3 (-641 $) "failed") (-641 $)) 81)) (-1873 (((-112) $) 57)) (-1616 (((-112) $) 56)) (-1868 (((-1152) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) 40)) (-3641 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 47)) (-1705 (((-3 (-2 (|:| |val| $) (|:| -3078 $)) "failed") $) 96)) (-3591 (((-3 (-641 $) "failed") $) 39)) (-3665 (((-3 (-641 $) "failed") $ (-114)) 123) (((-3 (-2 (|:| -3395 (-114)) (|:| |arg| (-641 $))) "failed") $) 106)) (-2547 (((-3 (-641 $) "failed") $) 41)) (-3741 (((-3 (-2 (|:| |val| $) (|:| -3078 (-768))) "failed") $) 44)) (-1413 (((-112) $) 33)) (-3844 (((-1114) $) NIL)) (-3637 (((-112) $) 27)) (-4115 (((-112) $) 51)) (-1645 (((-641 (-52)) $) 129)) (-1382 (((-112) $) 55)) (-4382 (($ (-114) (-641 $)) 103)) (-3735 (((-768) $) 32)) (-3890 (($ $) 71)) (-2374 (($ (-641 $)) 68)) (-2017 (((-112) $) 31)) (-3714 (((-859) $) 62) (($ |#1|) 23) (($ (-1170)) 75)) (-1453 (($ $ (-52)) 128)) (-4312 (($) 102 T CONST)) (-4323 (($) 82 T CONST)) (-1720 (((-112) $ $) 92)) (-1841 (($ $ $) 116)) (-1814 (($ $ $) 120)) (** (($ $ (-768)) 114) (($ $ $) 63)) (* (($ $ $) 121)))
+(((-889 |#1|) (-13 (-1094) (-1035 |#1|) (-1035 (-1170)) (-10 -8 (-15 0 ($) -2222) (-15 1 ($) -2222) (-15 -3591 ((-3 (-641 $) "failed") $)) (-15 -3370 ((-3 (-641 $) "failed") $)) (-15 -3665 ((-3 (-641 $) "failed") $ (-114))) (-15 -3665 ((-3 (-2 (|:| -3395 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -3741 ((-3 (-2 (|:| |val| $) (|:| -3078 (-768))) "failed") $)) (-15 -3641 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2547 ((-3 (-641 $) "failed") $)) (-15 -1705 ((-3 (-2 (|:| |val| $) (|:| -3078 $)) "failed") $)) (-15 -4382 ($ (-114) (-641 $))) (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ $)) (-15 -1841 ($ $ $)) (-15 -3735 ((-768) $)) (-15 -2374 ($ (-641 $))) (-15 -3890 ($ $)) (-15 -1413 ((-112) $)) (-15 -1891 ((-112) $)) (-15 -2307 ((-112) $)) (-15 -2017 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1616 ((-112) $)) (-15 -1873 ((-112) $)) (-15 -4115 ((-112) $)) (-15 -3219 ((-641 (-52)) $)) (-15 -1533 ($ $ (-641 (-52)))) (-15 -2960 ($ $ (-641 (-52)))) (-15 -3813 ($ (-1170) (-112) (-112) (-112))) (-15 -2381 ($ $ (-641 (-1170)) (-52))) (-15 -3730 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -3637 ((-112) $)) (-15 -3720 ($ $)) (-15 -1453 ($ $ (-52))) (-15 -1645 ((-641 (-52)) $)) (-15 -4292 ((-641 $) $)) (-15 -3985 ((-3 (-641 $) "failed") (-641 $))))) (-1094)) (T -889))
+((-4312 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-4323 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-3591 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3370 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3665 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-889 *4))) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-3665 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3395 (-114)) (|:| |arg| (-641 (-889 *3))))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3741 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -3078 (-768)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3641 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-889 *3)) (|:| |den| (-889 *3)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2547 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1705 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -3078 (-889 *3)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-4382 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-889 *4))) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-1814 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1841 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1533 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2960 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3813 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-2381 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3720 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1453 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3985 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(-13 (-1094) (-1035 |#1|) (-1035 (-1170)) (-10 -8 (-15 (-4312) ($) -2222) (-15 (-4323) ($) -2222) (-15 -3591 ((-3 (-641 $) "failed") $)) (-15 -3370 ((-3 (-641 $) "failed") $)) (-15 -3665 ((-3 (-641 $) "failed") $ (-114))) (-15 -3665 ((-3 (-2 (|:| -3395 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -3741 ((-3 (-2 (|:| |val| $) (|:| -3078 (-768))) "failed") $)) (-15 -3641 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2547 ((-3 (-641 $) "failed") $)) (-15 -1705 ((-3 (-2 (|:| |val| $) (|:| -3078 $)) "failed") $)) (-15 -4382 ($ (-114) (-641 $))) (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ $)) (-15 -1841 ($ $ $)) (-15 -3735 ((-768) $)) (-15 -2374 ($ (-641 $))) (-15 -3890 ($ $)) (-15 -1413 ((-112) $)) (-15 -1891 ((-112) $)) (-15 -2307 ((-112) $)) (-15 -2017 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -1616 ((-112) $)) (-15 -1873 ((-112) $)) (-15 -4115 ((-112) $)) (-15 -3219 ((-641 (-52)) $)) (-15 -1533 ($ $ (-641 (-52)))) (-15 -2960 ($ $ (-641 (-52)))) (-15 -3813 ($ (-1170) (-112) (-112) (-112))) (-15 -2381 ($ $ (-641 (-1170)) (-52))) (-15 -3730 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -3637 ((-112) $)) (-15 -3720 ($ $)) (-15 -1453 ($ $ (-52))) (-15 -1645 ((-641 (-52)) $)) (-15 -4292 ((-641 $) $)) (-15 -3985 ((-3 (-641 $) "failed") (-641 $)))))
+((-3702 (((-112) $ $) NIL)) (-3441 (((-641 |#1|) $) 19)) (-1989 (((-112) $) 49)) (-2224 (((-3 (-668 |#1|) "failed") $) 56)) (-2376 (((-668 |#1|) $) 54)) (-2063 (($ $) 23)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-3451 (((-768) $) 61)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 (((-668 |#1|) $) 21)) (-3714 (((-859) $) 47) (($ (-668 |#1|)) 26) (((-816 |#1|) $) 36) (($ |#1|) 25)) (-4323 (($) 9 T CONST)) (-2902 (((-641 (-668 |#1|)) $) 28)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 12)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 67)))
+(((-890 |#1|) (-13 (-847) (-1035 (-668 |#1|)) (-10 -8 (-15 1 ($) -2222) (-15 -3714 ((-816 |#1|) $)) (-15 -3714 ($ |#1|)) (-15 -2049 ((-668 |#1|) $)) (-15 -3451 ((-768) $)) (-15 -2902 ((-641 (-668 |#1|)) $)) (-15 -2063 ($ $)) (-15 -1989 ((-112) $)) (-15 -3441 ((-641 |#1|) $)))) (-847)) (T -890))
+((-4323 (*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-3714 (*1 *1 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-2063 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))))
+(-13 (-847) (-1035 (-668 |#1|)) (-10 -8 (-15 (-4323) ($) -2222) (-15 -3714 ((-816 |#1|) $)) (-15 -3714 ($ |#1|)) (-15 -2049 ((-668 |#1|) $)) (-15 -3451 ((-768) $)) (-15 -2902 ((-641 (-668 |#1|)) $)) (-15 -2063 ($ $)) (-15 -1989 ((-112) $)) (-15 -3441 ((-641 |#1|) $))))
+((-3514 ((|#1| |#1| |#1|) 19)))
+(((-891 |#1| |#2|) (-10 -7 (-15 -3514 (|#1| |#1| |#1|))) (-1235 |#2|) (-1046)) (T -891))
+((-3514 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1235 *3)))))
+(-10 -7 (-15 -3514 (|#1| |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-3402 (((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 14)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1424 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 13)) (-1720 (((-112) $ $) 6)))
(((-892) (-140)) (T -892))
-((-1657 (*1 *2 *3 *4) (-12 (-4 *1 (-892)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152)))))) (-3961 (*1 *2 *3) (-12 (-4 *1 (-892)) (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-1032)))))
-(-13 (-1094) (-10 -7 (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -3961 ((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))))))
+((-3402 (*1 *2 *3 *4) (-12 (-4 *1 (-892)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152)))))) (-1424 (*1 *2 *3) (-12 (-4 *1 (-892)) (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-1032)))))
+(-13 (-1094) (-10 -7 (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -1424 ((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1297 ((|#1| |#1| (-768)) 29)) (-2120 (((-3 |#1| "failed") |#1| |#1|) 26)) (-1770 (((-3 (-2 (|:| -3538 |#1|) (|:| -3549 |#1|)) "failed") |#1| (-768) (-768)) 32) (((-641 |#1|) |#1|) 39)))
-(((-893 |#1| |#2|) (-10 -7 (-15 -1770 ((-641 |#1|) |#1|)) (-15 -1770 ((-3 (-2 (|:| -3538 |#1|) (|:| -3549 |#1|)) "failed") |#1| (-768) (-768))) (-15 -2120 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1297 (|#1| |#1| (-768)))) (-1235 |#2|) (-363)) (T -893))
-((-1297 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-5 *1 (-893 *2 *4)) (-4 *2 (-1235 *4)))) (-2120 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-893 *2 *3)) (-4 *2 (-1235 *3)))) (-1770 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-768)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3538 *3) (|:| -3549 *3))) (-5 *1 (-893 *3 *5)) (-4 *3 (-1235 *5)))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-893 *3 *4)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -1770 ((-641 |#1|) |#1|)) (-15 -1770 ((-3 (-2 (|:| -3538 |#1|) (|:| -3549 |#1|)) "failed") |#1| (-768) (-768))) (-15 -2120 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1297 (|#1| |#1| (-768))))
-((-4325 (((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152)) 106) (((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225)) 102) (((-1032) (-895) (-1058)) 94) (((-1032) (-895)) 95)) (-1657 (((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058)) 65) (((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895)) 67)))
-(((-894) (-10 -7 (-15 -4325 ((-1032) (-895))) (-15 -4325 ((-1032) (-895) (-1058))) (-15 -4325 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -4325 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058))))) (T -894))
-((-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-894)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-894)))) (-4325 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-4325 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1032)) (-5 *1 (-894)))))
-(-10 -7 (-15 -4325 ((-1032) (-895))) (-15 -4325 ((-1032) (-895) (-1058))) (-15 -4325 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -4325 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895))) (-15 -1657 ((-2 (|:| -1657 (-379)) (|:| -4363 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058))))
-((-1754 (((-112) $ $) NIL)) (-2064 (((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $) 19)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 21) (($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 18)) (-1686 (((-112) $ $) NIL)))
-(((-895) (-13 (-1094) (-10 -8 (-15 -1765 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -2064 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $))))) (T -895))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-895)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-895)))))
-(-13 (-1094) (-10 -8 (-15 -1765 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -2064 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $))))
-((-3226 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) 10) (($ $ |#2| (-768)) 15) (($ $ (-641 |#2|) (-641 (-768))) 18)) (-3190 (($ $ |#2|) 19) (($ $ (-641 |#2|)) 21) (($ $ |#2| (-768)) 22) (($ $ (-641 |#2|) (-641 (-768))) 24)))
-(((-896 |#1| |#2|) (-10 -8 (-15 -3190 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -3190 (|#1| |#1| |#2| (-768))) (-15 -3190 (|#1| |#1| (-641 |#2|))) (-15 -3190 (|#1| |#1| |#2|)) (-15 -3226 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -3226 (|#1| |#1| |#2| (-768))) (-15 -3226 (|#1| |#1| (-641 |#2|))) (-15 -3226 (|#1| |#1| |#2|))) (-897 |#2|) (-1094)) (T -896))
-NIL
-(-10 -8 (-15 -3190 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -3190 (|#1| |#1| |#2| (-768))) (-15 -3190 (|#1| |#1| (-641 |#2|))) (-15 -3190 (|#1| |#1| |#2|)) (-15 -3226 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -3226 (|#1| |#1| |#2| (-768))) (-15 -3226 (|#1| |#1| (-641 |#2|))) (-15 -3226 (|#1| |#1| |#2|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3226 (($ $ |#1|) 42) (($ $ (-641 |#1|)) 41) (($ $ |#1| (-768)) 40) (($ $ (-641 |#1|) (-641 (-768))) 39)) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ |#1|) 38) (($ $ (-641 |#1|)) 37) (($ $ |#1| (-768)) 36) (($ $ (-641 |#1|) (-641 (-768))) 35)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3617 ((|#1| |#1| (-768)) 29)) (-2620 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3282 (((-3 (-2 (|:| -2578 |#1|) (|:| -2592 |#1|)) "failed") |#1| (-768) (-768)) 32) (((-641 |#1|) |#1|) 39)))
+(((-893 |#1| |#2|) (-10 -7 (-15 -3282 ((-641 |#1|) |#1|)) (-15 -3282 ((-3 (-2 (|:| -2578 |#1|) (|:| -2592 |#1|)) "failed") |#1| (-768) (-768))) (-15 -2620 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3617 (|#1| |#1| (-768)))) (-1235 |#2|) (-363)) (T -893))
+((-3617 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-5 *1 (-893 *2 *4)) (-4 *2 (-1235 *4)))) (-2620 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-893 *2 *3)) (-4 *2 (-1235 *3)))) (-3282 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-768)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2578 *3) (|:| -2592 *3))) (-5 *1 (-893 *3 *5)) (-4 *3 (-1235 *5)))) (-3282 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-893 *3 *4)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -3282 ((-641 |#1|) |#1|)) (-15 -3282 ((-3 (-2 (|:| -2578 |#1|) (|:| -2592 |#1|)) "failed") |#1| (-768) (-768))) (-15 -2620 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3617 (|#1| |#1| (-768))))
+((-3472 (((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152)) 106) (((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225)) 102) (((-1032) (-895) (-1058)) 94) (((-1032) (-895)) 95)) (-3402 (((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058)) 65) (((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895)) 67)))
+(((-894) (-10 -7 (-15 -3472 ((-1032) (-895))) (-15 -3472 ((-1032) (-895) (-1058))) (-15 -3472 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -3472 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058))))) (T -894))
+((-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-894)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-894)))) (-3472 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-3472 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1032)) (-5 *1 (-894)))))
+(-10 -7 (-15 -3472 ((-1032) (-895))) (-15 -3472 ((-1032) (-895) (-1058))) (-15 -3472 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -3472 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895))) (-15 -3402 ((-2 (|:| -3402 (-379)) (|:| -4337 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058))))
+((-3702 (((-112) $ $) NIL)) (-2376 (((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $) 19)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 21) (($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 18)) (-1720 (((-112) $ $) NIL)))
+(((-895) (-13 (-1094) (-10 -8 (-15 -3714 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -2376 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $))))) (T -895))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-895)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-895)))))
+(-13 (-1094) (-10 -8 (-15 -3714 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -2376 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $))))
+((-2203 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) 10) (($ $ |#2| (-768)) 15) (($ $ (-641 |#2|) (-641 (-768))) 18)) (-2238 (($ $ |#2|) 19) (($ $ (-641 |#2|)) 21) (($ $ |#2| (-768)) 22) (($ $ (-641 |#2|) (-641 (-768))) 24)))
+(((-896 |#1| |#2|) (-10 -8 (-15 -2238 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -2238 (|#1| |#1| |#2| (-768))) (-15 -2238 (|#1| |#1| (-641 |#2|))) (-15 -2238 (|#1| |#1| |#2|)) (-15 -2203 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -2203 (|#1| |#1| |#2| (-768))) (-15 -2203 (|#1| |#1| (-641 |#2|))) (-15 -2203 (|#1| |#1| |#2|))) (-897 |#2|) (-1094)) (T -896))
+NIL
+(-10 -8 (-15 -2238 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -2238 (|#1| |#1| |#2| (-768))) (-15 -2238 (|#1| |#1| (-641 |#2|))) (-15 -2238 (|#1| |#1| |#2|)) (-15 -2203 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -2203 (|#1| |#1| |#2| (-768))) (-15 -2203 (|#1| |#1| (-641 |#2|))) (-15 -2203 (|#1| |#1| |#2|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-2203 (($ $ |#1|) 42) (($ $ (-641 |#1|)) 41) (($ $ |#1| (-768)) 40) (($ $ (-641 |#1|) (-641 (-768))) 39)) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ |#1|) 38) (($ $ (-641 |#1|)) 37) (($ $ |#1| (-768)) 36) (($ $ (-641 |#1|) (-641 (-768))) 35)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-897 |#1|) (-140) (-1094)) (T -897))
-((-3226 (*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) (-4 *4 (-1094)))) (-3190 (*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) (-3190 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-3190 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) (-4 *4 (-1094)))))
-(-13 (-1046) (-10 -8 (-15 -3226 ($ $ |t#1|)) (-15 -3226 ($ $ (-641 |t#1|))) (-15 -3226 ($ $ |t#1| (-768))) (-15 -3226 ($ $ (-641 |t#1|) (-641 (-768)))) (-15 -3190 ($ $ |t#1|)) (-15 -3190 ($ $ (-641 |t#1|))) (-15 -3190 ($ $ |t#1| (-768))) (-15 -3190 ($ $ (-641 |t#1|) (-641 (-768))))))
+((-2203 (*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) (-2203 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-2203 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) (-4 *4 (-1094)))) (-2238 (*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-2238 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) (-2238 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-2238 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) (-4 *4 (-1094)))))
+(-13 (-1046) (-10 -8 (-15 -2203 ($ $ |t#1|)) (-15 -2203 ($ $ (-641 |t#1|))) (-15 -2203 ($ $ |t#1| (-768))) (-15 -2203 ($ $ (-641 |t#1|) (-641 (-768)))) (-15 -2238 ($ $ |t#1|)) (-15 -2238 ($ $ (-641 |t#1|))) (-15 -2238 ($ $ |t#1| (-768))) (-15 -2238 ($ $ (-641 |t#1|) (-641 (-768))))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) 26)) (-3263 (((-112) $ (-768)) NIL)) (-3768 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-1887 (($ $ $) NIL (|has| $ (-6 -4412)))) (-3345 (($ $ $) NIL (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-3549 (($ $) 25)) (-3477 (($ |#1|) 12) (($ $ $) 17)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3538 (($ $) 23)) (-3848 (((-641 |#1|) $) NIL)) (-2200 (((-112) $) 20)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3837 (((-564) $ $) NIL)) (-1867 (((-112) $) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-1195 |#1|) $) 9) (((-859) $) 29 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 21 (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-898 |#1|) (-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -3477 ($ |#1|)) (-15 -3477 ($ $ $)))) (-1094)) (T -898))
-((-3477 (*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))) (-3477 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))))
-(-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -3477 ($ |#1|)) (-15 -3477 ($ $ $))))
-((-1606 ((|#2| (-1136 |#1| |#2|)) 53)))
-(((-899 |#1| |#2|) (-10 -7 (-15 -1606 (|#2| (-1136 |#1| |#2|)))) (-918) (-13 (-1046) (-10 -7 (-6 (-4413 "*"))))) (T -899))
-((-1606 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-918)) (-4 *2 (-13 (-1046) (-10 -7 (-6 (-4413 "*"))))) (-5 *1 (-899 *4 *2)))))
-(-10 -7 (-15 -1606 (|#2| (-1136 |#1| |#2|))))
-((-1754 (((-112) $ $) 7)) (-3760 (($) 18 T CONST)) (-1926 (((-3 $ "failed") $) 15)) (-3938 (((-1096 |#1|) $ |#1|) 32)) (-2419 (((-112) $) 17)) (-3571 (($ $ $) 30 (-4002 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1547 (($ $ $) 29 (-4002 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-4202 (((-1152) $) 9)) (-4272 (($ $) 24)) (-3802 (((-1114) $) 10)) (-2407 ((|#1| $ |#1|) 34)) (-4382 ((|#1| $ |#1|) 33)) (-1785 (($ (-641 (-641 |#1|))) 35)) (-1861 (($ (-641 |#1|)) 36)) (-2502 (($ $ $) 21)) (-1762 (($ $ $) 20)) (-1765 (((-859) $) 11)) (-4327 (($) 19 T CONST)) (-1738 (((-112) $ $) 27 (-4002 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1715 (((-112) $ $) 26 (-4002 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 28 (-4002 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1705 (((-112) $ $) 31)) (-1793 (($ $ $) 23)) (** (($ $ (-918)) 13) (($ $ (-768)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14)))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) 26)) (-2141 (((-112) $ (-768)) NIL)) (-3242 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-2064 (($ $ $) NIL (|has| $ (-6 -4413)))) (-3485 (($ $ $) NIL (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413))) (($ $ "left" $) NIL (|has| $ (-6 -4413))) (($ $ "right" $) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2592 (($ $) 25)) (-2447 (($ |#1|) 12) (($ $ $) 17)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2578 (($ $) 23)) (-2523 (((-641 |#1|) $) NIL)) (-2120 (((-112) $) 20)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2774 (((-564) $ $) NIL)) (-1875 (((-112) $) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-1195 |#1|) $) 9) (((-859) $) 29 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 21 (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-898 |#1|) (-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -2447 ($ |#1|)) (-15 -2447 ($ $ $)))) (-1094)) (T -898))
+((-2447 (*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))) (-2447 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))))
+(-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -2447 ($ |#1|)) (-15 -2447 ($ $ $))))
+((-4196 ((|#2| (-1136 |#1| |#2|)) 53)))
+(((-899 |#1| |#2|) (-10 -7 (-15 -4196 (|#2| (-1136 |#1| |#2|)))) (-918) (-13 (-1046) (-10 -7 (-6 (-4414 "*"))))) (T -899))
+((-4196 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-918)) (-4 *2 (-13 (-1046) (-10 -7 (-6 (-4414 "*"))))) (-5 *1 (-899 *4 *2)))))
+(-10 -7 (-15 -4196 (|#2| (-1136 |#1| |#2|))))
+((-3702 (((-112) $ $) 7)) (-3180 (($) 18 T CONST)) (-4272 (((-3 $ "failed") $) 15)) (-4305 (((-1096 |#1|) $ |#1|) 32)) (-2340 (((-112) $) 17)) (-3428 (($ $ $) 30 (-4012 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-3413 (($ $ $) 29 (-4012 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1868 (((-1152) $) 9)) (-1295 (($ $) 24)) (-3844 (((-1114) $) 10)) (-2582 ((|#1| $ |#1|) 34)) (-4382 ((|#1| $ |#1|) 33)) (-2274 (($ (-641 (-641 |#1|))) 35)) (-1803 (($ (-641 |#1|)) 36)) (-1953 (($ $ $) 21)) (-3217 (($ $ $) 20)) (-3714 (((-859) $) 11)) (-4323 (($) 19 T CONST)) (-1781 (((-112) $ $) 27 (-4012 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1758 (((-112) $ $) 26 (-4012 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 28 (-4012 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1746 (((-112) $ $) 31)) (-1841 (($ $ $) 23)) (** (($ $ (-918)) 13) (($ $ (-768)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14)))
(((-900 |#1|) (-140) (-1094)) (T -900))
-((-1861 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-2407 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-4382 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3938 (*1 *2 *1 *3) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3)))) (-1705 (*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(-13 (-473) (-10 -8 (-15 -1861 ($ (-641 |t#1|))) (-15 -1785 ($ (-641 (-641 |t#1|)))) (-15 -2407 (|t#1| $ |t#1|)) (-15 -4382 (|t#1| $ |t#1|)) (-15 -3938 ((-1096 |t#1|) $ |t#1|)) (-15 -1705 ((-112) $ $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-847)) |%noBranch|)))
-(((-102) . T) ((-611 (-859)) . T) ((-473) . T) ((-723) . T) ((-847) -4002 (|has| |#1| (-847)) (|has| |#1| (-368))) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-4110 (((-641 (-641 (-768))) $) 164)) (-3033 (((-641 (-768)) (-902 |#1|) $) 192)) (-3103 (((-641 (-768)) (-902 |#1|) $) 193)) (-1628 (((-641 (-902 |#1|)) $) 153)) (-2542 (((-902 |#1|) $ (-564)) 158) (((-902 |#1|) $) 159)) (-2278 (($ (-641 (-902 |#1|))) 166)) (-2261 (((-768) $) 160)) (-3974 (((-1096 (-1096 |#1|)) $) 190)) (-3938 (((-1096 |#1|) $ |#1|) 181) (((-1096 (-1096 |#1|)) $ (-1096 |#1|)) 201) (((-1096 (-641 |#1|)) $ (-641 |#1|)) 204)) (-1815 (((-1096 |#1|) $) 156)) (-3675 (((-112) (-902 |#1|) $) 142)) (-4202 (((-1152) $) NIL)) (-4364 (((-1264) $) 146) (((-1264) $ (-564) (-564)) 205)) (-3802 (((-1114) $) NIL)) (-2227 (((-641 (-902 |#1|)) $) 147)) (-4382 (((-902 |#1|) $ (-768)) 154)) (-3344 (((-768) $) 161)) (-1765 (((-859) $) 178) (((-641 (-902 |#1|)) $) 28) (($ (-641 (-902 |#1|))) 165)) (-2743 (((-641 |#1|) $) 163)) (-1686 (((-112) $ $) 198)) (-1728 (((-112) $ $) 196)) (-1705 (((-112) $ $) 195)))
-(((-901 |#1|) (-13 (-1094) (-10 -8 (-15 -1765 ((-641 (-902 |#1|)) $)) (-15 -2227 ((-641 (-902 |#1|)) $)) (-15 -4382 ((-902 |#1|) $ (-768))) (-15 -2542 ((-902 |#1|) $ (-564))) (-15 -2542 ((-902 |#1|) $)) (-15 -2261 ((-768) $)) (-15 -3344 ((-768) $)) (-15 -2743 ((-641 |#1|) $)) (-15 -1628 ((-641 (-902 |#1|)) $)) (-15 -4110 ((-641 (-641 (-768))) $)) (-15 -1765 ($ (-641 (-902 |#1|)))) (-15 -2278 ($ (-641 (-902 |#1|)))) (-15 -3938 ((-1096 |#1|) $ |#1|)) (-15 -3974 ((-1096 (-1096 |#1|)) $)) (-15 -3938 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -3938 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -3675 ((-112) (-902 |#1|) $)) (-15 -3033 ((-641 (-768)) (-902 |#1|) $)) (-15 -3103 ((-641 (-768)) (-902 |#1|) $)) (-15 -1815 ((-1096 |#1|) $)) (-15 -1705 ((-112) $ $)) (-15 -1728 ((-112) $ $)) (-15 -4364 ((-1264) $)) (-15 -4364 ((-1264) $ (-564) (-564))))) (-1094)) (T -901))
-((-1765 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2227 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-2542 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-902 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-768)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-2278 (*1 *1 *2) (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-3938 (*1 *2 *1 *3) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3938 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-901 *4)) (-5 *3 (-1096 *4)))) (-3938 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-901 *4)) (-5 *3 (-641 *4)))) (-3675 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-901 *4)))) (-3033 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) (-5 *1 (-901 *4)))) (-3103 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) (-5 *1 (-901 *4)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1705 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1728 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4364 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -1765 ((-641 (-902 |#1|)) $)) (-15 -2227 ((-641 (-902 |#1|)) $)) (-15 -4382 ((-902 |#1|) $ (-768))) (-15 -2542 ((-902 |#1|) $ (-564))) (-15 -2542 ((-902 |#1|) $)) (-15 -2261 ((-768) $)) (-15 -3344 ((-768) $)) (-15 -2743 ((-641 |#1|) $)) (-15 -1628 ((-641 (-902 |#1|)) $)) (-15 -4110 ((-641 (-641 (-768))) $)) (-15 -1765 ($ (-641 (-902 |#1|)))) (-15 -2278 ($ (-641 (-902 |#1|)))) (-15 -3938 ((-1096 |#1|) $ |#1|)) (-15 -3974 ((-1096 (-1096 |#1|)) $)) (-15 -3938 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -3938 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -3675 ((-112) (-902 |#1|) $)) (-15 -3033 ((-641 (-768)) (-902 |#1|) $)) (-15 -3103 ((-641 (-768)) (-902 |#1|) $)) (-15 -1815 ((-1096 |#1|) $)) (-15 -1705 ((-112) $ $)) (-15 -1728 ((-112) $ $)) (-15 -4364 ((-1264) $)) (-15 -4364 ((-1264) $ (-564) (-564)))))
-((-1754 (((-112) $ $) NIL)) (-2494 (((-641 $) (-641 $)) 104)) (-3438 (((-564) $) 85)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-2261 (((-768) $) 82)) (-3938 (((-1096 |#1|) $ |#1|) 73)) (-2419 (((-112) $) NIL)) (-1629 (((-112) $) 89)) (-1722 (((-768) $) 86)) (-1815 (((-1096 |#1|) $) 62)) (-3571 (($ $ $) NIL (-4002 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1547 (($ $ $) NIL (-4002 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-4131 (((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $) 57)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 132)) (-3802 (((-1114) $) NIL)) (-4047 (((-1096 |#1|) $) 140 (|has| |#1| (-368)))) (-1518 (((-112) $) 83)) (-2407 ((|#1| $ |#1|) 71)) (-4382 ((|#1| $ |#1|) 134)) (-3344 (((-768) $) 64)) (-1785 (($ (-641 (-641 |#1|))) 119)) (-3842 (((-968) $) 77)) (-1861 (($ (-641 |#1|)) 35)) (-2502 (($ $ $) NIL)) (-1762 (($ $ $) NIL)) (-1531 (($ (-641 (-641 |#1|))) 59)) (-3186 (($ (-641 (-641 |#1|))) 124)) (-2110 (($ (-641 |#1|)) 136)) (-1765 (((-859) $) 118) (($ (-641 (-641 |#1|))) 92) (($ (-641 |#1|)) 93)) (-4327 (($) 27 T CONST)) (-1738 (((-112) $ $) NIL (-4002 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1715 (((-112) $ $) NIL (-4002 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1686 (((-112) $ $) 69)) (-1728 (((-112) $ $) NIL (-4002 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1705 (((-112) $ $) 91)) (-1793 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 36)))
-(((-902 |#1|) (-13 (-900 |#1|) (-10 -8 (-15 -4131 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -1531 ($ (-641 (-641 |#1|)))) (-15 -1765 ($ (-641 (-641 |#1|)))) (-15 -1765 ($ (-641 |#1|))) (-15 -3186 ($ (-641 (-641 |#1|)))) (-15 -3344 ((-768) $)) (-15 -1815 ((-1096 |#1|) $)) (-15 -3842 ((-968) $)) (-15 -2261 ((-768) $)) (-15 -1722 ((-768) $)) (-15 -3438 ((-564) $)) (-15 -1518 ((-112) $)) (-15 -1629 ((-112) $)) (-15 -2494 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -4047 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2110 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -2110 ($ (-641 |#1|))) |%noBranch|)))) (-1094)) (T -902))
-((-4131 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3)))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1531 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-3186 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-968)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2494 (*1 *2 *2) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-368)) (-4 *3 (-1094)))) (-2110 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))))
-(-13 (-900 |#1|) (-10 -8 (-15 -4131 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -1531 ($ (-641 (-641 |#1|)))) (-15 -1765 ($ (-641 (-641 |#1|)))) (-15 -1765 ($ (-641 |#1|))) (-15 -3186 ($ (-641 (-641 |#1|)))) (-15 -3344 ((-768) $)) (-15 -1815 ((-1096 |#1|) $)) (-15 -3842 ((-968) $)) (-15 -2261 ((-768) $)) (-15 -1722 ((-768) $)) (-15 -3438 ((-564) $)) (-15 -1518 ((-112) $)) (-15 -1629 ((-112) $)) (-15 -2494 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -4047 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2110 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -2110 ($ (-641 |#1|))) |%noBranch|))))
-((-1868 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|)) 162)) (-3285 ((|#1|) 101)) (-1521 (((-418 (-1166 |#4|)) (-1166 |#4|)) 171)) (-4297 (((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)) 88)) (-1788 (((-418 (-1166 |#4|)) (-1166 |#4|)) 181)) (-3035 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|) 117)))
-(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1868 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -1788 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1521 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3285 (|#1|)) (-15 -3035 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -4297 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)))) (-906) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -903))
-((-4297 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *7)) (-4 *7 (-847)) (-4 *5 (-906)) (-4 *6 (-790)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-1166 *8)))) (-3035 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-790)) (-4 *4 (-847)) (-5 *1 (-903 *5 *6 *4 *7)))) (-3285 (*1 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-1521 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-1868 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-903 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1868 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -1788 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1521 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -3285 (|#1|)) (-15 -3035 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -4297 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|))))
-((-1868 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 41)) (-3285 ((|#1|) 74)) (-1521 (((-418 (-1166 |#2|)) (-1166 |#2|)) 130)) (-4297 (((-418 (-1166 |#2|)) (-1166 |#2|)) 114)) (-1788 (((-418 (-1166 |#2|)) (-1166 |#2|)) 141)))
-(((-904 |#1| |#2|) (-10 -7 (-15 -1868 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -1788 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -1521 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -3285 (|#1|)) (-15 -4297 ((-418 (-1166 |#2|)) (-1166 |#2|)))) (-906) (-1235 |#1|)) (T -904))
-((-4297 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-3285 (*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1235 *2)))) (-1521 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-1868 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-906)) (-5 *1 (-904 *4 *5)))))
-(-10 -7 (-15 -1868 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -1788 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -1521 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -3285 (|#1|)) (-15 -4297 ((-418 (-1166 |#2|)) (-1166 |#2|))))
-((-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 18)) (-2864 (((-3 $ "failed") $) 36)))
-(((-905 |#1|) (-10 -8 (-15 -2864 ((-3 |#1| "failed") |#1|)) (-15 -2111 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-906)) (T -905))
-NIL
-(-10 -8 (-15 -2864 ((-3 |#1| "failed") |#1|)) (-15 -2111 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-1871 (((-418 (-1166 $)) (-1166 $)) 61)) (-1368 (($ $) 52)) (-3981 (((-418 $) $) 53)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 58)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-3241 (((-112) $) 54)) (-2419 (((-112) $) 31)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-3113 (((-418 (-1166 $)) (-1166 $)) 59)) (-1761 (((-418 (-1166 $)) (-1166 $)) 60)) (-4006 (((-418 $) $) 51)) (-1343 (((-3 $ "failed") $ $) 43)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 57 (|has| $ (-145)))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-2864 (((-3 $ "failed") $) 56 (|has| $ (-145)))) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-1803 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-2582 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-4382 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3)))) (-1746 (*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(-13 (-473) (-10 -8 (-15 -1803 ($ (-641 |t#1|))) (-15 -2274 ($ (-641 (-641 |t#1|)))) (-15 -2582 (|t#1| $ |t#1|)) (-15 -4382 (|t#1| $ |t#1|)) (-15 -4305 ((-1096 |t#1|) $ |t#1|)) (-15 -1746 ((-112) $ $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-847)) |%noBranch|)))
+(((-102) . T) ((-611 (-859)) . T) ((-473) . T) ((-723) . T) ((-847) -4012 (|has| |#1| (-847)) (|has| |#1| (-368))) ((-1106) . T) ((-1094) . T))
+((-3702 (((-112) $ $) NIL)) (-3328 (((-641 (-641 (-768))) $) 164)) (-3445 (((-641 (-768)) (-902 |#1|) $) 192)) (-2979 (((-641 (-768)) (-902 |#1|) $) 193)) (-1318 (((-641 (-902 |#1|)) $) 153)) (-2939 (((-902 |#1|) $ (-564)) 158) (((-902 |#1|) $) 159)) (-3403 (($ (-641 (-902 |#1|))) 166)) (-1454 (((-768) $) 160)) (-1535 (((-1096 (-1096 |#1|)) $) 190)) (-4305 (((-1096 |#1|) $ |#1|) 181) (((-1096 (-1096 |#1|)) $ (-1096 |#1|)) 201) (((-1096 (-641 |#1|)) $ (-641 |#1|)) 204)) (-2593 (((-1096 |#1|) $) 156)) (-3601 (((-112) (-902 |#1|) $) 142)) (-1868 (((-1152) $) NIL)) (-3837 (((-1264) $) 146) (((-1264) $ (-564) (-564)) 205)) (-3844 (((-1114) $) NIL)) (-4187 (((-641 (-902 |#1|)) $) 147)) (-4382 (((-902 |#1|) $ (-768)) 154)) (-3475 (((-768) $) 161)) (-3714 (((-859) $) 178) (((-641 (-902 |#1|)) $) 28) (($ (-641 (-902 |#1|))) 165)) (-3270 (((-641 |#1|) $) 163)) (-1720 (((-112) $ $) 198)) (-1769 (((-112) $ $) 196)) (-1746 (((-112) $ $) 195)))
+(((-901 |#1|) (-13 (-1094) (-10 -8 (-15 -3714 ((-641 (-902 |#1|)) $)) (-15 -4187 ((-641 (-902 |#1|)) $)) (-15 -4382 ((-902 |#1|) $ (-768))) (-15 -2939 ((-902 |#1|) $ (-564))) (-15 -2939 ((-902 |#1|) $)) (-15 -1454 ((-768) $)) (-15 -3475 ((-768) $)) (-15 -3270 ((-641 |#1|) $)) (-15 -1318 ((-641 (-902 |#1|)) $)) (-15 -3328 ((-641 (-641 (-768))) $)) (-15 -3714 ($ (-641 (-902 |#1|)))) (-15 -3403 ($ (-641 (-902 |#1|)))) (-15 -4305 ((-1096 |#1|) $ |#1|)) (-15 -1535 ((-1096 (-1096 |#1|)) $)) (-15 -4305 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -4305 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -3601 ((-112) (-902 |#1|) $)) (-15 -3445 ((-641 (-768)) (-902 |#1|) $)) (-15 -2979 ((-641 (-768)) (-902 |#1|) $)) (-15 -2593 ((-1096 |#1|) $)) (-15 -1746 ((-112) $ $)) (-15 -1769 ((-112) $ $)) (-15 -3837 ((-1264) $)) (-15 -3837 ((-1264) $ (-564) (-564))))) (-1094)) (T -901))
+((-3714 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-2939 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-902 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-768)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-3403 (*1 *1 *2) (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-901 *4)) (-5 *3 (-1096 *4)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-901 *4)) (-5 *3 (-641 *4)))) (-3601 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-901 *4)))) (-3445 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) (-5 *1 (-901 *4)))) (-2979 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) (-5 *1 (-901 *4)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1746 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1769 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3837 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -3714 ((-641 (-902 |#1|)) $)) (-15 -4187 ((-641 (-902 |#1|)) $)) (-15 -4382 ((-902 |#1|) $ (-768))) (-15 -2939 ((-902 |#1|) $ (-564))) (-15 -2939 ((-902 |#1|) $)) (-15 -1454 ((-768) $)) (-15 -3475 ((-768) $)) (-15 -3270 ((-641 |#1|) $)) (-15 -1318 ((-641 (-902 |#1|)) $)) (-15 -3328 ((-641 (-641 (-768))) $)) (-15 -3714 ($ (-641 (-902 |#1|)))) (-15 -3403 ($ (-641 (-902 |#1|)))) (-15 -4305 ((-1096 |#1|) $ |#1|)) (-15 -1535 ((-1096 (-1096 |#1|)) $)) (-15 -4305 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -4305 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -3601 ((-112) (-902 |#1|) $)) (-15 -3445 ((-641 (-768)) (-902 |#1|) $)) (-15 -2979 ((-641 (-768)) (-902 |#1|) $)) (-15 -2593 ((-1096 |#1|) $)) (-15 -1746 ((-112) $ $)) (-15 -1769 ((-112) $ $)) (-15 -3837 ((-1264) $)) (-15 -3837 ((-1264) $ (-564) (-564)))))
+((-3702 (((-112) $ $) NIL)) (-2904 (((-641 $) (-641 $)) 104)) (-3191 (((-564) $) 85)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-1454 (((-768) $) 82)) (-4305 (((-1096 |#1|) $ |#1|) 73)) (-2340 (((-112) $) NIL)) (-1329 (((-112) $) 89)) (-2896 (((-768) $) 86)) (-2593 (((-1096 |#1|) $) 62)) (-3428 (($ $ $) NIL (-4012 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-3413 (($ $ $) NIL (-4012 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-2424 (((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $) 57)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 132)) (-3844 (((-1114) $) NIL)) (-3990 (((-1096 |#1|) $) 140 (|has| |#1| (-368)))) (-1542 (((-112) $) 83)) (-2582 ((|#1| $ |#1|) 71)) (-4382 ((|#1| $ |#1|) 134)) (-3475 (((-768) $) 64)) (-2274 (($ (-641 (-641 |#1|))) 119)) (-2809 (((-968) $) 77)) (-1803 (($ (-641 |#1|)) 35)) (-1953 (($ $ $) NIL)) (-3217 (($ $ $) NIL)) (-1660 (($ (-641 (-641 |#1|))) 59)) (-2640 (($ (-641 (-641 |#1|))) 124)) (-2496 (($ (-641 |#1|)) 136)) (-3714 (((-859) $) 118) (($ (-641 (-641 |#1|))) 92) (($ (-641 |#1|)) 93)) (-4323 (($) 27 T CONST)) (-1781 (((-112) $ $) NIL (-4012 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1758 (((-112) $ $) NIL (-4012 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1720 (((-112) $ $) 69)) (-1769 (((-112) $ $) NIL (-4012 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1746 (((-112) $ $) 91)) (-1841 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 36)))
+(((-902 |#1|) (-13 (-900 |#1|) (-10 -8 (-15 -2424 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -1660 ($ (-641 (-641 |#1|)))) (-15 -3714 ($ (-641 (-641 |#1|)))) (-15 -3714 ($ (-641 |#1|))) (-15 -2640 ($ (-641 (-641 |#1|)))) (-15 -3475 ((-768) $)) (-15 -2593 ((-1096 |#1|) $)) (-15 -2809 ((-968) $)) (-15 -1454 ((-768) $)) (-15 -2896 ((-768) $)) (-15 -3191 ((-564) $)) (-15 -1542 ((-112) $)) (-15 -1329 ((-112) $)) (-15 -2904 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -3990 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2496 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -2496 ($ (-641 |#1|))) |%noBranch|)))) (-1094)) (T -902))
+((-2424 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3)))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-968)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-368)) (-4 *3 (-1094)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))))
+(-13 (-900 |#1|) (-10 -8 (-15 -2424 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -1660 ($ (-641 (-641 |#1|)))) (-15 -3714 ($ (-641 (-641 |#1|)))) (-15 -3714 ($ (-641 |#1|))) (-15 -2640 ($ (-641 (-641 |#1|)))) (-15 -3475 ((-768) $)) (-15 -2593 ((-1096 |#1|) $)) (-15 -2809 ((-968) $)) (-15 -1454 ((-768) $)) (-15 -2896 ((-768) $)) (-15 -3191 ((-564) $)) (-15 -1542 ((-112) $)) (-15 -1329 ((-112) $)) (-15 -2904 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -3990 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2496 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -2496 ($ (-641 |#1|))) |%noBranch|))))
+((-1885 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|)) 162)) (-4198 ((|#1|) 101)) (-1563 (((-418 (-1166 |#4|)) (-1166 |#4|)) 171)) (-1462 (((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)) 88)) (-2304 (((-418 (-1166 |#4|)) (-1166 |#4|)) 181)) (-3468 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|) 117)))
+(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1885 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -2304 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1563 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -4198 (|#1|)) (-15 -3468 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -1462 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)))) (-906) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -903))
+((-1462 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *7)) (-4 *7 (-847)) (-4 *5 (-906)) (-4 *6 (-790)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-1166 *8)))) (-3468 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-790)) (-4 *4 (-847)) (-5 *1 (-903 *5 *6 *4 *7)))) (-4198 (*1 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-1563 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-2304 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-1885 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-903 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1885 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -2304 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -1563 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -4198 (|#1|)) (-15 -3468 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -1462 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|))))
+((-1885 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 41)) (-4198 ((|#1|) 74)) (-1563 (((-418 (-1166 |#2|)) (-1166 |#2|)) 130)) (-1462 (((-418 (-1166 |#2|)) (-1166 |#2|)) 114)) (-2304 (((-418 (-1166 |#2|)) (-1166 |#2|)) 141)))
+(((-904 |#1| |#2|) (-10 -7 (-15 -1885 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -2304 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -1563 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -4198 (|#1|)) (-15 -1462 ((-418 (-1166 |#2|)) (-1166 |#2|)))) (-906) (-1235 |#1|)) (T -904))
+((-1462 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-4198 (*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1235 *2)))) (-1563 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-2304 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-1885 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-906)) (-5 *1 (-904 *4 *5)))))
+(-10 -7 (-15 -1885 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -2304 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -1563 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -4198 (|#1|)) (-15 -1462 ((-418 (-1166 |#2|)) (-1166 |#2|))))
+((-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 18)) (-4363 (((-3 $ "failed") $) 36)))
+(((-905 |#1|) (-10 -8 (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -2508 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-906)) (T -905))
+NIL
+(-10 -8 (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -2508 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-1917 (((-418 (-1166 $)) (-1166 $)) 61)) (-1328 (($ $) 52)) (-1592 (((-418 $) $) 53)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 58)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-1926 (((-112) $) 54)) (-2340 (((-112) $) 31)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-3048 (((-418 (-1166 $)) (-1166 $)) 59)) (-3209 (((-418 (-1166 $)) (-1166 $)) 60)) (-4139 (((-418 $) $) 51)) (-1347 (((-3 $ "failed") $ $) 43)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 57 (|has| $ (-145)))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-4363 (((-3 $ "failed") $) 56 (|has| $ (-145)))) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-906) (-140)) (T -906))
-((-3281 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-906)))) (-1871 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-1761 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-3113 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-2111 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1)) (-4 *1 (-906)))) (-2574 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-906)) (-5 *2 (-1259 *1)))) (-2864 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906)))))
-(-13 (-1213) (-10 -8 (-15 -1871 ((-418 (-1166 $)) (-1166 $))) (-15 -1761 ((-418 (-1166 $)) (-1166 $))) (-15 -3113 ((-418 (-1166 $)) (-1166 $))) (-15 -3281 ((-1166 $) (-1166 $) (-1166 $))) (-15 -2111 ((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $))) (IF (|has| $ (-145)) (PROGN (-15 -2574 ((-3 (-1259 $) "failed") (-685 $))) (-15 -2864 ((-3 $ "failed") $))) |%noBranch|)))
+((-4150 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-906)))) (-1917 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-3209 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-3048 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-2508 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1)) (-4 *1 (-906)))) (-1352 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-906)) (-5 *2 (-1259 *1)))) (-4363 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906)))))
+(-13 (-1213) (-10 -8 (-15 -1917 ((-418 (-1166 $)) (-1166 $))) (-15 -3209 ((-418 (-1166 $)) (-1166 $))) (-15 -3048 ((-418 (-1166 $)) (-1166 $))) (-15 -4150 ((-1166 $) (-1166 $) (-1166 $))) (-15 -2508 ((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $))) (IF (|has| $ (-145)) (PROGN (-15 -1352 ((-3 (-1259 $) "failed") (-685 $))) (-15 -4363 ((-3 $ "failed") $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-2868 (((-112) $) NIL)) (-1743 (((-768)) NIL)) (-3715 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-2590 (((-1182 (-918) (-768)) (-564)) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 $ "failed") $) NIL)) (-2064 (($ $) NIL)) (-2910 (($ (-1259 $)) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-1990 (($) NIL)) (-3242 (((-112) $) NIL)) (-2184 (($ $) NIL) (($ $ (-768)) NIL)) (-3241 (((-112) $) NIL)) (-2261 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-2419 (((-112) $) NIL)) (-1650 (($) NIL (|has| $ (-368)))) (-2805 (((-112) $) NIL (|has| $ (-368)))) (-1779 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-3374 (((-3 $ "failed") $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2513 (((-1166 $) $ (-918)) NIL (|has| $ (-368))) (((-1166 $) $) NIL)) (-2209 (((-918) $) NIL)) (-3645 (((-1166 $) $) NIL (|has| $ (-368)))) (-3135 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-3325 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL T CONST)) (-1403 (($ (-918)) NIL)) (-4120 (((-112) $) NIL)) (-3802 (((-1114) $) NIL)) (-1502 (($) NIL (|has| $ (-368)))) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL)) (-4006 (((-418 $) $) NIL)) (-1369 (((-918)) NIL) (((-830 (-918))) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1504 (((-3 (-768) "failed") $ $) NIL) (((-768) $) NIL)) (-3850 (((-134)) NIL)) (-3226 (($ $ (-768)) NIL) (($ $) NIL)) (-3344 (((-918) $) NIL) (((-830 (-918)) $) NIL)) (-1916 (((-1166 $)) NIL)) (-3726 (($) NIL)) (-3387 (($) NIL (|has| $ (-368)))) (-3072 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) NIL)) (-2127 (((-564) $) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL)) (-2864 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1965 (((-768)) NIL T CONST)) (-3941 (((-1259 $) (-918)) NIL) (((-1259 $)) NIL)) (-1582 (((-112) $ $) NIL)) (-3623 (((-112) $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-1560 (($ $ (-768)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-1309 (((-112) $) NIL)) (-3062 (((-768)) NIL)) (-3767 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-1494 (((-1182 (-918) (-768)) (-564)) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 $ "failed") $) NIL)) (-2376 (($ $) NIL)) (-3566 (($ (-1259 $)) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-3648 (($) NIL)) (-1937 (((-112) $) NIL)) (-1957 (($ $) NIL) (($ $ (-768)) NIL)) (-1926 (((-112) $) NIL)) (-1454 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-2340 (((-112) $) NIL)) (-3344 (($) NIL (|has| $ (-368)))) (-1927 (((-112) $) NIL (|has| $ (-368)))) (-2217 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2041 (((-1166 $) $ (-918)) NIL (|has| $ (-368))) (((-1166 $) $) NIL)) (-4031 (((-918) $) NIL)) (-1513 (((-1166 $) $) NIL (|has| $ (-368)))) (-3240 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-1486 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL T CONST)) (-3338 (($ (-918)) NIL)) (-2309 (((-112) $) NIL)) (-3844 (((-1114) $) NIL)) (-1729 (($) NIL (|has| $ (-368)))) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL)) (-4139 (((-418 $) $) NIL)) (-3117 (((-918)) NIL) (((-830 (-918))) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2671 (((-3 (-768) "failed") $ $) NIL) (((-768) $) NIL)) (-2869 (((-134)) NIL)) (-2203 (($ $ (-768)) NIL) (($ $) NIL)) (-3475 (((-918) $) NIL) (((-830 (-918)) $) NIL)) (-4180 (((-1166 $)) NIL)) (-2927 (($) NIL)) (-3927 (($) NIL (|has| $ (-368)))) (-3867 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) NIL)) (-2374 (((-564) $) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL)) (-4363 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3379 (((-768)) NIL T CONST)) (-4339 (((-1259 $) (-918)) NIL) (((-1259 $)) NIL)) (-3979 (((-112) $ $) NIL)) (-4368 (((-112) $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-1946 (($ $ (-768)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
(((-907 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-918)) (T -907))
NIL
(-13 (-349) (-329 $) (-612 (-564)))
-((-3540 (((-3 (-2 (|:| -2261 (-768)) (|:| -2387 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 84)) (-4200 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-2261 (((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|)) 15)))
-(((-908 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2261 ((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -4200 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -3540 ((-3 (-2 (|:| -2261 (-768)) (|:| -2387 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-847) (-556) (-1035 (-564))) (-430 |#1|) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -908))
-((-3540 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-2 (|:| -2261 (-768)) (|:| -2387 *8))) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-2261 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-768)) (-5 *1 (-908 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2261 ((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -4200 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -3540 ((-3 (-2 (|:| -2261 (-768)) (|:| -2387 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|))))
-((-3540 (((-3 (-2 (|:| -2261 (-768)) (|:| -2387 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 64)) (-4200 (((-112) (-336 (-407 (-564)) |#1| |#2| |#3|)) 16)) (-2261 (((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 14)))
-(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -2261 ((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -4200 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -3540 ((-3 (-2 (|:| -2261 (-768)) (|:| -2387 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) (-1235 (-407 (-564))) (-1235 (-407 |#1|)) (-342 (-407 (-564)) |#1| |#2|)) (T -909))
-((-3540 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-2 (|:| -2261 (-768)) (|:| -2387 *6))) (-5 *1 (-909 *4 *5 *6)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6)))) (-2261 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-768)) (-5 *1 (-909 *4 *5 *6)))))
-(-10 -7 (-15 -2261 ((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -4200 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -3540 ((-3 (-2 (|:| -2261 (-768)) (|:| -2387 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))))
-((-2643 ((|#2| |#2|) 26)) (-3433 (((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) 15)) (-4113 (((-918) (-564)) 38)) (-3411 (((-564) |#2|) 45)) (-4391 (((-564) |#2|) 21) (((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|) 20)))
-(((-910 |#1| |#2|) (-10 -7 (-15 -4113 ((-918) (-564))) (-15 -4391 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -4391 ((-564) |#2|)) (-15 -3433 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -3411 ((-564) |#2|)) (-15 -2643 (|#2| |#2|))) (-1235 (-407 (-564))) (-1235 (-407 |#1|))) (T -910))
-((-2643 (*1 *2 *2) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-910 *3 *2)) (-4 *2 (-1235 (-407 *3))))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4))))) (-4391 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-4391 (*1 *2 *3) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) (-5 *1 (-910 *3 *4)) (-4 *4 (-1235 (-407 *3))))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-918)) (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4))))))
-(-10 -7 (-15 -4113 ((-918) (-564))) (-15 -4391 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -4391 ((-564) |#2|)) (-15 -3433 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -3411 ((-564) |#2|)) (-15 -2643 (|#2| |#2|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 ((|#1| $) 99)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-1387 (($ $ $) NIL)) (-1926 (((-3 $ "failed") $) 93)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-3982 (($ |#1| (-418 |#1|)) 91)) (-3608 (((-1166 |#1|) |#1| |#1|) 53)) (-3244 (($ $) 61)) (-2419 (((-112) $) NIL)) (-2768 (((-564) $) 96)) (-3157 (($ $ (-564)) 98)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2617 ((|#1| $) 95)) (-1416 (((-418 |#1|) $) 94)) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) 92)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3089 (($ $) 50)) (-1765 (((-859) $) 123) (($ (-564)) 72) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 41) (((-407 |#1|) $) 77) (($ (-407 (-418 |#1|))) 85)) (-1965 (((-768)) 70 T CONST)) (-1582 (((-112) $ $) NIL)) (-4317 (($) 26 T CONST)) (-4327 (($) 15 T CONST)) (-1686 (((-112) $ $) 86)) (-1793 (($ $ $) NIL)) (-1783 (($ $) 107) (($ $ $) NIL)) (-1771 (($ $ $) 49)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 109) (($ $ $) 48) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 108) (($ $ |#1|) NIL)))
-(((-911 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -1765 ((-407 |#1|) $)) (-15 -1765 ($ (-407 (-418 |#1|)))) (-15 -3089 ($ $)) (-15 -1416 ((-418 |#1|) $)) (-15 -2617 (|#1| $)) (-15 -3157 ($ $ (-564))) (-15 -2768 ((-564) $)) (-15 -3608 ((-1166 |#1|) |#1| |#1|)) (-15 -3244 ($ $)) (-15 -3982 ($ |#1| (-418 |#1|))) (-15 -4328 (|#1| $)))) (-307)) (T -911))
-((-1765 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-911 *3)))) (-3089 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-2617 (*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-2768 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-3608 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-3244 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-3982 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-911 *2)))) (-4328 (*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))))
-(-13 (-363) (-38 |#1|) (-10 -8 (-15 -1765 ((-407 |#1|) $)) (-15 -1765 ($ (-407 (-418 |#1|)))) (-15 -3089 ($ $)) (-15 -1416 ((-418 |#1|) $)) (-15 -2617 (|#1| $)) (-15 -3157 ($ $ (-564))) (-15 -2768 ((-564) $)) (-15 -3608 ((-1166 |#1|) |#1| |#1|)) (-15 -3244 ($ $)) (-15 -3982 ($ |#1| (-418 |#1|))) (-15 -4328 (|#1| $))))
-((-3982 (((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)) 17) (((-52) (-407 (-949 |#1|)) (-1170)) 18)))
-(((-912 |#1|) (-10 -7 (-15 -3982 ((-52) (-407 (-949 |#1|)) (-1170))) (-15 -3982 ((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)))) (-13 (-307) (-147))) (T -912))
-((-3982 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-949 *6))) (-5 *5 (-1170)) (-5 *3 (-949 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *6)))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *5)))))
-(-10 -7 (-15 -3982 ((-52) (-407 (-949 |#1|)) (-1170))) (-15 -3982 ((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170))))
-((-1352 ((|#4| (-641 |#4|)) 149) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 85) ((|#4| |#4| |#4|) 148)) (-2527 (((-1166 |#4|) (-641 (-1166 |#4|))) 140) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 63) ((|#4| (-641 |#4|)) 71) ((|#4| |#4| |#4|) 108)))
-(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2527 (|#4| |#4| |#4|)) (-15 -2527 (|#4| (-641 |#4|))) (-15 -2527 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2527 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -1352 (|#4| |#4| |#4|)) (-15 -1352 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -1352 (|#4| (-641 |#4|)))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -913))
-((-1352 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)))) (-1352 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) (-1352 (*1 *2 *2 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-913 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-2527 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)))) (-2527 (*1 *2 *2 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))))
-(-10 -7 (-15 -2527 (|#4| |#4| |#4|)) (-15 -2527 (|#4| (-641 |#4|))) (-15 -2527 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2527 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -1352 (|#4| |#4| |#4|)) (-15 -1352 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -1352 (|#4| (-641 |#4|))))
-((-4232 (((-901 (-564)) (-968)) 37) (((-901 (-564)) (-641 (-564))) 34)) (-2079 (((-901 (-564)) (-641 (-564))) 68) (((-901 (-564)) (-918)) 69)) (-4265 (((-901 (-564))) 38)) (-2426 (((-901 (-564))) 54) (((-901 (-564)) (-641 (-564))) 53)) (-3077 (((-901 (-564))) 52) (((-901 (-564)) (-641 (-564))) 51)) (-3355 (((-901 (-564))) 50) (((-901 (-564)) (-641 (-564))) 49)) (-2684 (((-901 (-564))) 48) (((-901 (-564)) (-641 (-564))) 47)) (-3506 (((-901 (-564))) 46) (((-901 (-564)) (-641 (-564))) 45)) (-2888 (((-901 (-564))) 56) (((-901 (-564)) (-641 (-564))) 55)) (-2859 (((-901 (-564)) (-641 (-564))) 73) (((-901 (-564)) (-918)) 75)) (-3553 (((-901 (-564)) (-641 (-564))) 70) (((-901 (-564)) (-918)) 71)) (-1303 (((-901 (-564)) (-641 (-564))) 66) (((-901 (-564)) (-918)) 67)) (-2913 (((-901 (-564)) (-641 (-918))) 59)))
-(((-914) (-10 -7 (-15 -2079 ((-901 (-564)) (-918))) (-15 -2079 ((-901 (-564)) (-641 (-564)))) (-15 -1303 ((-901 (-564)) (-918))) (-15 -1303 ((-901 (-564)) (-641 (-564)))) (-15 -2913 ((-901 (-564)) (-641 (-918)))) (-15 -3553 ((-901 (-564)) (-918))) (-15 -3553 ((-901 (-564)) (-641 (-564)))) (-15 -2859 ((-901 (-564)) (-918))) (-15 -2859 ((-901 (-564)) (-641 (-564)))) (-15 -3506 ((-901 (-564)) (-641 (-564)))) (-15 -3506 ((-901 (-564)))) (-15 -2684 ((-901 (-564)) (-641 (-564)))) (-15 -2684 ((-901 (-564)))) (-15 -3355 ((-901 (-564)) (-641 (-564)))) (-15 -3355 ((-901 (-564)))) (-15 -3077 ((-901 (-564)) (-641 (-564)))) (-15 -3077 ((-901 (-564)))) (-15 -2426 ((-901 (-564)) (-641 (-564)))) (-15 -2426 ((-901 (-564)))) (-15 -2888 ((-901 (-564)) (-641 (-564)))) (-15 -2888 ((-901 (-564)))) (-15 -4265 ((-901 (-564)))) (-15 -4232 ((-901 (-564)) (-641 (-564)))) (-15 -4232 ((-901 (-564)) (-968))))) (T -914))
-((-4232 (*1 *2 *3) (-12 (-5 *3 (-968)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-4265 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2888 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2426 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3077 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3355 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2684 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2684 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3506 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-641 (-918))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(-10 -7 (-15 -2079 ((-901 (-564)) (-918))) (-15 -2079 ((-901 (-564)) (-641 (-564)))) (-15 -1303 ((-901 (-564)) (-918))) (-15 -1303 ((-901 (-564)) (-641 (-564)))) (-15 -2913 ((-901 (-564)) (-641 (-918)))) (-15 -3553 ((-901 (-564)) (-918))) (-15 -3553 ((-901 (-564)) (-641 (-564)))) (-15 -2859 ((-901 (-564)) (-918))) (-15 -2859 ((-901 (-564)) (-641 (-564)))) (-15 -3506 ((-901 (-564)) (-641 (-564)))) (-15 -3506 ((-901 (-564)))) (-15 -2684 ((-901 (-564)) (-641 (-564)))) (-15 -2684 ((-901 (-564)))) (-15 -3355 ((-901 (-564)) (-641 (-564)))) (-15 -3355 ((-901 (-564)))) (-15 -3077 ((-901 (-564)) (-641 (-564)))) (-15 -3077 ((-901 (-564)))) (-15 -2426 ((-901 (-564)) (-641 (-564)))) (-15 -2426 ((-901 (-564)))) (-15 -2888 ((-901 (-564)) (-641 (-564)))) (-15 -2888 ((-901 (-564)))) (-15 -4265 ((-901 (-564)))) (-15 -4232 ((-901 (-564)) (-641 (-564)))) (-15 -4232 ((-901 (-564)) (-968))))
-((-2330 (((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))) 14)) (-1841 (((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))) 13)))
-(((-915 |#1|) (-10 -7 (-15 -1841 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2330 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))))) (-452)) (T -915))
-((-2330 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-915 *4)))) (-1841 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-915 *4)))))
-(-10 -7 (-15 -1841 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2330 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))))
-((-1765 (((-316 |#1|) (-477)) 16)))
-(((-916 |#1|) (-10 -7 (-15 -1765 ((-316 |#1|) (-477)))) (-13 (-847) (-556))) (T -916))
-((-1765 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-916 *4)) (-4 *4 (-13 (-847) (-556))))))
-(-10 -7 (-15 -1765 ((-316 |#1|) (-477))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-2419 (((-112) $) 31)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-1723 (((-3 (-2 (|:| -1454 (-768)) (|:| -2553 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 84)) (-1846 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-1454 (((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|)) 15)))
+(((-908 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1454 ((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -1846 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -1723 ((-3 (-2 (|:| -1454 (-768)) (|:| -2553 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-847) (-556) (-1035 (-564))) (-430 |#1|) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -908))
+((-1723 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-2 (|:| -1454 (-768)) (|:| -2553 *8))) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-1454 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-768)) (-5 *1 (-908 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1454 ((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -1846 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -1723 ((-3 (-2 (|:| -1454 (-768)) (|:| -2553 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|))))
+((-1723 (((-3 (-2 (|:| -1454 (-768)) (|:| -2553 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 64)) (-1846 (((-112) (-336 (-407 (-564)) |#1| |#2| |#3|)) 16)) (-1454 (((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 14)))
+(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -1454 ((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1846 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1723 ((-3 (-2 (|:| -1454 (-768)) (|:| -2553 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) (-1235 (-407 (-564))) (-1235 (-407 |#1|)) (-342 (-407 (-564)) |#1| |#2|)) (T -909))
+((-1723 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-2 (|:| -1454 (-768)) (|:| -2553 *6))) (-5 *1 (-909 *4 *5 *6)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6)))) (-1454 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-768)) (-5 *1 (-909 *4 *5 *6)))))
+(-10 -7 (-15 -1454 ((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1846 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -1723 ((-3 (-2 (|:| -1454 (-768)) (|:| -2553 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))))
+((-3880 ((|#2| |#2|) 26)) (-3147 (((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) 15)) (-3354 (((-918) (-564)) 38)) (-2993 (((-564) |#2|) 45)) (-4079 (((-564) |#2|) 21) (((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|) 20)))
+(((-910 |#1| |#2|) (-10 -7 (-15 -3354 ((-918) (-564))) (-15 -4079 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -4079 ((-564) |#2|)) (-15 -3147 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -2993 ((-564) |#2|)) (-15 -3880 (|#2| |#2|))) (-1235 (-407 (-564))) (-1235 (-407 |#1|))) (T -910))
+((-3880 (*1 *2 *2) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-910 *3 *2)) (-4 *2 (-1235 (-407 *3))))) (-2993 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4))))) (-4079 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-4079 (*1 *2 *3) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) (-5 *1 (-910 *3 *4)) (-4 *4 (-1235 (-407 *3))))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-918)) (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4))))))
+(-10 -7 (-15 -3354 ((-918) (-564))) (-15 -4079 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -4079 ((-564) |#2|)) (-15 -3147 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -2993 ((-564) |#2|)) (-15 -3880 (|#2| |#2|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 ((|#1| $) 99)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-1399 (($ $ $) NIL)) (-4272 (((-3 $ "failed") $) 93)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-1601 (($ |#1| (-418 |#1|)) 91)) (-4215 (((-1166 |#1|) |#1| |#1|) 53)) (-1958 (($ $) 61)) (-2340 (((-112) $) NIL)) (-2773 (((-564) $) 96)) (-2334 (($ $ (-564)) 98)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3572 ((|#1| $) 95)) (-1626 (((-418 |#1|) $) 94)) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) 92)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2866 (($ $) 50)) (-3714 (((-859) $) 123) (($ (-564)) 72) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 41) (((-407 |#1|) $) 77) (($ (-407 (-418 |#1|))) 85)) (-3379 (((-768)) 70 T CONST)) (-3979 (((-112) $ $) NIL)) (-4312 (($) 26 T CONST)) (-4323 (($) 15 T CONST)) (-1720 (((-112) $ $) 86)) (-1841 (($ $ $) NIL)) (-1828 (($ $) 107) (($ $ $) NIL)) (-1814 (($ $ $) 49)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 109) (($ $ $) 48) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 108) (($ $ |#1|) NIL)))
+(((-911 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -3714 ((-407 |#1|) $)) (-15 -3714 ($ (-407 (-418 |#1|)))) (-15 -2866 ($ $)) (-15 -1626 ((-418 |#1|) $)) (-15 -3572 (|#1| $)) (-15 -2334 ($ $ (-564))) (-15 -2773 ((-564) $)) (-15 -4215 ((-1166 |#1|) |#1| |#1|)) (-15 -1958 ($ $)) (-15 -1601 ($ |#1| (-418 |#1|))) (-15 -3494 (|#1| $)))) (-307)) (T -911))
+((-3714 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-911 *3)))) (-2866 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-3572 (*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-2334 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-4215 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-1958 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-1601 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-911 *2)))) (-3494 (*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))))
+(-13 (-363) (-38 |#1|) (-10 -8 (-15 -3714 ((-407 |#1|) $)) (-15 -3714 ($ (-407 (-418 |#1|)))) (-15 -2866 ($ $)) (-15 -1626 ((-418 |#1|) $)) (-15 -3572 (|#1| $)) (-15 -2334 ($ $ (-564))) (-15 -2773 ((-564) $)) (-15 -4215 ((-1166 |#1|) |#1| |#1|)) (-15 -1958 ($ $)) (-15 -1601 ($ |#1| (-418 |#1|))) (-15 -3494 (|#1| $))))
+((-1601 (((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)) 17) (((-52) (-407 (-949 |#1|)) (-1170)) 18)))
+(((-912 |#1|) (-10 -7 (-15 -1601 ((-52) (-407 (-949 |#1|)) (-1170))) (-15 -1601 ((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)))) (-13 (-307) (-147))) (T -912))
+((-1601 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-949 *6))) (-5 *5 (-1170)) (-5 *3 (-949 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *6)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *5)))))
+(-10 -7 (-15 -1601 ((-52) (-407 (-949 |#1|)) (-1170))) (-15 -1601 ((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170))))
+((-3365 ((|#4| (-641 |#4|)) 149) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 85) ((|#4| |#4| |#4|) 148)) (-2727 (((-1166 |#4|) (-641 (-1166 |#4|))) 140) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 63) ((|#4| (-641 |#4|)) 71) ((|#4| |#4| |#4|) 108)))
+(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2727 (|#4| |#4| |#4|)) (-15 -2727 (|#4| (-641 |#4|))) (-15 -2727 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2727 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -3365 (|#4| |#4| |#4|)) (-15 -3365 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3365 (|#4| (-641 |#4|)))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -913))
+((-3365 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)))) (-3365 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) (-3365 (*1 *2 *2 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-913 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-2727 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)))) (-2727 (*1 *2 *2 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))))
+(-10 -7 (-15 -2727 (|#4| |#4| |#4|)) (-15 -2727 (|#4| (-641 |#4|))) (-15 -2727 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2727 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -3365 (|#4| |#4| |#4|)) (-15 -3365 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3365 (|#4| (-641 |#4|))))
+((-2139 (((-901 (-564)) (-968)) 37) (((-901 (-564)) (-641 (-564))) 34)) (-2191 (((-901 (-564)) (-641 (-564))) 68) (((-901 (-564)) (-918)) 69)) (-4263 (((-901 (-564))) 38)) (-2421 (((-901 (-564))) 54) (((-901 (-564)) (-641 (-564))) 53)) (-3912 (((-901 (-564))) 52) (((-901 (-564)) (-641 (-564))) 51)) (-3594 (((-901 (-564))) 50) (((-901 (-564)) (-641 (-564))) 49)) (-3096 (((-901 (-564))) 48) (((-901 (-564)) (-641 (-564))) 47)) (-2677 (((-901 (-564))) 46) (((-901 (-564)) (-641 (-564))) 45)) (-1545 (((-901 (-564))) 56) (((-901 (-564)) (-641 (-564))) 55)) (-4306 (((-901 (-564)) (-641 (-564))) 73) (((-901 (-564)) (-918)) 75)) (-1866 (((-901 (-564)) (-641 (-564))) 70) (((-901 (-564)) (-918)) 71)) (-2698 (((-901 (-564)) (-641 (-564))) 66) (((-901 (-564)) (-918)) 67)) (-3609 (((-901 (-564)) (-641 (-918))) 59)))
+(((-914) (-10 -7 (-15 -2191 ((-901 (-564)) (-918))) (-15 -2191 ((-901 (-564)) (-641 (-564)))) (-15 -2698 ((-901 (-564)) (-918))) (-15 -2698 ((-901 (-564)) (-641 (-564)))) (-15 -3609 ((-901 (-564)) (-641 (-918)))) (-15 -1866 ((-901 (-564)) (-918))) (-15 -1866 ((-901 (-564)) (-641 (-564)))) (-15 -4306 ((-901 (-564)) (-918))) (-15 -4306 ((-901 (-564)) (-641 (-564)))) (-15 -2677 ((-901 (-564)) (-641 (-564)))) (-15 -2677 ((-901 (-564)))) (-15 -3096 ((-901 (-564)) (-641 (-564)))) (-15 -3096 ((-901 (-564)))) (-15 -3594 ((-901 (-564)) (-641 (-564)))) (-15 -3594 ((-901 (-564)))) (-15 -3912 ((-901 (-564)) (-641 (-564)))) (-15 -3912 ((-901 (-564)))) (-15 -2421 ((-901 (-564)) (-641 (-564)))) (-15 -2421 ((-901 (-564)))) (-15 -1545 ((-901 (-564)) (-641 (-564)))) (-15 -1545 ((-901 (-564)))) (-15 -4263 ((-901 (-564)))) (-15 -2139 ((-901 (-564)) (-641 (-564)))) (-15 -2139 ((-901 (-564)) (-968))))) (T -914))
+((-2139 (*1 *2 *3) (-12 (-5 *3 (-968)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-4263 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1545 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2421 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3912 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3594 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3096 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2677 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-641 (-918))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(-10 -7 (-15 -2191 ((-901 (-564)) (-918))) (-15 -2191 ((-901 (-564)) (-641 (-564)))) (-15 -2698 ((-901 (-564)) (-918))) (-15 -2698 ((-901 (-564)) (-641 (-564)))) (-15 -3609 ((-901 (-564)) (-641 (-918)))) (-15 -1866 ((-901 (-564)) (-918))) (-15 -1866 ((-901 (-564)) (-641 (-564)))) (-15 -4306 ((-901 (-564)) (-918))) (-15 -4306 ((-901 (-564)) (-641 (-564)))) (-15 -2677 ((-901 (-564)) (-641 (-564)))) (-15 -2677 ((-901 (-564)))) (-15 -3096 ((-901 (-564)) (-641 (-564)))) (-15 -3096 ((-901 (-564)))) (-15 -3594 ((-901 (-564)) (-641 (-564)))) (-15 -3594 ((-901 (-564)))) (-15 -3912 ((-901 (-564)) (-641 (-564)))) (-15 -3912 ((-901 (-564)))) (-15 -2421 ((-901 (-564)) (-641 (-564)))) (-15 -2421 ((-901 (-564)))) (-15 -1545 ((-901 (-564)) (-641 (-564)))) (-15 -1545 ((-901 (-564)))) (-15 -4263 ((-901 (-564)))) (-15 -2139 ((-901 (-564)) (-641 (-564)))) (-15 -2139 ((-901 (-564)) (-968))))
+((-3917 (((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))) 14)) (-1593 (((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))) 13)))
+(((-915 |#1|) (-10 -7 (-15 -1593 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -3917 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))))) (-452)) (T -915))
+((-3917 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-915 *4)))) (-1593 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-915 *4)))))
+(-10 -7 (-15 -1593 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -3917 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))))
+((-3714 (((-316 |#1|) (-477)) 16)))
+(((-916 |#1|) (-10 -7 (-15 -3714 ((-316 |#1|) (-477)))) (-13 (-847) (-556))) (T -916))
+((-3714 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-916 *4)) (-4 *4 (-13 (-847) (-556))))))
+(-10 -7 (-15 -3714 ((-316 |#1|) (-477))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-2340 (((-112) $) 31)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-917) (-140)) (T -917))
-((-3508 (*1 *2 *3) (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -1662 (-641 *1)) (|:| -1502 *1))) (-5 *3 (-641 *1)))) (-2001 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-917)))))
-(-13 (-452) (-10 -8 (-15 -3508 ((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $))) (-15 -2001 ((-3 (-641 $) "failed") (-641 $) $))))
+((-2701 (*1 *2 *3) (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -1817 (-641 *1)) (|:| -1729 *1))) (-5 *3 (-641 *1)))) (-3768 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-917)))))
+(-13 (-452) (-10 -8 (-15 -2701 ((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $))) (-15 -3768 ((-3 (-641 $) "failed") (-641 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2527 (($ $ $) NIL)) (-1765 (((-859) $) NIL)) (-4327 (($) NIL T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ $ $) NIL)))
-(((-918) (-13 (-791) (-723) (-10 -8 (-15 -2527 ($ $ $)) (-6 (-4413 "*"))))) (T -918))
-((-2527 (*1 *1 *1 *1) (-5 *1 (-918))))
-(-13 (-791) (-723) (-10 -8 (-15 -2527 ($ $ $)) (-6 (-4413 "*"))))
+((-3702 (((-112) $ $) NIL)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2727 (($ $ $) NIL)) (-3714 (((-859) $) NIL)) (-4323 (($) NIL T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ $ $) NIL)))
+(((-918) (-13 (-791) (-723) (-10 -8 (-15 -2727 ($ $ $)) (-6 (-4414 "*"))))) (T -918))
+((-2727 (*1 *1 *1 *1) (-5 *1 (-918))))
+(-13 (-791) (-723) (-10 -8 (-15 -2727 ($ $ $)) (-6 (-4414 "*"))))
((|NonNegativeInteger|) (< 0 |#1|))
-((-3043 ((|#2| (-641 |#1|) (-641 |#1|)) 29)))
-(((-919 |#1| |#2|) (-10 -7 (-15 -3043 (|#2| (-641 |#1|) (-641 |#1|)))) (-363) (-1235 |#1|)) (T -919))
-((-3043 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4)) (-5 *1 (-919 *4 *2)))))
-(-10 -7 (-15 -3043 (|#2| (-641 |#1|) (-641 |#1|))))
-((-2929 (((-1166 |#2|) (-641 |#2|) (-641 |#2|)) 17) (((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|)) 13)))
-(((-920 |#1| |#2|) (-10 -7 (-15 -2929 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -2929 ((-1166 |#2|) (-641 |#2|) (-641 |#2|)))) (-1170) (-363)) (T -920))
-((-2929 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-1170)))) (-2929 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170)) (-4 *5 (-363)) (-5 *1 (-920 *4 *5)))))
-(-10 -7 (-15 -2929 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -2929 ((-1166 |#2|) (-641 |#2|) (-641 |#2|))))
-((-4083 (((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152)) 176)) (-1515 ((|#4| |#4|) 195)) (-1514 (((-641 (-407 (-949 |#1|))) (-641 (-1170))) 149)) (-3684 (((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564)) 88)) (-4283 (((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|)) 69)) (-2210 (((-685 |#4|) (-685 |#4|) (-641 |#4|)) 65)) (-3023 (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152)) 188)) (-2441 (((-564) (-685 |#4|) (-918) (-1152)) 169) (((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152)) 168) (((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152)) 167) (((-564) (-685 |#4|) (-1152)) 157) (((-564) (-685 |#4|) (-641 (-1170)) (-1152)) 156) (((-564) (-685 |#4|) (-641 |#4|) (-1152)) 155) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918)) 154) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918)) 153) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918)) 152) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|)) 151) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170))) 150) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|)) 146)) (-3234 ((|#4| (-949 |#1|)) 80)) (-4148 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 192)) (-4289 (((-641 (-641 (-564))) (-564) (-564)) 162)) (-3947 (((-641 (-641 |#4|)) (-641 (-641 |#4|))) 107)) (-3756 (((-768) (-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 102)) (-1454 (((-768) (-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 101)) (-4001 (((-112) (-641 (-949 |#1|))) 19) (((-112) (-641 |#4|)) 15)) (-2891 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|)) 84)) (-1484 (((-641 |#4|) |#4|) 57)) (-2448 (((-641 (-407 (-949 |#1|))) (-641 |#4|)) 145) (((-685 (-407 (-949 |#1|))) (-685 |#4|)) 66) (((-407 (-949 |#1|)) |#4|) 142)) (-2760 (((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564)) 113)) (-4376 (((-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768)) 100)) (-1862 (((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768)) 124)) (-1355 (((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -1447 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -4224 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) 56)))
-(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918))) (-15 -2441 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-918) (-1152))) (-15 -4083 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -3023 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -2760 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564))) (-15 -2448 ((-407 (-949 |#1|)) |#4|)) (-15 -2448 ((-685 (-407 (-949 |#1|))) (-685 |#4|))) (-15 -2448 ((-641 (-407 (-949 |#1|))) (-641 |#4|))) (-15 -1514 ((-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3234 (|#4| (-949 |#1|))) (-15 -2891 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -4376 ((-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768))) (-15 -4283 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|))) (-15 -1355 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -1447 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -4224 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -1484 ((-641 |#4|) |#4|)) (-15 -1454 ((-768) (-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3756 ((-768) (-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3947 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -4289 ((-641 (-641 (-564))) (-564) (-564))) (-15 -4148 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -1862 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768))) (-15 -2210 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -3684 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564))) (-15 -1515 (|#4| |#4|)) (-15 -4001 ((-112) (-641 |#4|))) (-15 -4001 ((-112) (-641 (-949 |#1|))))) (-13 (-307) (-147)) (-13 (-847) (-612 (-1170))) (-790) (-946 |#1| |#3| |#2|)) (T -921))
-((-4001 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4)))) (-3684 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-949 *9)))) (-5 *6 (-641 (-641 *12))) (-5 *7 (-768)) (-5 *8 (-564)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-946 *9 *11 *10)) (-4 *10 (-13 (-847) (-612 (-1170)))) (-4 *11 (-790)) (-5 *2 (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12)) (|:| |wcond| (-641 (-949 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *9)))) (|:| -3941 (-641 (-1259 (-407 (-949 *9))))))))) (-5 *1 (-921 *9 *10 *11 *12)))) (-2210 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-768)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *5 *6 *7 *8)))) (-4289 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *6 *5)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-946 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *6)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) (-5 *1 (-921 *4 *5 *6 *7)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) (-5 *1 (-921 *4 *5 *6 *7)))) (-1484 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 *3)) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1447 (-685 (-407 (-949 *4)))) (|:| |vec| (-641 (-407 (-949 *4)))) (|:| -4224 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -3941 (-641 (-1259 (-407 (-949 *4))))))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-4283 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -3941 (-641 (-1259 (-407 (-949 *4))))))) (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-946 *4 *6 *5)) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *8))))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-768)))) (-2891 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-4 *7 (-946 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7)))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-946 *4 *6 *5)) (-5 *1 (-921 *4 *5 *6 *2)) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-685 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2448 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-407 (-949 *4))) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-2760 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-949 *8)))) (-5 *5 (-768)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-946 *8 *10 *9)) (-4 *9 (-13 (-847) (-612 (-1170)))) (-4 *10 (-790)) (-5 *2 (-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11)) (|:| |wcond| (-641 (-949 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *8)))) (|:| -3941 (-641 (-1259 (-407 (-949 *8)))))))))) (|:| |rgsz| (-564)))) (-5 *1 (-921 *8 *9 *10 *11)) (-5 *7 (-564)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -3941 (-641 (-1259 (-407 (-949 *4)))))))))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -3941 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6)) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) (-2441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-918)) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-2441 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *7 *8 *9 *10)))) (-2441 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-918)) (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *7 *8 *9 *10)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) (-2441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-2441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-918)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -3941 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-2441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) (|:| -3941 (-641 (-1259 (-407 (-949 *6)))))))))) (-5 *1 (-921 *6 *7 *8 *9)))) (-2441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) (|:| -3941 (-641 (-1259 (-407 (-949 *6)))))))))) (-5 *1 (-921 *6 *7 *8 *9)) (-5 *4 (-641 *9)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -3941 (-641 (-1259 (-407 (-949 *4)))))))))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -3941 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -3941 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
-(-10 -7 (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918))) (-15 -2441 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918))) (-15 -2441 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152))) (-15 -2441 ((-564) (-685 |#4|) (-918) (-1152))) (-15 -4083 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -3023 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -2760 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564))) (-15 -2448 ((-407 (-949 |#1|)) |#4|)) (-15 -2448 ((-685 (-407 (-949 |#1|))) (-685 |#4|))) (-15 -2448 ((-641 (-407 (-949 |#1|))) (-641 |#4|))) (-15 -1514 ((-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3234 (|#4| (-949 |#1|))) (-15 -2891 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -4376 ((-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768))) (-15 -4283 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|))) (-15 -1355 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -1447 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -4224 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -1484 ((-641 |#4|) |#4|)) (-15 -1454 ((-768) (-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3756 ((-768) (-641 (-2 (|:| -4224 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3947 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -4289 ((-641 (-641 (-564))) (-564) (-564))) (-15 -4148 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -1862 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768))) (-15 -2210 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -3684 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -3941 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564))) (-15 -1515 (|#4| |#4|)) (-15 -4001 ((-112) (-641 |#4|))) (-15 -4001 ((-112) (-641 (-949 |#1|)))))
-((-1408 (((-924) |#1| (-1170)) 17) (((-924) |#1| (-1170) (-1088 (-225))) 21)) (-2455 (((-924) |#1| |#1| (-1170) (-1088 (-225))) 19) (((-924) |#1| (-1170) (-1088 (-225))) 15)))
-(((-922 |#1|) (-10 -7 (-15 -2455 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -2455 ((-924) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -1408 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -1408 ((-924) |#1| (-1170)))) (-612 (-536))) (T -922))
-((-1408 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-1408 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-2455 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-2455 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))))
-(-10 -7 (-15 -2455 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -2455 ((-924) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -1408 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -1408 ((-924) |#1| (-1170))))
-((-2638 (($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 122)) (-3505 (((-1088 (-225)) $) 63)) (-3492 (((-1088 (-225)) $) 62)) (-3479 (((-1088 (-225)) $) 61)) (-1442 (((-641 (-641 (-225))) $) 68)) (-2841 (((-1088 (-225)) $) 64)) (-1572 (((-564) (-564)) 56)) (-3016 (((-564) (-564)) 52)) (-2587 (((-564) (-564)) 54)) (-3391 (((-112) (-112)) 58)) (-2917 (((-564)) 55)) (-2203 (($ $ (-1088 (-225))) 125) (($ $) 126)) (-1374 (($ (-1 (-940 (-225)) (-225)) (-1088 (-225))) 132) (($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 133)) (-2455 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 135) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 136) (($ $ (-1088 (-225))) 128)) (-1714 (((-564)) 59)) (-2118 (((-564)) 50)) (-3514 (((-564)) 53)) (-1803 (((-641 (-641 (-940 (-225)))) $) 152)) (-3779 (((-112) (-112)) 60)) (-1765 (((-859) $) 150)) (-3417 (((-112)) 57)))
-(((-923) (-13 (-971) (-10 -8 (-15 -1374 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -1374 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2455 ($ $ (-1088 (-225)))) (-15 -2638 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2203 ($ $ (-1088 (-225)))) (-15 -2203 ($ $)) (-15 -2841 ((-1088 (-225)) $)) (-15 -1442 ((-641 (-641 (-225))) $)) (-15 -2118 ((-564))) (-15 -3016 ((-564) (-564))) (-15 -3514 ((-564))) (-15 -2587 ((-564) (-564))) (-15 -2917 ((-564))) (-15 -1572 ((-564) (-564))) (-15 -3417 ((-112))) (-15 -3391 ((-112) (-112))) (-15 -1714 ((-564))) (-15 -3779 ((-112) (-112)))))) (T -923))
-((-1374 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-1374 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2455 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2455 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2455 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2638 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2203 (*1 *1 *1) (-5 *1 (-923))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-923)))) (-2118 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3016 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3514 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-2587 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-2917 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1572 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3417 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-1714 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(-13 (-971) (-10 -8 (-15 -1374 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -1374 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2455 ($ $ (-1088 (-225)))) (-15 -2638 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2203 ($ $ (-1088 (-225)))) (-15 -2203 ($ $)) (-15 -2841 ((-1088 (-225)) $)) (-15 -1442 ((-641 (-641 (-225))) $)) (-15 -2118 ((-564))) (-15 -3016 ((-564) (-564))) (-15 -3514 ((-564))) (-15 -2587 ((-564) (-564))) (-15 -2917 ((-564))) (-15 -1572 ((-564) (-564))) (-15 -3417 ((-112))) (-15 -3391 ((-112) (-112))) (-15 -1714 ((-564))) (-15 -3779 ((-112) (-112)))))
-((-2638 (($ $ (-1088 (-225))) 123) (($ $ (-1088 (-225)) (-1088 (-225))) 124)) (-3492 (((-1088 (-225)) $) 72)) (-3479 (((-1088 (-225)) $) 71)) (-2841 (((-1088 (-225)) $) 73)) (-3199 (((-564) (-564)) 65)) (-1342 (((-564) (-564)) 61)) (-3069 (((-564) (-564)) 63)) (-4154 (((-112) (-112)) 67)) (-1469 (((-564)) 64)) (-2203 (($ $ (-1088 (-225))) 127) (($ $) 128)) (-1374 (($ (-1 (-940 (-225)) (-225)) (-1088 (-225))) 142) (($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 143)) (-1408 (($ (-1 (-225) (-225)) (-1088 (-225))) 150) (($ (-1 (-225) (-225))) 154)) (-2455 (($ (-1 (-225) (-225)) (-1088 (-225))) 138) (($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225))) 139) (($ (-641 (-1 (-225) (-225))) (-1088 (-225))) 147) (($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225))) 148) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 140) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 141) (($ $ (-1088 (-225))) 129)) (-3456 (((-112) $) 68)) (-4296 (((-564)) 69)) (-3177 (((-564)) 59)) (-4304 (((-564)) 62)) (-1803 (((-641 (-641 (-940 (-225)))) $) 35)) (-3179 (((-112) (-112)) 70)) (-1765 (((-859) $) 168)) (-2780 (((-112)) 66)))
-(((-924) (-13 (-952) (-10 -8 (-15 -2455 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2455 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -2455 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1374 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -1374 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1408 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -1408 ($ (-1 (-225) (-225)))) (-15 -2455 ($ $ (-1088 (-225)))) (-15 -3456 ((-112) $)) (-15 -2638 ($ $ (-1088 (-225)))) (-15 -2638 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2203 ($ $ (-1088 (-225)))) (-15 -2203 ($ $)) (-15 -2841 ((-1088 (-225)) $)) (-15 -3177 ((-564))) (-15 -1342 ((-564) (-564))) (-15 -4304 ((-564))) (-15 -3069 ((-564) (-564))) (-15 -1469 ((-564))) (-15 -3199 ((-564) (-564))) (-15 -2780 ((-112))) (-15 -4154 ((-112) (-112))) (-15 -4296 ((-564))) (-15 -3179 ((-112) (-112)))))) (T -924))
-((-2455 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2455 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2455 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2455 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2455 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2455 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-1374 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-1374 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-1408 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-924)))) (-2455 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-2638 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2638 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2203 (*1 *1 *1) (-5 *1 (-924))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-3177 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-1342 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-4304 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-1469 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2780 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-4296 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
-(-13 (-952) (-10 -8 (-15 -2455 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2455 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -2455 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2455 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1374 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -1374 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1408 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -1408 ($ (-1 (-225) (-225)))) (-15 -2455 ($ $ (-1088 (-225)))) (-15 -3456 ((-112) $)) (-15 -2638 ($ $ (-1088 (-225)))) (-15 -2638 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2203 ($ $ (-1088 (-225)))) (-15 -2203 ($ $)) (-15 -2841 ((-1088 (-225)) $)) (-15 -3177 ((-564))) (-15 -1342 ((-564) (-564))) (-15 -4304 ((-564))) (-15 -3069 ((-564) (-564))) (-15 -1469 ((-564))) (-15 -3199 ((-564) (-564))) (-15 -2780 ((-112))) (-15 -4154 ((-112) (-112))) (-15 -4296 ((-564))) (-15 -3179 ((-112) (-112)))))
-((-2014 (((-641 (-1088 (-225))) (-641 (-641 (-940 (-225))))) 34)))
-(((-925) (-10 -7 (-15 -2014 ((-641 (-1088 (-225))) (-641 (-641 (-940 (-225)))))))) (T -925))
-((-2014 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-925)))))
-(-10 -7 (-15 -2014 ((-641 (-1088 (-225))) (-641 (-641 (-940 (-225)))))))
-((-2656 ((|#2| |#2|) 28)) (-4046 ((|#2| |#2|) 29)) (-3246 ((|#2| |#2|) 27)) (-1934 ((|#2| |#2| (-1152)) 26)))
-(((-926 |#1| |#2|) (-10 -7 (-15 -1934 (|#2| |#2| (-1152))) (-15 -3246 (|#2| |#2|)) (-15 -2656 (|#2| |#2|)) (-15 -4046 (|#2| |#2|))) (-847) (-430 |#1|)) (T -926))
-((-4046 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-2656 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-3246 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-1934 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-847)) (-5 *1 (-926 *4 *2)) (-4 *2 (-430 *4)))))
-(-10 -7 (-15 -1934 (|#2| |#2| (-1152))) (-15 -3246 (|#2| |#2|)) (-15 -2656 (|#2| |#2|)) (-15 -4046 (|#2| |#2|)))
-((-2656 (((-316 (-564)) (-1170)) 16)) (-4046 (((-316 (-564)) (-1170)) 14)) (-3246 (((-316 (-564)) (-1170)) 12)) (-1934 (((-316 (-564)) (-1170) (-1152)) 19)))
-(((-927) (-10 -7 (-15 -1934 ((-316 (-564)) (-1170) (-1152))) (-15 -3246 ((-316 (-564)) (-1170))) (-15 -2656 ((-316 (-564)) (-1170))) (-15 -4046 ((-316 (-564)) (-1170))))) (T -927))
-((-4046 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-1934 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))))
-(-10 -7 (-15 -1934 ((-316 (-564)) (-1170) (-1152))) (-15 -3246 ((-316 (-564)) (-1170))) (-15 -2656 ((-316 (-564)) (-1170))) (-15 -4046 ((-316 (-564)) (-1170))))
-((-2549 (((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)) 25)) (-3468 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -3468 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2549 ((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-883 |#1|) (-13 (-1094) (-1035 |#2|))) (T -928))
-((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-13 (-1094) (-1035 *3))) (-4 *3 (-883 *5)) (-5 *1 (-928 *5 *3 *6)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1035 *5))) (-4 *5 (-883 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-928 *4 *5 *6)))))
-(-10 -7 (-15 -3468 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2549 ((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|))))
-((-2549 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 30)))
-(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -2549 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-13 (-556) (-847) (-883 |#1|)) (-13 (-430 |#2|) (-612 (-889 |#1|)) (-883 |#1|) (-1035 (-610 $)))) (T -929))
-((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-430 *6) (-612 *4) (-883 *5) (-1035 (-610 $)))) (-5 *4 (-889 *5)) (-4 *6 (-13 (-556) (-847) (-883 *5))) (-5 *1 (-929 *5 *6 *3)))))
-(-10 -7 (-15 -2549 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))
-((-2549 (((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)) 13)))
-(((-930 |#1|) (-10 -7 (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)))) (-545)) (T -930))
-((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 (-564) *3)) (-5 *4 (-889 (-564))) (-4 *3 (-545)) (-5 *1 (-930 *3)))))
-(-10 -7 (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))))
-((-2549 (((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)) 57)))
-(((-931 |#1| |#2|) (-10 -7 (-15 -2549 ((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)))) (-1094) (-13 (-847) (-1035 (-610 $)) (-612 (-889 |#1|)) (-883 |#1|))) (T -931))
-((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094)) (-4 *6 (-13 (-847) (-1035 (-610 $)) (-612 *4) (-883 *5))) (-5 *4 (-889 *5)) (-5 *1 (-931 *5 *6)))))
-(-10 -7 (-15 -2549 ((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|))))
-((-2549 (((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)) 17)))
-(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -2549 ((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)))) (-1094) (-883 |#1|) (-662 |#2|)) (T -932))
-((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *6 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-4 *3 (-662 *6)) (-5 *1 (-932 *5 *6 *3)))))
-(-10 -7 (-15 -2549 ((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|))))
-((-2549 (((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|)) 17 (|has| |#3| (-883 |#1|))) (((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|))) 16)))
-(((-933 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2549 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|)))) (IF (|has| |#3| (-883 |#1|)) (-15 -2549 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|))) |%noBranch|)) (-1094) (-790) (-847) (-13 (-1046) (-847) (-883 |#1|)) (-13 (-946 |#4| |#2| |#3|) (-612 (-889 |#1|)))) (T -933))
-((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-946 *8 *6 *7) (-612 *4))) (-5 *4 (-889 *5)) (-4 *7 (-883 *5)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-13 (-1046) (-847) (-883 *5))) (-5 *1 (-933 *5 *6 *7 *8 *3)))) (-2549 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-886 *6 *3) *8 (-889 *6) (-886 *6 *3))) (-4 *8 (-847)) (-5 *2 (-886 *6 *3)) (-5 *4 (-889 *6)) (-4 *6 (-1094)) (-4 *3 (-13 (-946 *9 *7 *8) (-612 *4))) (-4 *7 (-790)) (-4 *9 (-13 (-1046) (-847) (-883 *6))) (-5 *1 (-933 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -2549 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|)))) (IF (|has| |#3| (-883 |#1|)) (-15 -2549 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|))) |%noBranch|))
-((-4134 ((|#2| |#2| (-641 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -4134 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4134 (|#2| |#2| (-641 (-1 (-112) |#3|))))) (-847) (-430 |#1|) (-1209)) (T -934))
-((-4134 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-847)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))) (-4134 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-847)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))))
-(-10 -7 (-15 -4134 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4134 (|#2| |#2| (-641 (-1 (-112) |#3|)))))
-((-4134 (((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))) 18) (((-316 (-564)) (-1170) (-1 (-112) |#1|)) 15)))
-(((-935 |#1|) (-10 -7 (-15 -4134 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -4134 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))))) (-1209)) (T -935))
-((-4134 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))) (-4134 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))))
-(-10 -7 (-15 -4134 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -4134 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|)))))
-((-2549 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 25)))
-(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -2549 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-13 (-556) (-883 |#1|) (-612 (-889 |#1|))) (-989 |#2|)) (T -936))
-((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-989 *6)) (-4 *6 (-13 (-556) (-883 *5) (-612 *4))) (-5 *4 (-889 *5)) (-5 *1 (-936 *5 *6 *3)))))
-(-10 -7 (-15 -2549 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))
-((-2549 (((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))) 18)))
-(((-937 |#1|) (-10 -7 (-15 -2549 ((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))))) (-1094)) (T -937))
-((-2549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *1 (-937 *5)))))
-(-10 -7 (-15 -2549 ((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170)))))
-((-3729 (((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) 34)) (-2549 (((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) 33)))
-(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -2549 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-15 -3729 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))) (-1094) (-13 (-1046) (-847)) (-13 (-1046) (-612 (-889 |#1|)) (-1035 |#2|))) (T -938))
-((-3729 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-889 *6))) (-5 *5 (-1 (-886 *6 *8) *8 (-889 *6) (-886 *6 *8))) (-4 *6 (-1094)) (-4 *8 (-13 (-1046) (-612 (-889 *6)) (-1035 *7))) (-5 *2 (-886 *6 *8)) (-4 *7 (-13 (-1046) (-847))) (-5 *1 (-938 *6 *7 *8)))) (-2549 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-641 (-889 *7))) (-5 *5 (-1 *9 (-641 *9))) (-5 *6 (-1 (-886 *7 *9) *9 (-889 *7) (-886 *7 *9))) (-4 *7 (-1094)) (-4 *9 (-13 (-1046) (-612 (-889 *7)) (-1035 *8))) (-5 *2 (-886 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1046) (-847))) (-5 *1 (-938 *7 *8 *9)))))
-(-10 -7 (-15 -2549 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-15 -3729 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))))
-((-1556 (((-1166 (-407 (-564))) (-564)) 80)) (-2522 (((-1166 (-564)) (-564)) 83)) (-1828 (((-1166 (-564)) (-564)) 77)) (-3260 (((-564) (-1166 (-564))) 73)) (-1388 (((-1166 (-407 (-564))) (-564)) 64)) (-2871 (((-1166 (-564)) (-564)) 48)) (-4029 (((-1166 (-564)) (-564)) 85)) (-1773 (((-1166 (-564)) (-564)) 84)) (-3243 (((-1166 (-407 (-564))) (-564)) 66)))
-(((-939) (-10 -7 (-15 -3243 ((-1166 (-407 (-564))) (-564))) (-15 -1773 ((-1166 (-564)) (-564))) (-15 -4029 ((-1166 (-564)) (-564))) (-15 -2871 ((-1166 (-564)) (-564))) (-15 -1388 ((-1166 (-407 (-564))) (-564))) (-15 -3260 ((-564) (-1166 (-564)))) (-15 -1828 ((-1166 (-564)) (-564))) (-15 -2522 ((-1166 (-564)) (-564))) (-15 -1556 ((-1166 (-407 (-564))) (-564))))) (T -939))
-((-1556 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2522 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-939)))) (-1388 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2871 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-4029 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-1773 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-3243 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))))
-(-10 -7 (-15 -3243 ((-1166 (-407 (-564))) (-564))) (-15 -1773 ((-1166 (-564)) (-564))) (-15 -4029 ((-1166 (-564)) (-564))) (-15 -2871 ((-1166 (-564)) (-564))) (-15 -1388 ((-1166 (-407 (-564))) (-564))) (-15 -3260 ((-564) (-1166 (-564)))) (-15 -1828 ((-1166 (-564)) (-564))) (-15 -2522 ((-1166 (-564)) (-564))) (-15 -1556 ((-1166 (-407 (-564))) (-564))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1398 (($ (-768)) NIL (|has| |#1| (-23)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-564) |#1|) 13 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1356 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3489 (($ (-641 |#1|)) 14)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4147 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-1633 (($ (-768) |#1|) 10)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) 12 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3500 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-2972 (((-112) $ (-768)) NIL)) (-2564 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3073 ((|#1| $) NIL (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-2678 (($ $ (-641 |#1|)) 28)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 21) (($ $ (-1226 (-564))) NIL)) (-4158 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-3850 (((-918) $) 17)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3663 (($ $ $) 26)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 18)) (-1776 (($ (-641 |#1|)) NIL)) (-2817 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 27) (($ (-641 $)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1783 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1771 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2589 (((-768) $) 15 (|has| $ (-6 -4411)))))
+((-3547 ((|#2| (-641 |#1|) (-641 |#1|)) 29)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -3547 (|#2| (-641 |#1|) (-641 |#1|)))) (-363) (-1235 |#1|)) (T -919))
+((-3547 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4)) (-5 *1 (-919 *4 *2)))))
+(-10 -7 (-15 -3547 (|#2| (-641 |#1|) (-641 |#1|))))
+((-3791 (((-1166 |#2|) (-641 |#2|) (-641 |#2|)) 17) (((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|)) 13)))
+(((-920 |#1| |#2|) (-10 -7 (-15 -3791 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -3791 ((-1166 |#2|) (-641 |#2|) (-641 |#2|)))) (-1170) (-363)) (T -920))
+((-3791 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-1170)))) (-3791 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170)) (-4 *5 (-363)) (-5 *1 (-920 *4 *5)))))
+(-10 -7 (-15 -3791 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -3791 ((-1166 |#2|) (-641 |#2|) (-641 |#2|))))
+((-3140 (((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152)) 176)) (-1517 ((|#4| |#4|) 195)) (-1508 (((-641 (-407 (-949 |#1|))) (-641 (-1170))) 149)) (-3681 (((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564)) 88)) (-1339 (((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|)) 69)) (-4045 (((-685 |#4|) (-685 |#4|) (-641 |#4|)) 65)) (-3349 (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152)) 188)) (-2594 (((-564) (-685 |#4|) (-918) (-1152)) 169) (((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152)) 168) (((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152)) 167) (((-564) (-685 |#4|) (-1152)) 157) (((-564) (-685 |#4|) (-641 (-1170)) (-1152)) 156) (((-564) (-685 |#4|) (-641 |#4|) (-1152)) 155) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918)) 154) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918)) 153) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918)) 152) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|)) 151) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170))) 150) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|)) 146)) (-1850 ((|#4| (-949 |#1|)) 80)) (-2596 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 192)) (-1384 (((-641 (-641 (-564))) (-564) (-564)) 162)) (-4387 (((-641 (-641 |#4|)) (-641 (-641 |#4|))) 107)) (-3143 (((-768) (-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 102)) (-2149 (((-768) (-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 101)) (-3581 (((-112) (-641 (-949 |#1|))) 19) (((-112) (-641 |#4|)) 15)) (-1580 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|)) 84)) (-2471 (((-641 |#4|) |#4|) 57)) (-2656 (((-641 (-407 (-949 |#1|))) (-641 |#4|)) 145) (((-685 (-407 (-949 |#1|))) (-685 |#4|)) 66) (((-407 (-949 |#1|)) |#4|) 142)) (-2699 (((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564)) 113)) (-3937 (((-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768)) 100)) (-1816 (((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768)) 124)) (-2665 (((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -1920 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -1595 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) 56)))
+(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918))) (-15 -2594 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-918) (-1152))) (-15 -3140 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -3349 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -2699 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564))) (-15 -2656 ((-407 (-949 |#1|)) |#4|)) (-15 -2656 ((-685 (-407 (-949 |#1|))) (-685 |#4|))) (-15 -2656 ((-641 (-407 (-949 |#1|))) (-641 |#4|))) (-15 -1508 ((-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -1850 (|#4| (-949 |#1|))) (-15 -1580 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -3937 ((-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768))) (-15 -1339 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|))) (-15 -2665 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -1920 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -1595 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -2471 ((-641 |#4|) |#4|)) (-15 -2149 ((-768) (-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3143 ((-768) (-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -4387 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -1384 ((-641 (-641 (-564))) (-564) (-564))) (-15 -2596 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -1816 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768))) (-15 -4045 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -3681 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564))) (-15 -1517 (|#4| |#4|)) (-15 -3581 ((-112) (-641 |#4|))) (-15 -3581 ((-112) (-641 (-949 |#1|))))) (-13 (-307) (-147)) (-13 (-847) (-612 (-1170))) (-790) (-946 |#1| |#3| |#2|)) (T -921))
+((-3581 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4)))) (-3681 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-949 *9)))) (-5 *6 (-641 (-641 *12))) (-5 *7 (-768)) (-5 *8 (-564)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-946 *9 *11 *10)) (-4 *10 (-13 (-847) (-612 (-1170)))) (-4 *11 (-790)) (-5 *2 (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12)) (|:| |wcond| (-641 (-949 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *9)))) (|:| -4339 (-641 (-1259 (-407 (-949 *9))))))))) (-5 *1 (-921 *9 *10 *11 *12)))) (-4045 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-768)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-2596 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *5 *6 *7 *8)))) (-1384 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *6 *5)))) (-4387 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-946 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *6)))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) (-5 *1 (-921 *4 *5 *6 *7)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) (-5 *1 (-921 *4 *5 *6 *7)))) (-2471 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 *3)) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1920 (-685 (-407 (-949 *4)))) (|:| |vec| (-641 (-407 (-949 *4)))) (|:| -1595 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -4339 (-641 (-1259 (-407 (-949 *4))))))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -4339 (-641 (-1259 (-407 (-949 *4))))))) (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-946 *4 *6 *5)) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))) (-3937 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *8))))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-768)))) (-1580 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-4 *7 (-946 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7)))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-946 *4 *6 *5)) (-5 *1 (-921 *4 *5 *6 *2)) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-685 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2656 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-407 (-949 *4))) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-2699 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-949 *8)))) (-5 *5 (-768)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-946 *8 *10 *9)) (-4 *9 (-13 (-847) (-612 (-1170)))) (-4 *10 (-790)) (-5 *2 (-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11)) (|:| |wcond| (-641 (-949 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *8)))) (|:| -4339 (-641 (-1259 (-407 (-949 *8)))))))))) (|:| |rgsz| (-564)))) (-5 *1 (-921 *8 *9 *10 *11)) (-5 *7 (-564)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -4339 (-641 (-1259 (-407 (-949 *4)))))))))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-3140 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -4339 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6)) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-918)) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-2594 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *7 *8 *9 *10)))) (-2594 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-918)) (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *7 *8 *9 *10)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-918)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -4339 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) (|:| -4339 (-641 (-1259 (-407 (-949 *6)))))))))) (-5 *1 (-921 *6 *7 *8 *9)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) (|:| -4339 (-641 (-1259 (-407 (-949 *6)))))))))) (-5 *1 (-921 *6 *7 *8 *9)) (-5 *4 (-641 *9)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -4339 (-641 (-1259 (-407 (-949 *4)))))))))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -4339 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -4339 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
+(-10 -7 (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918))) (-15 -2594 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918))) (-15 -2594 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152))) (-15 -2594 ((-564) (-685 |#4|) (-918) (-1152))) (-15 -3140 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -3349 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -2699 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564))) (-15 -2656 ((-407 (-949 |#1|)) |#4|)) (-15 -2656 ((-685 (-407 (-949 |#1|))) (-685 |#4|))) (-15 -2656 ((-641 (-407 (-949 |#1|))) (-641 |#4|))) (-15 -1508 ((-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -1850 (|#4| (-949 |#1|))) (-15 -1580 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -3937 ((-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768))) (-15 -1339 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|))) (-15 -2665 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -1920 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -1595 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -2471 ((-641 |#4|) |#4|)) (-15 -2149 ((-768) (-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3143 ((-768) (-641 (-2 (|:| -1595 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -4387 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -1384 ((-641 (-641 (-564))) (-564) (-564))) (-15 -2596 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -1816 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768))) (-15 -4045 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -3681 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4339 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564))) (-15 -1517 (|#4| |#4|)) (-15 -3581 ((-112) (-641 |#4|))) (-15 -3581 ((-112) (-641 (-949 |#1|)))))
+((-1548 (((-924) |#1| (-1170)) 17) (((-924) |#1| (-1170) (-1088 (-225))) 21)) (-2739 (((-924) |#1| |#1| (-1170) (-1088 (-225))) 19) (((-924) |#1| (-1170) (-1088 (-225))) 15)))
+(((-922 |#1|) (-10 -7 (-15 -2739 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -2739 ((-924) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -1548 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -1548 ((-924) |#1| (-1170)))) (-612 (-536))) (T -922))
+((-1548 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-1548 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-2739 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))))
+(-10 -7 (-15 -2739 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -2739 ((-924) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -1548 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -1548 ((-924) |#1| (-1170))))
+((-3824 (($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 122)) (-1977 (((-1088 (-225)) $) 63)) (-1965 (((-1088 (-225)) $) 62)) (-3618 (((-1088 (-225)) $) 61)) (-1869 (((-641 (-641 (-225))) $) 68)) (-4105 (((-1088 (-225)) $) 64)) (-2058 (((-564) (-564)) 56)) (-1470 (((-564) (-564)) 52)) (-1482 (((-564) (-564)) 54)) (-3970 (((-112) (-112)) 58)) (-3657 (((-564)) 55)) (-2150 (($ $ (-1088 (-225))) 125) (($ $) 126)) (-3814 (($ (-1 (-940 (-225)) (-225)) (-1088 (-225))) 132) (($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 133)) (-2739 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 135) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 136) (($ $ (-1088 (-225))) 128)) (-2852 (((-564)) 59)) (-2598 (((-564)) 50)) (-2760 (((-564)) 53)) (-2465 (((-641 (-641 (-940 (-225)))) $) 152)) (-3323 (((-112) (-112)) 60)) (-3714 (((-859) $) 150)) (-3021 (((-112)) 57)))
+(((-923) (-13 (-971) (-10 -8 (-15 -3814 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -3814 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2739 ($ $ (-1088 (-225)))) (-15 -3824 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2150 ($ $ (-1088 (-225)))) (-15 -2150 ($ $)) (-15 -4105 ((-1088 (-225)) $)) (-15 -1869 ((-641 (-641 (-225))) $)) (-15 -2598 ((-564))) (-15 -1470 ((-564) (-564))) (-15 -2760 ((-564))) (-15 -1482 ((-564) (-564))) (-15 -3657 ((-564))) (-15 -2058 ((-564) (-564))) (-15 -3021 ((-112))) (-15 -3970 ((-112) (-112))) (-15 -2852 ((-564))) (-15 -3323 ((-112) (-112)))))) (T -923))
+((-3814 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3814 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2739 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2739 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2739 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-3824 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2150 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2150 (*1 *1 *1) (-5 *1 (-923))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-923)))) (-2598 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1470 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-2760 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3657 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3021 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-2852 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3323 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+(-13 (-971) (-10 -8 (-15 -3814 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -3814 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2739 ($ $ (-1088 (-225)))) (-15 -3824 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2150 ($ $ (-1088 (-225)))) (-15 -2150 ($ $)) (-15 -4105 ((-1088 (-225)) $)) (-15 -1869 ((-641 (-641 (-225))) $)) (-15 -2598 ((-564))) (-15 -1470 ((-564) (-564))) (-15 -2760 ((-564))) (-15 -1482 ((-564) (-564))) (-15 -3657 ((-564))) (-15 -2058 ((-564) (-564))) (-15 -3021 ((-112))) (-15 -3970 ((-112) (-112))) (-15 -2852 ((-564))) (-15 -3323 ((-112) (-112)))))
+((-3824 (($ $ (-1088 (-225))) 123) (($ $ (-1088 (-225)) (-1088 (-225))) 124)) (-1965 (((-1088 (-225)) $) 72)) (-3618 (((-1088 (-225)) $) 71)) (-4105 (((-1088 (-225)) $) 73)) (-2772 (((-564) (-564)) 65)) (-2459 (((-564) (-564)) 61)) (-3833 (((-564) (-564)) 63)) (-2658 (((-112) (-112)) 67)) (-2299 (((-564)) 64)) (-2150 (($ $ (-1088 (-225))) 127) (($ $) 128)) (-3814 (($ (-1 (-940 (-225)) (-225)) (-1088 (-225))) 142) (($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 143)) (-1548 (($ (-1 (-225) (-225)) (-1088 (-225))) 150) (($ (-1 (-225) (-225))) 154)) (-2739 (($ (-1 (-225) (-225)) (-1088 (-225))) 138) (($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225))) 139) (($ (-641 (-1 (-225) (-225))) (-1088 (-225))) 147) (($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225))) 148) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 140) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 141) (($ $ (-1088 (-225))) 129)) (-3327 (((-112) $) 68)) (-1450 (((-564)) 69)) (-2548 (((-564)) 59)) (-1507 (((-564)) 62)) (-2465 (((-641 (-641 (-940 (-225)))) $) 35)) (-2226 (((-112) (-112)) 70)) (-3714 (((-859) $) 168)) (-1642 (((-112)) 66)))
+(((-924) (-13 (-952) (-10 -8 (-15 -2739 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2739 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -2739 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3814 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -3814 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1548 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -1548 ($ (-1 (-225) (-225)))) (-15 -2739 ($ $ (-1088 (-225)))) (-15 -3327 ((-112) $)) (-15 -3824 ($ $ (-1088 (-225)))) (-15 -3824 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2150 ($ $ (-1088 (-225)))) (-15 -2150 ($ $)) (-15 -4105 ((-1088 (-225)) $)) (-15 -2548 ((-564))) (-15 -2459 ((-564) (-564))) (-15 -1507 ((-564))) (-15 -3833 ((-564) (-564))) (-15 -2299 ((-564))) (-15 -2772 ((-564) (-564))) (-15 -1642 ((-112))) (-15 -2658 ((-112) (-112))) (-15 -1450 ((-564))) (-15 -2226 ((-112) (-112)))))) (T -924))
+((-2739 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2739 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2739 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2739 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2739 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2739 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3814 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3814 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-1548 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-1548 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-924)))) (-2739 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-3824 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-3824 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2150 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2150 (*1 *1 *1) (-5 *1 (-924))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2548 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-1507 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2299 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-1642 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-1450 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2226 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+(-13 (-952) (-10 -8 (-15 -2739 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2739 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -2739 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2739 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3814 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -3814 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -1548 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -1548 ($ (-1 (-225) (-225)))) (-15 -2739 ($ $ (-1088 (-225)))) (-15 -3327 ((-112) $)) (-15 -3824 ($ $ (-1088 (-225)))) (-15 -3824 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2150 ($ $ (-1088 (-225)))) (-15 -2150 ($ $)) (-15 -4105 ((-1088 (-225)) $)) (-15 -2548 ((-564))) (-15 -2459 ((-564) (-564))) (-15 -1507 ((-564))) (-15 -3833 ((-564) (-564))) (-15 -2299 ((-564))) (-15 -2772 ((-564) (-564))) (-15 -1642 ((-112))) (-15 -2658 ((-112) (-112))) (-15 -1450 ((-564))) (-15 -2226 ((-112) (-112)))))
+((-3901 (((-641 (-1088 (-225))) (-641 (-641 (-940 (-225))))) 34)))
+(((-925) (-10 -7 (-15 -3901 ((-641 (-1088 (-225))) (-641 (-641 (-940 (-225)))))))) (T -925))
+((-3901 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-925)))))
+(-10 -7 (-15 -3901 ((-641 (-1088 (-225))) (-641 (-641 (-940 (-225)))))))
+((-1689 ((|#2| |#2|) 28)) (-2768 ((|#2| |#2|) 29)) (-2222 ((|#2| |#2|) 27)) (-2011 ((|#2| |#2| (-1152)) 26)))
+(((-926 |#1| |#2|) (-10 -7 (-15 -2011 (|#2| |#2| (-1152))) (-15 -2222 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2768 (|#2| |#2|))) (-847) (-430 |#1|)) (T -926))
+((-2768 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-2011 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-847)) (-5 *1 (-926 *4 *2)) (-4 *2 (-430 *4)))))
+(-10 -7 (-15 -2011 (|#2| |#2| (-1152))) (-15 -2222 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)))
+((-1689 (((-316 (-564)) (-1170)) 16)) (-2768 (((-316 (-564)) (-1170)) 14)) (-2222 (((-316 (-564)) (-1170)) 12)) (-2011 (((-316 (-564)) (-1170) (-1152)) 19)))
+(((-927) (-10 -7 (-15 -2011 ((-316 (-564)) (-1170) (-1152))) (-15 -2222 ((-316 (-564)) (-1170))) (-15 -1689 ((-316 (-564)) (-1170))) (-15 -2768 ((-316 (-564)) (-1170))))) (T -927))
+((-2768 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-2011 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))))
+(-10 -7 (-15 -2011 ((-316 (-564)) (-1170) (-1152))) (-15 -2222 ((-316 (-564)) (-1170))) (-15 -1689 ((-316 (-564)) (-1170))) (-15 -2768 ((-316 (-564)) (-1170))))
+((-4181 (((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)) 25)) (-2306 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -2306 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4181 ((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-883 |#1|) (-13 (-1094) (-1035 |#2|))) (T -928))
+((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-13 (-1094) (-1035 *3))) (-4 *3 (-883 *5)) (-5 *1 (-928 *5 *3 *6)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1035 *5))) (-4 *5 (-883 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-928 *4 *5 *6)))))
+(-10 -7 (-15 -2306 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4181 ((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|))))
+((-4181 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 30)))
+(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -4181 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-13 (-556) (-847) (-883 |#1|)) (-13 (-430 |#2|) (-612 (-889 |#1|)) (-883 |#1|) (-1035 (-610 $)))) (T -929))
+((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-430 *6) (-612 *4) (-883 *5) (-1035 (-610 $)))) (-5 *4 (-889 *5)) (-4 *6 (-13 (-556) (-847) (-883 *5))) (-5 *1 (-929 *5 *6 *3)))))
+(-10 -7 (-15 -4181 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))
+((-4181 (((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)) 13)))
+(((-930 |#1|) (-10 -7 (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)))) (-545)) (T -930))
+((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 (-564) *3)) (-5 *4 (-889 (-564))) (-4 *3 (-545)) (-5 *1 (-930 *3)))))
+(-10 -7 (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))))
+((-4181 (((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)) 57)))
+(((-931 |#1| |#2|) (-10 -7 (-15 -4181 ((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)))) (-1094) (-13 (-847) (-1035 (-610 $)) (-612 (-889 |#1|)) (-883 |#1|))) (T -931))
+((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094)) (-4 *6 (-13 (-847) (-1035 (-610 $)) (-612 *4) (-883 *5))) (-5 *4 (-889 *5)) (-5 *1 (-931 *5 *6)))))
+(-10 -7 (-15 -4181 ((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|))))
+((-4181 (((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)) 17)))
+(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -4181 ((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)))) (-1094) (-883 |#1|) (-662 |#2|)) (T -932))
+((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *6 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-4 *3 (-662 *6)) (-5 *1 (-932 *5 *6 *3)))))
+(-10 -7 (-15 -4181 ((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|))))
+((-4181 (((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|)) 17 (|has| |#3| (-883 |#1|))) (((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|))) 16)))
+(((-933 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4181 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|)))) (IF (|has| |#3| (-883 |#1|)) (-15 -4181 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|))) |%noBranch|)) (-1094) (-790) (-847) (-13 (-1046) (-847) (-883 |#1|)) (-13 (-946 |#4| |#2| |#3|) (-612 (-889 |#1|)))) (T -933))
+((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-946 *8 *6 *7) (-612 *4))) (-5 *4 (-889 *5)) (-4 *7 (-883 *5)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-13 (-1046) (-847) (-883 *5))) (-5 *1 (-933 *5 *6 *7 *8 *3)))) (-4181 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-886 *6 *3) *8 (-889 *6) (-886 *6 *3))) (-4 *8 (-847)) (-5 *2 (-886 *6 *3)) (-5 *4 (-889 *6)) (-4 *6 (-1094)) (-4 *3 (-13 (-946 *9 *7 *8) (-612 *4))) (-4 *7 (-790)) (-4 *9 (-13 (-1046) (-847) (-883 *6))) (-5 *1 (-933 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -4181 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|)))) (IF (|has| |#3| (-883 |#1|)) (-15 -4181 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|))) |%noBranch|))
+((-2828 ((|#2| |#2| (-641 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -2828 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2828 (|#2| |#2| (-641 (-1 (-112) |#3|))))) (-847) (-430 |#1|) (-1209)) (T -934))
+((-2828 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-847)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))) (-2828 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-847)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))))
+(-10 -7 (-15 -2828 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2828 (|#2| |#2| (-641 (-1 (-112) |#3|)))))
+((-2828 (((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))) 18) (((-316 (-564)) (-1170) (-1 (-112) |#1|)) 15)))
+(((-935 |#1|) (-10 -7 (-15 -2828 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -2828 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))))) (-1209)) (T -935))
+((-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))) (-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))))
+(-10 -7 (-15 -2828 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -2828 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|)))))
+((-4181 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 25)))
+(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -4181 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-13 (-556) (-883 |#1|) (-612 (-889 |#1|))) (-989 |#2|)) (T -936))
+((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-989 *6)) (-4 *6 (-13 (-556) (-883 *5) (-612 *4))) (-5 *4 (-889 *5)) (-5 *1 (-936 *5 *6 *3)))))
+(-10 -7 (-15 -4181 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))
+((-4181 (((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))) 18)))
+(((-937 |#1|) (-10 -7 (-15 -4181 ((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))))) (-1094)) (T -937))
+((-4181 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *1 (-937 *5)))))
+(-10 -7 (-15 -4181 ((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170)))))
+((-2947 (((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) 34)) (-4181 (((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) 33)))
+(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -4181 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-15 -2947 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))) (-1094) (-13 (-1046) (-847)) (-13 (-1046) (-612 (-889 |#1|)) (-1035 |#2|))) (T -938))
+((-2947 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-889 *6))) (-5 *5 (-1 (-886 *6 *8) *8 (-889 *6) (-886 *6 *8))) (-4 *6 (-1094)) (-4 *8 (-13 (-1046) (-612 (-889 *6)) (-1035 *7))) (-5 *2 (-886 *6 *8)) (-4 *7 (-13 (-1046) (-847))) (-5 *1 (-938 *6 *7 *8)))) (-4181 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-641 (-889 *7))) (-5 *5 (-1 *9 (-641 *9))) (-5 *6 (-1 (-886 *7 *9) *9 (-889 *7) (-886 *7 *9))) (-4 *7 (-1094)) (-4 *9 (-13 (-1046) (-612 (-889 *7)) (-1035 *8))) (-5 *2 (-886 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1046) (-847))) (-5 *1 (-938 *7 *8 *9)))))
+(-10 -7 (-15 -4181 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-15 -2947 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))))
+((-1902 (((-1166 (-407 (-564))) (-564)) 80)) (-2116 (((-1166 (-564)) (-564)) 83)) (-2725 (((-1166 (-564)) (-564)) 77)) (-2110 (((-564) (-1166 (-564))) 73)) (-2124 (((-1166 (-407 (-564))) (-564)) 64)) (-1343 (((-1166 (-564)) (-564)) 48)) (-3842 (((-1166 (-564)) (-564)) 85)) (-2164 (((-1166 (-564)) (-564)) 84)) (-1948 (((-1166 (-407 (-564))) (-564)) 66)))
+(((-939) (-10 -7 (-15 -1948 ((-1166 (-407 (-564))) (-564))) (-15 -2164 ((-1166 (-564)) (-564))) (-15 -3842 ((-1166 (-564)) (-564))) (-15 -1343 ((-1166 (-564)) (-564))) (-15 -2124 ((-1166 (-407 (-564))) (-564))) (-15 -2110 ((-564) (-1166 (-564)))) (-15 -2725 ((-1166 (-564)) (-564))) (-15 -2116 ((-1166 (-564)) (-564))) (-15 -1902 ((-1166 (-407 (-564))) (-564))))) (T -939))
+((-1902 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2116 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-939)))) (-2124 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))) (-1343 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-3842 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2164 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-1948 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))))
+(-10 -7 (-15 -1948 ((-1166 (-407 (-564))) (-564))) (-15 -2164 ((-1166 (-564)) (-564))) (-15 -3842 ((-1166 (-564)) (-564))) (-15 -1343 ((-1166 (-564)) (-564))) (-15 -2124 ((-1166 (-407 (-564))) (-564))) (-15 -2110 ((-564) (-1166 (-564)))) (-15 -2725 ((-1166 (-564)) (-564))) (-15 -2116 ((-1166 (-564)) (-564))) (-15 -1902 ((-1166 (-407 (-564))) (-564))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1532 (($ (-768)) NIL (|has| |#1| (-23)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-3303 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3362 (($ (-641 |#1|)) 9)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-2996 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-3564 (($ (-768) |#1|) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2636 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-4144 (((-112) $ (-768)) NIL)) (-3451 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2049 ((|#1| $) NIL (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-3042 (($ $ (-641 |#1|)) 25)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 18) (($ $ (-1226 (-564))) NIL)) (-2681 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-2869 (((-918) $) 13)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3482 (($ $ $) 23)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 14)) (-3725 (($ (-641 |#1|)) NIL)) (-1865 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-641 $)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1828 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1814 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2779 (((-768) $) 11 (|has| $ (-6 -4412)))))
(((-940 |#1|) (-977 |#1|) (-1046)) (T -940))
NIL
(-977 |#1|)
-((-2283 (((-481 |#1| |#2|) (-949 |#2|)) 22)) (-1749 (((-247 |#1| |#2|) (-949 |#2|)) 35)) (-2896 (((-949 |#2|) (-481 |#1| |#2|)) 27)) (-2172 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 57)) (-3970 (((-949 |#2|) (-247 |#1| |#2|)) 32)) (-2844 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 48)))
-(((-941 |#1| |#2|) (-10 -7 (-15 -2844 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2172 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -2283 ((-481 |#1| |#2|) (-949 |#2|))) (-15 -2896 ((-949 |#2|) (-481 |#1| |#2|))) (-15 -3970 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -1749 ((-247 |#1| |#2|) (-949 |#2|)))) (-641 (-1170)) (-1046)) (T -941))
-((-1749 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5)))))
-(-10 -7 (-15 -2844 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2172 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -2283 ((-481 |#1| |#2|) (-949 |#2|))) (-15 -2896 ((-949 |#2|) (-481 |#1| |#2|))) (-15 -3970 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -1749 ((-247 |#1| |#2|) (-949 |#2|))))
-((-2886 (((-641 |#2|) |#2| |#2|) 10)) (-3560 (((-768) (-641 |#1|)) 49 (|has| |#1| (-845)))) (-3876 (((-641 |#2|) |#2|) 11)) (-3813 (((-768) (-641 |#1|) (-564) (-564)) 53 (|has| |#1| (-845)))) (-2449 ((|#1| |#2|) 40 (|has| |#1| (-845)))))
-(((-942 |#1| |#2|) (-10 -7 (-15 -2886 ((-641 |#2|) |#2| |#2|)) (-15 -3876 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-845)) (PROGN (-15 -2449 (|#1| |#2|)) (-15 -3560 ((-768) (-641 |#1|))) (-15 -3813 ((-768) (-641 |#1|) (-564) (-564)))) |%noBranch|)) (-363) (-1235 |#1|)) (T -942))
-((-3813 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-845)) (-4 *5 (-363)) (-5 *2 (-768)) (-5 *1 (-942 *5 *6)) (-4 *6 (-1235 *5)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-845)) (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1235 *4)))) (-2449 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-845)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1235 *2)))) (-3876 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1235 *4)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -2886 ((-641 |#2|) |#2| |#2|)) (-15 -3876 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-845)) (PROGN (-15 -2449 (|#1| |#2|)) (-15 -3560 ((-768) (-641 |#1|))) (-15 -3813 ((-768) (-641 |#1|) (-564) (-564)))) |%noBranch|))
-((-2082 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 19)))
-(((-943 |#1| |#2|) (-10 -7 (-15 -2082 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1046) (-1046)) (T -943))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-949 *6)) (-5 *1 (-943 *5 *6)))))
-(-10 -7 (-15 -2082 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|))))
-((-3964 (((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)) 18)))
-(((-944 |#1| |#2|) (-10 -7 (-15 -3964 ((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)))) (-1170) (-1046)) (T -944))
-((-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1046)) (-5 *2 (-1232 *5 (-949 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-949 *6)))))
-(-10 -7 (-15 -3964 ((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|))))
-((-2831 (((-768) $) 88) (((-768) $ (-641 |#4|)) 93)) (-1368 (($ $) 204)) (-3981 (((-418 $) $) 196)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 140)) (-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2064 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) 73)) (-4267 (($ $ $ |#4|) 95)) (-2620 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 130) (((-685 |#2|) (-685 $)) 120)) (-2190 (($ $) 211) (($ $ |#4|) 214)) (-4334 (((-641 $) $) 77)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 230) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 223)) (-2791 (((-641 $) $) 34)) (-4145 (($ |#2| |#3|) NIL) (($ $ |#4| (-768)) NIL) (($ $ (-641 |#4|) (-641 (-768))) 71)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ |#4|) 193)) (-1964 (((-3 (-641 $) "failed") $) 52)) (-1295 (((-3 (-641 $) "failed") $) 39)) (-1691 (((-3 (-2 (|:| |var| |#4|) (|:| -3747 (-768))) "failed") $) 57)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 133)) (-3113 (((-418 (-1166 $)) (-1166 $)) 146)) (-1761 (((-418 (-1166 $)) (-1166 $)) 144)) (-4006 (((-418 $) $) 164)) (-2407 (($ $ (-641 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL)) (-1938 (($ $ |#4|) 97)) (-2127 (((-889 (-379)) $) 244) (((-889 (-564)) $) 237) (((-536) $) 252)) (-2712 ((|#2| $) NIL) (($ $ |#4|) 206)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 183)) (-1757 ((|#2| $ |#3|) NIL) (($ $ |#4| (-768)) 62) (($ $ (-641 |#4|) (-641 (-768))) 69)) (-2864 (((-3 $ "failed") $) 185)) (-1705 (((-112) $ $) 217)))
-(((-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -2864 ((-3 |#1| "failed") |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2549 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -1761 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3113 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2111 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2574 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2190 (|#1| |#1| |#4|)) (-15 -2712 (|#1| |#1| |#4|)) (-15 -1938 (|#1| |#1| |#4|)) (-15 -4267 (|#1| |#1| |#1| |#4|)) (-15 -4334 ((-641 |#1|) |#1|)) (-15 -2831 ((-768) |#1| (-641 |#4|))) (-15 -2831 ((-768) |#1|)) (-15 -1691 ((-3 (-2 (|:| |var| |#4|) (|:| -3747 (-768))) "failed") |#1|)) (-15 -1964 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -1295 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4145 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -4145 (|#1| |#1| |#4| (-768))) (-15 -2547 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1| |#4|)) (-15 -2791 ((-641 |#1|) |#1|)) (-15 -1757 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -1757 (|#1| |#1| |#4| (-768))) (-15 -2620 ((-685 |#2|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -2013 ((-3 |#4| "failed") |#1|)) (-15 -2064 (|#4| |#1|)) (-15 -2407 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#4| |#1|)) (-15 -2407 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#4| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -4145 (|#1| |#2| |#3|)) (-15 -1757 (|#2| |#1| |#3|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -2190 (|#1| |#1|))) (-946 |#2| |#3| |#4|) (-1046) (-790) (-847)) (T -945))
-NIL
-(-10 -8 (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -2864 ((-3 |#1| "failed") |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2549 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -1761 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3113 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2111 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2574 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2190 (|#1| |#1| |#4|)) (-15 -2712 (|#1| |#1| |#4|)) (-15 -1938 (|#1| |#1| |#4|)) (-15 -4267 (|#1| |#1| |#1| |#4|)) (-15 -4334 ((-641 |#1|) |#1|)) (-15 -2831 ((-768) |#1| (-641 |#4|))) (-15 -2831 ((-768) |#1|)) (-15 -1691 ((-3 (-2 (|:| |var| |#4|) (|:| -3747 (-768))) "failed") |#1|)) (-15 -1964 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -1295 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4145 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -4145 (|#1| |#1| |#4| (-768))) (-15 -2547 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1| |#4|)) (-15 -2791 ((-641 |#1|) |#1|)) (-15 -1757 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -1757 (|#1| |#1| |#4| (-768))) (-15 -2620 ((-685 |#2|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -2013 ((-3 |#4| "failed") |#1|)) (-15 -2064 (|#4| |#1|)) (-15 -2407 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#4| |#1|)) (-15 -2407 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2407 (|#1| |#1| |#4| |#2|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -4145 (|#1| |#2| |#3|)) (-15 -1757 (|#2| |#1| |#3|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -2190 (|#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4170 (((-641 |#3|) $) 110)) (-3964 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1840 (($ $) 88 (|has| |#1| (-556)))) (-4035 (((-112) $) 90 (|has| |#1| (-556)))) (-2831 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-3936 (((-3 $ "failed") $ $) 19)) (-1871 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-1368 (($ $) 98 (|has| |#1| (-452)))) (-3981 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136)) (-2064 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137)) (-4267 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-4346 (($ $) 154)) (-2620 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-1926 (((-3 $ "failed") $) 33)) (-2190 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-4334 (((-641 $) $) 109)) (-3241 (((-112) $) 96 (|has| |#1| (-906)))) (-2877 (($ $ |#1| |#2| $) 172)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2419 (((-112) $) 31)) (-3107 (((-768) $) 169)) (-4157 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-2791 (((-641 $) $) 126)) (-3101 (((-112) $) 152)) (-4145 (($ |#1| |#2|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ |#3|) 120)) (-3829 ((|#2| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-3571 (($ $ $) 79 (|has| |#1| (-847)))) (-1547 (($ $ $) 78 (|has| |#1| (-847)))) (-2964 (($ (-1 |#2| |#2|) $) 171)) (-2082 (($ (-1 |#1| |#1|) $) 151)) (-2022 (((-3 |#3| "failed") $) 123)) (-4311 (($ $) 149)) (-4323 ((|#1| $) 148)) (-2488 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-4202 (((-1152) $) 9)) (-1964 (((-3 (-641 $) "failed") $) 114)) (-1295 (((-3 (-641 $) "failed") $) 115)) (-1691 (((-3 (-2 (|:| |var| |#3|) (|:| -3747 (-768))) "failed") $) 113)) (-3802 (((-1114) $) 10)) (-4285 (((-112) $) 166)) (-4298 ((|#1| $) 167)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2527 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4006 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1343 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2407 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-1938 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-3226 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39)) (-3344 ((|#2| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129)) (-2127 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2712 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4266 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-556))) (($ (-407 (-564))) 72 (-4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-4264 (((-641 |#1|) $) 168)) (-1757 ((|#1| $ |#2|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-2864 (((-3 $ "failed") $) 73 (-4002 (-4266 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) 28 T CONST)) (-2958 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-1582 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35)) (-1738 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1793 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-3442 (((-481 |#1| |#2|) (-949 |#2|)) 22)) (-3118 (((-247 |#1| |#2|) (-949 |#2|)) 35)) (-1621 (((-949 |#2|) (-481 |#1| |#2|)) 27)) (-1824 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 57)) (-1489 (((-949 |#2|) (-247 |#1| |#2|)) 32)) (-4142 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 48)))
+(((-941 |#1| |#2|) (-10 -7 (-15 -4142 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1824 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3442 ((-481 |#1| |#2|) (-949 |#2|))) (-15 -1621 ((-949 |#2|) (-481 |#1| |#2|))) (-15 -1489 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -3118 ((-247 |#1| |#2|) (-949 |#2|)))) (-641 (-1170)) (-1046)) (T -941))
+((-3118 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5)))))
+(-10 -7 (-15 -4142 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1824 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3442 ((-481 |#1| |#2|) (-949 |#2|))) (-15 -1621 ((-949 |#2|) (-481 |#1| |#2|))) (-15 -1489 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -3118 ((-247 |#1| |#2|) (-949 |#2|))))
+((-1522 (((-641 |#2|) |#2| |#2|) 10)) (-1943 (((-768) (-641 |#1|)) 49 (|has| |#1| (-845)))) (-1883 (((-641 |#2|) |#2|) 11)) (-2549 (((-768) (-641 |#1|) (-564) (-564)) 53 (|has| |#1| (-845)))) (-2666 ((|#1| |#2|) 40 (|has| |#1| (-845)))))
+(((-942 |#1| |#2|) (-10 -7 (-15 -1522 ((-641 |#2|) |#2| |#2|)) (-15 -1883 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-845)) (PROGN (-15 -2666 (|#1| |#2|)) (-15 -1943 ((-768) (-641 |#1|))) (-15 -2549 ((-768) (-641 |#1|) (-564) (-564)))) |%noBranch|)) (-363) (-1235 |#1|)) (T -942))
+((-2549 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-845)) (-4 *5 (-363)) (-5 *2 (-768)) (-5 *1 (-942 *5 *6)) (-4 *6 (-1235 *5)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-845)) (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1235 *4)))) (-2666 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-845)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1235 *2)))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1235 *4)))) (-1522 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -1522 ((-641 |#2|) |#2| |#2|)) (-15 -1883 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-845)) (PROGN (-15 -2666 (|#1| |#2|)) (-15 -1943 ((-768) (-641 |#1|))) (-15 -2549 ((-768) (-641 |#1|) (-564) (-564)))) |%noBranch|))
+((-2313 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 19)))
+(((-943 |#1| |#2|) (-10 -7 (-15 -2313 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1046) (-1046)) (T -943))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-949 *6)) (-5 *1 (-943 *5 *6)))))
+(-10 -7 (-15 -2313 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|))))
+((-4103 (((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)) 18)))
+(((-944 |#1| |#2|) (-10 -7 (-15 -4103 ((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)))) (-1170) (-1046)) (T -944))
+((-4103 (*1 *2 *3 *4) (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1046)) (-5 *2 (-1232 *5 (-949 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-949 *6)))))
+(-10 -7 (-15 -4103 ((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|))))
+((-2181 (((-768) $) 88) (((-768) $ (-641 |#4|)) 93)) (-1328 (($ $) 204)) (-1592 (((-418 $) $) 196)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 140)) (-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2376 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) 73)) (-4275 (($ $ $ |#4|) 95)) (-3613 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 130) (((-685 |#2|) (-685 $)) 120)) (-2015 (($ $) 211) (($ $ |#4|) 214)) (-1359 (((-641 $) $) 77)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 230) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 223)) (-1767 (((-641 $) $) 34)) (-4267 (($ |#2| |#3|) NIL) (($ $ |#4| (-768)) NIL) (($ $ (-641 |#4|) (-641 (-768))) 71)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ |#4|) 193)) (-3370 (((-3 (-641 $) "failed") $) 52)) (-3591 (((-3 (-641 $) "failed") $) 39)) (-3741 (((-3 (-2 (|:| |var| |#4|) (|:| -3078 (-768))) "failed") $) 57)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 133)) (-3048 (((-418 (-1166 $)) (-1166 $)) 146)) (-3209 (((-418 (-1166 $)) (-1166 $)) 144)) (-4139 (((-418 $) $) 164)) (-2582 (($ $ (-641 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL)) (-4378 (($ $ |#4|) 97)) (-2374 (((-889 (-379)) $) 244) (((-889 (-564)) $) 237) (((-536) $) 252)) (-3324 ((|#2| $) NIL) (($ $ |#4|) 206)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 183)) (-3181 ((|#2| $ |#3|) NIL) (($ $ |#4| (-768)) 62) (($ $ (-641 |#4|) (-641 (-768))) 69)) (-4363 (((-3 $ "failed") $) 185)) (-1746 (((-112) $ $) 217)))
+(((-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -4181 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3048 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2508 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -1352 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2015 (|#1| |#1| |#4|)) (-15 -3324 (|#1| |#1| |#4|)) (-15 -4378 (|#1| |#1| |#4|)) (-15 -4275 (|#1| |#1| |#1| |#4|)) (-15 -1359 ((-641 |#1|) |#1|)) (-15 -2181 ((-768) |#1| (-641 |#4|))) (-15 -2181 ((-768) |#1|)) (-15 -3741 ((-3 (-2 (|:| |var| |#4|) (|:| -3078 (-768))) "failed") |#1|)) (-15 -3370 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3591 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4267 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -4267 (|#1| |#1| |#4| (-768))) (-15 -4171 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1| |#4|)) (-15 -1767 ((-641 |#1|) |#1|)) (-15 -3181 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -3181 (|#1| |#1| |#4| (-768))) (-15 -3613 ((-685 |#2|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -2224 ((-3 |#4| "failed") |#1|)) (-15 -2376 (|#4| |#1|)) (-15 -2582 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#4| |#1|)) (-15 -2582 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#4| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -4267 (|#1| |#2| |#3|)) (-15 -3181 (|#2| |#1| |#3|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -2015 (|#1| |#1|))) (-946 |#2| |#3| |#4|) (-1046) (-790) (-847)) (T -945))
+NIL
+(-10 -8 (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -1746 ((-112) |#1| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -4181 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3048 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2508 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -1352 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -2015 (|#1| |#1| |#4|)) (-15 -3324 (|#1| |#1| |#4|)) (-15 -4378 (|#1| |#1| |#4|)) (-15 -4275 (|#1| |#1| |#1| |#4|)) (-15 -1359 ((-641 |#1|) |#1|)) (-15 -2181 ((-768) |#1| (-641 |#4|))) (-15 -2181 ((-768) |#1|)) (-15 -3741 ((-3 (-2 (|:| |var| |#4|) (|:| -3078 (-768))) "failed") |#1|)) (-15 -3370 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3591 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4267 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -4267 (|#1| |#1| |#4| (-768))) (-15 -4171 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1| |#4|)) (-15 -1767 ((-641 |#1|) |#1|)) (-15 -3181 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -3181 (|#1| |#1| |#4| (-768))) (-15 -3613 ((-685 |#2|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -2224 ((-3 |#4| "failed") |#1|)) (-15 -2376 (|#4| |#1|)) (-15 -2582 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#4| |#1|)) (-15 -2582 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2582 (|#1| |#1| |#4| |#2|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -4267 (|#1| |#2| |#3|)) (-15 -3181 (|#2| |#1| |#3|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -2015 (|#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4292 (((-641 |#3|) $) 110)) (-4103 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1582 (($ $) 88 (|has| |#1| (-556)))) (-3897 (((-112) $) 90 (|has| |#1| (-556)))) (-2181 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-4281 (((-3 $ "failed") $ $) 19)) (-1917 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-1328 (($ $) 98 (|has| |#1| (-452)))) (-1592 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136)) (-2376 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137)) (-4275 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-1374 (($ $) 154)) (-3613 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-4272 (((-3 $ "failed") $) 33)) (-2015 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-1359 (((-641 $) $) 109)) (-1926 (((-112) $) 96 (|has| |#1| (-906)))) (-1423 (($ $ |#1| |#2| $) 172)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2340 (((-112) $) 31)) (-2998 (((-768) $) 169)) (-4279 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-1767 (((-641 $) $) 126)) (-2961 (((-112) $) 152)) (-4267 (($ |#1| |#2|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ |#3|) 120)) (-2700 ((|#2| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-3428 (($ $ $) 79 (|has| |#1| (-847)))) (-3413 (($ $ $) 78 (|has| |#1| (-847)))) (-4062 (($ (-1 |#2| |#2|) $) 171)) (-2313 (($ (-1 |#1| |#1|) $) 151)) (-2848 (((-3 |#3| "failed") $) 123)) (-1330 (($ $) 149)) (-1345 ((|#1| $) 148)) (-2688 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1868 (((-1152) $) 9)) (-3370 (((-3 (-641 $) "failed") $) 114)) (-3591 (((-3 (-641 $) "failed") $) 115)) (-3741 (((-3 (-2 (|:| |var| |#3|) (|:| -3078 (-768))) "failed") $) 113)) (-3844 (((-1114) $) 10)) (-1304 (((-112) $) 166)) (-1316 ((|#1| $) 167)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2727 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4139 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1347 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2582 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-4378 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-2203 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39)) (-3475 ((|#2| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129)) (-2374 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3324 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4264 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-556))) (($ (-407 (-564))) 72 (-4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-4252 (((-641 |#1|) $) 168)) (-3181 ((|#1| $ |#2|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-4363 (((-3 $ "failed") $) 73 (-4012 (-4264 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) 28 T CONST)) (-3993 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3979 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35)) (-1781 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1841 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-946 |#1| |#2| |#3|) (-140) (-1046) (-790) (-847)) (T -946))
-((-2190 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3344 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3344 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) (-1757 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *2 (-847)))) (-1757 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) (-2791 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-3964 (*1 *2 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-1166 *3)))) (-2022 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3829 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3829 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) (-2547 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-946 *4 *5 *3)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *2 (-847)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1046)) (-4 *1 (-946 *4 *5 *3)) (-4 *5 (-790)) (-4 *3 (-847)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)))) (-1295 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-1964 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-1691 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| |var| *5) (|:| -3747 (-768)))))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-768)))) (-2831 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *5)))) (-4334 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-4267 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-172)))) (-1938 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-172)))) (-2712 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-452)))) (-2190 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-452)))) (-1368 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3981 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-418 *1)) (-4 *1 (-946 *3 *4 *5)))))
-(-13 (-897 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1035 |t#3|) (-377 |t#1|) (-10 -8 (-15 -3344 ((-768) $ |t#3|)) (-15 -3344 ((-641 (-768)) $ (-641 |t#3|))) (-15 -1757 ($ $ |t#3| (-768))) (-15 -1757 ($ $ (-641 |t#3|) (-641 (-768)))) (-15 -2791 ((-641 $) $)) (-15 -3964 ((-1166 $) $ |t#3|)) (-15 -3964 ((-1166 |t#1|) $)) (-15 -2022 ((-3 |t#3| "failed") $)) (-15 -3829 ((-768) $ |t#3|)) (-15 -3829 ((-641 (-768)) $ (-641 |t#3|))) (-15 -2547 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $ |t#3|)) (-15 -4145 ($ $ |t#3| (-768))) (-15 -4145 ($ $ (-641 |t#3|) (-641 (-768)))) (-15 -4157 ($ (-1166 |t#1|) |t#3|)) (-15 -4157 ($ (-1166 $) |t#3|)) (-15 -1295 ((-3 (-641 $) "failed") $)) (-15 -1964 ((-3 (-641 $) "failed") $)) (-15 -1691 ((-3 (-2 (|:| |var| |t#3|) (|:| -3747 (-768))) "failed") $)) (-15 -2831 ((-768) $)) (-15 -2831 ((-768) $ (-641 |t#3|))) (-15 -4170 ((-641 |t#3|) $)) (-15 -4334 ((-641 $) $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (IF (|has| |t#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-564)))) (IF (|has| |t#3| (-612 (-889 (-564)))) (-6 (-612 (-889 (-564)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-379)))) (IF (|has| |t#3| (-612 (-889 (-379)))) (-6 (-612 (-889 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-883 (-564))) (IF (|has| |t#3| (-883 (-564))) (-6 (-883 (-564))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-883 (-379))) (IF (|has| |t#3| (-883 (-379))) (-6 (-883 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4267 ($ $ $ |t#3|)) (-15 -1938 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -2712 ($ $ |t#3|)) (-15 -2190 ($ $)) (-15 -2190 ($ $ |t#3|)) (-15 -3981 ((-418 $) $)) (-15 -1368 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4409)) (-6 -4409) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-290) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4002 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906)))
-((-4170 (((-641 |#2|) |#5|) 40)) (-3964 (((-1166 |#5|) |#5| |#2| (-1166 |#5|)) 23) (((-407 (-1166 |#5|)) |#5| |#2|) 16)) (-4157 ((|#5| (-407 (-1166 |#5|)) |#2|) 30)) (-2022 (((-3 |#2| "failed") |#5|) 71)) (-1964 (((-3 (-641 |#5|) "failed") |#5|) 65)) (-3221 (((-3 (-2 (|:| |val| |#5|) (|:| -3747 (-564))) "failed") |#5|) 53)) (-1295 (((-3 (-641 |#5|) "failed") |#5|) 67)) (-1691 (((-3 (-2 (|:| |var| |#2|) (|:| -3747 (-564))) "failed") |#5|) 57)))
-(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4170 ((-641 |#2|) |#5|)) (-15 -2022 ((-3 |#2| "failed") |#5|)) (-15 -3964 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -4157 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -3964 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -1295 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1964 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1691 ((-3 (-2 (|:| |var| |#2|) (|:| -3747 (-564))) "failed") |#5|)) (-15 -3221 ((-3 (-2 (|:| |val| |#5|) (|:| -3747 (-564))) "failed") |#5|))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1765 ($ |#4|)) (-15 -1507 (|#4| $)) (-15 -1517 (|#4| $))))) (T -947))
-((-3221 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3747 (-564)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))))) (-1691 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3747 (-564)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))))) (-1964 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))))) (-1295 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))))) (-3964 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))) (-4 *7 (-946 *6 *5 *4)) (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-5 *1 (-947 *5 *4 *6 *7 *3)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-4 *2 (-13 (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))) (-5 *1 (-947 *5 *4 *6 *7 *2)) (-4 *7 (-946 *6 *5 *4)))) (-3964 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-407 (-1166 *3))) (-5 *1 (-947 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))))) (-2022 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-1046)) (-4 *6 (-946 *5 *4 *2)) (-4 *2 (-847)) (-5 *1 (-947 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1765 ($ *6)) (-15 -1507 (*6 $)) (-15 -1517 (*6 $))))))) (-4170 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *5)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))))))
-(-10 -7 (-15 -4170 ((-641 |#2|) |#5|)) (-15 -2022 ((-3 |#2| "failed") |#5|)) (-15 -3964 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -4157 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -3964 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -1295 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1964 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -1691 ((-3 (-2 (|:| |var| |#2|) (|:| -3747 (-564))) "failed") |#5|)) (-15 -3221 ((-3 (-2 (|:| |val| |#5|) (|:| -3747 (-564))) "failed") |#5|)))
-((-2082 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
-(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2082 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1771 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) (T -948))
-((-2082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *6 (-790)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -1771 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) (-5 *1 (-948 *6 *7 *8 *5 *2)) (-4 *5 (-946 *8 *6 *7)))))
-(-10 -7 (-15 -2082 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-1170)) $) 16)) (-3964 (((-1166 $) $ (-1170)) 21) (((-1166 |#1|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-1170))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1368 (($ $) NIL (|has| |#1| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1170) "failed") $) NIL)) (-2064 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1170) $) NIL)) (-4267 (($ $ $ (-1170)) NIL (|has| |#1| (-172)))) (-4346 (($ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#1| (-906)))) (-2877 (($ $ |#1| (-531 (-1170)) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1170) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1170) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-4157 (($ (-1166 |#1|) (-1170)) NIL) (($ (-1166 $) (-1170)) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-1170)) NIL)) (-3829 (((-531 (-1170)) $) NIL) (((-768) $ (-1170)) NIL) (((-641 (-768)) $ (-641 (-1170))) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2964 (($ (-1 (-531 (-1170)) (-531 (-1170))) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2022 (((-3 (-1170) "failed") $) 19)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4202 (((-1152) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-1170)) (|:| -3747 (-768))) "failed") $) NIL)) (-3591 (($ $ (-1170)) 29 (|has| |#1| (-38 (-407 (-564)))))) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#1| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1170) |#1|) NIL) (($ $ (-641 (-1170)) (-641 |#1|)) NIL) (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL)) (-1938 (($ $ (-1170)) NIL (|has| |#1| (-172)))) (-3226 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-3344 (((-531 (-1170)) $) NIL) (((-768) $ (-1170)) NIL) (((-641 (-768)) $ (-641 (-1170))) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-1170) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1170) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1170) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2712 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) 25) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1170)) 27) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-949 |#1|) (-13 (-946 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1170))) |%noBranch|))) (-1046)) (T -949))
-((-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))))
-(-13 (-946 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1170))) |%noBranch|)))
-((-3939 (((-2 (|:| -3747 (-768)) (|:| -1662 |#5|) (|:| |radicand| |#5|)) |#3| (-768)) 49)) (-2857 (((-2 (|:| -3747 (-768)) (|:| -1662 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768)) 44)) (-4117 (((-2 (|:| -3747 (-768)) (|:| -1662 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)) 65)) (-1945 (((-2 (|:| -3747 (-768)) (|:| -1662 |#5|) (|:| |radicand| |#5|)) |#5| (-768)) 74 (|has| |#3| (-452)))))
-(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3939 ((-2 (|:| -3747 (-768)) (|:| -1662 |#5|) (|:| |radicand| |#5|)) |#3| (-768))) (-15 -2857 ((-2 (|:| -3747 (-768)) (|:| -1662 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768))) (IF (|has| |#3| (-452)) (-15 -1945 ((-2 (|:| -3747 (-768)) (|:| -1662 |#5|) (|:| |radicand| |#5|)) |#5| (-768))) |%noBranch|) (-15 -4117 ((-2 (|:| -3747 (-768)) (|:| -1662 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1765 ($ |#4|)) (-15 -1507 (|#4| $)) (-15 -1517 (|#4| $))))) (T -950))
-((-4117 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *3 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *3) (|:| |radicand| (-641 *3)))) (-5 *1 (-950 *5 *6 *7 *3 *8)) (-5 *4 (-768)) (-4 *8 (-13 (-363) (-10 -8 (-15 -1765 ($ *3)) (-15 -1507 (*3 $)) (-15 -1517 (*3 $))))))) (-1945 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *3) (|:| |radicand| *3))) (-5 *1 (-950 *5 *6 *7 *8 *3)) (-5 *4 (-768)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1765 ($ *8)) (-15 -1507 (*8 $)) (-15 -1517 (*8 $))))))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *9) (|:| |radicand| *9))) (-5 *1 (-950 *5 *6 *7 *8 *9)) (-5 *4 (-768)) (-4 *9 (-13 (-363) (-10 -8 (-15 -1765 ($ *8)) (-15 -1507 (*8 $)) (-15 -1517 (*8 $))))))) (-3939 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-556)) (-4 *7 (-946 *3 *5 *6)) (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *8) (|:| |radicand| *8))) (-5 *1 (-950 *5 *6 *3 *7 *8)) (-5 *4 (-768)) (-4 *8 (-13 (-363) (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))))))
-(-10 -7 (-15 -3939 ((-2 (|:| -3747 (-768)) (|:| -1662 |#5|) (|:| |radicand| |#5|)) |#3| (-768))) (-15 -2857 ((-2 (|:| -3747 (-768)) (|:| -1662 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768))) (IF (|has| |#3| (-452)) (-15 -1945 ((-2 (|:| -3747 (-768)) (|:| -1662 |#5|) (|:| |radicand| |#5|)) |#5| (-768))) |%noBranch|) (-15 -4117 ((-2 (|:| -3747 (-768)) (|:| -1662 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768))))
-((-1754 (((-112) $ $) NIL)) (-1332 (($ (-1114)) 8)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 15) (((-1114) $) 12)) (-1686 (((-112) $ $) 11)))
-(((-951) (-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1332 ($ (-1114)))))) (T -951))
-((-1332 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-951)))))
-(-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1332 ($ (-1114)))))
-((-3492 (((-1088 (-225)) $) 8)) (-3479 (((-1088 (-225)) $) 9)) (-1803 (((-641 (-641 (-940 (-225)))) $) 10)) (-1765 (((-859) $) 6)))
+((-2015 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3475 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) (-3181 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *2 (-847)))) (-3181 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) (-1767 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-4103 (*1 *2 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-1166 *3)))) (-2848 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-2700 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-768)))) (-2700 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) (-4171 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-946 *4 *5 *3)))) (-4267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *2 (-847)))) (-4267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) (-4279 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1046)) (-4 *1 (-946 *4 *5 *3)) (-4 *5 (-790)) (-4 *3 (-847)))) (-4279 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)))) (-3591 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-3370 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-3741 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| |var| *5) (|:| -3078 (-768)))))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-768)))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *5)))) (-1359 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-4275 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-172)))) (-4378 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-172)))) (-3324 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-452)))) (-2015 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-452)))) (-1328 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-1592 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-418 *1)) (-4 *1 (-946 *3 *4 *5)))))
+(-13 (-897 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1035 |t#3|) (-377 |t#1|) (-10 -8 (-15 -3475 ((-768) $ |t#3|)) (-15 -3475 ((-641 (-768)) $ (-641 |t#3|))) (-15 -3181 ($ $ |t#3| (-768))) (-15 -3181 ($ $ (-641 |t#3|) (-641 (-768)))) (-15 -1767 ((-641 $) $)) (-15 -4103 ((-1166 $) $ |t#3|)) (-15 -4103 ((-1166 |t#1|) $)) (-15 -2848 ((-3 |t#3| "failed") $)) (-15 -2700 ((-768) $ |t#3|)) (-15 -2700 ((-641 (-768)) $ (-641 |t#3|))) (-15 -4171 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $ |t#3|)) (-15 -4267 ($ $ |t#3| (-768))) (-15 -4267 ($ $ (-641 |t#3|) (-641 (-768)))) (-15 -4279 ($ (-1166 |t#1|) |t#3|)) (-15 -4279 ($ (-1166 $) |t#3|)) (-15 -3591 ((-3 (-641 $) "failed") $)) (-15 -3370 ((-3 (-641 $) "failed") $)) (-15 -3741 ((-3 (-2 (|:| |var| |t#3|) (|:| -3078 (-768))) "failed") $)) (-15 -2181 ((-768) $)) (-15 -2181 ((-768) $ (-641 |t#3|))) (-15 -4292 ((-641 |t#3|) $)) (-15 -1359 ((-641 $) $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (IF (|has| |t#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-564)))) (IF (|has| |t#3| (-612 (-889 (-564)))) (-6 (-612 (-889 (-564)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-379)))) (IF (|has| |t#3| (-612 (-889 (-379)))) (-6 (-612 (-889 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-883 (-564))) (IF (|has| |t#3| (-883 (-564))) (-6 (-883 (-564))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-883 (-379))) (IF (|has| |t#3| (-883 (-379))) (-6 (-883 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4275 ($ $ $ |t#3|)) (-15 -4378 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -3324 ($ $ |t#3|)) (-15 -2015 ($ $)) (-15 -2015 ($ $ |t#3|)) (-15 -1592 ((-418 $) $)) (-15 -1328 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4410)) (-6 -4410) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-290) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4012 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906)))
+((-4292 (((-641 |#2|) |#5|) 40)) (-4103 (((-1166 |#5|) |#5| |#2| (-1166 |#5|)) 23) (((-407 (-1166 |#5|)) |#5| |#2|) 16)) (-4279 ((|#5| (-407 (-1166 |#5|)) |#2|) 30)) (-2848 (((-3 |#2| "failed") |#5|) 71)) (-3370 (((-3 (-641 |#5|) "failed") |#5|) 65)) (-1705 (((-3 (-2 (|:| |val| |#5|) (|:| -3078 (-564))) "failed") |#5|) 53)) (-3591 (((-3 (-641 |#5|) "failed") |#5|) 67)) (-3741 (((-3 (-2 (|:| |var| |#2|) (|:| -3078 (-564))) "failed") |#5|) 57)))
+(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4292 ((-641 |#2|) |#5|)) (-15 -2848 ((-3 |#2| "failed") |#5|)) (-15 -4103 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -4279 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -4103 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -3591 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3370 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3741 ((-3 (-2 (|:| |var| |#2|) (|:| -3078 (-564))) "failed") |#5|)) (-15 -1705 ((-3 (-2 (|:| |val| |#5|) (|:| -3078 (-564))) "failed") |#5|))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -3714 ($ |#4|)) (-15 -1655 (|#4| $)) (-15 -1668 (|#4| $))))) (T -947))
+((-1705 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3078 (-564)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))))) (-3741 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3078 (-564)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))))) (-3370 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))))) (-3591 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))))) (-4103 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))) (-4 *7 (-946 *6 *5 *4)) (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-5 *1 (-947 *5 *4 *6 *7 *3)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-4 *2 (-13 (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))) (-5 *1 (-947 *5 *4 *6 *7 *2)) (-4 *7 (-946 *6 *5 *4)))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-407 (-1166 *3))) (-5 *1 (-947 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))))) (-2848 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-1046)) (-4 *6 (-946 *5 *4 *2)) (-4 *2 (-847)) (-5 *1 (-947 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3714 ($ *6)) (-15 -1655 (*6 $)) (-15 -1668 (*6 $))))))) (-4292 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *5)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))))))
+(-10 -7 (-15 -4292 ((-641 |#2|) |#5|)) (-15 -2848 ((-3 |#2| "failed") |#5|)) (-15 -4103 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -4279 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -4103 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -3591 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3370 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3741 ((-3 (-2 (|:| |var| |#2|) (|:| -3078 (-564))) "failed") |#5|)) (-15 -1705 ((-3 (-2 (|:| |val| |#5|) (|:| -3078 (-564))) "failed") |#5|)))
+((-2313 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
+(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2313 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) (T -948))
+((-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *6 (-790)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) (-5 *1 (-948 *6 *7 *8 *5 *2)) (-4 *5 (-946 *8 *6 *7)))))
+(-10 -7 (-15 -2313 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-1170)) $) 16)) (-4103 (((-1166 $) $ (-1170)) 21) (((-1166 |#1|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-1170))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1328 (($ $) NIL (|has| |#1| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1170) "failed") $) NIL)) (-2376 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1170) $) NIL)) (-4275 (($ $ $ (-1170)) NIL (|has| |#1| (-172)))) (-1374 (($ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#1| (-906)))) (-1423 (($ $ |#1| (-531 (-1170)) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1170) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1170) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-4279 (($ (-1166 |#1|) (-1170)) NIL) (($ (-1166 $) (-1170)) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-1170)) NIL)) (-2700 (((-531 (-1170)) $) NIL) (((-768) $ (-1170)) NIL) (((-641 (-768)) $ (-641 (-1170))) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-4062 (($ (-1 (-531 (-1170)) (-531 (-1170))) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2848 (((-3 (-1170) "failed") $) 19)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1868 (((-1152) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-1170)) (|:| -3078 (-768))) "failed") $) NIL)) (-4039 (($ $ (-1170)) 29 (|has| |#1| (-38 (-407 (-564)))))) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#1| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1170) |#1|) NIL) (($ $ (-641 (-1170)) (-641 |#1|)) NIL) (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL)) (-4378 (($ $ (-1170)) NIL (|has| |#1| (-172)))) (-2203 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-3475 (((-531 (-1170)) $) NIL) (((-768) $ (-1170)) NIL) (((-641 (-768)) $ (-641 (-1170))) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-1170) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1170) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1170) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3324 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) 25) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1170)) 27) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-949 |#1|) (-13 (-946 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1170))) |%noBranch|))) (-1046)) (T -949))
+((-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))))
+(-13 (-946 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1170))) |%noBranch|)))
+((-4316 (((-2 (|:| -3078 (-768)) (|:| -1817 |#5|) (|:| |radicand| |#5|)) |#3| (-768)) 49)) (-4282 (((-2 (|:| -3078 (-768)) (|:| -1817 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768)) 44)) (-3397 (((-2 (|:| -3078 (-768)) (|:| -1817 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)) 65)) (-1364 (((-2 (|:| -3078 (-768)) (|:| -1817 |#5|) (|:| |radicand| |#5|)) |#5| (-768)) 74 (|has| |#3| (-452)))))
+(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4316 ((-2 (|:| -3078 (-768)) (|:| -1817 |#5|) (|:| |radicand| |#5|)) |#3| (-768))) (-15 -4282 ((-2 (|:| -3078 (-768)) (|:| -1817 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768))) (IF (|has| |#3| (-452)) (-15 -1364 ((-2 (|:| -3078 (-768)) (|:| -1817 |#5|) (|:| |radicand| |#5|)) |#5| (-768))) |%noBranch|) (-15 -3397 ((-2 (|:| -3078 (-768)) (|:| -1817 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -3714 ($ |#4|)) (-15 -1655 (|#4| $)) (-15 -1668 (|#4| $))))) (T -950))
+((-3397 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *3 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *3) (|:| |radicand| (-641 *3)))) (-5 *1 (-950 *5 *6 *7 *3 *8)) (-5 *4 (-768)) (-4 *8 (-13 (-363) (-10 -8 (-15 -3714 ($ *3)) (-15 -1655 (*3 $)) (-15 -1668 (*3 $))))))) (-1364 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *3) (|:| |radicand| *3))) (-5 *1 (-950 *5 *6 *7 *8 *3)) (-5 *4 (-768)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3714 ($ *8)) (-15 -1655 (*8 $)) (-15 -1668 (*8 $))))))) (-4282 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *9) (|:| |radicand| *9))) (-5 *1 (-950 *5 *6 *7 *8 *9)) (-5 *4 (-768)) (-4 *9 (-13 (-363) (-10 -8 (-15 -3714 ($ *8)) (-15 -1655 (*8 $)) (-15 -1668 (*8 $))))))) (-4316 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-556)) (-4 *7 (-946 *3 *5 *6)) (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *8) (|:| |radicand| *8))) (-5 *1 (-950 *5 *6 *3 *7 *8)) (-5 *4 (-768)) (-4 *8 (-13 (-363) (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))))))
+(-10 -7 (-15 -4316 ((-2 (|:| -3078 (-768)) (|:| -1817 |#5|) (|:| |radicand| |#5|)) |#3| (-768))) (-15 -4282 ((-2 (|:| -3078 (-768)) (|:| -1817 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768))) (IF (|has| |#3| (-452)) (-15 -1364 ((-2 (|:| -3078 (-768)) (|:| -1817 |#5|) (|:| |radicand| |#5|)) |#5| (-768))) |%noBranch|) (-15 -3397 ((-2 (|:| -3078 (-768)) (|:| -1817 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768))))
+((-3702 (((-112) $ $) NIL)) (-1319 (($ (-1114)) 8)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 15) (((-1114) $) 12)) (-1720 (((-112) $ $) 11)))
+(((-951) (-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1319 ($ (-1114)))))) (T -951))
+((-1319 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-951)))))
+(-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1319 ($ (-1114)))))
+((-1965 (((-1088 (-225)) $) 8)) (-3618 (((-1088 (-225)) $) 9)) (-2465 (((-641 (-641 (-940 (-225)))) $) 10)) (-3714 (((-859) $) 6)))
(((-952) (-140)) (T -952))
-((-1803 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-641 (-641 (-940 (-225))))))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))))
-(-13 (-611 (-859)) (-10 -8 (-15 -1803 ((-641 (-641 (-940 (-225)))) $)) (-15 -3479 ((-1088 (-225)) $)) (-15 -3492 ((-1088 (-225)) $))))
+((-2465 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-641 (-641 (-940 (-225))))))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))))
+(-13 (-611 (-859)) (-10 -8 (-15 -2465 ((-641 (-641 (-940 (-225)))) $)) (-15 -3618 ((-1088 (-225)) $)) (-15 -1965 ((-1088 (-225)) $))))
(((-611 (-859)) . T))
-((-1566 (((-3 (-685 |#1|) "failed") |#2| (-918)) 18)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -1566 ((-3 (-685 |#1|) "failed") |#2| (-918)))) (-556) (-652 |#1|)) (T -953))
-((-1566 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-918)) (-4 *5 (-556)) (-5 *2 (-685 *5)) (-5 *1 (-953 *5 *3)) (-4 *3 (-652 *5)))))
-(-10 -7 (-15 -1566 ((-3 (-685 |#1|) "failed") |#2| (-918))))
-((-4077 (((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|) 16)) (-4367 ((|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|) 18)) (-2082 (((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)) 13)))
-(((-954 |#1| |#2|) (-10 -7 (-15 -4077 ((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -4367 (|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -2082 ((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)))) (-1209) (-1209)) (T -954))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-955 *6)) (-5 *1 (-954 *5 *6)))) (-4367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-954 *5 *2)))) (-4077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-955 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-955 *5)) (-5 *1 (-954 *6 *5)))))
-(-10 -7 (-15 -4077 ((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -4367 (|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -2082 ((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-564) |#1|) 17 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) 16 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 14)) (-1356 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-1633 (($ (-768) |#1|) 13)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) 11 (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3073 ((|#1| $) NIL (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) 21 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 15) (($ $ (-1226 (-564))) NIL)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) NIL)) (-2817 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2589 (((-768) $) 8 (|has| $ (-6 -4411)))))
+((-2003 (((-3 (-685 |#1|) "failed") |#2| (-918)) 18)))
+(((-953 |#1| |#2|) (-10 -7 (-15 -2003 ((-3 (-685 |#1|) "failed") |#2| (-918)))) (-556) (-652 |#1|)) (T -953))
+((-2003 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-918)) (-4 *5 (-556)) (-5 *2 (-685 *5)) (-5 *1 (-953 *5 *3)) (-4 *3 (-652 *5)))))
+(-10 -7 (-15 -2003 ((-3 (-685 |#1|) "failed") |#2| (-918))))
+((-3092 (((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|) 16)) (-1728 ((|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|) 18)) (-2313 (((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)) 13)))
+(((-954 |#1| |#2|) (-10 -7 (-15 -3092 ((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -1728 (|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -2313 ((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)))) (-1209) (-1209)) (T -954))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-955 *6)) (-5 *1 (-954 *5 *6)))) (-1728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-954 *5 *2)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-955 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-955 *5)) (-5 *1 (-954 *6 *5)))))
+(-10 -7 (-15 -3092 ((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -1728 (|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -2313 ((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-564) |#1|) 19 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) 18 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 16)) (-3303 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3564 (($ (-768) |#1|) 15)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) 11 (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2049 ((|#1| $) NIL (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) 20 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 17) (($ $ (-1226 (-564))) NIL)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) 21)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 14)) (-1865 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2779 (((-768) $) 8 (|has| $ (-6 -4412)))))
(((-955 |#1|) (-19 |#1|) (-1209)) (T -955))
NIL
(-19 |#1|)
-((-3504 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6)))
+((-2668 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6)))
(((-956) (-140)) (T -956))
-((-3504 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-956)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1170)))))
-(-13 (-10 -8 (-15 -3504 ($ $ (-1170))) (-15 -3504 ($ $ (-1086 $)))))
-((-1990 (((-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)) 30) (((-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170))) 31) (((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170)) 49)))
-(((-957 |#1|) (-10 -7 (-15 -1990 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170))) (-15 -1990 ((-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -1990 ((-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)))) (-13 (-363) (-147))) (T -957))
-((-1990 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 *6))) (|:| |prim| (-1166 *6)))) (-5 *1 (-957 *6)))) (-1990 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-957 *5)))) (-1990 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 *5)))) (-5 *1 (-957 *5)))))
-(-10 -7 (-15 -1990 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170))) (-15 -1990 ((-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -1990 ((-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170))))
-((-2424 (((-641 |#1|) |#1| |#1|) 46)) (-3241 (((-112) |#1|) 43)) (-4228 ((|#1| |#1|) 80)) (-4076 ((|#1| |#1|) 79)))
-(((-958 |#1|) (-10 -7 (-15 -3241 ((-112) |#1|)) (-15 -4076 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -2424 ((-641 |#1|) |#1| |#1|))) (-545)) (T -958))
-((-2424 (*1 *2 *3 *3) (-12 (-5 *2 (-641 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545)))) (-4228 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-4076 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-3241 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545)))))
-(-10 -7 (-15 -3241 ((-112) |#1|)) (-15 -4076 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -2424 ((-641 |#1|) |#1| |#1|)))
-((-3291 (((-1264) (-859)) 9)))
-(((-959) (-10 -7 (-15 -3291 ((-1264) (-859))))) (T -959))
-((-3291 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-959)))))
-(-10 -7 (-15 -3291 ((-1264) (-859))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 76 (|has| |#1| (-556)))) (-1840 (($ $) 77 (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 34)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-4346 (($ $) 31)) (-1926 (((-3 $ "failed") $) 41)) (-2190 (($ $) NIL (|has| |#1| (-452)))) (-2877 (($ $ |#1| |#2| $) 60)) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) 17)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-3829 ((|#2| $) 24)) (-2964 (($ (-1 |#2| |#2|) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-4311 (($ $) 28)) (-4323 ((|#1| $) 26)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) 50)) (-4298 ((|#1| $) NIL)) (-2198 (($ $ |#2| |#1| $) 88 (-12 (|has| |#2| (-131)) (|has| |#1| (-556))))) (-1343 (((-3 $ "failed") $ $) 89 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 83 (|has| |#1| (-556)))) (-3344 ((|#2| $) 22)) (-2712 ((|#1| $) NIL (|has| |#1| (-452)))) (-1765 (((-859) $) NIL) (($ (-564)) 45) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 40) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ |#2|) 37)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) 15 T CONST)) (-2958 (($ $ $ (-768)) 72 (|has| |#1| (-172)))) (-1582 (((-112) $ $) 82 (|has| |#1| (-556)))) (-4317 (($) 27 T CONST)) (-4327 (($) 12 T CONST)) (-1686 (((-112) $ $) 81)) (-1793 (($ $ |#1|) 90 (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) 67) (($ $ (-768)) 65)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ |#1|) 62) (($ |#1| $) 61) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-960 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2198 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|))) (-1046) (-789)) (T -960))
-((-2198 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *2 (-789)))))
-(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2198 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL (-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (-3382 (($ $ $) 65 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (-3936 (((-3 $ "failed") $ $) 52 (-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (-3042 (((-768)) 36 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3512 ((|#2| $) 22)) (-2226 ((|#1| $) 21)) (-3760 (($) NIL (-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) CONST)) (-1926 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-2542 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2419 (((-112) $) NIL (-4002 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-3571 (($ $ $) NIL (-4002 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1547 (($ $ $) NIL (-4002 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-2930 (($ |#1| |#2|) 20)) (-2209 (((-918) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 39 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1403 (($ (-918)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3802 (((-1114) $) NIL)) (-2502 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1762 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1765 (((-859) $) 14)) (-4317 (($) 42 (-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) CONST)) (-4327 (($) 25 (-4002 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) CONST)) (-1738 (((-112) $ $) NIL (-4002 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1715 (((-112) $ $) NIL (-4002 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1686 (((-112) $ $) 19)) (-1728 (((-112) $ $) NIL (-4002 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1705 (((-112) $ $) 69 (-4002 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1793 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1783 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1771 (($ $ $) 45 (-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (** (($ $ (-564)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-768)) 32 (-4002 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (($ $ (-918)) NIL (-4002 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (* (($ (-564) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-768) $) 48 (-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (($ (-918) $) NIL (-4002 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (($ $ $) 28 (-4002 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))))
-(((-961 |#1| |#2|) (-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-790)) (IF (|has| |#2| (-790)) (-6 (-790)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-847)) (IF (|has| |#2| (-847)) (-6 (-847)) |%noBranch|) |%noBranch|) (-15 -2930 ($ |#1| |#2|)) (-15 -2226 (|#1| $)) (-15 -3512 (|#2| $)))) (-1094) (-1094)) (T -961))
-((-2930 (*1 *1 *2 *3) (-12 (-5 *1 (-961 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-2226 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1094)))) (-3512 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-961 *3 *2)) (-4 *3 (-1094)))))
-(-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-790)) (IF (|has| |#2| (-790)) (-6 (-790)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-847)) (IF (|has| |#2| (-847)) (-6 (-847)) |%noBranch|) |%noBranch|) (-15 -2930 ($ |#1| |#2|)) (-15 -2226 (|#1| $)) (-15 -3512 (|#2| $))))
-((-1451 (((-1098) $) 13)) (-2277 (($ (-1170) (-1098)) 14)) (-4363 (((-1170) $) 11)) (-1765 (((-859) $) 24)))
-(((-962) (-13 (-611 (-859)) (-10 -8 (-15 -4363 ((-1170) $)) (-15 -1451 ((-1098) $)) (-15 -2277 ($ (-1170) (-1098)))))) (T -962))
-((-4363 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-962)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-962)))) (-2277 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-962)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -4363 ((-1170) $)) (-15 -1451 ((-1098) $)) (-15 -2277 ($ (-1170) (-1098)))))
-((-1754 (((-112) $ $) NIL)) (-4170 (((-1096 (-1170)) $) 19)) (-1707 (((-112) $) 28)) (-3657 (((-1170) $) 29)) (-1429 (((-112) $) 26)) (-1994 ((|#1| $) 27)) (-2858 (((-870 $ $) $) 36)) (-3929 (((-112) $) 35)) (-4277 (($ $ $) 12)) (-3405 (($ $) 31)) (-2379 (((-112) $) 30)) (-4254 (($ $) 10)) (-4202 (((-1152) $) NIL)) (-4369 (((-870 $ $) $) 38)) (-3090 (((-112) $) 37)) (-3885 (($ $ $) 13)) (-3802 (((-1114) $) NIL)) (-2050 (((-870 $ $) $) 40)) (-4320 (((-112) $) 39)) (-4058 (($ $ $) 14)) (-1765 (((-859) $) 42) (($ |#1|) 7) (($ (-1170)) 9)) (-2934 (((-870 $ $) $) 34)) (-4252 (((-112) $) 32)) (-4266 (($ $ $) 11)) (-1686 (((-112) $ $) NIL)))
-(((-963 |#1|) (-13 (-964) (-10 -8 (-15 -1765 ($ |#1|)) (-15 -1765 ($ (-1170))) (-15 -4170 ((-1096 (-1170)) $)) (-15 -1429 ((-112) $)) (-15 -1994 (|#1| $)) (-15 -1707 ((-112) $)) (-15 -3657 ((-1170) $)) (-15 -2379 ((-112) $)) (-15 -3405 ($ $)) (-15 -4252 ((-112) $)) (-15 -2934 ((-870 $ $) $)) (-15 -3929 ((-112) $)) (-15 -2858 ((-870 $ $) $)) (-15 -3090 ((-112) $)) (-15 -4369 ((-870 $ $) $)) (-15 -4320 ((-112) $)) (-15 -2050 ((-870 $ $) $)))) (-964)) (T -963))
-((-1765 (*1 *1 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1170))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-1994 (*1 *2 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3405 (*1 *1 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3090 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-4369 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
-(-13 (-964) (-10 -8 (-15 -1765 ($ |#1|)) (-15 -1765 ($ (-1170))) (-15 -4170 ((-1096 (-1170)) $)) (-15 -1429 ((-112) $)) (-15 -1994 (|#1| $)) (-15 -1707 ((-112) $)) (-15 -3657 ((-1170) $)) (-15 -2379 ((-112) $)) (-15 -3405 ($ $)) (-15 -4252 ((-112) $)) (-15 -2934 ((-870 $ $) $)) (-15 -3929 ((-112) $)) (-15 -2858 ((-870 $ $) $)) (-15 -3090 ((-112) $)) (-15 -4369 ((-870 $ $) $)) (-15 -4320 ((-112) $)) (-15 -2050 ((-870 $ $) $))))
-((-1754 (((-112) $ $) 7)) (-4277 (($ $ $) 15)) (-4254 (($ $) 17)) (-4202 (((-1152) $) 9)) (-3885 (($ $ $) 14)) (-3802 (((-1114) $) 10)) (-4058 (($ $ $) 13)) (-1765 (((-859) $) 11)) (-4266 (($ $ $) 16)) (-1686 (((-112) $ $) 6)))
+((-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-956)))) (-2668 (*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1170)))))
+(-13 (-10 -8 (-15 -2668 ($ $ (-1170))) (-15 -2668 ($ $ (-1086 $)))))
+((-3648 (((-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)) 30) (((-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170))) 31) (((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170)) 49)))
+(((-957 |#1|) (-10 -7 (-15 -3648 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170))) (-15 -3648 ((-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -3648 ((-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)))) (-13 (-363) (-147))) (T -957))
+((-3648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 *6))) (|:| |prim| (-1166 *6)))) (-5 *1 (-957 *6)))) (-3648 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-957 *5)))) (-3648 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 *5)))) (-5 *1 (-957 *5)))))
+(-10 -7 (-15 -3648 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170))) (-15 -3648 ((-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -3648 ((-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170))))
+((-2400 (((-641 |#1|) |#1| |#1|) 46)) (-1926 (((-112) |#1|) 43)) (-2108 ((|#1| |#1|) 80)) (-3084 ((|#1| |#1|) 79)))
+(((-958 |#1|) (-10 -7 (-15 -1926 ((-112) |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -2108 (|#1| |#1|)) (-15 -2400 ((-641 |#1|) |#1| |#1|))) (-545)) (T -958))
+((-2400 (*1 *2 *3 *3) (-12 (-5 *2 (-641 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545)))) (-2108 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-3084 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-1926 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545)))))
+(-10 -7 (-15 -1926 ((-112) |#1|)) (-15 -3084 (|#1| |#1|)) (-15 -2108 (|#1| |#1|)) (-15 -2400 ((-641 |#1|) |#1| |#1|)))
+((-2335 (((-1264) (-859)) 9)))
+(((-959) (-10 -7 (-15 -2335 ((-1264) (-859))))) (T -959))
+((-2335 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-959)))))
+(-10 -7 (-15 -2335 ((-1264) (-859))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 76 (|has| |#1| (-556)))) (-1582 (($ $) 77 (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 34)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1374 (($ $) 31)) (-4272 (((-3 $ "failed") $) 41)) (-2015 (($ $) NIL (|has| |#1| (-452)))) (-1423 (($ $ |#1| |#2| $) 60)) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) 17)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| |#2|) NIL)) (-2700 ((|#2| $) 24)) (-4062 (($ (-1 |#2| |#2|) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (($ $) 28)) (-1345 ((|#1| $) 26)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) 50)) (-1316 ((|#1| $) NIL)) (-2102 (($ $ |#2| |#1| $) 88 (-12 (|has| |#2| (-131)) (|has| |#1| (-556))))) (-1347 (((-3 $ "failed") $ $) 89 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 83 (|has| |#1| (-556)))) (-3475 ((|#2| $) 22)) (-3324 ((|#1| $) NIL (|has| |#1| (-452)))) (-3714 (((-859) $) NIL) (($ (-564)) 45) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 40) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ |#2|) 37)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) 15 T CONST)) (-3993 (($ $ $ (-768)) 72 (|has| |#1| (-172)))) (-3979 (((-112) $ $) 82 (|has| |#1| (-556)))) (-4312 (($) 27 T CONST)) (-4323 (($) 12 T CONST)) (-1720 (((-112) $ $) 81)) (-1841 (($ $ |#1|) 90 (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) 67) (($ $ (-768)) 65)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ |#1|) 62) (($ |#1| $) 61) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-960 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2102 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|))) (-1046) (-789)) (T -960))
+((-2102 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *2 (-789)))))
+(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -2102 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL (-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (-3884 (($ $ $) 65 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (-4281 (((-3 $ "failed") $ $) 52 (-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (-2018 (((-768)) 36 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2748 ((|#2| $) 22)) (-4173 ((|#1| $) 21)) (-3180 (($) NIL (-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) CONST)) (-4272 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-2939 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2340 (((-112) $) NIL (-4012 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-3428 (($ $ $) NIL (-4012 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-3413 (($ $ $) NIL (-4012 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-3805 (($ |#1| |#2|) 20)) (-4031 (((-918) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 39 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3338 (($ (-918)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3844 (((-1114) $) NIL)) (-1953 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3217 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3714 (((-859) $) 14)) (-4312 (($) 42 (-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) CONST)) (-4323 (($) 25 (-4012 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) CONST)) (-1781 (((-112) $ $) NIL (-4012 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1758 (((-112) $ $) NIL (-4012 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1720 (((-112) $ $) 19)) (-1769 (((-112) $ $) NIL (-4012 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1746 (((-112) $ $) 69 (-4012 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1841 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1828 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1814 (($ $ $) 45 (-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (** (($ $ (-564)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-768)) 32 (-4012 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (($ $ (-918)) NIL (-4012 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (* (($ (-564) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-768) $) 48 (-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (($ (-918) $) NIL (-4012 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (($ $ $) 28 (-4012 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))))
+(((-961 |#1| |#2|) (-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-790)) (IF (|has| |#2| (-790)) (-6 (-790)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-847)) (IF (|has| |#2| (-847)) (-6 (-847)) |%noBranch|) |%noBranch|) (-15 -3805 ($ |#1| |#2|)) (-15 -4173 (|#1| $)) (-15 -2748 (|#2| $)))) (-1094) (-1094)) (T -961))
+((-3805 (*1 *1 *2 *3) (-12 (-5 *1 (-961 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4173 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1094)))) (-2748 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-961 *3 *2)) (-4 *3 (-1094)))))
+(-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-790)) (IF (|has| |#2| (-790)) (-6 (-790)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-847)) (IF (|has| |#2| (-847)) (-6 (-847)) |%noBranch|) |%noBranch|) (-15 -3805 ($ |#1| |#2|)) (-15 -4173 (|#1| $)) (-15 -2748 (|#2| $))))
+((-3387 (((-1098) $) 13)) (-4359 (($ (-1170) (-1098)) 14)) (-4337 (((-1170) $) 11)) (-3714 (((-859) $) 24)))
+(((-962) (-13 (-611 (-859)) (-10 -8 (-15 -4337 ((-1170) $)) (-15 -3387 ((-1098) $)) (-15 -4359 ($ (-1170) (-1098)))))) (T -962))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-962)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-962)))) (-4359 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-962)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -4337 ((-1170) $)) (-15 -3387 ((-1098) $)) (-15 -4359 ($ (-1170) (-1098)))))
+((-3702 (((-112) $ $) NIL)) (-4292 (((-1096 (-1170)) $) 19)) (-2794 (((-112) $) 28)) (-3832 (((-1170) $) 29)) (-1752 (((-112) $) 26)) (-3690 ((|#1| $) 27)) (-4294 (((-870 $ $) $) 36)) (-4224 (((-112) $) 35)) (-4276 (($ $ $) 12)) (-2942 (($ $) 31)) (-1391 (((-112) $) 30)) (-4253 (($ $) 10)) (-1868 (((-1152) $) NIL)) (-3881 (((-870 $ $) $) 38)) (-2876 (((-112) $) 37)) (-1972 (($ $ $) 13)) (-3844 (((-1114) $) NIL)) (-3086 (((-870 $ $) $) 40)) (-1636 (((-112) $) 39)) (-2951 (($ $ $) 14)) (-3714 (((-859) $) 42) (($ |#1|) 7) (($ (-1170)) 9)) (-3854 (((-870 $ $) $) 34)) (-4135 (((-112) $) 32)) (-4264 (($ $ $) 11)) (-1720 (((-112) $ $) NIL)))
+(((-963 |#1|) (-13 (-964) (-10 -8 (-15 -3714 ($ |#1|)) (-15 -3714 ($ (-1170))) (-15 -4292 ((-1096 (-1170)) $)) (-15 -1752 ((-112) $)) (-15 -3690 (|#1| $)) (-15 -2794 ((-112) $)) (-15 -3832 ((-1170) $)) (-15 -1391 ((-112) $)) (-15 -2942 ($ $)) (-15 -4135 ((-112) $)) (-15 -3854 ((-870 $ $) $)) (-15 -4224 ((-112) $)) (-15 -4294 ((-870 $ $) $)) (-15 -2876 ((-112) $)) (-15 -3881 ((-870 $ $) $)) (-15 -1636 ((-112) $)) (-15 -3086 ((-870 $ $) $)))) (-964)) (T -963))
+((-3714 (*1 *1 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1170))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3690 (*1 *2 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2942 (*1 *1 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
+(-13 (-964) (-10 -8 (-15 -3714 ($ |#1|)) (-15 -3714 ($ (-1170))) (-15 -4292 ((-1096 (-1170)) $)) (-15 -1752 ((-112) $)) (-15 -3690 (|#1| $)) (-15 -2794 ((-112) $)) (-15 -3832 ((-1170) $)) (-15 -1391 ((-112) $)) (-15 -2942 ($ $)) (-15 -4135 ((-112) $)) (-15 -3854 ((-870 $ $) $)) (-15 -4224 ((-112) $)) (-15 -4294 ((-870 $ $) $)) (-15 -2876 ((-112) $)) (-15 -3881 ((-870 $ $) $)) (-15 -1636 ((-112) $)) (-15 -3086 ((-870 $ $) $))))
+((-3702 (((-112) $ $) 7)) (-4276 (($ $ $) 15)) (-4253 (($ $) 17)) (-1868 (((-1152) $) 9)) (-1972 (($ $ $) 14)) (-3844 (((-1114) $) 10)) (-2951 (($ $ $) 13)) (-3714 (((-859) $) 11)) (-4264 (($ $ $) 16)) (-1720 (((-112) $ $) 6)))
(((-964) (-140)) (T -964))
-((-4254 (*1 *1 *1) (-4 *1 (-964))) (-4266 (*1 *1 *1 *1) (-4 *1 (-964))) (-4277 (*1 *1 *1 *1) (-4 *1 (-964))) (-3885 (*1 *1 *1 *1) (-4 *1 (-964))) (-4058 (*1 *1 *1 *1) (-4 *1 (-964))))
-(-13 (-1094) (-10 -8 (-15 -4254 ($ $)) (-15 -4266 ($ $ $)) (-15 -4277 ($ $ $)) (-15 -3885 ($ $ $)) (-15 -4058 ($ $ $))))
+((-4253 (*1 *1 *1) (-4 *1 (-964))) (-4264 (*1 *1 *1 *1) (-4 *1 (-964))) (-4276 (*1 *1 *1 *1) (-4 *1 (-964))) (-1972 (*1 *1 *1 *1) (-4 *1 (-964))) (-2951 (*1 *1 *1 *1) (-4 *1 (-964))))
+(-13 (-1094) (-10 -8 (-15 -4253 ($ $)) (-15 -4264 ($ $ $)) (-15 -4276 ($ $ $)) (-15 -1972 ($ $ $)) (-15 -2951 ($ $ $))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-3760 (($) 7 T CONST)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-1397 (($ $ $) 43)) (-4012 (($ $ $) 44)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1547 ((|#1| $) 45)) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) 42)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-3180 (($) 7 T CONST)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2573 (($ $ $) 43)) (-3678 (($ $ $) 44)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3413 ((|#1| $) 45)) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) 42)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-965 |#1|) (-140) (-847)) (T -965))
-((-1547 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) (-4012 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) (-1397 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4411) (-15 -1547 (|t#1| $)) (-15 -4012 ($ $ $)) (-15 -1397 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-2492 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2527 |#2|)) |#2| |#2|) 104)) (-2673 ((|#2| |#2| |#2|) 102)) (-3679 (((-2 (|:| |coef2| |#2|) (|:| -2527 |#2|)) |#2| |#2|) 106)) (-1800 (((-2 (|:| |coef1| |#2|) (|:| -2527 |#2|)) |#2| |#2|) 108)) (-2691 (((-2 (|:| |coef2| |#2|) (|:| -2087 |#1|)) |#2| |#2|) 130 (|has| |#1| (-452)))) (-2881 (((-2 (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|) 56)) (-4314 (((-2 (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|) 80)) (-4246 (((-2 (|:| |coef1| |#2|) (|:| -4267 |#1|)) |#2| |#2|) 82)) (-4220 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2944 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 88)) (-1956 (((-2 (|:| |coef2| |#2|) (|:| -1938 |#1|)) |#2|) 120)) (-3197 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 91)) (-2372 (((-641 (-768)) |#2| |#2|) 101)) (-3218 ((|#1| |#2| |#2|) 50)) (-3698 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2087 |#1|)) |#2| |#2|) 128 (|has| |#1| (-452)))) (-2087 ((|#1| |#2| |#2|) 126 (|has| |#1| (-452)))) (-3548 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|) 54)) (-1976 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|) 79)) (-4267 ((|#1| |#2| |#2|) 76)) (-3363 (((-2 (|:| -1662 |#1|) (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2|) 41)) (-3975 ((|#2| |#2| |#2| |#2| |#1|) 66)) (-2997 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 93)) (-1489 ((|#2| |#2| |#2|) 92)) (-1763 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 86)) (-2804 ((|#2| |#2| |#2| (-768)) 84)) (-2527 ((|#2| |#2| |#2|) 134 (|has| |#1| (-452)))) (-1343 (((-1259 |#2|) (-1259 |#2|) |#1|) 22)) (-1959 (((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2|) 46)) (-3510 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1938 |#1|)) |#2|) 118)) (-1938 ((|#1| |#2|) 115)) (-2637 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 90)) (-3081 ((|#2| |#2| |#2| (-768)) 89)) (-1688 (((-641 |#2|) |#2| |#2|) 98)) (-3795 ((|#2| |#2| |#1| |#1| (-768)) 61)) (-1315 ((|#1| |#1| |#1| (-768)) 60)) (* (((-1259 |#2|) |#1| (-1259 |#2|)) 17)))
-(((-966 |#1| |#2|) (-10 -7 (-15 -4267 (|#1| |#2| |#2|)) (-15 -1976 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|)) (-15 -4314 ((-2 (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|)) (-15 -4246 ((-2 (|:| |coef1| |#2|) (|:| -4267 |#1|)) |#2| |#2|)) (-15 -2804 (|#2| |#2| |#2| (-768))) (-15 -1763 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2944 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3081 (|#2| |#2| |#2| (-768))) (-15 -2637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3197 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -1489 (|#2| |#2| |#2|)) (-15 -2997 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4220 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2673 (|#2| |#2| |#2|)) (-15 -2492 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2527 |#2|)) |#2| |#2|)) (-15 -3679 ((-2 (|:| |coef2| |#2|) (|:| -2527 |#2|)) |#2| |#2|)) (-15 -1800 ((-2 (|:| |coef1| |#2|) (|:| -2527 |#2|)) |#2| |#2|)) (-15 -1938 (|#1| |#2|)) (-15 -3510 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1938 |#1|)) |#2|)) (-15 -1956 ((-2 (|:| |coef2| |#2|) (|:| -1938 |#1|)) |#2|)) (-15 -1688 ((-641 |#2|) |#2| |#2|)) (-15 -2372 ((-641 (-768)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2087 (|#1| |#2| |#2|)) (-15 -3698 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2087 |#1|)) |#2| |#2|)) (-15 -2691 ((-2 (|:| |coef2| |#2|) (|:| -2087 |#1|)) |#2| |#2|)) (-15 -2527 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -1343 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -3363 ((-2 (|:| -1662 |#1|) (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2|)) (-15 -1959 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2|)) (-15 -1315 (|#1| |#1| |#1| (-768))) (-15 -3795 (|#2| |#2| |#1| |#1| (-768))) (-15 -3975 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3218 (|#1| |#2| |#2|)) (-15 -3548 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|)) (-15 -2881 ((-2 (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|))) (-556) (-1235 |#1|)) (T -966))
-((-2881 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4267 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3548 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4267 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3218 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-3975 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-3795 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-1315 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *2 (-556)) (-5 *1 (-966 *2 *4)) (-4 *4 (-1235 *2)))) (-1959 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3363 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -1662 *4) (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1343 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-966 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-966 *3 *4)))) (-2527 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-2691 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2087 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3698 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2087 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2087 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-2372 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-768))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1688 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1956 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1938 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1938 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1938 (*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-1800 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2527 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3679 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2527 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2492 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2527 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2673 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-4220 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2997 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1489 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-3197 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-2637 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-3081 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) (-4 *2 (-1235 *4)))) (-2944 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-1763 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-2804 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) (-4 *2 (-1235 *4)))) (-4246 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4267 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-4314 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4267 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1976 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4267 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-4267 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))))
-(-10 -7 (-15 -4267 (|#1| |#2| |#2|)) (-15 -1976 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|)) (-15 -4314 ((-2 (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|)) (-15 -4246 ((-2 (|:| |coef1| |#2|) (|:| -4267 |#1|)) |#2| |#2|)) (-15 -2804 (|#2| |#2| |#2| (-768))) (-15 -1763 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2944 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3081 (|#2| |#2| |#2| (-768))) (-15 -2637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3197 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -1489 (|#2| |#2| |#2|)) (-15 -2997 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4220 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2673 (|#2| |#2| |#2|)) (-15 -2492 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2527 |#2|)) |#2| |#2|)) (-15 -3679 ((-2 (|:| |coef2| |#2|) (|:| -2527 |#2|)) |#2| |#2|)) (-15 -1800 ((-2 (|:| |coef1| |#2|) (|:| -2527 |#2|)) |#2| |#2|)) (-15 -1938 (|#1| |#2|)) (-15 -3510 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1938 |#1|)) |#2|)) (-15 -1956 ((-2 (|:| |coef2| |#2|) (|:| -1938 |#1|)) |#2|)) (-15 -1688 ((-641 |#2|) |#2| |#2|)) (-15 -2372 ((-641 (-768)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2087 (|#1| |#2| |#2|)) (-15 -3698 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2087 |#1|)) |#2| |#2|)) (-15 -2691 ((-2 (|:| |coef2| |#2|) (|:| -2087 |#1|)) |#2| |#2|)) (-15 -2527 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -1343 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -3363 ((-2 (|:| -1662 |#1|) (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2|)) (-15 -1959 ((-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) |#2| |#2|)) (-15 -1315 (|#1| |#1| |#1| (-768))) (-15 -3795 (|#2| |#2| |#1| |#1| (-768))) (-15 -3975 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3218 (|#1| |#2| |#2|)) (-15 -3548 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|)) (-15 -2881 ((-2 (|:| |coef2| |#2|) (|:| -4267 |#1|)) |#2| |#2|)))
-((-1754 (((-112) $ $) NIL)) (-4284 (((-1208) $) 13)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3678 (((-1129) $) 10)) (-1765 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-967) (-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $)) (-15 -4284 ((-1208) $))))) (T -967))
-((-3678 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-967)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-967)))))
-(-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $)) (-15 -4284 ((-1208) $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) 37)) (-3760 (($) NIL T CONST)) (-4106 (((-641 (-641 (-564))) (-641 (-564))) 46)) (-2966 (((-564) $) 70)) (-1381 (($ (-641 (-564))) 18)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2127 (((-641 (-564)) $) 13)) (-2502 (($ $) 50)) (-1765 (((-859) $) 66) (((-641 (-564)) $) 11)) (-4317 (($) 8 T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 25)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 24)) (-1771 (($ $ $) 26)) (* (($ (-918) $) NIL) (($ (-768) $) 35)))
-(((-968) (-13 (-792) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -1381 ($ (-641 (-564)))) (-15 -4106 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -2966 ((-564) $)) (-15 -2502 ($ $))))) (T -968))
-((-1381 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-968)))) (-4106 (*1 *2 *3) (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-968)) (-5 *3 (-641 (-564))))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-968)))) (-2502 (*1 *1 *1) (-5 *1 (-968))))
-(-13 (-792) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -1381 ($ (-641 (-564)))) (-15 -4106 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -2966 ((-564) $)) (-15 -2502 ($ $))))
-((-1793 (($ $ |#2|) 31)) (-1783 (($ $) 23) (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) 29)))
-(((-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1793 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-970 |#2| |#3| |#4|) (-1046) (-789) (-847)) (T -969))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1793 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4170 (((-641 |#3|) $) 77)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1840 (($ $) 55 (|has| |#1| (-556)))) (-4035 (((-112) $) 57 (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-1459 (((-112) $) 76)) (-2419 (((-112) $) 31)) (-3101 (((-112) $) 65)) (-4145 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-641 |#3|) (-641 |#2|)) 78)) (-2082 (($ (-1 |#1| |#1|) $) 66)) (-4311 (($ $) 68)) (-4323 ((|#1| $) 69)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1343 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3344 ((|#2| $) 67)) (-3204 (($ $) 75)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-1757 ((|#1| $ |#2|) 62)) (-2864 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
+((-3413 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) (-3678 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) (-2573 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4412) (-15 -3413 (|t#1| $)) (-15 -3678 ($ $ $)) (-15 -2573 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-1855 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2727 |#2|)) |#2| |#2|) 104)) (-3000 ((|#2| |#2| |#2|) 102)) (-3625 (((-2 (|:| |coef2| |#2|) (|:| -2727 |#2|)) |#2| |#2|) 106)) (-2430 (((-2 (|:| |coef1| |#2|) (|:| -2727 |#2|)) |#2| |#2|) 108)) (-3144 (((-2 (|:| |coef2| |#2|) (|:| -2259 |#1|)) |#2| |#2|) 130 (|has| |#1| (-452)))) (-1466 (((-2 (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|) 56)) (-1586 (((-2 (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|) 80)) (-2266 (((-2 (|:| |coef1| |#2|) (|:| -4275 |#1|)) |#2| |#2|) 82)) (-2055 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-3961 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 88)) (-1479 (((-2 (|:| |coef2| |#2|) (|:| -4378 |#1|)) |#2|) 120)) (-2754 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 91)) (-3090 (((-641 (-768)) |#2| |#2|) 101)) (-1672 ((|#1| |#2| |#2|) 50)) (-3823 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2259 |#1|)) |#2| |#2|) 128 (|has| |#1| (-452)))) (-2259 ((|#1| |#2| |#2|) 126 (|has| |#1| (-452)))) (-1818 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|) 54)) (-3480 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|) 79)) (-4275 ((|#1| |#2| |#2|) 76)) (-3686 (((-2 (|:| -1817 |#1|) (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2|) 41)) (-1546 ((|#2| |#2| |#2| |#2| |#1|) 66)) (-4366 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 93)) (-2521 ((|#2| |#2| |#2|) 92)) (-3227 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 86)) (-1916 ((|#2| |#2| |#2| (-768)) 84)) (-2727 ((|#2| |#2| |#2|) 134 (|has| |#1| (-452)))) (-1347 (((-1259 |#2|) (-1259 |#2|) |#1|) 22)) (-3329 (((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2|) 46)) (-2724 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4378 |#1|)) |#2|) 118)) (-4378 ((|#1| |#2|) 115)) (-3811 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 90)) (-3945 ((|#2| |#2| |#2| (-768)) 89)) (-3707 (((-641 |#2|) |#2| |#2|) 98)) (-2361 ((|#2| |#2| |#1| |#1| (-768)) 61)) (-2198 ((|#1| |#1| |#1| (-768)) 60)) (* (((-1259 |#2|) |#1| (-1259 |#2|)) 17)))
+(((-966 |#1| |#2|) (-10 -7 (-15 -4275 (|#1| |#2| |#2|)) (-15 -3480 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|)) (-15 -1586 ((-2 (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|)) (-15 -2266 ((-2 (|:| |coef1| |#2|) (|:| -4275 |#1|)) |#2| |#2|)) (-15 -1916 (|#2| |#2| |#2| (-768))) (-15 -3227 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3961 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3945 (|#2| |#2| |#2| (-768))) (-15 -3811 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2754 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2521 (|#2| |#2| |#2|)) (-15 -4366 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2055 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3000 (|#2| |#2| |#2|)) (-15 -1855 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2727 |#2|)) |#2| |#2|)) (-15 -3625 ((-2 (|:| |coef2| |#2|) (|:| -2727 |#2|)) |#2| |#2|)) (-15 -2430 ((-2 (|:| |coef1| |#2|) (|:| -2727 |#2|)) |#2| |#2|)) (-15 -4378 (|#1| |#2|)) (-15 -2724 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4378 |#1|)) |#2|)) (-15 -1479 ((-2 (|:| |coef2| |#2|) (|:| -4378 |#1|)) |#2|)) (-15 -3707 ((-641 |#2|) |#2| |#2|)) (-15 -3090 ((-641 (-768)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2259 (|#1| |#2| |#2|)) (-15 -3823 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2259 |#1|)) |#2| |#2|)) (-15 -3144 ((-2 (|:| |coef2| |#2|) (|:| -2259 |#1|)) |#2| |#2|)) (-15 -2727 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -1347 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -3686 ((-2 (|:| -1817 |#1|) (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2|)) (-15 -3329 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2|)) (-15 -2198 (|#1| |#1| |#1| (-768))) (-15 -2361 (|#2| |#2| |#1| |#1| (-768))) (-15 -1546 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1672 (|#1| |#2| |#2|)) (-15 -1818 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|)) (-15 -1466 ((-2 (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|))) (-556) (-1235 |#1|)) (T -966))
+((-1466 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4275 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1818 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4275 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1672 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-1546 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-2361 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-2198 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *2 (-556)) (-5 *1 (-966 *2 *4)) (-4 *4 (-1235 *2)))) (-3329 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3686 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -1817 *4) (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1347 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-966 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-966 *3 *4)))) (-2727 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-3144 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2259 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3823 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2259 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2259 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-3090 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-768))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3707 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4378 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2724 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4378 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-4378 (*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-2430 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2727 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3625 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2727 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1855 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2727 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3000 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-2055 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-4366 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2521 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-2754 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-3811 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-3945 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) (-4 *2 (-1235 *4)))) (-3961 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-3227 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-1916 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) (-4 *2 (-1235 *4)))) (-2266 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4275 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1586 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4275 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3480 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4275 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-4275 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))))
+(-10 -7 (-15 -4275 (|#1| |#2| |#2|)) (-15 -3480 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|)) (-15 -1586 ((-2 (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|)) (-15 -2266 ((-2 (|:| |coef1| |#2|) (|:| -4275 |#1|)) |#2| |#2|)) (-15 -1916 (|#2| |#2| |#2| (-768))) (-15 -3227 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3961 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3945 (|#2| |#2| |#2| (-768))) (-15 -3811 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2754 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2521 (|#2| |#2| |#2|)) (-15 -4366 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2055 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3000 (|#2| |#2| |#2|)) (-15 -1855 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2727 |#2|)) |#2| |#2|)) (-15 -3625 ((-2 (|:| |coef2| |#2|) (|:| -2727 |#2|)) |#2| |#2|)) (-15 -2430 ((-2 (|:| |coef1| |#2|) (|:| -2727 |#2|)) |#2| |#2|)) (-15 -4378 (|#1| |#2|)) (-15 -2724 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4378 |#1|)) |#2|)) (-15 -1479 ((-2 (|:| |coef2| |#2|) (|:| -4378 |#1|)) |#2|)) (-15 -3707 ((-641 |#2|) |#2| |#2|)) (-15 -3090 ((-641 (-768)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2259 (|#1| |#2| |#2|)) (-15 -3823 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2259 |#1|)) |#2| |#2|)) (-15 -3144 ((-2 (|:| |coef2| |#2|) (|:| -2259 |#1|)) |#2| |#2|)) (-15 -2727 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -1347 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -3686 ((-2 (|:| -1817 |#1|) (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2|)) (-15 -3329 ((-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) |#2| |#2|)) (-15 -2198 (|#1| |#1| |#1| (-768))) (-15 -2361 (|#2| |#2| |#1| |#1| (-768))) (-15 -1546 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1672 (|#1| |#2| |#2|)) (-15 -1818 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|)) (-15 -1466 ((-2 (|:| |coef2| |#2|) (|:| -4275 |#1|)) |#2| |#2|)))
+((-3702 (((-112) $ $) NIL)) (-3155 (((-1208) $) 13)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2726 (((-1129) $) 10)) (-3714 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-967) (-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $)) (-15 -3155 ((-1208) $))))) (T -967))
+((-2726 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-967)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-967)))))
+(-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $)) (-15 -3155 ((-1208) $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) 37)) (-3180 (($) NIL T CONST)) (-3295 (((-641 (-641 (-564))) (-641 (-564))) 46)) (-4073 (((-564) $) 70)) (-4040 (($ (-641 (-564))) 18)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2374 (((-641 (-564)) $) 13)) (-1953 (($ $) 50)) (-3714 (((-859) $) 66) (((-641 (-564)) $) 11)) (-4312 (($) 8 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 25)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 24)) (-1814 (($ $ $) 26)) (* (($ (-918) $) NIL) (($ (-768) $) 35)))
+(((-968) (-13 (-792) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -4040 ($ (-641 (-564)))) (-15 -3295 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -4073 ((-564) $)) (-15 -1953 ($ $))))) (T -968))
+((-4040 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-968)))) (-3295 (*1 *2 *3) (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-968)) (-5 *3 (-641 (-564))))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-968)))) (-1953 (*1 *1 *1) (-5 *1 (-968))))
+(-13 (-792) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -4040 ($ (-641 (-564)))) (-15 -3295 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -4073 ((-564) $)) (-15 -1953 ($ $))))
+((-1841 (($ $ |#2|) 31)) (-1828 (($ $) 23) (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) 29)))
+(((-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1841 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-970 |#2| |#3| |#4|) (-1046) (-789) (-847)) (T -969))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1841 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4292 (((-641 |#3|) $) 77)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1582 (($ $) 55 (|has| |#1| (-556)))) (-3897 (((-112) $) 57 (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-2200 (((-112) $) 76)) (-2340 (((-112) $) 31)) (-2961 (((-112) $) 65)) (-4267 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-641 |#3|) (-641 |#2|)) 78)) (-2313 (($ (-1 |#1| |#1|) $) 66)) (-1330 (($ $) 68)) (-1345 ((|#1| $) 69)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1347 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3475 ((|#2| $) 67)) (-2807 (($ $) 75)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3181 ((|#1| $ |#2|) 62)) (-4363 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
(((-970 |#1| |#2| |#3|) (-140) (-1046) (-789) (-847)) (T -970))
-((-4323 (*1 *2 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *3 (-789)) (-4 *4 (-847)) (-4 *2 (-1046)))) (-4311 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *4 (-847)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *2 *4)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *2 (-789)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-970 *4 *3 *2)) (-4 *4 (-1046)) (-4 *3 (-789)) (-4 *2 (-847)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-789)) (-4 *6 (-847)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *5 (-847)) (-5 *2 (-641 *5)))) (-1459 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *4 (-847)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4145 ($ $ |t#3| |t#2|)) (-15 -4145 ($ $ (-641 |t#3|) (-641 |t#2|))) (-15 -4311 ($ $)) (-15 -4323 (|t#1| $)) (-15 -3344 (|t#2| $)) (-15 -4170 ((-641 |t#3|) $)) (-15 -1459 ((-112) $)) (-15 -3204 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-3505 (((-1088 (-225)) $) 8)) (-3492 (((-1088 (-225)) $) 9)) (-3479 (((-1088 (-225)) $) 10)) (-1803 (((-641 (-641 (-940 (-225)))) $) 11)) (-1765 (((-859) $) 6)))
+((-1345 (*1 *2 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *3 (-789)) (-4 *4 (-847)) (-4 *2 (-1046)))) (-1330 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *4 (-847)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *2 *4)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *2 (-789)))) (-4267 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-970 *4 *3 *2)) (-4 *4 (-1046)) (-4 *3 (-789)) (-4 *2 (-847)))) (-4267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-789)) (-4 *6 (-847)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *5 (-847)) (-5 *2 (-641 *5)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *5 (-847)) (-5 *2 (-112)))) (-2807 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *4 (-847)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4267 ($ $ |t#3| |t#2|)) (-15 -4267 ($ $ (-641 |t#3|) (-641 |t#2|))) (-15 -1330 ($ $)) (-15 -1345 (|t#1| $)) (-15 -3475 (|t#2| $)) (-15 -4292 ((-641 |t#3|) $)) (-15 -2200 ((-112) $)) (-15 -2807 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
+((-1977 (((-1088 (-225)) $) 8)) (-1965 (((-1088 (-225)) $) 9)) (-3618 (((-1088 (-225)) $) 10)) (-2465 (((-641 (-641 (-940 (-225)))) $) 11)) (-3714 (((-859) $) 6)))
(((-971) (-140)) (T -971))
-((-1803 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-641 (-641 (-940 (-225))))))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))))
-(-13 (-611 (-859)) (-10 -8 (-15 -1803 ((-641 (-641 (-940 (-225)))) $)) (-15 -3479 ((-1088 (-225)) $)) (-15 -3492 ((-1088 (-225)) $)) (-15 -3505 ((-1088 (-225)) $))))
+((-2465 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-641 (-641 (-940 (-225))))))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))))
+(-13 (-611 (-859)) (-10 -8 (-15 -2465 ((-641 (-641 (-940 (-225)))) $)) (-15 -3618 ((-1088 (-225)) $)) (-15 -1965 ((-1088 (-225)) $)) (-15 -1977 ((-1088 (-225)) $))))
(((-611 (-859)) . T))
-((-4170 (((-641 |#4|) $) 23)) (-1747 (((-112) $) 53)) (-2197 (((-112) $) 52)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#4|) 40)) (-4177 (((-112) $) 54)) (-3911 (((-112) $ $) 60)) (-2694 (((-112) $ $) 63)) (-1378 (((-112) $) 58)) (-2254 (((-641 |#5|) (-641 |#5|) $) 96)) (-2821 (((-641 |#5|) (-641 |#5|) $) 93)) (-2746 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 86)) (-4343 (((-641 |#4|) $) 27)) (-1853 (((-112) |#4| $) 33)) (-3962 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 79)) (-2318 (($ $ |#4|) 37)) (-1869 (($ $ |#4|) 36)) (-1845 (($ $ |#4|) 38)) (-1686 (((-112) $ $) 44)))
-(((-972 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2197 ((-112) |#1|)) (-15 -2254 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2821 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2746 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3962 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4177 ((-112) |#1|)) (-15 -2694 ((-112) |#1| |#1|)) (-15 -3911 ((-112) |#1| |#1|)) (-15 -1378 ((-112) |#1|)) (-15 -1747 ((-112) |#1|)) (-15 -2494 ((-2 (|:| |under| |#1|) (|:| -2677 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2318 (|#1| |#1| |#4|)) (-15 -1845 (|#1| |#1| |#4|)) (-15 -1869 (|#1| |#1| |#4|)) (-15 -1853 ((-112) |#4| |#1|)) (-15 -4343 ((-641 |#4|) |#1|)) (-15 -4170 ((-641 |#4|) |#1|)) (-15 -1686 ((-112) |#1| |#1|))) (-973 |#2| |#3| |#4| |#5|) (-1046) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -972))
+((-4292 (((-641 |#4|) $) 23)) (-3097 (((-112) $) 53)) (-2092 (((-112) $) 52)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#4|) 40)) (-2846 (((-112) $) 54)) (-2228 (((-112) $ $) 60)) (-3171 (((-112) $ $) 63)) (-3798 (((-112) $) 58)) (-1373 (((-641 |#5|) (-641 |#5|) $) 96)) (-2094 (((-641 |#5|) (-641 |#5|) $) 93)) (-2550 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 86)) (-3652 (((-641 |#4|) $) 27)) (-1722 (((-112) |#4| $) 33)) (-1434 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 79)) (-3789 (($ $ |#4|) 37)) (-1896 (($ $ |#4|) 36)) (-1632 (($ $ |#4|) 38)) (-1720 (((-112) $ $) 44)))
+(((-972 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2092 ((-112) |#1|)) (-15 -1373 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2094 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2550 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1434 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2846 ((-112) |#1|)) (-15 -3171 ((-112) |#1| |#1|)) (-15 -2228 ((-112) |#1| |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -3097 ((-112) |#1|)) (-15 -2904 ((-2 (|:| |under| |#1|) (|:| -3034 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3789 (|#1| |#1| |#4|)) (-15 -1632 (|#1| |#1| |#4|)) (-15 -1896 (|#1| |#1| |#4|)) (-15 -1722 ((-112) |#4| |#1|)) (-15 -3652 ((-641 |#4|) |#1|)) (-15 -4292 ((-641 |#4|) |#1|)) (-15 -1720 ((-112) |#1| |#1|))) (-973 |#2| |#3| |#4| |#5|) (-1046) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -972))
NIL
-(-10 -8 (-15 -2197 ((-112) |#1|)) (-15 -2254 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2821 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2746 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3962 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4177 ((-112) |#1|)) (-15 -2694 ((-112) |#1| |#1|)) (-15 -3911 ((-112) |#1| |#1|)) (-15 -1378 ((-112) |#1|)) (-15 -1747 ((-112) |#1|)) (-15 -2494 ((-2 (|:| |under| |#1|) (|:| -2677 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2318 (|#1| |#1| |#4|)) (-15 -1845 (|#1| |#1| |#4|)) (-15 -1869 (|#1| |#1| |#4|)) (-15 -1853 ((-112) |#4| |#1|)) (-15 -4343 ((-641 |#4|) |#1|)) (-15 -4170 ((-641 |#4|) |#1|)) (-15 -1686 ((-112) |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-4170 (((-641 |#3|) $) 33)) (-1747 (((-112) $) 26)) (-2197 (((-112) $) 17 (|has| |#1| (-556)))) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) 27)) (-3263 (((-112) $ (-768)) 44)) (-2164 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411)))) (-3760 (($) 45 T CONST)) (-4177 (((-112) $) 22 (|has| |#1| (-556)))) (-3911 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2694 (((-112) $ $) 23 (|has| |#1| (-556)))) (-1378 (((-112) $) 25 (|has| |#1| (-556)))) (-2254 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) 36)) (-2064 (($ (-641 |#4|)) 35)) (-3104 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411)))) (-3080 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-3162 ((|#3| $) 34)) (-2830 (((-112) $ (-768)) 43)) (-3817 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 47)) (-4343 (((-641 |#3|) $) 32)) (-1853 (((-112) |#3| $) 31)) (-2972 (((-112) $ (-768)) 42)) (-4202 (((-1152) $) 9)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3802 (((-1114) $) 10)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1467 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) 38)) (-2742 (((-112) $) 41)) (-3845 (($) 40)) (-3815 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-1899 (($ $) 39)) (-2127 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) 60)) (-2318 (($ $ |#3|) 28)) (-1869 (($ $ |#3|) 30)) (-1845 (($ $ |#3|) 29)) (-1765 (((-859) $) 11) (((-641 |#4|) $) 37)) (-2237 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 6)) (-2589 (((-768) $) 46 (|has| $ (-6 -4411)))))
+(-10 -8 (-15 -2092 ((-112) |#1|)) (-15 -1373 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2094 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -2550 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1434 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2846 ((-112) |#1|)) (-15 -3171 ((-112) |#1| |#1|)) (-15 -2228 ((-112) |#1| |#1|)) (-15 -3798 ((-112) |#1|)) (-15 -3097 ((-112) |#1|)) (-15 -2904 ((-2 (|:| |under| |#1|) (|:| -3034 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3789 (|#1| |#1| |#4|)) (-15 -1632 (|#1| |#1| |#4|)) (-15 -1896 (|#1| |#1| |#4|)) (-15 -1722 ((-112) |#4| |#1|)) (-15 -3652 ((-641 |#4|) |#1|)) (-15 -4292 ((-641 |#4|) |#1|)) (-15 -1720 ((-112) |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-4292 (((-641 |#3|) $) 33)) (-3097 (((-112) $) 26)) (-2092 (((-112) $) 17 (|has| |#1| (-556)))) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) 27)) (-2141 (((-112) $ (-768)) 44)) (-4148 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4412)))) (-3180 (($) 45 T CONST)) (-2846 (((-112) $) 22 (|has| |#1| (-556)))) (-2228 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3171 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3798 (((-112) $) 25 (|has| |#1| (-556)))) (-1373 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) 36)) (-2376 (($ (-641 |#4|)) 35)) (-2084 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4412)))) (-4244 (((-641 |#4|) $) 52 (|has| $ (-6 -4412)))) (-2394 ((|#3| $) 34)) (-2173 (((-112) $ (-768)) 43)) (-2572 (((-641 |#4|) $) 53 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 47)) (-3652 (((-641 |#3|) $) 32)) (-1722 (((-112) |#3| $) 31)) (-4144 (((-112) $ (-768)) 42)) (-1868 (((-1152) $) 9)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3844 (((-1114) $) 10)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2280 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) 38)) (-2510 (((-112) $) 41)) (-2834 (($) 40)) (-3855 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4412)))) (-3890 (($ $) 39)) (-2374 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) 60)) (-3789 (($ $ |#3|) 28)) (-1896 (($ $ |#3|) 30)) (-1632 (($ $ |#3|) 29)) (-3714 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4289 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 6)) (-2779 (((-768) $) 46 (|has| $ (-6 -4412)))))
(((-973 |#1| |#2| |#3| |#4|) (-140) (-1046) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -973))
-((-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-1060 *3 *4 *2)) (-4 *2 (-847)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-1853 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *3 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) (-1869 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-1845 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-2318 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-2494 (*1 *2 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2677 *1) (|:| |upper| *1))) (-4 *1 (-973 *4 *5 *3 *6)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3911 (*1 *2 *1 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2694 (*1 *2 *1 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3962 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2746 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2821 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)))) (-2254 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
-(-13 (-1094) (-151 |t#4|) (-611 (-641 |t#4|)) (-10 -8 (-6 -4411) (-15 -2013 ((-3 $ "failed") (-641 |t#4|))) (-15 -2064 ($ (-641 |t#4|))) (-15 -3162 (|t#3| $)) (-15 -4170 ((-641 |t#3|) $)) (-15 -4343 ((-641 |t#3|) $)) (-15 -1853 ((-112) |t#3| $)) (-15 -1869 ($ $ |t#3|)) (-15 -1845 ($ $ |t#3|)) (-15 -2318 ($ $ |t#3|)) (-15 -2494 ((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |t#3|)) (-15 -1747 ((-112) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -1378 ((-112) $)) (-15 -3911 ((-112) $ $)) (-15 -2694 ((-112) $ $)) (-15 -4177 ((-112) $)) (-15 -3962 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2746 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2821 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -2254 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -2197 ((-112) $))) |%noBranch|)))
+((-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-1060 *3 *4 *2)) (-4 *2 (-847)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-1722 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *3 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) (-1896 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-1632 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-3789 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-2904 (*1 *2 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3034 *1) (|:| |upper| *1))) (-4 *1 (-973 *4 *5 *3 *6)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2228 (*1 *2 *1 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3171 (*1 *2 *1 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-1434 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2550 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2094 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)))) (-1373 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))))
+(-13 (-1094) (-151 |t#4|) (-611 (-641 |t#4|)) (-10 -8 (-6 -4412) (-15 -2224 ((-3 $ "failed") (-641 |t#4|))) (-15 -2376 ($ (-641 |t#4|))) (-15 -2394 (|t#3| $)) (-15 -4292 ((-641 |t#3|) $)) (-15 -3652 ((-641 |t#3|) $)) (-15 -1722 ((-112) |t#3| $)) (-15 -1896 ($ $ |t#3|)) (-15 -1632 ($ $ |t#3|)) (-15 -3789 ($ $ |t#3|)) (-15 -2904 ((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |t#3|)) (-15 -3097 ((-112) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -3798 ((-112) $)) (-15 -2228 ((-112) $ $)) (-15 -3171 ((-112) $ $)) (-15 -2846 ((-112) $)) (-15 -1434 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2550 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2094 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -1373 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -2092 ((-112) $))) |%noBranch|)))
(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-1094) . T) ((-1209) . T))
-((-3954 (((-641 |#4|) |#4| |#4|) 134)) (-4111 (((-641 |#4|) (-641 |#4|) (-112)) 123 (|has| |#1| (-452))) (((-641 |#4|) (-641 |#4|)) 124 (|has| |#1| (-452)))) (-3303 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 43)) (-2880 (((-112) |#4|) 42)) (-1293 (((-641 |#4|) |#4|) 119 (|has| |#1| (-452)))) (-3149 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|)) 23)) (-3225 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 29)) (-1409 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 30)) (-1814 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|)) 88)) (-1987 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 101)) (-2456 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127)) (-3598 (((-641 |#4|) (-641 |#4|)) 126)) (-1395 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112)) 57) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 59)) (-1739 ((|#4| |#4| (-641 |#4|)) 58)) (-4385 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 130 (|has| |#1| (-452)))) (-4121 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 133 (|has| |#1| (-452)))) (-2959 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 132 (|has| |#1| (-452)))) (-3262 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|))) 103) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 105) (((-641 |#4|) (-641 |#4|) |#4|) 139) (((-641 |#4|) |#4| |#4|) 135) (((-641 |#4|) (-641 |#4|)) 104)) (-3109 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2063 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 50)) (-3769 (((-112) (-641 |#4|)) 77)) (-2628 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 65)) (-4278 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 36)) (-2916 (((-112) |#4|) 35)) (-1931 (((-641 |#4|) (-641 |#4|)) 114 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2649 (((-641 |#4|) (-641 |#4|)) 115 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-1500 (((-641 |#4|) (-641 |#4|)) 81)) (-3587 (((-641 |#4|) (-641 |#4|)) 95)) (-3445 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-2270 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 48)) (-1321 (((-112) |#4|) 44)))
-(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3262 ((-641 |#4|) (-641 |#4|))) (-15 -3262 ((-641 |#4|) |#4| |#4|)) (-15 -3598 ((-641 |#4|) (-641 |#4|))) (-15 -3954 ((-641 |#4|) |#4| |#4|)) (-15 -3262 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -3262 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3262 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3445 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2628 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3769 ((-112) (-641 |#4|))) (-15 -3149 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -3225 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -1409 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2063 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2880 ((-112) |#4|)) (-15 -3303 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2916 ((-112) |#4|)) (-15 -4278 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1321 ((-112) |#4|)) (-15 -2270 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1395 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -1395 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -1739 (|#4| |#4| (-641 |#4|))) (-15 -1500 ((-641 |#4|) (-641 |#4|))) (-15 -1814 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -3587 ((-641 |#4|) (-641 |#4|))) (-15 -1987 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2456 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1293 ((-641 |#4|) |#4|)) (-15 -4111 ((-641 |#4|) (-641 |#4|))) (-15 -4111 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -4385 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2959 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -4121 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -2649 ((-641 |#4|) (-641 |#4|))) (-15 -1931 ((-641 |#4|) (-641 |#4|))) (-15 -3109 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|)) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -974))
-((-3109 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4121 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2959 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4385 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4111 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-4111 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1293 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-2456 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-974 *5 *6 *7 *8)))) (-1987 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *1 (-974 *6 *7 *8 *9)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1814 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -1417 (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1739 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *2)))) (-1395 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-1395 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2270 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1321 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-4278 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2916 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-3303 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2880 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-2063 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *7)))) (-2628 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *5 *6 *7 *8)))) (-3445 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *7)))) (-3262 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-3262 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3262 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *3)))) (-3954 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3262 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-3262 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3262 ((-641 |#4|) (-641 |#4|))) (-15 -3262 ((-641 |#4|) |#4| |#4|)) (-15 -3598 ((-641 |#4|) (-641 |#4|))) (-15 -3954 ((-641 |#4|) |#4| |#4|)) (-15 -3262 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -3262 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3262 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3445 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2628 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3769 ((-112) (-641 |#4|))) (-15 -3149 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -3225 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -1409 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2063 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2880 ((-112) |#4|)) (-15 -3303 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2916 ((-112) |#4|)) (-15 -4278 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1321 ((-112) |#4|)) (-15 -2270 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1395 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -1395 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -1739 (|#4| |#4| (-641 |#4|))) (-15 -1500 ((-641 |#4|) (-641 |#4|))) (-15 -1814 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -3587 ((-641 |#4|) (-641 |#4|))) (-15 -1987 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2456 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1293 ((-641 |#4|) |#4|)) (-15 -4111 ((-641 |#4|) (-641 |#4|))) (-15 -4111 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -4385 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2959 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -4121 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -2649 ((-641 |#4|) (-641 |#4|))) (-15 -1931 ((-641 |#4|) (-641 |#4|))) (-15 -3109 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|))
-((-1472 (((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3917 (((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 43)) (-2827 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-975 |#1|) (-10 -7 (-15 -1472 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2827 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3917 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -975))
-((-3917 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5))))) (-5 *1 (-975 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)))) (-2827 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-975 *5)))) (-1472 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6)))) (-5 *1 (-975 *6)) (-5 *3 (-685 *6)))))
-(-10 -7 (-15 -1472 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2827 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3917 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))))
-((-3981 (((-418 |#4|) |#4|) 56)))
-(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3981 ((-418 |#4|) |#4|))) (-847) (-790) (-452) (-946 |#3| |#2| |#1|)) (T -976))
-((-3981 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-976 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
-(-10 -7 (-15 -3981 ((-418 |#4|) |#4|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1398 (($ (-768)) 112 (|has| |#1| (-23)))) (-3476 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) 8)) (-1881 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3852 (($ $) 90 (|has| $ (-6 -4412)))) (-3716 (($ $) 100)) (-3104 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 51)) (-1356 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3489 (($ (-641 |#1|)) 118)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4147 (((-685 |#1|) $ $) 105 (|has| |#1| (-1046)))) (-1633 (($ (-768) |#1|) 69)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 43 (|has| (-564) (-847)))) (-3571 (($ $ $) 87 (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 44 (|has| (-564) (-847)))) (-1547 (($ $ $) 86 (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3500 ((|#1| $) 102 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-2972 (((-112) $ (-768)) 10)) (-2564 ((|#1| $) 103 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-1371 (((-641 (-564)) $) 46)) (-3629 (((-112) (-564) $) 47)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3073 ((|#1| $) 42 (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2614 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-2678 (($ $ (-641 |#1|)) 116)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-4158 ((|#1| $ $) 106 (|has| |#1| (-1046)))) (-3850 (((-918) $) 117)) (-2008 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3663 (($ $ $) 104)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2286 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-1899 (($ $) 13)) (-2127 (((-536) $) 79 (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 119)) (-1776 (($ (-641 |#1|)) 70)) (-2817 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1728 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 82 (|has| |#1| (-847)))) (-1783 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1771 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-723))) (($ $ |#1|) 107 (|has| |#1| (-723)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-1333 (((-641 |#4|) |#4| |#4|) 134)) (-3336 (((-641 |#4|) (-641 |#4|) (-112)) 123 (|has| |#1| (-452))) (((-641 |#4|) (-641 |#4|)) 124 (|has| |#1| (-452)))) (-4358 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 43)) (-1456 (((-112) |#4|) 42)) (-3081 (((-641 |#4|) |#4|) 119 (|has| |#1| (-452)))) (-2249 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|)) 23)) (-1755 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 29)) (-1560 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 30)) (-2580 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|)) 88)) (-3610 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 101)) (-2750 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127)) (-4110 (((-641 |#4|) (-641 |#4|)) 126)) (-1528 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112)) 57) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 59)) (-3027 ((|#4| |#4| (-641 |#4|)) 58)) (-4019 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 130 (|has| |#1| (-452)))) (-2319 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 133 (|has| |#1| (-452)))) (-4004 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 132 (|has| |#1| (-452)))) (-2131 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|))) 103) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 105) (((-641 |#4|) (-641 |#4|) |#4|) 139) (((-641 |#4|) |#4| |#4|) 135) (((-641 |#4|) (-641 |#4|)) 104)) (-3016 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3195 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 50)) (-3251 (((-112) (-641 |#4|)) 77)) (-3704 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 65)) (-4381 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 36)) (-3646 (((-112) |#4|) 35)) (-4319 (((-641 |#4|) (-641 |#4|)) 114 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3946 (((-641 |#4|) (-641 |#4|)) 115 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2639 (((-641 |#4|) (-641 |#4|)) 81)) (-2177 (((-641 |#4|) (-641 |#4|)) 95)) (-3238 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-1519 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 48)) (-2264 (((-112) |#4|) 44)))
+(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2131 ((-641 |#4|) (-641 |#4|))) (-15 -2131 ((-641 |#4|) |#4| |#4|)) (-15 -4110 ((-641 |#4|) (-641 |#4|))) (-15 -1333 ((-641 |#4|) |#4| |#4|)) (-15 -2131 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -2131 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2131 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3238 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3704 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3251 ((-112) (-641 |#4|))) (-15 -2249 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -1755 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -1560 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -3195 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1456 ((-112) |#4|)) (-15 -4358 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3646 ((-112) |#4|)) (-15 -4381 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2264 ((-112) |#4|)) (-15 -1519 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1528 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -1528 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -3027 (|#4| |#4| (-641 |#4|))) (-15 -2639 ((-641 |#4|) (-641 |#4|))) (-15 -2580 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -2177 ((-641 |#4|) (-641 |#4|))) (-15 -3610 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2750 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3081 ((-641 |#4|) |#4|)) (-15 -3336 ((-641 |#4|) (-641 |#4|))) (-15 -3336 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -4019 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -4004 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2319 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -3946 ((-641 |#4|) (-641 |#4|))) (-15 -4319 ((-641 |#4|) (-641 |#4|))) (-15 -3016 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|)) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -974))
+((-3016 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4319 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2319 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4004 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4019 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3336 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-2750 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-974 *5 *6 *7 *8)))) (-3610 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *1 (-974 *6 *7 *8 *9)))) (-2177 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2580 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2667 (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2639 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3027 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *2)))) (-1528 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-1528 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1519 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2264 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-4381 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-4358 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1456 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-3195 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-1755 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *7)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *5 *6 *7 *8)))) (-3238 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *7)))) (-2131 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-2131 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2131 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *3)))) (-1333 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2131 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2131 ((-641 |#4|) (-641 |#4|))) (-15 -2131 ((-641 |#4|) |#4| |#4|)) (-15 -4110 ((-641 |#4|) (-641 |#4|))) (-15 -1333 ((-641 |#4|) |#4| |#4|)) (-15 -2131 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -2131 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2131 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3238 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3704 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3251 ((-112) (-641 |#4|))) (-15 -2249 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -1755 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -1560 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -3195 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1456 ((-112) |#4|)) (-15 -4358 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3646 ((-112) |#4|)) (-15 -4381 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2264 ((-112) |#4|)) (-15 -1519 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -1528 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -1528 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -3027 (|#4| |#4| (-641 |#4|))) (-15 -2639 ((-641 |#4|) (-641 |#4|))) (-15 -2580 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -2177 ((-641 |#4|) (-641 |#4|))) (-15 -3610 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2750 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3081 ((-641 |#4|) |#4|)) (-15 -3336 ((-641 |#4|) (-641 |#4|))) (-15 -3336 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -4019 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -4004 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2319 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -3946 ((-641 |#4|) (-641 |#4|))) (-15 -4319 ((-641 |#4|) (-641 |#4|))) (-15 -3016 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|))
+((-2333 (((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-4106 (((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 43)) (-2144 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-975 |#1|) (-10 -7 (-15 -2333 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2144 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4106 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -975))
+((-4106 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5))))) (-5 *1 (-975 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)))) (-2144 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-975 *5)))) (-2333 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6)))) (-5 *1 (-975 *6)) (-5 *3 (-685 *6)))))
+(-10 -7 (-15 -2333 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2144 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4106 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))))
+((-1592 (((-418 |#4|) |#4|) 56)))
+(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1592 ((-418 |#4|) |#4|))) (-847) (-790) (-452) (-946 |#3| |#2| |#1|)) (T -976))
+((-1592 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-976 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
+(-10 -7 (-15 -1592 ((-418 |#4|) |#4|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1532 (($ (-768)) 112 (|has| |#1| (-23)))) (-2399 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4413))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4413))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) 8)) (-3868 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-1651 (($ $) 90 (|has| $ (-6 -4413)))) (-1923 (($ $) 100)) (-2084 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 51)) (-3303 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3362 (($ (-641 |#1|)) 118)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2996 (((-685 |#1|) $ $) 105 (|has| |#1| (-1046)))) (-3564 (($ (-768) |#1|) 69)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 43 (|has| (-564) (-847)))) (-3428 (($ $ $) 87 (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-3413 (($ $ $) 86 (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2636 ((|#1| $) 102 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-4144 (((-112) $ (-768)) 10)) (-3451 ((|#1| $) 103 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3127 (((-641 (-564)) $) 46)) (-1338 (((-112) (-564) $) 47)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2049 ((|#1| $) 42 (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3538 (($ $ |#1|) 41 (|has| $ (-6 -4413)))) (-3042 (($ $ (-641 |#1|)) 116)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2681 ((|#1| $ $) 106 (|has| |#1| (-1046)))) (-2869 (((-918) $) 117)) (-2090 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3482 (($ $ $) 104)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3474 (($ $ $ (-564)) 91 (|has| $ (-6 -4413)))) (-3890 (($ $) 13)) (-2374 (((-536) $) 79 (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 119)) (-3725 (($ (-641 |#1|)) 70)) (-1865 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1769 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 82 (|has| |#1| (-847)))) (-1828 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1814 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-723))) (($ $ |#1|) 107 (|has| |#1| (-723)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-977 |#1|) (-140) (-1046)) (T -977))
-((-3489 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-977 *3)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1046)) (-5 *2 (-918)))) (-3663 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1046)))) (-2678 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-977 *3)) (-4 *3 (-1046)))))
-(-13 (-1257 |t#1|) (-616 (-641 |t#1|)) (-10 -8 (-15 -3489 ($ (-641 |t#1|))) (-15 -3850 ((-918) $)) (-15 -3663 ($ $ $)) (-15 -2678 ($ $ (-641 |t#1|)))))
-(((-34) . T) ((-102) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-616 (-641 |#1|)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T) ((-1257 |#1|) . T))
-((-2082 (((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)) 17)))
-(((-978 |#1| |#2|) (-10 -7 (-15 -2082 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)))) (-1046) (-1046)) (T -978))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-940 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-940 *6)) (-5 *1 (-978 *5 *6)))))
-(-10 -7 (-15 -2082 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|))))
-((-1810 ((|#1| (-940 |#1|)) 14)) (-3397 ((|#1| (-940 |#1|)) 13)) (-4206 ((|#1| (-940 |#1|)) 12)) (-2862 ((|#1| (-940 |#1|)) 16)) (-1304 ((|#1| (-940 |#1|)) 24)) (-3728 ((|#1| (-940 |#1|)) 15)) (-2604 ((|#1| (-940 |#1|)) 17)) (-3955 ((|#1| (-940 |#1|)) 23)) (-3309 ((|#1| (-940 |#1|)) 22)))
-(((-979 |#1|) (-10 -7 (-15 -4206 (|#1| (-940 |#1|))) (-15 -3397 (|#1| (-940 |#1|))) (-15 -1810 (|#1| (-940 |#1|))) (-15 -3728 (|#1| (-940 |#1|))) (-15 -2862 (|#1| (-940 |#1|))) (-15 -2604 (|#1| (-940 |#1|))) (-15 -3309 (|#1| (-940 |#1|))) (-15 -3955 (|#1| (-940 |#1|))) (-15 -1304 (|#1| (-940 |#1|)))) (-1046)) (T -979))
-((-1304 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
-(-10 -7 (-15 -4206 (|#1| (-940 |#1|))) (-15 -3397 (|#1| (-940 |#1|))) (-15 -1810 (|#1| (-940 |#1|))) (-15 -3728 (|#1| (-940 |#1|))) (-15 -2862 (|#1| (-940 |#1|))) (-15 -2604 (|#1| (-940 |#1|))) (-15 -3309 (|#1| (-940 |#1|))) (-15 -3955 (|#1| (-940 |#1|))) (-15 -1304 (|#1| (-940 |#1|))))
-((-3542 (((-3 |#1| "failed") |#1|) 18)) (-2740 (((-3 |#1| "failed") |#1|) 6)) (-4365 (((-3 |#1| "failed") |#1|) 16)) (-3461 (((-3 |#1| "failed") |#1|) 4)) (-4370 (((-3 |#1| "failed") |#1|) 20)) (-2143 (((-3 |#1| "failed") |#1|) 8)) (-2596 (((-3 |#1| "failed") |#1| (-768)) 1)) (-2914 (((-3 |#1| "failed") |#1|) 3)) (-2646 (((-3 |#1| "failed") |#1|) 2)) (-4040 (((-3 |#1| "failed") |#1|) 21)) (-2479 (((-3 |#1| "failed") |#1|) 9)) (-2967 (((-3 |#1| "failed") |#1|) 19)) (-2850 (((-3 |#1| "failed") |#1|) 7)) (-3665 (((-3 |#1| "failed") |#1|) 17)) (-4155 (((-3 |#1| "failed") |#1|) 5)) (-1942 (((-3 |#1| "failed") |#1|) 24)) (-3980 (((-3 |#1| "failed") |#1|) 12)) (-3238 (((-3 |#1| "failed") |#1|) 22)) (-3695 (((-3 |#1| "failed") |#1|) 10)) (-3844 (((-3 |#1| "failed") |#1|) 26)) (-3805 (((-3 |#1| "failed") |#1|) 14)) (-2749 (((-3 |#1| "failed") |#1|) 27)) (-2845 (((-3 |#1| "failed") |#1|) 15)) (-4189 (((-3 |#1| "failed") |#1|) 25)) (-2626 (((-3 |#1| "failed") |#1|) 13)) (-1349 (((-3 |#1| "failed") |#1|) 23)) (-1669 (((-3 |#1| "failed") |#1|) 11)))
+((-3362 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-977 *3)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1046)) (-5 *2 (-918)))) (-3482 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1046)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-977 *3)) (-4 *3 (-1046)))))
+(-13 (-1257 |t#1|) (-616 (-641 |t#1|)) (-10 -8 (-15 -3362 ($ (-641 |t#1|))) (-15 -2869 ((-918) $)) (-15 -3482 ($ $ $)) (-15 -3042 ($ $ (-641 |t#1|)))))
+(((-34) . T) ((-102) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-616 (-641 |#1|)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T) ((-1257 |#1|) . T))
+((-2313 (((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)) 17)))
+(((-978 |#1| |#2|) (-10 -7 (-15 -2313 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)))) (-1046) (-1046)) (T -978))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-940 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-940 *6)) (-5 *1 (-978 *5 *6)))))
+(-10 -7 (-15 -2313 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|))))
+((-2540 ((|#1| (-940 |#1|)) 14)) (-2873 ((|#1| (-940 |#1|)) 13)) (-1900 ((|#1| (-940 |#1|)) 12)) (-4340 ((|#1| (-940 |#1|)) 16)) (-2929 ((|#1| (-940 |#1|)) 24)) (-2937 ((|#1| (-940 |#1|)) 15)) (-3426 ((|#1| (-940 |#1|)) 17)) (-1346 ((|#1| (-940 |#1|)) 23)) (-1307 ((|#1| (-940 |#1|)) 22)))
+(((-979 |#1|) (-10 -7 (-15 -1900 (|#1| (-940 |#1|))) (-15 -2873 (|#1| (-940 |#1|))) (-15 -2540 (|#1| (-940 |#1|))) (-15 -2937 (|#1| (-940 |#1|))) (-15 -4340 (|#1| (-940 |#1|))) (-15 -3426 (|#1| (-940 |#1|))) (-15 -1307 (|#1| (-940 |#1|))) (-15 -1346 (|#1| (-940 |#1|))) (-15 -2929 (|#1| (-940 |#1|)))) (-1046)) (T -979))
+((-2929 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-2540 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+(-10 -7 (-15 -1900 (|#1| (-940 |#1|))) (-15 -2873 (|#1| (-940 |#1|))) (-15 -2540 (|#1| (-940 |#1|))) (-15 -2937 (|#1| (-940 |#1|))) (-15 -4340 (|#1| (-940 |#1|))) (-15 -3426 (|#1| (-940 |#1|))) (-15 -1307 (|#1| (-940 |#1|))) (-15 -1346 (|#1| (-940 |#1|))) (-15 -2929 (|#1| (-940 |#1|))))
+((-1750 (((-3 |#1| "failed") |#1|) 18)) (-2486 (((-3 |#1| "failed") |#1|) 6)) (-3849 (((-3 |#1| "failed") |#1|) 16)) (-2254 (((-3 |#1| "failed") |#1|) 4)) (-3893 (((-3 |#1| "failed") |#1|) 20)) (-2808 (((-3 |#1| "failed") |#1|) 8)) (-1549 (((-3 |#1| "failed") |#1| (-768)) 1)) (-3621 (((-3 |#1| "failed") |#1|) 3)) (-3913 (((-3 |#1| "failed") |#1|) 2)) (-3942 (((-3 |#1| "failed") |#1|) 21)) (-1724 (((-3 |#1| "failed") |#1|) 9)) (-4086 (((-3 |#1| "failed") |#1|) 19)) (-4211 (((-3 |#1| "failed") |#1|) 7)) (-3493 (((-3 |#1| "failed") |#1|) 17)) (-2670 (((-3 |#1| "failed") |#1|) 5)) (-1324 (((-3 |#1| "failed") |#1|) 24)) (-1581 (((-3 |#1| "failed") |#1|) 12)) (-1892 (((-3 |#1| "failed") |#1|) 22)) (-3785 (((-3 |#1| "failed") |#1|) 10)) (-2825 (((-3 |#1| "failed") |#1|) 26)) (-2451 (((-3 |#1| "failed") |#1|) 14)) (-2588 (((-3 |#1| "failed") |#1|) 27)) (-4154 (((-3 |#1| "failed") |#1|) 15)) (-1725 (((-3 |#1| "failed") |#1|) 25)) (-3682 (((-3 |#1| "failed") |#1|) 13)) (-2532 (((-3 |#1| "failed") |#1|) 23)) (-3507 (((-3 |#1| "failed") |#1|) 11)))
(((-980 |#1|) (-140) (-1194)) (T -980))
-((-2749 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3844 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4189 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1942 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1349 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3238 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4040 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4370 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3542 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3665 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4365 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2845 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3805 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2626 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3980 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1669 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3695 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2479 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2143 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2850 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2740 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4155 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3461 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2914 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2646 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2596 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(-13 (-10 -7 (-15 -2596 ((-3 |t#1| "failed") |t#1| (-768))) (-15 -2646 ((-3 |t#1| "failed") |t#1|)) (-15 -2914 ((-3 |t#1| "failed") |t#1|)) (-15 -3461 ((-3 |t#1| "failed") |t#1|)) (-15 -4155 ((-3 |t#1| "failed") |t#1|)) (-15 -2740 ((-3 |t#1| "failed") |t#1|)) (-15 -2850 ((-3 |t#1| "failed") |t#1|)) (-15 -2143 ((-3 |t#1| "failed") |t#1|)) (-15 -2479 ((-3 |t#1| "failed") |t#1|)) (-15 -3695 ((-3 |t#1| "failed") |t#1|)) (-15 -1669 ((-3 |t#1| "failed") |t#1|)) (-15 -3980 ((-3 |t#1| "failed") |t#1|)) (-15 -2626 ((-3 |t#1| "failed") |t#1|)) (-15 -3805 ((-3 |t#1| "failed") |t#1|)) (-15 -2845 ((-3 |t#1| "failed") |t#1|)) (-15 -4365 ((-3 |t#1| "failed") |t#1|)) (-15 -3665 ((-3 |t#1| "failed") |t#1|)) (-15 -3542 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -4370 ((-3 |t#1| "failed") |t#1|)) (-15 -4040 ((-3 |t#1| "failed") |t#1|)) (-15 -3238 ((-3 |t#1| "failed") |t#1|)) (-15 -1349 ((-3 |t#1| "failed") |t#1|)) (-15 -1942 ((-3 |t#1| "failed") |t#1|)) (-15 -4189 ((-3 |t#1| "failed") |t#1|)) (-15 -3844 ((-3 |t#1| "failed") |t#1|)) (-15 -2749 ((-3 |t#1| "failed") |t#1|))))
-((-3189 ((|#4| |#4| (-641 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-4366 ((|#4| |#4| (-641 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2082 ((|#4| (-1 |#4| (-949 |#1|)) |#4|) 31)))
-(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4366 (|#4| |#4| |#3|)) (-15 -4366 (|#4| |#4| (-641 |#3|))) (-15 -3189 (|#4| |#4| |#3|)) (-15 -3189 (|#4| |#4| (-641 |#3|))) (-15 -2082 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) (-1046) (-790) (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170))))) (-946 (-949 |#1|) |#2| |#3|)) (T -981))
-((-2082 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1046)) (-4 *2 (-946 (-949 *4) *5 *6)) (-4 *5 (-790)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *6 *2)))) (-3189 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) (-4 *2 (-946 (-949 *4) *5 *6)))) (-3189 (*1 *2 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))) (-4366 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) (-4 *2 (-946 (-949 *4) *5 *6)))) (-4366 (*1 *2 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)) (-15 -3657 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))))
-(-10 -7 (-15 -4366 (|#4| |#4| |#3|)) (-15 -4366 (|#4| |#4| (-641 |#3|))) (-15 -3189 (|#4| |#4| |#3|)) (-15 -3189 (|#4| |#4| (-641 |#3|))) (-15 -2082 (|#4| (-1 |#4| (-949 |#1|)) |#4|)))
-((-2123 ((|#2| |#3|) 35)) (-4018 (((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 86)) (-1791 (((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 106)))
-(((-982 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1791 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -4018 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -2123 (|#2| |#3|))) (-349) (-1235 |#1|) (-1235 |#2|) (-721 |#2| |#3|)) (T -982))
-((-2123 (*1 *2 *3) (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-982 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-721 *2 *3)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-982 *4 *3 *5 *6)) (-4 *6 (-721 *3 *5)))) (-1791 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -3941 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-721 *4 *5)))))
-(-10 -7 (-15 -1791 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -4018 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -2123 (|#2| |#3|)))
-((-1501 (((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))) 83)))
-(((-983 |#1| |#2|) (-10 -7 (-15 -1501 ((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))))) (-641 (-1170)) (-768)) (T -983))
-((-1501 (*1 *2 *2) (-12 (-5 *2 (-984 (-407 (-564)) (-861 *3) (-240 *4 (-768)) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-983 *3 *4)))))
-(-10 -7 (-15 -1501 ((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))))))
-((-1754 (((-112) $ $) NIL)) (-3651 (((-3 (-112) "failed") $) 71)) (-3133 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2602 (($ $ (-3 (-112) "failed")) 72)) (-1460 (($ (-641 |#4|) |#4|) 25)) (-4202 (((-1152) $) NIL)) (-3520 (($ $) 69)) (-3802 (((-1114) $) NIL)) (-2742 (((-112) $) 70)) (-3845 (($) 30)) (-3245 ((|#4| $) 74)) (-2364 (((-641 |#4|) $) 73)) (-1765 (((-859) $) 68)) (-1686 (((-112) $ $) NIL)))
-(((-984 |#1| |#2| |#3| |#4|) (-13 (-1094) (-611 (-859)) (-10 -8 (-15 -3845 ($)) (-15 -1460 ($ (-641 |#4|) |#4|)) (-15 -3651 ((-3 (-112) "failed") $)) (-15 -2602 ($ $ (-3 (-112) "failed"))) (-15 -2742 ((-112) $)) (-15 -2364 ((-641 |#4|) $)) (-15 -3245 (|#4| $)) (-15 -3520 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3133 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-847) (-790) (-946 |#1| |#3| |#2|)) (T -984))
-((-3845 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-1460 (*1 *1 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *1 (-984 *4 *5 *6 *3)))) (-3651 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-2602 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-2742 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-2364 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-641 *6)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-3245 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)))) (-3520 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-3133 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))))
-(-13 (-1094) (-611 (-859)) (-10 -8 (-15 -3845 ($)) (-15 -1460 ($ (-641 |#4|) |#4|)) (-15 -3651 ((-3 (-112) "failed") $)) (-15 -2602 ($ $ (-3 (-112) "failed"))) (-15 -2742 ((-112) $)) (-15 -2364 ((-641 |#4|) $)) (-15 -3245 (|#4| $)) (-15 -3520 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3133 ($ $)) |%noBranch|) |%noBranch|)))
-((-3240 (((-112) |#5| |#5|) 43)) (-2644 (((-112) |#5| |#5|) 57)) (-2603 (((-112) |#5| (-641 |#5|)) 79) (((-112) |#5| |#5|) 66)) (-3031 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-2695 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) 68)) (-2562 (((-1264)) 33)) (-2005 (((-1264) (-1152) (-1152) (-1152)) 29)) (-1530 (((-641 |#5|) (-641 |#5|)) 98)) (-2570 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) 90)) (-3968 (((-641 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 120)) (-2655 (((-112) |#5| |#5|) 52)) (-3085 (((-3 (-112) "failed") |#5| |#5|) 76)) (-3001 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-2578 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-3862 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-2255 (((-3 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 115)) (-2822 (((-641 |#5|) (-641 |#5|)) 48)))
-(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2005 ((-1264) (-1152) (-1152) (-1152))) (-15 -2562 ((-1264))) (-15 -3240 ((-112) |#5| |#5|)) (-15 -2822 ((-641 |#5|) (-641 |#5|))) (-15 -2655 ((-112) |#5| |#5|)) (-15 -2644 ((-112) |#5| |#5|)) (-15 -3031 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3001 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2578 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3862 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3085 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2603 ((-112) |#5| |#5|)) (-15 -2603 ((-112) |#5| (-641 |#5|))) (-15 -1530 ((-641 |#5|) (-641 |#5|))) (-15 -2695 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) (-15 -2570 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-15 -3968 ((-641 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2255 ((-3 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -985))
-((-2255 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| -2076 (-641 *9)) (|:| -3853 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-985 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-3968 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -2076 (-641 *9)) (|:| -3853 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-985 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-2570 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -3853 *7)))) (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-2695 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3853 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)))) (-1530 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8 *3)))) (-2603 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-3085 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-3862 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2578 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3001 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3031 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2644 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2655 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2822 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-3240 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2562 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-2005 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2005 ((-1264) (-1152) (-1152) (-1152))) (-15 -2562 ((-1264))) (-15 -3240 ((-112) |#5| |#5|)) (-15 -2822 ((-641 |#5|) (-641 |#5|))) (-15 -2655 ((-112) |#5| |#5|)) (-15 -2644 ((-112) |#5| |#5|)) (-15 -3031 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3001 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2578 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3862 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3085 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2603 ((-112) |#5| |#5|)) (-15 -2603 ((-112) |#5| (-641 |#5|))) (-15 -1530 ((-641 |#5|) (-641 |#5|))) (-15 -2695 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) (-15 -2570 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-15 -3968 ((-641 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2255 ((-3 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3657 (((-1170) $) 15)) (-1451 (((-1152) $) 16)) (-3566 (($ (-1170) (-1152)) 14)) (-1765 (((-859) $) 13)))
-(((-986) (-13 (-611 (-859)) (-10 -8 (-15 -3566 ($ (-1170) (-1152))) (-15 -3657 ((-1170) $)) (-15 -1451 ((-1152) $))))) (T -986))
-((-3566 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-986)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-986)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-986)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -3566 ($ (-1170) (-1152))) (-15 -3657 ((-1170) $)) (-15 -1451 ((-1152) $))))
-((-2082 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 (|#4| (-1 |#2| |#1|) |#3|))) (-556) (-556) (-989 |#1|) (-989 |#2|)) (T -987))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-989 *6)) (-5 *1 (-987 *5 *6 *4 *2)) (-4 *4 (-989 *5)))))
-(-10 -7 (-15 -2082 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) 66) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) 96)) (-2064 ((|#2| $) NIL) (((-1170) $) 61) (((-407 (-564)) $) NIL) (((-564) $) 93)) (-2620 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 115) (((-685 |#2|) (-685 $)) 28)) (-2542 (($) 99)) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 76) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 85)) (-1957 (($ $) 10)) (-3374 (((-3 $ "failed") $) 20)) (-2082 (($ (-1 |#2| |#2|) $) 22)) (-1611 (($) 16)) (-2002 (($ $) 55)) (-3226 (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3762 (($ $) 12)) (-2127 (((-889 (-564)) $) 71) (((-889 (-379)) $) 80) (((-536) $) 40) (((-379) $) 44) (((-225) $) 48)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 91) (($ |#2|) NIL) (($ (-1170)) 58)) (-1965 (((-768)) 31)) (-1705 (((-112) $ $) 51)))
-(((-988 |#1| |#2|) (-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -1611 (|#1|)) (-15 -3374 ((-3 |#1| "failed") |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2127 ((-225) |#1|)) (-15 -2127 ((-379) |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -1765 (|#1| (-1170))) (-15 -2013 ((-3 (-1170) "failed") |#1|)) (-15 -2064 ((-1170) |#1|)) (-15 -2542 (|#1|)) (-15 -2002 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -1957 (|#1| |#1|)) (-15 -2549 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2620 ((-685 |#2|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| |#1|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|))) (-989 |#2|) (-556)) (T -988))
-((-1965 (*1 *2) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-988 *3 *4)) (-4 *3 (-989 *4)))))
-(-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -1611 (|#1|)) (-15 -3374 ((-3 |#1| "failed") |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2127 ((-225) |#1|)) (-15 -2127 ((-379) |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -1765 (|#1| (-1170))) (-15 -2013 ((-3 (-1170) "failed") |#1|)) (-15 -2064 ((-1170) |#1|)) (-15 -2542 (|#1|)) (-15 -2002 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -1957 (|#1| |#1|)) (-15 -2549 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2549 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2620 ((-685 |#2|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| |#1|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4328 ((|#1| $) 138 (|has| |#1| (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-1871 (((-418 (-1166 $)) (-1166 $)) 129 (|has| |#1| (-906)))) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 132 (|has| |#1| (-906)))) (-3385 (((-112) $ $) 60)) (-3438 (((-564) $) 119 (|has| |#1| (-817)))) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#1| "failed") $) 176) (((-3 (-1170) "failed") $) 127 (|has| |#1| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 110 (|has| |#1| (-1035 (-564)))) (((-3 (-564) "failed") $) 108 (|has| |#1| (-1035 (-564))))) (-2064 ((|#1| $) 177) (((-1170) $) 128 (|has| |#1| (-1035 (-1170)))) (((-407 (-564)) $) 111 (|has| |#1| (-1035 (-564)))) (((-564) $) 109 (|has| |#1| (-1035 (-564))))) (-1387 (($ $ $) 56)) (-2620 (((-685 (-564)) (-685 $)) 151 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 150 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 149) (((-685 |#1|) (-685 $)) 148)) (-1926 (((-3 $ "failed") $) 33)) (-2542 (($) 136 (|has| |#1| (-545)))) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-3241 (((-112) $) 72)) (-1751 (((-112) $) 121 (|has| |#1| (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 145 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 144 (|has| |#1| (-883 (-379))))) (-2419 (((-112) $) 31)) (-1957 (($ $) 140)) (-1507 ((|#1| $) 142)) (-3374 (((-3 $ "failed") $) 107 (|has| |#1| (-1145)))) (-2506 (((-112) $) 120 (|has| |#1| (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3571 (($ $ $) 117 (|has| |#1| (-847)))) (-1547 (($ $ $) 116 (|has| |#1| (-847)))) (-2082 (($ (-1 |#1| |#1|) $) 168)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71)) (-1611 (($) 106 (|has| |#1| (-1145)) CONST)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-2002 (($ $) 137 (|has| |#1| (-307)))) (-2677 ((|#1| $) 134 (|has| |#1| (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) 131 (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) 130 (|has| |#1| (-906)))) (-4006 (((-418 $) $) 75)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) 174 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 172 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 171 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 170 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 169 (|has| |#1| (-514 (-1170) |#1|)))) (-3712 (((-768) $) 59)) (-4382 (($ $ |#1|) 175 (|has| |#1| (-286 |#1| |#1|)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-3226 (($ $) 167 (|has| |#1| (-233))) (($ $ (-768)) 165 (|has| |#1| (-233))) (($ $ (-1170)) 163 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 162 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 161 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 160 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3762 (($ $) 139)) (-1517 ((|#1| $) 141)) (-2127 (((-889 (-564)) $) 147 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 146 (|has| |#1| (-612 (-889 (-379))))) (((-536) $) 124 (|has| |#1| (-612 (-536)))) (((-379) $) 123 (|has| |#1| (-1019))) (((-225) $) 122 (|has| |#1| (-1019)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 133 (-4266 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 180) (($ (-1170)) 126 (|has| |#1| (-1035 (-1170))))) (-2864 (((-3 $ "failed") $) 125 (-4002 (|has| |#1| (-145)) (-4266 (|has| $ (-145)) (|has| |#1| (-906)))))) (-1965 (((-768)) 28 T CONST)) (-2991 ((|#1| $) 135 (|has| |#1| (-545)))) (-1582 (((-112) $ $) 40)) (-2016 (($ $) 118 (|has| |#1| (-817)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $) 166 (|has| |#1| (-233))) (($ $ (-768)) 164 (|has| |#1| (-233))) (($ $ (-1170)) 159 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 158 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 157 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 156 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1738 (((-112) $ $) 114 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 113 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 115 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 112 (|has| |#1| (-847)))) (-1793 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
+((-2588 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2825 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1725 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1324 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2532 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1892 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3942 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3893 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4086 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1750 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3493 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3849 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4154 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2451 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3682 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1581 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3507 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3785 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1724 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2808 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4211 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2486 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2670 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2254 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3621 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3913 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1549 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(-13 (-10 -7 (-15 -1549 ((-3 |t#1| "failed") |t#1| (-768))) (-15 -3913 ((-3 |t#1| "failed") |t#1|)) (-15 -3621 ((-3 |t#1| "failed") |t#1|)) (-15 -2254 ((-3 |t#1| "failed") |t#1|)) (-15 -2670 ((-3 |t#1| "failed") |t#1|)) (-15 -2486 ((-3 |t#1| "failed") |t#1|)) (-15 -4211 ((-3 |t#1| "failed") |t#1|)) (-15 -2808 ((-3 |t#1| "failed") |t#1|)) (-15 -1724 ((-3 |t#1| "failed") |t#1|)) (-15 -3785 ((-3 |t#1| "failed") |t#1|)) (-15 -3507 ((-3 |t#1| "failed") |t#1|)) (-15 -1581 ((-3 |t#1| "failed") |t#1|)) (-15 -3682 ((-3 |t#1| "failed") |t#1|)) (-15 -2451 ((-3 |t#1| "failed") |t#1|)) (-15 -4154 ((-3 |t#1| "failed") |t#1|)) (-15 -3849 ((-3 |t#1| "failed") |t#1|)) (-15 -3493 ((-3 |t#1| "failed") |t#1|)) (-15 -1750 ((-3 |t#1| "failed") |t#1|)) (-15 -4086 ((-3 |t#1| "failed") |t#1|)) (-15 -3893 ((-3 |t#1| "failed") |t#1|)) (-15 -3942 ((-3 |t#1| "failed") |t#1|)) (-15 -1892 ((-3 |t#1| "failed") |t#1|)) (-15 -2532 ((-3 |t#1| "failed") |t#1|)) (-15 -1324 ((-3 |t#1| "failed") |t#1|)) (-15 -1725 ((-3 |t#1| "failed") |t#1|)) (-15 -2825 ((-3 |t#1| "failed") |t#1|)) (-15 -2588 ((-3 |t#1| "failed") |t#1|))))
+((-2672 ((|#4| |#4| (-641 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3860 ((|#4| |#4| (-641 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2313 ((|#4| (-1 |#4| (-949 |#1|)) |#4|) 31)))
+(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3860 (|#4| |#4| |#3|)) (-15 -3860 (|#4| |#4| (-641 |#3|))) (-15 -2672 (|#4| |#4| |#3|)) (-15 -2672 (|#4| |#4| (-641 |#3|))) (-15 -2313 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) (-1046) (-790) (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170))))) (-946 (-949 |#1|) |#2| |#3|)) (T -981))
+((-2313 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1046)) (-4 *2 (-946 (-949 *4) *5 *6)) (-4 *5 (-790)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *6 *2)))) (-2672 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) (-4 *2 (-946 (-949 *4) *5 *6)))) (-2672 (*1 *2 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))) (-3860 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) (-4 *2 (-946 (-949 *4) *5 *6)))) (-3860 (*1 *2 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)) (-15 -3832 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))))
+(-10 -7 (-15 -3860 (|#4| |#4| |#3|)) (-15 -3860 (|#4| |#4| (-641 |#3|))) (-15 -2672 (|#4| |#4| |#3|)) (-15 -2672 (|#4| |#4| (-641 |#3|))) (-15 -2313 (|#4| (-1 |#4| (-949 |#1|)) |#4|)))
+((-2641 ((|#2| |#3|) 35)) (-3733 (((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 86)) (-2339 (((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 106)))
+(((-982 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2339 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3733 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -2641 (|#2| |#3|))) (-349) (-1235 |#1|) (-1235 |#2|) (-721 |#2| |#3|)) (T -982))
+((-2641 (*1 *2 *3) (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-982 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-721 *2 *3)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-982 *4 *3 *5 *6)) (-4 *6 (-721 *3 *5)))) (-2339 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -4339 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-721 *4 *5)))))
+(-10 -7 (-15 -2339 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3733 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -2641 (|#2| |#3|)))
+((-2649 (((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))) 83)))
+(((-983 |#1| |#2|) (-10 -7 (-15 -2649 ((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))))) (-641 (-1170)) (-768)) (T -983))
+((-2649 (*1 *2 *2) (-12 (-5 *2 (-984 (-407 (-564)) (-861 *3) (-240 *4 (-768)) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-983 *3 *4)))))
+(-10 -7 (-15 -2649 ((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))))))
+((-3702 (((-112) $ $) NIL)) (-2419 (((-3 (-112) "failed") $) 71)) (-3223 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3409 (($ $ (-3 (-112) "failed")) 72)) (-2212 (($ (-641 |#4|) |#4|) 25)) (-1868 (((-1152) $) NIL)) (-2813 (($ $) 69)) (-3844 (((-1114) $) NIL)) (-2510 (((-112) $) 70)) (-2834 (($) 30)) (-1970 ((|#4| $) 74)) (-3038 (((-641 |#4|) $) 73)) (-3714 (((-859) $) 68)) (-1720 (((-112) $ $) NIL)))
+(((-984 |#1| |#2| |#3| |#4|) (-13 (-1094) (-611 (-859)) (-10 -8 (-15 -2834 ($)) (-15 -2212 ($ (-641 |#4|) |#4|)) (-15 -2419 ((-3 (-112) "failed") $)) (-15 -3409 ($ $ (-3 (-112) "failed"))) (-15 -2510 ((-112) $)) (-15 -3038 ((-641 |#4|) $)) (-15 -1970 (|#4| $)) (-15 -2813 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3223 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-847) (-790) (-946 |#1| |#3| |#2|)) (T -984))
+((-2834 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-2212 (*1 *1 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *1 (-984 *4 *5 *6 *3)))) (-2419 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-3409 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-2510 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-3038 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-641 *6)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-1970 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)))) (-2813 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-3223 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))))
+(-13 (-1094) (-611 (-859)) (-10 -8 (-15 -2834 ($)) (-15 -2212 ($ (-641 |#4|) |#4|)) (-15 -2419 ((-3 (-112) "failed") $)) (-15 -3409 ($ $ (-3 (-112) "failed"))) (-15 -2510 ((-112) $)) (-15 -3038 ((-641 |#4|) $)) (-15 -1970 (|#4| $)) (-15 -2813 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -3223 ($ $)) |%noBranch|) |%noBranch|)))
+((-1913 (((-112) |#5| |#5|) 43)) (-3892 (((-112) |#5| |#5|) 57)) (-3419 (((-112) |#5| (-641 |#5|)) 79) (((-112) |#5| |#5|) 66)) (-3424 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-3179 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) 68)) (-4321 (((-1264)) 33)) (-3822 (((-1264) (-1152) (-1152) (-1152)) 29)) (-1648 (((-641 |#5|) (-641 |#5|)) 98)) (-1301 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) 90)) (-1467 (((-641 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 120)) (-4005 (((-112) |#5| |#5|) 52)) (-2840 (((-3 (-112) "failed") |#5| |#5|) 76)) (-1299 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-1394 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-1733 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-1387 (((-3 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 115)) (-2104 (((-641 |#5|) (-641 |#5|)) 48)))
+(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3822 ((-1264) (-1152) (-1152) (-1152))) (-15 -4321 ((-1264))) (-15 -1913 ((-112) |#5| |#5|)) (-15 -2104 ((-641 |#5|) (-641 |#5|))) (-15 -4005 ((-112) |#5| |#5|)) (-15 -3892 ((-112) |#5| |#5|)) (-15 -3424 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1299 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1394 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1733 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3419 ((-112) |#5| |#5|)) (-15 -3419 ((-112) |#5| (-641 |#5|))) (-15 -1648 ((-641 |#5|) (-641 |#5|))) (-15 -3179 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) (-15 -1301 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-15 -1467 ((-641 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1387 ((-3 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -985))
+((-1387 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| -4035 (-641 *9)) (|:| -4011 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-985 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-1467 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -4035 (-641 *9)) (|:| -4011 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-985 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-1301 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -4011 *7)))) (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-3179 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -4011 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8 *3)))) (-3419 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2840 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-1733 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1394 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1299 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3424 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3892 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4005 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2104 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-1913 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4321 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-3822 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3822 ((-1264) (-1152) (-1152) (-1152))) (-15 -4321 ((-1264))) (-15 -1913 ((-112) |#5| |#5|)) (-15 -2104 ((-641 |#5|) (-641 |#5|))) (-15 -4005 ((-112) |#5| |#5|)) (-15 -3892 ((-112) |#5| |#5|)) (-15 -3424 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1299 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1394 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1733 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3419 ((-112) |#5| |#5|)) (-15 -3419 ((-112) |#5| (-641 |#5|))) (-15 -1648 ((-641 |#5|) (-641 |#5|))) (-15 -3179 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) (-15 -1301 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-15 -1467 ((-641 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1387 ((-3 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3832 (((-1170) $) 15)) (-3387 (((-1152) $) 16)) (-2538 (($ (-1170) (-1152)) 14)) (-3714 (((-859) $) 13)))
+(((-986) (-13 (-611 (-859)) (-10 -8 (-15 -2538 ($ (-1170) (-1152))) (-15 -3832 ((-1170) $)) (-15 -3387 ((-1152) $))))) (T -986))
+((-2538 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-986)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-986)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-986)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -2538 ($ (-1170) (-1152))) (-15 -3832 ((-1170) $)) (-15 -3387 ((-1152) $))))
+((-2313 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 (|#4| (-1 |#2| |#1|) |#3|))) (-556) (-556) (-989 |#1|) (-989 |#2|)) (T -987))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-989 *6)) (-5 *1 (-987 *5 *6 *4 *2)) (-4 *4 (-989 *5)))))
+(-10 -7 (-15 -2313 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) 66) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) 96)) (-2376 ((|#2| $) NIL) (((-1170) $) 61) (((-407 (-564)) $) NIL) (((-564) $) 93)) (-3613 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 115) (((-685 |#2|) (-685 $)) 28)) (-2939 (($) 99)) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 76) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 85)) (-1492 (($ $) 10)) (-3804 (((-3 $ "failed") $) 20)) (-2313 (($ (-1 |#2| |#2|) $) 22)) (-3304 (($) 16)) (-3782 (($ $) 55)) (-2203 (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3197 (($ $) 12)) (-2374 (((-889 (-564)) $) 71) (((-889 (-379)) $) 80) (((-536) $) 40) (((-379) $) 44) (((-225) $) 48)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 91) (($ |#2|) NIL) (($ (-1170)) 58)) (-3379 (((-768)) 31)) (-1746 (((-112) $ $) 51)))
+(((-988 |#1| |#2|) (-10 -8 (-15 -1746 ((-112) |#1| |#1|)) (-15 -3304 (|#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2374 ((-225) |#1|)) (-15 -2374 ((-379) |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -3714 (|#1| (-1170))) (-15 -2224 ((-3 (-1170) "failed") |#1|)) (-15 -2376 ((-1170) |#1|)) (-15 -2939 (|#1|)) (-15 -3782 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -4181 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -3613 ((-685 |#2|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| |#1|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|))) (-989 |#2|) (-556)) (T -988))
+((-3379 (*1 *2) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-988 *3 *4)) (-4 *3 (-989 *4)))))
+(-10 -8 (-15 -1746 ((-112) |#1| |#1|)) (-15 -3304 (|#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2374 ((-225) |#1|)) (-15 -2374 ((-379) |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -3714 (|#1| (-1170))) (-15 -2224 ((-3 (-1170) "failed") |#1|)) (-15 -2376 ((-1170) |#1|)) (-15 -2939 (|#1|)) (-15 -3782 (|#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -4181 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4181 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -3613 ((-685 |#2|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| |#1|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3494 ((|#1| $) 138 (|has| |#1| (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-1917 (((-418 (-1166 $)) (-1166 $)) 129 (|has| |#1| (-906)))) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 132 (|has| |#1| (-906)))) (-3907 (((-112) $ $) 60)) (-3191 (((-564) $) 119 (|has| |#1| (-817)))) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#1| "failed") $) 176) (((-3 (-1170) "failed") $) 127 (|has| |#1| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 110 (|has| |#1| (-1035 (-564)))) (((-3 (-564) "failed") $) 108 (|has| |#1| (-1035 (-564))))) (-2376 ((|#1| $) 177) (((-1170) $) 128 (|has| |#1| (-1035 (-1170)))) (((-407 (-564)) $) 111 (|has| |#1| (-1035 (-564)))) (((-564) $) 109 (|has| |#1| (-1035 (-564))))) (-1399 (($ $ $) 56)) (-3613 (((-685 (-564)) (-685 $)) 151 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 150 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 149) (((-685 |#1|) (-685 $)) 148)) (-4272 (((-3 $ "failed") $) 33)) (-2939 (($) 136 (|has| |#1| (-545)))) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-1926 (((-112) $) 72)) (-3137 (((-112) $) 121 (|has| |#1| (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 145 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 144 (|has| |#1| (-883 (-379))))) (-2340 (((-112) $) 31)) (-1492 (($ $) 140)) (-1655 ((|#1| $) 142)) (-3804 (((-3 $ "failed") $) 107 (|has| |#1| (-1145)))) (-2001 (((-112) $) 120 (|has| |#1| (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3428 (($ $ $) 117 (|has| |#1| (-847)))) (-3413 (($ $ $) 116 (|has| |#1| (-847)))) (-2313 (($ (-1 |#1| |#1|) $) 168)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71)) (-3304 (($) 106 (|has| |#1| (-1145)) CONST)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-3782 (($ $) 137 (|has| |#1| (-307)))) (-3034 ((|#1| $) 134 (|has| |#1| (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) 131 (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) 130 (|has| |#1| (-906)))) (-4139 (((-418 $) $) 75)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) 174 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 172 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 171 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 170 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 169 (|has| |#1| (-514 (-1170) |#1|)))) (-3966 (((-768) $) 59)) (-4382 (($ $ |#1|) 175 (|has| |#1| (-286 |#1| |#1|)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-2203 (($ $) 167 (|has| |#1| (-233))) (($ $ (-768)) 165 (|has| |#1| (-233))) (($ $ (-1170)) 163 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 162 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 161 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 160 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-3197 (($ $) 139)) (-1668 ((|#1| $) 141)) (-2374 (((-889 (-564)) $) 147 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 146 (|has| |#1| (-612 (-889 (-379))))) (((-536) $) 124 (|has| |#1| (-612 (-536)))) (((-379) $) 123 (|has| |#1| (-1019))) (((-225) $) 122 (|has| |#1| (-1019)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 133 (-4264 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 180) (($ (-1170)) 126 (|has| |#1| (-1035 (-1170))))) (-4363 (((-3 $ "failed") $) 125 (-4012 (|has| |#1| (-145)) (-4264 (|has| $ (-145)) (|has| |#1| (-906)))))) (-3379 (((-768)) 28 T CONST)) (-4296 ((|#1| $) 135 (|has| |#1| (-545)))) (-3979 (((-112) $ $) 40)) (-3920 (($ $) 118 (|has| |#1| (-817)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $) 166 (|has| |#1| (-233))) (($ $ (-768)) 164 (|has| |#1| (-233))) (($ $ (-1170)) 159 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 158 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 157 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 156 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1781 (((-112) $ $) 114 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 113 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 115 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 112 (|has| |#1| (-847)))) (-1841 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178)))
(((-989 |#1|) (-140) (-556)) (T -989))
-((-1793 (*1 *1 *2 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-1517 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-1957 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-3762 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-4328 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-2002 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-2542 (*1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-545)) (-4 *2 (-556)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))))
-(-13 (-363) (-38 |t#1|) (-1035 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-881 |t#1|) (-400 |t#1|) (-10 -8 (-15 -1793 ($ |t#1| |t#1|)) (-15 -1507 (|t#1| $)) (-15 -1517 (|t#1| $)) (-15 -1957 ($ $)) (-15 -3762 ($ $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-1035 (-564))) (PROGN (-6 (-1035 (-564))) (-6 (-1035 (-407 (-564))))) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-817)) (-6 (-817)) |%noBranch|) (IF (|has| |t#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1035 (-1170))) (-6 (-1035 (-1170))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -4328 (|t#1| $)) (-15 -2002 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2542 ($)) (-15 -2991 (|t#1| $)) (-15 -2677 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 #1=(-1170)) |has| |#1| (-1035 (-1170))) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) |has| |#1| (-1019)) ((-612 (-379)) |has| |#1| (-1019)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-788) |has| |#1| (-817)) ((-789) |has| |#1| (-817)) ((-791) |has| |#1| (-817)) ((-792) |has| |#1| (-817)) ((-817) |has| |#1| (-817)) ((-845) |has| |#1| (-817)) ((-847) -4002 (|has| |#1| (-847)) (|has| |#1| (-817))) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-906) |has| |#1| (-906)) ((-917) . T) ((-1019) |has| |#1| (-1019)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-564))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #1#) |has| |#1| (-1035 (-1170))) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1209) . T) ((-1213) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-3134 (($ (-1136 |#1| |#2|)) 11)) (-1605 (((-1136 |#1| |#2|) $) 12)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-4382 ((|#2| $ (-240 |#1| |#2|)) 16)) (-1765 (((-859) $) NIL)) (-4317 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL)))
-(((-990 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3134 ($ (-1136 |#1| |#2|))) (-15 -1605 ((-1136 |#1| |#2|) $)) (-15 -4382 (|#2| $ (-240 |#1| |#2|))))) (-918) (-363)) (T -990))
-((-3134 (*1 *1 *2) (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)) (-5 *1 (-990 *3 *4)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-990 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-918)) (-4 *2 (-363)) (-5 *1 (-990 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -3134 ($ (-1136 |#1| |#2|))) (-15 -1605 ((-1136 |#1| |#2|) $)) (-15 -4382 (|#2| $ (-240 |#1| |#2|)))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3678 (((-1129) $) 9)) (-1765 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-991) (-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $))))) (T -991))
-((-3678 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-991)))))
-(-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $))))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) 8)) (-3760 (($) 7 T CONST)) (-2798 (($ $) 46)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-2564 (((-768) $) 45)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3466 ((|#1| $) 44)) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-1623 ((|#1| |#1| $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-2223 ((|#1| $) 47)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) 42)) (-3353 ((|#1| $) 43)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-1841 (*1 *1 *2 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-1492 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-3197 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-3782 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-2939 (*1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-545)) (-4 *2 (-556)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) (-3034 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))))
+(-13 (-363) (-38 |t#1|) (-1035 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-881 |t#1|) (-400 |t#1|) (-10 -8 (-15 -1841 ($ |t#1| |t#1|)) (-15 -1655 (|t#1| $)) (-15 -1668 (|t#1| $)) (-15 -1492 ($ $)) (-15 -3197 ($ $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-1035 (-564))) (PROGN (-6 (-1035 (-564))) (-6 (-1035 (-407 (-564))))) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-817)) (-6 (-817)) |%noBranch|) (IF (|has| |t#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1035 (-1170))) (-6 (-1035 (-1170))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -3494 (|t#1| $)) (-15 -3782 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2939 ($)) (-15 -4296 (|t#1| $)) (-15 -3034 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 #1=(-1170)) |has| |#1| (-1035 (-1170))) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) |has| |#1| (-1019)) ((-612 (-379)) |has| |#1| (-1019)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-788) |has| |#1| (-817)) ((-789) |has| |#1| (-817)) ((-791) |has| |#1| (-817)) ((-792) |has| |#1| (-817)) ((-817) |has| |#1| (-817)) ((-845) |has| |#1| (-817)) ((-847) -4012 (|has| |#1| (-847)) (|has| |#1| (-817))) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-906) |has| |#1| (-906)) ((-917) . T) ((-1019) |has| |#1| (-1019)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-564))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #1#) |has| |#1| (-1035 (-1170))) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1209) . T) ((-1213) . T))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-3232 (($ (-1136 |#1| |#2|)) 11)) (-3469 (((-1136 |#1| |#2|) $) 12)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4382 ((|#2| $ (-240 |#1| |#2|)) 16)) (-3714 (((-859) $) NIL)) (-4312 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL)))
+(((-990 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3232 ($ (-1136 |#1| |#2|))) (-15 -3469 ((-1136 |#1| |#2|) $)) (-15 -4382 (|#2| $ (-240 |#1| |#2|))))) (-918) (-363)) (T -990))
+((-3232 (*1 *1 *2) (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)) (-5 *1 (-990 *3 *4)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-990 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-918)) (-4 *2 (-363)) (-5 *1 (-990 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -3232 ($ (-1136 |#1| |#2|))) (-15 -3469 ((-1136 |#1| |#2|) $)) (-15 -4382 (|#2| $ (-240 |#1| |#2|)))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2726 (((-1129) $) 9)) (-3714 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-991) (-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $))))) (T -991))
+((-2726 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-991)))))
+(-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $))))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) 8)) (-3180 (($) 7 T CONST)) (-1851 (($ $) 46)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-3451 (((-768) $) 45)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2287 ((|#1| $) 44)) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-4360 ((|#1| |#1| $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4151 ((|#1| $) 47)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) 42)) (-3565 ((|#1| $) 43)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-992 |#1|) (-140) (-1209)) (T -992))
-((-1623 (*1 *2 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-2798 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4411) (-15 -1623 (|t#1| |t#1| $)) (-15 -2223 (|t#1| $)) (-15 -2798 ($ $)) (-15 -2564 ((-768) $)) (-15 -3466 (|t#1| $)) (-15 -3353 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3976 (((-112) $) 43)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2064 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 44)) (-1978 (((-3 (-407 (-564)) "failed") $) 78)) (-2709 (((-112) $) 72)) (-3424 (((-407 (-564)) $) 76)) (-2419 (((-112) $) 42)) (-1779 ((|#2| $) 22)) (-2082 (($ (-1 |#2| |#2|) $) 19)) (-4272 (($ $) 58)) (-3226 (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-2127 (((-536) $) 67)) (-2502 (($ $) 17)) (-1765 (((-859) $) 53) (($ (-564)) 39) (($ |#2|) 37) (($ (-407 (-564))) NIL)) (-1965 (((-768)) 10)) (-2016 ((|#2| $) 71)) (-1686 (((-112) $ $) 26)) (-1705 (((-112) $ $) 69)) (-1783 (($ $) 30) (($ $ $) 29)) (-1771 (($ $ $) 27)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
-(((-993 |#1| |#2|) (-10 -8 (-15 -1765 (|#1| (-407 (-564)))) (-15 -1705 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -4272 (|#1| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 -2419 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -3976 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|))) (-994 |#2|) (-172)) (T -993))
-((-1965 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4)))))
-(-10 -8 (-15 -1765 (|#1| (-407 (-564)))) (-15 -1705 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -4272 (|#1| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2082 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 -2419 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -3976 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-2013 (((-3 (-564) "failed") $) 118 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 116 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 113)) (-2064 (((-564) $) 117 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 115 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 114)) (-2620 (((-685 (-564)) (-685 $)) 88 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 86) (((-685 |#1|) (-685 $)) 85)) (-1926 (((-3 $ "failed") $) 33)) (-4032 ((|#1| $) 78)) (-1978 (((-3 (-407 (-564)) "failed") $) 74 (|has| |#1| (-545)))) (-2709 (((-112) $) 76 (|has| |#1| (-545)))) (-3424 (((-407 (-564)) $) 75 (|has| |#1| (-545)))) (-2442 (($ |#1| |#1| |#1| |#1|) 79)) (-2419 (((-112) $) 31)) (-1779 ((|#1| $) 80)) (-3571 (($ $ $) 67 (|has| |#1| (-847)))) (-1547 (($ $ $) 66 (|has| |#1| (-847)))) (-2082 (($ (-1 |#1| |#1|) $) 89)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71 (|has| |#1| (-363)))) (-3957 ((|#1| $) 81)) (-3824 ((|#1| $) 82)) (-2701 ((|#1| $) 83)) (-3802 (((-1114) $) 10)) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) 95 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 93 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 92 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 91 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 90 (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) 96 (|has| |#1| (-286 |#1| |#1|)))) (-3226 (($ $) 112 (|has| |#1| (-233))) (($ $ (-768)) 110 (|has| |#1| (-233))) (($ $ (-1170)) 108 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 107 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 106 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 105 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-2127 (((-536) $) 72 (|has| |#1| (-612 (-536))))) (-2502 (($ $) 84)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 61 (-4002 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-2864 (((-3 $ "failed") $) 73 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-2016 ((|#1| $) 77 (|has| |#1| (-1055)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $) 111 (|has| |#1| (-233))) (($ $ (-768)) 109 (|has| |#1| (-233))) (($ $ (-1170)) 104 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 103 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 102 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 101 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1738 (((-112) $ $) 64 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 63 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 65 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 62 (|has| |#1| (-847)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-407 (-564))) 69 (|has| |#1| (-363))) (($ (-407 (-564)) $) 68 (|has| |#1| (-363)))))
+((-4360 (*1 *2 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-1851 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4412) (-15 -4360 (|t#1| |t#1| $)) (-15 -4151 (|t#1| $)) (-15 -1851 ($ $)) (-15 -3451 ((-768) $)) (-15 -2287 (|t#1| $)) (-15 -3565 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-1556 (((-112) $) 43)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2376 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 44)) (-3502 (((-3 (-407 (-564)) "failed") $) 78)) (-3309 (((-112) $) 72)) (-3074 (((-407 (-564)) $) 76)) (-2340 (((-112) $) 42)) (-2217 ((|#2| $) 22)) (-2313 (($ (-1 |#2| |#2|) $) 19)) (-1295 (($ $) 58)) (-2203 (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-2374 (((-536) $) 67)) (-1953 (($ $) 17)) (-3714 (((-859) $) 53) (($ (-564)) 39) (($ |#2|) 37) (($ (-407 (-564))) NIL)) (-3379 (((-768)) 10)) (-3920 ((|#2| $) 71)) (-1720 (((-112) $ $) 26)) (-1746 (((-112) $ $) 69)) (-1828 (($ $) 30) (($ $ $) 29)) (-1814 (($ $ $) 27)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL)))
+(((-993 |#1| |#2|) (-10 -8 (-15 -3714 (|#1| (-407 (-564)))) (-15 -1746 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -1295 (|#1| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3920 (|#2| |#1|)) (-15 -2217 (|#2| |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 -2340 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -1556 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|))) (-994 |#2|) (-172)) (T -993))
+((-3379 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4)))))
+(-10 -8 (-15 -3714 (|#1| (-407 (-564)))) (-15 -1746 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -1295 (|#1| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3920 (|#2| |#1|)) (-15 -2217 (|#2| |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -2313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 -2340 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -1556 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-2224 (((-3 (-564) "failed") $) 118 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 116 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 113)) (-2376 (((-564) $) 117 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 115 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 114)) (-3613 (((-685 (-564)) (-685 $)) 88 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 86) (((-685 |#1|) (-685 $)) 85)) (-4272 (((-3 $ "failed") $) 33)) (-4164 ((|#1| $) 78)) (-3502 (((-3 (-407 (-564)) "failed") $) 74 (|has| |#1| (-545)))) (-3309 (((-112) $) 76 (|has| |#1| (-545)))) (-3074 (((-407 (-564)) $) 75 (|has| |#1| (-545)))) (-2604 (($ |#1| |#1| |#1| |#1|) 79)) (-2340 (((-112) $) 31)) (-2217 ((|#1| $) 80)) (-3428 (($ $ $) 67 (|has| |#1| (-847)))) (-3413 (($ $ $) 66 (|has| |#1| (-847)))) (-2313 (($ (-1 |#1| |#1|) $) 89)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71 (|has| |#1| (-363)))) (-1375 ((|#1| $) 81)) (-2653 ((|#1| $) 82)) (-3234 ((|#1| $) 83)) (-3844 (((-1114) $) 10)) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) 95 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 93 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 92 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 91 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 90 (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) 96 (|has| |#1| (-286 |#1| |#1|)))) (-2203 (($ $) 112 (|has| |#1| (-233))) (($ $ (-768)) 110 (|has| |#1| (-233))) (($ $ (-1170)) 108 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 107 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 106 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 105 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-2374 (((-536) $) 72 (|has| |#1| (-612 (-536))))) (-1953 (($ $) 84)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 61 (-4012 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4363 (((-3 $ "failed") $) 73 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-3920 ((|#1| $) 77 (|has| |#1| (-1055)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $) 111 (|has| |#1| (-233))) (($ $ (-768)) 109 (|has| |#1| (-233))) (($ $ (-1170)) 104 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 103 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 102 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 101 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1781 (((-112) $ $) 64 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 63 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 65 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 62 (|has| |#1| (-847)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-407 (-564))) 69 (|has| |#1| (-363))) (($ (-407 (-564)) $) 68 (|has| |#1| (-363)))))
(((-994 |#1|) (-140) (-172)) (T -994))
-((-2502 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2442 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-1978 (*1 *2 *1) (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))))
-(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -2502 ($ $)) (-15 -2701 (|t#1| $)) (-15 -3824 (|t#1| $)) (-15 -3957 (|t#1| $)) (-15 -1779 (|t#1| $)) (-15 -2442 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4032 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -2016 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2709 ((-112) $)) (-15 -3424 ((-407 (-564)) $)) (-15 -1978 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4002 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 #0#) |has| |#1| (-363)) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-363)) ((-714 |#1|) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-363)) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2082 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 (|#3| (-1 |#4| |#2|) |#1|))) (-994 |#2|) (-172) (-994 |#4|) (-172)) (T -995))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-994 *6)) (-5 *1 (-995 *4 *5 *2 *6)) (-4 *4 (-994 *5)))))
-(-10 -7 (-15 -2082 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-4032 ((|#1| $) 12)) (-1978 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-2709 (((-112) $) NIL (|has| |#1| (-545)))) (-3424 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2442 (($ |#1| |#1| |#1| |#1|) 16)) (-2419 (((-112) $) NIL)) (-1779 ((|#1| $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-3957 ((|#1| $) 15)) (-3824 ((|#1| $) 14)) (-2701 ((|#1| $) 13)) (-3802 (((-1114) $) NIL)) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-3226 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2502 (($ $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-2016 ((|#1| $) NIL (|has| |#1| (-1055)))) (-4317 (($) 8 T CONST)) (-4327 (($) 10 T CONST)) (-3190 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-363)))))
+((-1953 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2653 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2604 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-3502 (*1 *2 *1) (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))))
+(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -1953 ($ $)) (-15 -3234 (|t#1| $)) (-15 -2653 (|t#1| $)) (-15 -1375 (|t#1| $)) (-15 -2217 (|t#1| $)) (-15 -2604 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4164 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -3920 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3309 ((-112) $)) (-15 -3074 ((-407 (-564)) $)) (-15 -3502 ((-3 (-407 (-564)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4012 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 #0#) |has| |#1| (-363)) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-363)) ((-714 |#1|) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-363)) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
+((-2313 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 (|#3| (-1 |#4| |#2|) |#1|))) (-994 |#2|) (-172) (-994 |#4|) (-172)) (T -995))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-994 *6)) (-5 *1 (-995 *4 *5 *2 *6)) (-4 *4 (-994 *5)))))
+(-10 -7 (-15 -2313 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-4164 ((|#1| $) 12)) (-3502 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-3309 (((-112) $) NIL (|has| |#1| (-545)))) (-3074 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2604 (($ |#1| |#1| |#1| |#1|) 16)) (-2340 (((-112) $) NIL)) (-2217 ((|#1| $) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-1375 ((|#1| $) 15)) (-2653 ((|#1| $) 14)) (-3234 ((|#1| $) 13)) (-3844 (((-1114) $) NIL)) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2203 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1953 (($ $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-3920 ((|#1| $) NIL (|has| |#1| (-1055)))) (-4312 (($) 8 T CONST)) (-4323 (($) 10 T CONST)) (-2238 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-363)))))
(((-996 |#1|) (-994 |#1|) (-172)) (T -996))
NIL
(-994 |#1|)
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3263 (((-112) $ (-768)) NIL)) (-3760 (($) NIL T CONST)) (-2798 (($ $) 23)) (-2923 (($ (-641 |#1|)) 33)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-2564 (((-768) $) 26)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1833 ((|#1| $) 28)) (-2098 (($ |#1| $) 17)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3466 ((|#1| $) 27)) (-3389 ((|#1| $) 22)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-1623 ((|#1| |#1| $) 16)) (-2742 (((-112) $) 18)) (-3845 (($) NIL)) (-2223 ((|#1| $) 21)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) NIL)) (-3353 ((|#1| $) 30)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-997 |#1|) (-13 (-992 |#1|) (-10 -8 (-15 -2923 ($ (-641 |#1|))))) (-1094)) (T -997))
-((-2923 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-997 *3)))))
-(-13 (-992 |#1|) (-10 -8 (-15 -2923 ($ (-641 |#1|)))))
-((-4019 (($ $) 12)) (-1935 (($ $ (-564)) 13)))
-(((-998 |#1|) (-10 -8 (-15 -4019 (|#1| |#1|)) (-15 -1935 (|#1| |#1| (-564)))) (-999)) (T -998))
-NIL
-(-10 -8 (-15 -4019 (|#1| |#1|)) (-15 -1935 (|#1| |#1| (-564))))
-((-4019 (($ $) 6)) (-1935 (($ $ (-564)) 7)) (** (($ $ (-407 (-564))) 8)))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2141 (((-112) $ (-768)) NIL)) (-3180 (($) NIL T CONST)) (-1851 (($ $) 23)) (-3722 (($ (-641 |#1|)) 33)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-3451 (((-768) $) 26)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2775 ((|#1| $) 28)) (-2373 (($ |#1| $) 17)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2287 ((|#1| $) 27)) (-3950 ((|#1| $) 22)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-4360 ((|#1| |#1| $) 16)) (-2510 (((-112) $) 18)) (-2834 (($) NIL)) (-4151 ((|#1| $) 21)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) NIL)) (-3565 ((|#1| $) 30)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-997 |#1|) (-13 (-992 |#1|) (-10 -8 (-15 -3722 ($ (-641 |#1|))))) (-1094)) (T -997))
+((-3722 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-997 *3)))))
+(-13 (-992 |#1|) (-10 -8 (-15 -3722 ($ (-641 |#1|)))))
+((-4152 (($ $) 12)) (-4342 (($ $ (-564)) 13)))
+(((-998 |#1|) (-10 -8 (-15 -4152 (|#1| |#1|)) (-15 -4342 (|#1| |#1| (-564)))) (-999)) (T -998))
+NIL
+(-10 -8 (-15 -4152 (|#1| |#1|)) (-15 -4342 (|#1| |#1| (-564))))
+((-4152 (($ $) 6)) (-4342 (($ $ (-564)) 7)) (** (($ $ (-407 (-564))) 8)))
(((-999) (-140)) (T -999))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-407 (-564))))) (-1935 (*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-564)))) (-4019 (*1 *1 *1) (-4 *1 (-999))))
-(-13 (-10 -8 (-15 -4019 ($ $)) (-15 -1935 ($ $ (-564))) (-15 ** ($ $ (-407 (-564))))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-2764 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1840 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4035 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3124 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3715 (((-407 |#2|) $) NIL)) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3981 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3385 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3042 (((-768)) NIL (|has| (-407 |#2|) (-368)))) (-3709 (((-112)) NIL)) (-2899 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-2910 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 81) (($ (-1259 |#2|) |#2|) NIL)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-1387 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1663 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-3592 (((-1259 $) (-1259 $)) NIL)) (-4367 (($ |#3|) 75) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-1926 (((-3 $ "failed") $) NIL)) (-2078 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-3676 (((-112) |#1| |#1|) NIL)) (-4224 (((-918)) NIL)) (-2542 (($) NIL (|has| (-407 |#2|) (-368)))) (-4226 (((-112)) NIL)) (-1461 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-1366 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-2190 (($ $) NIL)) (-1990 (($) NIL (|has| (-407 |#2|) (-349)))) (-3242 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-2184 (($ $ (-768)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-3241 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2261 (((-918) $) NIL (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) NIL (|has| (-407 |#2|) (-349)))) (-2419 (((-112) $) NIL)) (-2103 (((-768)) NIL)) (-2585 (((-1259 $) (-1259 $)) NIL)) (-1779 (((-407 |#2|) $) NIL)) (-3308 (((-641 (-949 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-3374 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2513 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-2209 (((-918) $) NIL (|has| (-407 |#2|) (-368)))) (-4358 ((|#3| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4202 (((-1152) $) NIL)) (-1438 (((-685 (-407 |#2|))) 57)) (-2234 (((-685 (-407 |#2|))) 56)) (-4272 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4279 (($ (-1259 |#2|) |#2|) 82)) (-2909 (((-685 (-407 |#2|))) 55)) (-4099 (((-685 (-407 |#2|))) 54)) (-2030 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1734 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 88)) (-2033 (((-1259 $)) 51)) (-1791 (((-1259 $)) 50)) (-2025 (((-112) $) NIL)) (-4030 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1611 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-1403 (($ (-918)) NIL (|has| (-407 |#2|) (-368)))) (-3294 (((-3 |#2| "failed")) 70)) (-3802 (((-1114) $) NIL)) (-1834 (((-768)) NIL)) (-1502 (($) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2527 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-4006 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1343 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3712 (((-768) $) NIL (|has| (-407 |#2|) (-363)))) (-4382 ((|#1| $ |#1| |#1|) NIL)) (-1664 (((-3 |#2| "failed")) 68)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1938 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 47)) (-1504 (((-768) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-3226 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4002 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4002 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2836 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-1916 ((|#3|) 58)) (-3726 (($) NIL (|has| (-407 |#2|) (-349)))) (-3072 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 83) (((-685 (-407 |#2|)) (-1259 $)) NIL)) (-2127 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-3487 (((-1259 $) (-1259 $)) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-4002 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2864 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-3216 ((|#3| $) NIL)) (-1965 (((-768)) NIL T CONST)) (-1577 (((-112)) 65)) (-1712 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3941 (((-1259 $)) 143)) (-1582 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3022 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2334 (((-112)) NIL)) (-4317 (($) 109 T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4002 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4002 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363)))))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-407 (-564))))) (-4342 (*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-564)))) (-4152 (*1 *1 *1) (-4 *1 (-999))))
+(-13 (-10 -8 (-15 -4152 ($ $)) (-15 -4342 ($ $ (-564))) (-15 ** ($ $ (-407 (-564))))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2742 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1582 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3897 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3150 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3767 (((-407 |#2|) $) NIL)) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1592 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3907 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2018 (((-768)) NIL (|has| (-407 |#2|) (-368)))) (-3932 (((-112)) NIL)) (-3455 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-3566 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 81) (($ (-1259 |#2|) |#2|) NIL)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-1399 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3439 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-4051 (((-1259 $) (-1259 $)) NIL)) (-1728 (($ |#3|) 75) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-4272 (((-3 $ "failed") $) NIL)) (-3314 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-3612 (((-112) |#1| |#1|) NIL)) (-1595 (((-918)) NIL)) (-2939 (($) NIL (|has| (-407 |#2|) (-368)))) (-2088 (((-112)) NIL)) (-2219 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-1371 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-2015 (($ $) NIL)) (-3648 (($) NIL (|has| (-407 |#2|) (-349)))) (-1937 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-1957 (($ $ (-768)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-1926 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1454 (((-918) $) NIL (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) NIL (|has| (-407 |#2|) (-349)))) (-2340 (((-112) $) NIL)) (-2427 (((-768)) NIL)) (-1459 (((-1259 $) (-1259 $)) NIL)) (-2217 (((-407 |#2|) $) NIL)) (-1293 (((-641 (-949 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-3804 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2041 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-4031 (((-918) $) NIL (|has| (-407 |#2|) (-368)))) (-1714 ((|#3| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1868 (((-1152) $) NIL)) (-1834 (((-685 (-407 |#2|))) 57)) (-4255 (((-685 (-407 |#2|))) 56)) (-1295 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4392 (($ (-1259 |#2|) |#2|) 82)) (-3556 (((-685 (-407 |#2|))) 55)) (-3247 (((-685 (-407 |#2|))) 54)) (-2917 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-2991 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 88)) (-2944 (((-1259 $)) 51)) (-2339 (((-1259 $)) 50)) (-2875 (((-112) $) NIL)) (-3853 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3304 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-3338 (($ (-918)) NIL (|has| (-407 |#2|) (-368)))) (-4278 (((-3 |#2| "failed")) 70)) (-3844 (((-1114) $) NIL)) (-1523 (((-768)) NIL)) (-1729 (($) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2727 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-4139 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1347 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3966 (((-768) $) NIL (|has| (-407 |#2|) (-363)))) (-4382 ((|#1| $ |#1| |#1|) NIL)) (-3449 (((-3 |#2| "failed")) 68)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4378 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 47)) (-2671 (((-768) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-2203 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4012 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4012 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2227 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-4180 ((|#3|) 58)) (-2927 (($) NIL (|has| (-407 |#2|) (-349)))) (-3867 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 83) (((-685 (-407 |#2|)) (-1259 $)) NIL)) (-2374 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-2499 (((-1259 $) (-1259 $)) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-4012 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4363 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-1650 ((|#3| $) NIL)) (-3379 (((-768)) NIL T CONST)) (-3926 (((-112)) 65)) (-2835 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-4339 (((-1259 $)) 143)) (-3979 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3337 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3960 (((-112)) NIL)) (-4312 (($) 109 T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4012 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4012 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363)))))
(((-1000 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-407 |#2|) (-768)) (T -1000))
NIL
(-342 |#1| |#2| |#3|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-2838 (((-641 (-564)) $) 73)) (-3333 (($ (-641 (-564))) 81)) (-4328 (((-564) $) 48 (|has| (-564) (-307)))) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL (|has| (-564) (-817)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) 60) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 57 (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) 60 (|has| (-564) (-1035 (-564))))) (-2064 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1387 (($ $ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2542 (($) NIL (|has| (-564) (-545)))) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1983 (((-641 (-564)) $) 79)) (-1751 (((-112) $) NIL (|has| (-564) (-817)))) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-1507 (((-564) $) 45)) (-3374 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2506 (((-112) $) NIL (|has| (-564) (-817)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| (-564) (-847)))) (-2082 (($ (-1 (-564) (-564)) $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL)) (-1611 (($) NIL (|has| (-564) (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2002 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) 50)) (-3153 (((-1150 (-564)) $) 78)) (-2670 (($ (-641 (-564)) (-641 (-564))) 82)) (-2677 (((-564) $) 64 (|has| (-564) (-545)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4006 (((-418 $) $) NIL)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2407 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3712 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $) 15 (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3762 (($ $) NIL)) (-1517 (((-564) $) 47)) (-2147 (((-641 (-564)) $) 80)) (-2127 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-1765 (((-859) $) 106) (($ (-564)) 51) (($ $) NIL) (($ (-407 (-564))) 27) (($ (-564)) 51) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) 25)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-1965 (((-768)) 13 T CONST)) (-2991 (((-564) $) 62 (|has| (-564) (-545)))) (-1582 (((-112) $ $) NIL)) (-2016 (($ $) NIL (|has| (-564) (-817)))) (-4317 (($) 14 T CONST)) (-4327 (($) 17 T CONST)) (-3190 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1738 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1686 (((-112) $ $) 21)) (-1728 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1705 (((-112) $ $) 40 (|has| (-564) (-847)))) (-1793 (($ $ $) 36) (($ (-564) (-564)) 38)) (-1783 (($ $) 23) (($ $ $) 30)) (-1771 (($ $ $) 28)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 32) (($ $ $) 34) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) 32) (($ $ (-564)) NIL)))
-(((-1001 |#1|) (-13 (-989 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -2002 ((-407 (-564)) $)) (-15 -2838 ((-641 (-564)) $)) (-15 -3153 ((-1150 (-564)) $)) (-15 -1983 ((-641 (-564)) $)) (-15 -2147 ((-641 (-564)) $)) (-15 -3333 ($ (-641 (-564)))) (-15 -2670 ($ (-641 (-564)) (-641 (-564)))))) (-564)) (T -1001))
-((-2002 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2670 (*1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
-(-13 (-989 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -2002 ((-407 (-564)) $)) (-15 -2838 ((-641 (-564)) $)) (-15 -3153 ((-1150 (-564)) $)) (-15 -1983 ((-641 (-564)) $)) (-15 -2147 ((-641 (-564)) $)) (-15 -3333 ($ (-641 (-564)))) (-15 -2670 ($ (-641 (-564)) (-641 (-564))))))
-((-3516 (((-52) (-407 (-564)) (-564)) 9)))
-(((-1002) (-10 -7 (-15 -3516 ((-52) (-407 (-564)) (-564))))) (T -1002))
-((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) (-5 *1 (-1002)))))
-(-10 -7 (-15 -3516 ((-52) (-407 (-564)) (-564))))
-((-3042 (((-564)) 23)) (-1918 (((-564)) 28)) (-1730 (((-1264) (-564)) 26)) (-1878 (((-564) (-564)) 29) (((-564)) 22)))
-(((-1003) (-10 -7 (-15 -1878 ((-564))) (-15 -3042 ((-564))) (-15 -1878 ((-564) (-564))) (-15 -1730 ((-1264) (-564))) (-15 -1918 ((-564))))) (T -1003))
-((-1918 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1003)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-3042 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-1878 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))))
-(-10 -7 (-15 -1878 ((-564))) (-15 -3042 ((-564))) (-15 -1878 ((-564) (-564))) (-15 -1730 ((-1264) (-564))) (-15 -1918 ((-564))))
-((-2708 (((-418 |#1|) |#1|) 43)) (-4006 (((-418 |#1|) |#1|) 41)))
-(((-1004 |#1|) (-10 -7 (-15 -4006 ((-418 |#1|) |#1|)) (-15 -2708 ((-418 |#1|) |#1|))) (-1235 (-407 (-564)))) (T -1004))
-((-2708 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-4006 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1235 (-407 (-564)))))))
-(-10 -7 (-15 -4006 ((-418 |#1|) |#1|)) (-15 -2708 ((-418 |#1|) |#1|)))
-((-1978 (((-3 (-407 (-564)) "failed") |#1|) 15)) (-2709 (((-112) |#1|) 14)) (-3424 (((-407 (-564)) |#1|) 10)))
-(((-1005 |#1|) (-10 -7 (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|))) (-1035 (-407 (-564)))) (T -1005))
-((-1978 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1005 *3)) (-4 *3 (-1035 (-407 (-564)))))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2)))))
-(-10 -7 (-15 -3424 ((-407 (-564)) |#1|)) (-15 -2709 ((-112) |#1|)) (-15 -1978 ((-3 (-407 (-564)) "failed") |#1|)))
-((-1881 ((|#2| $ "value" |#2|) 12)) (-4382 ((|#2| $ "value") 10)) (-1740 (((-112) $ $) 18)))
-(((-1006 |#1| |#2|) (-10 -8 (-15 -1881 (|#2| |#1| "value" |#2|)) (-15 -1740 ((-112) |#1| |#1|)) (-15 -4382 (|#2| |#1| "value"))) (-1007 |#2|) (-1209)) (T -1006))
-NIL
-(-10 -8 (-15 -1881 (|#2| |#1| "value" |#2|)) (-15 -1740 ((-112) |#1| |#1|)) (-15 -4382 (|#2| |#1| "value")))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1451 ((|#1| $) 48)) (-3263 (((-112) $ (-768)) 8)) (-3768 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-3760 (($) 7 T CONST)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 50)) (-2272 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-3848 (((-641 |#1|) $) 45)) (-2200 (((-112) $) 49)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ "value") 47)) (-3837 (((-564) $ $) 44)) (-1867 (((-112) $) 46)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) 51)) (-1740 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2251 (((-641 (-564)) $) 73)) (-3386 (($ (-641 (-564))) 81)) (-3494 (((-564) $) 48 (|has| (-564) (-307)))) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL (|has| (-564) (-817)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) 60) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 57 (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) 60 (|has| (-564) (-1035 (-564))))) (-2376 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1399 (($ $ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2939 (($) NIL (|has| (-564) (-545)))) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3557 (((-641 (-564)) $) 79)) (-3137 (((-112) $) NIL (|has| (-564) (-817)))) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL)) (-1655 (((-564) $) 45)) (-3804 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2001 (((-112) $) NIL (|has| (-564) (-817)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| (-564) (-847)))) (-2313 (($ (-1 (-564) (-564)) $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL)) (-3304 (($) NIL (|has| (-564) (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3782 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) 50)) (-2292 (((-1150 (-564)) $) 78)) (-2972 (($ (-641 (-564)) (-641 (-564))) 82)) (-3034 (((-564) $) 64 (|has| (-564) (-545)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4139 (((-418 $) $) NIL)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2582 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-3966 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $) 15 (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-3197 (($ $) NIL)) (-1668 (((-564) $) 47)) (-1590 (((-641 (-564)) $) 80)) (-2374 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-3714 (((-859) $) 106) (($ (-564)) 51) (($ $) NIL) (($ (-407 (-564))) 27) (($ (-564)) 51) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) 25)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-3379 (((-768)) 13 T CONST)) (-4296 (((-564) $) 62 (|has| (-564) (-545)))) (-3979 (((-112) $ $) NIL)) (-3920 (($ $) NIL (|has| (-564) (-817)))) (-4312 (($) 14 T CONST)) (-4323 (($) 17 T CONST)) (-2238 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1781 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1720 (((-112) $ $) 21)) (-1769 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1746 (((-112) $ $) 40 (|has| (-564) (-847)))) (-1841 (($ $ $) 36) (($ (-564) (-564)) 38)) (-1828 (($ $) 23) (($ $ $) 30)) (-1814 (($ $ $) 28)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 32) (($ $ $) 34) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) 32) (($ $ (-564)) NIL)))
+(((-1001 |#1|) (-13 (-989 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -3782 ((-407 (-564)) $)) (-15 -2251 ((-641 (-564)) $)) (-15 -2292 ((-1150 (-564)) $)) (-15 -3557 ((-641 (-564)) $)) (-15 -1590 ((-641 (-564)) $)) (-15 -3386 ($ (-641 (-564)))) (-15 -2972 ($ (-641 (-564)) (-641 (-564)))))) (-564)) (T -1001))
+((-3782 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3386 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2972 (*1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
+(-13 (-989 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -3782 ((-407 (-564)) $)) (-15 -2251 ((-641 (-564)) $)) (-15 -2292 ((-1150 (-564)) $)) (-15 -3557 ((-641 (-564)) $)) (-15 -1590 ((-641 (-564)) $)) (-15 -3386 ($ (-641 (-564)))) (-15 -2972 ($ (-641 (-564)) (-641 (-564))))))
+((-2778 (((-52) (-407 (-564)) (-564)) 9)))
+(((-1002) (-10 -7 (-15 -2778 ((-52) (-407 (-564)) (-564))))) (T -1002))
+((-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) (-5 *1 (-1002)))))
+(-10 -7 (-15 -2778 ((-52) (-407 (-564)) (-564))))
+((-2018 (((-564)) 23)) (-4202 (((-564)) 28)) (-2956 (((-1264) (-564)) 26)) (-1987 (((-564) (-564)) 29) (((-564)) 22)))
+(((-1003) (-10 -7 (-15 -1987 ((-564))) (-15 -2018 ((-564))) (-15 -1987 ((-564) (-564))) (-15 -2956 ((-1264) (-564))) (-15 -4202 ((-564))))) (T -1003))
+((-4202 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1003)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-2018 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-1987 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))))
+(-10 -7 (-15 -1987 ((-564))) (-15 -2018 ((-564))) (-15 -1987 ((-564) (-564))) (-15 -2956 ((-1264) (-564))) (-15 -4202 ((-564))))
+((-3299 (((-418 |#1|) |#1|) 43)) (-4139 (((-418 |#1|) |#1|) 41)))
+(((-1004 |#1|) (-10 -7 (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3299 ((-418 |#1|) |#1|))) (-1235 (-407 (-564)))) (T -1004))
+((-3299 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1235 (-407 (-564)))))))
+(-10 -7 (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3299 ((-418 |#1|) |#1|)))
+((-3502 (((-3 (-407 (-564)) "failed") |#1|) 15)) (-3309 (((-112) |#1|) 14)) (-3074 (((-407 (-564)) |#1|) 10)))
+(((-1005 |#1|) (-10 -7 (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|))) (-1035 (-407 (-564)))) (T -1005))
+((-3502 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2)))) (-3309 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1005 *3)) (-4 *3 (-1035 (-407 (-564)))))) (-3074 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2)))))
+(-10 -7 (-15 -3074 ((-407 (-564)) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3502 ((-3 (-407 (-564)) "failed") |#1|)))
+((-3868 ((|#2| $ "value" |#2|) 12)) (-4382 ((|#2| $ "value") 10)) (-3036 (((-112) $ $) 18)))
+(((-1006 |#1| |#2|) (-10 -8 (-15 -3868 (|#2| |#1| "value" |#2|)) (-15 -3036 ((-112) |#1| |#1|)) (-15 -4382 (|#2| |#1| "value"))) (-1007 |#2|) (-1209)) (T -1006))
+NIL
+(-10 -8 (-15 -3868 (|#2| |#1| "value" |#2|)) (-15 -3036 ((-112) |#1| |#1|)) (-15 -4382 (|#2| |#1| "value")))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3387 ((|#1| $) 48)) (-2141 (((-112) $ (-768)) 8)) (-3242 ((|#1| $ |#1|) 39 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 41 (|has| $ (-6 -4413)))) (-3180 (($) 7 T CONST)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 50)) (-1543 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-2523 (((-641 |#1|) $) 45)) (-2120 (((-112) $) 49)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ "value") 47)) (-2774 (((-564) $ $) 44)) (-1875 (((-112) $) 46)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) 51)) (-3036 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-1007 |#1|) (-140) (-1209)) (T -1007))
-((-3706 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) (-4321 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-1451 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-1740 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-2272 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-2534 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4412)) (-4 *1 (-1007 *3)) (-4 *3 (-1209)))) (-1881 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4412)) (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-3768 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1007 *2)) (-4 *2 (-1209)))))
-(-13 (-489 |t#1|) (-10 -8 (-15 -3706 ((-641 $) $)) (-15 -4321 ((-641 $) $)) (-15 -2200 ((-112) $)) (-15 -1451 (|t#1| $)) (-15 -4382 (|t#1| $ "value")) (-15 -1867 ((-112) $)) (-15 -3848 ((-641 |t#1|) $)) (-15 -3837 ((-564) $ $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -1740 ((-112) $ $)) (-15 -2272 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4412)) (PROGN (-15 -2534 ($ $ (-641 $))) (-15 -1881 (|t#1| $ "value" |t#1|)) (-15 -3768 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-4019 (($ $) 9) (($ $ (-918)) 49) (($ (-407 (-564))) 13) (($ (-564)) 15)) (-3330 (((-3 $ "failed") (-1166 $) (-918) (-859)) 24) (((-3 $ "failed") (-1166 $) (-918)) 32)) (-1935 (($ $ (-564)) 58)) (-1965 (((-768)) 18)) (-3290 (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 (-407 (-564)))) 63) (((-641 $) (-1166 (-564))) 68) (((-641 $) (-949 $)) 72) (((-641 $) (-949 (-407 (-564)))) 76) (((-641 $) (-949 (-564))) 80)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 53)))
-(((-1008 |#1|) (-10 -8 (-15 -4019 (|#1| (-564))) (-15 -4019 (|#1| (-407 (-564)))) (-15 -4019 (|#1| |#1| (-918))) (-15 -3290 ((-641 |#1|) (-949 (-564)))) (-15 -3290 ((-641 |#1|) (-949 (-407 (-564))))) (-15 -3290 ((-641 |#1|) (-949 |#1|))) (-15 -3290 ((-641 |#1|) (-1166 (-564)))) (-15 -3290 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -3290 ((-641 |#1|) (-1166 |#1|))) (-15 -3330 ((-3 |#1| "failed") (-1166 |#1|) (-918))) (-15 -3330 ((-3 |#1| "failed") (-1166 |#1|) (-918) (-859))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -1935 (|#1| |#1| (-564))) (-15 -4019 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1965 ((-768))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) (-1009)) (T -1008))
-((-1965 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1008 *3)) (-4 *3 (-1009)))))
-(-10 -8 (-15 -4019 (|#1| (-564))) (-15 -4019 (|#1| (-407 (-564)))) (-15 -4019 (|#1| |#1| (-918))) (-15 -3290 ((-641 |#1|) (-949 (-564)))) (-15 -3290 ((-641 |#1|) (-949 (-407 (-564))))) (-15 -3290 ((-641 |#1|) (-949 |#1|))) (-15 -3290 ((-641 |#1|) (-1166 (-564)))) (-15 -3290 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -3290 ((-641 |#1|) (-1166 |#1|))) (-15 -3330 ((-3 |#1| "failed") (-1166 |#1|) (-918))) (-15 -3330 ((-3 |#1| "failed") (-1166 |#1|) (-918) (-859))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -1935 (|#1| |#1| (-564))) (-15 -4019 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1965 ((-768))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 91)) (-1840 (($ $) 92)) (-4035 (((-112) $) 94)) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 111)) (-3981 (((-418 $) $) 112)) (-4019 (($ $) 75) (($ $ (-918)) 61) (($ (-407 (-564))) 60) (($ (-564)) 59)) (-3385 (((-112) $ $) 102)) (-3438 (((-564) $) 128)) (-3760 (($) 17 T CONST)) (-3330 (((-3 $ "failed") (-1166 $) (-918) (-859)) 69) (((-3 $ "failed") (-1166 $) (-918)) 68)) (-2013 (((-3 (-564) "failed") $) 88 (|has| (-407 (-564)) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 86 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) 83)) (-2064 (((-564) $) 87 (|has| (-407 (-564)) (-1035 (-564)))) (((-407 (-564)) $) 85 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-407 (-564)) $) 84)) (-1960 (($ $ (-859)) 58)) (-4042 (($ $ (-859)) 57)) (-1387 (($ $ $) 106)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 105)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 100)) (-3241 (((-112) $) 113)) (-1751 (((-112) $) 126)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 74)) (-2506 (((-112) $) 127)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 109)) (-3571 (($ $ $) 125)) (-1547 (($ $ $) 124)) (-1914 (((-3 (-1166 $) "failed") $) 70)) (-2680 (((-3 (-859) "failed") $) 72)) (-4081 (((-3 (-1166 $) "failed") $) 71)) (-2488 (($ (-641 $)) 98) (($ $ $) 97)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 114)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 99)) (-2527 (($ (-641 $)) 96) (($ $ $) 95)) (-4006 (((-418 $) $) 110)) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 107)) (-1343 (((-3 $ "failed") $ $) 90)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 101)) (-3712 (((-768) $) 103)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 104)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 118) (($ $) 89) (($ (-407 (-564))) 82) (($ (-564)) 81) (($ (-407 (-564))) 78)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 93)) (-2299 (((-407 (-564)) $ $) 56)) (-3290 (((-641 $) (-1166 $)) 67) (((-641 $) (-1166 (-407 (-564)))) 66) (((-641 $) (-1166 (-564))) 65) (((-641 $) (-949 $)) 64) (((-641 $) (-949 (-407 (-564)))) 63) (((-641 $) (-949 (-564))) 62)) (-2016 (($ $) 129)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1738 (((-112) $ $) 122)) (-1715 (((-112) $ $) 121)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 123)) (-1705 (((-112) $ $) 120)) (-1793 (($ $ $) 119)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 115) (($ $ (-407 (-564))) 73)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 117) (($ $ (-407 (-564))) 116) (($ (-564) $) 80) (($ $ (-564)) 79) (($ (-407 (-564)) $) 77) (($ $ (-407 (-564))) 76)))
+((-3914 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) (-1647 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) (-2120 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-2774 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-3036 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1543 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4413)) (-4 *1 (-1007 *3)) (-4 *3 (-1209)))) (-3868 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4413)) (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-3242 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1007 *2)) (-4 *2 (-1209)))))
+(-13 (-489 |t#1|) (-10 -8 (-15 -3914 ((-641 $) $)) (-15 -1647 ((-641 $) $)) (-15 -2120 ((-112) $)) (-15 -3387 (|t#1| $)) (-15 -4382 (|t#1| $ "value")) (-15 -1875 ((-112) $)) (-15 -2523 ((-641 |t#1|) $)) (-15 -2774 ((-564) $ $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3036 ((-112) $ $)) (-15 -1543 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4413)) (PROGN (-15 -4038 ($ $ (-641 $))) (-15 -3868 (|t#1| $ "value" |t#1|)) (-15 -3242 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-4152 (($ $) 9) (($ $ (-918)) 49) (($ (-407 (-564))) 13) (($ (-564)) 15)) (-1544 (((-3 $ "failed") (-1166 $) (-918) (-859)) 24) (((-3 $ "failed") (-1166 $) (-918)) 32)) (-4342 (($ $ (-564)) 58)) (-3379 (((-768)) 18)) (-4256 (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 (-407 (-564)))) 63) (((-641 $) (-1166 (-564))) 68) (((-641 $) (-949 $)) 72) (((-641 $) (-949 (-407 (-564)))) 76) (((-641 $) (-949 (-564))) 80)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 53)))
+(((-1008 |#1|) (-10 -8 (-15 -4152 (|#1| (-564))) (-15 -4152 (|#1| (-407 (-564)))) (-15 -4152 (|#1| |#1| (-918))) (-15 -4256 ((-641 |#1|) (-949 (-564)))) (-15 -4256 ((-641 |#1|) (-949 (-407 (-564))))) (-15 -4256 ((-641 |#1|) (-949 |#1|))) (-15 -4256 ((-641 |#1|) (-1166 (-564)))) (-15 -4256 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -4256 ((-641 |#1|) (-1166 |#1|))) (-15 -1544 ((-3 |#1| "failed") (-1166 |#1|) (-918))) (-15 -1544 ((-3 |#1| "failed") (-1166 |#1|) (-918) (-859))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -4342 (|#1| |#1| (-564))) (-15 -4152 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3379 ((-768))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) (-1009)) (T -1008))
+((-3379 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1008 *3)) (-4 *3 (-1009)))))
+(-10 -8 (-15 -4152 (|#1| (-564))) (-15 -4152 (|#1| (-407 (-564)))) (-15 -4152 (|#1| |#1| (-918))) (-15 -4256 ((-641 |#1|) (-949 (-564)))) (-15 -4256 ((-641 |#1|) (-949 (-407 (-564))))) (-15 -4256 ((-641 |#1|) (-949 |#1|))) (-15 -4256 ((-641 |#1|) (-1166 (-564)))) (-15 -4256 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -4256 ((-641 |#1|) (-1166 |#1|))) (-15 -1544 ((-3 |#1| "failed") (-1166 |#1|) (-918))) (-15 -1544 ((-3 |#1| "failed") (-1166 |#1|) (-918) (-859))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -4342 (|#1| |#1| (-564))) (-15 -4152 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3379 ((-768))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 91)) (-1582 (($ $) 92)) (-3897 (((-112) $) 94)) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 111)) (-1592 (((-418 $) $) 112)) (-4152 (($ $) 75) (($ $ (-918)) 61) (($ (-407 (-564))) 60) (($ (-564)) 59)) (-3907 (((-112) $ $) 102)) (-3191 (((-564) $) 128)) (-3180 (($) 17 T CONST)) (-1544 (((-3 $ "failed") (-1166 $) (-918) (-859)) 69) (((-3 $ "failed") (-1166 $) (-918)) 68)) (-2224 (((-3 (-564) "failed") $) 88 (|has| (-407 (-564)) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 86 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) 83)) (-2376 (((-564) $) 87 (|has| (-407 (-564)) (-1035 (-564)))) (((-407 (-564)) $) 85 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-407 (-564)) $) 84)) (-3339 (($ $ (-859)) 58)) (-3962 (($ $ (-859)) 57)) (-1399 (($ $ $) 106)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 105)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 100)) (-1926 (((-112) $) 113)) (-3137 (((-112) $) 126)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 74)) (-2001 (((-112) $) 127)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 109)) (-3428 (($ $ $) 125)) (-3413 (($ $ $) 124)) (-4157 (((-3 (-1166 $) "failed") $) 70)) (-3060 (((-3 (-859) "failed") $) 72)) (-3122 (((-3 (-1166 $) "failed") $) 71)) (-2688 (($ (-641 $)) 98) (($ $ $) 97)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 114)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 99)) (-2727 (($ (-641 $)) 96) (($ $ $) 95)) (-4139 (((-418 $) $) 110)) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 107)) (-1347 (((-3 $ "failed") $ $) 90)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 101)) (-3966 (((-768) $) 103)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 104)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 118) (($ $) 89) (($ (-407 (-564))) 82) (($ (-564)) 81) (($ (-407 (-564))) 78)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 93)) (-2441 (((-407 (-564)) $ $) 56)) (-4256 (((-641 $) (-1166 $)) 67) (((-641 $) (-1166 (-407 (-564)))) 66) (((-641 $) (-1166 (-564))) 65) (((-641 $) (-949 $)) 64) (((-641 $) (-949 (-407 (-564)))) 63) (((-641 $) (-949 (-564))) 62)) (-3920 (($ $) 129)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1781 (((-112) $ $) 122)) (-1758 (((-112) $ $) 121)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 123)) (-1746 (((-112) $ $) 120)) (-1841 (($ $ $) 119)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 115) (($ $ (-407 (-564))) 73)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 117) (($ $ (-407 (-564))) 116) (($ (-564) $) 80) (($ $ (-564)) 79) (($ (-407 (-564)) $) 77) (($ $ (-407 (-564))) 76)))
(((-1009) (-140)) (T -1009))
-((-4019 (*1 *1 *1) (-4 *1 (-1009))) (-2680 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-4081 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))) (-1914 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))) (-3330 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-5 *4 (-859)) (-4 *1 (-1009)))) (-3330 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-4 *1 (-1009)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-4019 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-918)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1009)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1009)))) (-1960 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-4042 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-2299 (*1 *2 *1 *1) (-12 (-4 *1 (-1009)) (-5 *2 (-407 (-564))))))
-(-13 (-147) (-845) (-172) (-363) (-411 (-407 (-564))) (-38 (-564)) (-38 (-407 (-564))) (-999) (-10 -8 (-15 -2680 ((-3 (-859) "failed") $)) (-15 -4081 ((-3 (-1166 $) "failed") $)) (-15 -1914 ((-3 (-1166 $) "failed") $)) (-15 -3330 ((-3 $ "failed") (-1166 $) (-918) (-859))) (-15 -3330 ((-3 $ "failed") (-1166 $) (-918))) (-15 -3290 ((-641 $) (-1166 $))) (-15 -3290 ((-641 $) (-1166 (-407 (-564))))) (-15 -3290 ((-641 $) (-1166 (-564)))) (-15 -3290 ((-641 $) (-949 $))) (-15 -3290 ((-641 $) (-949 (-407 (-564))))) (-15 -3290 ((-641 $) (-949 (-564)))) (-15 -4019 ($ $ (-918))) (-15 -4019 ($ $)) (-15 -4019 ($ (-407 (-564)))) (-15 -4019 ($ (-564))) (-15 -1960 ($ $ (-859))) (-15 -4042 ($ $ (-859))) (-15 -2299 ((-407 (-564)) $ $))))
+((-4152 (*1 *1 *1) (-4 *1 (-1009))) (-3060 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-3122 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))) (-4157 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))) (-1544 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-5 *4 (-859)) (-4 *1 (-1009)))) (-1544 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-4 *1 (-1009)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-4152 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-918)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1009)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1009)))) (-3339 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-2441 (*1 *2 *1 *1) (-12 (-4 *1 (-1009)) (-5 *2 (-407 (-564))))))
+(-13 (-147) (-845) (-172) (-363) (-411 (-407 (-564))) (-38 (-564)) (-38 (-407 (-564))) (-999) (-10 -8 (-15 -3060 ((-3 (-859) "failed") $)) (-15 -3122 ((-3 (-1166 $) "failed") $)) (-15 -4157 ((-3 (-1166 $) "failed") $)) (-15 -1544 ((-3 $ "failed") (-1166 $) (-918) (-859))) (-15 -1544 ((-3 $ "failed") (-1166 $) (-918))) (-15 -4256 ((-641 $) (-1166 $))) (-15 -4256 ((-641 $) (-1166 (-407 (-564))))) (-15 -4256 ((-641 $) (-1166 (-564)))) (-15 -4256 ((-641 $) (-949 $))) (-15 -4256 ((-641 $) (-949 (-407 (-564))))) (-15 -4256 ((-641 $) (-949 (-564)))) (-15 -4152 ($ $ (-918))) (-15 -4152 ($ $)) (-15 -4152 ($ (-407 (-564)))) (-15 -4152 ($ (-564))) (-15 -3339 ($ $ (-859))) (-15 -3962 ($ $ (-859))) (-15 -2441 ((-407 (-564)) $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 #1=(-564)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-564))) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 #1#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 #1#) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-917) . T) ((-999) . T) ((-1035 (-407 (-564))) . T) ((-1035 (-564)) |has| (-407 (-564)) (-1035 (-564))) ((-1052 #0#) . T) ((-1052 #1#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-1367 (((-2 (|:| |ans| |#2|) (|:| -3549 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1010 |#1| |#2|) (-10 -7 (-15 -1367 ((-2 (|:| |ans| |#2|) (|:| -3549 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1010))
-((-1367 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2745 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3549 *4) (|:| |sol?| (-112)))) (-5 *1 (-1010 *8 *4)))))
-(-10 -7 (-15 -1367 ((-2 (|:| |ans| |#2|) (|:| -3549 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2713 (((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1011 |#1| |#2|) (-10 -7 (-15 -2713 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1011))
-((-2713 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2745 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1011 *8 *4)))))
-(-10 -7 (-15 -2713 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2745 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3914 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2076 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)) 39)) (-2247 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1353 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 69)) (-3613 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 74)))
-(((-1012 |#1| |#2|) (-10 -7 (-15 -2247 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1353 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3613 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3914 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2076 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -1012))
-((-3914 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 *4))) (-5 *4 (-564)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2076 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1012 *6 *3)))) (-3613 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-2247 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -1353 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
-(-10 -7 (-15 -2247 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1353 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3613 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3914 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2076 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|))))
-((-1672 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1353 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-3250 (((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 34)))
-(((-1013 |#1| |#2|) (-10 -7 (-15 -1672 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1353 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3250 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -1013))
-((-3250 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1013 *4 *5)) (-5 *3 (-407 *5)))) (-1672 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1353 *6))) (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6)))))
-(-10 -7 (-15 -1672 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1353 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3250 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))))
-((-1526 (((-1 |#1|) (-641 (-2 (|:| -1451 |#1|) (|:| -3703 (-564))))) 37)) (-2613 (((-1 |#1|) (-1096 |#1|)) 45)) (-4146 (((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)) 34)))
-(((-1014 |#1|) (-10 -7 (-15 -2613 ((-1 |#1|) (-1096 |#1|))) (-15 -1526 ((-1 |#1|) (-641 (-2 (|:| -1451 |#1|) (|:| -3703 (-564)))))) (-15 -4146 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)))) (-1094)) (T -1014))
-((-4146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564)) (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1014 *6)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -1451 *4) (|:| -3703 (-564))))) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4)))))
-(-10 -7 (-15 -2613 ((-1 |#1|) (-1096 |#1|))) (-15 -1526 ((-1 |#1|) (-641 (-2 (|:| -1451 |#1|) (|:| -3703 (-564)))))) (-15 -4146 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564))))
-((-2261 (((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1015 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2261 ((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1015))
-((-2261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-768)) (-5 *1 (-1015 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -2261 ((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-1754 (((-112) $ $) NIL)) (-1826 (((-1129) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-1129) $) 11)) (-1686 (((-112) $ $) NIL)))
-(((-1016) (-13 (-1077) (-10 -8 (-15 -1826 ((-1129) $)) (-15 -4374 ((-1129) $))))) (T -1016))
-((-1826 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))))
-(-13 (-1077) (-10 -8 (-15 -1826 ((-1129) $)) (-15 -4374 ((-1129) $))))
-((-2203 (((-3 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) "failed") |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) 32) (((-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564))) 29)) (-3969 (((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564))) 34) (((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-407 (-564))) 30) (((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) 33) (((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1|) 28)) (-3907 (((-641 (-407 (-564))) (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) 20)) (-2486 (((-407 (-564)) (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) 17)))
-(((-1017 |#1|) (-10 -7 (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1|)) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564)))) (-15 -2203 ((-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564)))) (-15 -2203 ((-3 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) "failed") |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-15 -2486 ((-407 (-564)) (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-15 -3907 ((-641 (-407 (-564))) (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))))) (-1235 (-564))) (T -1017))
-((-3907 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) (-5 *2 (-407 (-564))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))) (-2203 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) (-2203 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) (-3969 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -3538 *5) (|:| -3549 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -3538 *5) (|:| -3549 *5))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))) (-3969 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))))
-(-10 -7 (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1|)) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564)))) (-15 -2203 ((-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564)))) (-15 -2203 ((-3 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) "failed") |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-15 -2486 ((-407 (-564)) (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-15 -3907 ((-641 (-407 (-564))) (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))))
-((-2203 (((-3 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) "failed") |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) 35) (((-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564))) 32)) (-3969 (((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564))) 30) (((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-407 (-564))) 26) (((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) 28) (((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1|) 24)))
-(((-1018 |#1|) (-10 -7 (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1|)) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564)))) (-15 -2203 ((-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564)))) (-15 -2203 ((-3 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) "failed") |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))) (-1235 (-407 (-564)))) (T -1018))
-((-2203 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-2203 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) (-3969 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -3538 *5) (|:| -3549 *5)))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -3538 *5) (|:| -3549 *5))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -3538 *4) (|:| -3549 *4)))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) (-3969 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))) (-5 *4 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))) (-3969 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))))
-(-10 -7 (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1|)) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3969 ((-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564)))) (-15 -2203 ((-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-407 (-564)))) (-15 -2203 ((-3 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) "failed") |#1| (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))) (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))))
-((-2127 (((-225) $) 6) (((-379) $) 9)))
+((-1315 (((-2 (|:| |ans| |#2|) (|:| -2592 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1010 |#1| |#2|) (-10 -7 (-15 -1315 ((-2 (|:| |ans| |#2|) (|:| -2592 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1010))
+((-1315 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2537 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2592 *4) (|:| |sol?| (-112)))) (-5 *1 (-1010 *8 *4)))))
+(-10 -7 (-15 -1315 ((-2 (|:| |ans| |#2|) (|:| -2592 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3331 (((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1011 |#1| |#2|) (-10 -7 (-15 -3331 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1011))
+((-3331 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2537 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1011 *8 *4)))))
+(-10 -7 (-15 -3331 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2537 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-4083 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4035 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)) 39)) (-1296 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1344 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 69)) (-4274 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 74)))
+(((-1012 |#1| |#2|) (-10 -7 (-15 -1296 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1344 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -4274 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -4083 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4035 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -1012))
+((-4083 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 *4))) (-5 *4 (-564)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4035 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1012 *6 *3)))) (-4274 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-1296 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -1344 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
+(-10 -7 (-15 -1296 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1344 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -4274 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -4083 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4035 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|))))
+((-3541 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1344 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-2014 (((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 34)))
+(((-1013 |#1| |#2|) (-10 -7 (-15 -3541 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1344 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2014 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -1013))
+((-2014 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1013 *4 *5)) (-5 *3 (-407 *5)))) (-3541 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1344 *6))) (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6)))))
+(-10 -7 (-15 -3541 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1344 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2014 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))))
+((-1618 (((-1 |#1|) (-641 (-2 (|:| -3387 |#1|) (|:| -3879 (-564))))) 37)) (-3527 (((-1 |#1|) (-1096 |#1|)) 45)) (-2583 (((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)) 34)))
+(((-1014 |#1|) (-10 -7 (-15 -3527 ((-1 |#1|) (-1096 |#1|))) (-15 -1618 ((-1 |#1|) (-641 (-2 (|:| -3387 |#1|) (|:| -3879 (-564)))))) (-15 -2583 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)))) (-1094)) (T -1014))
+((-2583 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564)) (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1014 *6)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3387 *4) (|:| -3879 (-564))))) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4)))))
+(-10 -7 (-15 -3527 ((-1 |#1|) (-1096 |#1|))) (-15 -1618 ((-1 |#1|) (-641 (-2 (|:| -3387 |#1|) (|:| -3879 (-564)))))) (-15 -2583 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564))))
+((-1454 (((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1015 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1454 ((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1015))
+((-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-768)) (-5 *1 (-1015 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -1454 ((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-3702 (((-112) $ $) NIL)) (-2702 (((-1129) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-1129) $) 11)) (-1720 (((-112) $ $) NIL)))
+(((-1016) (-13 (-1077) (-10 -8 (-15 -2702 ((-1129) $)) (-15 -4347 ((-1129) $))))) (T -1016))
+((-2702 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))))
+(-13 (-1077) (-10 -8 (-15 -2702 ((-1129) $)) (-15 -4347 ((-1129) $))))
+((-2150 (((-3 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) "failed") |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) 32) (((-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564))) 29)) (-1477 (((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564))) 34) (((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-407 (-564))) 30) (((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) 33) (((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1|) 28)) (-2182 (((-641 (-407 (-564))) (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) 20)) (-1804 (((-407 (-564)) (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) 17)))
+(((-1017 |#1|) (-10 -7 (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1|)) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564)))) (-15 -2150 ((-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564)))) (-15 -2150 ((-3 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) "failed") |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-15 -1804 ((-407 (-564)) (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-15 -2182 ((-641 (-407 (-564))) (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))))) (-1235 (-564))) (T -1017))
+((-2182 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) (-5 *2 (-407 (-564))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))) (-2150 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) (-2150 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -2578 *5) (|:| -2592 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -2578 *5) (|:| -2592 *5))))) (-1477 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564))))) (-1477 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))))
+(-10 -7 (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1|)) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564)))) (-15 -2150 ((-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564)))) (-15 -2150 ((-3 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) "failed") |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-15 -1804 ((-407 (-564)) (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-15 -2182 ((-641 (-407 (-564))) (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))))
+((-2150 (((-3 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) "failed") |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) 35) (((-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564))) 32)) (-1477 (((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564))) 30) (((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-407 (-564))) 26) (((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) 28) (((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1|) 24)))
+(((-1018 |#1|) (-10 -7 (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1|)) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564)))) (-15 -2150 ((-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564)))) (-15 -2150 ((-3 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) "failed") |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))) (-1235 (-407 (-564)))) (T -1018))
+((-2150 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-2150 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -2578 *5) (|:| -2592 *5)))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -2578 *5) (|:| -2592 *5))))) (-1477 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -2578 *4) (|:| -2592 *4)))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))) (-5 *4 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))))
+(-10 -7 (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1|)) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -1477 ((-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564)))) (-15 -2150 ((-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-407 (-564)))) (-15 -2150 ((-3 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) "failed") |#1| (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))) (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))))
+((-2374 (((-225) $) 6) (((-379) $) 9)))
(((-1019) (-140)) (T -1019))
NIL
(-13 (-612 (-225)) (-612 (-379)))
(((-612 (-225)) . T) ((-612 (-379)) . T))
-((-4325 (((-641 (-379)) (-949 (-564)) (-379)) 28) (((-641 (-379)) (-949 (-407 (-564))) (-379)) 27)) (-2854 (((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379)) 37)))
-(((-1020) (-10 -7 (-15 -4325 ((-641 (-379)) (-949 (-407 (-564))) (-379))) (-15 -4325 ((-641 (-379)) (-949 (-564)) (-379))) (-15 -2854 ((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379))))) (T -1020))
-((-2854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1020)) (-5 *5 (-379)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) (-5 *4 (-379)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) (-5 *4 (-379)))))
-(-10 -7 (-15 -4325 ((-641 (-379)) (-949 (-407 (-564))) (-379))) (-15 -4325 ((-641 (-379)) (-949 (-564)) (-379))) (-15 -2854 ((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 75)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-4019 (($ $) NIL) (($ $ (-918)) NIL) (($ (-407 (-564))) NIL) (($ (-564)) NIL)) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) 70)) (-3760 (($) NIL T CONST)) (-3330 (((-3 $ "failed") (-1166 $) (-918) (-859)) NIL) (((-3 $ "failed") (-1166 $) (-918)) 55)) (-2013 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-564) "failed") $) NIL (-4002 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))))) (-2064 (((-407 (-564)) $) 17 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-407 (-564)) $) 17) ((|#1| $) 117) (((-564) $) NIL (-4002 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))))) (-1960 (($ $ (-859)) 47)) (-4042 (($ $ (-859)) 48)) (-1387 (($ $ $) NIL)) (-1593 (((-407 (-564)) $ $) 21)) (-1926 (((-3 $ "failed") $) 88)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-1751 (((-112) $) 66)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL)) (-2506 (((-112) $) 69)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-1914 (((-3 (-1166 $) "failed") $) 83)) (-2680 (((-3 (-859) "failed") $) 82)) (-4081 (((-3 (-1166 $) "failed") $) 80)) (-2160 (((-3 (-1056 $ (-1166 $)) "failed") $) 78)) (-2488 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 89)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-1765 (((-859) $) 87) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) 63) (($ (-407 (-564))) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 119)) (-1965 (((-768)) NIL T CONST)) (-1582 (((-112) $ $) NIL)) (-2299 (((-407 (-564)) $ $) 27)) (-3290 (((-641 $) (-1166 $)) 61) (((-641 $) (-1166 (-407 (-564)))) NIL) (((-641 $) (-1166 (-564))) NIL) (((-641 $) (-949 $)) NIL) (((-641 $) (-949 (-407 (-564)))) NIL) (((-641 $) (-949 (-564))) NIL)) (-3547 (($ (-1056 $ (-1166 $)) (-859)) 46)) (-2016 (($ $) 22)) (-4317 (($) 32 T CONST)) (-4327 (($) 39 T CONST)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 76)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 24)) (-1793 (($ $ $) 37)) (-1783 (($ $) 38) (($ $ $) 74)) (-1771 (($ $ $) 112)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 98) (($ $ $) 104) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ (-564) $) 98) (($ $ (-564)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1021 |#1|) (-13 (-1009) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3547 ($ (-1056 $ (-1166 $)) (-859))) (-15 -2160 ((-3 (-1056 $ (-1166 $)) "failed") $)) (-15 -1593 ((-407 (-564)) $ $)))) (-13 (-845) (-363) (-1019))) (T -1021))
-((-3547 (*1 *1 *2 *3) (-12 (-5 *2 (-1056 (-1021 *4) (-1166 (-1021 *4)))) (-5 *3 (-859)) (-5 *1 (-1021 *4)) (-4 *4 (-13 (-845) (-363) (-1019))))) (-2160 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056 (-1021 *3) (-1166 (-1021 *3)))) (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019))))) (-1593 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019))))))
-(-13 (-1009) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3547 ($ (-1056 $ (-1166 $)) (-859))) (-15 -2160 ((-3 (-1056 $ (-1166 $)) "failed") $)) (-15 -1593 ((-407 (-564)) $ $))))
-((-3915 (((-2 (|:| -2076 |#2|) (|:| -3351 (-641 |#1|))) |#2| (-641 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1022 |#1| |#2|) (-10 -7 (-15 -3915 (|#2| |#2| |#1|)) (-15 -3915 ((-2 (|:| -2076 |#2|) (|:| -3351 (-641 |#1|))) |#2| (-641 |#1|)))) (-363) (-652 |#1|)) (T -1022))
-((-3915 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -2076 *3) (|:| -3351 (-641 *5)))) (-5 *1 (-1022 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5)))) (-3915 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1022 *3 *2)) (-4 *2 (-652 *3)))))
-(-10 -7 (-15 -3915 (|#2| |#2| |#1|)) (-15 -3915 ((-2 (|:| -2076 |#2|) (|:| -3351 (-641 |#1|))) |#2| (-641 |#1|))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2491 ((|#1| $ |#1|) 14)) (-1881 ((|#1| $ |#1|) 12)) (-1700 (($ |#1|) 10)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4382 ((|#1| $) 11)) (-3462 ((|#1| $) 13)) (-1765 (((-859) $) 21 (|has| |#1| (-1094)))) (-1686 (((-112) $ $) 9)))
-(((-1023 |#1|) (-13 (-1209) (-10 -8 (-15 -1700 ($ |#1|)) (-15 -4382 (|#1| $)) (-15 -1881 (|#1| $ |#1|)) (-15 -3462 (|#1| $)) (-15 -2491 (|#1| $ |#1|)) (-15 -1686 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1023))
-((-1700 (*1 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-1881 (*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-3462 (*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-2491 (*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-1686 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1209)))))
-(-13 (-1209) (-10 -8 (-15 -1700 ($ |#1|)) (-15 -4382 (|#1| $)) (-15 -1881 (|#1| $ |#1|)) (-15 -3462 (|#1| $)) (-15 -2491 (|#1| $ |#1|)) (-15 -1686 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |#4|)))) (-641 |#4|)) NIL)) (-4389 (((-641 $) (-641 |#4|)) 115) (((-641 $) (-641 |#4|) (-112)) 116) (((-641 $) (-641 |#4|) (-112) (-112)) 114) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 117)) (-4170 (((-641 |#3|) $) NIL)) (-1747 (((-112) $) NIL)) (-2197 (((-112) $) NIL (|has| |#1| (-556)))) (-1940 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3993 ((|#4| |#4| $) NIL)) (-1368 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| $) 109)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 63)) (-3760 (($) NIL T CONST)) (-4177 (((-112) $) 29 (|has| |#1| (-556)))) (-3911 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2694 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1378 (((-112) $) NIL (|has| |#1| (-556)))) (-3207 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2254 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2064 (($ (-641 |#4|)) NIL)) (-3086 (((-3 $ "failed") $) 45)) (-2758 ((|#4| |#4| $) 66)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2359 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 82 (|has| |#1| (-556)))) (-4269 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3621 ((|#4| |#4| $) NIL)) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2058 (((-2 (|:| -3439 (-641 |#4|)) (|:| -1589 (-641 |#4|))) $) NIL)) (-1456 (((-112) |#4| $) NIL)) (-2097 (((-112) |#4| $) NIL)) (-2432 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2692 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 130)) (-3080 (((-641 |#4|) $) 18 (|has| $ (-6 -4411)))) (-2415 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3162 ((|#3| $) 38)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#4|) $) 19 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-3513 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 23)) (-4343 (((-641 |#3|) $) NIL)) (-1853 (((-112) |#3| $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-4181 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-1489 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| |#4| $) 107)) (-2376 (((-3 |#4| "failed") $) 42)) (-2298 (((-641 $) |#4| $) 90)) (-3866 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-4214 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 $))) |#4| $) 100) (((-112) |#4| $) 61)) (-1617 (((-641 $) |#4| $) 112) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 113) (((-641 $) |#4| (-641 $)) NIL)) (-1314 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 125)) (-1829 (($ |#4| $) 79) (($ (-641 |#4|) $) 80) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 76)) (-3277 (((-641 |#4|) $) NIL)) (-3561 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3874 ((|#4| |#4| $) NIL)) (-3862 (((-112) $ $) NIL)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1512 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3491 ((|#4| |#4| $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 (((-3 |#4| "failed") $) 40)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3159 (((-3 $ "failed") $ |#4|) 57)) (-2678 (($ $ |#4|) NIL) (((-641 $) |#4| $) 92) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 86)) (-1467 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 17)) (-3845 (($) 14)) (-3344 (((-768) $) NIL)) (-3815 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) 13)) (-2127 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) 22)) (-2318 (($ $ |#3|) 52)) (-1869 (($ $ |#3|) 53)) (-3430 (($ $) NIL)) (-1845 (($ $ |#3|) NIL)) (-1765 (((-859) $) 35) (((-641 |#4|) $) 46)) (-1597 (((-768) $) NIL (|has| |#3| (-368)))) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1599 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-3602 (((-641 $) |#4| $) 89) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-2237 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2380 (((-641 |#3|) $) NIL)) (-1759 (((-112) |#4| $) NIL)) (-3623 (((-112) |#3| $) 62)) (-1686 (((-112) $ $) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1024 |#1| |#2| |#3| |#4|) (-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1829 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4389 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -4389 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -1314 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2692 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1024))
-((-1829 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *3))) (-5 *1 (-1024 *5 *6 *7 *3)) (-4 *3 (-1060 *5 *6 *7)))) (-4389 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-4389 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-1314 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-2692 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1024 *5 *6 *7 *8))))) (-5 *1 (-1024 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
-(-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1829 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4389 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -4389 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -1314 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2692 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)))))
-((-2333 (((-641 (-685 |#1|)) (-641 (-685 |#1|))) 73) (((-685 |#1|) (-685 |#1|)) 72) (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 71) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 68)) (-2575 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918)) 66) (((-685 |#1|) (-685 |#1|) (-918)) 65)) (-2735 (((-641 (-685 (-564))) (-641 (-641 (-564)))) 84) (((-641 (-685 (-564))) (-641 (-902 (-564))) (-564)) 83) (((-685 (-564)) (-641 (-564))) 80) (((-685 (-564)) (-902 (-564)) (-564)) 78)) (-4340 (((-685 (-949 |#1|)) (-768)) 98)) (-2386 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918)) 52 (|has| |#1| (-6 (-4413 "*")))) (((-685 |#1|) (-685 |#1|) (-918)) 50 (|has| |#1| (-6 (-4413 "*"))))))
-(((-1025 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4413 "*"))) (-15 -2386 ((-685 |#1|) (-685 |#1|) (-918))) |%noBranch|) (IF (|has| |#1| (-6 (-4413 "*"))) (-15 -2386 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) |%noBranch|) (-15 -4340 ((-685 (-949 |#1|)) (-768))) (-15 -2575 ((-685 |#1|) (-685 |#1|) (-918))) (-15 -2575 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) (-15 -2333 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2333 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2333 ((-685 |#1|) (-685 |#1|))) (-15 -2333 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2735 ((-685 (-564)) (-902 (-564)) (-564))) (-15 -2735 ((-685 (-564)) (-641 (-564)))) (-15 -2735 ((-641 (-685 (-564))) (-641 (-902 (-564))) (-564))) (-15 -2735 ((-641 (-685 (-564))) (-641 (-641 (-564)))))) (-1046)) (T -1025))
-((-2735 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-902 (-564)))) (-5 *4 (-564)) (-5 *2 (-641 (-685 *4))) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-902 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4)) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-2333 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-2333 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-2575 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-2575 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-685 (-949 *4))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (|has| *4 (-6 (-4413 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (|has| *4 (-6 (-4413 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4413 "*"))) (-15 -2386 ((-685 |#1|) (-685 |#1|) (-918))) |%noBranch|) (IF (|has| |#1| (-6 (-4413 "*"))) (-15 -2386 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) |%noBranch|) (-15 -4340 ((-685 (-949 |#1|)) (-768))) (-15 -2575 ((-685 |#1|) (-685 |#1|) (-918))) (-15 -2575 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) (-15 -2333 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2333 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2333 ((-685 |#1|) (-685 |#1|))) (-15 -2333 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2735 ((-685 (-564)) (-902 (-564)) (-564))) (-15 -2735 ((-685 (-564)) (-641 (-564)))) (-15 -2735 ((-641 (-685 (-564))) (-641 (-902 (-564))) (-564))) (-15 -2735 ((-641 (-685 (-564))) (-641 (-641 (-564))))))
-((-3673 (((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)) 69 (|has| |#1| (-307)))) (-1654 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))) 110 (|has| |#1| (-363))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|)) 117 (|has| |#1| (-363)))) (-3429 (((-1259 |#1|) (-641 (-1259 |#1|)) (-564)) 134 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-1570 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918)) 123 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112)) 122 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|))) 121 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564)) 120 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-2332 (((-112) (-641 (-685 |#1|))) 103 (|has| |#1| (-363))) (((-112) (-641 (-685 |#1|)) (-564)) 106 (|has| |#1| (-363)))) (-3375 (((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|)) 66 (|has| |#1| (-307)))) (-3701 (((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|)) 47)) (-1527 (((-685 |#1|) (-1259 (-1259 |#1|))) 40)) (-3806 (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564)) 94 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 93 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564)) 101 (|has| |#1| (-363)))))
-(((-1026 |#1|) (-10 -7 (-15 -1527 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -3701 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3375 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3673 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3806 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -3806 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3806 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -2332 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -2332 ((-112) (-641 (-685 |#1|)))) (-15 -1654 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -1654 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -1570 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -1570 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -1570 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -1570 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918))) (-15 -3429 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) (-1046)) (T -1026))
-((-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-1570 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-1570 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1046)) (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1026 *4)) (-5 *3 (-641 (-685 *4))))) (-1570 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1046)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1026 *6)) (-5 *3 (-641 (-685 *6))))) (-1654 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-1654 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *4)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *5)))) (-3806 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1046)))) (-3806 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4)) (-4 *4 (-363)) (-4 *4 (-1046)))) (-3806 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564)) (-5 *2 (-685 *6)) (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1046)))) (-3673 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307)) (-4 *5 (-1046)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1046)) (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1026 *5)) (-5 *4 (-1259 *5)))) (-3701 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1026 *4)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1046)) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4)))))
-(-10 -7 (-15 -1527 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -3701 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3375 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3673 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3806 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -3806 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3806 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -2332 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -2332 ((-112) (-641 (-685 |#1|)))) (-15 -1654 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -1654 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -1570 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -1570 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -1570 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -1570 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918))) (-15 -3429 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|))
-((-3214 ((|#1| (-918) |#1|) 18)))
-(((-1027 |#1|) (-10 -7 (-15 -3214 (|#1| (-918) |#1|))) (-13 (-1094) (-10 -8 (-15 -1771 ($ $ $))))) (T -1027))
-((-3214 (*1 *2 *3 *2) (-12 (-5 *3 (-918)) (-5 *1 (-1027 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -1771 ($ $ $))))))))
-(-10 -7 (-15 -3214 (|#1| (-918) |#1|)))
-((-3777 (((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564))))) 67)) (-3472 (((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564))))) 52)) (-1586 (((-641 (-316 (-564))) (-685 (-407 (-949 (-564))))) 45)) (-3454 (((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564))))) 87)) (-1706 (((-685 (-316 (-564))) (-685 (-316 (-564)))) 38)) (-4380 (((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564))))) 76)) (-3279 (((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564))))) 85)))
-(((-1028) (-10 -7 (-15 -3777 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564)))))) (-15 -3472 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564)))))) (-15 -1586 ((-641 (-316 (-564))) (-685 (-407 (-949 (-564)))))) (-15 -3279 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564)))))) (-15 -1706 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -4380 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -3454 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564)))))))) (T -1028))
-((-3454 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))) (-4380 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))) (-3279 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-316 (-564)))) (-5 *1 (-1028)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)) (-5 *3 (-316 (-564))))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564)))))))) (-5 *1 (-1028)))))
-(-10 -7 (-15 -3777 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564)))))) (-15 -3472 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564)))))) (-15 -1586 ((-641 (-316 (-564))) (-685 (-407 (-949 (-564)))))) (-15 -3279 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564)))))) (-15 -1706 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -4380 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -3454 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564)))))))
-((-2748 ((|#1| |#1| (-918)) 18)))
-(((-1029 |#1|) (-10 -7 (-15 -2748 (|#1| |#1| (-918)))) (-13 (-1094) (-10 -8 (-15 * ($ $ $))))) (T -1029))
-((-2748 (*1 *2 *2 *3) (-12 (-5 *3 (-918)) (-5 *1 (-1029 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -2748 (|#1| |#1| (-918))))
-((-1765 ((|#1| (-312)) 11) (((-1264) |#1|) 9)))
-(((-1030 |#1|) (-10 -7 (-15 -1765 ((-1264) |#1|)) (-15 -1765 (|#1| (-312)))) (-1209)) (T -1030))
-((-1765 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1030 *2)) (-4 *2 (-1209)))) (-1765 (*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1030 *3)) (-4 *3 (-1209)))))
-(-10 -7 (-15 -1765 ((-1264) |#1|)) (-15 -1765 (|#1| (-312))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-4367 (($ |#4|) 25)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-4358 ((|#4| $) 27)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 46) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1965 (((-768)) 43 T CONST)) (-4317 (($) 21 T CONST)) (-4327 (($) 23 T CONST)) (-1686 (((-112) $ $) 40)) (-1783 (($ $) 31) (($ $ $) NIL)) (-1771 (($ $ $) 29)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1031 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -4367 ($ |#4|)) (-15 -1765 ($ |#4|)) (-15 -4358 (|#4| $)))) (-363) (-790) (-847) (-946 |#1| |#2| |#3|) (-641 |#4|)) (T -1031))
-((-4367 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-641 *2)))) (-1765 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-641 *2)))) (-4358 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-14 *6 (-641 *2)))))
-(-13 (-172) (-38 |#1|) (-10 -8 (-15 -4367 ($ |#4|)) (-15 -1765 ($ |#4|)) (-15 -4358 (|#4| $))))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL)) (-3476 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-2250 (((-112) (-112)) 43)) (-3864 (((-112) (-112)) 42)) (-1881 (((-52) $ (-1170) (-52)) NIL)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 (-52) "failed") (-1170) $) NIL)) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-1907 (($ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2359 (($ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-3528 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4412)))) (-3455 (((-52) $ (-1170)) NIL)) (-3080 (((-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-1170) $) NIL (|has| (-1170) (-847)))) (-3817 (((-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-1479 (((-1170) $) NIL (|has| (-1170) (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-3211 (((-641 (-1170)) $) 37)) (-4185 (((-112) (-1170) $) NIL)) (-1833 (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL)) (-2098 (($ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL)) (-1371 (((-641 (-1170)) $) NIL)) (-3629 (((-112) (-1170) $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-3073 (((-52) $) NIL (|has| (-1170) (-847)))) (-2343 (((-3 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) "failed") (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL)) (-2614 (($ $ (-52)) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))))) NIL (-12 (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL (-12 (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ $ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) NIL (-12 (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL (-12 (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-3599 (((-641 (-52)) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 (((-52) $ (-1170)) 39) (((-52) $ (-1170) (-52)) NIL)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL)) (-1765 (((-859) $) 41 (-4002 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1032) (-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -2250 ((-112) (-112))) (-15 -3864 ((-112) (-112))) (-6 -4411)))) (T -1032))
-((-2250 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))))
-(-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -2250 ((-112) (-112))) (-15 -3864 ((-112) (-112))) (-6 -4411)))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3678 (((-1129) $) 9)) (-1765 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-1033) (-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $))))) (T -1033))
-((-3678 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1033)))))
-(-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $))))
-((-2064 ((|#2| $) 10)))
-(((-1034 |#1| |#2|) (-10 -8 (-15 -2064 (|#2| |#1|))) (-1035 |#2|) (-1209)) (T -1034))
-NIL
-(-10 -8 (-15 -2064 (|#2| |#1|)))
-((-2013 (((-3 |#1| "failed") $) 9)) (-2064 ((|#1| $) 8)) (-1765 (($ |#1|) 6)))
+((-3472 (((-641 (-379)) (-949 (-564)) (-379)) 28) (((-641 (-379)) (-949 (-407 (-564))) (-379)) 27)) (-4258 (((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379)) 37)))
+(((-1020) (-10 -7 (-15 -3472 ((-641 (-379)) (-949 (-407 (-564))) (-379))) (-15 -3472 ((-641 (-379)) (-949 (-564)) (-379))) (-15 -4258 ((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379))))) (T -1020))
+((-4258 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1020)) (-5 *5 (-379)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) (-5 *4 (-379)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) (-5 *4 (-379)))))
+(-10 -7 (-15 -3472 ((-641 (-379)) (-949 (-407 (-564))) (-379))) (-15 -3472 ((-641 (-379)) (-949 (-564)) (-379))) (-15 -4258 ((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 75)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-4152 (($ $) NIL) (($ $ (-918)) NIL) (($ (-407 (-564))) NIL) (($ (-564)) NIL)) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) 70)) (-3180 (($) NIL T CONST)) (-1544 (((-3 $ "failed") (-1166 $) (-918) (-859)) NIL) (((-3 $ "failed") (-1166 $) (-918)) 55)) (-2224 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-564) "failed") $) NIL (-4012 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))))) (-2376 (((-407 (-564)) $) 17 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-407 (-564)) $) 17) ((|#1| $) 117) (((-564) $) NIL (-4012 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))))) (-3339 (($ $ (-859)) 47)) (-3962 (($ $ (-859)) 48)) (-1399 (($ $ $) NIL)) (-4080 (((-407 (-564)) $ $) 21)) (-4272 (((-3 $ "failed") $) 88)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3137 (((-112) $) 66)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL)) (-2001 (((-112) $) 69)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-4157 (((-3 (-1166 $) "failed") $) 83)) (-3060 (((-3 (-859) "failed") $) 82)) (-3122 (((-3 (-1166 $) "failed") $) 80)) (-1706 (((-3 (-1056 $ (-1166 $)) "failed") $) 78)) (-2688 (($ (-641 $)) NIL) (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 89)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-3714 (((-859) $) 87) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) 63) (($ (-407 (-564))) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 119)) (-3379 (((-768)) NIL T CONST)) (-3979 (((-112) $ $) NIL)) (-2441 (((-407 (-564)) $ $) 27)) (-4256 (((-641 $) (-1166 $)) 61) (((-641 $) (-1166 (-407 (-564)))) NIL) (((-641 $) (-1166 (-564))) NIL) (((-641 $) (-949 $)) NIL) (((-641 $) (-949 (-407 (-564)))) NIL) (((-641 $) (-949 (-564))) NIL)) (-1805 (($ (-1056 $ (-1166 $)) (-859)) 46)) (-3920 (($ $) 22)) (-4312 (($) 32 T CONST)) (-4323 (($) 39 T CONST)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 76)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 24)) (-1841 (($ $ $) 37)) (-1828 (($ $) 38) (($ $ $) 74)) (-1814 (($ $ $) 112)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 98) (($ $ $) 104) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ (-564) $) 98) (($ $ (-564)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1021 |#1|) (-13 (-1009) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -1805 ($ (-1056 $ (-1166 $)) (-859))) (-15 -1706 ((-3 (-1056 $ (-1166 $)) "failed") $)) (-15 -4080 ((-407 (-564)) $ $)))) (-13 (-845) (-363) (-1019))) (T -1021))
+((-1805 (*1 *1 *2 *3) (-12 (-5 *2 (-1056 (-1021 *4) (-1166 (-1021 *4)))) (-5 *3 (-859)) (-5 *1 (-1021 *4)) (-4 *4 (-13 (-845) (-363) (-1019))))) (-1706 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056 (-1021 *3) (-1166 (-1021 *3)))) (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019))))) (-4080 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019))))))
+(-13 (-1009) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -1805 ($ (-1056 $ (-1166 $)) (-859))) (-15 -1706 ((-3 (-1056 $ (-1166 $)) "failed") $)) (-15 -4080 ((-407 (-564)) $ $))))
+((-4094 (((-2 (|:| -4035 |#2|) (|:| -3395 (-641 |#1|))) |#2| (-641 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1022 |#1| |#2|) (-10 -7 (-15 -4094 (|#2| |#2| |#1|)) (-15 -4094 ((-2 (|:| -4035 |#2|) (|:| -3395 (-641 |#1|))) |#2| (-641 |#1|)))) (-363) (-652 |#1|)) (T -1022))
+((-4094 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -4035 *3) (|:| -3395 (-641 *5)))) (-5 *1 (-1022 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5)))) (-4094 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1022 *3 *2)) (-4 *2 (-652 *3)))))
+(-10 -7 (-15 -4094 (|#2| |#2| |#1|)) (-15 -4094 ((-2 (|:| -4035 |#2|) (|:| -3395 (-641 |#1|))) |#2| (-641 |#1|))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1843 ((|#1| $ |#1|) 14)) (-3868 ((|#1| $ |#1|) 12)) (-3850 (($ |#1|) 10)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4382 ((|#1| $) 11)) (-2261 ((|#1| $) 13)) (-3714 (((-859) $) 21 (|has| |#1| (-1094)))) (-1720 (((-112) $ $) 9)))
+(((-1023 |#1|) (-13 (-1209) (-10 -8 (-15 -3850 ($ |#1|)) (-15 -4382 (|#1| $)) (-15 -3868 (|#1| $ |#1|)) (-15 -2261 (|#1| $)) (-15 -1843 (|#1| $ |#1|)) (-15 -1720 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1023))
+((-3850 (*1 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-3868 (*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-2261 (*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-1843 (*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-1720 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1209)))))
+(-13 (-1209) (-10 -8 (-15 -3850 ($ |#1|)) (-15 -4382 (|#1| $)) (-15 -3868 (|#1| $ |#1|)) (-15 -2261 (|#1| $)) (-15 -1843 (|#1| $ |#1|)) (-15 -1720 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
+((-3702 (((-112) $ $) NIL)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |#4|)))) (-641 |#4|)) NIL)) (-4055 (((-641 $) (-641 |#4|)) 115) (((-641 $) (-641 |#4|) (-112)) 116) (((-641 $) (-641 |#4|) (-112) (-112)) 114) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 117)) (-4292 (((-641 |#3|) $) NIL)) (-3097 (((-112) $) NIL)) (-2092 (((-112) $) NIL (|has| |#1| (-556)))) (-1300 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3500 ((|#4| |#4| $) NIL)) (-1328 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| $) 109)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-4148 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412))) (((-3 |#4| "failed") $ |#3|) 63)) (-3180 (($) NIL T CONST)) (-2846 (((-112) $) 29 (|has| |#1| (-556)))) (-2228 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3171 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3798 (((-112) $) NIL (|has| |#1| (-556)))) (-1578 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1373 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2376 (($ (-641 |#4|)) NIL)) (-2063 (((-3 $ "failed") $) 45)) (-2687 ((|#4| |#4| $) 66)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 82 (|has| |#1| (-556)))) (-4300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4344 ((|#4| |#4| $) NIL)) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4412))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3151 (((-2 (|:| -3489 (-641 |#4|)) (|:| -1721 (-641 |#4|))) $) NIL)) (-2169 (((-112) |#4| $) NIL)) (-2358 (((-112) |#4| $) NIL)) (-2479 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3153 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 130)) (-4244 (((-641 |#4|) $) 18 (|has| $ (-6 -4412)))) (-2297 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2394 ((|#3| $) 38)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#4|) $) 19 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-1988 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 23)) (-3652 (((-641 |#3|) $) NIL)) (-1722 (((-112) |#3| $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-2881 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-2521 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| |#4| $) 107)) (-2541 (((-3 |#4| "failed") $) 42)) (-3607 (((-641 $) |#4| $) 90)) (-1779 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-1990 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 $))) |#4| $) 100) (((-112) |#4| $) 61)) (-4302 (((-641 $) |#4| $) 112) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 113) (((-641 $) |#4| (-641 $)) NIL)) (-2186 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 125)) (-2737 (($ |#4| $) 79) (($ (-641 |#4|) $) 80) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 76)) (-4104 (((-641 |#4|) $) NIL)) (-1954 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1863 ((|#4| |#4| $) NIL)) (-1733 (((-112) $ $) NIL)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1485 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2543 ((|#4| |#4| $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 (((-3 |#4| "failed") $) 40)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2359 (((-3 $ "failed") $ |#4|) 57)) (-3042 (($ $ |#4|) NIL) (((-641 $) |#4| $) 92) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 86)) (-2280 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 17)) (-2834 (($) 14)) (-3475 (((-768) $) NIL)) (-3855 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) 13)) (-2374 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) 22)) (-3789 (($ $ |#3|) 52)) (-1896 (($ $ |#3|) 53)) (-3121 (($ $) NIL)) (-1632 (($ $ |#3|) NIL)) (-3714 (((-859) $) 35) (((-641 |#4|) $) 46)) (-4113 (((-768) $) NIL (|has| |#3| (-368)))) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4138 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-4158 (((-641 $) |#4| $) 89) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-4289 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3148 (((-641 |#3|) $) NIL)) (-3199 (((-112) |#4| $) NIL)) (-4368 (((-112) |#3| $) 62)) (-1720 (((-112) $ $) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1024 |#1| |#2| |#3| |#4|) (-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2737 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4055 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -4055 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2186 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -3153 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1024))
+((-2737 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *3))) (-5 *1 (-1024 *5 *6 *7 *3)) (-4 *3 (-1060 *5 *6 *7)))) (-4055 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-4055 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-2186 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-3153 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1024 *5 *6 *7 *8))))) (-5 *1 (-1024 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
+(-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2737 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4055 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -4055 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2186 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -3153 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)))))
+((-3951 (((-641 (-685 |#1|)) (-641 (-685 |#1|))) 73) (((-685 |#1|) (-685 |#1|)) 72) (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 71) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 68)) (-1367 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918)) 66) (((-685 |#1|) (-685 |#1|) (-918)) 65)) (-2429 (((-641 (-685 (-564))) (-641 (-641 (-564)))) 84) (((-641 (-685 (-564))) (-641 (-902 (-564))) (-564)) 83) (((-685 (-564)) (-641 (-564))) 80) (((-685 (-564)) (-902 (-564)) (-564)) 78)) (-3614 (((-685 (-949 |#1|)) (-768)) 98)) (-3190 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918)) 52 (|has| |#1| (-6 (-4414 "*")))) (((-685 |#1|) (-685 |#1|) (-918)) 50 (|has| |#1| (-6 (-4414 "*"))))))
+(((-1025 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4414 "*"))) (-15 -3190 ((-685 |#1|) (-685 |#1|) (-918))) |%noBranch|) (IF (|has| |#1| (-6 (-4414 "*"))) (-15 -3190 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) |%noBranch|) (-15 -3614 ((-685 (-949 |#1|)) (-768))) (-15 -1367 ((-685 |#1|) (-685 |#1|) (-918))) (-15 -1367 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) (-15 -3951 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3951 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3951 ((-685 |#1|) (-685 |#1|))) (-15 -3951 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2429 ((-685 (-564)) (-902 (-564)) (-564))) (-15 -2429 ((-685 (-564)) (-641 (-564)))) (-15 -2429 ((-641 (-685 (-564))) (-641 (-902 (-564))) (-564))) (-15 -2429 ((-641 (-685 (-564))) (-641 (-641 (-564)))))) (-1046)) (T -1025))
+((-2429 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-902 (-564)))) (-5 *4 (-564)) (-5 *2 (-641 (-685 *4))) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-902 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4)) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-3951 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-3951 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-1367 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-1367 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-685 (-949 *4))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (|has| *4 (-6 (-4414 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (|has| *4 (-6 (-4414 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4414 "*"))) (-15 -3190 ((-685 |#1|) (-685 |#1|) (-918))) |%noBranch|) (IF (|has| |#1| (-6 (-4414 "*"))) (-15 -3190 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) |%noBranch|) (-15 -3614 ((-685 (-949 |#1|)) (-768))) (-15 -1367 ((-685 |#1|) (-685 |#1|) (-918))) (-15 -1367 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) (-15 -3951 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3951 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3951 ((-685 |#1|) (-685 |#1|))) (-15 -3951 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2429 ((-685 (-564)) (-902 (-564)) (-564))) (-15 -2429 ((-685 (-564)) (-641 (-564)))) (-15 -2429 ((-641 (-685 (-564))) (-641 (-902 (-564))) (-564))) (-15 -2429 ((-641 (-685 (-564))) (-641 (-641 (-564))))))
+((-3573 (((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)) 69 (|has| |#1| (-307)))) (-3374 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))) 110 (|has| |#1| (-363))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|)) 117 (|has| |#1| (-363)))) (-3110 (((-1259 |#1|) (-641 (-1259 |#1|)) (-564)) 134 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-2034 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918)) 123 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112)) 122 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|))) 121 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564)) 120 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3940 (((-112) (-641 (-685 |#1|))) 103 (|has| |#1| (-363))) (((-112) (-641 (-685 |#1|)) (-564)) 106 (|has| |#1| (-363)))) (-3816 (((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|)) 66 (|has| |#1| (-307)))) (-3859 (((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|)) 47)) (-1628 (((-685 |#1|) (-1259 (-1259 |#1|))) 40)) (-2464 (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564)) 94 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 93 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564)) 101 (|has| |#1| (-363)))))
+(((-1026 |#1|) (-10 -7 (-15 -1628 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -3859 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3816 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3573 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2464 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -2464 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2464 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -3940 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -3940 ((-112) (-641 (-685 |#1|)))) (-15 -3374 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3374 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2034 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -2034 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -2034 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -2034 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918))) (-15 -3110 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) (-1046)) (T -1026))
+((-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-2034 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1046)) (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1026 *4)) (-5 *3 (-641 (-685 *4))))) (-2034 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1046)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1026 *6)) (-5 *3 (-641 (-685 *6))))) (-3374 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-3374 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *4)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *5)))) (-2464 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1046)))) (-2464 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4)) (-4 *4 (-363)) (-4 *4 (-1046)))) (-2464 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564)) (-5 *2 (-685 *6)) (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1046)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307)) (-4 *5 (-1046)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1046)) (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1026 *5)) (-5 *4 (-1259 *5)))) (-3859 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1026 *4)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1046)) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4)))))
+(-10 -7 (-15 -1628 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -3859 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3816 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3573 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2464 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -2464 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2464 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -3940 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -3940 ((-112) (-641 (-685 |#1|)))) (-15 -3374 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3374 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2034 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -2034 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -2034 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -2034 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918))) (-15 -3110 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|))
+((-2189 ((|#1| (-918) |#1|) 18)))
+(((-1027 |#1|) (-10 -7 (-15 -2189 (|#1| (-918) |#1|))) (-13 (-1094) (-10 -8 (-15 -1814 ($ $ $))))) (T -1027))
+((-2189 (*1 *2 *3 *2) (-12 (-5 *3 (-918)) (-5 *1 (-1027 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -1814 ($ $ $))))))))
+(-10 -7 (-15 -2189 (|#1| (-918) |#1|)))
+((-3316 (((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564))))) 67)) (-2353 (((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564))))) 52)) (-4009 (((-641 (-316 (-564))) (-685 (-407 (-949 (-564))))) 45)) (-3321 (((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564))))) 87)) (-3906 (((-685 (-316 (-564))) (-685 (-316 (-564)))) 38)) (-3978 (((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564))))) 76)) (-4127 (((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564))))) 85)))
+(((-1028) (-10 -7 (-15 -3316 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564)))))) (-15 -2353 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564)))))) (-15 -4009 ((-641 (-316 (-564))) (-685 (-407 (-949 (-564)))))) (-15 -4127 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564)))))) (-15 -3906 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -3978 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -3321 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564)))))))) (T -1028))
+((-3321 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))) (-4127 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-316 (-564)))) (-5 *1 (-1028)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)) (-5 *3 (-316 (-564))))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564)))))))) (-5 *1 (-1028)))))
+(-10 -7 (-15 -3316 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564)))))) (-15 -2353 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564)))))) (-15 -4009 ((-641 (-316 (-564))) (-685 (-407 (-949 (-564)))))) (-15 -4127 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564)))))) (-15 -3906 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -3978 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -3321 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564)))))))
+((-2574 ((|#1| |#1| (-918)) 18)))
+(((-1029 |#1|) (-10 -7 (-15 -2574 (|#1| |#1| (-918)))) (-13 (-1094) (-10 -8 (-15 * ($ $ $))))) (T -1029))
+((-2574 (*1 *2 *2 *3) (-12 (-5 *3 (-918)) (-5 *1 (-1029 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2574 (|#1| |#1| (-918))))
+((-3714 ((|#1| (-312)) 11) (((-1264) |#1|) 9)))
+(((-1030 |#1|) (-10 -7 (-15 -3714 ((-1264) |#1|)) (-15 -3714 (|#1| (-312)))) (-1209)) (T -1030))
+((-3714 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1030 *2)) (-4 *2 (-1209)))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1030 *3)) (-4 *3 (-1209)))))
+(-10 -7 (-15 -3714 ((-1264) |#1|)) (-15 -3714 (|#1| (-312))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-1728 (($ |#4|) 25)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-1714 ((|#4| $) 27)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 46) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3379 (((-768)) 43 T CONST)) (-4312 (($) 21 T CONST)) (-4323 (($) 23 T CONST)) (-1720 (((-112) $ $) 40)) (-1828 (($ $) 31) (($ $ $) NIL)) (-1814 (($ $ $) 29)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1031 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -1728 ($ |#4|)) (-15 -3714 ($ |#4|)) (-15 -1714 (|#4| $)))) (-363) (-790) (-847) (-946 |#1| |#2| |#3|) (-641 |#4|)) (T -1031))
+((-1728 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-641 *2)))) (-3714 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-641 *2)))) (-1714 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-14 *6 (-641 *2)))))
+(-13 (-172) (-38 |#1|) (-10 -8 (-15 -1728 ($ |#4|)) (-15 -3714 ($ |#4|)) (-15 -1714 (|#4| $))))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL)) (-2399 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-1331 (((-112) (-112)) 43)) (-1757 (((-112) (-112)) 42)) (-3868 (((-52) $ (-1170) (-52)) NIL)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 (-52) "failed") (-1170) $) NIL)) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-4074 (($ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2514 (($ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-1998 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4413)))) (-3593 (((-52) $ (-1170)) NIL)) (-4244 (((-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-641 (-52)) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-1170) $) NIL (|has| (-1170) (-847)))) (-2572 (((-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-641 (-52)) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-52) (-1094))))) (-2415 (((-1170) $) NIL (|has| (-1170) (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4413))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-1922 (((-641 (-1170)) $) 37)) (-1690 (((-112) (-1170) $) NIL)) (-2775 (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL)) (-2373 (($ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL)) (-3127 (((-641 (-1170)) $) NIL)) (-1338 (((-112) (-1170) $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-2049 (((-52) $) NIL (|has| (-1170) (-847)))) (-2905 (((-3 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) "failed") (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL)) (-3538 (($ $ (-52)) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))))) NIL (-12 (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL (-12 (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ $ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) NIL (-12 (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL (-12 (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-52) (-1094))))) (-4121 (((-641 (-52)) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 (((-52) $ (-1170)) 39) (((-52) $ (-1170) (-52)) NIL)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL)) (-3714 (((-859) $) 41 (-4012 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1032) (-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -1331 ((-112) (-112))) (-15 -1757 ((-112) (-112))) (-6 -4412)))) (T -1032))
+((-1331 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))))
+(-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -1331 ((-112) (-112))) (-15 -1757 ((-112) (-112))) (-6 -4412)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2726 (((-1129) $) 9)) (-3714 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-1033) (-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $))))) (T -1033))
+((-2726 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1033)))))
+(-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $))))
+((-2376 ((|#2| $) 10)))
+(((-1034 |#1| |#2|) (-10 -8 (-15 -2376 (|#2| |#1|))) (-1035 |#2|) (-1209)) (T -1034))
+NIL
+(-10 -8 (-15 -2376 (|#2| |#1|)))
+((-2224 (((-3 |#1| "failed") $) 9)) (-2376 ((|#1| $) 8)) (-3714 (($ |#1|) 6)))
(((-1035 |#1|) (-140) (-1209)) (T -1035))
-((-2013 (*1 *2 *1) (|partial| -12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))))
-(-13 (-614 |t#1|) (-10 -8 (-15 -2013 ((-3 |t#1| "failed") $)) (-15 -2064 (|t#1| $))))
+((-2224 (*1 *2 *1) (|partial| -12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))))
+(-13 (-614 |t#1|) (-10 -8 (-15 -2224 ((-3 |t#1| "failed") $)) (-15 -2376 (|t#1| $))))
(((-614 |#1|) . T))
-((-3568 (((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))) 38)))
-(((-1036 |#1| |#2|) (-10 -7 (-15 -3568 ((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))))) (-556) (-13 (-556) (-1035 |#1|))) (T -1036))
-((-3568 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-13 (-556) (-1035 *5))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *6)))))) (-5 *1 (-1036 *5 *6)))))
-(-10 -7 (-15 -3568 ((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170)))))
-((-1298 (((-379)) 17)) (-2613 (((-1 (-379)) (-379) (-379)) 22)) (-1353 (((-1 (-379)) (-768)) 50)) (-3369 (((-379)) 37)) (-4336 (((-1 (-379)) (-379) (-379)) 38)) (-2260 (((-379)) 29)) (-3935 (((-1 (-379)) (-379)) 30)) (-1588 (((-379) (-768)) 45)) (-3524 (((-1 (-379)) (-768)) 46)) (-3378 (((-1 (-379)) (-768) (-768)) 49)) (-2837 (((-1 (-379)) (-768) (-768)) 47)))
-(((-1037) (-10 -7 (-15 -1298 ((-379))) (-15 -3369 ((-379))) (-15 -2260 ((-379))) (-15 -1588 ((-379) (-768))) (-15 -2613 ((-1 (-379)) (-379) (-379))) (-15 -4336 ((-1 (-379)) (-379) (-379))) (-15 -3935 ((-1 (-379)) (-379))) (-15 -3524 ((-1 (-379)) (-768))) (-15 -2837 ((-1 (-379)) (-768) (-768))) (-15 -3378 ((-1 (-379)) (-768) (-768))) (-15 -1353 ((-1 (-379)) (-768))))) (T -1037))
-((-1353 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-3378 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-2837 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-3935 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-4336 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-2613 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-379)) (-5 *1 (-1037)))) (-2260 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))) (-3369 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))) (-1298 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))))
-(-10 -7 (-15 -1298 ((-379))) (-15 -3369 ((-379))) (-15 -2260 ((-379))) (-15 -1588 ((-379) (-768))) (-15 -2613 ((-1 (-379)) (-379) (-379))) (-15 -4336 ((-1 (-379)) (-379) (-379))) (-15 -3935 ((-1 (-379)) (-379))) (-15 -3524 ((-1 (-379)) (-768))) (-15 -2837 ((-1 (-379)) (-768) (-768))) (-15 -3378 ((-1 (-379)) (-768) (-768))) (-15 -1353 ((-1 (-379)) (-768))))
-((-4006 (((-418 |#1|) |#1|) 33)))
-(((-1038 |#1|) (-10 -7 (-15 -4006 ((-418 |#1|) |#1|))) (-1235 (-407 (-949 (-564))))) (T -1038))
-((-4006 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1235 (-407 (-949 (-564))))))))
-(-10 -7 (-15 -4006 ((-418 |#1|) |#1|)))
-((-2621 (((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))) 14)))
-(((-1039 |#1|) (-10 -7 (-15 -2621 ((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))))) (-307)) (T -1039))
-((-2621 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-949 *4)))) (-5 *1 (-1039 *4)))))
-(-10 -7 (-15 -2621 ((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|)))))
-((-4170 (((-641 (-1170)) (-407 (-949 |#1|))) 17)) (-3964 (((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170)) 24)) (-4157 (((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170)) 26)) (-2022 (((-3 (-1170) "failed") (-407 (-949 |#1|))) 20)) (-2407 (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|))))) 32) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 33) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|)))) 28) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))) 29)) (-1765 (((-407 (-949 |#1|)) |#1|) 11)))
-(((-1040 |#1|) (-10 -7 (-15 -4170 ((-641 (-1170)) (-407 (-949 |#1|)))) (-15 -2022 ((-3 (-1170) "failed") (-407 (-949 |#1|)))) (-15 -3964 ((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -4157 ((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170))) (-15 -2407 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))) (-15 -2407 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|))))) (-15 -2407 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2407 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1765 ((-407 (-949 |#1|)) |#1|))) (-556)) (T -1040))
-((-1765 (*1 *2 *3) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-1040 *3)) (-4 *3 (-556)))) (-2407 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-5 *2 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-2407 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-5 *2 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-2407 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-949 *5)))) (-5 *2 (-407 (-949 *5))) (-4 *5 (-556)) (-5 *1 (-1040 *5)))) (-2407 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 (-407 (-949 *5))))) (-5 *4 (-1170)) (-5 *2 (-407 (-949 *5))) (-5 *1 (-1040 *5)) (-4 *5 (-556)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-407 (-1166 (-407 (-949 *5))))) (-5 *1 (-1040 *5)) (-5 *3 (-407 (-949 *5))))) (-2022 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-1170)) (-5 *1 (-1040 *4)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170))) (-5 *1 (-1040 *4)))))
-(-10 -7 (-15 -4170 ((-641 (-1170)) (-407 (-949 |#1|)))) (-15 -2022 ((-3 (-1170) "failed") (-407 (-949 |#1|)))) (-15 -3964 ((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -4157 ((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170))) (-15 -2407 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))) (-15 -2407 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|))))) (-15 -2407 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2407 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1765 ((-407 (-949 |#1|)) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3760 (($) 17 T CONST)) (-3865 ((|#1| $) 22)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-4140 ((|#1| $) 21)) (-2983 ((|#1|) 19 T CONST)) (-1765 (((-859) $) 11)) (-3275 ((|#1| $) 20)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15)))
+((-2022 (((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))) 38)))
+(((-1036 |#1| |#2|) (-10 -7 (-15 -2022 ((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))))) (-556) (-13 (-556) (-1035 |#1|))) (T -1036))
+((-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-13 (-556) (-1035 *5))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *6)))))) (-5 *1 (-1036 *5 *6)))))
+(-10 -7 (-15 -2022 ((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170)))))
+((-3622 (((-379)) 17)) (-3527 (((-1 (-379)) (-379) (-379)) 22)) (-1344 (((-1 (-379)) (-768)) 50)) (-3753 (((-379)) 37)) (-3139 (((-1 (-379)) (-379) (-379)) 38)) (-1443 (((-379)) 29)) (-4269 (((-1 (-379)) (-379)) 30)) (-4030 (((-379) (-768)) 45)) (-2837 (((-1 (-379)) (-768)) 46)) (-3438 (((-1 (-379)) (-768) (-768)) 49)) (-2240 (((-1 (-379)) (-768) (-768)) 47)))
+(((-1037) (-10 -7 (-15 -3622 ((-379))) (-15 -3753 ((-379))) (-15 -1443 ((-379))) (-15 -4030 ((-379) (-768))) (-15 -3527 ((-1 (-379)) (-379) (-379))) (-15 -3139 ((-1 (-379)) (-379) (-379))) (-15 -4269 ((-1 (-379)) (-379))) (-15 -2837 ((-1 (-379)) (-768))) (-15 -2240 ((-1 (-379)) (-768) (-768))) (-15 -3438 ((-1 (-379)) (-768) (-768))) (-15 -1344 ((-1 (-379)) (-768))))) (T -1037))
+((-1344 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-3438 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-2240 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-4269 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-3139 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-3527 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-379)) (-5 *1 (-1037)))) (-1443 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))) (-3753 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))) (-3622 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))))
+(-10 -7 (-15 -3622 ((-379))) (-15 -3753 ((-379))) (-15 -1443 ((-379))) (-15 -4030 ((-379) (-768))) (-15 -3527 ((-1 (-379)) (-379) (-379))) (-15 -3139 ((-1 (-379)) (-379) (-379))) (-15 -4269 ((-1 (-379)) (-379))) (-15 -2837 ((-1 (-379)) (-768))) (-15 -2240 ((-1 (-379)) (-768) (-768))) (-15 -3438 ((-1 (-379)) (-768) (-768))) (-15 -1344 ((-1 (-379)) (-768))))
+((-4139 (((-418 |#1|) |#1|) 33)))
+(((-1038 |#1|) (-10 -7 (-15 -4139 ((-418 |#1|) |#1|))) (-1235 (-407 (-949 (-564))))) (T -1038))
+((-4139 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1235 (-407 (-949 (-564))))))))
+(-10 -7 (-15 -4139 ((-418 |#1|) |#1|)))
+((-3626 (((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))) 14)))
+(((-1039 |#1|) (-10 -7 (-15 -3626 ((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))))) (-307)) (T -1039))
+((-3626 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-949 *4)))) (-5 *1 (-1039 *4)))))
+(-10 -7 (-15 -3626 ((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|)))))
+((-4292 (((-641 (-1170)) (-407 (-949 |#1|))) 17)) (-4103 (((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170)) 24)) (-4279 (((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170)) 26)) (-2848 (((-3 (-1170) "failed") (-407 (-949 |#1|))) 20)) (-2582 (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|))))) 32) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 33) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|)))) 28) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))) 29)) (-3714 (((-407 (-949 |#1|)) |#1|) 11)))
+(((-1040 |#1|) (-10 -7 (-15 -4292 ((-641 (-1170)) (-407 (-949 |#1|)))) (-15 -2848 ((-3 (-1170) "failed") (-407 (-949 |#1|)))) (-15 -4103 ((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -4279 ((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170))) (-15 -2582 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))) (-15 -2582 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|))))) (-15 -2582 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2582 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -3714 ((-407 (-949 |#1|)) |#1|))) (-556)) (T -1040))
+((-3714 (*1 *2 *3) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-1040 *3)) (-4 *3 (-556)))) (-2582 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-5 *2 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-2582 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-5 *2 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-2582 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-949 *5)))) (-5 *2 (-407 (-949 *5))) (-4 *5 (-556)) (-5 *1 (-1040 *5)))) (-2582 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 (-407 (-949 *5))))) (-5 *4 (-1170)) (-5 *2 (-407 (-949 *5))) (-5 *1 (-1040 *5)) (-4 *5 (-556)))) (-4103 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-407 (-1166 (-407 (-949 *5))))) (-5 *1 (-1040 *5)) (-5 *3 (-407 (-949 *5))))) (-2848 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-1170)) (-5 *1 (-1040 *4)))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170))) (-5 *1 (-1040 *4)))))
+(-10 -7 (-15 -4292 ((-641 (-1170)) (-407 (-949 |#1|)))) (-15 -2848 ((-3 (-1170) "failed") (-407 (-949 |#1|)))) (-15 -4103 ((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -4279 ((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170))) (-15 -2582 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))) (-15 -2582 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|))))) (-15 -2582 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2582 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -3714 ((-407 (-949 |#1|)) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3180 (($) 17 T CONST)) (-1768 ((|#1| $) 22)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-2518 ((|#1| $) 21)) (-4237 ((|#1|) 19 T CONST)) (-3714 (((-859) $) 11)) (-4081 ((|#1| $) 20)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15)))
(((-1041 |#1|) (-140) (-23)) (T -1041))
-((-3865 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-2983 (*1 *2) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -3865 (|t#1| $)) (-15 -4140 (|t#1| $)) (-15 -3275 (|t#1| $)) (-15 -2983 (|t#1|) -3246)))
+((-1768 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-4237 (*1 *2) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -1768 (|t#1| $)) (-15 -2518 (|t#1| $)) (-15 -4081 (|t#1| $)) (-15 -4237 (|t#1|) -2222)))
(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-2400 (($) 24 T CONST)) (-3760 (($) 17 T CONST)) (-3865 ((|#1| $) 22)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-4140 ((|#1| $) 21)) (-2983 ((|#1|) 19 T CONST)) (-1765 (((-859) $) 11)) (-3275 ((|#1| $) 20)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3293 (($) 24 T CONST)) (-3180 (($) 17 T CONST)) (-1768 ((|#1| $) 22)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-2518 ((|#1| $) 21)) (-4237 ((|#1|) 19 T CONST)) (-3714 (((-859) $) 11)) (-4081 ((|#1| $) 20)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15)))
(((-1042 |#1|) (-140) (-23)) (T -1042))
-((-2400 (*1 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))))
-(-13 (-1041 |t#1|) (-10 -8 (-15 -2400 ($) -3246)))
+((-3293 (*1 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))))
+(-13 (-1041 |t#1|) (-10 -8 (-15 -3293 ($) -2222)))
(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1041 |#1|) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 (-777 |#1| (-861 |#2|)))))) (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-4389 (((-641 $) (-641 (-777 |#1| (-861 |#2|)))) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112)) NIL)) (-4170 (((-641 (-861 |#2|)) $) NIL)) (-1747 (((-112) $) NIL)) (-2197 (((-112) $) NIL (|has| |#1| (-556)))) (-1940 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-3993 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1368 (((-641 (-2 (|:| |val| (-777 |#1| (-861 |#2|))) (|:| -3853 $))) (-777 |#1| (-861 |#2|)) $) NIL)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ (-861 |#2|)) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2164 (($ (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 (-777 |#1| (-861 |#2|)) "failed") $ (-861 |#2|)) NIL)) (-3760 (($) NIL T CONST)) (-4177 (((-112) $) NIL (|has| |#1| (-556)))) (-3911 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2694 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1378 (((-112) $) NIL (|has| |#1| (-556)))) (-3207 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-2254 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| |#1| (-556)))) (-2821 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-2064 (($ (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2758 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-2359 (($ (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-777 |#1| (-861 |#2|))) (|:| |den| |#1|)) (-777 |#1| (-861 |#2|)) $) NIL (|has| |#1| (-556)))) (-4269 (((-112) (-777 |#1| (-861 |#2|)) $ (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-3621 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-4367 (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $ (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $ (-777 |#1| (-861 |#2|))) NIL (|has| $ (-6 -4411))) (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-2058 (((-2 (|:| -3439 (-641 (-777 |#1| (-861 |#2|)))) (|:| -1589 (-641 (-777 |#1| (-861 |#2|))))) $) NIL)) (-1456 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-2097 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-2432 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-3080 (((-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2415 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-3162 (((-861 |#2|) $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-3513 (($ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL)) (-4343 (((-641 (-861 |#2|)) $) NIL)) (-1853 (((-112) (-861 |#2|) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-4181 (((-3 (-777 |#1| (-861 |#2|)) (-641 $)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1489 (((-641 (-2 (|:| |val| (-777 |#1| (-861 |#2|))) (|:| -3853 $))) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2376 (((-3 (-777 |#1| (-861 |#2|)) "failed") $) NIL)) (-2298 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL)) (-3866 (((-3 (-112) (-641 $)) (-777 |#1| (-861 |#2|)) $) NIL)) (-4214 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 $))) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-1617 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL)) (-1829 (($ (-777 |#1| (-861 |#2|)) $) NIL) (($ (-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-3277 (((-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-3561 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-3874 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-3862 (((-112) $ $) NIL)) (-3962 (((-2 (|:| |num| (-777 |#1| (-861 |#2|))) (|:| |den| |#1|)) (-777 |#1| (-861 |#2|)) $) NIL (|has| |#1| (-556)))) (-1512 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-3491 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 (((-3 (-777 |#1| (-861 |#2|)) "failed") $) NIL)) (-2343 (((-3 (-777 |#1| (-861 |#2|)) "failed") (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL)) (-3159 (((-3 $ "failed") $ (-777 |#1| (-861 |#2|))) NIL)) (-2678 (($ $ (-777 |#1| (-861 |#2|))) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL)) (-1467 (((-112) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|)))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-294 (-777 |#1| (-861 |#2|)))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-641 (-294 (-777 |#1| (-861 |#2|))))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-3344 (((-768) $) NIL)) (-3815 (((-768) (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (((-768) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-777 |#1| (-861 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-2318 (($ $ (-861 |#2|)) NIL)) (-1869 (($ $ (-861 |#2|)) NIL)) (-3430 (($ $) NIL)) (-1845 (($ $ (-861 |#2|)) NIL)) (-1765 (((-859) $) NIL) (((-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-1597 (((-768) $) NIL (|has| (-861 |#2|) (-368)))) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 (-777 |#1| (-861 |#2|))))) "failed") (-641 (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 (-777 |#1| (-861 |#2|))))) "failed") (-641 (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-1599 (((-112) $ (-1 (-112) (-777 |#1| (-861 |#2|)) (-641 (-777 |#1| (-861 |#2|))))) NIL)) (-3602 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL)) (-2237 (((-112) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2380 (((-641 (-861 |#2|)) $) NIL)) (-1759 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-3623 (((-112) (-861 |#2|) $) NIL)) (-1686 (((-112) $ $) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1043 |#1| |#2|) (-13 (-1066 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) (-10 -8 (-15 -4389 ((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112))))) (-452) (-641 (-1170))) (T -1043))
-((-4389 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1043 *5 *6)))))
-(-13 (-1066 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) (-10 -8 (-15 -4389 ((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112)))))
-((-2613 (((-1 (-564)) (-1088 (-564))) 33)) (-2794 (((-564) (-564) (-564) (-564) (-564)) 30)) (-2273 (((-1 (-564)) |RationalNumber|) NIL)) (-2142 (((-1 (-564)) |RationalNumber|) NIL)) (-1939 (((-1 (-564)) (-564) |RationalNumber|) NIL)))
-(((-1044) (-10 -7 (-15 -2613 ((-1 (-564)) (-1088 (-564)))) (-15 -1939 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -2273 ((-1 (-564)) |RationalNumber|)) (-15 -2142 ((-1 (-564)) |RationalNumber|)) (-15 -2794 ((-564) (-564) (-564) (-564) (-564))))) (T -1044))
-((-2794 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1044)))) (-2142 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))) (-2273 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)) (-5 *3 (-564)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))))
-(-10 -7 (-15 -2613 ((-1 (-564)) (-1088 (-564)))) (-15 -1939 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -2273 ((-1 (-564)) |RationalNumber|)) (-15 -2142 ((-1 (-564)) |RationalNumber|)) (-15 -2794 ((-564) (-564) (-564) (-564) (-564))))
-((-1765 (((-859) $) NIL) (($ (-564)) 10)))
-(((-1045 |#1|) (-10 -8 (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|))) (-1046)) (T -1045))
-NIL
-(-10 -8 (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3702 (((-112) $ $) NIL)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 (-777 |#1| (-861 |#2|)))))) (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-4055 (((-641 $) (-641 (-777 |#1| (-861 |#2|)))) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112)) NIL)) (-4292 (((-641 (-861 |#2|)) $) NIL)) (-3097 (((-112) $) NIL)) (-2092 (((-112) $) NIL (|has| |#1| (-556)))) (-1300 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-3500 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1328 (((-641 (-2 (|:| |val| (-777 |#1| (-861 |#2|))) (|:| -4011 $))) (-777 |#1| (-861 |#2|)) $) NIL)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ (-861 |#2|)) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-4148 (($ (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-3 (-777 |#1| (-861 |#2|)) "failed") $ (-861 |#2|)) NIL)) (-3180 (($) NIL T CONST)) (-2846 (((-112) $) NIL (|has| |#1| (-556)))) (-2228 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3171 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3798 (((-112) $) NIL (|has| |#1| (-556)))) (-1578 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-1373 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| |#1| (-556)))) (-2094 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-2376 (($ (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-2063 (((-3 $ "failed") $) NIL)) (-2687 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-2514 (($ (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-777 |#1| (-861 |#2|))) (|:| |den| |#1|)) (-777 |#1| (-861 |#2|)) $) NIL (|has| |#1| (-556)))) (-4300 (((-112) (-777 |#1| (-861 |#2|)) $ (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-4344 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1728 (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $ (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $ (-777 |#1| (-861 |#2|))) NIL (|has| $ (-6 -4412))) (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-3151 (((-2 (|:| -3489 (-641 (-777 |#1| (-861 |#2|)))) (|:| -1721 (-641 (-777 |#1| (-861 |#2|))))) $) NIL)) (-2169 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-2358 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-2479 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-4244 (((-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-2297 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-2394 (((-861 |#2|) $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-1988 (($ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL)) (-3652 (((-641 (-861 |#2|)) $) NIL)) (-1722 (((-112) (-861 |#2|) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-2881 (((-3 (-777 |#1| (-861 |#2|)) (-641 $)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2521 (((-641 (-2 (|:| |val| (-777 |#1| (-861 |#2|))) (|:| -4011 $))) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2541 (((-3 (-777 |#1| (-861 |#2|)) "failed") $) NIL)) (-3607 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL)) (-1779 (((-3 (-112) (-641 $)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1990 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 $))) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-4302 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL)) (-2737 (($ (-777 |#1| (-861 |#2|)) $) NIL) (($ (-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-4104 (((-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-1954 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-1863 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1733 (((-112) $ $) NIL)) (-1434 (((-2 (|:| |num| (-777 |#1| (-861 |#2|))) (|:| |den| |#1|)) (-777 |#1| (-861 |#2|)) $) NIL (|has| |#1| (-556)))) (-1485 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-2543 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 (((-3 (-777 |#1| (-861 |#2|)) "failed") $) NIL)) (-2905 (((-3 (-777 |#1| (-861 |#2|)) "failed") (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL)) (-2359 (((-3 $ "failed") $ (-777 |#1| (-861 |#2|))) NIL)) (-3042 (($ $ (-777 |#1| (-861 |#2|))) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL)) (-2280 (((-112) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|)))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-294 (-777 |#1| (-861 |#2|)))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-641 (-294 (-777 |#1| (-861 |#2|))))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-3475 (((-768) $) NIL)) (-3855 (((-768) (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (((-768) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-777 |#1| (-861 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-3789 (($ $ (-861 |#2|)) NIL)) (-1896 (($ $ (-861 |#2|)) NIL)) (-3121 (($ $) NIL)) (-1632 (($ $ (-861 |#2|)) NIL)) (-3714 (((-859) $) NIL) (((-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-4113 (((-768) $) NIL (|has| (-861 |#2|) (-368)))) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 (-777 |#1| (-861 |#2|))))) "failed") (-641 (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 (-777 |#1| (-861 |#2|))))) "failed") (-641 (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-4138 (((-112) $ (-1 (-112) (-777 |#1| (-861 |#2|)) (-641 (-777 |#1| (-861 |#2|))))) NIL)) (-4158 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL)) (-4289 (((-112) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3148 (((-641 (-861 |#2|)) $) NIL)) (-3199 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-4368 (((-112) (-861 |#2|) $) NIL)) (-1720 (((-112) $ $) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1043 |#1| |#2|) (-13 (-1066 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) (-10 -8 (-15 -4055 ((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112))))) (-452) (-641 (-1170))) (T -1043))
+((-4055 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1043 *5 *6)))))
+(-13 (-1066 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) (-10 -8 (-15 -4055 ((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112)))))
+((-3527 (((-1 (-564)) (-1088 (-564))) 33)) (-1801 (((-564) (-564) (-564) (-564) (-564)) 30)) (-3366 (((-1 (-564)) |RationalNumber|) NIL)) (-2799 (((-1 (-564)) |RationalNumber|) NIL)) (-4389 (((-1 (-564)) (-564) |RationalNumber|) NIL)))
+(((-1044) (-10 -7 (-15 -3527 ((-1 (-564)) (-1088 (-564)))) (-15 -4389 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3366 ((-1 (-564)) |RationalNumber|)) (-15 -2799 ((-1 (-564)) |RationalNumber|)) (-15 -1801 ((-564) (-564) (-564) (-564) (-564))))) (T -1044))
+((-1801 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1044)))) (-2799 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))) (-3366 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))) (-4389 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)) (-5 *3 (-564)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))))
+(-10 -7 (-15 -3527 ((-1 (-564)) (-1088 (-564)))) (-15 -4389 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3366 ((-1 (-564)) |RationalNumber|)) (-15 -2799 ((-1 (-564)) |RationalNumber|)) (-15 -1801 ((-564) (-564) (-564) (-564) (-564))))
+((-3714 (((-859) $) NIL) (($ (-564)) 10)))
+(((-1045 |#1|) (-10 -8 (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|))) (-1046)) (T -1045))
+NIL
+(-10 -8 (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-1046) (-140)) (T -1046))
-((-1965 (*1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-768)))))
-(-13 (-1053) (-723) (-644 $) (-614 (-564)) (-10 -7 (-15 -1965 ((-768)) -3246) (-6 -4408)))
+((-3379 (*1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-768)))))
+(-13 (-1053) (-723) (-644 $) (-614 (-564)) (-10 -7 (-15 -3379 ((-768)) -2222) (-6 -4409)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-2929 (((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)) 60)))
-(((-1047 |#1| |#2|) (-10 -7 (-15 -2929 ((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)))) (-1170) (-363)) (T -1047))
-((-2929 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-768)) (-4 *6 (-363)) (-5 *2 (-407 (-949 *6))) (-5 *1 (-1047 *5 *6)) (-14 *5 (-1170)))))
-(-10 -7 (-15 -2929 ((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768))))
-((-2741 (((-112) $) 40)) (-2832 (((-112) $) 17)) (-3383 (((-768) $) 13)) (-3393 (((-768) $) 14)) (-3883 (((-112) $) 30)) (-1509 (((-112) $) 42)))
-(((-1048 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3393 ((-768) |#1|)) (-15 -3383 ((-768) |#1|)) (-15 -1509 ((-112) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 -3883 ((-112) |#1|)) (-15 -2832 ((-112) |#1|))) (-1049 |#2| |#3| |#4| |#5| |#6|) (-768) (-768) (-1046) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1048))
-NIL
-(-10 -8 (-15 -3393 ((-768) |#1|)) (-15 -3383 ((-768) |#1|)) (-15 -1509 ((-112) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 -3883 ((-112) |#1|)) (-15 -2832 ((-112) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-2741 (((-112) $) 51)) (-3936 (((-3 $ "failed") $ $) 19)) (-2832 (((-112) $) 53)) (-3263 (((-112) $ (-768)) 61)) (-3760 (($) 17 T CONST)) (-1364 (($ $) 34 (|has| |#3| (-307)))) (-2698 ((|#4| $ (-564)) 39)) (-4224 (((-768) $) 33 (|has| |#3| (-556)))) (-3455 ((|#3| $ (-564) (-564)) 41)) (-3080 (((-641 |#3|) $) 68 (|has| $ (-6 -4411)))) (-4227 (((-768) $) 32 (|has| |#3| (-556)))) (-3798 (((-641 |#5|) $) 31 (|has| |#3| (-556)))) (-3383 (((-768) $) 45)) (-3393 (((-768) $) 44)) (-2830 (((-112) $ (-768)) 60)) (-1786 (((-564) $) 49)) (-2810 (((-564) $) 47)) (-3817 (((-641 |#3|) $) 69 (|has| $ (-6 -4411)))) (-3675 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4411))))) (-3896 (((-564) $) 48)) (-2104 (((-564) $) 46)) (-1605 (($ (-641 (-641 |#3|))) 54)) (-3513 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3671 (((-641 (-641 |#3|)) $) 43)) (-2972 (((-112) $ (-768)) 59)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1343 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-556)))) (-1467 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#3|) (-641 |#3|)) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) 72 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-2606 (((-112) $ $) 55)) (-2742 (((-112) $) 58)) (-3845 (($) 57)) (-4382 ((|#3| $ (-564) (-564)) 42) ((|#3| $ (-564) (-564) |#3|) 40)) (-3883 (((-112) $) 52)) (-3815 (((-768) |#3| $) 70 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4411)))) (-1899 (($ $) 56)) (-1709 ((|#5| $ (-564)) 38)) (-1765 (((-859) $) 11)) (-2237 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4411)))) (-1509 (((-112) $) 50)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#3|) 35 (|has| |#3| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2589 (((-768) $) 62 (|has| $ (-6 -4411)))))
+((-3791 (((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)) 60)))
+(((-1047 |#1| |#2|) (-10 -7 (-15 -3791 ((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)))) (-1170) (-363)) (T -1047))
+((-3791 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-768)) (-4 *6 (-363)) (-5 *2 (-407 (-949 *6))) (-5 *1 (-1047 *5 *6)) (-14 *5 (-1170)))))
+(-10 -7 (-15 -3791 ((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768))))
+((-2497 (((-112) $) 40)) (-2193 (((-112) $) 17)) (-3947 (((-768) $) 13)) (-3956 (((-768) $) 14)) (-1950 (((-112) $) 30)) (-2718 (((-112) $) 42)))
+(((-1048 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3956 ((-768) |#1|)) (-15 -3947 ((-768) |#1|)) (-15 -2718 ((-112) |#1|)) (-15 -2497 ((-112) |#1|)) (-15 -1950 ((-112) |#1|)) (-15 -2193 ((-112) |#1|))) (-1049 |#2| |#3| |#4| |#5| |#6|) (-768) (-768) (-1046) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1048))
+NIL
+(-10 -8 (-15 -3956 ((-768) |#1|)) (-15 -3947 ((-768) |#1|)) (-15 -2718 ((-112) |#1|)) (-15 -2497 ((-112) |#1|)) (-15 -1950 ((-112) |#1|)) (-15 -2193 ((-112) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2497 (((-112) $) 51)) (-4281 (((-3 $ "failed") $ $) 19)) (-2193 (((-112) $) 53)) (-2141 (((-112) $ (-768)) 61)) (-3180 (($) 17 T CONST)) (-3781 (($ $) 34 (|has| |#3| (-307)))) (-3207 ((|#4| $ (-564)) 39)) (-1595 (((-768) $) 33 (|has| |#3| (-556)))) (-3593 ((|#3| $ (-564) (-564)) 41)) (-4244 (((-641 |#3|) $) 68 (|has| $ (-6 -4412)))) (-2099 (((-768) $) 32 (|has| |#3| (-556)))) (-2397 (((-641 |#5|) $) 31 (|has| |#3| (-556)))) (-3947 (((-768) $) 45)) (-3956 (((-768) $) 44)) (-2173 (((-112) $ (-768)) 60)) (-2285 (((-564) $) 49)) (-1984 (((-564) $) 47)) (-2572 (((-641 |#3|) $) 69 (|has| $ (-6 -4412)))) (-3601 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4412))))) (-2083 (((-564) $) 48)) (-2437 (((-564) $) 46)) (-3469 (($ (-641 (-641 |#3|))) 54)) (-1988 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3549 (((-641 (-641 |#3|)) $) 43)) (-4144 (((-112) $ (-768)) 59)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-1347 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-556)))) (-2280 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#3|) (-641 |#3|)) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) 72 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3447 (((-112) $ $) 55)) (-2510 (((-112) $) 58)) (-2834 (($) 57)) (-4382 ((|#3| $ (-564) (-564)) 42) ((|#3| $ (-564) (-564) |#3|) 40)) (-1950 (((-112) $) 52)) (-3855 (((-768) |#3| $) 70 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4412)))) (-3890 (($ $) 56)) (-2811 ((|#5| $ (-564)) 38)) (-3714 (((-859) $) 11)) (-4289 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4412)))) (-2718 (((-112) $) 50)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#3|) 35 (|has| |#3| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2779 (((-768) $) 62 (|has| $ (-6 -4412)))))
(((-1049 |#1| |#2| |#3| |#4| |#5|) (-140) (-768) (-768) (-1046) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1049))
-((-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1605 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1046)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2832 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2104 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5))))) (-4382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) (-3455 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) (-4382 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *2 (-1046)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-2698 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *2 *7)) (-4 *6 (-1046)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-1709 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *7 *2)) (-4 *6 (-1046)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2082 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1343 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) (-1793 (*1 *1 *1 *2) (-12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-1364 (*1 *1 *1) (-12 (-4 *1 (-1049 *2 *3 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-768)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-768)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-641 *7)))))
-(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4411) (IF (|has| |t#3| (-172)) (-6 (-714 |t#3|)) |%noBranch|) (-15 -1605 ($ (-641 (-641 |t#3|)))) (-15 -2832 ((-112) $)) (-15 -3883 ((-112) $)) (-15 -2741 ((-112) $)) (-15 -1509 ((-112) $)) (-15 -1786 ((-564) $)) (-15 -3896 ((-564) $)) (-15 -2810 ((-564) $)) (-15 -2104 ((-564) $)) (-15 -3383 ((-768) $)) (-15 -3393 ((-768) $)) (-15 -3671 ((-641 (-641 |t#3|)) $)) (-15 -4382 (|t#3| $ (-564) (-564))) (-15 -3455 (|t#3| $ (-564) (-564))) (-15 -4382 (|t#3| $ (-564) (-564) |t#3|)) (-15 -2698 (|t#4| $ (-564))) (-15 -1709 (|t#5| $ (-564))) (-15 -2082 ($ (-1 |t#3| |t#3|) $)) (-15 -2082 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-556)) (-15 -1343 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -1793 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -1364 ($ $)) |%noBranch|) (IF (|has| |t#3| (-556)) (PROGN (-15 -4224 ((-768) $)) (-15 -4227 ((-768) $)) (-15 -3798 ((-641 |t#5|) $))) |%noBranch|)))
+((-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1046)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5))))) (-4382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) (-3593 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) (-4382 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *2 (-1046)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-3207 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *2 *7)) (-4 *6 (-1046)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-2811 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *7 *2)) (-4 *6 (-1046)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1347 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) (-1841 (*1 *1 *1 *2) (-12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-1049 *2 *3 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-768)))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-768)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-641 *7)))))
+(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4412) (IF (|has| |t#3| (-172)) (-6 (-714 |t#3|)) |%noBranch|) (-15 -3469 ($ (-641 (-641 |t#3|)))) (-15 -2193 ((-112) $)) (-15 -1950 ((-112) $)) (-15 -2497 ((-112) $)) (-15 -2718 ((-112) $)) (-15 -2285 ((-564) $)) (-15 -2083 ((-564) $)) (-15 -1984 ((-564) $)) (-15 -2437 ((-564) $)) (-15 -3947 ((-768) $)) (-15 -3956 ((-768) $)) (-15 -3549 ((-641 (-641 |t#3|)) $)) (-15 -4382 (|t#3| $ (-564) (-564))) (-15 -3593 (|t#3| $ (-564) (-564))) (-15 -4382 (|t#3| $ (-564) (-564) |t#3|)) (-15 -3207 (|t#4| $ (-564))) (-15 -2811 (|t#5| $ (-564))) (-15 -2313 ($ (-1 |t#3| |t#3|) $)) (-15 -2313 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-556)) (-15 -1347 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -1841 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -3781 ($ $)) |%noBranch|) (IF (|has| |t#3| (-556)) (PROGN (-15 -1595 ((-768) $)) (-15 -2099 ((-768) $)) (-15 -2397 ((-641 |t#5|) $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-611 (-859)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-644 |#3|) . T) ((-714 |#3|) |has| |#3| (-172)) ((-1052 |#3|) . T) ((-1094) . T) ((-1209) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-2741 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2832 (((-112) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-3760 (($) NIL T CONST)) (-1364 (($ $) 47 (|has| |#3| (-307)))) (-2698 (((-240 |#2| |#3|) $ (-564)) 36)) (-1674 (($ (-685 |#3|)) 45)) (-4224 (((-768) $) 49 (|has| |#3| (-556)))) (-3455 ((|#3| $ (-564) (-564)) NIL)) (-3080 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-4227 (((-768) $) 51 (|has| |#3| (-556)))) (-3798 (((-641 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-556)))) (-3383 (((-768) $) NIL)) (-3393 (((-768) $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-1786 (((-564) $) NIL)) (-2810 (((-564) $) NIL)) (-3817 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-3896 (((-564) $) NIL)) (-2104 (((-564) $) NIL)) (-1605 (($ (-641 (-641 |#3|))) 31)) (-3513 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3671 (((-641 (-641 |#3|)) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1343 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-556)))) (-1467 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#3| $ (-564) (-564)) NIL) ((|#3| $ (-564) (-564) |#3|) NIL)) (-3850 (((-134)) 59 (|has| |#3| (-363)))) (-3883 (((-112) $) NIL)) (-3815 (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094)))) (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) 65 (|has| |#3| (-612 (-536))))) (-1709 (((-240 |#1| |#3|) $ (-564)) 40)) (-1765 (((-859) $) 19) (((-685 |#3|) $) 42)) (-2237 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-1509 (((-112) $) NIL)) (-4317 (($) 16 T CONST)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1050 |#1| |#2| |#3|) (-13 (-1049 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -1674 ($ (-685 |#3|))))) (-768) (-768) (-1046)) (T -1050))
-((-1674 (*1 *1 *2) (-12 (-5 *2 (-685 *5)) (-4 *5 (-1046)) (-5 *1 (-1050 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)))))
-(-13 (-1049 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -1674 ($ (-685 |#3|)))))
-((-4367 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2082 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1051 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2082 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4367 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-768) (-768) (-1046) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1049 |#1| |#2| |#3| |#4| |#5|) (-1046) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1049 |#1| |#2| |#7| |#8| |#9|)) (T -1051))
-((-4367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1046)) (-4 *2 (-1046)) (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *12 (-1049 *5 *6 *2 *10 *11)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1046)) (-4 *10 (-1046)) (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1049 *5 *6 *10 *11 *12)) (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
-(-10 -7 (-15 -2082 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4367 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ |#1|) 23)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2497 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2193 (((-112) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-3180 (($) NIL T CONST)) (-3781 (($ $) 47 (|has| |#3| (-307)))) (-3207 (((-240 |#2| |#3|) $ (-564)) 36)) (-3563 (($ (-685 |#3|)) 45)) (-1595 (((-768) $) 49 (|has| |#3| (-556)))) (-3593 ((|#3| $ (-564) (-564)) NIL)) (-4244 (((-641 |#3|) $) NIL (|has| $ (-6 -4412)))) (-2099 (((-768) $) 51 (|has| |#3| (-556)))) (-2397 (((-641 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-556)))) (-3947 (((-768) $) NIL)) (-3956 (((-768) $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2285 (((-564) $) NIL)) (-1984 (((-564) $) NIL)) (-2572 (((-641 |#3|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#3| (-1094))))) (-2083 (((-564) $) NIL)) (-2437 (((-564) $) NIL)) (-3469 (($ (-641 (-641 |#3|))) 31)) (-1988 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3549 (((-641 (-641 |#3|)) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1347 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-556)))) (-2280 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#3| $ (-564) (-564)) NIL) ((|#3| $ (-564) (-564) |#3|) NIL)) (-2869 (((-134)) 59 (|has| |#3| (-363)))) (-1950 (((-112) $) NIL)) (-3855 (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#3| (-1094)))) (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) 65 (|has| |#3| (-612 (-536))))) (-2811 (((-240 |#1| |#3|) $ (-564)) 40)) (-3714 (((-859) $) 19) (((-685 |#3|) $) 42)) (-4289 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4412)))) (-2718 (((-112) $) NIL)) (-4312 (($) 16 T CONST)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1050 |#1| |#2| |#3|) (-13 (-1049 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -3563 ($ (-685 |#3|))))) (-768) (-768) (-1046)) (T -1050))
+((-3563 (*1 *1 *2) (-12 (-5 *2 (-685 *5)) (-4 *5 (-1046)) (-5 *1 (-1050 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)))))
+(-13 (-1049 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -3563 ($ (-685 |#3|)))))
+((-1728 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2313 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1051 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2313 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1728 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-768) (-768) (-1046) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1049 |#1| |#2| |#3| |#4| |#5|) (-1046) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1049 |#1| |#2| |#7| |#8| |#9|)) (T -1051))
+((-1728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1046)) (-4 *2 (-1046)) (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *12 (-1049 *5 *6 *2 *10 *11)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1046)) (-4 *10 (-1046)) (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1049 *5 *6 *10 *11 *12)) (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
+(-10 -7 (-15 -2313 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1728 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ |#1|) 23)))
(((-1052 |#1|) (-140) (-1053)) (T -1052))
((* (*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1053)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-1053) (-140)) (T -1053))
NIL
(-13 (-21) (-1106))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1106) . T) ((-1094) . T))
-((-3742 (($ $) 17)) (-3039 (($ $) 25)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 54)) (-1779 (($ $) 27)) (-2002 (($ $) 12)) (-2677 (($ $) 43)) (-2127 (((-379) $) NIL) (((-225) $) NIL) (((-889 (-379)) $) 36)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 31) (($ (-564)) NIL) (($ (-407 (-564))) 31)) (-1965 (((-768)) 9)) (-2991 (($ $) 44)))
-(((-1054 |#1|) (-10 -8 (-15 -3039 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2677 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -1779 (|#1| |#1|)) (-15 -2549 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| (-564))) (-15 -2127 ((-225) |#1|)) (-15 -2127 ((-379) |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| |#1|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|))) (-1055)) (T -1054))
-((-1965 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1054 *3)) (-4 *3 (-1055)))))
-(-10 -8 (-15 -3039 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2677 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -1779 (|#1| |#1|)) (-15 -2549 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| (-564))) (-15 -2127 ((-225) |#1|)) (-15 -2127 ((-379) |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| |#1|)) (-15 -1965 ((-768))) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4328 (((-564) $) 90)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3742 (($ $) 88)) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-4019 (($ $) 98)) (-3385 (((-112) $ $) 60)) (-3438 (((-564) $) 115)) (-3760 (($) 17 T CONST)) (-3039 (($ $) 87)) (-2013 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-2064 (((-564) $) 104) (((-407 (-564)) $) 101)) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-3241 (((-112) $) 72)) (-1751 (((-112) $) 113)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 94)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 97)) (-1779 (($ $) 93)) (-2506 (((-112) $) 114)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3571 (($ $ $) 112)) (-1547 (($ $ $) 111)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-2002 (($ $) 89)) (-2677 (($ $) 91)) (-4006 (((-418 $) $) 75)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-2127 (((-379) $) 106) (((-225) $) 105) (((-889 (-379)) $) 95)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-1965 (((-768)) 28 T CONST)) (-2991 (($ $) 92)) (-1582 (((-112) $ $) 40)) (-2016 (($ $) 116)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1738 (((-112) $ $) 109)) (-1715 (((-112) $ $) 108)) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 110)) (-1705 (((-112) $ $) 107)) (-1793 (($ $ $) 66)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
+((-3043 (($ $) 17)) (-3513 (($ $) 25)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 54)) (-2217 (($ $) 27)) (-3782 (($ $) 12)) (-3034 (($ $) 43)) (-2374 (((-379) $) NIL) (((-225) $) NIL) (((-889 (-379)) $) 36)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 31) (($ (-564)) NIL) (($ (-407 (-564))) 31)) (-3379 (((-768)) 9)) (-4296 (($ $) 44)))
+(((-1054 |#1|) (-10 -8 (-15 -3513 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3782 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -4296 (|#1| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 -4181 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| (-564))) (-15 -2374 ((-225) |#1|)) (-15 -2374 ((-379) |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| |#1|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|))) (-1055)) (T -1054))
+((-3379 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1054 *3)) (-4 *3 (-1055)))))
+(-10 -8 (-15 -3513 (|#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -3782 (|#1| |#1|)) (-15 -3034 (|#1| |#1|)) (-15 -4296 (|#1| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 -4181 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| (-564))) (-15 -2374 ((-225) |#1|)) (-15 -2374 ((-379) |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| |#1|)) (-15 -3379 ((-768))) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3494 (((-564) $) 90)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-3043 (($ $) 88)) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-4152 (($ $) 98)) (-3907 (((-112) $ $) 60)) (-3191 (((-564) $) 115)) (-3180 (($) 17 T CONST)) (-3513 (($ $) 87)) (-2224 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-2376 (((-564) $) 104) (((-407 (-564)) $) 101)) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-1926 (((-112) $) 72)) (-3137 (((-112) $) 113)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 94)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 97)) (-2217 (($ $) 93)) (-2001 (((-112) $) 114)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-3428 (($ $ $) 112)) (-3413 (($ $ $) 111)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-3782 (($ $) 89)) (-3034 (($ $) 91)) (-4139 (((-418 $) $) 75)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-2374 (((-379) $) 106) (((-225) $) 105) (((-889 (-379)) $) 95)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-3379 (((-768)) 28 T CONST)) (-4296 (($ $) 92)) (-3979 (((-112) $ $) 40)) (-3920 (($ $) 116)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1781 (((-112) $ $) 109)) (-1758 (((-112) $ $) 108)) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 110)) (-1746 (((-112) $ $) 107)) (-1841 (($ $ $) 66)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68)))
(((-1055) (-140)) (T -1055))
-((-2016 (*1 *1 *1) (-4 *1 (-1055))) (-1779 (*1 *1 *1) (-4 *1 (-1055))) (-2991 (*1 *1 *1) (-4 *1 (-1055))) (-2677 (*1 *1 *1) (-4 *1 (-1055))) (-4328 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-564)))) (-2002 (*1 *1 *1) (-4 *1 (-1055))) (-3742 (*1 *1 *1) (-4 *1 (-1055))) (-3039 (*1 *1 *1) (-4 *1 (-1055))))
-(-13 (-363) (-845) (-1019) (-1035 (-564)) (-1035 (-407 (-564))) (-999) (-612 (-889 (-379))) (-883 (-379)) (-147) (-10 -8 (-15 -1779 ($ $)) (-15 -2991 ($ $)) (-15 -2677 ($ $)) (-15 -4328 ((-564) $)) (-15 -2002 ($ $)) (-15 -3742 ($ $)) (-15 -3039 ($ $)) (-15 -2016 ($ $))))
+((-3920 (*1 *1 *1) (-4 *1 (-1055))) (-2217 (*1 *1 *1) (-4 *1 (-1055))) (-4296 (*1 *1 *1) (-4 *1 (-1055))) (-3034 (*1 *1 *1) (-4 *1 (-1055))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-564)))) (-3782 (*1 *1 *1) (-4 *1 (-1055))) (-3043 (*1 *1 *1) (-4 *1 (-1055))) (-3513 (*1 *1 *1) (-4 *1 (-1055))))
+(-13 (-363) (-845) (-1019) (-1035 (-564)) (-1035 (-407 (-564))) (-999) (-612 (-889 (-379))) (-883 (-379)) (-147) (-10 -8 (-15 -2217 ($ $)) (-15 -4296 ($ $)) (-15 -3034 ($ $)) (-15 -3494 ((-564) $)) (-15 -3782 ($ $)) (-15 -3043 ($ $)) (-15 -3513 ($ $)) (-15 -3920 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-889 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-883 (-379)) . T) ((-917) . T) ((-999) . T) ((-1019) . T) ((-1035 (-407 (-564))) . T) ((-1035 (-564)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) |#2| $) 26)) (-3042 ((|#1| $) 10)) (-3438 (((-564) |#2| $) 114)) (-3330 (((-3 $ "failed") |#2| (-918)) 75)) (-3549 ((|#1| $) 31)) (-1593 ((|#1| |#2| $ |#1|) 40)) (-2203 (($ $) 28)) (-1926 (((-3 |#2| "failed") |#2| $) 110)) (-1751 (((-112) |#2| $) NIL)) (-2506 (((-112) |#2| $) NIL)) (-1510 (((-112) |#2| $) 27)) (-3826 ((|#1| $) 115)) (-3538 ((|#1| $) 30)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1916 ((|#2| $) 102)) (-1765 (((-859) $) 94)) (-2299 ((|#1| |#2| $ |#1|) 41)) (-3290 (((-641 $) |#2|) 77)) (-1686 (((-112) $ $) 97)))
-(((-1056 |#1| |#2|) (-13 (-1063 |#1| |#2|) (-10 -8 (-15 -3538 (|#1| $)) (-15 -3549 (|#1| $)) (-15 -3042 (|#1| $)) (-15 -3826 (|#1| $)) (-15 -2203 ($ $)) (-15 -1510 ((-112) |#2| $)) (-15 -1593 (|#1| |#2| $ |#1|)))) (-13 (-845) (-363)) (-1235 |#1|)) (T -1056))
-((-1593 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-3538 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-3549 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-3042 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-3826 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2203 (*1 *1 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-1510 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-845) (-363))) (-5 *2 (-112)) (-5 *1 (-1056 *4 *3)) (-4 *3 (-1235 *4)))))
-(-13 (-1063 |#1| |#2|) (-10 -8 (-15 -3538 (|#1| $)) (-15 -3549 (|#1| $)) (-15 -3042 (|#1| $)) (-15 -3826 (|#1| $)) (-15 -2203 ($ $)) (-15 -1510 ((-112) |#2| $)) (-15 -1593 (|#1| |#2| $ |#1|))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3823 (($ $ $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $ $ $) NIL)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3438 (((-564) $) NIL)) (-2980 (($ $ $) NIL)) (-3760 (($) NIL T CONST)) (-3551 (($ (-1170)) 10) (($ (-564)) 7)) (-2013 (((-3 (-564) "failed") $) NIL)) (-2064 (((-564) $) NIL)) (-1387 (($ $ $) NIL)) (-2620 (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1978 (((-3 (-407 (-564)) "failed") $) NIL)) (-2709 (((-112) $) NIL)) (-3424 (((-407 (-564)) $) NIL)) (-2542 (($) NIL) (($ $) NIL)) (-1366 (($ $ $) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-4043 (($ $ $ $) NIL)) (-4071 (($ $ $) NIL)) (-1751 (((-112) $) NIL)) (-2314 (($ $ $) NIL)) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2419 (((-112) $) NIL)) (-1629 (((-112) $) NIL)) (-3374 (((-3 $ "failed") $) NIL)) (-2506 (((-112) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2676 (($ $ $ $) NIL)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2600 (($ $) NIL)) (-2564 (($ $) NIL)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4233 (($ $ $) NIL)) (-1611 (($) NIL T CONST)) (-2311 (($ $) NIL)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1613 (($ $) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1518 (((-112) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3226 (($ $ (-768)) NIL) (($ $) NIL)) (-3312 (($ $) NIL)) (-1899 (($ $) NIL)) (-2127 (((-564) $) 16) (((-536) $) NIL) (((-889 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1170)) 9)) (-1765 (((-859) $) 23) (($ (-564)) 6) (($ $) NIL) (($ (-564)) 6)) (-1965 (((-768)) NIL T CONST)) (-2775 (((-112) $ $) NIL)) (-1939 (($ $ $) NIL)) (-2743 (($) NIL)) (-1582 (((-112) $ $) NIL)) (-1903 (($ $ $ $) NIL)) (-2016 (($ $) NIL)) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1783 (($ $) 22) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
-(((-1057) (-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4398) (-6 -4403) (-6 -4399) (-15 -3551 ($ (-1170))) (-15 -3551 ($ (-564)))))) (T -1057))
-((-3551 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057)))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1057)))))
-(-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4398) (-6 -4403) (-6 -4399) (-15 -3551 ($ (-1170))) (-15 -3551 ($ (-564)))))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL)) (-3476 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-3334 (($) 9)) (-1881 (((-52) $ (-1170) (-52)) NIL)) (-3232 (($ $) 32)) (-1923 (($ $) 30)) (-4250 (($ $) 29)) (-3627 (($ $) 31)) (-3971 (($ $) 35)) (-3953 (($ $) 36)) (-2117 (($ $) 28)) (-3151 (($ $) 33)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) 27 (|has| $ (-6 -4411)))) (-1645 (((-3 (-52) "failed") (-1170) $) 43)) (-3760 (($) NIL T CONST)) (-3945 (($) 7)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-1907 (($ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) 53 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2359 (($ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-3517 (((-3 (-1152) "failed") $ (-1152) (-564)) 74)) (-3528 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4412)))) (-3455 (((-52) $ (-1170)) NIL)) (-3080 (((-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-1170) $) NIL (|has| (-1170) (-847)))) (-3817 (((-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) 38 (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-1479 (((-1170) $) NIL (|has| (-1170) (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-3211 (((-641 (-1170)) $) NIL)) (-4185 (((-112) (-1170) $) NIL)) (-1833 (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL)) (-2098 (($ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) 46)) (-1371 (((-641 (-1170)) $) NIL)) (-3629 (((-112) (-1170) $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-3572 (((-379) $ (-1170)) 52)) (-1384 (((-641 (-1152)) $ (-1152)) 76)) (-3073 (((-52) $) NIL (|has| (-1170) (-847)))) (-2343 (((-3 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) "failed") (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL)) (-2614 (($ $ (-52)) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))))) NIL (-12 (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL (-12 (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ $ (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) NIL (-12 (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL (-12 (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-309 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-3599 (((-641 (-52)) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 (((-52) $ (-1170)) NIL) (((-52) $ (-1170) (-52)) NIL)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL)) (-1849 (($ $ (-1170)) 54)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) 40)) (-2817 (($ $ $) 41)) (-1765 (((-859) $) NIL (-4002 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-611 (-859)))))) (-2073 (($ $ (-1170) (-379)) 50)) (-3019 (($ $ (-1170) (-379)) 51)) (-2652 (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 (-1170)) (|:| -1327 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-52) (-1094)) (|has| (-2 (|:| -2351 (-1170)) (|:| -1327 (-52))) (-1094))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1058) (-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -2817 ($ $ $)) (-15 -3945 ($)) (-15 -2117 ($ $)) (-15 -4250 ($ $)) (-15 -1923 ($ $)) (-15 -3627 ($ $)) (-15 -3151 ($ $)) (-15 -3232 ($ $)) (-15 -3971 ($ $)) (-15 -3953 ($ $)) (-15 -2073 ($ $ (-1170) (-379))) (-15 -3019 ($ $ (-1170) (-379))) (-15 -3572 ((-379) $ (-1170))) (-15 -1384 ((-641 (-1152)) $ (-1152))) (-15 -1849 ($ $ (-1170))) (-15 -3334 ($)) (-15 -3517 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4411)))) (T -1058))
-((-2817 (*1 *1 *1 *1) (-5 *1 (-1058))) (-3945 (*1 *1) (-5 *1 (-1058))) (-2117 (*1 *1 *1) (-5 *1 (-1058))) (-4250 (*1 *1 *1) (-5 *1 (-1058))) (-1923 (*1 *1 *1) (-5 *1 (-1058))) (-3627 (*1 *1 *1) (-5 *1 (-1058))) (-3151 (*1 *1 *1) (-5 *1 (-1058))) (-3232 (*1 *1 *1) (-5 *1 (-1058))) (-3971 (*1 *1 *1) (-5 *1 (-1058))) (-3953 (*1 *1 *1) (-5 *1 (-1058))) (-2073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))) (-3019 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1058)))) (-1384 (*1 *2 *1 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1058)) (-5 *3 (-1152)))) (-1849 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1058)))) (-3334 (*1 *1) (-5 *1 (-1058))) (-3517 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1058)))))
-(-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -2817 ($ $ $)) (-15 -3945 ($)) (-15 -2117 ($ $)) (-15 -4250 ($ $)) (-15 -1923 ($ $)) (-15 -3627 ($ $)) (-15 -3151 ($ $)) (-15 -3232 ($ $)) (-15 -3971 ($ $)) (-15 -3953 ($ $)) (-15 -2073 ($ $ (-1170) (-379))) (-15 -3019 ($ $ (-1170) (-379))) (-15 -3572 ((-379) $ (-1170))) (-15 -1384 ((-641 (-1152)) $ (-1152))) (-15 -1849 ($ $ (-1170))) (-15 -3334 ($)) (-15 -3517 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4411)))
-((-1882 (($ $) 46)) (-3989 (((-112) $ $) 80)) (-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-949 (-407 (-564)))) 248) (((-3 $ "failed") (-949 (-564))) 247) (((-3 $ "failed") (-949 |#2|)) 250)) (-2064 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) NIL) (($ (-949 (-407 (-564)))) 236) (($ (-949 (-564))) 232) (($ (-949 |#2|)) 252)) (-4346 (($ $) NIL) (($ $ |#4|) 44)) (-4269 (((-112) $ $) 126) (((-112) $ (-641 $)) 130)) (-2814 (((-112) $) 60)) (-3363 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 120)) (-2206 (($ $) 155)) (-3248 (($ $) 151)) (-1641 (($ $) 150)) (-1912 (($ $ $) 85) (($ $ $ |#4|) 90)) (-1465 (($ $ $) 88) (($ $ $ |#4|) 92)) (-2415 (((-112) $ $) 138) (((-112) $ (-641 $)) 139)) (-3162 ((|#4| $) 32)) (-2778 (($ $ $) 123)) (-1534 (((-112) $) 59)) (-1999 (((-768) $) 35)) (-1393 (($ $) 169)) (-3006 (($ $) 166)) (-1346 (((-641 $) $) 72)) (-1567 (($ $) 62)) (-3041 (($ $) 162)) (-2714 (((-641 $) $) 69)) (-3127 (($ $) 64)) (-4323 ((|#2| $) NIL) (($ $ |#4|) 39)) (-4092 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2213 (-768))) $ $) 125)) (-2240 (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $) 121) (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $ |#4|) 122)) (-4239 (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -2746 $)) $ $) 116) (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -2746 $)) $ $ |#4|) 118)) (-2706 (($ $ $) 95) (($ $ $ |#4|) 103)) (-3289 (($ $ $) 96) (($ $ $ |#4|) 104)) (-3249 (((-641 $) $) 54)) (-3561 (((-112) $ $) 135) (((-112) $ (-641 $)) 136)) (-3874 (($ $ $) 111)) (-1611 (($ $) 37)) (-3862 (((-112) $ $) 78)) (-1512 (((-112) $ $) 131) (((-112) $ (-641 $)) 133)) (-3491 (($ $ $) 109)) (-1821 (($ $) 41)) (-2527 ((|#2| |#2| $) 159) (($ (-641 $)) NIL) (($ $ $) NIL)) (-3983 (($ $ |#2|) NIL) (($ $ $) 148)) (-2342 (($ $ |#2|) 143) (($ $ $) 146)) (-2981 (($ $) 49)) (-3288 (($ $) 55)) (-2127 (((-889 (-379)) $) NIL) (((-889 (-564)) $) NIL) (((-536) $) NIL) (($ (-949 (-407 (-564)))) 238) (($ (-949 (-564))) 234) (($ (-949 |#2|)) 249) (((-1152) $) 277) (((-949 |#2|) $) 179)) (-1765 (((-859) $) 29) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-949 |#2|) $) 180) (($ (-407 (-564))) NIL) (($ $) NIL)) (-4315 (((-3 (-112) "failed") $ $) 77)))
-(((-1059 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1765 (|#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -2527 (|#1| (-641 |#1|))) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 ((-949 |#2|) |#1|)) (-15 -2127 ((-949 |#2|) |#1|)) (-15 -2127 ((-1152) |#1|)) (-15 -1393 (|#1| |#1|)) (-15 -3006 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -2206 (|#1| |#1|)) (-15 -2527 (|#2| |#2| |#1|)) (-15 -3983 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -3983 (|#1| |#1| |#2|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -3248 (|#1| |#1|)) (-15 -1641 (|#1| |#1|)) (-15 -2127 (|#1| (-949 |#2|))) (-15 -2064 (|#1| (-949 |#2|))) (-15 -2013 ((-3 |#1| "failed") (-949 |#2|))) (-15 -2127 (|#1| (-949 (-564)))) (-15 -2064 (|#1| (-949 (-564)))) (-15 -2013 ((-3 |#1| "failed") (-949 (-564)))) (-15 -2127 (|#1| (-949 (-407 (-564))))) (-15 -2064 (|#1| (-949 (-407 (-564))))) (-15 -2013 ((-3 |#1| "failed") (-949 (-407 (-564))))) (-15 -3874 (|#1| |#1| |#1|)) (-15 -3491 (|#1| |#1| |#1|)) (-15 -4092 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2213 (-768))) |#1| |#1|)) (-15 -2778 (|#1| |#1| |#1|)) (-15 -3363 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -2240 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1| |#4|)) (-15 -2240 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -4239 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -2746 |#1|)) |#1| |#1| |#4|)) (-15 -4239 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -3289 (|#1| |#1| |#1| |#4|)) (-15 -2706 (|#1| |#1| |#1| |#4|)) (-15 -3289 (|#1| |#1| |#1|)) (-15 -2706 (|#1| |#1| |#1|)) (-15 -1465 (|#1| |#1| |#1| |#4|)) (-15 -1912 (|#1| |#1| |#1| |#4|)) (-15 -1465 (|#1| |#1| |#1|)) (-15 -1912 (|#1| |#1| |#1|)) (-15 -2415 ((-112) |#1| (-641 |#1|))) (-15 -2415 ((-112) |#1| |#1|)) (-15 -3561 ((-112) |#1| (-641 |#1|))) (-15 -3561 ((-112) |#1| |#1|)) (-15 -1512 ((-112) |#1| (-641 |#1|))) (-15 -1512 ((-112) |#1| |#1|)) (-15 -4269 ((-112) |#1| (-641 |#1|))) (-15 -4269 ((-112) |#1| |#1|)) (-15 -3989 ((-112) |#1| |#1|)) (-15 -3862 ((-112) |#1| |#1|)) (-15 -4315 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1346 ((-641 |#1|) |#1|)) (-15 -2714 ((-641 |#1|) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -2814 ((-112) |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -4346 (|#1| |#1| |#4|)) (-15 -4323 (|#1| |#1| |#4|)) (-15 -3288 (|#1| |#1|)) (-15 -3249 ((-641 |#1|) |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1999 ((-768) |#1|)) (-15 -3162 (|#4| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -1765 (|#1| |#4|)) (-15 -2013 ((-3 |#4| "failed") |#1|)) (-15 -2064 (|#4| |#1|)) (-15 -4323 (|#2| |#1|)) (-15 -4346 (|#1| |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|))) (-1060 |#2| |#3| |#4|) (-1046) (-790) (-847)) (T -1059))
-NIL
-(-10 -8 (-15 -1765 (|#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -2527 (|#1| (-641 |#1|))) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 ((-949 |#2|) |#1|)) (-15 -2127 ((-949 |#2|) |#1|)) (-15 -2127 ((-1152) |#1|)) (-15 -1393 (|#1| |#1|)) (-15 -3006 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -2206 (|#1| |#1|)) (-15 -2527 (|#2| |#2| |#1|)) (-15 -3983 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -3983 (|#1| |#1| |#2|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -3248 (|#1| |#1|)) (-15 -1641 (|#1| |#1|)) (-15 -2127 (|#1| (-949 |#2|))) (-15 -2064 (|#1| (-949 |#2|))) (-15 -2013 ((-3 |#1| "failed") (-949 |#2|))) (-15 -2127 (|#1| (-949 (-564)))) (-15 -2064 (|#1| (-949 (-564)))) (-15 -2013 ((-3 |#1| "failed") (-949 (-564)))) (-15 -2127 (|#1| (-949 (-407 (-564))))) (-15 -2064 (|#1| (-949 (-407 (-564))))) (-15 -2013 ((-3 |#1| "failed") (-949 (-407 (-564))))) (-15 -3874 (|#1| |#1| |#1|)) (-15 -3491 (|#1| |#1| |#1|)) (-15 -4092 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2213 (-768))) |#1| |#1|)) (-15 -2778 (|#1| |#1| |#1|)) (-15 -3363 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -2240 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1| |#4|)) (-15 -2240 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -4239 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -2746 |#1|)) |#1| |#1| |#4|)) (-15 -4239 ((-2 (|:| -1662 |#1|) (|:| |gap| (-768)) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -3289 (|#1| |#1| |#1| |#4|)) (-15 -2706 (|#1| |#1| |#1| |#4|)) (-15 -3289 (|#1| |#1| |#1|)) (-15 -2706 (|#1| |#1| |#1|)) (-15 -1465 (|#1| |#1| |#1| |#4|)) (-15 -1912 (|#1| |#1| |#1| |#4|)) (-15 -1465 (|#1| |#1| |#1|)) (-15 -1912 (|#1| |#1| |#1|)) (-15 -2415 ((-112) |#1| (-641 |#1|))) (-15 -2415 ((-112) |#1| |#1|)) (-15 -3561 ((-112) |#1| (-641 |#1|))) (-15 -3561 ((-112) |#1| |#1|)) (-15 -1512 ((-112) |#1| (-641 |#1|))) (-15 -1512 ((-112) |#1| |#1|)) (-15 -4269 ((-112) |#1| (-641 |#1|))) (-15 -4269 ((-112) |#1| |#1|)) (-15 -3989 ((-112) |#1| |#1|)) (-15 -3862 ((-112) |#1| |#1|)) (-15 -4315 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1346 ((-641 |#1|) |#1|)) (-15 -2714 ((-641 |#1|) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -2814 ((-112) |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -4346 (|#1| |#1| |#4|)) (-15 -4323 (|#1| |#1| |#4|)) (-15 -3288 (|#1| |#1|)) (-15 -3249 ((-641 |#1|) |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1999 ((-768) |#1|)) (-15 -3162 (|#4| |#1|)) (-15 -2127 ((-536) |#1|)) (-15 -2127 ((-889 (-564)) |#1|)) (-15 -2127 ((-889 (-379)) |#1|)) (-15 -1765 (|#1| |#4|)) (-15 -2013 ((-3 |#4| "failed") |#1|)) (-15 -2064 (|#4| |#1|)) (-15 -4323 (|#2| |#1|)) (-15 -4346 (|#1| |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4170 (((-641 |#3|) $) 110)) (-3964 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1840 (($ $) 88 (|has| |#1| (-556)))) (-4035 (((-112) $) 90 (|has| |#1| (-556)))) (-2831 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-1882 (($ $) 271)) (-3989 (((-112) $ $) 257)) (-3936 (((-3 $ "failed") $ $) 19)) (-2673 (($ $ $) 216 (|has| |#1| (-556)))) (-3228 (((-641 $) $ $) 211 (|has| |#1| (-556)))) (-1871 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-1368 (($ $) 98 (|has| |#1| (-452)))) (-3981 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-949 (-407 (-564)))) 231 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (((-3 $ "failed") (-949 (-564))) 228 (-4002 (-12 (-4254 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (((-3 $ "failed") (-949 |#1|)) 225 (-4002 (-12 (-4254 (|has| |#1| (-38 (-407 (-564))))) (-4254 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-4254 (|has| |#1| (-545))) (-4254 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-4254 (|has| |#1| (-989 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-2064 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137) (($ (-949 (-407 (-564)))) 230 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-949 (-564))) 227 (-4002 (-12 (-4254 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-949 |#1|)) 224 (-4002 (-12 (-4254 (|has| |#1| (-38 (-407 (-564))))) (-4254 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-4254 (|has| |#1| (-545))) (-4254 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-4254 (|has| |#1| (-989 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-4267 (($ $ $ |#3|) 108 (|has| |#1| (-172))) (($ $ $) 212 (|has| |#1| (-556)))) (-4346 (($ $) 154) (($ $ |#3|) 266)) (-2620 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-4269 (((-112) $ $) 256) (((-112) $ (-641 $)) 255)) (-1926 (((-3 $ "failed") $) 33)) (-2814 (((-112) $) 264)) (-3363 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 236)) (-2206 (($ $) 205 (|has| |#1| (-452)))) (-2190 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-4334 (((-641 $) $) 109)) (-3241 (((-112) $) 96 (|has| |#1| (-906)))) (-3248 (($ $) 221 (|has| |#1| (-556)))) (-1641 (($ $) 222 (|has| |#1| (-556)))) (-1912 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1465 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2877 (($ $ |#1| |#2| $) 172)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2419 (((-112) $) 31)) (-3107 (((-768) $) 169)) (-2415 (((-112) $ $) 250) (((-112) $ (-641 $)) 249)) (-1837 (($ $ $ $ $) 207 (|has| |#1| (-556)))) (-3162 ((|#3| $) 275)) (-4157 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-2791 (((-641 $) $) 126)) (-3101 (((-112) $) 152)) (-4145 (($ |#1| |#2|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-2778 (($ $ $) 235)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ |#3|) 120)) (-1534 (((-112) $) 265)) (-3829 ((|#2| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-3571 (($ $ $) 79 (|has| |#1| (-847)))) (-1999 (((-768) $) 274)) (-1547 (($ $ $) 78 (|has| |#1| (-847)))) (-2964 (($ (-1 |#2| |#2|) $) 171)) (-2082 (($ (-1 |#1| |#1|) $) 151)) (-2022 (((-3 |#3| "failed") $) 123)) (-1393 (($ $) 202 (|has| |#1| (-452)))) (-3006 (($ $) 203 (|has| |#1| (-452)))) (-1346 (((-641 $) $) 260)) (-1567 (($ $) 263)) (-3041 (($ $) 204 (|has| |#1| (-452)))) (-2714 (((-641 $) $) 261)) (-3127 (($ $) 262)) (-4311 (($ $) 149)) (-4323 ((|#1| $) 148) (($ $ |#3|) 267)) (-2488 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-4092 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2213 (-768))) $ $) 234)) (-2240 (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $) 238) (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $ |#3|) 237)) (-4239 (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -2746 $)) $ $) 240) (((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -2746 $)) $ $ |#3|) 239)) (-2706 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3289 (($ $ $) 243) (($ $ $ |#3|) 241)) (-4202 (((-1152) $) 9)) (-1489 (($ $ $) 210 (|has| |#1| (-556)))) (-3249 (((-641 $) $) 269)) (-1964 (((-3 (-641 $) "failed") $) 114)) (-1295 (((-3 (-641 $) "failed") $) 115)) (-1691 (((-3 (-2 (|:| |var| |#3|) (|:| -3747 (-768))) "failed") $) 113)) (-3561 (((-112) $ $) 252) (((-112) $ (-641 $)) 251)) (-3874 (($ $ $) 232)) (-1611 (($ $) 273)) (-3862 (((-112) $ $) 258)) (-1512 (((-112) $ $) 254) (((-112) $ (-641 $)) 253)) (-3491 (($ $ $) 233)) (-1821 (($ $) 272)) (-3802 (((-1114) $) 10)) (-3058 (((-2 (|:| -2527 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-556)))) (-2320 (((-2 (|:| -2527 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-556)))) (-4285 (((-112) $) 166)) (-4298 ((|#1| $) 167)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2527 ((|#1| |#1| $) 206 (|has| |#1| (-452))) (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4006 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1544 (((-2 (|:| -2527 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-556)))) (-1343 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-3983 (($ $ |#1|) 219 (|has| |#1| (-556))) (($ $ $) 217 (|has| |#1| (-556)))) (-2342 (($ $ |#1|) 220 (|has| |#1| (-556))) (($ $ $) 218 (|has| |#1| (-556)))) (-2407 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-1938 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-3226 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39)) (-3344 ((|#2| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129)) (-2981 (($ $) 270)) (-3288 (($ $) 268)) (-2127 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536))))) (($ (-949 (-407 (-564)))) 229 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-949 (-564))) 226 (-4002 (-12 (-4254 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-949 |#1|)) 223 (|has| |#3| (-612 (-1170)))) (((-1152) $) 201 (-12 (|has| |#1| (-1035 (-564))) (|has| |#3| (-612 (-1170))))) (((-949 |#1|) $) 200 (|has| |#3| (-612 (-1170))))) (-2712 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4266 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-949 |#1|) $) 199 (|has| |#3| (-612 (-1170)))) (($ (-407 (-564))) 72 (-4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) 168)) (-1757 ((|#1| $ |#2|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-2864 (((-3 $ "failed") $) 73 (-4002 (-4266 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) 28 T CONST)) (-2958 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-1582 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4317 (($) 18 T CONST)) (-4315 (((-3 (-112) "failed") $ $) 259)) (-4327 (($) 30 T CONST)) (-1557 (($ $ $ $ (-768)) 208 (|has| |#1| (-556)))) (-2303 (($ $ $ (-768)) 209 (|has| |#1| (-556)))) (-3190 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35)) (-1738 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1793 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) |#2| $) 26)) (-2018 ((|#1| $) 10)) (-3191 (((-564) |#2| $) 114)) (-1544 (((-3 $ "failed") |#2| (-918)) 75)) (-2592 ((|#1| $) 31)) (-4080 ((|#1| |#2| $ |#1|) 40)) (-2150 (($ $) 28)) (-4272 (((-3 |#2| "failed") |#2| $) 110)) (-3137 (((-112) |#2| $) NIL)) (-2001 (((-112) |#2| $) NIL)) (-2730 (((-112) |#2| $) 27)) (-2675 ((|#1| $) 115)) (-2578 ((|#1| $) 30)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4180 ((|#2| $) 102)) (-3714 (((-859) $) 94)) (-2441 ((|#1| |#2| $ |#1|) 41)) (-4256 (((-641 $) |#2|) 77)) (-1720 (((-112) $ $) 97)))
+(((-1056 |#1| |#2|) (-13 (-1063 |#1| |#2|) (-10 -8 (-15 -2578 (|#1| $)) (-15 -2592 (|#1| $)) (-15 -2018 (|#1| $)) (-15 -2675 (|#1| $)) (-15 -2150 ($ $)) (-15 -2730 ((-112) |#2| $)) (-15 -4080 (|#1| |#2| $ |#1|)))) (-13 (-845) (-363)) (-1235 |#1|)) (T -1056))
+((-4080 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2578 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2592 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2018 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2675 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2150 (*1 *1 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2730 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-845) (-363))) (-5 *2 (-112)) (-5 *1 (-1056 *4 *3)) (-4 *3 (-1235 *4)))))
+(-13 (-1063 |#1| |#2|) (-10 -8 (-15 -2578 (|#1| $)) (-15 -2592 (|#1| $)) (-15 -2018 (|#1| $)) (-15 -2675 (|#1| $)) (-15 -2150 ($ $)) (-15 -2730 ((-112) |#2| $)) (-15 -4080 (|#1| |#2| $ |#1|))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-2642 (($ $ $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3944 (($ $ $ $) NIL)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-3191 (((-564) $) NIL)) (-2490 (($ $ $) NIL)) (-3180 (($) NIL T CONST)) (-1844 (($ (-1170)) 10) (($ (-564)) 7)) (-2224 (((-3 (-564) "failed") $) NIL)) (-2376 (((-564) $) NIL)) (-1399 (($ $ $) NIL)) (-3613 (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-3502 (((-3 (-407 (-564)) "failed") $) NIL)) (-3309 (((-112) $) NIL)) (-3074 (((-407 (-564)) $) NIL)) (-2939 (($) NIL) (($ $) NIL)) (-1371 (($ $ $) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3973 (($ $ $ $) NIL)) (-3039 (($ $ $) NIL)) (-3137 (((-112) $) NIL)) (-3742 (($ $ $) NIL)) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2340 (((-112) $) NIL)) (-1329 (((-112) $) NIL)) (-3804 (((-3 $ "failed") $) NIL)) (-2001 (((-112) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3026 (($ $ $ $) NIL)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1568 (($ $) NIL)) (-3451 (($ $) NIL)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-2148 (($ $ $) NIL)) (-3304 (($) NIL T CONST)) (-4324 (($ $) NIL)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4265 (($ $) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1542 (((-112) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2203 (($ $ (-768)) NIL) (($ $) NIL)) (-2021 (($ $) NIL)) (-3890 (($ $) NIL)) (-2374 (((-564) $) 16) (((-536) $) NIL) (((-889 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1170)) 9)) (-3714 (((-859) $) 23) (($ (-564)) 6) (($ $) NIL) (($ (-564)) 6)) (-3379 (((-768)) NIL T CONST)) (-2833 (((-112) $ $) NIL)) (-4389 (($ $ $) NIL)) (-3270 (($) NIL)) (-3979 (((-112) $ $) NIL)) (-4037 (($ $ $ $) NIL)) (-3920 (($ $) NIL)) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)) (-1828 (($ $) 22) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL)))
+(((-1057) (-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4399) (-6 -4404) (-6 -4400) (-15 -1844 ($ (-1170))) (-15 -1844 ($ (-564)))))) (T -1057))
+((-1844 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1057)))))
+(-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4399) (-6 -4404) (-6 -4400) (-15 -1844 ($ (-1170))) (-15 -1844 ($ (-564)))))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL)) (-2399 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3396 (($) 9)) (-3868 (((-52) $ (-1170) (-52)) NIL)) (-1825 (($ $) 32)) (-4249 (($ $) 30)) (-2289 (($ $) 29)) (-1312 (($ $) 31)) (-1501 (($ $) 35)) (-1322 (($ $) 36)) (-2586 (($ $) 28)) (-2270 (($ $) 33)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) 27 (|has| $ (-6 -4412)))) (-3576 (((-3 (-52) "failed") (-1170) $) 43)) (-3180 (($) NIL T CONST)) (-4364 (($) 7)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-4074 (($ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) 53 (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2514 (($ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412)))) (-2786 (((-3 (-1152) "failed") $ (-1152) (-564)) 74)) (-1998 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4413)))) (-3593 (((-52) $ (-1170)) NIL)) (-4244 (((-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-641 (-52)) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-1170) $) NIL (|has| (-1170) (-847)))) (-2572 (((-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) 38 (|has| $ (-6 -4412))) (((-641 (-52)) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-52) (-1094))))) (-2415 (((-1170) $) NIL (|has| (-1170) (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4413))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-1922 (((-641 (-1170)) $) NIL)) (-1690 (((-112) (-1170) $) NIL)) (-2775 (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL)) (-2373 (($ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) 46)) (-3127 (((-641 (-1170)) $) NIL)) (-1338 (((-112) (-1170) $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-2054 (((-379) $ (-1170)) 52)) (-2520 (((-641 (-1152)) $ (-1152)) 76)) (-2049 (((-52) $) NIL (|has| (-1170) (-847)))) (-2905 (((-3 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) "failed") (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL)) (-3538 (($ $ (-52)) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))))) NIL (-12 (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL (-12 (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ $ (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) NIL (-12 (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL (-12 (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-309 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-52) (-1094))))) (-4121 (((-641 (-52)) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 (((-52) $ (-1170)) NIL) (((-52) $ (-1170) (-52)) NIL)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL)) (-1675 (($ $ (-1170)) 54)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) 40)) (-1865 (($ $ $) 41)) (-3714 (((-859) $) NIL (-4012 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-611 (-859)))))) (-3279 (($ $ (-1170) (-379)) 50)) (-1503 (($ $ (-1170) (-379)) 51)) (-3976 (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 (-1170)) (|:| -2575 (-52)))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-52) (-1094)) (|has| (-2 (|:| -1350 (-1170)) (|:| -2575 (-52))) (-1094))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1058) (-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -1865 ($ $ $)) (-15 -4364 ($)) (-15 -2586 ($ $)) (-15 -2289 ($ $)) (-15 -4249 ($ $)) (-15 -1312 ($ $)) (-15 -2270 ($ $)) (-15 -1825 ($ $)) (-15 -1501 ($ $)) (-15 -1322 ($ $)) (-15 -3279 ($ $ (-1170) (-379))) (-15 -1503 ($ $ (-1170) (-379))) (-15 -2054 ((-379) $ (-1170))) (-15 -2520 ((-641 (-1152)) $ (-1152))) (-15 -1675 ($ $ (-1170))) (-15 -3396 ($)) (-15 -2786 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4412)))) (T -1058))
+((-1865 (*1 *1 *1 *1) (-5 *1 (-1058))) (-4364 (*1 *1) (-5 *1 (-1058))) (-2586 (*1 *1 *1) (-5 *1 (-1058))) (-2289 (*1 *1 *1) (-5 *1 (-1058))) (-4249 (*1 *1 *1) (-5 *1 (-1058))) (-1312 (*1 *1 *1) (-5 *1 (-1058))) (-2270 (*1 *1 *1) (-5 *1 (-1058))) (-1825 (*1 *1 *1) (-5 *1 (-1058))) (-1501 (*1 *1 *1) (-5 *1 (-1058))) (-1322 (*1 *1 *1) (-5 *1 (-1058))) (-3279 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))) (-1503 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))) (-2054 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1058)))) (-2520 (*1 *2 *1 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1058)) (-5 *3 (-1152)))) (-1675 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1058)))) (-3396 (*1 *1) (-5 *1 (-1058))) (-2786 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1058)))))
+(-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -1865 ($ $ $)) (-15 -4364 ($)) (-15 -2586 ($ $)) (-15 -2289 ($ $)) (-15 -4249 ($ $)) (-15 -1312 ($ $)) (-15 -2270 ($ $)) (-15 -1825 ($ $)) (-15 -1501 ($ $)) (-15 -1322 ($ $)) (-15 -3279 ($ $ (-1170) (-379))) (-15 -1503 ($ $ (-1170) (-379))) (-15 -2054 ((-379) $ (-1170))) (-15 -2520 ((-641 (-1152)) $ (-1152))) (-15 -1675 ($ $ (-1170))) (-15 -3396 ($)) (-15 -2786 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4412)))
+((-3794 (($ $) 46)) (-3464 (((-112) $ $) 80)) (-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-949 (-407 (-564)))) 248) (((-3 $ "failed") (-949 (-564))) 247) (((-3 $ "failed") (-949 |#2|)) 250)) (-2376 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) NIL) (($ (-949 (-407 (-564)))) 236) (($ (-949 (-564))) 232) (($ (-949 |#2|)) 252)) (-1374 (($ $) NIL) (($ $ |#4|) 44)) (-4300 (((-112) $ $) 126) (((-112) $ (-641 $)) 130)) (-2029 (((-112) $) 60)) (-3686 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 120)) (-3999 (($ $) 155)) (-1993 (($ $) 151)) (-1441 (($ $) 150)) (-4132 (($ $ $) 85) (($ $ $ |#4|) 90)) (-2257 (($ $ $) 88) (($ $ $ |#4|) 92)) (-2297 (((-112) $ $) 138) (((-112) $ (-641 $)) 139)) (-2394 ((|#4| $) 32)) (-2859 (($ $ $) 123)) (-1692 (((-112) $) 59)) (-3747 (((-768) $) 35)) (-2040 (($ $) 169)) (-1365 (($ $) 166)) (-2493 (((-641 $) $) 72)) (-2013 (($ $) 62)) (-3537 (($ $) 162)) (-3341 (((-641 $) $) 69)) (-3178 (($ $) 64)) (-1345 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3192 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4071 (-768))) $ $) 125)) (-4327 (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $) 121) (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $ |#4|) 122)) (-2199 (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -2550 $)) $ $) 116) (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -2550 $)) $ $ |#4|) 118)) (-3281 (($ $ $) 95) (($ $ $ |#4|) 103)) (-4245 (($ $ $) 96) (($ $ $ |#4|) 104)) (-2005 (((-641 $) $) 54)) (-1954 (((-112) $ $) 135) (((-112) $ (-641 $)) 136)) (-1863 (($ $ $) 111)) (-3304 (($ $) 37)) (-1733 (((-112) $ $) 78)) (-1485 (((-112) $ $) 131) (((-112) $ (-641 $)) 133)) (-2543 (($ $ $) 109)) (-2655 (($ $) 41)) (-2727 ((|#2| |#2| $) 159) (($ (-641 $)) NIL) (($ $ $) NIL)) (-1611 (($ $ |#2|) NIL) (($ $ $) 148)) (-2897 (($ $ |#2|) 143) (($ $ $) 146)) (-4213 (($ $) 49)) (-4233 (($ $) 55)) (-2374 (((-889 (-379)) $) NIL) (((-889 (-564)) $) NIL) (((-536) $) NIL) (($ (-949 (-407 (-564)))) 238) (($ (-949 (-564))) 234) (($ (-949 |#2|)) 249) (((-1152) $) 277) (((-949 |#2|) $) 179)) (-3714 (((-859) $) 29) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-949 |#2|) $) 180) (($ (-407 (-564))) NIL) (($ $) NIL)) (-1596 (((-3 (-112) "failed") $ $) 77)))
+(((-1059 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3714 (|#1| |#1|)) (-15 -2727 (|#1| |#1| |#1|)) (-15 -2727 (|#1| (-641 |#1|))) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 ((-949 |#2|) |#1|)) (-15 -2374 ((-949 |#2|) |#1|)) (-15 -2374 ((-1152) |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -2727 (|#2| |#2| |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1| |#2|)) (-15 -2897 (|#1| |#1| |#2|)) (-15 -1993 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -2374 (|#1| (-949 |#2|))) (-15 -2376 (|#1| (-949 |#2|))) (-15 -2224 ((-3 |#1| "failed") (-949 |#2|))) (-15 -2374 (|#1| (-949 (-564)))) (-15 -2376 (|#1| (-949 (-564)))) (-15 -2224 ((-3 |#1| "failed") (-949 (-564)))) (-15 -2374 (|#1| (-949 (-407 (-564))))) (-15 -2376 (|#1| (-949 (-407 (-564))))) (-15 -2224 ((-3 |#1| "failed") (-949 (-407 (-564))))) (-15 -1863 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -3192 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4071 (-768))) |#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -3686 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -4327 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1| |#4|)) (-15 -4327 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -2199 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -2550 |#1|)) |#1| |#1| |#4|)) (-15 -2199 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -4245 (|#1| |#1| |#1| |#4|)) (-15 -3281 (|#1| |#1| |#1| |#4|)) (-15 -4245 (|#1| |#1| |#1|)) (-15 -3281 (|#1| |#1| |#1|)) (-15 -2257 (|#1| |#1| |#1| |#4|)) (-15 -4132 (|#1| |#1| |#1| |#4|)) (-15 -2257 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2297 ((-112) |#1| (-641 |#1|))) (-15 -2297 ((-112) |#1| |#1|)) (-15 -1954 ((-112) |#1| (-641 |#1|))) (-15 -1954 ((-112) |#1| |#1|)) (-15 -1485 ((-112) |#1| (-641 |#1|))) (-15 -1485 ((-112) |#1| |#1|)) (-15 -4300 ((-112) |#1| (-641 |#1|))) (-15 -4300 ((-112) |#1| |#1|)) (-15 -3464 ((-112) |#1| |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1596 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2493 ((-641 |#1|) |#1|)) (-15 -3341 ((-641 |#1|) |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2029 ((-112) |#1|)) (-15 -1692 ((-112) |#1|)) (-15 -1374 (|#1| |#1| |#4|)) (-15 -1345 (|#1| |#1| |#4|)) (-15 -4233 (|#1| |#1|)) (-15 -2005 ((-641 |#1|) |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -3304 (|#1| |#1|)) (-15 -3747 ((-768) |#1|)) (-15 -2394 (|#4| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -3714 (|#1| |#4|)) (-15 -2224 ((-3 |#4| "failed") |#1|)) (-15 -2376 (|#4| |#1|)) (-15 -1345 (|#2| |#1|)) (-15 -1374 (|#1| |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|))) (-1060 |#2| |#3| |#4|) (-1046) (-790) (-847)) (T -1059))
+NIL
+(-10 -8 (-15 -3714 (|#1| |#1|)) (-15 -2727 (|#1| |#1| |#1|)) (-15 -2727 (|#1| (-641 |#1|))) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 ((-949 |#2|) |#1|)) (-15 -2374 ((-949 |#2|) |#1|)) (-15 -2374 ((-1152) |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -2727 (|#2| |#2| |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1| |#2|)) (-15 -2897 (|#1| |#1| |#2|)) (-15 -1993 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -2374 (|#1| (-949 |#2|))) (-15 -2376 (|#1| (-949 |#2|))) (-15 -2224 ((-3 |#1| "failed") (-949 |#2|))) (-15 -2374 (|#1| (-949 (-564)))) (-15 -2376 (|#1| (-949 (-564)))) (-15 -2224 ((-3 |#1| "failed") (-949 (-564)))) (-15 -2374 (|#1| (-949 (-407 (-564))))) (-15 -2376 (|#1| (-949 (-407 (-564))))) (-15 -2224 ((-3 |#1| "failed") (-949 (-407 (-564))))) (-15 -1863 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -3192 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4071 (-768))) |#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -3686 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -4327 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1| |#4|)) (-15 -4327 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -2199 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -2550 |#1|)) |#1| |#1| |#4|)) (-15 -2199 ((-2 (|:| -1817 |#1|) (|:| |gap| (-768)) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -4245 (|#1| |#1| |#1| |#4|)) (-15 -3281 (|#1| |#1| |#1| |#4|)) (-15 -4245 (|#1| |#1| |#1|)) (-15 -3281 (|#1| |#1| |#1|)) (-15 -2257 (|#1| |#1| |#1| |#4|)) (-15 -4132 (|#1| |#1| |#1| |#4|)) (-15 -2257 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2297 ((-112) |#1| (-641 |#1|))) (-15 -2297 ((-112) |#1| |#1|)) (-15 -1954 ((-112) |#1| (-641 |#1|))) (-15 -1954 ((-112) |#1| |#1|)) (-15 -1485 ((-112) |#1| (-641 |#1|))) (-15 -1485 ((-112) |#1| |#1|)) (-15 -4300 ((-112) |#1| (-641 |#1|))) (-15 -4300 ((-112) |#1| |#1|)) (-15 -3464 ((-112) |#1| |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1596 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2493 ((-641 |#1|) |#1|)) (-15 -3341 ((-641 |#1|) |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2029 ((-112) |#1|)) (-15 -1692 ((-112) |#1|)) (-15 -1374 (|#1| |#1| |#4|)) (-15 -1345 (|#1| |#1| |#4|)) (-15 -4233 (|#1| |#1|)) (-15 -2005 ((-641 |#1|) |#1|)) (-15 -4213 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -3304 (|#1| |#1|)) (-15 -3747 ((-768) |#1|)) (-15 -2394 (|#4| |#1|)) (-15 -2374 ((-536) |#1|)) (-15 -2374 ((-889 (-564)) |#1|)) (-15 -2374 ((-889 (-379)) |#1|)) (-15 -3714 (|#1| |#4|)) (-15 -2224 ((-3 |#4| "failed") |#1|)) (-15 -2376 (|#4| |#1|)) (-15 -1345 (|#2| |#1|)) (-15 -1374 (|#1| |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4292 (((-641 |#3|) $) 110)) (-4103 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1582 (($ $) 88 (|has| |#1| (-556)))) (-3897 (((-112) $) 90 (|has| |#1| (-556)))) (-2181 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-3794 (($ $) 271)) (-3464 (((-112) $ $) 257)) (-4281 (((-3 $ "failed") $ $) 19)) (-3000 (($ $ $) 216 (|has| |#1| (-556)))) (-1778 (((-641 $) $ $) 211 (|has| |#1| (-556)))) (-1917 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-1328 (($ $) 98 (|has| |#1| (-452)))) (-1592 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-949 (-407 (-564)))) 231 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (((-3 $ "failed") (-949 (-564))) 228 (-4012 (-12 (-4253 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (((-3 $ "failed") (-949 |#1|)) 225 (-4012 (-12 (-4253 (|has| |#1| (-38 (-407 (-564))))) (-4253 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-4253 (|has| |#1| (-545))) (-4253 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-4253 (|has| |#1| (-989 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-2376 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137) (($ (-949 (-407 (-564)))) 230 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-949 (-564))) 227 (-4012 (-12 (-4253 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-949 |#1|)) 224 (-4012 (-12 (-4253 (|has| |#1| (-38 (-407 (-564))))) (-4253 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-4253 (|has| |#1| (-545))) (-4253 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-4253 (|has| |#1| (-989 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-4275 (($ $ $ |#3|) 108 (|has| |#1| (-172))) (($ $ $) 212 (|has| |#1| (-556)))) (-1374 (($ $) 154) (($ $ |#3|) 266)) (-3613 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-4300 (((-112) $ $) 256) (((-112) $ (-641 $)) 255)) (-4272 (((-3 $ "failed") $) 33)) (-2029 (((-112) $) 264)) (-3686 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 236)) (-3999 (($ $) 205 (|has| |#1| (-452)))) (-2015 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-1359 (((-641 $) $) 109)) (-1926 (((-112) $) 96 (|has| |#1| (-906)))) (-1993 (($ $) 221 (|has| |#1| (-556)))) (-1441 (($ $) 222 (|has| |#1| (-556)))) (-4132 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2257 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1423 (($ $ |#1| |#2| $) 172)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2340 (((-112) $) 31)) (-2998 (((-768) $) 169)) (-2297 (((-112) $ $) 250) (((-112) $ (-641 $)) 249)) (-1558 (($ $ $ $ $) 207 (|has| |#1| (-556)))) (-2394 ((|#3| $) 275)) (-4279 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-1767 (((-641 $) $) 126)) (-2961 (((-112) $) 152)) (-4267 (($ |#1| |#2|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-2859 (($ $ $) 235)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ |#3|) 120)) (-1692 (((-112) $) 265)) (-2700 ((|#2| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-3428 (($ $ $) 79 (|has| |#1| (-847)))) (-3747 (((-768) $) 274)) (-3413 (($ $ $) 78 (|has| |#1| (-847)))) (-4062 (($ (-1 |#2| |#2|) $) 171)) (-2313 (($ (-1 |#1| |#1|) $) 151)) (-2848 (((-3 |#3| "failed") $) 123)) (-2040 (($ $) 202 (|has| |#1| (-452)))) (-1365 (($ $) 203 (|has| |#1| (-452)))) (-2493 (((-641 $) $) 260)) (-2013 (($ $) 263)) (-3537 (($ $) 204 (|has| |#1| (-452)))) (-3341 (((-641 $) $) 261)) (-3178 (($ $) 262)) (-1330 (($ $) 149)) (-1345 ((|#1| $) 148) (($ $ |#3|) 267)) (-2688 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3192 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4071 (-768))) $ $) 234)) (-4327 (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $) 238) (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $ |#3|) 237)) (-2199 (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -2550 $)) $ $) 240) (((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -2550 $)) $ $ |#3|) 239)) (-3281 (($ $ $) 244) (($ $ $ |#3|) 242)) (-4245 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1868 (((-1152) $) 9)) (-2521 (($ $ $) 210 (|has| |#1| (-556)))) (-2005 (((-641 $) $) 269)) (-3370 (((-3 (-641 $) "failed") $) 114)) (-3591 (((-3 (-641 $) "failed") $) 115)) (-3741 (((-3 (-2 (|:| |var| |#3|) (|:| -3078 (-768))) "failed") $) 113)) (-1954 (((-112) $ $) 252) (((-112) $ (-641 $)) 251)) (-1863 (($ $ $) 232)) (-3304 (($ $) 273)) (-1733 (((-112) $ $) 258)) (-1485 (((-112) $ $) 254) (((-112) $ (-641 $)) 253)) (-2543 (($ $ $) 233)) (-2655 (($ $) 272)) (-3844 (((-1114) $) 10)) (-3713 (((-2 (|:| -2727 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-556)))) (-3817 (((-2 (|:| -2727 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-556)))) (-1304 (((-112) $) 166)) (-1316 ((|#1| $) 167)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2727 ((|#1| |#1| $) 206 (|has| |#1| (-452))) (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4139 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1798 (((-2 (|:| -2727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-556)))) (-1347 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-1611 (($ $ |#1|) 219 (|has| |#1| (-556))) (($ $ $) 217 (|has| |#1| (-556)))) (-2897 (($ $ |#1|) 220 (|has| |#1| (-556))) (($ $ $) 218 (|has| |#1| (-556)))) (-2582 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-4378 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-2203 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39)) (-3475 ((|#2| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129)) (-4213 (($ $) 270)) (-4233 (($ $) 268)) (-2374 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536))))) (($ (-949 (-407 (-564)))) 229 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-949 (-564))) 226 (-4012 (-12 (-4253 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-949 |#1|)) 223 (|has| |#3| (-612 (-1170)))) (((-1152) $) 201 (-12 (|has| |#1| (-1035 (-564))) (|has| |#3| (-612 (-1170))))) (((-949 |#1|) $) 200 (|has| |#3| (-612 (-1170))))) (-3324 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4264 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-949 |#1|) $) 199 (|has| |#3| (-612 (-1170)))) (($ (-407 (-564))) 72 (-4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) 168)) (-3181 ((|#1| $ |#2|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-4363 (((-3 $ "failed") $) 73 (-4012 (-4264 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) 28 T CONST)) (-3993 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3979 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4312 (($) 18 T CONST)) (-1596 (((-3 (-112) "failed") $ $) 259)) (-4323 (($) 30 T CONST)) (-1912 (($ $ $ $ (-768)) 208 (|has| |#1| (-556)))) (-3655 (($ $ $ (-768)) 209 (|has| |#1| (-556)))) (-2238 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35)) (-1781 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1841 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-1060 |#1| |#2| |#3|) (-140) (-1046) (-790) (-847)) (T -1060))
-((-3162 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-768)))) (-1611 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1821 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1882 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2981 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3249 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-3288 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4323 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-4346 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-1534 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-1567 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2714 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-1346 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-4315 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3862 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3989 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-4269 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-4269 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-1512 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-1512 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-3561 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3561 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-2415 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-1912 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1465 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1912 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-1465 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-2706 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3289 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2706 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3289 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-4239 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -1662 *1) (|:| |gap| (-768)) (|:| -2746 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-4239 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1662 *1) (|:| |gap| (-768)) (|:| -2746 *1))) (-4 *1 (-1060 *4 *5 *3)))) (-2240 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -1662 *1) (|:| |gap| (-768)) (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2240 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1662 *1) (|:| |gap| (-768)) (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-1060 *4 *5 *3)))) (-3363 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2778 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4092 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2213 (-768)))) (-4 *1 (-1060 *3 *4 *5)))) (-3491 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3874 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2013 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2013 (*1 *1 *2) (|partial| -4002 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4254 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2064 (*1 *1 *2) (-4002 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4254 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2127 (*1 *1 *2) (-4002 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4254 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2013 (*1 *1 *2) (|partial| -4002 (-12 (-5 *2 (-949 *3)) (-12 (-4254 (-4 *3 (-38 (-407 (-564))))) (-4254 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4254 (-4 *3 (-545))) (-4254 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4254 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2064 (*1 *1 *2) (-4002 (-12 (-5 *2 (-949 *3)) (-12 (-4254 (-4 *3 (-38 (-407 (-564))))) (-4254 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4254 (-4 *3 (-545))) (-4254 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4254 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *5 (-612 (-1170))) (-4 *4 (-790)) (-4 *5 (-847)))) (-1641 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3248 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2342 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3983 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2342 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3983 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2673 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-1544 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2527 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2320 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2527 *1) (|:| |coef1| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-3058 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2527 *1) (|:| |coef2| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3228 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-1489 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2303 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))) (-1557 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))) (-1837 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2527 (*1 *2 *2 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-2206 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3006 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-1393 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))))
-(-13 (-946 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3162 (|t#3| $)) (-15 -1999 ((-768) $)) (-15 -1611 ($ $)) (-15 -1821 ($ $)) (-15 -1882 ($ $)) (-15 -2981 ($ $)) (-15 -3249 ((-641 $) $)) (-15 -3288 ($ $)) (-15 -4323 ($ $ |t#3|)) (-15 -4346 ($ $ |t#3|)) (-15 -1534 ((-112) $)) (-15 -2814 ((-112) $)) (-15 -1567 ($ $)) (-15 -3127 ($ $)) (-15 -2714 ((-641 $) $)) (-15 -1346 ((-641 $) $)) (-15 -4315 ((-3 (-112) "failed") $ $)) (-15 -3862 ((-112) $ $)) (-15 -3989 ((-112) $ $)) (-15 -4269 ((-112) $ $)) (-15 -4269 ((-112) $ (-641 $))) (-15 -1512 ((-112) $ $)) (-15 -1512 ((-112) $ (-641 $))) (-15 -3561 ((-112) $ $)) (-15 -3561 ((-112) $ (-641 $))) (-15 -2415 ((-112) $ $)) (-15 -2415 ((-112) $ (-641 $))) (-15 -1912 ($ $ $)) (-15 -1465 ($ $ $)) (-15 -1912 ($ $ $ |t#3|)) (-15 -1465 ($ $ $ |t#3|)) (-15 -2706 ($ $ $)) (-15 -3289 ($ $ $)) (-15 -2706 ($ $ $ |t#3|)) (-15 -3289 ($ $ $ |t#3|)) (-15 -4239 ((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -2746 $)) $ $)) (-15 -4239 ((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -2746 $)) $ $ |t#3|)) (-15 -2240 ((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -2240 ((-2 (|:| -1662 $) (|:| |gap| (-768)) (|:| -3741 $) (|:| -2746 $)) $ $ |t#3|)) (-15 -3363 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -2778 ($ $ $)) (-15 -4092 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2213 (-768))) $ $)) (-15 -3491 ($ $ $)) (-15 -3874 ($ $ $)) (IF (|has| |t#3| (-612 (-1170))) (PROGN (-6 (-611 (-949 |t#1|))) (-6 (-612 (-949 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -2013 ((-3 $ "failed") (-949 (-407 (-564))))) (-15 -2064 ($ (-949 (-407 (-564))))) (-15 -2127 ($ (-949 (-407 (-564))))) (-15 -2013 ((-3 $ "failed") (-949 (-564)))) (-15 -2064 ($ (-949 (-564)))) (-15 -2127 ($ (-949 (-564)))) (IF (|has| |t#1| (-989 (-564))) |%noBranch| (PROGN (-15 -2013 ((-3 $ "failed") (-949 |t#1|))) (-15 -2064 ($ (-949 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2013 ((-3 $ "failed") (-949 (-564)))) (-15 -2064 ($ (-949 (-564)))) (-15 -2127 ($ (-949 (-564)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -2013 ((-3 $ "failed") (-949 |t#1|))) (-15 -2064 ($ (-949 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2013 ((-3 $ "failed") (-949 |t#1|))) (-15 -2064 ($ (-949 |t#1|)))))) (-15 -2127 ($ (-949 |t#1|))) (IF (|has| |t#1| (-1035 (-564))) (-6 (-612 (-1152))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1641 ($ $)) (-15 -3248 ($ $)) (-15 -2342 ($ $ |t#1|)) (-15 -3983 ($ $ |t#1|)) (-15 -2342 ($ $ $)) (-15 -3983 ($ $ $)) (-15 -2673 ($ $ $)) (-15 -1544 ((-2 (|:| -2527 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2320 ((-2 (|:| -2527 $) (|:| |coef1| $)) $ $)) (-15 -3058 ((-2 (|:| -2527 $) (|:| |coef2| $)) $ $)) (-15 -4267 ($ $ $)) (-15 -3228 ((-641 $) $ $)) (-15 -1489 ($ $ $)) (-15 -2303 ($ $ $ (-768))) (-15 -1557 ($ $ $ $ (-768))) (-15 -1837 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2527 (|t#1| |t#1| $)) (-15 -2206 ($ $)) (-15 -3041 ($ $)) (-15 -3006 ($ $)) (-15 -1393 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-611 (-949 |#1|)) |has| |#3| (-612 (-1170))) ((-172) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-612 (-949 |#1|)) |has| |#3| (-612 (-1170))) ((-612 (-1152)) -12 (|has| |#1| (-1035 (-564))) (|has| |#3| (-612 (-1170)))) ((-290) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4002 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-946 |#1| |#2| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906)))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3669 (((-641 (-1129)) $) 18)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-1129) $) 20)) (-1686 (((-112) $ $) NIL)))
-(((-1061) (-13 (-1077) (-10 -8 (-15 -3669 ((-641 (-1129)) $)) (-15 -4374 ((-1129) $))))) (T -1061))
-((-3669 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1061)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1061)))))
-(-13 (-1077) (-10 -8 (-15 -3669 ((-641 (-1129)) $)) (-15 -4374 ((-1129) $))))
-((-3976 (((-112) |#3| $) 15)) (-3330 (((-3 $ "failed") |#3| (-918)) 29)) (-1926 (((-3 |#3| "failed") |#3| $) 45)) (-1751 (((-112) |#3| $) 19)) (-2506 (((-112) |#3| $) 17)))
-(((-1062 |#1| |#2| |#3|) (-10 -8 (-15 -3330 ((-3 |#1| "failed") |#3| (-918))) (-15 -1926 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1751 ((-112) |#3| |#1|)) (-15 -2506 ((-112) |#3| |#1|)) (-15 -3976 ((-112) |#3| |#1|))) (-1063 |#2| |#3|) (-13 (-845) (-363)) (-1235 |#2|)) (T -1062))
-NIL
-(-10 -8 (-15 -3330 ((-3 |#1| "failed") |#3| (-918))) (-15 -1926 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1751 ((-112) |#3| |#1|)) (-15 -2506 ((-112) |#3| |#1|)) (-15 -3976 ((-112) |#3| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) |#2| $) 21)) (-3438 (((-564) |#2| $) 22)) (-3330 (((-3 $ "failed") |#2| (-918)) 15)) (-1593 ((|#1| |#2| $ |#1|) 13)) (-1926 (((-3 |#2| "failed") |#2| $) 18)) (-1751 (((-112) |#2| $) 19)) (-2506 (((-112) |#2| $) 20)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1916 ((|#2| $) 17)) (-1765 (((-859) $) 11)) (-2299 ((|#1| |#2| $ |#1|) 14)) (-3290 (((-641 $) |#2|) 16)) (-1686 (((-112) $ $) 6)))
+((-2394 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-768)))) (-3304 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2655 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4213 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2005 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-4233 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1345 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-1374 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-2013 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3341 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-2493 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-1596 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-1733 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3464 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-4300 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-1485 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-1485 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-1954 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-1954 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-2297 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2257 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4132 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-2257 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3281 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4245 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3281 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-4245 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-2199 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -1817 *1) (|:| |gap| (-768)) (|:| -2550 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2199 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1817 *1) (|:| |gap| (-768)) (|:| -2550 *1))) (-4 *1 (-1060 *4 *5 *3)))) (-4327 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -1817 *1) (|:| |gap| (-768)) (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-4327 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1817 *1) (|:| |gap| (-768)) (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-1060 *4 *5 *3)))) (-3686 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2859 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3192 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4071 (-768)))) (-4 *1 (-1060 *3 *4 *5)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1863 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2224 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2224 (*1 *1 *2) (|partial| -4012 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4253 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2376 (*1 *1 *2) (-4012 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4253 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2374 (*1 *1 *2) (-4012 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4253 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2224 (*1 *1 *2) (|partial| -4012 (-12 (-5 *2 (-949 *3)) (-12 (-4253 (-4 *3 (-38 (-407 (-564))))) (-4253 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4253 (-4 *3 (-545))) (-4253 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4253 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2376 (*1 *1 *2) (-4012 (-12 (-5 *2 (-949 *3)) (-12 (-4253 (-4 *3 (-38 (-407 (-564))))) (-4253 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4253 (-4 *3 (-545))) (-4253 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4253 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *5 (-612 (-1170))) (-4 *4 (-790)) (-4 *5 (-847)))) (-1441 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-1993 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2897 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-1611 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2897 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-1611 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3000 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-1798 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2727 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-3817 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2727 *1) (|:| |coef1| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-3713 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2727 *1) (|:| |coef2| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-4275 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-1778 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-2521 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3655 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))) (-1912 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))) (-1558 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2727 (*1 *2 *2 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3999 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3537 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-1365 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-2040 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))))
+(-13 (-946 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2394 (|t#3| $)) (-15 -3747 ((-768) $)) (-15 -3304 ($ $)) (-15 -2655 ($ $)) (-15 -3794 ($ $)) (-15 -4213 ($ $)) (-15 -2005 ((-641 $) $)) (-15 -4233 ($ $)) (-15 -1345 ($ $ |t#3|)) (-15 -1374 ($ $ |t#3|)) (-15 -1692 ((-112) $)) (-15 -2029 ((-112) $)) (-15 -2013 ($ $)) (-15 -3178 ($ $)) (-15 -3341 ((-641 $) $)) (-15 -2493 ((-641 $) $)) (-15 -1596 ((-3 (-112) "failed") $ $)) (-15 -1733 ((-112) $ $)) (-15 -3464 ((-112) $ $)) (-15 -4300 ((-112) $ $)) (-15 -4300 ((-112) $ (-641 $))) (-15 -1485 ((-112) $ $)) (-15 -1485 ((-112) $ (-641 $))) (-15 -1954 ((-112) $ $)) (-15 -1954 ((-112) $ (-641 $))) (-15 -2297 ((-112) $ $)) (-15 -2297 ((-112) $ (-641 $))) (-15 -4132 ($ $ $)) (-15 -2257 ($ $ $)) (-15 -4132 ($ $ $ |t#3|)) (-15 -2257 ($ $ $ |t#3|)) (-15 -3281 ($ $ $)) (-15 -4245 ($ $ $)) (-15 -3281 ($ $ $ |t#3|)) (-15 -4245 ($ $ $ |t#3|)) (-15 -2199 ((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -2550 $)) $ $)) (-15 -2199 ((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -2550 $)) $ $ |t#3|)) (-15 -4327 ((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -4327 ((-2 (|:| -1817 $) (|:| |gap| (-768)) (|:| -3031 $) (|:| -2550 $)) $ $ |t#3|)) (-15 -3686 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -2859 ($ $ $)) (-15 -3192 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4071 (-768))) $ $)) (-15 -2543 ($ $ $)) (-15 -1863 ($ $ $)) (IF (|has| |t#3| (-612 (-1170))) (PROGN (-6 (-611 (-949 |t#1|))) (-6 (-612 (-949 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -2224 ((-3 $ "failed") (-949 (-407 (-564))))) (-15 -2376 ($ (-949 (-407 (-564))))) (-15 -2374 ($ (-949 (-407 (-564))))) (-15 -2224 ((-3 $ "failed") (-949 (-564)))) (-15 -2376 ($ (-949 (-564)))) (-15 -2374 ($ (-949 (-564)))) (IF (|has| |t#1| (-989 (-564))) |%noBranch| (PROGN (-15 -2224 ((-3 $ "failed") (-949 |t#1|))) (-15 -2376 ($ (-949 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2224 ((-3 $ "failed") (-949 (-564)))) (-15 -2376 ($ (-949 (-564)))) (-15 -2374 ($ (-949 (-564)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -2224 ((-3 $ "failed") (-949 |t#1|))) (-15 -2376 ($ (-949 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2224 ((-3 $ "failed") (-949 |t#1|))) (-15 -2376 ($ (-949 |t#1|)))))) (-15 -2374 ($ (-949 |t#1|))) (IF (|has| |t#1| (-1035 (-564))) (-6 (-612 (-1152))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1441 ($ $)) (-15 -1993 ($ $)) (-15 -2897 ($ $ |t#1|)) (-15 -1611 ($ $ |t#1|)) (-15 -2897 ($ $ $)) (-15 -1611 ($ $ $)) (-15 -3000 ($ $ $)) (-15 -1798 ((-2 (|:| -2727 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3817 ((-2 (|:| -2727 $) (|:| |coef1| $)) $ $)) (-15 -3713 ((-2 (|:| -2727 $) (|:| |coef2| $)) $ $)) (-15 -4275 ($ $ $)) (-15 -1778 ((-641 $) $ $)) (-15 -2521 ($ $ $)) (-15 -3655 ($ $ $ (-768))) (-15 -1912 ($ $ $ $ (-768))) (-15 -1558 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2727 (|t#1| |t#1| $)) (-15 -3999 ($ $)) (-15 -3537 ($ $)) (-15 -1365 ($ $)) (-15 -2040 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-611 (-949 |#1|)) |has| |#3| (-612 (-1170))) ((-172) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-612 (-949 |#1|)) |has| |#3| (-612 (-1170))) ((-612 (-1152)) -12 (|has| |#1| (-1035 (-564))) (|has| |#3| (-612 (-1170)))) ((-290) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4012 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-946 |#1| |#2| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3843 (((-641 (-1129)) $) 18)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 27) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-1129) $) 20)) (-1720 (((-112) $ $) NIL)))
+(((-1061) (-13 (-1077) (-10 -8 (-15 -3843 ((-641 (-1129)) $)) (-15 -4347 ((-1129) $))))) (T -1061))
+((-3843 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1061)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1061)))))
+(-13 (-1077) (-10 -8 (-15 -3843 ((-641 (-1129)) $)) (-15 -4347 ((-1129) $))))
+((-1556 (((-112) |#3| $) 15)) (-1544 (((-3 $ "failed") |#3| (-918)) 29)) (-4272 (((-3 |#3| "failed") |#3| $) 45)) (-3137 (((-112) |#3| $) 19)) (-2001 (((-112) |#3| $) 17)))
+(((-1062 |#1| |#2| |#3|) (-10 -8 (-15 -1544 ((-3 |#1| "failed") |#3| (-918))) (-15 -4272 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3137 ((-112) |#3| |#1|)) (-15 -2001 ((-112) |#3| |#1|)) (-15 -1556 ((-112) |#3| |#1|))) (-1063 |#2| |#3|) (-13 (-845) (-363)) (-1235 |#2|)) (T -1062))
+NIL
+(-10 -8 (-15 -1544 ((-3 |#1| "failed") |#3| (-918))) (-15 -4272 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3137 ((-112) |#3| |#1|)) (-15 -2001 ((-112) |#3| |#1|)) (-15 -1556 ((-112) |#3| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) |#2| $) 21)) (-3191 (((-564) |#2| $) 22)) (-1544 (((-3 $ "failed") |#2| (-918)) 15)) (-4080 ((|#1| |#2| $ |#1|) 13)) (-4272 (((-3 |#2| "failed") |#2| $) 18)) (-3137 (((-112) |#2| $) 19)) (-2001 (((-112) |#2| $) 20)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-4180 ((|#2| $) 17)) (-3714 (((-859) $) 11)) (-2441 ((|#1| |#2| $ |#1|) 14)) (-4256 (((-641 $) |#2|) 16)) (-1720 (((-112) $ $) 6)))
(((-1063 |#1| |#2|) (-140) (-13 (-845) (-363)) (-1235 |t#1|)) (T -1063))
-((-3438 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-564)))) (-3976 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-2506 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-1751 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-1926 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) (-4 *2 (-1235 *3)))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) (-4 *2 (-1235 *3)))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1)) (-4 *1 (-1063 *4 *3)))) (-3330 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-918)) (-4 *4 (-13 (-845) (-363))) (-4 *1 (-1063 *4 *2)) (-4 *2 (-1235 *4)))) (-2299 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) (-4 *3 (-1235 *2)))) (-1593 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) (-4 *3 (-1235 *2)))))
-(-13 (-1094) (-10 -8 (-15 -3438 ((-564) |t#2| $)) (-15 -3976 ((-112) |t#2| $)) (-15 -2506 ((-112) |t#2| $)) (-15 -1751 ((-112) |t#2| $)) (-15 -1926 ((-3 |t#2| "failed") |t#2| $)) (-15 -1916 (|t#2| $)) (-15 -3290 ((-641 $) |t#2|)) (-15 -3330 ((-3 $ "failed") |t#2| (-918))) (-15 -2299 (|t#1| |t#2| $ |t#1|)) (-15 -1593 (|t#1| |t#2| $ |t#1|))))
+((-3191 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-564)))) (-1556 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-2001 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-3137 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-4272 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) (-4 *2 (-1235 *3)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) (-4 *2 (-1235 *3)))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1)) (-4 *1 (-1063 *4 *3)))) (-1544 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-918)) (-4 *4 (-13 (-845) (-363))) (-4 *1 (-1063 *4 *2)) (-4 *2 (-1235 *4)))) (-2441 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) (-4 *3 (-1235 *2)))) (-4080 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) (-4 *3 (-1235 *2)))))
+(-13 (-1094) (-10 -8 (-15 -3191 ((-564) |t#2| $)) (-15 -1556 ((-112) |t#2| $)) (-15 -2001 ((-112) |t#2| $)) (-15 -3137 ((-112) |t#2| $)) (-15 -4272 ((-3 |t#2| "failed") |t#2| $)) (-15 -4180 (|t#2| $)) (-15 -4256 ((-641 $) |t#2|)) (-15 -1544 ((-3 $ "failed") |t#2| (-918))) (-15 -2441 (|t#1| |t#2| $ |t#1|)) (-15 -4080 (|t#1| |t#2| $ |t#1|))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-3667 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-768)) 114)) (-2772 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768)) 63)) (-2690 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-768)) 100)) (-2006 (((-768) (-641 |#4|) (-641 |#5|)) 30)) (-3406 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768)) 65) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768) (-112)) 67)) (-1770 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 87)) (-2127 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) 92)) (-1313 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-112)) 62)) (-2529 (((-768) (-641 |#4|) (-641 |#5|)) 21)))
-(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2529 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2006 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -1313 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-112))) (-15 -2772 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768))) (-15 -2772 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768))) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -1770 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1770 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3667 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-768))) (-15 -2127 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) (-15 -2690 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-768)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1064))
-((-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3853 *9)))) (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3853 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) (-5 *1 (-1064 *4 *5 *6 *7 *8)))) (-3667 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -3853 *11)))))) (-5 *6 (-768)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -3853 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-5 *1 (-1064 *7 *8 *9 *10 *11)))) (-1770 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-1770 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-3406 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3)))) (-2772 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2772 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-1313 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-2006 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2529 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2006 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -1313 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-112))) (-15 -2772 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768))) (-15 -2772 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768))) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -1770 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1770 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3667 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-768))) (-15 -2127 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) (-15 -2690 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-768))))
-((-1456 (((-112) |#5| $) 25)) (-2097 (((-112) |#5| $) 28)) (-2432 (((-112) |#5| $) 18) (((-112) $) 51)) (-1617 (((-641 $) |#5| $) NIL) (((-641 $) (-641 |#5|) $) 93) (((-641 $) (-641 |#5|) (-641 $)) 91) (((-641 $) |#5| (-641 $)) 94)) (-2678 (($ $ |#5|) NIL) (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 72) (((-641 $) (-641 |#5|) $) 74) (((-641 $) (-641 |#5|) (-641 $)) 76)) (-3602 (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 63) (((-641 $) (-641 |#5|) $) 68) (((-641 $) (-641 |#5|) (-641 $)) 70)) (-1759 (((-112) |#5| $) 31)))
-(((-1065 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2678 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -2678 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -2678 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -2678 ((-641 |#1|) |#5| |#1|)) (-15 -3602 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3602 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3602 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3602 ((-641 |#1|) |#5| |#1|)) (-15 -1617 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -1617 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -1617 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -1617 ((-641 |#1|) |#5| |#1|)) (-15 -2097 ((-112) |#5| |#1|)) (-15 -2432 ((-112) |#1|)) (-15 -1759 ((-112) |#5| |#1|)) (-15 -1456 ((-112) |#5| |#1|)) (-15 -2432 ((-112) |#5| |#1|)) (-15 -2678 (|#1| |#1| |#5|))) (-1066 |#2| |#3| |#4| |#5|) (-452) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -1065))
-NIL
-(-10 -8 (-15 -2678 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -2678 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -2678 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -2678 ((-641 |#1|) |#5| |#1|)) (-15 -3602 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3602 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3602 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3602 ((-641 |#1|) |#5| |#1|)) (-15 -1617 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -1617 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -1617 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -1617 ((-641 |#1|) |#5| |#1|)) (-15 -2097 ((-112) |#5| |#1|)) (-15 -2432 ((-112) |#1|)) (-15 -1759 ((-112) |#5| |#1|)) (-15 -1456 ((-112) |#5| |#1|)) (-15 -2432 ((-112) |#5| |#1|)) (-15 -2678 (|#1| |#1| |#5|)))
-((-1754 (((-112) $ $) 7)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |#4|)))) (-641 |#4|)) 85)) (-4389 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4170 (((-641 |#3|) $) 33)) (-1747 (((-112) $) 26)) (-2197 (((-112) $) 17 (|has| |#1| (-556)))) (-1940 (((-112) |#4| $) 101) (((-112) $) 97)) (-3993 ((|#4| |#4| $) 92)) (-1368 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| $) 126)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) 27)) (-3263 (((-112) $ (-768)) 44)) (-2164 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-3760 (($) 45 T CONST)) (-4177 (((-112) $) 22 (|has| |#1| (-556)))) (-3911 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2694 (((-112) $ $) 23 (|has| |#1| (-556)))) (-1378 (((-112) $) 25 (|has| |#1| (-556)))) (-3207 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2254 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) 36)) (-2064 (($ (-641 |#4|)) 35)) (-3086 (((-3 $ "failed") $) 82)) (-2758 ((|#4| |#4| $) 89)) (-3104 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4269 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3621 ((|#4| |#4| $) 87)) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2058 (((-2 (|:| -3439 (-641 |#4|)) (|:| -1589 (-641 |#4|))) $) 105)) (-1456 (((-112) |#4| $) 136)) (-2097 (((-112) |#4| $) 133)) (-2432 (((-112) |#4| $) 137) (((-112) $) 134)) (-3080 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-2415 (((-112) |#4| $) 104) (((-112) $) 103)) (-3162 ((|#3| $) 34)) (-2830 (((-112) $ (-768)) 43)) (-3817 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 47)) (-4343 (((-641 |#3|) $) 32)) (-1853 (((-112) |#3| $) 31)) (-2972 (((-112) $ (-768)) 42)) (-4202 (((-1152) $) 9)) (-4181 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-1489 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| |#4| $) 127)) (-2376 (((-3 |#4| "failed") $) 83)) (-2298 (((-641 $) |#4| $) 129)) (-3866 (((-3 (-112) (-641 $)) |#4| $) 132)) (-4214 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1617 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-1829 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-3277 (((-641 |#4|) $) 107)) (-3561 (((-112) |#4| $) 99) (((-112) $) 95)) (-3874 ((|#4| |#4| $) 90)) (-3862 (((-112) $ $) 110)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1512 (((-112) |#4| $) 100) (((-112) $) 96)) (-3491 ((|#4| |#4| $) 91)) (-3802 (((-1114) $) 10)) (-3073 (((-3 |#4| "failed") $) 84)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3159 (((-3 $ "failed") $ |#4|) 78)) (-2678 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-1467 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) 38)) (-2742 (((-112) $) 41)) (-3845 (($) 40)) (-3344 (((-768) $) 106)) (-3815 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-1899 (($ $) 39)) (-2127 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) 60)) (-2318 (($ $ |#3|) 28)) (-1869 (($ $ |#3|) 30)) (-3430 (($ $) 88)) (-1845 (($ $ |#3|) 29)) (-1765 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1597 (((-768) $) 76 (|has| |#3| (-368)))) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1599 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3602 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-2237 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-2380 (((-641 |#3|) $) 81)) (-1759 (((-112) |#4| $) 135)) (-3623 (((-112) |#3| $) 80)) (-1686 (((-112) $ $) 6)) (-2589 (((-768) $) 46 (|has| $ (-6 -4411)))))
+((-3516 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-768)) 114)) (-2810 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768)) 63)) (-1383 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-768)) 100)) (-3834 (((-768) (-641 |#4|) (-641 |#5|)) 30)) (-2950 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768)) 65) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768) (-112)) 67)) (-3282 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 87)) (-2374 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) 92)) (-2176 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-112)) 62)) (-2166 (((-768) (-641 |#4|) (-641 |#5|)) 21)))
+(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2166 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3834 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-112))) (-15 -2810 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768))) (-15 -2810 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768))) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -3282 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3282 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3516 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-768))) (-15 -2374 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) (-15 -1383 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-768)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1064))
+((-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -4011 *9)))) (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -4011 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) (-5 *1 (-1064 *4 *5 *6 *7 *8)))) (-3516 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -4011 *11)))))) (-5 *6 (-768)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -4011 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-5 *1 (-1064 *7 *8 *9 *10 *11)))) (-3282 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-3282 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2950 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2950 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-2950 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3)))) (-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2166 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3834 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-112))) (-15 -2810 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768))) (-15 -2810 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768))) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -3282 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3282 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3516 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-768))) (-15 -2374 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) (-15 -1383 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-768))))
+((-2169 (((-112) |#5| $) 25)) (-2358 (((-112) |#5| $) 28)) (-2479 (((-112) |#5| $) 18) (((-112) $) 51)) (-4302 (((-641 $) |#5| $) NIL) (((-641 $) (-641 |#5|) $) 93) (((-641 $) (-641 |#5|) (-641 $)) 91) (((-641 $) |#5| (-641 $)) 94)) (-3042 (($ $ |#5|) NIL) (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 72) (((-641 $) (-641 |#5|) $) 74) (((-641 $) (-641 |#5|) (-641 $)) 76)) (-4158 (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 63) (((-641 $) (-641 |#5|) $) 68) (((-641 $) (-641 |#5|) (-641 $)) 70)) (-3199 (((-112) |#5| $) 31)))
+(((-1065 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3042 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3042 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3042 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3042 ((-641 |#1|) |#5| |#1|)) (-15 -4158 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -4158 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -4158 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -4158 ((-641 |#1|) |#5| |#1|)) (-15 -4302 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -4302 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -4302 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -4302 ((-641 |#1|) |#5| |#1|)) (-15 -2358 ((-112) |#5| |#1|)) (-15 -2479 ((-112) |#1|)) (-15 -3199 ((-112) |#5| |#1|)) (-15 -2169 ((-112) |#5| |#1|)) (-15 -2479 ((-112) |#5| |#1|)) (-15 -3042 (|#1| |#1| |#5|))) (-1066 |#2| |#3| |#4| |#5|) (-452) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -1065))
+NIL
+(-10 -8 (-15 -3042 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3042 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3042 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3042 ((-641 |#1|) |#5| |#1|)) (-15 -4158 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -4158 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -4158 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -4158 ((-641 |#1|) |#5| |#1|)) (-15 -4302 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -4302 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -4302 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -4302 ((-641 |#1|) |#5| |#1|)) (-15 -2358 ((-112) |#5| |#1|)) (-15 -2479 ((-112) |#1|)) (-15 -3199 ((-112) |#5| |#1|)) (-15 -2169 ((-112) |#5| |#1|)) (-15 -2479 ((-112) |#5| |#1|)) (-15 -3042 (|#1| |#1| |#5|)))
+((-3702 (((-112) $ $) 7)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |#4|)))) (-641 |#4|)) 85)) (-4055 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4292 (((-641 |#3|) $) 33)) (-3097 (((-112) $) 26)) (-2092 (((-112) $) 17 (|has| |#1| (-556)))) (-1300 (((-112) |#4| $) 101) (((-112) $) 97)) (-3500 ((|#4| |#4| $) 92)) (-1328 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| $) 126)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) 27)) (-2141 (((-112) $ (-768)) 44)) (-4148 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4412))) (((-3 |#4| "failed") $ |#3|) 79)) (-3180 (($) 45 T CONST)) (-2846 (((-112) $) 22 (|has| |#1| (-556)))) (-2228 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3171 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3798 (((-112) $) 25 (|has| |#1| (-556)))) (-1578 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1373 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) 36)) (-2376 (($ (-641 |#4|)) 35)) (-2063 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-2084 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4344 ((|#4| |#4| $) 87)) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4412))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3151 (((-2 (|:| -3489 (-641 |#4|)) (|:| -1721 (-641 |#4|))) $) 105)) (-2169 (((-112) |#4| $) 136)) (-2358 (((-112) |#4| $) 133)) (-2479 (((-112) |#4| $) 137) (((-112) $) 134)) (-4244 (((-641 |#4|) $) 52 (|has| $ (-6 -4412)))) (-2297 (((-112) |#4| $) 104) (((-112) $) 103)) (-2394 ((|#3| $) 34)) (-2173 (((-112) $ (-768)) 43)) (-2572 (((-641 |#4|) $) 53 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 47)) (-3652 (((-641 |#3|) $) 32)) (-1722 (((-112) |#3| $) 31)) (-4144 (((-112) $ (-768)) 42)) (-1868 (((-1152) $) 9)) (-2881 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2521 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| |#4| $) 127)) (-2541 (((-3 |#4| "failed") $) 83)) (-3607 (((-641 $) |#4| $) 129)) (-1779 (((-3 (-112) (-641 $)) |#4| $) 132)) (-1990 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4302 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2737 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4104 (((-641 |#4|) $) 107)) (-1954 (((-112) |#4| $) 99) (((-112) $) 95)) (-1863 ((|#4| |#4| $) 90)) (-1733 (((-112) $ $) 110)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1485 (((-112) |#4| $) 100) (((-112) $) 96)) (-2543 ((|#4| |#4| $) 91)) (-3844 (((-1114) $) 10)) (-2049 (((-3 |#4| "failed") $) 84)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2359 (((-3 $ "failed") $ |#4|) 78)) (-3042 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-2280 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) 38)) (-2510 (((-112) $) 41)) (-2834 (($) 40)) (-3475 (((-768) $) 106)) (-3855 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4412)))) (-3890 (($ $) 39)) (-2374 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) 60)) (-3789 (($ $ |#3|) 28)) (-1896 (($ $ |#3|) 30)) (-3121 (($ $) 88)) (-1632 (($ $ |#3|) 29)) (-3714 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4113 (((-768) $) 76 (|has| |#3| (-368)))) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4138 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-4158 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-4289 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4412)))) (-3148 (((-641 |#3|) $) 81)) (-3199 (((-112) |#4| $) 135)) (-4368 (((-112) |#3| $) 80)) (-1720 (((-112) $ $) 6)) (-2779 (((-768) $) 46 (|has| $ (-6 -4412)))))
(((-1066 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1066))
-((-2432 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1456 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1759 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2432 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-2097 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3866 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-4214 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-4214 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2298 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-4181 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1489 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1368 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1617 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1617 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-1617 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-1617 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-3602 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3602 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-3602 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-3602 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-1829 (*1 *1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-1829 (*1 *1 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)))) (-2678 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2678 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-2678 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-2678 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-4389 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *5 *6 *7 *8)))))
-(-13 (-1202 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2432 ((-112) |t#4| $)) (-15 -1456 ((-112) |t#4| $)) (-15 -1759 ((-112) |t#4| $)) (-15 -2432 ((-112) $)) (-15 -2097 ((-112) |t#4| $)) (-15 -3866 ((-3 (-112) (-641 $)) |t#4| $)) (-15 -4214 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 $))) |t#4| $)) (-15 -4214 ((-112) |t#4| $)) (-15 -2298 ((-641 $) |t#4| $)) (-15 -4181 ((-3 |t#4| (-641 $)) |t#4| |t#4| $)) (-15 -1489 ((-641 (-2 (|:| |val| |t#4|) (|:| -3853 $))) |t#4| |t#4| $)) (-15 -1368 ((-641 (-2 (|:| |val| |t#4|) (|:| -3853 $))) |t#4| $)) (-15 -1617 ((-641 $) |t#4| $)) (-15 -1617 ((-641 $) (-641 |t#4|) $)) (-15 -1617 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -1617 ((-641 $) |t#4| (-641 $))) (-15 -3602 ((-641 $) |t#4| $)) (-15 -3602 ((-641 $) |t#4| (-641 $))) (-15 -3602 ((-641 $) (-641 |t#4|) $)) (-15 -3602 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -1829 ($ |t#4| $)) (-15 -1829 ($ (-641 |t#4|) $)) (-15 -2678 ((-641 $) |t#4| $)) (-15 -2678 ((-641 $) |t#4| (-641 $))) (-15 -2678 ((-641 $) (-641 |t#4|) $)) (-15 -2678 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -4389 ((-641 $) (-641 |t#4|) (-112)))))
+((-2479 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2169 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-2358 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1779 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1990 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1990 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3607 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2881 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2521 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1328 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-4302 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-4302 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-4302 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-4302 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-4158 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-4158 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-4158 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-4158 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-2737 (*1 *1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)))) (-3042 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3042 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-3042 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-3042 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *5 *6 *7 *8)))))
+(-13 (-1202 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2479 ((-112) |t#4| $)) (-15 -2169 ((-112) |t#4| $)) (-15 -3199 ((-112) |t#4| $)) (-15 -2479 ((-112) $)) (-15 -2358 ((-112) |t#4| $)) (-15 -1779 ((-3 (-112) (-641 $)) |t#4| $)) (-15 -1990 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 $))) |t#4| $)) (-15 -1990 ((-112) |t#4| $)) (-15 -3607 ((-641 $) |t#4| $)) (-15 -2881 ((-3 |t#4| (-641 $)) |t#4| |t#4| $)) (-15 -2521 ((-641 (-2 (|:| |val| |t#4|) (|:| -4011 $))) |t#4| |t#4| $)) (-15 -1328 ((-641 (-2 (|:| |val| |t#4|) (|:| -4011 $))) |t#4| $)) (-15 -4302 ((-641 $) |t#4| $)) (-15 -4302 ((-641 $) (-641 |t#4|) $)) (-15 -4302 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -4302 ((-641 $) |t#4| (-641 $))) (-15 -4158 ((-641 $) |t#4| $)) (-15 -4158 ((-641 $) |t#4| (-641 $))) (-15 -4158 ((-641 $) (-641 |t#4|) $)) (-15 -4158 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -2737 ($ |t#4| $)) (-15 -2737 ($ (-641 |t#4|) $)) (-15 -3042 ((-641 $) |t#4| $)) (-15 -3042 ((-641 $) |t#4| (-641 $))) (-15 -3042 ((-641 $) (-641 |t#4|) $)) (-15 -3042 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -4055 ((-641 $) (-641 |t#4|) (-112)))))
(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T))
-((-2335 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#5|) 87)) (-4208 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|) 129)) (-2434 (((-641 |#5|) |#4| |#5|) 75)) (-1859 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3685 (((-1264)) 37)) (-1855 (((-1264)) 26)) (-1389 (((-1264) (-1152) (-1152) (-1152)) 33)) (-4262 (((-1264) (-1152) (-1152) (-1152)) 22)) (-2374 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#4| |#4| |#5|) 109)) (-3131 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#3| (-112)) 120) (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-1336 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|) 115)))
-(((-1067 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4262 ((-1264) (-1152) (-1152) (-1152))) (-15 -1855 ((-1264))) (-15 -1389 ((-1264) (-1152) (-1152) (-1152))) (-15 -3685 ((-1264))) (-15 -2374 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -3131 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3131 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#3| (-112))) (-15 -1336 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -4208 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -1859 ((-112) |#4| |#5|)) (-15 -1859 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -2434 ((-641 |#5|) |#4| |#5|)) (-15 -2335 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1067))
-((-2335 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2434 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1859 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1859 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4208 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1336 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3853 *9)))) (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -3853 *9)))) (-5 *1 (-1067 *6 *7 *4 *8 *9)))) (-3131 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-1067 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-2374 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3685 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-1389 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1855 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-4262 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4262 ((-1264) (-1152) (-1152) (-1152))) (-15 -1855 ((-1264))) (-15 -1389 ((-1264) (-1152) (-1152) (-1152))) (-15 -3685 ((-1264))) (-15 -2374 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -3131 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3131 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#3| (-112))) (-15 -1336 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -4208 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -1859 ((-112) |#4| |#5|)) (-15 -1859 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -2434 ((-641 |#5|) |#4| |#5|)) (-15 -2335 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#5|)))
-((-1754 (((-112) $ $) NIL)) (-4284 (((-1208) $) 13)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3678 (((-1129) $) 10)) (-1765 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-1068) (-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $)) (-15 -4284 ((-1208) $))))) (T -1068))
-((-3678 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1068)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1068)))))
-(-13 (-1077) (-10 -8 (-15 -3678 ((-1129) $)) (-15 -4284 ((-1208) $))))
-((-1754 (((-112) $ $) NIL)) (-4363 (((-1170) $) 8)) (-4202 (((-1152) $) 17)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 14)))
-(((-1069 |#1|) (-13 (-1094) (-10 -8 (-15 -4363 ((-1170) $)))) (-1170)) (T -1069))
-((-4363 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2))))
-(-13 (-1094) (-10 -8 (-15 -4363 ((-1170) $))))
-((-1754 (((-112) $ $) NIL)) (-4134 (($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|))) 34)) (-2979 (($ |#3| |#3|) 23) (($ |#3| |#3| (-641 (-1170))) 21)) (-4324 ((|#3| $) 13)) (-2013 (((-3 (-294 |#3|) "failed") $) 60)) (-2064 (((-294 |#3|) $) NIL)) (-1750 (((-641 (-1170)) $) 16)) (-4037 (((-889 |#1|) $) 11)) (-4312 ((|#3| $) 12)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-4382 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-918)) 41)) (-1765 (((-859) $) 89) (($ (-294 |#3|)) 22)) (-1686 (((-112) $ $) 38)))
-(((-1070 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-1035 (-294 |#3|)) (-10 -8 (-15 -2979 ($ |#3| |#3|)) (-15 -2979 ($ |#3| |#3| (-641 (-1170)))) (-15 -4134 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -4037 ((-889 |#1|) $)) (-15 -4312 (|#3| $)) (-15 -4324 (|#3| $)) (-15 -4382 (|#3| $ |#3| (-918))) (-15 -1750 ((-641 (-1170)) $)))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -1070))
-((-2979 (*1 *1 *2 *2) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))) (-2979 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-4134 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6))) (-4 *6 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *6)))) (-4037 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 *2))) (-5 *2 (-889 *3)) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 *2))))) (-4312 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) (-4324 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) (-4382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-1750 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))))
-(-13 (-1094) (-286 |#3| |#3|) (-1035 (-294 |#3|)) (-10 -8 (-15 -2979 ($ |#3| |#3|)) (-15 -2979 ($ |#3| |#3| (-641 (-1170)))) (-15 -4134 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -4037 ((-889 |#1|) $)) (-15 -4312 (|#3| $)) (-15 -4324 (|#3| $)) (-15 -4382 (|#3| $ |#3| (-918))) (-15 -1750 ((-641 (-1170)) $))))
-((-1754 (((-112) $ $) NIL)) (-4102 (($ (-641 (-1070 |#1| |#2| |#3|))) 14)) (-3950 (((-641 (-1070 |#1| |#2| |#3|)) $) 21)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-4382 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-918)) 27)) (-1765 (((-859) $) 17)) (-1686 (((-112) $ $) 20)))
-(((-1071 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -4102 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -3950 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4382 (|#3| $ |#3| (-918))))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -1071))
-((-4102 (*1 *1 *2) (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1071 *3 *4 *5)))) (-3950 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))) (-4382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1071 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))))
-(-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -4102 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -3950 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4382 (|#3| $ |#3| (-918)))))
-((-2605 (((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)) 87) (((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|))) 91) (((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112)) 89)))
-(((-1072 |#1| |#2|) (-10 -7 (-15 -2605 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -2605 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2605 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-641 (-1170))) (T -1072))
-((-2605 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))))) (-2605 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3707 (-1166 *4)) (|:| -3072 (-641 (-949 *4)))))) (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-949 *4))) (-14 *5 (-641 (-1170))))) (-2605 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))))))
-(-10 -7 (-15 -2605 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -2605 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2605 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))))
-((-4006 (((-418 |#3|) |#3|) 18)))
-(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -4006 ((-418 |#3|) |#3|))) (-1235 (-407 (-564))) (-13 (-363) (-147) (-721 (-407 (-564)) |#1|)) (-1235 |#2|)) (T -1073))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-13 (-363) (-147) (-721 (-407 (-564)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -4006 ((-418 |#3|) |#3|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 142)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-1840 (($ $) NIL (|has| |#1| (-363)))) (-4035 (((-112) $) NIL (|has| |#1| (-363)))) (-3124 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) 125)) (-3715 ((|#1| $) 130)) (-2590 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-349)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3042 (((-768)) 46 (|has| |#1| (-368)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-2910 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) 49)) (-2396 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-1663 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 115) (((-685 |#1|) (-685 $)) 110)) (-4367 (($ |#2|) 67) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-1926 (((-3 $ "failed") $) NIL)) (-4224 (((-918)) 84)) (-2542 (($) 50 (|has| |#1| (-368)))) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1990 (($) NIL (|has| |#1| (-349)))) (-3242 (((-112) $) NIL (|has| |#1| (-349)))) (-2184 (($ $ (-768)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-3241 (((-112) $) NIL (|has| |#1| (-363)))) (-2261 (((-918) $) NIL (|has| |#1| (-349))) (((-830 (-918)) $) NIL (|has| |#1| (-349)))) (-2419 (((-112) $) NIL)) (-1779 ((|#1| $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2513 ((|#2| $) 91 (|has| |#1| (-363)))) (-2209 (((-918) $) 150 (|has| |#1| (-368)))) (-4358 ((|#2| $) 64)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-1611 (($) NIL (|has| |#1| (-349)) CONST)) (-1403 (($ (-918)) 141 (|has| |#1| (-368)))) (-3802 (((-1114) $) NIL)) (-1502 (($) 132)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2042 (((-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))) NIL (|has| |#1| (-349)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-1938 ((|#1| (-1259 $)) NIL) ((|#1|) 119)) (-1504 (((-768) $) NIL (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) NIL (|has| |#1| (-349)))) (-3226 (($ $) NIL (-4002 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) NIL (-4002 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1 |#1| |#1|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2836 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1916 ((|#2|) 80)) (-3726 (($) NIL (|has| |#1| (-349)))) (-3072 (((-1259 |#1|) $ (-1259 $)) 96) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 77) (((-685 |#1|) (-1259 $)) 92)) (-2127 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-349)))) (-1765 (((-859) $) 63) (($ (-564)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-2864 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3216 ((|#2| $) 89)) (-1965 (((-768)) 82 T CONST)) (-3941 (((-1259 $)) 88)) (-1582 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4317 (($) 32 T CONST)) (-4327 (($) 19 T CONST)) (-3190 (($ $) NIL (-4002 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) NIL (-4002 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1 |#1| |#1|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1686 (((-112) $ $) 69)) (-1793 (($ $ $) NIL (|has| |#1| (-363)))) (-1783 (($ $) 73) (($ $ $) NIL)) (-1771 (($ $ $) 71)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363)))))
+((-3971 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#5|) 87)) (-1921 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|) 129)) (-2501 (((-641 |#5|) |#4| |#5|) 75)) (-1782 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3691 (((-1264)) 37)) (-1748 (((-1264)) 26)) (-2135 (((-1264) (-1152) (-1152) (-1152)) 33)) (-4230 (((-1264) (-1152) (-1152) (-1152)) 22)) (-3111 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#4| |#4| |#5|) 109)) (-3205 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#3| (-112)) 120) (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2392 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|) 115)))
+(((-1067 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4230 ((-1264) (-1152) (-1152) (-1152))) (-15 -1748 ((-1264))) (-15 -2135 ((-1264) (-1152) (-1152) (-1152))) (-15 -3691 ((-1264))) (-15 -3111 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -3205 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3205 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#3| (-112))) (-15 -2392 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -1921 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -1782 ((-112) |#4| |#5|)) (-15 -1782 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -2501 ((-641 |#5|) |#4| |#5|)) (-15 -3971 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1067))
+((-3971 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2501 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1782 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1782 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1921 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2392 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -4011 *9)))) (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -4011 *9)))) (-5 *1 (-1067 *6 *7 *4 *8 *9)))) (-3205 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-1067 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-3111 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3691 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-2135 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1748 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-4230 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4230 ((-1264) (-1152) (-1152) (-1152))) (-15 -1748 ((-1264))) (-15 -2135 ((-1264) (-1152) (-1152) (-1152))) (-15 -3691 ((-1264))) (-15 -3111 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -3205 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3205 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#3| (-112))) (-15 -2392 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -1921 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -1782 ((-112) |#4| |#5|)) (-15 -1782 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -2501 ((-641 |#5|) |#4| |#5|)) (-15 -3971 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#5|)))
+((-3702 (((-112) $ $) NIL)) (-3155 (((-1208) $) 13)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2726 (((-1129) $) 10)) (-3714 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-1068) (-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $)) (-15 -3155 ((-1208) $))))) (T -1068))
+((-2726 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1068)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1068)))))
+(-13 (-1077) (-10 -8 (-15 -2726 ((-1129) $)) (-15 -3155 ((-1208) $))))
+((-3702 (((-112) $ $) NIL)) (-4337 (((-1170) $) 8)) (-1868 (((-1152) $) 17)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 14)))
+(((-1069 |#1|) (-13 (-1094) (-10 -8 (-15 -4337 ((-1170) $)))) (-1170)) (T -1069))
+((-4337 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2))))
+(-13 (-1094) (-10 -8 (-15 -4337 ((-1170) $))))
+((-3702 (((-112) $ $) NIL)) (-2828 (($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|))) 34)) (-1964 (($ |#3| |#3|) 23) (($ |#3| |#3| (-641 (-1170))) 21)) (-3119 ((|#3| $) 13)) (-2224 (((-3 (-294 |#3|) "failed") $) 60)) (-2376 (((-294 |#3|) $) NIL)) (-3128 (((-641 (-1170)) $) 16)) (-2968 (((-889 |#1|) $) 11)) (-3109 ((|#3| $) 12)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4382 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-918)) 41)) (-3714 (((-859) $) 89) (($ (-294 |#3|)) 22)) (-1720 (((-112) $ $) 38)))
+(((-1070 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-1035 (-294 |#3|)) (-10 -8 (-15 -1964 ($ |#3| |#3|)) (-15 -1964 ($ |#3| |#3| (-641 (-1170)))) (-15 -2828 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -2968 ((-889 |#1|) $)) (-15 -3109 (|#3| $)) (-15 -3119 (|#3| $)) (-15 -4382 (|#3| $ |#3| (-918))) (-15 -3128 ((-641 (-1170)) $)))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -1070))
+((-1964 (*1 *1 *2 *2) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))) (-1964 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-2828 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6))) (-4 *6 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *6)))) (-2968 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 *2))) (-5 *2 (-889 *3)) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 *2))))) (-3109 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) (-4382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-3128 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))))
+(-13 (-1094) (-286 |#3| |#3|) (-1035 (-294 |#3|)) (-10 -8 (-15 -1964 ($ |#3| |#3|)) (-15 -1964 ($ |#3| |#3| (-641 (-1170)))) (-15 -2828 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -2968 ((-889 |#1|) $)) (-15 -3109 (|#3| $)) (-15 -3119 (|#3| $)) (-15 -4382 (|#3| $ |#3| (-918))) (-15 -3128 ((-641 (-1170)) $))))
+((-3702 (((-112) $ $) NIL)) (-2805 (($ (-641 (-1070 |#1| |#2| |#3|))) 14)) (-2861 (((-641 (-1070 |#1| |#2| |#3|)) $) 21)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4382 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-918)) 27)) (-3714 (((-859) $) 17)) (-1720 (((-112) $ $) 20)))
+(((-1071 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -2805 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -2861 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4382 (|#3| $ |#3| (-918))))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -1071))
+((-2805 (*1 *1 *2) (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1071 *3 *4 *5)))) (-2861 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))) (-4382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1071 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))))
+(-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -2805 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -2861 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4382 (|#3| $ |#3| (-918)))))
+((-3436 (((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)) 87) (((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|))) 91) (((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112)) 89)))
+(((-1072 |#1| |#2|) (-10 -7 (-15 -3436 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -3436 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3436 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-641 (-1170))) (T -1072))
+((-3436 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))))) (-3436 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3924 (-1166 *4)) (|:| -3867 (-641 (-949 *4)))))) (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-949 *4))) (-14 *5 (-641 (-1170))))) (-3436 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))))))
+(-10 -7 (-15 -3436 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -3436 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3436 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))))
+((-4139 (((-418 |#3|) |#3|) 18)))
+(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-418 |#3|) |#3|))) (-1235 (-407 (-564))) (-13 (-363) (-147) (-721 (-407 (-564)) |#1|)) (-1235 |#2|)) (T -1073))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-13 (-363) (-147) (-721 (-407 (-564)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5)))))
+(-10 -7 (-15 -4139 ((-418 |#3|) |#3|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 142)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-1582 (($ $) NIL (|has| |#1| (-363)))) (-3897 (((-112) $) NIL (|has| |#1| (-363)))) (-3150 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) 125)) (-3767 ((|#1| $) 130)) (-1494 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-349)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2018 (((-768)) 46 (|has| |#1| (-368)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3566 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) 49)) (-3266 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-3439 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 115) (((-685 |#1|) (-685 $)) 110)) (-1728 (($ |#2|) 67) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-4272 (((-3 $ "failed") $) NIL)) (-1595 (((-918)) 84)) (-2939 (($) 50 (|has| |#1| (-368)))) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3648 (($) NIL (|has| |#1| (-349)))) (-1937 (((-112) $) NIL (|has| |#1| (-349)))) (-1957 (($ $ (-768)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-1926 (((-112) $) NIL (|has| |#1| (-363)))) (-1454 (((-918) $) NIL (|has| |#1| (-349))) (((-830 (-918)) $) NIL (|has| |#1| (-349)))) (-2340 (((-112) $) NIL)) (-2217 ((|#1| $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2041 ((|#2| $) 91 (|has| |#1| (-363)))) (-4031 (((-918) $) 150 (|has| |#1| (-368)))) (-1714 ((|#2| $) 64)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-3304 (($) NIL (|has| |#1| (-349)) CONST)) (-3338 (($ (-918)) 141 (|has| |#1| (-368)))) (-3844 (((-1114) $) NIL)) (-1729 (($) 132)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3015 (((-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))) NIL (|has| |#1| (-349)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-4378 ((|#1| (-1259 $)) NIL) ((|#1|) 119)) (-2671 (((-768) $) NIL (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) NIL (|has| |#1| (-349)))) (-2203 (($ $) NIL (-4012 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) NIL (-4012 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1 |#1| |#1|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2227 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-4180 ((|#2|) 80)) (-2927 (($) NIL (|has| |#1| (-349)))) (-3867 (((-1259 |#1|) $ (-1259 $)) 96) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 77) (((-685 |#1|) (-1259 $)) 92)) (-2374 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-349)))) (-3714 (((-859) $) 63) (($ (-564)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4363 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1650 ((|#2| $) 89)) (-3379 (((-768)) 82 T CONST)) (-4339 (((-1259 $)) 88)) (-3979 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4312 (($) 32 T CONST)) (-4323 (($) 19 T CONST)) (-2238 (($ $) NIL (-4012 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) NIL (-4012 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1 |#1| |#1|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1720 (((-112) $ $) 69)) (-1841 (($ $ $) NIL (|has| |#1| (-363)))) (-1828 (($ $) 73) (($ $ $) NIL)) (-1814 (($ $ $) 71)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363)))))
(((-1074 |#1| |#2| |#3|) (-721 |#1| |#2|) (-172) (-1235 |#1|) |#2|) (T -1074))
NIL
(-721 |#1| |#2|)
-((-4006 (((-418 |#3|) |#3|) 19)))
-(((-1075 |#1| |#2| |#3|) (-10 -7 (-15 -4006 ((-418 |#3|) |#3|))) (-1235 (-407 (-949 (-564)))) (-13 (-363) (-147) (-721 (-407 (-949 (-564))) |#1|)) (-1235 |#2|)) (T -1075))
-((-4006 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-949 (-564))))) (-4 *5 (-13 (-363) (-147) (-721 (-407 (-949 (-564))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(-10 -7 (-15 -4006 ((-418 |#3|) |#3|)))
-((-1754 (((-112) $ $) NIL)) (-3571 (($ $ $) 16)) (-1547 (($ $ $) 17)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-4169 (($) 6)) (-2127 (((-1170) $) 20)) (-1765 (((-859) $) 13)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 15)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 9)))
-(((-1076) (-13 (-847) (-612 (-1170)) (-10 -8 (-15 -4169 ($))))) (T -1076))
-((-4169 (*1 *1) (-5 *1 (-1076))))
-(-13 (-847) (-612 (-1170)) (-10 -8 (-15 -4169 ($))))
-((-1754 (((-112) $ $) 7)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-1686 (((-112) $ $) 6)))
+((-4139 (((-418 |#3|) |#3|) 19)))
+(((-1075 |#1| |#2| |#3|) (-10 -7 (-15 -4139 ((-418 |#3|) |#3|))) (-1235 (-407 (-949 (-564)))) (-13 (-363) (-147) (-721 (-407 (-949 (-564))) |#1|)) (-1235 |#2|)) (T -1075))
+((-4139 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-949 (-564))))) (-4 *5 (-13 (-363) (-147) (-721 (-407 (-949 (-564))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5)))))
+(-10 -7 (-15 -4139 ((-418 |#3|) |#3|)))
+((-3702 (((-112) $ $) NIL)) (-3428 (($ $ $) 16)) (-3413 (($ $ $) 17)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2788 (($) 6)) (-2374 (((-1170) $) 20)) (-3714 (((-859) $) 13)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 15)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 9)))
+(((-1076) (-13 (-847) (-612 (-1170)) (-10 -8 (-15 -2788 ($))))) (T -1076))
+((-2788 (*1 *1) (-5 *1 (-1076))))
+(-13 (-847) (-612 (-1170)) (-10 -8 (-15 -2788 ($))))
+((-3702 (((-112) $ $) 7)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-1720 (((-112) $ $) 6)))
(((-1077) (-140)) (T -1077))
NIL
(-13 (-93))
(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T))
-((-1559 ((|#1| |#1| (-1 (-564) |#1| |#1|)) 38) ((|#1| |#1| (-1 (-112) |#1|)) 29)) (-1681 (((-1264)) 18)) (-2904 (((-641 |#1|)) 10)))
-(((-1078 |#1|) (-10 -7 (-15 -1681 ((-1264))) (-15 -2904 ((-641 |#1|))) (-15 -1559 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1559 (|#1| |#1| (-1 (-564) |#1| |#1|)))) (-132)) (T -1078))
-((-1559 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-1559 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-2904 (*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))) (-1681 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))))
-(-10 -7 (-15 -1681 ((-1264))) (-15 -2904 ((-641 |#1|))) (-15 -1559 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1559 (|#1| |#1| (-1 (-564) |#1| |#1|))))
-((-1646 (($ (-109) $) 20)) (-3146 (((-687 (-109)) (-1170) $) 19)) (-3845 (($) 7)) (-2996 (($) 21)) (-2313 (($) 22)) (-4387 (((-641 (-175)) $) 10)) (-1765 (((-859) $) 25)))
-(((-1079) (-13 (-611 (-859)) (-10 -8 (-15 -3845 ($)) (-15 -4387 ((-641 (-175)) $)) (-15 -3146 ((-687 (-109)) (-1170) $)) (-15 -1646 ($ (-109) $)) (-15 -2996 ($)) (-15 -2313 ($))))) (T -1079))
-((-3845 (*1 *1) (-5 *1 (-1079))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079)))) (-3146 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079)))) (-1646 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079)))) (-2996 (*1 *1) (-5 *1 (-1079))) (-2313 (*1 *1) (-5 *1 (-1079))))
-(-13 (-611 (-859)) (-10 -8 (-15 -3845 ($)) (-15 -4387 ((-641 (-175)) $)) (-15 -3146 ((-687 (-109)) (-1170) $)) (-15 -1646 ($ (-109) $)) (-15 -2996 ($)) (-15 -2313 ($))))
-((-3165 (((-1259 (-685 |#1|)) (-641 (-685 |#1|))) 47) (((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|))) 76) (((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|)))) 94)) (-3072 (((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))) 41)))
-(((-1080 |#1|) (-10 -7 (-15 -3165 ((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|))))) (-15 -3165 ((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|)))) (-15 -3165 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3072 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))))) (-363)) (T -1080))
-((-3072 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-949 *5)))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-949 *5))))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-407 (-949 *5))))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-407 (-949 *5)))))))
-(-10 -7 (-15 -3165 ((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|))))) (-15 -3165 ((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|)))) (-15 -3165 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3072 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-2703 (((-641 (-768)) $) NIL) (((-641 (-768)) $ (-1170)) NIL)) (-3703 (((-768) $) NIL) (((-768) $ (-1170)) NIL)) (-4170 (((-641 (-1082 (-1170))) $) NIL)) (-3964 (((-1166 $) $ (-1082 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-1082 (-1170)))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1368 (($ $) NIL (|has| |#1| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2647 (($ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1082 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-2064 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1082 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-4267 (($ $ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-4346 (($ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#1| (-906)))) (-2877 (($ $ |#1| (-531 (-1082 (-1170))) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1082 (-1170)) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1082 (-1170)) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2261 (((-768) $ (-1170)) NIL) (((-768) $) NIL)) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-4157 (($ (-1166 |#1|) (-1082 (-1170))) NIL) (($ (-1166 $) (-1082 (-1170))) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-1082 (-1170))) NIL)) (-3829 (((-531 (-1082 (-1170))) $) NIL) (((-768) $ (-1082 (-1170))) NIL) (((-641 (-768)) $ (-641 (-1082 (-1170)))) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2964 (($ (-1 (-531 (-1082 (-1170))) (-531 (-1082 (-1170)))) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2753 (((-1 $ (-768)) (-1170)) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-2022 (((-3 (-1082 (-1170)) "failed") $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-1370 (((-1082 (-1170)) $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4202 (((-1152) $) NIL)) (-2757 (((-112) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-1082 (-1170))) (|:| -3747 (-768))) "failed") $) NIL)) (-2345 (($ $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#1| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1082 (-1170)) |#1|) NIL) (($ $ (-641 (-1082 (-1170))) (-641 |#1|)) NIL) (($ $ (-1082 (-1170)) $) NIL) (($ $ (-641 (-1082 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-1938 (($ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-3226 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3013 (((-641 (-1170)) $) NIL)) (-3344 (((-531 (-1082 (-1170))) $) NIL) (((-768) $ (-1082 (-1170))) NIL) (((-641 (-768)) $ (-641 (-1082 (-1170)))) NIL) (((-768) $ (-1170)) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2712 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1082 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+((-1935 ((|#1| |#1| (-1 (-564) |#1| |#1|)) 38) ((|#1| |#1| (-1 (-112) |#1|)) 29)) (-1831 (((-1264)) 18)) (-3587 (((-641 |#1|)) 10)))
+(((-1078 |#1|) (-10 -7 (-15 -1831 ((-1264))) (-15 -3587 ((-641 |#1|))) (-15 -1935 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1935 (|#1| |#1| (-1 (-564) |#1| |#1|)))) (-132)) (T -1078))
+((-1935 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-1935 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-3587 (*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))) (-1831 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))))
+(-10 -7 (-15 -1831 ((-1264))) (-15 -3587 ((-641 |#1|))) (-15 -1935 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1935 (|#1| |#1| (-1 (-564) |#1| |#1|))))
+((-3310 (($ (-109) $) 20)) (-2213 (((-687 (-109)) (-1170) $) 19)) (-2834 (($) 7)) (-4354 (($) 21)) (-3731 (($) 22)) (-4029 (((-641 (-175)) $) 10)) (-3714 (((-859) $) 25)))
+(((-1079) (-13 (-611 (-859)) (-10 -8 (-15 -2834 ($)) (-15 -4029 ((-641 (-175)) $)) (-15 -2213 ((-687 (-109)) (-1170) $)) (-15 -3310 ($ (-109) $)) (-15 -4354 ($)) (-15 -3731 ($))))) (T -1079))
+((-2834 (*1 *1) (-5 *1 (-1079))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079)))) (-2213 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079)))) (-4354 (*1 *1) (-5 *1 (-1079))) (-3731 (*1 *1) (-5 *1 (-1079))))
+(-13 (-611 (-859)) (-10 -8 (-15 -2834 ($)) (-15 -4029 ((-641 (-175)) $)) (-15 -2213 ((-687 (-109)) (-1170) $)) (-15 -3310 ($ (-109) $)) (-15 -4354 ($)) (-15 -3731 ($))))
+((-2426 (((-1259 (-685 |#1|)) (-641 (-685 |#1|))) 47) (((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|))) 76) (((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|)))) 94)) (-3867 (((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))) 41)))
+(((-1080 |#1|) (-10 -7 (-15 -2426 ((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|))))) (-15 -2426 ((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|)))) (-15 -2426 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3867 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))))) (-363)) (T -1080))
+((-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-949 *5)))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-949 *5))))) (-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-407 (-949 *5))))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-407 (-949 *5)))))))
+(-10 -7 (-15 -2426 ((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|))))) (-15 -2426 ((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|)))) (-15 -2426 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -3867 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3250 (((-641 (-768)) $) NIL) (((-641 (-768)) $ (-1170)) NIL)) (-3879 (((-768) $) NIL) (((-768) $ (-1170)) NIL)) (-4292 (((-641 (-1082 (-1170))) $) NIL)) (-4103 (((-1166 $) $ (-1082 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-1082 (-1170)))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1328 (($ $) NIL (|has| |#1| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3923 (($ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1082 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-2376 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1082 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-4275 (($ $ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-1374 (($ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#1| (-906)))) (-1423 (($ $ |#1| (-531 (-1082 (-1170))) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1082 (-1170)) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1082 (-1170)) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1454 (((-768) $ (-1170)) NIL) (((-768) $) NIL)) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-4279 (($ (-1166 |#1|) (-1082 (-1170))) NIL) (($ (-1166 $) (-1082 (-1170))) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-1082 (-1170))) NIL)) (-2700 (((-531 (-1082 (-1170))) $) NIL) (((-768) $ (-1082 (-1170))) NIL) (((-641 (-768)) $ (-641 (-1082 (-1170)))) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-4062 (($ (-1 (-531 (-1082 (-1170))) (-531 (-1082 (-1170)))) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2632 (((-1 $ (-768)) (-1170)) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-2848 (((-3 (-1082 (-1170)) "failed") $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-3258 (((-1082 (-1170)) $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1868 (((-1152) $) NIL)) (-2674 (((-112) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-1082 (-1170))) (|:| -3078 (-768))) "failed") $) NIL)) (-4370 (($ $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#1| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1082 (-1170)) |#1|) NIL) (($ $ (-641 (-1082 (-1170))) (-641 |#1|)) NIL) (($ $ (-1082 (-1170)) $) NIL) (($ $ (-641 (-1082 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-4378 (($ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-2203 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1435 (((-641 (-1170)) $) NIL)) (-3475 (((-531 (-1082 (-1170))) $) NIL) (((-768) $ (-1082 (-1170))) NIL) (((-641 (-768)) $ (-641 (-1082 (-1170)))) NIL) (((-768) $ (-1170)) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3324 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1082 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
(((-1081 |#1|) (-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1035 (-1119 |#1| (-1170)))) (-1046)) (T -1081))
NIL
(-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1035 (-1119 |#1| (-1170))))
-((-1754 (((-112) $ $) NIL)) (-3703 (((-768) $) NIL)) (-3657 ((|#1| $) 10)) (-2013 (((-3 |#1| "failed") $) NIL)) (-2064 ((|#1| $) NIL)) (-2261 (((-768) $) 11)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2753 (($ |#1| (-768)) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3226 (($ $) NIL) (($ $ (-768)) NIL)) (-1765 (((-859) $) NIL) (($ |#1|) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 16)))
+((-3702 (((-112) $ $) NIL)) (-3879 (((-768) $) NIL)) (-3832 ((|#1| $) 10)) (-2224 (((-3 |#1| "failed") $) NIL)) (-2376 ((|#1| $) NIL)) (-1454 (((-768) $) 11)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-2632 (($ |#1| (-768)) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2203 (($ $) NIL) (($ $ (-768)) NIL)) (-3714 (((-859) $) NIL) (($ |#1|) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 16)))
(((-1082 |#1|) (-266 |#1|) (-847)) (T -1082))
NIL
(-266 |#1|)
-((-2082 (((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 27 (|has| |#1| (-845))) (((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 14)))
-(((-1083 |#1| |#2|) (-10 -7 (-15 -2082 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-845)) (-15 -2082 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1083))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-845)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-1083 *5 *6)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1088 *6)) (-5 *1 (-1083 *5 *6)))))
-(-10 -7 (-15 -2082 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-845)) (-15 -2082 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2792 (((-641 (-1129)) $) 10)) (-1686 (((-112) $ $) NIL)))
-(((-1084) (-13 (-1077) (-10 -8 (-15 -2792 ((-641 (-1129)) $))))) (T -1084))
-((-2792 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084)))))
-(-13 (-1077) (-10 -8 (-15 -2792 ((-641 (-1129)) $))))
-((-2082 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 19)))
-(((-1085 |#1| |#2|) (-10 -7 (-15 -2082 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-1209) (-1209)) (T -1085))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1086 *6)) (-5 *1 (-1085 *5 *6)))))
-(-10 -7 (-15 -2082 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3657 (((-1170) $) 11)) (-3371 (((-1088 |#1|) $) 12)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3566 (($ (-1170) (-1088 |#1|)) 10)) (-1765 (((-859) $) 22 (|has| |#1| (-1094)))) (-1686 (((-112) $ $) 17 (|has| |#1| (-1094)))))
-(((-1086 |#1|) (-13 (-1209) (-10 -8 (-15 -3566 ($ (-1170) (-1088 |#1|))) (-15 -3657 ((-1170) $)) (-15 -3371 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1086))
-((-3566 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209)) (-5 *1 (-1086 *4)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))))
-(-13 (-1209) (-10 -8 (-15 -3566 ($ (-1170) (-1088 |#1|))) (-15 -3657 ((-1170) $)) (-15 -3371 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
-((-3371 (($ |#1| |#1|) 8)) (-3557 ((|#1| $) 11)) (-1519 ((|#1| $) 13)) (-1529 (((-564) $) 9)) (-2781 ((|#1| $) 10)) (-1652 ((|#1| $) 12)) (-2127 (($ |#1|) 6)) (-2167 (($ |#1| |#1|) 15)) (-1463 (($ $ (-564)) 14)))
+((-2313 (((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 27 (|has| |#1| (-845))) (((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 14)))
+(((-1083 |#1| |#2|) (-10 -7 (-15 -2313 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-845)) (-15 -2313 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1083))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-845)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-1083 *5 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1088 *6)) (-5 *1 (-1083 *5 *6)))))
+(-10 -7 (-15 -2313 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-845)) (-15 -2313 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 16) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1780 (((-641 (-1129)) $) 10)) (-1720 (((-112) $ $) NIL)))
+(((-1084) (-13 (-1077) (-10 -8 (-15 -1780 ((-641 (-1129)) $))))) (T -1084))
+((-1780 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084)))))
+(-13 (-1077) (-10 -8 (-15 -1780 ((-641 (-1129)) $))))
+((-2313 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 19)))
+(((-1085 |#1| |#2|) (-10 -7 (-15 -2313 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-1209) (-1209)) (T -1085))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1086 *6)) (-5 *1 (-1085 *5 *6)))))
+(-10 -7 (-15 -2313 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3832 (((-1170) $) 11)) (-2346 (((-1088 |#1|) $) 12)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2538 (($ (-1170) (-1088 |#1|)) 10)) (-3714 (((-859) $) 22 (|has| |#1| (-1094)))) (-1720 (((-112) $ $) 17 (|has| |#1| (-1094)))))
+(((-1086 |#1|) (-13 (-1209) (-10 -8 (-15 -2538 ($ (-1170) (-1088 |#1|))) (-15 -3832 ((-1170) $)) (-15 -2346 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1086))
+((-2538 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209)) (-5 *1 (-1086 *4)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) (-2346 (*1 *2 *1) (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))))
+(-13 (-1209) (-10 -8 (-15 -2538 ($ (-1170) (-1088 |#1|))) (-15 -3832 ((-1170) $)) (-15 -2346 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
+((-2346 (($ |#1| |#1|) 8)) (-1908 ((|#1| $) 11)) (-3380 ((|#1| $) 13)) (-3391 (((-564) $) 9)) (-1652 ((|#1| $) 10)) (-3505 ((|#1| $) 12)) (-2374 (($ |#1|) 6)) (-4223 (($ |#1| |#1|) 15)) (-1493 (($ $ (-564)) 14)))
(((-1087 |#1|) (-140) (-1209)) (T -1087))
-((-2167 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-2781 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1529 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-3371 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(-13 (-616 |t#1|) (-10 -8 (-15 -2167 ($ |t#1| |t#1|)) (-15 -1463 ($ $ (-564))) (-15 -1519 (|t#1| $)) (-15 -1652 (|t#1| $)) (-15 -3557 (|t#1| $)) (-15 -2781 (|t#1| $)) (-15 -1529 ((-564) $)) (-15 -3371 ($ |t#1| |t#1|))))
+((-4223 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1493 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-2346 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
+(-13 (-616 |t#1|) (-10 -8 (-15 -4223 ($ |t#1| |t#1|)) (-15 -1493 ($ $ (-564))) (-15 -3380 (|t#1| $)) (-15 -3505 (|t#1| $)) (-15 -1908 (|t#1| $)) (-15 -1652 (|t#1| $)) (-15 -3391 ((-564) $)) (-15 -2346 ($ |t#1| |t#1|))))
(((-616 |#1|) . T))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3371 (($ |#1| |#1|) 16)) (-2082 (((-641 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-845)))) (-3557 ((|#1| $) 12)) (-1519 ((|#1| $) 11)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1529 (((-564) $) 15)) (-2781 ((|#1| $) 14)) (-1652 ((|#1| $) 13)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2134 (((-641 |#1|) $) 42 (|has| |#1| (-845))) (((-641 |#1|) (-641 $)) 41 (|has| |#1| (-845)))) (-2127 (($ |#1|) 29)) (-1765 (((-859) $) 28 (|has| |#1| (-1094)))) (-2167 (($ |#1| |#1|) 10)) (-1463 (($ $ (-564)) 17)) (-1686 (((-112) $ $) 22 (|has| |#1| (-1094)))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2346 (($ |#1| |#1|) 16)) (-2313 (((-641 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-845)))) (-1908 ((|#1| $) 12)) (-3380 ((|#1| $) 11)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3391 (((-564) $) 15)) (-1652 ((|#1| $) 14)) (-3505 ((|#1| $) 13)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4111 (((-641 |#1|) $) 42 (|has| |#1| (-845))) (((-641 |#1|) (-641 $)) 41 (|has| |#1| (-845)))) (-2374 (($ |#1|) 29)) (-3714 (((-859) $) 28 (|has| |#1| (-1094)))) (-4223 (($ |#1| |#1|) 10)) (-1493 (($ $ (-564)) 17)) (-1720 (((-112) $ $) 22 (|has| |#1| (-1094)))))
(((-1088 |#1|) (-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|))) (-1209)) (T -1088))
NIL
(-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|)))
-((-3371 (($ |#1| |#1|) 8)) (-2082 ((|#2| (-1 |#1| |#1|) $) 16)) (-3557 ((|#1| $) 11)) (-1519 ((|#1| $) 13)) (-1529 (((-564) $) 9)) (-2781 ((|#1| $) 10)) (-1652 ((|#1| $) 12)) (-2134 ((|#2| (-641 $)) 18) ((|#2| $) 17)) (-2127 (($ |#1|) 6)) (-2167 (($ |#1| |#1|) 15)) (-1463 (($ $ (-564)) 14)))
+((-2346 (($ |#1| |#1|) 8)) (-2313 ((|#2| (-1 |#1| |#1|) $) 16)) (-1908 ((|#1| $) 11)) (-3380 ((|#1| $) 13)) (-3391 (((-564) $) 9)) (-1652 ((|#1| $) 10)) (-3505 ((|#1| $) 12)) (-4111 ((|#2| (-641 $)) 18) ((|#2| $) 17)) (-2374 (($ |#1|) 6)) (-4223 (($ |#1| |#1|) 15)) (-1493 (($ $ (-564)) 14)))
(((-1089 |#1| |#2|) (-140) (-845) (-1143 |t#1|)) (T -1089))
-((-2134 (*1 *2 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1143 *4)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1143 *3)))) (-2082 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1143 *4)))))
-(-13 (-1087 |t#1|) (-10 -8 (-15 -2134 (|t#2| (-641 $))) (-15 -2134 (|t#2| $)) (-15 -2082 (|t#2| (-1 |t#1| |t#1|) $))))
+((-4111 (*1 *2 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1143 *4)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1143 *3)))) (-2313 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1143 *4)))))
+(-13 (-1087 |t#1|) (-10 -8 (-15 -4111 (|t#2| (-641 $))) (-15 -4111 (|t#2| $)) (-15 -2313 (|t#2| (-1 |t#1| |t#1|) $))))
(((-616 |#1|) . T) ((-1087 |#1|) . T))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-2376 (((-1129) $) 12)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 18) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4374 (((-641 (-1129)) $) 10)) (-1686 (((-112) $ $) NIL)))
-(((-1090) (-13 (-1077) (-10 -8 (-15 -4374 ((-641 (-1129)) $)) (-15 -2376 ((-1129) $))))) (T -1090))
-((-4374 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090)))))
-(-13 (-1077) (-10 -8 (-15 -4374 ((-641 (-1129)) $)) (-15 -2376 ((-1129) $))))
-((-3423 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2032 (($ $ $) 10)) (-2003 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1091 |#1| |#2|) (-10 -8 (-15 -3423 (|#1| |#2| |#1|)) (-15 -3423 (|#1| |#1| |#2|)) (-15 -3423 (|#1| |#1| |#1|)) (-15 -2032 (|#1| |#1| |#1|)) (-15 -2003 (|#1| |#1| |#2|)) (-15 -2003 (|#1| |#1| |#1|))) (-1092 |#2|) (-1094)) (T -1091))
-NIL
-(-10 -8 (-15 -3423 (|#1| |#2| |#1|)) (-15 -3423 (|#1| |#1| |#2|)) (-15 -3423 (|#1| |#1| |#1|)) (-15 -2032 (|#1| |#1| |#1|)) (-15 -2003 (|#1| |#1| |#2|)) (-15 -2003 (|#1| |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3423 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2032 (($ $ $) 20)) (-2723 (((-112) $ $) 19)) (-3263 (((-112) $ (-768)) 35)) (-3581 (($) 25) (($ (-641 |#1|)) 24)) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4411)))) (-3760 (($) 36 T CONST)) (-3104 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4411)))) (-3080 (((-641 |#1|) $) 43 (|has| $ (-6 -4411)))) (-2081 (((-112) $ $) 28)) (-2830 (((-112) $ (-768)) 34)) (-3817 (((-641 |#1|) $) 44 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 38)) (-2972 (((-112) $ (-768)) 33)) (-4202 (((-1152) $) 9)) (-1617 (($ $ $) 23)) (-3802 (((-1114) $) 10)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1467 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#1|) (-641 |#1|)) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) 47 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 29)) (-2742 (((-112) $) 32)) (-3845 (($) 31)) (-2003 (($ $ $) 22) (($ $ |#1|) 21)) (-3815 (((-768) |#1| $) 45 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4411)))) (-1899 (($ $) 30)) (-2127 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 51)) (-1765 (((-859) $) 11)) (-4086 (($) 27) (($ (-641 |#1|)) 26)) (-2237 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 6)) (-2589 (((-768) $) 37 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-2541 (((-1129) $) 12)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 18) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4347 (((-641 (-1129)) $) 10)) (-1720 (((-112) $ $) NIL)))
+(((-1090) (-13 (-1077) (-10 -8 (-15 -4347 ((-641 (-1129)) $)) (-15 -2541 ((-1129) $))))) (T -1090))
+((-4347 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090)))))
+(-13 (-1077) (-10 -8 (-15 -4347 ((-641 (-1129)) $)) (-15 -2541 ((-1129) $))))
+((-3452 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2935 (($ $ $) 10)) (-3796 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1091 |#1| |#2|) (-10 -8 (-15 -3452 (|#1| |#2| |#1|)) (-15 -3452 (|#1| |#1| |#2|)) (-15 -3452 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -3796 (|#1| |#1| |#1|))) (-1092 |#2|) (-1094)) (T -1091))
+NIL
+(-10 -8 (-15 -3452 (|#1| |#2| |#1|)) (-15 -3452 (|#1| |#1| |#2|)) (-15 -3452 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -3796 (|#1| |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-3452 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2935 (($ $ $) 20)) (-2303 (((-112) $ $) 19)) (-2141 (((-112) $ (-768)) 35)) (-3633 (($) 25) (($ (-641 |#1|)) 24)) (-4148 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4412)))) (-3180 (($) 36 T CONST)) (-2084 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4412)))) (-4244 (((-641 |#1|) $) 43 (|has| $ (-6 -4412)))) (-2214 (((-112) $ $) 28)) (-2173 (((-112) $ (-768)) 34)) (-2572 (((-641 |#1|) $) 44 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 38)) (-4144 (((-112) $ (-768)) 33)) (-1868 (((-1152) $) 9)) (-4302 (($ $ $) 23)) (-3844 (((-1114) $) 10)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2280 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#1|) (-641 |#1|)) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) 47 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 29)) (-2510 (((-112) $) 32)) (-2834 (($) 31)) (-3796 (($ $ $) 22) (($ $ |#1|) 21)) (-3855 (((-768) |#1| $) 45 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4412)))) (-3890 (($ $) 30)) (-2374 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 51)) (-3714 (((-859) $) 11)) (-4208 (($) 27) (($ (-641 |#1|)) 26)) (-4289 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 6)) (-2779 (((-768) $) 37 (|has| $ (-6 -4412)))))
(((-1092 |#1|) (-140) (-1094)) (T -1092))
-((-2081 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-4086 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-3581 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-1617 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2003 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2003 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2032 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2723 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3423 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3423 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3423 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(-13 (-1094) (-151 |t#1|) (-10 -8 (-6 -4401) (-15 -2081 ((-112) $ $)) (-15 -4086 ($)) (-15 -4086 ($ (-641 |t#1|))) (-15 -3581 ($)) (-15 -3581 ($ (-641 |t#1|))) (-15 -1617 ($ $ $)) (-15 -2003 ($ $ $)) (-15 -2003 ($ $ |t#1|)) (-15 -2032 ($ $ $)) (-15 -2723 ((-112) $ $)) (-15 -3423 ($ $ $)) (-15 -3423 ($ $ |t#1|)) (-15 -3423 ($ |t#1| $))))
+((-2214 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-4208 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-3633 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-4302 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3796 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3796 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2935 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2303 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3452 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3452 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3452 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(-13 (-1094) (-151 |t#1|) (-10 -8 (-6 -4402) (-15 -2214 ((-112) $ $)) (-15 -4208 ($)) (-15 -4208 ($ (-641 |t#1|))) (-15 -3633 ($)) (-15 -3633 ($ (-641 |t#1|))) (-15 -4302 ($ $ $)) (-15 -3796 ($ $ $)) (-15 -3796 ($ $ |t#1|)) (-15 -2935 ($ $ $)) (-15 -2303 ((-112) $ $)) (-15 -3452 ($ $ $)) (-15 -3452 ($ $ |t#1|)) (-15 -3452 ($ |t#1| $))))
(((-34) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) . T) ((-1209) . T))
-((-4202 (((-1152) $) 10)) (-3802 (((-1114) $) 8)))
-(((-1093 |#1|) (-10 -8 (-15 -4202 ((-1152) |#1|)) (-15 -3802 ((-1114) |#1|))) (-1094)) (T -1093))
+((-1868 (((-1152) $) 10)) (-3844 (((-1114) $) 8)))
+(((-1093 |#1|) (-10 -8 (-15 -1868 ((-1152) |#1|)) (-15 -3844 ((-1114) |#1|))) (-1094)) (T -1093))
NIL
-(-10 -8 (-15 -4202 ((-1152) |#1|)) (-15 -3802 ((-1114) |#1|)))
-((-1754 (((-112) $ $) 7)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)))
+(-10 -8 (-15 -1868 ((-1152) |#1|)) (-15 -3844 ((-1114) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)))
(((-1094) (-140)) (T -1094))
-((-3802 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152)))))
-(-13 (-102) (-611 (-859)) (-10 -8 (-15 -3802 ((-1114) $)) (-15 -4202 ((-1152) $))))
+((-3844 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152)))))
+(-13 (-102) (-611 (-859)) (-10 -8 (-15 -3844 ((-1114) $)) (-15 -1868 ((-1152) $))))
(((-102) . T) ((-611 (-859)) . T))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) 36)) (-2101 (($ (-641 (-918))) 72)) (-2607 (((-3 $ "failed") $ (-918) (-918)) 83)) (-2542 (($) 40)) (-3675 (((-112) (-918) $) 44)) (-2209 (((-918) $) 66)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) 39)) (-3256 (((-3 $ "failed") $ (-918)) 79)) (-3802 (((-1114) $) NIL)) (-3666 (((-1259 $)) 49)) (-2870 (((-641 (-918)) $) 27)) (-2689 (((-768) $ (-918) (-918)) 80)) (-1765 (((-859) $) 32)) (-1686 (((-112) $ $) 24)))
-(((-1095 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -3256 ((-3 $ "failed") $ (-918))) (-15 -2607 ((-3 $ "failed") $ (-918) (-918))) (-15 -2870 ((-641 (-918)) $)) (-15 -2101 ($ (-641 (-918)))) (-15 -3666 ((-1259 $))) (-15 -3675 ((-112) (-918) $)) (-15 -2689 ((-768) $ (-918) (-918))))) (-918) (-918)) (T -1095))
-((-3256 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2607 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2101 (*1 *1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-3666 (*1 *2) (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-3675 (*1 *2 *3 *1) (-12 (-5 *3 (-918)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2689 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-768)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-368) (-10 -8 (-15 -3256 ((-3 $ "failed") $ (-918))) (-15 -2607 ((-3 $ "failed") $ (-918) (-918))) (-15 -2870 ((-641 (-918)) $)) (-15 -2101 ($ (-641 (-918)))) (-15 -3666 ((-1259 $))) (-15 -3675 ((-112) (-918) $)) (-15 -2689 ((-768) $ (-918) (-918)))))
-((-1754 (((-112) $ $) NIL)) (-2010 (($) NIL (|has| |#1| (-368)))) (-3423 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 80)) (-2032 (($ $ $) 78)) (-2723 (((-112) $ $) 79)) (-3263 (((-112) $ (-768)) NIL)) (-3042 (((-768)) NIL (|has| |#1| (-368)))) (-3581 (($ (-641 |#1|)) NIL) (($) 13)) (-4194 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1907 (($ |#1| $) 74 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4411)))) (-2542 (($) NIL (|has| |#1| (-368)))) (-3080 (((-641 |#1|) $) 19 (|has| $ (-6 -4411)))) (-2081 (((-112) $ $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-3571 ((|#1| $) 55 (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1547 ((|#1| $) 53 (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 34)) (-2209 (((-918) $) NIL (|has| |#1| (-368)))) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-1617 (($ $ $) 76)) (-1833 ((|#1| $) 25)) (-2098 (($ |#1| $) 69)) (-1403 (($ (-918)) NIL (|has| |#1| (-368)))) (-3802 (((-1114) $) NIL)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3389 ((|#1| $) 27)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 21)) (-3845 (($) 11)) (-2003 (($ $ |#1|) NIL) (($ $ $) 77)) (-3784 (($) NIL) (($ (-641 |#1|)) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) 16)) (-2127 (((-536) $) 50 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 62)) (-3481 (($ $) NIL (|has| |#1| (-368)))) (-1765 (((-859) $) NIL)) (-2165 (((-768) $) NIL)) (-4086 (($ (-641 |#1|)) NIL) (($) 12)) (-2652 (($ (-641 |#1|)) NIL)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 52)) (-2589 (((-768) $) 10 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) 36)) (-2404 (($ (-641 (-918))) 72)) (-3459 (((-3 $ "failed") $ (-918) (-918)) 83)) (-2939 (($) 40)) (-3601 (((-112) (-918) $) 44)) (-4031 (((-918) $) 66)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) 39)) (-2081 (((-3 $ "failed") $ (-918)) 79)) (-3844 (((-1114) $) NIL)) (-3504 (((-1259 $)) 49)) (-1334 (((-641 (-918)) $) 27)) (-3225 (((-768) $ (-918) (-918)) 80)) (-3714 (((-859) $) 32)) (-1720 (((-112) $ $) 24)))
+(((-1095 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -2081 ((-3 $ "failed") $ (-918))) (-15 -3459 ((-3 $ "failed") $ (-918) (-918))) (-15 -1334 ((-641 (-918)) $)) (-15 -2404 ($ (-641 (-918)))) (-15 -3504 ((-1259 $))) (-15 -3601 ((-112) (-918) $)) (-15 -3225 ((-768) $ (-918) (-918))))) (-918) (-918)) (T -1095))
+((-2081 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3459 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2404 (*1 *1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-3504 (*1 *2) (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-3601 (*1 *2 *3 *1) (-12 (-5 *3 (-918)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3225 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-768)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-368) (-10 -8 (-15 -2081 ((-3 $ "failed") $ (-918))) (-15 -3459 ((-3 $ "failed") $ (-918) (-918))) (-15 -1334 ((-641 (-918)) $)) (-15 -2404 ($ (-641 (-918)))) (-15 -3504 ((-1259 $))) (-15 -3601 ((-112) (-918) $)) (-15 -3225 ((-768) $ (-918) (-918)))))
+((-3702 (((-112) $ $) NIL)) (-3866 (($) NIL (|has| |#1| (-368)))) (-3452 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 80)) (-2935 (($ $ $) 78)) (-2303 (((-112) $ $) 79)) (-2141 (((-112) $ (-768)) NIL)) (-2018 (((-768)) NIL (|has| |#1| (-368)))) (-3633 (($ (-641 |#1|)) NIL) (($) 13)) (-1773 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4074 (($ |#1| $) 74 (|has| $ (-6 -4412))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4412)))) (-2939 (($) NIL (|has| |#1| (-368)))) (-4244 (((-641 |#1|) $) 19 (|has| $ (-6 -4412)))) (-2214 (((-112) $ $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-3428 ((|#1| $) 55 (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3413 ((|#1| $) 53 (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 34)) (-4031 (((-918) $) NIL (|has| |#1| (-368)))) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-4302 (($ $ $) 76)) (-2775 ((|#1| $) 25)) (-2373 (($ |#1| $) 69)) (-3338 (($ (-918)) NIL (|has| |#1| (-368)))) (-3844 (((-1114) $) NIL)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3950 ((|#1| $) 27)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 21)) (-2834 (($) 11)) (-3796 (($ $ |#1|) NIL) (($ $ $) 77)) (-3372 (($) NIL) (($ (-641 |#1|)) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) 16)) (-2374 (((-536) $) 50 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 62)) (-2432 (($ $) NIL (|has| |#1| (-368)))) (-3714 (((-859) $) NIL)) (-1754 (((-768) $) NIL)) (-4208 (($ (-641 |#1|)) NIL) (($) 12)) (-3976 (($ (-641 |#1|)) NIL)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 52)) (-2779 (((-768) $) 10 (|has| $ (-6 -4412)))))
(((-1096 |#1|) (-425 |#1|) (-1094)) (T -1096))
NIL
(-425 |#1|)
-((-1754 (((-112) $ $) 7)) (-2416 (((-112) $) 32)) (-3664 ((|#2| $) 27)) (-4144 (((-112) $) 33)) (-1961 ((|#1| $) 28)) (-3859 (((-112) $) 35)) (-3648 (((-112) $) 37)) (-3142 (((-112) $) 34)) (-4202 (((-1152) $) 9)) (-1670 (((-112) $) 31)) (-3690 ((|#3| $) 26)) (-3802 (((-1114) $) 10)) (-2443 (((-112) $) 30)) (-2139 ((|#4| $) 25)) (-3617 ((|#5| $) 24)) (-2076 (((-112) $ $) 38)) (-4382 (($ $ (-564)) 20) (($ $ (-641 (-564))) 19)) (-4101 (((-641 $) $) 29)) (-2127 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-641 $)) 39)) (-1765 (((-859) $) 11)) (-2975 (($ $) 22)) (-2965 (($ $) 23)) (-2236 (((-112) $) 36)) (-1686 (((-112) $ $) 6)) (-2589 (((-564) $) 21)))
+((-3702 (((-112) $ $) 7)) (-2307 (((-112) $) 32)) (-2713 ((|#2| $) 27)) (-2568 (((-112) $) 33)) (-3963 ((|#1| $) 28)) (-1696 (((-112) $) 35)) (-1539 (((-112) $) 37)) (-3306 (((-112) $) 34)) (-1868 (((-1152) $) 9)) (-3518 (((-112) $) 31)) (-2738 ((|#3| $) 26)) (-3844 (((-1114) $) 10)) (-2614 (((-112) $) 30)) (-2244 ((|#4| $) 25)) (-3779 ((|#5| $) 24)) (-4035 (((-112) $ $) 38)) (-4382 (($ $ (-564)) 20) (($ $ (-641 (-564))) 19)) (-4222 (((-641 $) $) 29)) (-2374 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-641 $)) 39)) (-3714 (((-859) $) 11)) (-1951 (($ $) 22)) (-1940 (($ $) 23)) (-4280 (((-112) $) 36)) (-1720 (((-112) $ $) 6)) (-2779 (((-564) $) 21)))
(((-1097 |#1| |#2| |#3| |#4| |#5|) (-140) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1097))
-((-2076 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-4101 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2965 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-2975 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))))
-(-13 (-1094) (-616 |t#1|) (-616 |t#2|) (-616 |t#3|) (-616 |t#4|) (-616 |t#4|) (-616 |t#5|) (-616 (-641 $)) (-10 -8 (-15 -2076 ((-112) $ $)) (-15 -3648 ((-112) $)) (-15 -2236 ((-112) $)) (-15 -3859 ((-112) $)) (-15 -3142 ((-112) $)) (-15 -4144 ((-112) $)) (-15 -2416 ((-112) $)) (-15 -1670 ((-112) $)) (-15 -2443 ((-112) $)) (-15 -4101 ((-641 $) $)) (-15 -1961 (|t#1| $)) (-15 -3664 (|t#2| $)) (-15 -3690 (|t#3| $)) (-15 -2139 (|t#4| $)) (-15 -3617 (|t#5| $)) (-15 -2965 ($ $)) (-15 -2975 ($ $)) (-15 -2589 ((-564) $)) (-15 -4382 ($ $ (-564))) (-15 -4382 ($ $ (-641 (-564))))))
+((-4035 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-4222 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-1940 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-1951 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-2779 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))))
+(-13 (-1094) (-616 |t#1|) (-616 |t#2|) (-616 |t#3|) (-616 |t#4|) (-616 |t#4|) (-616 |t#5|) (-616 (-641 $)) (-10 -8 (-15 -4035 ((-112) $ $)) (-15 -1539 ((-112) $)) (-15 -4280 ((-112) $)) (-15 -1696 ((-112) $)) (-15 -3306 ((-112) $)) (-15 -2568 ((-112) $)) (-15 -2307 ((-112) $)) (-15 -3518 ((-112) $)) (-15 -2614 ((-112) $)) (-15 -4222 ((-641 $) $)) (-15 -3963 (|t#1| $)) (-15 -2713 (|t#2| $)) (-15 -2738 (|t#3| $)) (-15 -2244 (|t#4| $)) (-15 -3779 (|t#5| $)) (-15 -1940 ($ $)) (-15 -1951 ($ $)) (-15 -2779 ((-564) $)) (-15 -4382 ($ $ (-564))) (-15 -4382 ($ $ (-641 (-564))))))
(((-102) . T) ((-611 (-859)) . T) ((-616 (-641 $)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 |#4|) . T) ((-616 |#5|) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-2416 (((-112) $) NIL)) (-3664 (((-1170) $) NIL)) (-4144 (((-112) $) NIL)) (-1961 (((-1152) $) NIL)) (-3859 (((-112) $) NIL)) (-3648 (((-112) $) NIL)) (-3142 (((-112) $) NIL)) (-4202 (((-1152) $) NIL)) (-1670 (((-112) $) NIL)) (-3690 (((-564) $) NIL)) (-3802 (((-1114) $) NIL)) (-2443 (((-112) $) NIL)) (-2139 (((-225) $) NIL)) (-3617 (((-859) $) NIL)) (-2076 (((-112) $ $) NIL)) (-4382 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-4101 (((-641 $) $) NIL)) (-2127 (($ (-1152)) NIL) (($ (-1170)) NIL) (($ (-564)) NIL) (($ (-225)) NIL) (($ (-859)) NIL) (($ (-641 $)) NIL)) (-1765 (((-859) $) NIL)) (-2975 (($ $) NIL)) (-2965 (($ $) NIL)) (-2236 (((-112) $) NIL)) (-1686 (((-112) $ $) NIL)) (-2589 (((-564) $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-2307 (((-112) $) NIL)) (-2713 (((-1170) $) NIL)) (-2568 (((-112) $) NIL)) (-3963 (((-1152) $) NIL)) (-1696 (((-112) $) NIL)) (-1539 (((-112) $) NIL)) (-3306 (((-112) $) NIL)) (-1868 (((-1152) $) NIL)) (-3518 (((-112) $) NIL)) (-2738 (((-564) $) NIL)) (-3844 (((-1114) $) NIL)) (-2614 (((-112) $) NIL)) (-2244 (((-225) $) NIL)) (-3779 (((-859) $) NIL)) (-4035 (((-112) $ $) NIL)) (-4382 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-4222 (((-641 $) $) NIL)) (-2374 (($ (-1152)) NIL) (($ (-1170)) NIL) (($ (-564)) NIL) (($ (-225)) NIL) (($ (-859)) NIL) (($ (-641 $)) NIL)) (-3714 (((-859) $) NIL)) (-1951 (($ $) NIL)) (-1940 (($ $) NIL)) (-4280 (((-112) $) NIL)) (-1720 (((-112) $ $) NIL)) (-2779 (((-564) $) NIL)))
(((-1098) (-1097 (-1152) (-1170) (-564) (-225) (-859))) (T -1098))
NIL
(-1097 (-1152) (-1170) (-564) (-225) (-859))
-((-1754 (((-112) $ $) NIL)) (-2416 (((-112) $) 44)) (-3664 ((|#2| $) 47)) (-4144 (((-112) $) 20)) (-1961 ((|#1| $) 21)) (-3859 (((-112) $) 41)) (-3648 (((-112) $) 14)) (-3142 (((-112) $) 43)) (-4202 (((-1152) $) NIL)) (-1670 (((-112) $) 45)) (-3690 ((|#3| $) 49)) (-3802 (((-1114) $) NIL)) (-2443 (((-112) $) 46)) (-2139 ((|#4| $) 48)) (-3617 ((|#5| $) 50)) (-2076 (((-112) $ $) 40)) (-4382 (($ $ (-564)) 61) (($ $ (-641 (-564))) 63)) (-4101 (((-641 $) $) 26)) (-2127 (($ |#1|) 52) (($ |#2|) 53) (($ |#3|) 54) (($ |#4|) 55) (($ |#5|) 56) (($ (-641 $)) 51)) (-1765 (((-859) $) 27)) (-2975 (($ $) 25)) (-2965 (($ $) 57)) (-2236 (((-112) $) 23)) (-1686 (((-112) $ $) 39)) (-2589 (((-564) $) 59)))
+((-3702 (((-112) $ $) NIL)) (-2307 (((-112) $) 44)) (-2713 ((|#2| $) 47)) (-2568 (((-112) $) 20)) (-3963 ((|#1| $) 21)) (-1696 (((-112) $) 41)) (-1539 (((-112) $) 14)) (-3306 (((-112) $) 43)) (-1868 (((-1152) $) NIL)) (-3518 (((-112) $) 45)) (-2738 ((|#3| $) 49)) (-3844 (((-1114) $) NIL)) (-2614 (((-112) $) 46)) (-2244 ((|#4| $) 48)) (-3779 ((|#5| $) 50)) (-4035 (((-112) $ $) 40)) (-4382 (($ $ (-564)) 61) (($ $ (-641 (-564))) 63)) (-4222 (((-641 $) $) 26)) (-2374 (($ |#1|) 52) (($ |#2|) 53) (($ |#3|) 54) (($ |#4|) 55) (($ |#5|) 56) (($ (-641 $)) 51)) (-3714 (((-859) $) 27)) (-1951 (($ $) 25)) (-1940 (($ $) 57)) (-4280 (((-112) $) 23)) (-1720 (((-112) $ $) 39)) (-2779 (((-564) $) 59)))
(((-1099 |#1| |#2| |#3| |#4| |#5|) (-1097 |#1| |#2| |#3| |#4| |#5|) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1099))
NIL
(-1097 |#1| |#2| |#3| |#4| |#5|)
-((-3501 (((-1264) $) 23)) (-3635 (($ (-1170) (-434) |#2|) 11)) (-1765 (((-859) $) 16)))
-(((-1100 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -3635 ($ (-1170) (-434) |#2|)))) (-847) (-430 |#1|)) (T -1100))
-((-3635 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-847)) (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5)))))
-(-13 (-395) (-10 -8 (-15 -3635 ($ (-1170) (-434) |#2|))))
-((-3240 (((-112) |#5| |#5|) 43)) (-2644 (((-112) |#5| |#5|) 57)) (-2603 (((-112) |#5| (-641 |#5|)) 80) (((-112) |#5| |#5|) 66)) (-3031 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-2695 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) 68)) (-2562 (((-1264)) 33)) (-2005 (((-1264) (-1152) (-1152) (-1152)) 29)) (-1530 (((-641 |#5|) (-641 |#5|)) 99)) (-2570 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) 91)) (-3968 (((-641 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 121)) (-2655 (((-112) |#5| |#5|) 52)) (-3085 (((-3 (-112) "failed") |#5| |#5|) 76)) (-3001 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-2578 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-3862 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-2255 (((-3 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 116)) (-2822 (((-641 |#5|) (-641 |#5|)) 48)))
-(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2005 ((-1264) (-1152) (-1152) (-1152))) (-15 -2562 ((-1264))) (-15 -3240 ((-112) |#5| |#5|)) (-15 -2822 ((-641 |#5|) (-641 |#5|))) (-15 -2655 ((-112) |#5| |#5|)) (-15 -2644 ((-112) |#5| |#5|)) (-15 -3031 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3001 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2578 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3862 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3085 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2603 ((-112) |#5| |#5|)) (-15 -2603 ((-112) |#5| (-641 |#5|))) (-15 -1530 ((-641 |#5|) (-641 |#5|))) (-15 -2695 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) (-15 -2570 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-15 -3968 ((-641 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2255 ((-3 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1101))
-((-2255 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| -2076 (-641 *9)) (|:| -3853 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-3968 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -2076 (-641 *9)) (|:| -3853 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-2570 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -3853 *7)))) (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-2695 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3853 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)))) (-1530 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3)))) (-2603 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-3085 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-3862 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2578 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3001 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3031 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2644 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2655 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2822 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-3240 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2562 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-2005 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2005 ((-1264) (-1152) (-1152) (-1152))) (-15 -2562 ((-1264))) (-15 -3240 ((-112) |#5| |#5|)) (-15 -2822 ((-641 |#5|) (-641 |#5|))) (-15 -2655 ((-112) |#5| |#5|)) (-15 -2644 ((-112) |#5| |#5|)) (-15 -3031 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3001 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2578 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3862 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3085 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2603 ((-112) |#5| |#5|)) (-15 -2603 ((-112) |#5| (-641 |#5|))) (-15 -1530 ((-641 |#5|) (-641 |#5|))) (-15 -2695 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) (-15 -2570 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-15 -3968 ((-641 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2255 ((-3 (-2 (|:| -2076 (-641 |#4|)) (|:| -3853 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3335 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#5|) 110)) (-3956 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#4| |#4| |#5|) 82)) (-2041 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|) 104)) (-2808 (((-641 |#5|) |#4| |#5|) 126)) (-3251 (((-641 |#5|) |#4| |#5|) 133)) (-3783 (((-641 |#5|) |#4| |#5|) 134)) (-3038 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|) 111)) (-1830 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|) 132)) (-3833 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-2115 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#3| (-112)) 94) (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-1928 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|) 89)) (-3685 (((-1264)) 37)) (-1855 (((-1264)) 26)) (-1389 (((-1264) (-1152) (-1152) (-1152)) 33)) (-4262 (((-1264) (-1152) (-1152) (-1152)) 22)))
-(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4262 ((-1264) (-1152) (-1152) (-1152))) (-15 -1855 ((-1264))) (-15 -1389 ((-1264) (-1152) (-1152) (-1152))) (-15 -3685 ((-1264))) (-15 -3956 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -2115 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2115 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#3| (-112))) (-15 -1928 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -2041 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -3833 ((-112) |#4| |#5|)) (-15 -3038 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -2808 ((-641 |#5|) |#4| |#5|)) (-15 -1830 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -3251 ((-641 |#5|) |#4| |#5|)) (-15 -3833 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -3783 ((-641 |#5|) |#4| |#5|)) (-15 -3335 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1102))
-((-3335 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3833 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3251 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1830 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2808 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3833 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2041 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1928 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2115 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3853 *9)))) (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -3853 *9)))) (-5 *1 (-1102 *6 *7 *4 *8 *9)))) (-2115 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-3956 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3685 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-1389 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1855 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-4262 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4262 ((-1264) (-1152) (-1152) (-1152))) (-15 -1855 ((-1264))) (-15 -1389 ((-1264) (-1152) (-1152) (-1152))) (-15 -3685 ((-1264))) (-15 -3956 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -2115 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2115 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) |#3| (-112))) (-15 -1928 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -2041 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#4| |#5|)) (-15 -3833 ((-112) |#4| |#5|)) (-15 -3038 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -2808 ((-641 |#5|) |#4| |#5|)) (-15 -1830 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -3251 ((-641 |#5|) |#4| |#5|)) (-15 -3833 ((-641 (-2 (|:| |val| (-112)) (|:| -3853 |#5|))) |#4| |#5|)) (-15 -3783 ((-641 |#5|) |#4| |#5|)) (-15 -3335 ((-641 (-2 (|:| |val| |#4|) (|:| -3853 |#5|))) |#4| |#5|)))
-((-1754 (((-112) $ $) 7)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |#4|)))) (-641 |#4|)) 85)) (-4389 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4170 (((-641 |#3|) $) 33)) (-1747 (((-112) $) 26)) (-2197 (((-112) $) 17 (|has| |#1| (-556)))) (-1940 (((-112) |#4| $) 101) (((-112) $) 97)) (-3993 ((|#4| |#4| $) 92)) (-1368 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| $) 126)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) 27)) (-3263 (((-112) $ (-768)) 44)) (-2164 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-3760 (($) 45 T CONST)) (-4177 (((-112) $) 22 (|has| |#1| (-556)))) (-3911 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2694 (((-112) $ $) 23 (|has| |#1| (-556)))) (-1378 (((-112) $) 25 (|has| |#1| (-556)))) (-3207 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2254 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) 36)) (-2064 (($ (-641 |#4|)) 35)) (-3086 (((-3 $ "failed") $) 82)) (-2758 ((|#4| |#4| $) 89)) (-3104 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4269 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3621 ((|#4| |#4| $) 87)) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2058 (((-2 (|:| -3439 (-641 |#4|)) (|:| -1589 (-641 |#4|))) $) 105)) (-1456 (((-112) |#4| $) 136)) (-2097 (((-112) |#4| $) 133)) (-2432 (((-112) |#4| $) 137) (((-112) $) 134)) (-3080 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-2415 (((-112) |#4| $) 104) (((-112) $) 103)) (-3162 ((|#3| $) 34)) (-2830 (((-112) $ (-768)) 43)) (-3817 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 47)) (-4343 (((-641 |#3|) $) 32)) (-1853 (((-112) |#3| $) 31)) (-2972 (((-112) $ (-768)) 42)) (-4202 (((-1152) $) 9)) (-4181 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-1489 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| |#4| $) 127)) (-2376 (((-3 |#4| "failed") $) 83)) (-2298 (((-641 $) |#4| $) 129)) (-3866 (((-3 (-112) (-641 $)) |#4| $) 132)) (-4214 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1617 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-1829 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-3277 (((-641 |#4|) $) 107)) (-3561 (((-112) |#4| $) 99) (((-112) $) 95)) (-3874 ((|#4| |#4| $) 90)) (-3862 (((-112) $ $) 110)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1512 (((-112) |#4| $) 100) (((-112) $) 96)) (-3491 ((|#4| |#4| $) 91)) (-3802 (((-1114) $) 10)) (-3073 (((-3 |#4| "failed") $) 84)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3159 (((-3 $ "failed") $ |#4|) 78)) (-2678 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-1467 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) 38)) (-2742 (((-112) $) 41)) (-3845 (($) 40)) (-3344 (((-768) $) 106)) (-3815 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-1899 (($ $) 39)) (-2127 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) 60)) (-2318 (($ $ |#3|) 28)) (-1869 (($ $ |#3|) 30)) (-3430 (($ $) 88)) (-1845 (($ $ |#3|) 29)) (-1765 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1597 (((-768) $) 76 (|has| |#3| (-368)))) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1599 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3602 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-2237 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-2380 (((-641 |#3|) $) 81)) (-1759 (((-112) |#4| $) 135)) (-3623 (((-112) |#3| $) 80)) (-1686 (((-112) $ $) 6)) (-2589 (((-768) $) 46 (|has| $ (-6 -4411)))))
+((-2263 (((-1264) $) 23)) (-3935 (($ (-1170) (-434) |#2|) 11)) (-3714 (((-859) $) 16)))
+(((-1100 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -3935 ($ (-1170) (-434) |#2|)))) (-847) (-430 |#1|)) (T -1100))
+((-3935 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-847)) (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5)))))
+(-13 (-395) (-10 -8 (-15 -3935 ($ (-1170) (-434) |#2|))))
+((-1913 (((-112) |#5| |#5|) 43)) (-3892 (((-112) |#5| |#5|) 57)) (-3419 (((-112) |#5| (-641 |#5|)) 80) (((-112) |#5| |#5|) 66)) (-3424 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-3179 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) 68)) (-4321 (((-1264)) 33)) (-3822 (((-1264) (-1152) (-1152) (-1152)) 29)) (-1648 (((-641 |#5|) (-641 |#5|)) 99)) (-1301 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) 91)) (-1467 (((-641 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 121)) (-4005 (((-112) |#5| |#5|) 52)) (-2840 (((-3 (-112) "failed") |#5| |#5|) 76)) (-1299 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-1394 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-1733 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-1387 (((-3 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 116)) (-2104 (((-641 |#5|) (-641 |#5|)) 48)))
+(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3822 ((-1264) (-1152) (-1152) (-1152))) (-15 -4321 ((-1264))) (-15 -1913 ((-112) |#5| |#5|)) (-15 -2104 ((-641 |#5|) (-641 |#5|))) (-15 -4005 ((-112) |#5| |#5|)) (-15 -3892 ((-112) |#5| |#5|)) (-15 -3424 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1299 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1394 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1733 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3419 ((-112) |#5| |#5|)) (-15 -3419 ((-112) |#5| (-641 |#5|))) (-15 -1648 ((-641 |#5|) (-641 |#5|))) (-15 -3179 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) (-15 -1301 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-15 -1467 ((-641 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1387 ((-3 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1101))
+((-1387 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| -4035 (-641 *9)) (|:| -4011 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-1467 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -4035 (-641 *9)) (|:| -4011 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-1301 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -4011 *7)))) (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-3179 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -4011 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3)))) (-3419 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2840 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-1733 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1394 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1299 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3424 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3892 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4005 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2104 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-1913 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4321 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-3822 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3822 ((-1264) (-1152) (-1152) (-1152))) (-15 -4321 ((-1264))) (-15 -1913 ((-112) |#5| |#5|)) (-15 -2104 ((-641 |#5|) (-641 |#5|))) (-15 -4005 ((-112) |#5| |#5|)) (-15 -3892 ((-112) |#5| |#5|)) (-15 -3424 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1299 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1394 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1733 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2840 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3419 ((-112) |#5| |#5|)) (-15 -3419 ((-112) |#5| (-641 |#5|))) (-15 -1648 ((-641 |#5|) (-641 |#5|))) (-15 -3179 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) (-15 -1301 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-15 -1467 ((-641 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1387 ((-3 (-2 (|:| -4035 (-641 |#4|)) (|:| -4011 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3404 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#5|) 110)) (-1361 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#4| |#4| |#5|) 82)) (-3008 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|) 104)) (-1960 (((-641 |#5|) |#4| |#5|) 126)) (-2027 (((-641 |#5|) |#4| |#5|) 133)) (-3359 (((-641 |#5|) |#4| |#5|) 134)) (-3503 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|) 111)) (-2749 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|) 132)) (-2746 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-2561 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#3| (-112)) 94) (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4297 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|) 89)) (-3691 (((-1264)) 37)) (-1748 (((-1264)) 26)) (-2135 (((-1264) (-1152) (-1152) (-1152)) 33)) (-4230 (((-1264) (-1152) (-1152) (-1152)) 22)))
+(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4230 ((-1264) (-1152) (-1152) (-1152))) (-15 -1748 ((-1264))) (-15 -2135 ((-1264) (-1152) (-1152) (-1152))) (-15 -3691 ((-1264))) (-15 -1361 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -2561 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2561 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#3| (-112))) (-15 -4297 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -3008 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -2746 ((-112) |#4| |#5|)) (-15 -3503 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -1960 ((-641 |#5|) |#4| |#5|)) (-15 -2749 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -2027 ((-641 |#5|) |#4| |#5|)) (-15 -2746 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -3359 ((-641 |#5|) |#4| |#5|)) (-15 -3404 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1102))
+((-3404 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3359 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2746 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2027 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2749 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1960 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3503 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2746 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3008 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4297 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2561 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -4011 *9)))) (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -4011 *9)))) (-5 *1 (-1102 *6 *7 *4 *8 *9)))) (-2561 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-1361 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3691 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-2135 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1748 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-4230 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4230 ((-1264) (-1152) (-1152) (-1152))) (-15 -1748 ((-1264))) (-15 -2135 ((-1264) (-1152) (-1152) (-1152))) (-15 -3691 ((-1264))) (-15 -1361 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -2561 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2561 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) |#3| (-112))) (-15 -4297 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -3008 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#4| |#5|)) (-15 -2746 ((-112) |#4| |#5|)) (-15 -3503 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -1960 ((-641 |#5|) |#4| |#5|)) (-15 -2749 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -2027 ((-641 |#5|) |#4| |#5|)) (-15 -2746 ((-641 (-2 (|:| |val| (-112)) (|:| -4011 |#5|))) |#4| |#5|)) (-15 -3359 ((-641 |#5|) |#4| |#5|)) (-15 -3404 ((-641 (-2 (|:| |val| |#4|) (|:| -4011 |#5|))) |#4| |#5|)))
+((-3702 (((-112) $ $) 7)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |#4|)))) (-641 |#4|)) 85)) (-4055 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4292 (((-641 |#3|) $) 33)) (-3097 (((-112) $) 26)) (-2092 (((-112) $) 17 (|has| |#1| (-556)))) (-1300 (((-112) |#4| $) 101) (((-112) $) 97)) (-3500 ((|#4| |#4| $) 92)) (-1328 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| $) 126)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) 27)) (-2141 (((-112) $ (-768)) 44)) (-4148 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4412))) (((-3 |#4| "failed") $ |#3|) 79)) (-3180 (($) 45 T CONST)) (-2846 (((-112) $) 22 (|has| |#1| (-556)))) (-2228 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3171 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3798 (((-112) $) 25 (|has| |#1| (-556)))) (-1578 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1373 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) 36)) (-2376 (($ (-641 |#4|)) 35)) (-2063 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-2084 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4344 ((|#4| |#4| $) 87)) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4412))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3151 (((-2 (|:| -3489 (-641 |#4|)) (|:| -1721 (-641 |#4|))) $) 105)) (-2169 (((-112) |#4| $) 136)) (-2358 (((-112) |#4| $) 133)) (-2479 (((-112) |#4| $) 137) (((-112) $) 134)) (-4244 (((-641 |#4|) $) 52 (|has| $ (-6 -4412)))) (-2297 (((-112) |#4| $) 104) (((-112) $) 103)) (-2394 ((|#3| $) 34)) (-2173 (((-112) $ (-768)) 43)) (-2572 (((-641 |#4|) $) 53 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 47)) (-3652 (((-641 |#3|) $) 32)) (-1722 (((-112) |#3| $) 31)) (-4144 (((-112) $ (-768)) 42)) (-1868 (((-1152) $) 9)) (-2881 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2521 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| |#4| $) 127)) (-2541 (((-3 |#4| "failed") $) 83)) (-3607 (((-641 $) |#4| $) 129)) (-1779 (((-3 (-112) (-641 $)) |#4| $) 132)) (-1990 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4302 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2737 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4104 (((-641 |#4|) $) 107)) (-1954 (((-112) |#4| $) 99) (((-112) $) 95)) (-1863 ((|#4| |#4| $) 90)) (-1733 (((-112) $ $) 110)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1485 (((-112) |#4| $) 100) (((-112) $) 96)) (-2543 ((|#4| |#4| $) 91)) (-3844 (((-1114) $) 10)) (-2049 (((-3 |#4| "failed") $) 84)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2359 (((-3 $ "failed") $ |#4|) 78)) (-3042 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-2280 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) 38)) (-2510 (((-112) $) 41)) (-2834 (($) 40)) (-3475 (((-768) $) 106)) (-3855 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4412)))) (-3890 (($ $) 39)) (-2374 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) 60)) (-3789 (($ $ |#3|) 28)) (-1896 (($ $ |#3|) 30)) (-3121 (($ $) 88)) (-1632 (($ $ |#3|) 29)) (-3714 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4113 (((-768) $) 76 (|has| |#3| (-368)))) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4138 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-4158 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-4289 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4412)))) (-3148 (((-641 |#3|) $) 81)) (-3199 (((-112) |#4| $) 135)) (-4368 (((-112) |#3| $) 80)) (-1720 (((-112) $ $) 6)) (-2779 (((-768) $) 46 (|has| $ (-6 -4412)))))
(((-1103 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1103))
NIL
(-13 (-1066 |t#1| |t#2| |t#3| |t#4|))
(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T))
-((-1406 (((-641 (-564)) (-564) (-564) (-564)) 37)) (-3271 (((-641 (-564)) (-564) (-564) (-564)) 27)) (-1536 (((-641 (-564)) (-564) (-564) (-564)) 32)) (-3909 (((-564) (-564) (-564)) 22)) (-1827 (((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564)) 72) (((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564)) 67)) (-2493 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112)) 49)) (-2819 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 71)) (-2843 (((-685 (-564)) (-641 (-564)) (-641 (-564))) 55)) (-2346 (((-641 (-685 (-564))) (-641 (-564))) 60)) (-1932 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 75)) (-4221 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564))) 85)))
-(((-1104) (-10 -7 (-15 -4221 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -1932 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -2346 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2843 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -2819 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -2493 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -1827 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -1827 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -3909 ((-564) (-564) (-564))) (-15 -1536 ((-641 (-564)) (-564) (-564) (-564))) (-15 -3271 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1406 ((-641 (-564)) (-564) (-564) (-564))))) (T -1104))
-((-1406 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-3271 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-1536 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-3909 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104)))) (-1827 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564)) (-5 *1 (-1104)))) (-1827 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104)))) (-2493 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104)))) (-2819 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104)))) (-2843 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1104)))) (-1932 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104)))) (-4221 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))))
-(-10 -7 (-15 -4221 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -1932 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -2346 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2843 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -2819 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -2493 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -1827 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -1827 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -3909 ((-564) (-564) (-564))) (-15 -1536 ((-641 (-564)) (-564) (-564) (-564))) (-15 -3271 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1406 ((-641 (-564)) (-564) (-564) (-564))))
+((-1526 (((-641 (-564)) (-564) (-564) (-564)) 37)) (-4032 (((-641 (-564)) (-564) (-564) (-564)) 27)) (-1715 (((-641 (-564)) (-564) (-564) (-564)) 32)) (-2204 (((-564) (-564) (-564)) 22)) (-2714 (((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564)) 72) (((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564)) 67)) (-1867 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112)) 49)) (-2073 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 71)) (-4129 (((-685 (-564)) (-641 (-564)) (-641 (-564))) 55)) (-2923 (((-641 (-685 (-564))) (-641 (-564))) 60)) (-4330 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 75)) (-2067 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564))) 85)))
+(((-1104) (-10 -7 (-15 -2067 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -4330 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -2923 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -4129 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -2073 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -1867 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -2714 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -2714 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -2204 ((-564) (-564) (-564))) (-15 -1715 ((-641 (-564)) (-564) (-564) (-564))) (-15 -4032 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1526 ((-641 (-564)) (-564) (-564) (-564))))) (T -1104))
+((-1526 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-4032 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-1715 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-2204 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104)))) (-2714 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564)) (-5 *1 (-1104)))) (-2714 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104)))) (-1867 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104)))) (-2073 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104)))) (-4129 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1104)))) (-4330 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104)))) (-2067 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))))
+(-10 -7 (-15 -2067 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -4330 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -2923 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -4129 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -2073 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -1867 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -2714 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -2714 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -2204 ((-564) (-564) (-564))) (-15 -1715 ((-641 (-564)) (-564) (-564) (-564))) (-15 -4032 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1526 ((-641 (-564)) (-564) (-564) (-564))))
((** (($ $ (-918)) 10)))
(((-1105 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-918)))) (-1106)) (T -1105))
NIL
(-10 -8 (-15 ** (|#1| |#1| (-918))))
-((-1754 (((-112) $ $) 7)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)) (** (($ $ (-918)) 13)) (* (($ $ $) 14)))
+((-3702 (((-112) $ $) 7)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)) (** (($ $ (-918)) 13)) (* (($ $ $) 14)))
(((-1106) (-140)) (T -1106))
((* (*1 *1 *1 *1) (-4 *1 (-1106))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1106)) (-5 *2 (-918)))))
(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-918)))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-3976 (((-112) $) NIL (|has| |#3| (-131)))) (-3473 (($ (-918)) NIL (|has| |#3| (-1046)))) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-3382 (($ $ $) NIL (|has| |#3| (-790)))) (-3936 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-3263 (((-112) $ (-768)) NIL)) (-3042 (((-768)) NIL (|has| |#3| (-368)))) (-3438 (((-564) $) NIL (|has| |#3| (-845)))) (-1881 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094)))) (-2064 (((-564) $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) ((|#3| $) NIL (|has| |#3| (-1094)))) (-2620 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-2 (|:| -1447 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1046))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1046)))) (-1926 (((-3 $ "failed") $) NIL (|has| |#3| (-723)))) (-2542 (($) NIL (|has| |#3| (-368)))) (-3528 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#3| $ (-564)) 12)) (-1751 (((-112) $) NIL (|has| |#3| (-845)))) (-3080 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-2419 (((-112) $) NIL (|has| |#3| (-723)))) (-2506 (((-112) $) NIL (|has| |#3| (-845)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-3817 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-3513 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#3| |#3|) $) NIL)) (-2209 (((-918) $) NIL (|has| |#3| (-368)))) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#3| (-1094)))) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-1403 (($ (-918)) NIL (|has| |#3| (-368)))) (-3802 (((-1114) $) NIL (|has| |#3| (-1094)))) (-3073 ((|#3| $) NIL (|has| (-564) (-847)))) (-2614 (($ $ |#3|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-3599 (((-641 |#3|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) NIL)) (-4158 ((|#3| $ $) NIL (|has| |#3| (-1046)))) (-4059 (($ (-1259 |#3|)) NIL)) (-3850 (((-134)) NIL (|has| |#3| (-363)))) (-3226 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046)))) (-3815 (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411))) (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-1899 (($ $) NIL)) (-1765 (((-1259 |#3|) $) NIL) (($ (-564)) NIL (-4002 (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (($ |#3|) NIL (|has| |#3| (-1094))) (((-859) $) NIL (|has| |#3| (-611 (-859))))) (-1965 (((-768)) NIL (|has| |#3| (-1046)) CONST)) (-2237 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2016 (($ $) NIL (|has| |#3| (-845)))) (-4317 (($) NIL (|has| |#3| (-131)) CONST)) (-4327 (($) NIL (|has| |#3| (-723)) CONST)) (-3190 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046)))) (-1738 (((-112) $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1715 (((-112) $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1686 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-1728 (((-112) $ $) NIL (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1705 (((-112) $ $) 24 (-4002 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1793 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1783 (($ $ $) NIL (|has| |#3| (-1046))) (($ $) NIL (|has| |#3| (-1046)))) (-1771 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-768)) NIL (|has| |#3| (-723))) (($ $ (-918)) NIL (|has| |#3| (-723)))) (* (($ (-564) $) NIL (|has| |#3| (-1046))) (($ $ $) NIL (|has| |#3| (-723))) (($ $ |#3|) NIL (|has| |#3| (-723))) (($ |#3| $) NIL (|has| |#3| (-723))) (($ (-768) $) NIL (|has| |#3| (-131))) (($ (-918) $) NIL (|has| |#3| (-25)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-1556 (((-112) $) NIL (|has| |#3| (-131)))) (-2366 (($ (-918)) NIL (|has| |#3| (-1046)))) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-3884 (($ $ $) NIL (|has| |#3| (-790)))) (-4281 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-2141 (((-112) $ (-768)) NIL)) (-2018 (((-768)) NIL (|has| |#3| (-368)))) (-3191 (((-564) $) NIL (|has| |#3| (-845)))) (-3868 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094)))) (-2376 (((-564) $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) ((|#3| $) NIL (|has| |#3| (-1094)))) (-3613 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-2 (|:| -1920 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1046))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1046)))) (-4272 (((-3 $ "failed") $) NIL (|has| |#3| (-723)))) (-2939 (($) NIL (|has| |#3| (-368)))) (-1998 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#3| $ (-564)) 12)) (-3137 (((-112) $) NIL (|has| |#3| (-845)))) (-4244 (((-641 |#3|) $) NIL (|has| $ (-6 -4412)))) (-2340 (((-112) $) NIL (|has| |#3| (-723)))) (-2001 (((-112) $) NIL (|has| |#3| (-845)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-2572 (((-641 |#3|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#3| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1988 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#3| |#3|) $) NIL)) (-4031 (((-918) $) NIL (|has| |#3| (-368)))) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#3| (-1094)))) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3338 (($ (-918)) NIL (|has| |#3| (-368)))) (-3844 (((-1114) $) NIL (|has| |#3| (-1094)))) (-2049 ((|#3| $) NIL (|has| (-564) (-847)))) (-3538 (($ $ |#3|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#3| (-1094))))) (-4121 (((-641 |#3|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) NIL)) (-2681 ((|#3| $ $) NIL (|has| |#3| (-1046)))) (-4184 (($ (-1259 |#3|)) NIL)) (-2869 (((-134)) NIL (|has| |#3| (-363)))) (-2203 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046)))) (-3855 (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4412))) (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#3| (-1094))))) (-3890 (($ $) NIL)) (-3714 (((-1259 |#3|) $) NIL) (($ (-564)) NIL (-4012 (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (($ |#3|) NIL (|has| |#3| (-1094))) (((-859) $) NIL (|has| |#3| (-611 (-859))))) (-3379 (((-768)) NIL (|has| |#3| (-1046)) CONST)) (-4289 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4412)))) (-3920 (($ $) NIL (|has| |#3| (-845)))) (-4312 (($) NIL (|has| |#3| (-131)) CONST)) (-4323 (($) NIL (|has| |#3| (-723)) CONST)) (-2238 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046)))) (-1781 (((-112) $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1758 (((-112) $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1720 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-1769 (((-112) $ $) NIL (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1746 (((-112) $ $) 24 (-4012 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1841 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1828 (($ $ $) NIL (|has| |#3| (-1046))) (($ $) NIL (|has| |#3| (-1046)))) (-1814 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-768)) NIL (|has| |#3| (-723))) (($ $ (-918)) NIL (|has| |#3| (-723)))) (* (($ (-564) $) NIL (|has| |#3| (-1046))) (($ $ $) NIL (|has| |#3| (-723))) (($ $ |#3|) NIL (|has| |#3| (-723))) (($ |#3| $) NIL (|has| |#3| (-723))) (($ (-768) $) NIL (|has| |#3| (-131))) (($ (-918) $) NIL (|has| |#3| (-25)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-1107 |#1| |#2| |#3|) (-238 |#1| |#3|) (-768) (-768) (-790)) (T -1107))
NIL
(-238 |#1| |#3|)
-((-1537 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 52)) (-3362 (((-564) (-1232 |#2| |#1|)) 99 (|has| |#1| (-452)))) (-1323 (((-564) (-1232 |#2| |#1|)) 81)) (-2968 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 62)) (-3932 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 98 (|has| |#1| (-452)))) (-1667 (((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 66)) (-3187 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 80)))
-(((-1108 |#1| |#2|) (-10 -7 (-15 -1537 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2968 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1667 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3187 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1323 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3932 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3362 ((-564) (-1232 |#2| |#1|)))) |%noBranch|)) (-817) (-1170)) (T -1108))
-((-3362 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-3932 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-3187 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-1667 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5)))) (-2968 (*1 *2 *3 *3) (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))) (-1537 (*1 *2 *3 *3) (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))))
-(-10 -7 (-15 -1537 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2968 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1667 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3187 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1323 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3932 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3362 ((-564) (-1232 |#2| |#1|)))) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-1716 (($ (-506) (-1112)) 13)) (-4187 (((-1112) $) 19)) (-4363 (((-506) $) 16)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 26) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-1109) (-13 (-1077) (-10 -8 (-15 -1716 ($ (-506) (-1112))) (-15 -4363 ((-506) $)) (-15 -4187 ((-1112) $))))) (T -1109))
-((-1716 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109)))))
-(-13 (-1077) (-10 -8 (-15 -1716 ($ (-506) (-1112))) (-15 -4363 ((-506) $)) (-15 -4187 ((-1112) $))))
-((-3438 (((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)) 19) (((-3 (-564) "failed") |#2| (-1170) (-840 |#2|)) 17) (((-3 (-564) "failed") |#2|) 60)))
-(((-1110 |#1| |#2|) (-10 -7 (-15 -3438 ((-3 (-564) "failed") |#2|)) (-15 -3438 ((-3 (-564) "failed") |#2| (-1170) (-840 |#2|))) (-15 -3438 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|))) (T -1110))
-((-3438 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))))) (-3438 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)))) (-3438 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))))
-(-10 -7 (-15 -3438 ((-3 (-564) "failed") |#2|)) (-15 -3438 ((-3 (-564) "failed") |#2| (-1170) (-840 |#2|))) (-15 -3438 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152))))
-((-3438 (((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)) 38) (((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|)))) 33) (((-3 (-564) "failed") (-407 (-949 |#1|))) 14)))
-(((-1111 |#1|) (-10 -7 (-15 -3438 ((-3 (-564) "failed") (-407 (-949 |#1|)))) (-15 -3438 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|))))) (-15 -3438 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)))) (-452)) (T -1111))
-((-3438 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3438 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 (-407 (-949 *6)))) (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3438 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *4)))))
-(-10 -7 (-15 -3438 ((-3 (-564) "failed") (-407 (-949 |#1|)))) (-15 -3438 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|))))) (-15 -3438 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152))))
-((-1754 (((-112) $ $) NIL)) (-4284 (((-1175) $) 12)) (-4222 (((-641 (-1175)) $) 14)) (-4187 (($ (-641 (-1175)) (-1175)) 10)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 29)) (-1686 (((-112) $ $) 17)))
-(((-1112) (-13 (-1094) (-10 -8 (-15 -4187 ($ (-641 (-1175)) (-1175))) (-15 -4284 ((-1175) $)) (-15 -4222 ((-641 (-1175)) $))))) (T -1112))
-((-4187 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112)))))
-(-13 (-1094) (-10 -8 (-15 -4187 ($ (-641 (-1175)) (-1175))) (-15 -4284 ((-1175) $)) (-15 -4222 ((-641 (-1175)) $))))
-((-3133 (((-316 (-564)) (-48)) 12)))
-(((-1113) (-10 -7 (-15 -3133 ((-316 (-564)) (-48))))) (T -1113))
-((-3133 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113)))))
-(-10 -7 (-15 -3133 ((-316 (-564)) (-48))))
-((-1754 (((-112) $ $) NIL)) (-1569 (($ $) 44)) (-3976 (((-112) $) 65)) (-4291 (($ $ $) 51)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 93)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3823 (($ $ $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2018 (($ $ $ $) 76)) (-1368 (($ $) NIL)) (-3981 (((-418 $) $) NIL)) (-3385 (((-112) $ $) NIL)) (-3042 (((-768)) 78)) (-3438 (((-564) $) NIL)) (-2980 (($ $ $) 73)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL)) (-2064 (((-564) $) NIL)) (-1387 (($ $ $) 59)) (-2620 (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87) (((-685 (-564)) (-685 $)) 32)) (-1926 (((-3 $ "failed") $) NIL)) (-1978 (((-3 (-407 (-564)) "failed") $) NIL)) (-2709 (((-112) $) NIL)) (-3424 (((-407 (-564)) $) NIL)) (-2542 (($) 90) (($ $) 91)) (-1366 (($ $ $) 58)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL)) (-3241 (((-112) $) NIL)) (-4043 (($ $ $ $) NIL)) (-4071 (($ $ $) 88)) (-1751 (((-112) $) NIL)) (-2314 (($ $ $) NIL)) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2419 (((-112) $) 67)) (-1629 (((-112) $) 64)) (-4254 (($ $) 45)) (-3374 (((-3 $ "failed") $) NIL)) (-2506 (((-112) $) 77)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2676 (($ $ $ $) 74)) (-3571 (($ $ $) 69) (($) 42 T CONST)) (-1547 (($ $ $) 68) (($) 41 T CONST)) (-2600 (($ $) NIL)) (-2209 (((-918) $) 83)) (-2564 (($ $) 72)) (-2488 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4202 (((-1152) $) NIL)) (-4233 (($ $ $) NIL)) (-1611 (($) NIL T CONST)) (-1403 (($ (-918)) 82)) (-2311 (($ $) 52)) (-3802 (((-1114) $) 71)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2527 (($ $ $) 62) (($ (-641 $)) NIL)) (-1613 (($ $) NIL)) (-4006 (((-418 $) $) NIL)) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL)) (-1343 (((-3 $ "failed") $ $) NIL)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1518 (((-112) $) NIL)) (-3712 (((-768) $) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 61)) (-3226 (($ $ (-768)) NIL) (($ $) NIL)) (-3312 (($ $) 53)) (-1899 (($ $) NIL)) (-2127 (((-564) $) 17) (((-536) $) NIL) (((-889 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-1765 (((-859) $) 35) (($ (-564)) 89) (($ $) NIL) (($ (-564)) 89)) (-1965 (((-768)) NIL T CONST)) (-2775 (((-112) $ $) NIL)) (-1939 (($ $ $) NIL)) (-2743 (($) 40)) (-1582 (((-112) $ $) NIL)) (-1903 (($ $ $ $) 75)) (-2016 (($ $) 63)) (-3306 (($ $ $) 47)) (-4317 (($) 7 T CONST)) (-1430 (($ $ $) 50)) (-4327 (($) 39 T CONST)) (-3886 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-819) $) 28) (((-1264) (-819) $ (-112)) 29)) (-1441 (($ $) 48)) (-3190 (($ $ (-768)) NIL) (($ $) NIL)) (-1420 (($ $ $) 49)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 43)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 10)) (-3295 (($ $ $) 46)) (-1783 (($ $) 16) (($ $ $) 55)) (-1771 (($ $ $) 54)) (** (($ $ (-918)) NIL) (($ $ (-768)) 57)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 38) (($ $ $) 37)))
-(((-1114) (-13 (-545) (-841) (-657) (-825) (-10 -8 (-6 -4398) (-6 -4403) (-6 -4399) (-15 -4254 ($ $)) (-15 -4291 ($ $ $)) (-15 -1441 ($ $)) (-15 -1420 ($ $ $)) (-15 -1430 ($ $ $))))) (T -1114))
-((-4254 (*1 *1 *1) (-5 *1 (-1114))) (-4291 (*1 *1 *1 *1) (-5 *1 (-1114))) (-1441 (*1 *1 *1) (-5 *1 (-1114))) (-1420 (*1 *1 *1 *1) (-5 *1 (-1114))) (-1430 (*1 *1 *1 *1) (-5 *1 (-1114))))
-(-13 (-545) (-841) (-657) (-825) (-10 -8 (-6 -4398) (-6 -4403) (-6 -4399) (-15 -4254 ($ $)) (-15 -4291 ($ $ $)) (-15 -1441 ($ $)) (-15 -1420 ($ $ $)) (-15 -1430 ($ $ $))))
+((-1730 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 52)) (-3676 (((-564) (-1232 |#2| |#1|)) 99 (|has| |#1| (-452)))) (-2288 (((-564) (-1232 |#2| |#1|)) 81)) (-4096 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 62)) (-4257 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 98 (|has| |#1| (-452)))) (-3484 (((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 66)) (-2650 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 80)))
+(((-1108 |#1| |#2|) (-10 -7 (-15 -1730 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4096 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3484 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2650 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2288 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -4257 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3676 ((-564) (-1232 |#2| |#1|)))) |%noBranch|)) (-817) (-1170)) (T -1108))
+((-3676 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-4257 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-2650 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-3484 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5)))) (-4096 (*1 *2 *3 *3) (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))) (-1730 (*1 *2 *3 *3) (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))))
+(-10 -7 (-15 -1730 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4096 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3484 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2650 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2288 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -4257 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -3676 ((-564) (-1232 |#2| |#1|)))) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-2862 (($ (-506) (-1112)) 13)) (-4299 (((-1112) $) 19)) (-4337 (((-506) $) 16)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 26) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-1109) (-13 (-1077) (-10 -8 (-15 -2862 ($ (-506) (-1112))) (-15 -4337 ((-506) $)) (-15 -4299 ((-1112) $))))) (T -1109))
+((-2862 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109)))))
+(-13 (-1077) (-10 -8 (-15 -2862 ($ (-506) (-1112))) (-15 -4337 ((-506) $)) (-15 -4299 ((-1112) $))))
+((-3191 (((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)) 19) (((-3 (-564) "failed") |#2| (-1170) (-840 |#2|)) 17) (((-3 (-564) "failed") |#2|) 60)))
+(((-1110 |#1| |#2|) (-10 -7 (-15 -3191 ((-3 (-564) "failed") |#2|)) (-15 -3191 ((-3 (-564) "failed") |#2| (-1170) (-840 |#2|))) (-15 -3191 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|))) (T -1110))
+((-3191 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))))) (-3191 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)))) (-3191 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))))
+(-10 -7 (-15 -3191 ((-3 (-564) "failed") |#2|)) (-15 -3191 ((-3 (-564) "failed") |#2| (-1170) (-840 |#2|))) (-15 -3191 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152))))
+((-3191 (((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)) 38) (((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|)))) 33) (((-3 (-564) "failed") (-407 (-949 |#1|))) 14)))
+(((-1111 |#1|) (-10 -7 (-15 -3191 ((-3 (-564) "failed") (-407 (-949 |#1|)))) (-15 -3191 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|))))) (-15 -3191 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)))) (-452)) (T -1111))
+((-3191 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3191 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 (-407 (-949 *6)))) (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3191 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *4)))))
+(-10 -7 (-15 -3191 ((-3 (-564) "failed") (-407 (-949 |#1|)))) (-15 -3191 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|))))) (-15 -3191 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152))))
+((-3702 (((-112) $ $) NIL)) (-3155 (((-1175) $) 12)) (-3108 (((-641 (-1175)) $) 14)) (-4299 (($ (-641 (-1175)) (-1175)) 10)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 29)) (-1720 (((-112) $ $) 17)))
+(((-1112) (-13 (-1094) (-10 -8 (-15 -4299 ($ (-641 (-1175)) (-1175))) (-15 -3155 ((-1175) $)) (-15 -3108 ((-641 (-1175)) $))))) (T -1112))
+((-4299 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112)))))
+(-13 (-1094) (-10 -8 (-15 -4299 ($ (-641 (-1175)) (-1175))) (-15 -3155 ((-1175) $)) (-15 -3108 ((-641 (-1175)) $))))
+((-3223 (((-316 (-564)) (-48)) 12)))
+(((-1113) (-10 -7 (-15 -3223 ((-316 (-564)) (-48))))) (T -1113))
+((-3223 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113)))))
+(-10 -7 (-15 -3223 ((-316 (-564)) (-48))))
+((-3702 (((-112) $ $) NIL)) (-1703 (($ $) 44)) (-1556 (((-112) $) 65)) (-4288 (($ $ $) 51)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 93)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-2642 (($ $ $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3944 (($ $ $ $) 76)) (-1328 (($ $) NIL)) (-1592 (((-418 $) $) NIL)) (-3907 (((-112) $ $) NIL)) (-2018 (((-768)) 78)) (-3191 (((-564) $) NIL)) (-2490 (($ $ $) 73)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL)) (-2376 (((-564) $) NIL)) (-1399 (($ $ $) 59)) (-3613 (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87) (((-685 (-564)) (-685 $)) 32)) (-4272 (((-3 $ "failed") $) NIL)) (-3502 (((-3 (-407 (-564)) "failed") $) NIL)) (-3309 (((-112) $) NIL)) (-3074 (((-407 (-564)) $) NIL)) (-2939 (($) 90) (($ $) 91)) (-1371 (($ $ $) 58)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL)) (-1926 (((-112) $) NIL)) (-3973 (($ $ $ $) NIL)) (-3039 (($ $ $) 88)) (-3137 (((-112) $) NIL)) (-3742 (($ $ $) NIL)) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-2340 (((-112) $) 67)) (-1329 (((-112) $) 64)) (-4253 (($ $) 45)) (-3804 (((-3 $ "failed") $) NIL)) (-2001 (((-112) $) 77)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-3026 (($ $ $ $) 74)) (-3428 (($ $ $) 69) (($) 42 T CONST)) (-3413 (($ $ $) 68) (($) 41 T CONST)) (-1568 (($ $) NIL)) (-4031 (((-918) $) 83)) (-3451 (($ $) 72)) (-2688 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1868 (((-1152) $) NIL)) (-2148 (($ $ $) NIL)) (-3304 (($) NIL T CONST)) (-3338 (($ (-918)) 82)) (-4324 (($ $) 52)) (-3844 (((-1114) $) 71)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2727 (($ $ $) 62) (($ (-641 $)) NIL)) (-4265 (($ $) NIL)) (-4139 (((-418 $) $) NIL)) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL)) (-1347 (((-3 $ "failed") $ $) NIL)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1542 (((-112) $) NIL)) (-3966 (((-768) $) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 61)) (-2203 (($ $ (-768)) NIL) (($ $) NIL)) (-2021 (($ $) 53)) (-3890 (($ $) NIL)) (-2374 (((-564) $) 17) (((-536) $) NIL) (((-889 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-3714 (((-859) $) 35) (($ (-564)) 89) (($ $) NIL) (($ (-564)) 89)) (-3379 (((-768)) NIL T CONST)) (-2833 (((-112) $ $) NIL)) (-4389 (($ $ $) NIL)) (-3270 (($) 40)) (-3979 (((-112) $ $) NIL)) (-4037 (($ $ $ $) 75)) (-3920 (($ $) 63)) (-2284 (($ $ $) 47)) (-4312 (($) 7 T CONST)) (-1567 (($ $ $) 50)) (-4323 (($) 39 T CONST)) (-1983 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-819) $) 28) (((-1264) (-819) $ (-112)) 29)) (-1579 (($ $) 48)) (-2238 (($ $ (-768)) NIL) (($ $) NIL)) (-1555 (($ $ $) 49)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 43)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 10)) (-2271 (($ $ $) 46)) (-1828 (($ $) 16) (($ $ $) 55)) (-1814 (($ $ $) 54)) (** (($ $ (-918)) NIL) (($ $ (-768)) 57)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 38) (($ $ $) 37)))
+(((-1114) (-13 (-545) (-841) (-657) (-825) (-10 -8 (-6 -4399) (-6 -4404) (-6 -4400) (-15 -4253 ($ $)) (-15 -4288 ($ $ $)) (-15 -1579 ($ $)) (-15 -1555 ($ $ $)) (-15 -1567 ($ $ $))))) (T -1114))
+((-4253 (*1 *1 *1) (-5 *1 (-1114))) (-4288 (*1 *1 *1 *1) (-5 *1 (-1114))) (-1579 (*1 *1 *1) (-5 *1 (-1114))) (-1555 (*1 *1 *1 *1) (-5 *1 (-1114))) (-1567 (*1 *1 *1 *1) (-5 *1 (-1114))))
+(-13 (-545) (-841) (-657) (-825) (-10 -8 (-6 -4399) (-6 -4404) (-6 -4400) (-15 -4253 ($ $)) (-15 -4288 ($ $ $)) (-15 -1579 ($ $)) (-15 -1555 ($ $ $)) (-15 -1567 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1417 ((|#1| $) 44)) (-3263 (((-112) $ (-768)) 8)) (-3760 (($) 7 T CONST)) (-2998 ((|#1| |#1| $) 46)) (-3507 ((|#1| $) 45)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-1833 ((|#1| $) 39)) (-2098 (($ |#1| $) 40)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3389 ((|#1| $) 41)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-2057 (((-768) $) 43)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) 42)) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2667 ((|#1| $) 44)) (-2141 (((-112) $ (-768)) 8)) (-3180 (($) 7 T CONST)) (-4377 ((|#1| |#1| $) 46)) (-2691 ((|#1| $) 45)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2775 ((|#1| $) 39)) (-2373 (($ |#1| $) 40)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3950 ((|#1| $) 41)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-3735 (((-768) $) 43)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) 42)) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-1115 |#1|) (-140) (-1209)) (T -1115))
-((-2998 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4411) (-15 -2998 (|t#1| |t#1| $)) (-15 -3507 (|t#1| $)) (-15 -1417 (|t#1| $)) (-15 -2057 ((-768) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-3715 ((|#3| $) 87)) (-2013 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2064 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#3| $) 47)) (-2620 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1447 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 84) (((-685 |#3|) (-685 $)) 76)) (-3226 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-3044 ((|#3| $) 89)) (-3361 ((|#4| $) 43)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#3|) 25)) (** (($ $ (-918)) NIL) (($ $ (-768)) 24) (($ $ (-564)) 95)))
-(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -3044 (|#3| |#1|)) (-15 -3715 (|#3| |#1|)) (-15 -3361 (|#4| |#1|)) (-15 -2620 ((-685 |#3|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -1765 (|#1| |#3|)) (-15 -2013 ((-3 |#3| "failed") |#1|)) (-15 -2064 (|#3| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1765 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -1765 ((-859) |#1|))) (-1117 |#2| |#3| |#4| |#5|) (-768) (-1046) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1116))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -3044 (|#3| |#1|)) (-15 -3715 (|#3| |#1|)) (-15 -3361 (|#4| |#1|)) (-15 -2620 ((-685 |#3|) (-685 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -2620 ((-685 (-564)) (-685 |#1|))) (-15 -1765 (|#1| |#3|)) (-15 -2013 ((-3 |#3| "failed") |#1|)) (-15 -2064 (|#3| |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -3226 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1765 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3715 ((|#2| $) 71)) (-2741 (((-112) $) 111)) (-3936 (((-3 $ "failed") $ $) 19)) (-2832 (((-112) $) 109)) (-3263 (((-112) $ (-768)) 101)) (-2460 (($ |#2|) 74)) (-3760 (($) 17 T CONST)) (-1364 (($ $) 128 (|has| |#2| (-307)))) (-2698 ((|#3| $ (-564)) 123)) (-2013 (((-3 (-564) "failed") $) 86 (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 83 (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) 80)) (-2064 (((-564) $) 85 (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) 82 (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) 81)) (-2620 (((-685 (-564)) (-685 $)) 78 (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 77 (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 76) (((-685 |#2|) (-685 $)) 75)) (-1926 (((-3 $ "failed") $) 33)) (-4224 (((-768) $) 129 (|has| |#2| (-556)))) (-3455 ((|#2| $ (-564) (-564)) 121)) (-3080 (((-641 |#2|) $) 94 (|has| $ (-6 -4411)))) (-2419 (((-112) $) 31)) (-4227 (((-768) $) 130 (|has| |#2| (-556)))) (-3798 (((-641 |#4|) $) 131 (|has| |#2| (-556)))) (-3383 (((-768) $) 117)) (-3393 (((-768) $) 118)) (-2830 (((-112) $ (-768)) 102)) (-1893 ((|#2| $) 66 (|has| |#2| (-6 (-4413 "*"))))) (-1786 (((-564) $) 113)) (-2810 (((-564) $) 115)) (-3817 (((-641 |#2|) $) 93 (|has| $ (-6 -4411)))) (-3675 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-3896 (((-564) $) 114)) (-2104 (((-564) $) 116)) (-1605 (($ (-641 (-641 |#2|))) 108)) (-3513 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-3671 (((-641 (-641 |#2|)) $) 119)) (-2972 (((-112) $ (-768)) 103)) (-4202 (((-1152) $) 9)) (-1675 (((-3 $ "failed") $) 65 (|has| |#2| (-363)))) (-3802 (((-1114) $) 10)) (-1343 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-556)))) (-1467 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#2|))) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) 107)) (-2742 (((-112) $) 104)) (-3845 (($) 105)) (-4382 ((|#2| $ (-564) (-564) |#2|) 122) ((|#2| $ (-564) (-564)) 120)) (-3226 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-768)) 51) (($ $ (-641 (-1170)) (-641 (-768))) 44 (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) 43 (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) 41 (|has| |#2| (-897 (-1170)))) (($ $ (-768)) 39 (|has| |#2| (-233))) (($ $) 37 (|has| |#2| (-233)))) (-3044 ((|#2| $) 70)) (-3530 (($ (-641 |#2|)) 73)) (-3883 (((-112) $) 110)) (-3361 ((|#3| $) 72)) (-2672 ((|#2| $) 67 (|has| |#2| (-6 (-4413 "*"))))) (-3815 (((-768) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4411))) (((-768) |#2| $) 92 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 106)) (-1709 ((|#4| $ (-564)) 124)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 84 (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) 79)) (-1965 (((-768)) 28 T CONST)) (-2237 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4411)))) (-1509 (((-112) $) 112)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-768)) 49) (($ $ (-641 (-1170)) (-641 (-768))) 48 (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) 47 (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) 45 (|has| |#2| (-897 (-1170)))) (($ $ (-768)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#2|) 127 (|has| |#2| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 64 (|has| |#2| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-2589 (((-768) $) 100 (|has| $ (-6 -4411)))))
+((-4377 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4412) (-15 -4377 (|t#1| |t#1| $)) (-15 -2691 (|t#1| $)) (-15 -2667 (|t#1| $)) (-15 -3735 ((-768) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-3767 ((|#3| $) 87)) (-2224 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2376 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#3| $) 47)) (-3613 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -1920 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 84) (((-685 |#3|) (-685 $)) 76)) (-2203 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-3558 ((|#3| $) 89)) (-3666 ((|#4| $) 43)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#3|) 25)) (** (($ $ (-918)) NIL) (($ $ (-768)) 24) (($ $ (-564)) 95)))
+(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -3558 (|#3| |#1|)) (-15 -3767 (|#3| |#1|)) (-15 -3666 (|#4| |#1|)) (-15 -3613 ((-685 |#3|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -3714 (|#1| |#3|)) (-15 -2224 ((-3 |#3| "failed") |#1|)) (-15 -2376 (|#3| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3714 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -3714 ((-859) |#1|))) (-1117 |#2| |#3| |#4| |#5|) (-768) (-1046) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1116))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -3558 (|#3| |#1|)) (-15 -3767 (|#3| |#1|)) (-15 -3666 (|#4| |#1|)) (-15 -3613 ((-685 |#3|) (-685 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3613 ((-685 (-564)) (-685 |#1|))) (-15 -3714 (|#1| |#3|)) (-15 -2224 ((-3 |#3| "failed") |#1|)) (-15 -2376 (|#3| |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -2203 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3714 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3767 ((|#2| $) 71)) (-2497 (((-112) $) 111)) (-4281 (((-3 $ "failed") $ $) 19)) (-2193 (((-112) $) 109)) (-2141 (((-112) $ (-768)) 101)) (-2787 (($ |#2|) 74)) (-3180 (($) 17 T CONST)) (-3781 (($ $) 128 (|has| |#2| (-307)))) (-3207 ((|#3| $ (-564)) 123)) (-2224 (((-3 (-564) "failed") $) 86 (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 83 (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) 80)) (-2376 (((-564) $) 85 (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) 82 (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) 81)) (-3613 (((-685 (-564)) (-685 $)) 78 (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 77 (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 76) (((-685 |#2|) (-685 $)) 75)) (-4272 (((-3 $ "failed") $) 33)) (-1595 (((-768) $) 129 (|has| |#2| (-556)))) (-3593 ((|#2| $ (-564) (-564)) 121)) (-4244 (((-641 |#2|) $) 94 (|has| $ (-6 -4412)))) (-2340 (((-112) $) 31)) (-2099 (((-768) $) 130 (|has| |#2| (-556)))) (-2397 (((-641 |#4|) $) 131 (|has| |#2| (-556)))) (-3947 (((-768) $) 117)) (-3956 (((-768) $) 118)) (-2173 (((-112) $ (-768)) 102)) (-2125 ((|#2| $) 66 (|has| |#2| (-6 (-4414 "*"))))) (-2285 (((-564) $) 113)) (-1984 (((-564) $) 115)) (-2572 (((-641 |#2|) $) 93 (|has| $ (-6 -4412)))) (-3601 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412))))) (-2083 (((-564) $) 114)) (-2437 (((-564) $) 116)) (-3469 (($ (-641 (-641 |#2|))) 108)) (-1988 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-3549 (((-641 (-641 |#2|)) $) 119)) (-4144 (((-112) $ (-768)) 103)) (-1868 (((-1152) $) 9)) (-3577 (((-3 $ "failed") $) 65 (|has| |#2| (-363)))) (-3844 (((-1114) $) 10)) (-1347 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-556)))) (-2280 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#2|))) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) 107)) (-2510 (((-112) $) 104)) (-2834 (($) 105)) (-4382 ((|#2| $ (-564) (-564) |#2|) 122) ((|#2| $ (-564) (-564)) 120)) (-2203 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-768)) 51) (($ $ (-641 (-1170)) (-641 (-768))) 44 (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) 43 (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) 41 (|has| |#2| (-897 (-1170)))) (($ $ (-768)) 39 (|has| |#2| (-233))) (($ $) 37 (|has| |#2| (-233)))) (-3558 ((|#2| $) 70)) (-1634 (($ (-641 |#2|)) 73)) (-1950 (((-112) $) 110)) (-3666 ((|#3| $) 72)) (-2990 ((|#2| $) 67 (|has| |#2| (-6 (-4414 "*"))))) (-3855 (((-768) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4412))) (((-768) |#2| $) 92 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 106)) (-2811 ((|#4| $ (-564)) 124)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 84 (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) 79)) (-3379 (((-768)) 28 T CONST)) (-4289 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4412)))) (-2718 (((-112) $) 112)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-768)) 49) (($ $ (-641 (-1170)) (-641 (-768))) 48 (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) 47 (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) 45 (|has| |#2| (-897 (-1170)))) (($ $ (-768)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#2|) 127 (|has| |#2| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 64 (|has| |#2| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-2779 (((-768) $) 100 (|has| $ (-6 -4412)))))
(((-1117 |#1| |#2| |#3| |#4|) (-140) (-768) (-1046) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1117))
-((-2460 (*1 *1 *2) (-12 (-4 *2 (-1046)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-641 *4)) (-4 *4 (-1046)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) (-1675 (*1 *1 *1) (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))))
-(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1049 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-714 |t#2|)) |%noBranch|) (-15 -2460 ($ |t#2|)) (-15 -3530 ($ (-641 |t#2|))) (-15 -3361 (|t#3| $)) (-15 -3715 (|t#2| $)) (-15 -3044 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4413 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2672 (|t#2| $)) (-15 -1893 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -1675 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4413 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#2| (-637 (-564))) ((-637 |#2|) . T) ((-714 |#2|) -4002 (|has| |#2| (-172)) (|has| |#2| (-6 (-4413 "*")))) ((-723) . T) ((-897 (-1170)) |has| |#2| (-897 (-1170))) ((-1049 |#1| |#1| |#2| |#3| |#4|) . T) ((-1035 #0#) |has| |#2| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#2| (-1035 (-564))) ((-1035 |#2|) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T))
-((-3722 ((|#4| |#4|) 82)) (-1828 ((|#4| |#4|) 77)) (-1913 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3941 (-641 |#3|))) |#4| |#3|) 92)) (-1971 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 81)) (-2556 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 79)))
-(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 (|#4| |#4|)) (-15 -2556 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3722 (|#4| |#4|)) (-15 -1971 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1913 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3941 (-641 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1118))
-((-1913 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4)))) (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-1971 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2556 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(-10 -7 (-15 -1828 (|#4| |#4|)) (-15 -2556 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3722 (|#4| |#4|)) (-15 -1971 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1913 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3941 (-641 |#3|))) |#4| |#3|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 18)) (-4170 (((-641 |#2|) $) 176)) (-3964 (((-1166 $) $ |#2|) 62) (((-1166 |#1|) $) 51)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 116 (|has| |#1| (-556)))) (-1840 (($ $) 118 (|has| |#1| (-556)))) (-4035 (((-112) $) 120 (|has| |#1| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 |#2|)) 215)) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1368 (($ $) NIL (|has| |#1| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) 170) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#2| "failed") $) NIL)) (-2064 ((|#1| $) 168) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#2| $) NIL)) (-4267 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-4346 (($ $) 219)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) 90)) (-2190 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#1| (-906)))) (-2877 (($ $ |#1| (-531 |#2|) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2419 (((-112) $) 20)) (-3107 (((-768) $) 30)) (-4157 (($ (-1166 |#1|) |#2|) 56) (($ (-1166 $) |#2|) 73)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) 41)) (-4145 (($ |#1| (-531 |#2|)) 80) (($ $ |#2| (-768)) 60) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ |#2|) NIL)) (-3829 (((-531 |#2|) $) 207) (((-768) $ |#2|) 208) (((-641 (-768)) $ (-641 |#2|)) 209)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2964 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) 128)) (-2022 (((-3 |#2| "failed") $) 179)) (-4311 (($ $) 218)) (-4323 ((|#1| $) 45)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4202 (((-1152) $) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| |#2|) (|:| -3747 (-768))) "failed") $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) 42)) (-4298 ((|#1| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 148 (|has| |#1| (-452)))) (-2527 (($ (-641 $)) 153 (|has| |#1| (-452))) (($ $ $) 138 (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1343 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) 182) (($ $ (-641 |#2|) (-641 |#1|)) 197) (($ $ |#2| $) 181) (($ $ (-641 |#2|) (-641 $)) 196)) (-1938 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3226 (($ $ |#2|) 217) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-3344 (((-531 |#2|) $) 203) (((-768) $ |#2|) 198) (((-641 (-768)) $ (-641 |#2|)) 201)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2712 ((|#1| $) 134 (|has| |#1| (-452))) (($ $ |#2|) 137 (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1765 (((-859) $) 159) (($ (-564)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4264 (((-641 |#1|) $) 162)) (-1757 ((|#1| $ (-531 |#2|)) 82) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) 87 T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-1582 (((-112) $ $) 123 (|has| |#1| (-556)))) (-4317 (($) 12 T CONST)) (-4327 (($) 14 T CONST)) (-3190 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) 106)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ |#1|) 132 (|has| |#1| (-363)))) (-1783 (($ $) 93) (($ $ $) 104)) (-1771 (($ $ $) 57)) (** (($ $ (-918)) 110) (($ $ (-768)) 109)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 96) (($ $ $) 74) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
+((-2787 (*1 *1 *2) (-12 (-4 *2 (-1046)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-641 *4)) (-4 *4 (-1046)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-2990 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4414 "*"))) (-4 *2 (-1046)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4414 "*"))) (-4 *2 (-1046)))) (-3577 (*1 *1 *1) (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))))
+(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1049 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-714 |t#2|)) |%noBranch|) (-15 -2787 ($ |t#2|)) (-15 -1634 ($ (-641 |t#2|))) (-15 -3666 (|t#3| $)) (-15 -3767 (|t#2| $)) (-15 -3558 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4414 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2990 (|t#2| $)) (-15 -2125 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -3577 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4414 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#2| (-637 (-564))) ((-637 |#2|) . T) ((-714 |#2|) -4012 (|has| |#2| (-172)) (|has| |#2| (-6 (-4414 "*")))) ((-723) . T) ((-897 (-1170)) |has| |#2| (-897 (-1170))) ((-1049 |#1| |#1| |#2| |#3| |#4|) . T) ((-1035 #0#) |has| |#2| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#2| (-1035 (-564))) ((-1035 |#2|) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T))
+((-2894 ((|#4| |#4|) 82)) (-2725 ((|#4| |#4|) 77)) (-4143 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4339 (-641 |#3|))) |#4| |#3|) 92)) (-3425 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 81)) (-4262 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 79)))
+(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2725 (|#4| |#4|)) (-15 -4262 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2894 (|#4| |#4|)) (-15 -3425 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4143 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4339 (-641 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1118))
+((-4143 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4)))) (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-3425 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2894 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-4262 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2725 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
+(-10 -7 (-15 -2725 (|#4| |#4|)) (-15 -4262 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2894 (|#4| |#4|)) (-15 -3425 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4143 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4339 (-641 |#3|))) |#4| |#3|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 18)) (-4292 (((-641 |#2|) $) 176)) (-4103 (((-1166 $) $ |#2|) 62) (((-1166 |#1|) $) 51)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 116 (|has| |#1| (-556)))) (-1582 (($ $) 118 (|has| |#1| (-556)))) (-3897 (((-112) $) 120 (|has| |#1| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 |#2|)) 215)) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-1328 (($ $) NIL (|has| |#1| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) 170) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#2| "failed") $) NIL)) (-2376 ((|#1| $) 168) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#2| $) NIL)) (-4275 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-1374 (($ $) 219)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) 90)) (-2015 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#1| (-906)))) (-1423 (($ $ |#1| (-531 |#2|) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2340 (((-112) $) 20)) (-2998 (((-768) $) 30)) (-4279 (($ (-1166 |#1|) |#2|) 56) (($ (-1166 $) |#2|) 73)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) 41)) (-4267 (($ |#1| (-531 |#2|)) 80) (($ $ |#2| (-768)) 60) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ |#2|) NIL)) (-2700 (((-531 |#2|) $) 207) (((-768) $ |#2|) 208) (((-641 (-768)) $ (-641 |#2|)) 209)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-4062 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) 128)) (-2848 (((-3 |#2| "failed") $) 179)) (-1330 (($ $) 218)) (-1345 ((|#1| $) 45)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1868 (((-1152) $) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| |#2|) (|:| -3078 (-768))) "failed") $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) 42)) (-1316 ((|#1| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 148 (|has| |#1| (-452)))) (-2727 (($ (-641 $)) 153 (|has| |#1| (-452))) (($ $ $) 138 (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1347 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) 182) (($ $ (-641 |#2|) (-641 |#1|)) 197) (($ $ |#2| $) 181) (($ $ (-641 |#2|) (-641 $)) 196)) (-4378 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-2203 (($ $ |#2|) 217) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-3475 (((-531 |#2|) $) 203) (((-768) $ |#2|) 198) (((-641 (-768)) $ (-641 |#2|)) 201)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3324 ((|#1| $) 134 (|has| |#1| (-452))) (($ $ |#2|) 137 (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3714 (((-859) $) 159) (($ (-564)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4252 (((-641 |#1|) $) 162)) (-3181 ((|#1| $ (-531 |#2|)) 82) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) 87 T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3979 (((-112) $ $) 123 (|has| |#1| (-556)))) (-4312 (($) 12 T CONST)) (-4323 (($) 14 T CONST)) (-2238 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) 106)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ |#1|) 132 (|has| |#1| (-363)))) (-1828 (($ $) 93) (($ $ $) 104)) (-1814 (($ $ $) 57)) (** (($ $ (-918)) 110) (($ $ (-768)) 109)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 96) (($ $ $) 74) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
(((-1119 |#1| |#2|) (-946 |#1| (-531 |#2|) |#2|) (-1046) (-847)) (T -1119))
NIL
(-946 |#1| (-531 |#2|) |#2|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 |#2|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3904 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3879 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3933 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-4191 (((-949 |#1|) $ (-768)) NIL) (((-949 |#1|) $ (-768) (-768)) NIL)) (-1459 (((-112) $) NIL)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-768) $ |#2|) NIL) (((-768) $ |#2| (-768)) NIL)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3101 (((-112) $) NIL)) (-4145 (($ $ (-641 |#2|) (-641 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-768)) 62) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2186 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3591 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ |#2| |#1|) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3802 (((-1114) $) NIL)) (-3857 (($ (-1 $) |#2| |#1|) 173 (|has| |#1| (-38 (-407 (-564)))))) (-2678 (($ $ (-768)) 16)) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2152 (($ $) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (($ $ |#2| $) 105) (($ $ (-641 |#2|) (-641 $)) 98) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-3226 (($ $ |#2|) 108) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-3344 (((-531 |#2|) $) NIL)) (-3754 (((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|))) 86)) (-3949 (($ $) 157 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) 18)) (-1765 (((-859) $) 198) (($ (-564)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#2|) 69) (($ |#3|) 67)) (-1757 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL) ((|#3| $ (-768)) 43)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-3991 (($ $) 163 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 167 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3586 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 165 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 52 T CONST)) (-4327 (($) 61 T CONST)) (-3190 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#1|) 200 (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 65)) (** (($ $ (-918)) NIL) (($ $ (-768)) 76) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 111 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ (-407 (-564))) 116 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 114 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1120 |#1| |#2| |#3|) (-13 (-737 |#1| |#2|) (-10 -8 (-15 -1757 (|#3| $ (-768))) (-15 -1765 ($ |#2|)) (-15 -1765 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3754 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $ |#2| |#1|)) (-15 -3857 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1046) (-847) (-946 |#1| (-531 |#2|) |#2|)) (T -1120))
-((-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *2 (-946 *4 (-531 *5) *5)) (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-1765 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-1765 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-847)) (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1046)) (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7)))) (-3591 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-3857 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *1 (-1120 *4 *3 *5)) (-4 *5 (-946 *4 (-531 *3) *3)))))
-(-13 (-737 |#1| |#2|) (-10 -8 (-15 -1757 (|#3| $ (-768))) (-15 -1765 ($ |#2|)) (-15 -1765 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3754 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $ |#2| |#1|)) (-15 -3857 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-1754 (((-112) $ $) 7)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |#4|)))) (-641 |#4|)) 85)) (-4389 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4170 (((-641 |#3|) $) 33)) (-1747 (((-112) $) 26)) (-2197 (((-112) $) 17 (|has| |#1| (-556)))) (-1940 (((-112) |#4| $) 101) (((-112) $) 97)) (-3993 ((|#4| |#4| $) 92)) (-1368 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| $) 126)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) 27)) (-3263 (((-112) $ (-768)) 44)) (-2164 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-3760 (($) 45 T CONST)) (-4177 (((-112) $) 22 (|has| |#1| (-556)))) (-3911 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2694 (((-112) $ $) 23 (|has| |#1| (-556)))) (-1378 (((-112) $) 25 (|has| |#1| (-556)))) (-3207 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2254 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) 36)) (-2064 (($ (-641 |#4|)) 35)) (-3086 (((-3 $ "failed") $) 82)) (-2758 ((|#4| |#4| $) 89)) (-3104 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4269 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3621 ((|#4| |#4| $) 87)) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2058 (((-2 (|:| -3439 (-641 |#4|)) (|:| -1589 (-641 |#4|))) $) 105)) (-1456 (((-112) |#4| $) 136)) (-2097 (((-112) |#4| $) 133)) (-2432 (((-112) |#4| $) 137) (((-112) $) 134)) (-3080 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-2415 (((-112) |#4| $) 104) (((-112) $) 103)) (-3162 ((|#3| $) 34)) (-2830 (((-112) $ (-768)) 43)) (-3817 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 47)) (-4343 (((-641 |#3|) $) 32)) (-1853 (((-112) |#3| $) 31)) (-2972 (((-112) $ (-768)) 42)) (-4202 (((-1152) $) 9)) (-4181 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-1489 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| |#4| $) 127)) (-2376 (((-3 |#4| "failed") $) 83)) (-2298 (((-641 $) |#4| $) 129)) (-3866 (((-3 (-112) (-641 $)) |#4| $) 132)) (-4214 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1617 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-1829 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-3277 (((-641 |#4|) $) 107)) (-3561 (((-112) |#4| $) 99) (((-112) $) 95)) (-3874 ((|#4| |#4| $) 90)) (-3862 (((-112) $ $) 110)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1512 (((-112) |#4| $) 100) (((-112) $) 96)) (-3491 ((|#4| |#4| $) 91)) (-3802 (((-1114) $) 10)) (-3073 (((-3 |#4| "failed") $) 84)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3159 (((-3 $ "failed") $ |#4|) 78)) (-2678 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-1467 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) 38)) (-2742 (((-112) $) 41)) (-3845 (($) 40)) (-3344 (((-768) $) 106)) (-3815 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-1899 (($ $) 39)) (-2127 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) 60)) (-2318 (($ $ |#3|) 28)) (-1869 (($ $ |#3|) 30)) (-3430 (($ $) 88)) (-1845 (($ $ |#3|) 29)) (-1765 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1597 (((-768) $) 76 (|has| |#3| (-368)))) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1599 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-3602 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-2237 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-2380 (((-641 |#3|) $) 81)) (-1759 (((-112) |#4| $) 135)) (-3623 (((-112) |#3| $) 80)) (-1686 (((-112) $ $) 6)) (-2589 (((-768) $) 46 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 |#2|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2657 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2635 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2679 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-3357 (((-949 |#1|) $ (-768)) NIL) (((-949 |#1|) $ (-768) (-768)) NIL)) (-2200 (((-112) $) NIL)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-768) $ |#2|) NIL) (((-768) $ |#2| (-768)) NIL)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2961 (((-112) $) NIL)) (-4267 (($ $ (-641 |#2|) (-641 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-768)) 62) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2305 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-4039 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ |#2| |#1|) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3844 (((-1114) $) NIL)) (-1674 (($ (-1 $) |#2| |#1|) 173 (|has| |#1| (-38 (-407 (-564)))))) (-3042 (($ $ (-768)) 16)) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4130 (($ $) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (($ $ |#2| $) 105) (($ $ (-641 |#2|) (-641 $)) 98) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-2203 (($ $ |#2|) 108) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-3475 (((-531 |#2|) $) NIL)) (-3135 (((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|))) 86)) (-2692 (($ $) 157 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) 18)) (-3714 (((-859) $) 198) (($ (-564)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#2|) 69) (($ |#3|) 67)) (-3181 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL) ((|#3| $ (-768)) 43)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-2728 (($ $) 163 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 167 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2053 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 165 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 52 T CONST)) (-4323 (($) 61 T CONST)) (-2238 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#1|) 200 (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 65)) (** (($ $ (-918)) NIL) (($ $ (-768)) 76) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 111 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ (-407 (-564))) 116 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 114 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1120 |#1| |#2| |#3|) (-13 (-737 |#1| |#2|) (-10 -8 (-15 -3181 (|#3| $ (-768))) (-15 -3714 ($ |#2|)) (-15 -3714 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3135 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $ |#2| |#1|)) (-15 -1674 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1046) (-847) (-946 |#1| (-531 |#2|) |#2|)) (T -1120))
+((-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *2 (-946 *4 (-531 *5) *5)) (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-3714 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-3714 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (-3135 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-847)) (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1046)) (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7)))) (-4039 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-1674 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *1 (-1120 *4 *3 *5)) (-4 *5 (-946 *4 (-531 *3) *3)))))
+(-13 (-737 |#1| |#2|) (-10 -8 (-15 -3181 (|#3| $ (-768))) (-15 -3714 ($ |#2|)) (-15 -3714 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3135 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $ |#2| |#1|)) (-15 -1674 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-3702 (((-112) $ $) 7)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |#4|)))) (-641 |#4|)) 85)) (-4055 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4292 (((-641 |#3|) $) 33)) (-3097 (((-112) $) 26)) (-2092 (((-112) $) 17 (|has| |#1| (-556)))) (-1300 (((-112) |#4| $) 101) (((-112) $) 97)) (-3500 ((|#4| |#4| $) 92)) (-1328 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| $) 126)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) 27)) (-2141 (((-112) $ (-768)) 44)) (-4148 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4412))) (((-3 |#4| "failed") $ |#3|) 79)) (-3180 (($) 45 T CONST)) (-2846 (((-112) $) 22 (|has| |#1| (-556)))) (-2228 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3171 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3798 (((-112) $) 25 (|has| |#1| (-556)))) (-1578 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1373 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) 36)) (-2376 (($ (-641 |#4|)) 35)) (-2063 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-2084 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4344 ((|#4| |#4| $) 87)) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4412))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3151 (((-2 (|:| -3489 (-641 |#4|)) (|:| -1721 (-641 |#4|))) $) 105)) (-2169 (((-112) |#4| $) 136)) (-2358 (((-112) |#4| $) 133)) (-2479 (((-112) |#4| $) 137) (((-112) $) 134)) (-4244 (((-641 |#4|) $) 52 (|has| $ (-6 -4412)))) (-2297 (((-112) |#4| $) 104) (((-112) $) 103)) (-2394 ((|#3| $) 34)) (-2173 (((-112) $ (-768)) 43)) (-2572 (((-641 |#4|) $) 53 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 47)) (-3652 (((-641 |#3|) $) 32)) (-1722 (((-112) |#3| $) 31)) (-4144 (((-112) $ (-768)) 42)) (-1868 (((-1152) $) 9)) (-2881 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2521 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| |#4| $) 127)) (-2541 (((-3 |#4| "failed") $) 83)) (-3607 (((-641 $) |#4| $) 129)) (-1779 (((-3 (-112) (-641 $)) |#4| $) 132)) (-1990 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4302 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-2737 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4104 (((-641 |#4|) $) 107)) (-1954 (((-112) |#4| $) 99) (((-112) $) 95)) (-1863 ((|#4| |#4| $) 90)) (-1733 (((-112) $ $) 110)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1485 (((-112) |#4| $) 100) (((-112) $) 96)) (-2543 ((|#4| |#4| $) 91)) (-3844 (((-1114) $) 10)) (-2049 (((-3 |#4| "failed") $) 84)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2359 (((-3 $ "failed") $ |#4|) 78)) (-3042 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-2280 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) 38)) (-2510 (((-112) $) 41)) (-2834 (($) 40)) (-3475 (((-768) $) 106)) (-3855 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4412)))) (-3890 (($ $) 39)) (-2374 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) 60)) (-3789 (($ $ |#3|) 28)) (-1896 (($ $ |#3|) 30)) (-3121 (($ $) 88)) (-1632 (($ $ |#3|) 29)) (-3714 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4113 (((-768) $) 76 (|has| |#3| (-368)))) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4138 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-4158 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-4289 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4412)))) (-3148 (((-641 |#3|) $) 81)) (-3199 (((-112) |#4| $) 135)) (-4368 (((-112) |#3| $) 80)) (-1720 (((-112) $ $) 6)) (-2779 (((-768) $) 46 (|has| $ (-6 -4412)))))
(((-1121 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1121))
NIL
(-13 (-1103 |t#1| |t#2| |t#3| |t#4|) (-781 |t#1| |t#2| |t#3| |t#4|))
(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-781 |#1| |#2| |#3| |#4|) . T) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T))
-((-4325 (((-641 |#2|) |#1|) 15)) (-2056 (((-641 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-641 |#2|) |#1|) 63)) (-3012 (((-641 |#2|) |#2| |#2| |#2|) 45) (((-641 |#2|) |#1|) 61)) (-4118 ((|#2| |#1|) 56)) (-1590 (((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4167 (((-641 |#2|) |#2| |#2|) 42) (((-641 |#2|) |#1|) 60)) (-2625 (((-641 |#2|) |#2| |#2| |#2| |#2|) 46) (((-641 |#2|) |#1|) 62)) (-3984 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3332 ((|#2| |#2| |#2| |#2|) 53)) (-3573 ((|#2| |#2| |#2|) 52)) (-2801 ((|#2| |#2| |#2| |#2| |#2|) 54)))
-(((-1122 |#1| |#2|) (-10 -7 (-15 -4325 ((-641 |#2|) |#1|)) (-15 -4118 (|#2| |#1|)) (-15 -1590 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4167 ((-641 |#2|) |#1|)) (-15 -3012 ((-641 |#2|) |#1|)) (-15 -2625 ((-641 |#2|) |#1|)) (-15 -2056 ((-641 |#2|) |#1|)) (-15 -4167 ((-641 |#2|) |#2| |#2|)) (-15 -3012 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -2625 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2056 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3573 (|#2| |#2| |#2|)) (-15 -3332 (|#2| |#2| |#2| |#2|)) (-15 -2801 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3984 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1235 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (T -1122))
-((-3984 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-2801 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3332 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3573 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-2056 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-2625 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-3012 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-4167 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-2625 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-3012 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-2 (|:| |solns| (-641 *5)) (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5)))) (-4118 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-4325 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -4325 ((-641 |#2|) |#1|)) (-15 -4118 (|#2| |#1|)) (-15 -1590 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4167 ((-641 |#2|) |#1|)) (-15 -3012 ((-641 |#2|) |#1|)) (-15 -2625 ((-641 |#2|) |#1|)) (-15 -2056 ((-641 |#2|) |#1|)) (-15 -4167 ((-641 |#2|) |#2| |#2|)) (-15 -3012 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -2625 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2056 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3573 (|#2| |#2| |#2|)) (-15 -3332 (|#2| |#2| |#2| |#2|)) (-15 -2801 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3984 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2384 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|))))) 128) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170))) 127) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|)))) 125) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 123) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|)))) 101) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170)) 102) (((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|))) 96) (((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170)) 82)) (-2473 (((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 121) (((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170)) 54)) (-1901 (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)) 132) (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170)) 131)))
-(((-1123 |#1|) (-10 -7 (-15 -2384 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -2384 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)))) (-15 -2384 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2384 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))))) (-15 -2384 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2384 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))))) (-15 -2384 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -2384 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -2473 ((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -2473 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -1901 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -1901 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)))) (-13 (-307) (-847) (-147))) (T -1123))
-((-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-316 *5)))) (-5 *1 (-1123 *5)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-316 *5))) (-5 *1 (-1123 *5)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 *5))))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5)))))
-(-10 -7 (-15 -2384 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -2384 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)))) (-15 -2384 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2384 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))))) (-15 -2384 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2384 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))))) (-15 -2384 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -2384 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -2473 ((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -2473 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -1901 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -1901 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170))))
-((-4388 (((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)) 38)) (-1831 (((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|)))) 49)))
-(((-1124 |#1|) (-10 -7 (-15 -1831 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -4388 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)))) (-13 (-556) (-847))) (T -1124))
-((-4388 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5))) (-5 *4 (-564)) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-1124 *5)))) (-1831 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-847))) (-5 *1 (-1124 *3)))))
-(-10 -7 (-15 -1831 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -4388 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564))))
-((-4325 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))) 257) (((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170)) 29) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170)) 35) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 34) (((-641 (-294 (-316 |#1|))) (-316 |#1|)) 30)))
-(((-1125 |#1|) (-10 -7 (-15 -4325 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -4325 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -4325 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -4325 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -4325 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (T -1125))
-((-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5)) (-5 *3 (-641 (-294 (-316 *5)))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-316 *5)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-294 (-316 *5))))) (-4325 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-294 (-316 *4))))) (-4325 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-316 *4)))))
-(-10 -7 (-15 -4325 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -4325 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -4325 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -4325 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -4325 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170)))))
-((-3897 ((|#2| |#2|) 30 (|has| |#1| (-847))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3830 ((|#2| |#2|) 29 (|has| |#1| (-847))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1126 |#1| |#2|) (-10 -7 (-15 -3830 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3897 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-847)) (PROGN (-15 -3830 (|#2| |#2|)) (-15 -3897 (|#2| |#2|))) |%noBranch|)) (-1209) (-13 (-602 (-564) |#1|) (-10 -7 (-6 -4411) (-6 -4412)))) (T -1126))
-((-3897 (*1 *2 *2) (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4411) (-6 -4412)))))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4411) (-6 -4412)))))) (-3897 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4411) (-6 -4412)))))) (-3830 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4411) (-6 -4412)))))))
-(-10 -7 (-15 -3830 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3897 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-847)) (PROGN (-15 -3830 (|#2| |#2|)) (-15 -3897 (|#2| |#2|))) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-1542 (((-1158 3 |#1|) $) 142)) (-3336 (((-112) $) 100)) (-2265 (($ $ (-641 (-940 |#1|))) 44) (($ $ (-641 (-641 |#1|))) 103) (($ (-641 (-940 |#1|))) 102) (((-641 (-940 |#1|)) $) 101)) (-2927 (((-112) $) 71)) (-3489 (($ $ (-940 |#1|)) 75) (($ $ (-641 |#1|)) 80) (($ $ (-768)) 82) (($ (-940 |#1|)) 76) (((-940 |#1|) $) 74)) (-2733 (((-2 (|:| -3604 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $) 140)) (-4192 (((-768) $) 53)) (-2103 (((-768) $) 52)) (-2176 (($ $ (-768) (-940 |#1|)) 67)) (-3888 (((-112) $) 113)) (-2412 (($ $ (-641 (-641 (-940 |#1|))) (-641 (-171)) (-171)) 120) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 122) (($ $ (-641 (-641 (-940 |#1|))) (-112) (-112)) 117) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 129) (($ (-641 (-641 (-940 |#1|)))) 118) (($ (-641 (-641 (-940 |#1|))) (-112) (-112)) 119) (((-641 (-641 (-940 |#1|))) $) 116)) (-4012 (($ (-641 $)) 56) (($ $ $) 57)) (-2833 (((-641 (-171)) $) 135)) (-1382 (((-641 (-940 |#1|)) $) 132)) (-1846 (((-641 (-641 (-171))) $) 134)) (-3780 (((-641 (-641 (-641 (-940 |#1|)))) $) NIL)) (-4215 (((-641 (-641 (-641 (-768)))) $) 133)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3994 (((-768) $ (-641 (-940 |#1|))) 65)) (-2681 (((-112) $) 83)) (-2528 (($ $ (-641 (-940 |#1|))) 85) (($ $ (-641 (-641 |#1|))) 91) (($ (-641 (-940 |#1|))) 86) (((-641 (-940 |#1|)) $) 84)) (-1812 (($) 48) (($ (-1158 3 |#1|)) 49)) (-1899 (($ $) 63)) (-3267 (((-641 $) $) 62)) (-3154 (($ (-641 $)) 59)) (-1404 (((-641 $) $) 61)) (-1765 (((-859) $) 147)) (-2906 (((-112) $) 93)) (-2452 (($ $ (-641 (-940 |#1|))) 95) (($ $ (-641 (-641 |#1|))) 98) (($ (-641 (-940 |#1|))) 96) (((-641 (-940 |#1|)) $) 94)) (-4287 (($ $) 141)) (-1686 (((-112) $ $) NIL)))
+((-3472 (((-641 |#2|) |#1|) 15)) (-3141 (((-641 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-641 |#2|) |#1|) 63)) (-1426 (((-641 |#2|) |#2| |#2| |#2|) 45) (((-641 |#2|) |#1|) 61)) (-3405 ((|#2| |#1|) 56)) (-4043 (((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3340 (((-641 |#2|) |#2| |#2|) 42) (((-641 |#2|) |#1|) 60)) (-3671 (((-641 |#2|) |#2| |#2| |#2| |#2|) 46) (((-641 |#2|) |#1|) 62)) (-1622 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3376 ((|#2| |#2| |#2| |#2|) 53)) (-2066 ((|#2| |#2| |#2|) 52)) (-1884 ((|#2| |#2| |#2| |#2| |#2|) 54)))
+(((-1122 |#1| |#2|) (-10 -7 (-15 -3472 ((-641 |#2|) |#1|)) (-15 -3405 (|#2| |#1|)) (-15 -4043 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3340 ((-641 |#2|) |#1|)) (-15 -1426 ((-641 |#2|) |#1|)) (-15 -3671 ((-641 |#2|) |#1|)) (-15 -3141 ((-641 |#2|) |#1|)) (-15 -3340 ((-641 |#2|) |#2| |#2|)) (-15 -1426 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -3671 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3141 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2066 (|#2| |#2| |#2|)) (-15 -3376 (|#2| |#2| |#2| |#2|)) (-15 -1884 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1622 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1235 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (T -1122))
+((-1622 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-1884 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3376 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-2066 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3141 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-3671 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-1426 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-3340 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-3141 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-3671 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-1426 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-2 (|:| |solns| (-641 *5)) (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5)))) (-3405 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -3472 ((-641 |#2|) |#1|)) (-15 -3405 (|#2| |#1|)) (-15 -4043 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3340 ((-641 |#2|) |#1|)) (-15 -1426 ((-641 |#2|) |#1|)) (-15 -3671 ((-641 |#2|) |#1|)) (-15 -3141 ((-641 |#2|) |#1|)) (-15 -3340 ((-641 |#2|) |#2| |#2|)) (-15 -1426 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -3671 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3141 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2066 (|#2| |#2| |#2|)) (-15 -3376 (|#2| |#2| |#2| |#2|)) (-15 -1884 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1622 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3182 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|))))) 128) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170))) 127) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|)))) 125) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 123) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|)))) 101) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170)) 102) (((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|))) 96) (((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170)) 82)) (-1656 (((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 121) (((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170)) 54)) (-4016 (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)) 132) (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170)) 131)))
+(((-1123 |#1|) (-10 -7 (-15 -3182 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3182 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)))) (-15 -3182 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -3182 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))))) (-15 -3182 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3182 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))))) (-15 -3182 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -3182 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1656 ((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -1656 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -4016 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -4016 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)))) (-13 (-307) (-847) (-147))) (T -1123))
+((-4016 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-4016 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-1656 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-316 *5)))) (-5 *1 (-1123 *5)))) (-1656 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-316 *5))) (-5 *1 (-1123 *5)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 *5))))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5)))))
+(-10 -7 (-15 -3182 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3182 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)))) (-15 -3182 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -3182 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))))) (-15 -3182 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3182 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))))) (-15 -3182 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -3182 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1656 ((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -1656 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -4016 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -4016 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170))))
+((-4041 (((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)) 38)) (-2758 (((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|)))) 49)))
+(((-1124 |#1|) (-10 -7 (-15 -2758 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -4041 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)))) (-13 (-556) (-847))) (T -1124))
+((-4041 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5))) (-5 *4 (-564)) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-1124 *5)))) (-2758 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-847))) (-5 *1 (-1124 *3)))))
+(-10 -7 (-15 -2758 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -4041 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564))))
+((-3472 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))) 257) (((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170)) 29) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170)) 35) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 34) (((-641 (-294 (-316 |#1|))) (-316 |#1|)) 30)))
+(((-1125 |#1|) (-10 -7 (-15 -3472 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -3472 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -3472 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -3472 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -3472 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (T -1125))
+((-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5)) (-5 *3 (-641 (-294 (-316 *5)))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-316 *5)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-294 (-316 *5))))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-294 (-316 *4))))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-316 *4)))))
+(-10 -7 (-15 -3472 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -3472 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -3472 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -3472 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -3472 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170)))))
+((-2095 ((|#2| |#2|) 30 (|has| |#1| (-847))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-2710 ((|#2| |#2|) 29 (|has| |#1| (-847))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1126 |#1| |#2|) (-10 -7 (-15 -2710 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2095 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-847)) (PROGN (-15 -2710 (|#2| |#2|)) (-15 -2095 (|#2| |#2|))) |%noBranch|)) (-1209) (-13 (-602 (-564) |#1|) (-10 -7 (-6 -4412) (-6 -4413)))) (T -1126))
+((-2095 (*1 *2 *2) (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4412) (-6 -4413)))))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4412) (-6 -4413)))))) (-2095 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4412) (-6 -4413)))))) (-2710 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4412) (-6 -4413)))))))
+(-10 -7 (-15 -2710 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2095 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-847)) (PROGN (-15 -2710 (|#2| |#2|)) (-15 -2095 (|#2| |#2|))) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-1776 (((-1158 3 |#1|) $) 142)) (-3412 (((-112) $) 100)) (-1488 (($ $ (-641 (-940 |#1|))) 44) (($ $ (-641 (-641 |#1|))) 103) (($ (-641 (-940 |#1|))) 102) (((-641 (-940 |#1|)) $) 101)) (-3766 (((-112) $) 71)) (-3362 (($ $ (-940 |#1|)) 75) (($ $ (-641 |#1|)) 80) (($ $ (-768)) 82) (($ (-940 |#1|)) 76) (((-940 |#1|) $) 74)) (-3261 (((-2 (|:| -4182 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $) 140)) (-1751 (((-768) $) 53)) (-2427 (((-768) $) 52)) (-1872 (($ $ (-768) (-940 |#1|)) 67)) (-2007 (((-112) $) 113)) (-2262 (($ $ (-641 (-641 (-940 |#1|))) (-641 (-171)) (-171)) 120) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 122) (($ $ (-641 (-641 (-940 |#1|))) (-112) (-112)) 117) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 129) (($ (-641 (-641 (-940 |#1|)))) 118) (($ (-641 (-641 (-940 |#1|))) (-112) (-112)) 119) (((-641 (-641 (-940 |#1|))) $) 116)) (-3678 (($ (-641 $)) 56) (($ $ $) 57)) (-2205 (((-641 (-171)) $) 135)) (-3105 (((-641 (-940 |#1|)) $) 132)) (-1643 (((-641 (-641 (-171))) $) 134)) (-3332 (((-641 (-641 (-641 (-940 |#1|)))) $) NIL)) (-2002 (((-641 (-641 (-641 (-768)))) $) 133)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3510 (((-768) $ (-641 (-940 |#1|))) 65)) (-3069 (((-112) $) 83)) (-2157 (($ $ (-641 (-940 |#1|))) 85) (($ $ (-641 (-641 |#1|))) 91) (($ (-641 (-940 |#1|))) 86) (((-641 (-940 |#1|)) $) 84)) (-2565 (($) 48) (($ (-1158 3 |#1|)) 49)) (-3890 (($ $) 63)) (-2171 (((-641 $) $) 62)) (-2301 (($ (-641 $)) 59)) (-1848 (((-641 $) $) 61)) (-3714 (((-859) $) 147)) (-3521 (((-112) $) 93)) (-2703 (($ $ (-641 (-940 |#1|))) 95) (($ $ (-641 (-641 |#1|))) 98) (($ (-641 (-940 |#1|))) 96) (((-641 (-940 |#1|)) $) 94)) (-1354 (($ $) 141)) (-1720 (((-112) $ $) NIL)))
(((-1127 |#1|) (-1128 |#1|) (-1046)) (T -1127))
NIL
(-1128 |#1|)
-((-1754 (((-112) $ $) 7)) (-1542 (((-1158 3 |#1|) $) 13)) (-3336 (((-112) $) 29)) (-2265 (($ $ (-641 (-940 |#1|))) 33) (($ $ (-641 (-641 |#1|))) 32) (($ (-641 (-940 |#1|))) 31) (((-641 (-940 |#1|)) $) 30)) (-2927 (((-112) $) 44)) (-3489 (($ $ (-940 |#1|)) 49) (($ $ (-641 |#1|)) 48) (($ $ (-768)) 47) (($ (-940 |#1|)) 46) (((-940 |#1|) $) 45)) (-2733 (((-2 (|:| -3604 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $) 15)) (-4192 (((-768) $) 58)) (-2103 (((-768) $) 59)) (-2176 (($ $ (-768) (-940 |#1|)) 50)) (-3888 (((-112) $) 21)) (-2412 (($ $ (-641 (-641 (-940 |#1|))) (-641 (-171)) (-171)) 28) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 27) (($ $ (-641 (-641 (-940 |#1|))) (-112) (-112)) 26) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 25) (($ (-641 (-641 (-940 |#1|)))) 24) (($ (-641 (-641 (-940 |#1|))) (-112) (-112)) 23) (((-641 (-641 (-940 |#1|))) $) 22)) (-4012 (($ (-641 $)) 57) (($ $ $) 56)) (-2833 (((-641 (-171)) $) 16)) (-1382 (((-641 (-940 |#1|)) $) 20)) (-1846 (((-641 (-641 (-171))) $) 17)) (-3780 (((-641 (-641 (-641 (-940 |#1|)))) $) 18)) (-4215 (((-641 (-641 (-641 (-768)))) $) 19)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3994 (((-768) $ (-641 (-940 |#1|))) 51)) (-2681 (((-112) $) 39)) (-2528 (($ $ (-641 (-940 |#1|))) 43) (($ $ (-641 (-641 |#1|))) 42) (($ (-641 (-940 |#1|))) 41) (((-641 (-940 |#1|)) $) 40)) (-1812 (($) 61) (($ (-1158 3 |#1|)) 60)) (-1899 (($ $) 52)) (-3267 (((-641 $) $) 53)) (-3154 (($ (-641 $)) 55)) (-1404 (((-641 $) $) 54)) (-1765 (((-859) $) 11)) (-2906 (((-112) $) 34)) (-2452 (($ $ (-641 (-940 |#1|))) 38) (($ $ (-641 (-641 |#1|))) 37) (($ (-641 (-940 |#1|))) 36) (((-641 (-940 |#1|)) $) 35)) (-4287 (($ $) 14)) (-1686 (((-112) $ $) 6)))
+((-3702 (((-112) $ $) 7)) (-1776 (((-1158 3 |#1|) $) 13)) (-3412 (((-112) $) 29)) (-1488 (($ $ (-641 (-940 |#1|))) 33) (($ $ (-641 (-641 |#1|))) 32) (($ (-641 (-940 |#1|))) 31) (((-641 (-940 |#1|)) $) 30)) (-3766 (((-112) $) 44)) (-3362 (($ $ (-940 |#1|)) 49) (($ $ (-641 |#1|)) 48) (($ $ (-768)) 47) (($ (-940 |#1|)) 46) (((-940 |#1|) $) 45)) (-3261 (((-2 (|:| -4182 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $) 15)) (-1751 (((-768) $) 58)) (-2427 (((-768) $) 59)) (-1872 (($ $ (-768) (-940 |#1|)) 50)) (-2007 (((-112) $) 21)) (-2262 (($ $ (-641 (-641 (-940 |#1|))) (-641 (-171)) (-171)) 28) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 27) (($ $ (-641 (-641 (-940 |#1|))) (-112) (-112)) 26) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 25) (($ (-641 (-641 (-940 |#1|)))) 24) (($ (-641 (-641 (-940 |#1|))) (-112) (-112)) 23) (((-641 (-641 (-940 |#1|))) $) 22)) (-3678 (($ (-641 $)) 57) (($ $ $) 56)) (-2205 (((-641 (-171)) $) 16)) (-3105 (((-641 (-940 |#1|)) $) 20)) (-1643 (((-641 (-641 (-171))) $) 17)) (-3332 (((-641 (-641 (-641 (-940 |#1|)))) $) 18)) (-2002 (((-641 (-641 (-641 (-768)))) $) 19)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3510 (((-768) $ (-641 (-940 |#1|))) 51)) (-3069 (((-112) $) 39)) (-2157 (($ $ (-641 (-940 |#1|))) 43) (($ $ (-641 (-641 |#1|))) 42) (($ (-641 (-940 |#1|))) 41) (((-641 (-940 |#1|)) $) 40)) (-2565 (($) 61) (($ (-1158 3 |#1|)) 60)) (-3890 (($ $) 52)) (-2171 (((-641 $) $) 53)) (-2301 (($ (-641 $)) 55)) (-1848 (((-641 $) $) 54)) (-3714 (((-859) $) 11)) (-3521 (((-112) $) 34)) (-2703 (($ $ (-641 (-940 |#1|))) 38) (($ $ (-641 (-641 |#1|))) 37) (($ (-641 (-940 |#1|))) 36) (((-641 (-940 |#1|)) $) 35)) (-1354 (($ $) 14)) (-1720 (((-112) $ $) 6)))
(((-1128 |#1|) (-140) (-1046)) (T -1128))
-((-1765 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-859)))) (-1812 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-4012 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-4012 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-1404 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-3267 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-1899 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-940 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1046)) (-5 *2 (-768)))) (-2176 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-940 *4)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-3489 (*1 *1 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3489 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3489 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3489 (*1 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-940 *3)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2528 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2528 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2265 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2265 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2412 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-940 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) (-2412 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) (-2412 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-2412 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-2412 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 *3)))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2412 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *4 (-1046)) (-4 *1 (-1128 *4)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-940 *3)))))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-4215 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-641 (-768))))))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-641 (-940 *3))))))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-171)))))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-171))))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3604 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768)))))) (-4287 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-1158 3 *3)))))
-(-13 (-1094) (-10 -8 (-15 -1812 ($)) (-15 -1812 ($ (-1158 3 |t#1|))) (-15 -2103 ((-768) $)) (-15 -4192 ((-768) $)) (-15 -4012 ($ (-641 $))) (-15 -4012 ($ $ $)) (-15 -3154 ($ (-641 $))) (-15 -1404 ((-641 $) $)) (-15 -3267 ((-641 $) $)) (-15 -1899 ($ $)) (-15 -3994 ((-768) $ (-641 (-940 |t#1|)))) (-15 -2176 ($ $ (-768) (-940 |t#1|))) (-15 -3489 ($ $ (-940 |t#1|))) (-15 -3489 ($ $ (-641 |t#1|))) (-15 -3489 ($ $ (-768))) (-15 -3489 ($ (-940 |t#1|))) (-15 -3489 ((-940 |t#1|) $)) (-15 -2927 ((-112) $)) (-15 -2528 ($ $ (-641 (-940 |t#1|)))) (-15 -2528 ($ $ (-641 (-641 |t#1|)))) (-15 -2528 ($ (-641 (-940 |t#1|)))) (-15 -2528 ((-641 (-940 |t#1|)) $)) (-15 -2681 ((-112) $)) (-15 -2452 ($ $ (-641 (-940 |t#1|)))) (-15 -2452 ($ $ (-641 (-641 |t#1|)))) (-15 -2452 ($ (-641 (-940 |t#1|)))) (-15 -2452 ((-641 (-940 |t#1|)) $)) (-15 -2906 ((-112) $)) (-15 -2265 ($ $ (-641 (-940 |t#1|)))) (-15 -2265 ($ $ (-641 (-641 |t#1|)))) (-15 -2265 ($ (-641 (-940 |t#1|)))) (-15 -2265 ((-641 (-940 |t#1|)) $)) (-15 -3336 ((-112) $)) (-15 -2412 ($ $ (-641 (-641 (-940 |t#1|))) (-641 (-171)) (-171))) (-15 -2412 ($ $ (-641 (-641 (-641 |t#1|))) (-641 (-171)) (-171))) (-15 -2412 ($ $ (-641 (-641 (-940 |t#1|))) (-112) (-112))) (-15 -2412 ($ $ (-641 (-641 (-641 |t#1|))) (-112) (-112))) (-15 -2412 ($ (-641 (-641 (-940 |t#1|))))) (-15 -2412 ($ (-641 (-641 (-940 |t#1|))) (-112) (-112))) (-15 -2412 ((-641 (-641 (-940 |t#1|))) $)) (-15 -3888 ((-112) $)) (-15 -1382 ((-641 (-940 |t#1|)) $)) (-15 -4215 ((-641 (-641 (-641 (-768)))) $)) (-15 -3780 ((-641 (-641 (-641 (-940 |t#1|)))) $)) (-15 -1846 ((-641 (-641 (-171))) $)) (-15 -2833 ((-641 (-171)) $)) (-15 -2733 ((-2 (|:| -3604 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $)) (-15 -4287 ($ $)) (-15 -1542 ((-1158 3 |t#1|) $)) (-15 -1765 ((-859) $))))
+((-3714 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-859)))) (-2565 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2427 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-3678 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3678 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-1848 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-2171 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-3890 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-3510 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-940 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1046)) (-5 *2 (-768)))) (-1872 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-940 *4)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-940 *3)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2157 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-3069 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2703 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2703 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-1488 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-1488 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-1488 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-2262 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-940 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) (-2262 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) (-2262 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-2262 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 *3)))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2262 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *4 (-1046)) (-4 *1 (-1128 *4)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-940 *3)))))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-641 (-768))))))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-641 (-940 *3))))))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-171)))))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-171))))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -4182 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768)))))) (-1354 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-1158 3 *3)))))
+(-13 (-1094) (-10 -8 (-15 -2565 ($)) (-15 -2565 ($ (-1158 3 |t#1|))) (-15 -2427 ((-768) $)) (-15 -1751 ((-768) $)) (-15 -3678 ($ (-641 $))) (-15 -3678 ($ $ $)) (-15 -2301 ($ (-641 $))) (-15 -1848 ((-641 $) $)) (-15 -2171 ((-641 $) $)) (-15 -3890 ($ $)) (-15 -3510 ((-768) $ (-641 (-940 |t#1|)))) (-15 -1872 ($ $ (-768) (-940 |t#1|))) (-15 -3362 ($ $ (-940 |t#1|))) (-15 -3362 ($ $ (-641 |t#1|))) (-15 -3362 ($ $ (-768))) (-15 -3362 ($ (-940 |t#1|))) (-15 -3362 ((-940 |t#1|) $)) (-15 -3766 ((-112) $)) (-15 -2157 ($ $ (-641 (-940 |t#1|)))) (-15 -2157 ($ $ (-641 (-641 |t#1|)))) (-15 -2157 ($ (-641 (-940 |t#1|)))) (-15 -2157 ((-641 (-940 |t#1|)) $)) (-15 -3069 ((-112) $)) (-15 -2703 ($ $ (-641 (-940 |t#1|)))) (-15 -2703 ($ $ (-641 (-641 |t#1|)))) (-15 -2703 ($ (-641 (-940 |t#1|)))) (-15 -2703 ((-641 (-940 |t#1|)) $)) (-15 -3521 ((-112) $)) (-15 -1488 ($ $ (-641 (-940 |t#1|)))) (-15 -1488 ($ $ (-641 (-641 |t#1|)))) (-15 -1488 ($ (-641 (-940 |t#1|)))) (-15 -1488 ((-641 (-940 |t#1|)) $)) (-15 -3412 ((-112) $)) (-15 -2262 ($ $ (-641 (-641 (-940 |t#1|))) (-641 (-171)) (-171))) (-15 -2262 ($ $ (-641 (-641 (-641 |t#1|))) (-641 (-171)) (-171))) (-15 -2262 ($ $ (-641 (-641 (-940 |t#1|))) (-112) (-112))) (-15 -2262 ($ $ (-641 (-641 (-641 |t#1|))) (-112) (-112))) (-15 -2262 ($ (-641 (-641 (-940 |t#1|))))) (-15 -2262 ($ (-641 (-641 (-940 |t#1|))) (-112) (-112))) (-15 -2262 ((-641 (-641 (-940 |t#1|))) $)) (-15 -2007 ((-112) $)) (-15 -3105 ((-641 (-940 |t#1|)) $)) (-15 -2002 ((-641 (-641 (-641 (-768)))) $)) (-15 -3332 ((-641 (-641 (-641 (-940 |t#1|)))) $)) (-15 -1643 ((-641 (-641 (-171))) $)) (-15 -2205 ((-641 (-171)) $)) (-15 -3261 ((-2 (|:| -4182 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $)) (-15 -1354 ($ $)) (-15 -1776 ((-1158 3 |t#1|) $)) (-15 -3714 ((-859) $))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 174) (($ (-1175)) NIL) (((-1175) $) 7)) (-4305 (((-112) $ (|[\|\|]| (-524))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-672))) 27) (((-112) $ (|[\|\|]| (-1269))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1109))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-677))) 51) (((-112) $ (|[\|\|]| (-517))) 55) (((-112) $ (|[\|\|]| (-1061))) 59) (((-112) $ (|[\|\|]| (-1270))) 63) (((-112) $ (|[\|\|]| (-525))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-667))) 75) (((-112) $ (|[\|\|]| (-311))) 79) (((-112) $ (|[\|\|]| (-1033))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-967))) 91) (((-112) $ (|[\|\|]| (-1068))) 95) (((-112) $ (|[\|\|]| (-1084))) 99) (((-112) $ (|[\|\|]| (-1090))) 103) (((-112) $ (|[\|\|]| (-624))) 107) (((-112) $ (|[\|\|]| (-1160))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-478))) 123) (((-112) $ (|[\|\|]| (-591))) 127) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1152))) 135) (((-112) $ (|[\|\|]| (-564))) 139)) (-1924 (((-524) $) 20) (((-218) $) 24) (((-672) $) 28) (((-1269) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1109) $) 44) (((-96) $) 48) (((-677) $) 52) (((-517) $) 56) (((-1061) $) 60) (((-1270) $) 64) (((-525) $) 68) (((-154) $) 72) (((-667) $) 76) (((-311) $) 80) (((-1033) $) 84) (((-180) $) 88) (((-967) $) 92) (((-1068) $) 96) (((-1084) $) 100) (((-1090) $) 104) (((-624) $) 108) (((-1160) $) 112) (((-156) $) 116) (((-137) $) 120) (((-478) $) 124) (((-591) $) 128) (((-506) $) 132) (((-1152) $) 136) (((-564) $) 140)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 174) (($ (-1175)) NIL) (((-1175) $) 7)) (-4301 (((-112) $ (|[\|\|]| (-524))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-672))) 27) (((-112) $ (|[\|\|]| (-1269))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1109))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-677))) 51) (((-112) $ (|[\|\|]| (-517))) 55) (((-112) $ (|[\|\|]| (-1061))) 59) (((-112) $ (|[\|\|]| (-1270))) 63) (((-112) $ (|[\|\|]| (-525))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-667))) 75) (((-112) $ (|[\|\|]| (-311))) 79) (((-112) $ (|[\|\|]| (-1033))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-967))) 91) (((-112) $ (|[\|\|]| (-1068))) 95) (((-112) $ (|[\|\|]| (-1084))) 99) (((-112) $ (|[\|\|]| (-1090))) 103) (((-112) $ (|[\|\|]| (-624))) 107) (((-112) $ (|[\|\|]| (-1160))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-478))) 123) (((-112) $ (|[\|\|]| (-591))) 127) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1152))) 135) (((-112) $ (|[\|\|]| (-564))) 139)) (-3921 (((-524) $) 20) (((-218) $) 24) (((-672) $) 28) (((-1269) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1109) $) 44) (((-96) $) 48) (((-677) $) 52) (((-517) $) 56) (((-1061) $) 60) (((-1270) $) 64) (((-525) $) 68) (((-154) $) 72) (((-667) $) 76) (((-311) $) 80) (((-1033) $) 84) (((-180) $) 88) (((-967) $) 92) (((-1068) $) 96) (((-1084) $) 100) (((-1090) $) 104) (((-624) $) 108) (((-1160) $) 112) (((-156) $) 116) (((-137) $) 120) (((-478) $) 124) (((-591) $) 128) (((-506) $) 132) (((-1152) $) 136) (((-564) $) 140)) (-1720 (((-112) $ $) NIL)))
(((-1129) (-1131)) (T -1129))
NIL
(-1131)
-((-2391 (((-641 (-1175)) (-1152)) 9)))
-(((-1130) (-10 -7 (-15 -2391 ((-641 (-1175)) (-1152))))) (T -1130))
-((-2391 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130)))))
-(-10 -7 (-15 -2391 ((-641 (-1175)) (-1152))))
-((-1754 (((-112) $ $) 7)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-4305 (((-112) $ (|[\|\|]| (-524))) 80) (((-112) $ (|[\|\|]| (-218))) 78) (((-112) $ (|[\|\|]| (-672))) 76) (((-112) $ (|[\|\|]| (-1269))) 74) (((-112) $ (|[\|\|]| (-138))) 72) (((-112) $ (|[\|\|]| (-133))) 70) (((-112) $ (|[\|\|]| (-1109))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-677))) 64) (((-112) $ (|[\|\|]| (-517))) 62) (((-112) $ (|[\|\|]| (-1061))) 60) (((-112) $ (|[\|\|]| (-1270))) 58) (((-112) $ (|[\|\|]| (-525))) 56) (((-112) $ (|[\|\|]| (-154))) 54) (((-112) $ (|[\|\|]| (-667))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1033))) 48) (((-112) $ (|[\|\|]| (-180))) 46) (((-112) $ (|[\|\|]| (-967))) 44) (((-112) $ (|[\|\|]| (-1068))) 42) (((-112) $ (|[\|\|]| (-1084))) 40) (((-112) $ (|[\|\|]| (-1090))) 38) (((-112) $ (|[\|\|]| (-624))) 36) (((-112) $ (|[\|\|]| (-1160))) 34) (((-112) $ (|[\|\|]| (-156))) 32) (((-112) $ (|[\|\|]| (-137))) 30) (((-112) $ (|[\|\|]| (-478))) 28) (((-112) $ (|[\|\|]| (-591))) 26) (((-112) $ (|[\|\|]| (-506))) 24) (((-112) $ (|[\|\|]| (-1152))) 22) (((-112) $ (|[\|\|]| (-564))) 20)) (-1924 (((-524) $) 79) (((-218) $) 77) (((-672) $) 75) (((-1269) $) 73) (((-138) $) 71) (((-133) $) 69) (((-1109) $) 67) (((-96) $) 65) (((-677) $) 63) (((-517) $) 61) (((-1061) $) 59) (((-1270) $) 57) (((-525) $) 55) (((-154) $) 53) (((-667) $) 51) (((-311) $) 49) (((-1033) $) 47) (((-180) $) 45) (((-967) $) 43) (((-1068) $) 41) (((-1084) $) 39) (((-1090) $) 37) (((-624) $) 35) (((-1160) $) 33) (((-156) $) 31) (((-137) $) 29) (((-478) $) 27) (((-591) $) 25) (((-506) $) 23) (((-1152) $) 21) (((-564) $) 19)) (-1686 (((-112) $ $) 6)))
+((-1404 (((-641 (-1175)) (-1152)) 9)))
+(((-1130) (-10 -7 (-15 -1404 ((-641 (-1175)) (-1152))))) (T -1130))
+((-1404 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130)))))
+(-10 -7 (-15 -1404 ((-641 (-1175)) (-1152))))
+((-3702 (((-112) $ $) 7)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-4301 (((-112) $ (|[\|\|]| (-524))) 80) (((-112) $ (|[\|\|]| (-218))) 78) (((-112) $ (|[\|\|]| (-672))) 76) (((-112) $ (|[\|\|]| (-1269))) 74) (((-112) $ (|[\|\|]| (-138))) 72) (((-112) $ (|[\|\|]| (-133))) 70) (((-112) $ (|[\|\|]| (-1109))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-677))) 64) (((-112) $ (|[\|\|]| (-517))) 62) (((-112) $ (|[\|\|]| (-1061))) 60) (((-112) $ (|[\|\|]| (-1270))) 58) (((-112) $ (|[\|\|]| (-525))) 56) (((-112) $ (|[\|\|]| (-154))) 54) (((-112) $ (|[\|\|]| (-667))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1033))) 48) (((-112) $ (|[\|\|]| (-180))) 46) (((-112) $ (|[\|\|]| (-967))) 44) (((-112) $ (|[\|\|]| (-1068))) 42) (((-112) $ (|[\|\|]| (-1084))) 40) (((-112) $ (|[\|\|]| (-1090))) 38) (((-112) $ (|[\|\|]| (-624))) 36) (((-112) $ (|[\|\|]| (-1160))) 34) (((-112) $ (|[\|\|]| (-156))) 32) (((-112) $ (|[\|\|]| (-137))) 30) (((-112) $ (|[\|\|]| (-478))) 28) (((-112) $ (|[\|\|]| (-591))) 26) (((-112) $ (|[\|\|]| (-506))) 24) (((-112) $ (|[\|\|]| (-1152))) 22) (((-112) $ (|[\|\|]| (-564))) 20)) (-3921 (((-524) $) 79) (((-218) $) 77) (((-672) $) 75) (((-1269) $) 73) (((-138) $) 71) (((-133) $) 69) (((-1109) $) 67) (((-96) $) 65) (((-677) $) 63) (((-517) $) 61) (((-1061) $) 59) (((-1270) $) 57) (((-525) $) 55) (((-154) $) 53) (((-667) $) 51) (((-311) $) 49) (((-1033) $) 47) (((-180) $) 45) (((-967) $) 43) (((-1068) $) 41) (((-1084) $) 39) (((-1090) $) 37) (((-624) $) 35) (((-1160) $) 33) (((-156) $) 31) (((-137) $) 29) (((-478) $) 27) (((-591) $) 25) (((-506) $) 23) (((-1152) $) 21) (((-564) $) 19)) (-1720 (((-112) $ $) 6)))
(((-1131) (-140)) (T -1131))
-((-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1061)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1033)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-967))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-967)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1068)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564)))))
-(-13 (-1077) (-1254) (-10 -8 (-15 -4305 ((-112) $ (|[\|\|]| (-524)))) (-15 -1924 ((-524) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-218)))) (-15 -1924 ((-218) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-672)))) (-15 -1924 ((-672) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1269)))) (-15 -1924 ((-1269) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-138)))) (-15 -1924 ((-138) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-133)))) (-15 -1924 ((-133) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1109)))) (-15 -1924 ((-1109) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-96)))) (-15 -1924 ((-96) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-677)))) (-15 -1924 ((-677) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-517)))) (-15 -1924 ((-517) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1061)))) (-15 -1924 ((-1061) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1270)))) (-15 -1924 ((-1270) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-525)))) (-15 -1924 ((-525) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-154)))) (-15 -1924 ((-154) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-667)))) (-15 -1924 ((-667) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-311)))) (-15 -1924 ((-311) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1033)))) (-15 -1924 ((-1033) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-180)))) (-15 -1924 ((-180) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-967)))) (-15 -1924 ((-967) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1068)))) (-15 -1924 ((-1068) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1084)))) (-15 -1924 ((-1084) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1090)))) (-15 -1924 ((-1090) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-624)))) (-15 -1924 ((-624) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1160)))) (-15 -1924 ((-1160) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-156)))) (-15 -1924 ((-156) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-137)))) (-15 -1924 ((-137) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-478)))) (-15 -1924 ((-478) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-591)))) (-15 -1924 ((-591) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-506)))) (-15 -1924 ((-506) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-1152)))) (-15 -1924 ((-1152) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-564)))) (-15 -1924 ((-564) $))))
+((-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1061)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1033)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-967))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-967)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1068)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152)))) (-4301 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564)))))
+(-13 (-1077) (-1254) (-10 -8 (-15 -4301 ((-112) $ (|[\|\|]| (-524)))) (-15 -3921 ((-524) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-218)))) (-15 -3921 ((-218) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-672)))) (-15 -3921 ((-672) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1269)))) (-15 -3921 ((-1269) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-138)))) (-15 -3921 ((-138) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-133)))) (-15 -3921 ((-133) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1109)))) (-15 -3921 ((-1109) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-96)))) (-15 -3921 ((-96) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-677)))) (-15 -3921 ((-677) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-517)))) (-15 -3921 ((-517) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1061)))) (-15 -3921 ((-1061) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1270)))) (-15 -3921 ((-1270) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-525)))) (-15 -3921 ((-525) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-154)))) (-15 -3921 ((-154) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-667)))) (-15 -3921 ((-667) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-311)))) (-15 -3921 ((-311) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1033)))) (-15 -3921 ((-1033) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-180)))) (-15 -3921 ((-180) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-967)))) (-15 -3921 ((-967) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1068)))) (-15 -3921 ((-1068) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1084)))) (-15 -3921 ((-1084) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1090)))) (-15 -3921 ((-1090) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-624)))) (-15 -3921 ((-624) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1160)))) (-15 -3921 ((-1160) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-156)))) (-15 -3921 ((-156) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-137)))) (-15 -3921 ((-137) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-478)))) (-15 -3921 ((-478) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-591)))) (-15 -3921 ((-591) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-506)))) (-15 -3921 ((-506) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-1152)))) (-15 -3921 ((-1152) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-564)))) (-15 -3921 ((-564) $))))
(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T) ((-1077) . T) ((-1254) . T))
-((-3061 (((-1264) (-641 (-859))) 23) (((-1264) (-859)) 22)) (-3425 (((-1264) (-641 (-859))) 21) (((-1264) (-859)) 20)) (-3501 (((-1264) (-641 (-859))) 19) (((-1264) (-859)) 11) (((-1264) (-1152) (-859)) 17)))
-(((-1132) (-10 -7 (-15 -3501 ((-1264) (-1152) (-859))) (-15 -3501 ((-1264) (-859))) (-15 -3425 ((-1264) (-859))) (-15 -3061 ((-1264) (-859))) (-15 -3501 ((-1264) (-641 (-859)))) (-15 -3425 ((-1264) (-641 (-859)))) (-15 -3061 ((-1264) (-641 (-859)))))) (T -1132))
-((-3061 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))))
-(-10 -7 (-15 -3501 ((-1264) (-1152) (-859))) (-15 -3501 ((-1264) (-859))) (-15 -3425 ((-1264) (-859))) (-15 -3061 ((-1264) (-859))) (-15 -3501 ((-1264) (-641 (-859)))) (-15 -3425 ((-1264) (-641 (-859)))) (-15 -3061 ((-1264) (-641 (-859)))))
-((-3007 (($ $ $) 10)) (-2784 (($ $) 9)) (-1958 (($ $ $) 13)) (-3311 (($ $ $) 15)) (-1475 (($ $ $) 12)) (-2642 (($ $ $) 14)) (-2648 (($ $) 17)) (-4066 (($ $) 16)) (-2016 (($ $) 6)) (-3376 (($ $ $) 11) (($ $) 7)) (-2837 (($ $ $) 8)))
+((-3748 (((-1264) (-641 (-859))) 23) (((-1264) (-859)) 22)) (-3082 (((-1264) (-641 (-859))) 21) (((-1264) (-859)) 20)) (-2263 (((-1264) (-641 (-859))) 19) (((-1264) (-859)) 11) (((-1264) (-1152) (-859)) 17)))
+(((-1132) (-10 -7 (-15 -2263 ((-1264) (-1152) (-859))) (-15 -2263 ((-1264) (-859))) (-15 -3082 ((-1264) (-859))) (-15 -3748 ((-1264) (-859))) (-15 -2263 ((-1264) (-641 (-859)))) (-15 -3082 ((-1264) (-641 (-859)))) (-15 -3748 ((-1264) (-641 (-859)))))) (T -1132))
+((-3748 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))))
+(-10 -7 (-15 -2263 ((-1264) (-1152) (-859))) (-15 -2263 ((-1264) (-859))) (-15 -3082 ((-1264) (-859))) (-15 -3748 ((-1264) (-859))) (-15 -2263 ((-1264) (-641 (-859)))) (-15 -3082 ((-1264) (-641 (-859)))) (-15 -3748 ((-1264) (-641 (-859)))))
+((-1380 (($ $ $) 10)) (-1684 (($ $) 9)) (-1504 (($ $ $) 13)) (-1332 (($ $ $) 15)) (-2372 (($ $ $) 12)) (-3870 (($ $ $) 14)) (-3936 (($ $) 17)) (-3005 (($ $) 16)) (-3920 (($ $) 6)) (-3829 (($ $ $) 11) (($ $) 7)) (-2240 (($ $ $) 8)))
(((-1133) (-140)) (T -1133))
-((-2648 (*1 *1 *1) (-4 *1 (-1133))) (-4066 (*1 *1 *1) (-4 *1 (-1133))) (-3311 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2642 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1958 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1475 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3376 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3007 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2784 (*1 *1 *1) (-4 *1 (-1133))) (-2837 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3376 (*1 *1 *1) (-4 *1 (-1133))) (-2016 (*1 *1 *1) (-4 *1 (-1133))))
-(-13 (-10 -8 (-15 -2016 ($ $)) (-15 -3376 ($ $)) (-15 -2837 ($ $ $)) (-15 -2784 ($ $)) (-15 -3007 ($ $ $)) (-15 -3376 ($ $ $)) (-15 -1475 ($ $ $)) (-15 -1958 ($ $ $)) (-15 -2642 ($ $ $)) (-15 -3311 ($ $ $)) (-15 -4066 ($ $)) (-15 -2648 ($ $))))
-((-1754 (((-112) $ $) 44)) (-1451 ((|#1| $) 17)) (-1620 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3651 (((-112) $) 19)) (-1450 (($ $ |#1|) 30)) (-1631 (($ $ (-112)) 32)) (-3264 (($ $) 33)) (-2435 (($ $ |#2|) 31)) (-4202 (((-1152) $) NIL)) (-4331 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3802 (((-1114) $) NIL)) (-2742 (((-112) $) 16)) (-3845 (($) 13)) (-1899 (($ $) 29)) (-1776 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3853 |#2|))) 23) (((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -3853 |#2|)))) 26) (((-641 $) |#1| (-641 |#2|)) 28)) (-2092 ((|#2| $) 18)) (-1765 (((-859) $) 53)) (-1686 (((-112) $ $) 42)))
-(((-1134 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3845 ($)) (-15 -2742 ((-112) $)) (-15 -1451 (|#1| $)) (-15 -2092 (|#2| $)) (-15 -3651 ((-112) $)) (-15 -1776 ($ |#1| |#2| (-112))) (-15 -1776 ($ |#1| |#2|)) (-15 -1776 ($ (-2 (|:| |val| |#1|) (|:| -3853 |#2|)))) (-15 -1776 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -3853 |#2|))))) (-15 -1776 ((-641 $) |#1| (-641 |#2|))) (-15 -1899 ($ $)) (-15 -1450 ($ $ |#1|)) (-15 -2435 ($ $ |#2|)) (-15 -1631 ($ $ (-112))) (-15 -3264 ($ $)) (-15 -4331 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1620 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1134))
-((-3845 (*1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2742 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-1451 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *3 (-13 (-1094) (-34))))) (-2092 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-1776 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1776 (*1 *1 *2 *3) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3853 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -3853 *5)))) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-13 (-1094) (-34))))) (-1899 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1450 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2435 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))) (-4 *2 (-13 (-1094) (-34))))) (-1631 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3264 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-4331 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-1620 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))))))
-(-13 (-1094) (-10 -8 (-15 -3845 ($)) (-15 -2742 ((-112) $)) (-15 -1451 (|#1| $)) (-15 -2092 (|#2| $)) (-15 -3651 ((-112) $)) (-15 -1776 ($ |#1| |#2| (-112))) (-15 -1776 ($ |#1| |#2|)) (-15 -1776 ($ (-2 (|:| |val| |#1|) (|:| -3853 |#2|)))) (-15 -1776 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -3853 |#2|))))) (-15 -1776 ((-641 $) |#1| (-641 |#2|))) (-15 -1899 ($ $)) (-15 -1450 ($ $ |#1|)) (-15 -2435 ($ $ |#2|)) (-15 -1631 ($ $ (-112))) (-15 -3264 ($ $)) (-15 -4331 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1620 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-1754 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-1451 (((-1134 |#1| |#2|) $) 27)) (-1988 (($ $) 90)) (-3014 (((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 99)) (-2467 (($ $ $ (-641 (-1134 |#1| |#2|))) 107) (($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 108)) (-3263 (((-112) $ (-768)) NIL)) (-3768 (((-1134 |#1| |#2|) $ (-1134 |#1| |#2|)) 45 (|has| $ (-6 -4412)))) (-1881 (((-1134 |#1| |#2|) $ "value" (-1134 |#1| |#2|)) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 43 (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-2510 (((-641 (-2 (|:| |val| |#1|) (|:| -3853 |#2|))) $) 94)) (-1907 (($ (-1134 |#1| |#2|) $) 41)) (-2359 (($ (-1134 |#1| |#2|) $) 33)) (-3080 (((-641 (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 53)) (-2744 (((-112) (-1134 |#1| |#2|) $) 96)) (-2272 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 (-1134 |#1| |#2|)) $) 57 (|has| $ (-6 -4411)))) (-3675 (((-112) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-1134 |#1| |#2|) (-1094))))) (-3513 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 49 (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 48)) (-2972 (((-112) $ (-768)) NIL)) (-3848 (((-641 (-1134 |#1| |#2|)) $) 55)) (-2200 (((-112) $) 44)) (-4202 (((-1152) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3802 (((-1114) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-1532 (((-3 $ "failed") $) 88)) (-1467 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-1134 |#1| |#2|)))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-294 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-1134 |#1| |#2|) (-1134 |#1| |#2|)) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-641 (-1134 |#1| |#2|)) (-641 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094))))) (-2606 (((-112) $ $) 52)) (-2742 (((-112) $) 24)) (-3845 (($) 26)) (-4382 (((-1134 |#1| |#2|) $ "value") NIL)) (-3837 (((-564) $ $) NIL)) (-1867 (((-112) $) 46)) (-3815 (((-768) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4411))) (((-768) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-1134 |#1| |#2|) (-1094))))) (-1899 (($ $) 51)) (-1776 (($ (-1134 |#1| |#2|)) 10) (($ |#1| |#2| (-641 $)) 13) (($ |#1| |#2| (-641 (-1134 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-641 |#2|)) 18)) (-4286 (((-641 |#2|) $) 95)) (-1765 (((-859) $) 86 (|has| (-1134 |#1| |#2|) (-611 (-859))))) (-3706 (((-641 $) $) 31)) (-1740 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2237 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 69 (|has| (-1134 |#1| |#2|) (-1094)))) (-2589 (((-768) $) 63 (|has| $ (-6 -4411)))))
-(((-1135 |#1| |#2|) (-13 (-1007 (-1134 |#1| |#2|)) (-10 -8 (-6 -4412) (-6 -4411) (-15 -1532 ((-3 $ "failed") $)) (-15 -1988 ($ $)) (-15 -1776 ($ (-1134 |#1| |#2|))) (-15 -1776 ($ |#1| |#2| (-641 $))) (-15 -1776 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -1776 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -4286 ((-641 |#2|) $)) (-15 -2510 ((-641 (-2 (|:| |val| |#1|) (|:| -3853 |#2|))) $)) (-15 -2744 ((-112) (-1134 |#1| |#2|) $)) (-15 -3014 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2359 ($ (-1134 |#1| |#2|) $)) (-15 -1907 ($ (-1134 |#1| |#2|) $)) (-15 -2467 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -2467 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1135))
-((-1532 (*1 *1 *1) (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1988 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-1776 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1776 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)))) (-1776 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4)))) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2744 (*1 *2 *3 *1) (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5)))) (-3014 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *5 *6)))) (-2359 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-1907 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2467 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2467 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *1 (-1135 *4 *5)))))
-(-13 (-1007 (-1134 |#1| |#2|)) (-10 -8 (-6 -4412) (-6 -4411) (-15 -1532 ((-3 $ "failed") $)) (-15 -1988 ($ $)) (-15 -1776 ($ (-1134 |#1| |#2|))) (-15 -1776 ($ |#1| |#2| (-641 $))) (-15 -1776 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -1776 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -4286 ((-641 |#2|) $)) (-15 -2510 ((-641 (-2 (|:| |val| |#1|) (|:| -3853 |#2|))) $)) (-15 -2744 ((-112) (-1134 |#1| |#2|) $)) (-15 -3014 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2359 ($ (-1134 |#1| |#2|) $)) (-15 -1907 ($ (-1134 |#1| |#2|) $)) (-15 -2467 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -2467 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3659 (($ $) NIL)) (-3715 ((|#2| $) NIL)) (-2741 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2640 (($ (-685 |#2|)) 56)) (-2832 (((-112) $) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2460 (($ |#2|) 14)) (-3760 (($) NIL T CONST)) (-1364 (($ $) 69 (|has| |#2| (-307)))) (-2698 (((-240 |#1| |#2|) $ (-564)) 42)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) 83)) (-4224 (((-768) $) 71 (|has| |#2| (-556)))) (-3455 ((|#2| $ (-564) (-564)) NIL)) (-3080 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2419 (((-112) $) NIL)) (-4227 (((-768) $) 73 (|has| |#2| (-556)))) (-3798 (((-641 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-556)))) (-3383 (((-768) $) NIL)) (-1633 (($ |#2|) 25)) (-3393 (((-768) $) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-1893 ((|#2| $) 67 (|has| |#2| (-6 (-4413 "*"))))) (-1786 (((-564) $) NIL)) (-2810 (((-564) $) NIL)) (-3817 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3896 (((-564) $) NIL)) (-2104 (((-564) $) NIL)) (-1605 (($ (-641 (-641 |#2|))) 37)) (-3513 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3671 (((-641 (-641 |#2|)) $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-1675 (((-3 $ "failed") $) 80 (|has| |#2| (-363)))) (-3802 (((-1114) $) NIL)) (-1343 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-1467 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) NIL)) (-3226 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3044 ((|#2| $) NIL)) (-3530 (($ (-641 |#2|)) 50)) (-3883 (((-112) $) NIL)) (-3361 (((-240 |#1| |#2|) $) NIL)) (-2672 ((|#2| $) 65 (|has| |#2| (-6 (-4413 "*"))))) (-3815 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1899 (($ $) NIL)) (-2127 (((-536) $) 89 (|has| |#2| (-612 (-536))))) (-1709 (((-240 |#1| |#2|) $ (-564)) 44)) (-1765 (((-859) $) 47) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) 52)) (-1965 (((-768)) 23 T CONST)) (-2237 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1509 (((-112) $) NIL)) (-4317 (($) 16 T CONST)) (-4327 (($) 21 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) 63) (($ $ (-564)) 82 (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1136 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -1633 ($ |#2|)) (-15 -3659 ($ $)) (-15 -2640 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4413 "*"))) (-6 -4400) |%noBranch|) (IF (|has| |#2| (-6 (-4413 "*"))) (IF (|has| |#2| (-6 -4408)) (-6 -4408) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-768) (-1046)) (T -1136))
-((-1633 (*1 *1 *2) (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-768)) (-4 *2 (-1046)))) (-3659 (*1 *1 *1) (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-768)) (-4 *3 (-1046)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1136 *3 *4)) (-14 *3 (-768)))))
-(-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -1633 ($ |#2|)) (-15 -3659 ($ $)) (-15 -2640 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4413 "*"))) (-6 -4400) |%noBranch|) (IF (|has| |#2| (-6 (-4413 "*"))) (IF (|has| |#2| (-6 -4408)) (-6 -4408) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
-((-2851 (($ $) 19)) (-2567 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2516 (((-112) $ $) 24)) (-1816 (($ $) 17)) (-4382 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) 31)) (-1765 (($ (-144)) 29) (((-859) $) NIL)))
-(((-1137 |#1|) (-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -4382 (|#1| |#1| |#1|)) (-15 -2567 (|#1| |#1| (-141))) (-15 -2567 (|#1| |#1| (-144))) (-15 -1765 (|#1| (-144))) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2851 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -4382 ((-144) |#1| (-564))) (-15 -4382 ((-144) |#1| (-564) (-144)))) (-1138)) (T -1137))
-NIL
-(-10 -8 (-15 -1765 ((-859) |#1|)) (-15 -4382 (|#1| |#1| |#1|)) (-15 -2567 (|#1| |#1| (-141))) (-15 -2567 (|#1| |#1| (-144))) (-15 -1765 (|#1| (-144))) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2851 (|#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -4382 ((-144) |#1| (-564))) (-15 -4382 ((-144) |#1| (-564) (-144))))
-((-1754 (((-112) $ $) 19 (|has| (-144) (-1094)))) (-3318 (($ $) 120)) (-2851 (($ $) 121)) (-2567 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-3476 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-2490 (((-112) $ $) 118)) (-2471 (((-112) $ $ (-564)) 117)) (-1654 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-4310 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-847)))) (-3606 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| (-144) (-847)) (|has| $ (-6 -4412))))) (-2494 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-847)))) (-3263 (((-112) $ (-768)) 8)) (-1881 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4412))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3919 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-3852 (($ $) 90 (|has| $ (-6 -4412)))) (-3716 (($ $) 100)) (-2856 (($ $ (-1226 (-564)) $) 114)) (-3104 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4411)))) (-4367 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4411)))) (-3528 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4412)))) (-3455 (((-144) $ (-564)) 51)) (-2516 (((-112) $ $) 119)) (-1356 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-3080 (((-641 (-144)) $) 30 (|has| $ (-6 -4411)))) (-1633 (($ (-768) (-144)) 69)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 43 (|has| (-564) (-847)))) (-3571 (($ $ $) 87 (|has| (-144) (-847)))) (-4012 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-847)))) (-3817 (((-641 (-144)) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 44 (|has| (-564) (-847)))) (-1547 (($ $ $) 86 (|has| (-144) (-847)))) (-3128 (((-112) $ $ (-144)) 115)) (-4299 (((-768) $ $ (-144)) 116)) (-3513 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-2847 (($ $) 122)) (-1816 (($ $) 123)) (-2972 (((-112) $ (-768)) 10)) (-3934 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-4202 (((-1152) $) 22 (|has| (-144) (-1094)))) (-3412 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-1371 (((-641 (-564)) $) 46)) (-3629 (((-112) (-564) $) 47)) (-3802 (((-1114) $) 21 (|has| (-144) (-1094)))) (-3073 (((-144) $) 42 (|has| (-564) (-847)))) (-2343 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2614 (($ $ (-144)) 41 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-3599 (((-641 (-144)) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-2008 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3815 (((-768) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4411))) (((-768) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-2286 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-1899 (($ $) 13)) (-2127 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-1776 (($ (-641 (-144))) 70)) (-2817 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1765 (($ (-144)) 111) (((-859) $) 18 (|has| (-144) (-611 (-859))))) (-2237 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) 84 (|has| (-144) (-847)))) (-1715 (((-112) $ $) 83 (|has| (-144) (-847)))) (-1686 (((-112) $ $) 20 (|has| (-144) (-1094)))) (-1728 (((-112) $ $) 85 (|has| (-144) (-847)))) (-1705 (((-112) $ $) 82 (|has| (-144) (-847)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3936 (*1 *1 *1) (-4 *1 (-1133))) (-3005 (*1 *1 *1) (-4 *1 (-1133))) (-1332 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3870 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1504 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2372 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3829 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1380 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1684 (*1 *1 *1) (-4 *1 (-1133))) (-2240 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3829 (*1 *1 *1) (-4 *1 (-1133))) (-3920 (*1 *1 *1) (-4 *1 (-1133))))
+(-13 (-10 -8 (-15 -3920 ($ $)) (-15 -3829 ($ $)) (-15 -2240 ($ $ $)) (-15 -1684 ($ $)) (-15 -1380 ($ $ $)) (-15 -3829 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -1504 ($ $ $)) (-15 -3870 ($ $ $)) (-15 -1332 ($ $ $)) (-15 -3005 ($ $)) (-15 -3936 ($ $))))
+((-3702 (((-112) $ $) 44)) (-3387 ((|#1| $) 17)) (-4336 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2419 (((-112) $) 19)) (-2118 (($ $ |#1|) 30)) (-1358 (($ $ (-112)) 32)) (-2151 (($ $) 33)) (-2513 (($ $ |#2|) 31)) (-1868 (((-1152) $) NIL)) (-3528 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3844 (((-1114) $) NIL)) (-2510 (((-112) $) 16)) (-2834 (($) 13)) (-3890 (($ $) 29)) (-3725 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4011 |#2|))) 23) (((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -4011 |#2|)))) 26) (((-641 $) |#1| (-641 |#2|)) 28)) (-4059 ((|#2| $) 18)) (-3714 (((-859) $) 53)) (-1720 (((-112) $ $) 42)))
+(((-1134 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -2834 ($)) (-15 -2510 ((-112) $)) (-15 -3387 (|#1| $)) (-15 -4059 (|#2| $)) (-15 -2419 ((-112) $)) (-15 -3725 ($ |#1| |#2| (-112))) (-15 -3725 ($ |#1| |#2|)) (-15 -3725 ($ (-2 (|:| |val| |#1|) (|:| -4011 |#2|)))) (-15 -3725 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -4011 |#2|))))) (-15 -3725 ((-641 $) |#1| (-641 |#2|))) (-15 -3890 ($ $)) (-15 -2118 ($ $ |#1|)) (-15 -2513 ($ $ |#2|)) (-15 -1358 ($ $ (-112))) (-15 -2151 ($ $)) (-15 -3528 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4336 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1134))
+((-2834 (*1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3387 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *3 (-13 (-1094) (-34))))) (-4059 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3725 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3725 (*1 *1 *2 *3) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4011 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -4011 *5)))) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-13 (-1094) (-34))))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2118 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2513 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))) (-4 *2 (-13 (-1094) (-34))))) (-1358 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3528 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-4336 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))))))
+(-13 (-1094) (-10 -8 (-15 -2834 ($)) (-15 -2510 ((-112) $)) (-15 -3387 (|#1| $)) (-15 -4059 (|#2| $)) (-15 -2419 ((-112) $)) (-15 -3725 ($ |#1| |#2| (-112))) (-15 -3725 ($ |#1| |#2|)) (-15 -3725 ($ (-2 (|:| |val| |#1|) (|:| -4011 |#2|)))) (-15 -3725 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -4011 |#2|))))) (-15 -3725 ((-641 $) |#1| (-641 |#2|))) (-15 -3890 ($ $)) (-15 -2118 ($ $ |#1|)) (-15 -2513 ($ $ |#2|)) (-15 -1358 ($ $ (-112))) (-15 -2151 ($ $)) (-15 -3528 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4336 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-3702 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3387 (((-1134 |#1| |#2|) $) 27)) (-3624 (($ $) 90)) (-1447 (((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 99)) (-1604 (($ $ $ (-641 (-1134 |#1| |#2|))) 107) (($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 108)) (-2141 (((-112) $ (-768)) NIL)) (-3242 (((-1134 |#1| |#2|) $ (-1134 |#1| |#2|)) 45 (|has| $ (-6 -4413)))) (-3868 (((-1134 |#1| |#2|) $ "value" (-1134 |#1| |#2|)) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 43 (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-1484 (((-641 (-2 (|:| |val| |#1|) (|:| -4011 |#2|))) $) 94)) (-4074 (($ (-1134 |#1| |#2|) $) 41)) (-2514 (($ (-1134 |#1| |#2|) $) 33)) (-4244 (((-641 (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 53)) (-2524 (((-112) (-1134 |#1| |#2|) $) 96)) (-1543 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 (-1134 |#1| |#2|)) $) 57 (|has| $ (-6 -4412)))) (-3601 (((-112) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-1134 |#1| |#2|) (-1094))))) (-1988 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 49 (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 48)) (-4144 (((-112) $ (-768)) NIL)) (-2523 (((-641 (-1134 |#1| |#2|)) $) 55)) (-2120 (((-112) $) 44)) (-1868 (((-1152) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3844 (((-1114) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-1670 (((-3 $ "failed") $) 88)) (-2280 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-1134 |#1| |#2|)))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-294 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-1134 |#1| |#2|) (-1134 |#1| |#2|)) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-641 (-1134 |#1| |#2|)) (-641 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094))))) (-3447 (((-112) $ $) 52)) (-2510 (((-112) $) 24)) (-2834 (($) 26)) (-4382 (((-1134 |#1| |#2|) $ "value") NIL)) (-2774 (((-564) $ $) NIL)) (-1875 (((-112) $) 46)) (-3855 (((-768) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4412))) (((-768) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-1134 |#1| |#2|) (-1094))))) (-3890 (($ $) 51)) (-3725 (($ (-1134 |#1| |#2|)) 10) (($ |#1| |#2| (-641 $)) 13) (($ |#1| |#2| (-641 (-1134 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-641 |#2|)) 18)) (-1402 (((-641 |#2|) $) 95)) (-3714 (((-859) $) 86 (|has| (-1134 |#1| |#2|) (-611 (-859))))) (-3914 (((-641 $) $) 31)) (-3036 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-4289 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 69 (|has| (-1134 |#1| |#2|) (-1094)))) (-2779 (((-768) $) 63 (|has| $ (-6 -4412)))))
+(((-1135 |#1| |#2|) (-13 (-1007 (-1134 |#1| |#2|)) (-10 -8 (-6 -4413) (-6 -4412) (-15 -1670 ((-3 $ "failed") $)) (-15 -3624 ($ $)) (-15 -3725 ($ (-1134 |#1| |#2|))) (-15 -3725 ($ |#1| |#2| (-641 $))) (-15 -3725 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -3725 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -1402 ((-641 |#2|) $)) (-15 -1484 ((-641 (-2 (|:| |val| |#1|) (|:| -4011 |#2|))) $)) (-15 -2524 ((-112) (-1134 |#1| |#2|) $)) (-15 -1447 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2514 ($ (-1134 |#1| |#2|) $)) (-15 -4074 ($ (-1134 |#1| |#2|) $)) (-15 -1604 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -1604 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1135))
+((-1670 (*1 *1 *1) (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3624 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-3725 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3725 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)))) (-3725 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4)))) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2524 (*1 *2 *3 *1) (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5)))) (-1447 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *5 *6)))) (-2514 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-4074 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-1604 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-1604 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *1 (-1135 *4 *5)))))
+(-13 (-1007 (-1134 |#1| |#2|)) (-10 -8 (-6 -4413) (-6 -4412) (-15 -1670 ((-3 $ "failed") $)) (-15 -3624 ($ $)) (-15 -3725 ($ (-1134 |#1| |#2|))) (-15 -3725 ($ |#1| |#2| (-641 $))) (-15 -3725 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -3725 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -1402 ((-641 |#2|) $)) (-15 -1484 ((-641 (-2 (|:| |val| |#1|) (|:| -4011 |#2|))) $)) (-15 -2524 ((-112) (-1134 |#1| |#2|) $)) (-15 -1447 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2514 ($ (-1134 |#1| |#2|) $)) (-15 -4074 ($ (-1134 |#1| |#2|) $)) (-15 -1604 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -1604 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3437 (($ $) NIL)) (-3767 ((|#2| $) NIL)) (-2497 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3848 (($ (-685 |#2|)) 56)) (-2193 (((-112) $) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-2787 (($ |#2|) 14)) (-3180 (($) NIL T CONST)) (-3781 (($ $) 69 (|has| |#2| (-307)))) (-3207 (((-240 |#1| |#2|) $ (-564)) 42)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) 83)) (-1595 (((-768) $) 71 (|has| |#2| (-556)))) (-3593 ((|#2| $ (-564) (-564)) NIL)) (-4244 (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2340 (((-112) $) NIL)) (-2099 (((-768) $) 73 (|has| |#2| (-556)))) (-2397 (((-641 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-556)))) (-3947 (((-768) $) NIL)) (-3564 (($ |#2|) 25)) (-3956 (((-768) $) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2125 ((|#2| $) 67 (|has| |#2| (-6 (-4414 "*"))))) (-2285 (((-564) $) NIL)) (-1984 (((-564) $) NIL)) (-2572 (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2083 (((-564) $) NIL)) (-2437 (((-564) $) NIL)) (-3469 (($ (-641 (-641 |#2|))) 37)) (-1988 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3549 (((-641 (-641 |#2|)) $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-3577 (((-3 $ "failed") $) 80 (|has| |#2| (-363)))) (-3844 (((-1114) $) NIL)) (-1347 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-2280 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) NIL)) (-2203 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3558 ((|#2| $) NIL)) (-1634 (($ (-641 |#2|)) 50)) (-1950 (((-112) $) NIL)) (-3666 (((-240 |#1| |#2|) $) NIL)) (-2990 ((|#2| $) 65 (|has| |#2| (-6 (-4414 "*"))))) (-3855 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-3890 (($ $) NIL)) (-2374 (((-536) $) 89 (|has| |#2| (-612 (-536))))) (-2811 (((-240 |#1| |#2|) $ (-564)) 44)) (-3714 (((-859) $) 47) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) 52)) (-3379 (((-768)) 23 T CONST)) (-4289 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2718 (((-112) $) NIL)) (-4312 (($) 16 T CONST)) (-4323 (($) 21 T CONST)) (-2238 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) 63) (($ $ (-564)) 82 (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1136 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -3564 ($ |#2|)) (-15 -3437 ($ $)) (-15 -3848 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4414 "*"))) (-6 -4401) |%noBranch|) (IF (|has| |#2| (-6 (-4414 "*"))) (IF (|has| |#2| (-6 -4409)) (-6 -4409) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-768) (-1046)) (T -1136))
+((-3564 (*1 *1 *2) (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-768)) (-4 *2 (-1046)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-768)) (-4 *3 (-1046)))) (-3848 (*1 *1 *2) (-12 (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1136 *3 *4)) (-14 *3 (-768)))))
+(-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -3564 ($ |#2|)) (-15 -3437 ($ $)) (-15 -3848 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4414 "*"))) (-6 -4401) |%noBranch|) (IF (|has| |#2| (-6 (-4414 "*"))) (IF (|has| |#2| (-6 -4409)) (-6 -4409) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|)))
+((-4225 (($ $) 19)) (-4367 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-1490 (((-112) $ $) 24)) (-2603 (($ $) 17)) (-4382 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) 31)) (-3714 (($ (-144)) 29) (((-859) $) NIL)))
+(((-1137 |#1|) (-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4367 (|#1| |#1| (-141))) (-15 -4367 (|#1| |#1| (-144))) (-15 -3714 (|#1| (-144))) (-15 -1490 ((-112) |#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -2603 (|#1| |#1|)) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -4382 ((-144) |#1| (-564))) (-15 -4382 ((-144) |#1| (-564) (-144)))) (-1138)) (T -1137))
+NIL
+(-10 -8 (-15 -3714 ((-859) |#1|)) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4367 (|#1| |#1| (-141))) (-15 -4367 (|#1| |#1| (-144))) (-15 -3714 (|#1| (-144))) (-15 -1490 ((-112) |#1| |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -2603 (|#1| |#1|)) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -4382 ((-144) |#1| (-564))) (-15 -4382 ((-144) |#1| (-564) (-144))))
+((-3702 (((-112) $ $) 19 (|has| (-144) (-1094)))) (-1412 (($ $) 120)) (-4225 (($ $) 121)) (-4367 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2399 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4413)))) (-1468 (((-112) $ $) 118)) (-1445 (((-112) $ $ (-564)) 117)) (-3374 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-1562 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-847)))) (-4194 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4413))) (($ $) 88 (-12 (|has| (-144) (-847)) (|has| $ (-6 -4413))))) (-2904 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-847)))) (-2141 (((-112) $ (-768)) 8)) (-3868 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4413))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2898 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-1651 (($ $) 90 (|has| $ (-6 -4413)))) (-1923 (($ $) 100)) (-4270 (($ $ (-1226 (-564)) $) 114)) (-2084 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4412)))) (-1728 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4412))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4412)))) (-1998 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4413)))) (-3593 (((-144) $ (-564)) 51)) (-1490 (((-112) $ $) 119)) (-3303 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-4244 (((-641 (-144)) $) 30 (|has| $ (-6 -4412)))) (-3564 (($ (-768) (-144)) 69)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 43 (|has| (-564) (-847)))) (-3428 (($ $ $) 87 (|has| (-144) (-847)))) (-3678 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-847)))) (-2572 (((-641 (-144)) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-3413 (($ $ $) 86 (|has| (-144) (-847)))) (-2174 (((-112) $ $ (-144)) 115)) (-1414 (((-768) $ $ (-144)) 116)) (-1988 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-4177 (($ $) 122)) (-2603 (($ $) 123)) (-4144 (((-112) $ (-768)) 10)) (-2908 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-1868 (((-1152) $) 22 (|has| (-144) (-1094)))) (-2455 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-3127 (((-641 (-564)) $) 46)) (-1338 (((-112) (-564) $) 47)) (-3844 (((-1114) $) 21 (|has| (-144) (-1094)))) (-2049 (((-144) $) 42 (|has| (-564) (-847)))) (-2905 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-3538 (($ $ (-144)) 41 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-4121 (((-641 (-144)) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-2090 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3855 (((-768) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4412))) (((-768) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412))))) (-3474 (($ $ $ (-564)) 91 (|has| $ (-6 -4413)))) (-3890 (($ $) 13)) (-2374 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-3725 (($ (-641 (-144))) 70)) (-1865 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3714 (($ (-144)) 111) (((-859) $) 18 (|has| (-144) (-611 (-859))))) (-4289 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) 84 (|has| (-144) (-847)))) (-1758 (((-112) $ $) 83 (|has| (-144) (-847)))) (-1720 (((-112) $ $) 20 (|has| (-144) (-1094)))) (-1769 (((-112) $ $) 85 (|has| (-144) (-847)))) (-1746 (((-112) $ $) 82 (|has| (-144) (-847)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-1138) (-140)) (T -1138))
-((-1816 (*1 *1 *1) (-4 *1 (-1138))) (-2847 (*1 *1 *1) (-4 *1 (-1138))) (-2851 (*1 *1 *1) (-4 *1 (-1138))) (-3318 (*1 *1 *1) (-4 *1 (-1138))) (-2516 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-2490 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-2471 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112)))) (-4299 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-768)))) (-3128 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112)))) (-2856 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564))))) (-1356 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)))) (-1356 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138)))) (-1654 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-1654 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-2567 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-2567 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-3919 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-4382 (*1 *1 *1 *1) (-4 *1 (-1138))))
-(-13 (-19 (-144)) (-10 -8 (-15 -1816 ($ $)) (-15 -2847 ($ $)) (-15 -2851 ($ $)) (-15 -3318 ($ $)) (-15 -2516 ((-112) $ $)) (-15 -2490 ((-112) $ $)) (-15 -2471 ((-112) $ $ (-564))) (-15 -4299 ((-768) $ $ (-144))) (-15 -3128 ((-112) $ $ (-144))) (-15 -2856 ($ $ (-1226 (-564)) $)) (-15 -1356 ((-564) $ $ (-564))) (-15 -1356 ((-564) (-141) $ (-564))) (-15 -1765 ($ (-144))) (-15 -1654 ((-641 $) $ (-144))) (-15 -1654 ((-641 $) $ (-141))) (-15 -2567 ($ $ (-144))) (-15 -2567 ($ $ (-141))) (-15 -3934 ($ $ (-144))) (-15 -3934 ($ $ (-141))) (-15 -3919 ($ $ (-144))) (-15 -3919 ($ $ (-141))) (-15 -4382 ($ $ $))))
-(((-34) . T) ((-102) -4002 (|has| (-144) (-1094)) (|has| (-144) (-847))) ((-611 (-859)) -4002 (|has| (-144) (-1094)) (|has| (-144) (-847)) (|has| (-144) (-611 (-859)))) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-847) |has| (-144) (-847)) ((-1094) -4002 (|has| (-144) (-1094)) (|has| (-144) (-847))) ((-1209) . T))
-((-3667 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-768)) 112)) (-2772 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768)) 61)) (-2690 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-768)) 98)) (-2006 (((-768) (-641 |#4|) (-641 |#5|)) 30)) (-3406 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768)) 63) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768) (-112)) 65)) (-1770 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 85)) (-2127 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) 90)) (-1313 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|) 60)) (-2529 (((-768) (-641 |#4|) (-641 |#5|)) 21)))
-(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2529 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2006 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -1313 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -2772 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768))) (-15 -2772 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768))) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -1770 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1770 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3667 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-768))) (-15 -2127 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) (-15 -2690 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-768)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1139))
-((-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3853 *9)))) (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3853 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) (-5 *1 (-1139 *4 *5 *6 *7 *8)))) (-3667 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -3853 *11)))))) (-5 *6 (-768)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -3853 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-5 *1 (-1139 *7 *8 *9 *10 *11)))) (-1770 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-1770 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-3406 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) (-2772 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2772 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-1313 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2006 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2529 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2006 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -1313 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -2772 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768))) (-15 -2772 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5| (-768))) (-15 -3406 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) |#4| |#5|)) (-15 -1770 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1770 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3667 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))))) (-768))) (-15 -2127 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|)))) (-15 -2690 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -3853 |#5|))) (-768))))
-((-1754 (((-112) $ $) NIL)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |#4|)))) (-641 |#4|)) NIL)) (-4389 (((-641 $) (-641 |#4|)) 121) (((-641 $) (-641 |#4|) (-112)) 122) (((-641 $) (-641 |#4|) (-112) (-112)) 120) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 123)) (-4170 (((-641 |#3|) $) NIL)) (-1747 (((-112) $) NIL)) (-2197 (((-112) $) NIL (|has| |#1| (-556)))) (-1940 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3993 ((|#4| |#4| $) NIL)) (-1368 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| $) 94)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 72)) (-3760 (($) NIL T CONST)) (-4177 (((-112) $) 29 (|has| |#1| (-556)))) (-3911 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2694 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1378 (((-112) $) NIL (|has| |#1| (-556)))) (-3207 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2254 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2064 (($ (-641 |#4|)) NIL)) (-3086 (((-3 $ "failed") $) 45)) (-2758 ((|#4| |#4| $) 75)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2359 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-556)))) (-4269 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3621 ((|#4| |#4| $) NIL)) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2058 (((-2 (|:| -3439 (-641 |#4|)) (|:| -1589 (-641 |#4|))) $) NIL)) (-1456 (((-112) |#4| $) NIL)) (-2097 (((-112) |#4| $) NIL)) (-2432 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2692 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 136)) (-3080 (((-641 |#4|) $) 18 (|has| $ (-6 -4411)))) (-2415 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3162 ((|#3| $) 38)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#4|) $) 19 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-3513 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 23)) (-4343 (((-641 |#3|) $) NIL)) (-1853 (((-112) |#3| $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-4181 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-1489 (((-641 (-2 (|:| |val| |#4|) (|:| -3853 $))) |#4| |#4| $) 114)) (-2376 (((-3 |#4| "failed") $) 42)) (-2298 (((-641 $) |#4| $) 99)) (-3866 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-4214 (((-641 (-2 (|:| |val| (-112)) (|:| -3853 $))) |#4| $) 109) (((-112) |#4| $) 62)) (-1617 (((-641 $) |#4| $) 118) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 119) (((-641 $) |#4| (-641 $)) NIL)) (-1314 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 131)) (-1829 (($ |#4| $) 85) (($ (-641 |#4|) $) 86) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 84)) (-3277 (((-641 |#4|) $) NIL)) (-3561 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3874 ((|#4| |#4| $) NIL)) (-3862 (((-112) $ $) NIL)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1512 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3491 ((|#4| |#4| $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 (((-3 |#4| "failed") $) 40)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3159 (((-3 $ "failed") $ |#4|) 57)) (-2678 (($ $ |#4|) NIL) (((-641 $) |#4| $) 101) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 96)) (-1467 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 17)) (-3845 (($) 14)) (-3344 (((-768) $) NIL)) (-3815 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) 13)) (-2127 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) 22)) (-2318 (($ $ |#3|) 52)) (-1869 (($ $ |#3|) 53)) (-3430 (($ $) NIL)) (-1845 (($ $ |#3|) NIL)) (-1765 (((-859) $) 35) (((-641 |#4|) $) 46)) (-1597 (((-768) $) NIL (|has| |#3| (-368)))) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1599 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-3602 (((-641 $) |#4| $) 63) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-2237 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2380 (((-641 |#3|) $) NIL)) (-1759 (((-112) |#4| $) NIL)) (-3623 (((-112) |#3| $) 71)) (-1686 (((-112) $ $) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1140 |#1| |#2| |#3| |#4|) (-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1829 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4389 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -4389 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -1314 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2692 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1140))
-((-1829 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3)) (-4 *3 (-1060 *5 *6 *7)))) (-4389 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-4389 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-1314 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-2692 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1140 *5 *6 *7 *8))))) (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
-(-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1829 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4389 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -4389 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -1314 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2692 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1417 ((|#1| $) 37)) (-2823 (($ (-641 |#1|)) 45)) (-3263 (((-112) $ (-768)) NIL)) (-3760 (($) NIL T CONST)) (-2998 ((|#1| |#1| $) 40)) (-3507 ((|#1| $) 35)) (-3080 (((-641 |#1|) $) 18 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 22)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1833 ((|#1| $) 38)) (-2098 (($ |#1| $) 41)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3389 ((|#1| $) 36)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 32)) (-3845 (($) 43)) (-2057 (((-768) $) 30)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) 27)) (-1765 (((-859) $) 14 (|has| |#1| (-611 (-859))))) (-2652 (($ (-641 |#1|)) NIL)) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 17 (|has| |#1| (-1094)))) (-2589 (((-768) $) 31 (|has| $ (-6 -4411)))))
-(((-1141 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -2823 ($ (-641 |#1|))))) (-1209)) (T -1141))
-((-2823 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3)))))
-(-13 (-1115 |#1|) (-10 -8 (-15 -2823 ($ (-641 |#1|)))))
-((-1881 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 54) ((|#2| $ (-564) |#2|) 51)) (-1418 (((-112) $) 11)) (-3513 (($ (-1 |#2| |#2|) $) 49)) (-3073 ((|#2| $) NIL) (($ $ (-768)) 19)) (-2614 (($ $ |#2|) 50)) (-2141 (((-112) $) 10)) (-4382 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1226 (-564))) 37) ((|#2| $ (-564)) 28) ((|#2| $ (-564) |#2|) NIL)) (-2478 (($ $ $) 57) (($ $ |#2|) NIL)) (-2817 (($ $ $) 39) (($ |#2| $) NIL) (($ (-641 $)) 46) (($ $ |#2|) NIL)))
-(((-1142 |#1| |#2|) (-10 -8 (-15 -1418 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -1881 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -2614 (|#1| |#1| |#2|)) (-15 -2817 (|#1| |#1| |#2|)) (-15 -2817 (|#1| (-641 |#1|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -1881 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -1881 (|#2| |#1| "last" |#2|)) (-15 -1881 (|#1| |#1| "rest" |#1|)) (-15 -1881 (|#2| |#1| "first" |#2|)) (-15 -2478 (|#1| |#1| |#2|)) (-15 -2478 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| "last")) (-15 -4382 (|#1| |#1| "rest")) (-15 -3073 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -3073 (|#2| |#1|)) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#1|)) (-15 -1881 (|#2| |#1| "value" |#2|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3513 (|#1| (-1 |#2| |#2|) |#1|))) (-1143 |#2|) (-1209)) (T -1142))
-NIL
-(-10 -8 (-15 -1418 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -1881 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -2614 (|#1| |#1| |#2|)) (-15 -2817 (|#1| |#1| |#2|)) (-15 -2817 (|#1| (-641 |#1|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -1881 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -1881 (|#2| |#1| "last" |#2|)) (-15 -1881 (|#1| |#1| "rest" |#1|)) (-15 -1881 (|#2| |#1| "first" |#2|)) (-15 -2478 (|#1| |#1| |#2|)) (-15 -2478 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| "last")) (-15 -4382 (|#1| |#1| "rest")) (-15 -3073 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -3073 (|#2| |#1|)) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#1|)) (-15 -1881 (|#2| |#1| "value" |#2|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3513 (|#1| (-1 |#2| |#2|) |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1451 ((|#1| $) 48)) (-2722 ((|#1| $) 65)) (-1882 (($ $) 67)) (-3476 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4412)))) (-3280 (($ $ (-564)) 52 (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) 8)) (-3768 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-2293 (($ $ $) 56 (|has| $ (-6 -4412)))) (-3129 ((|#1| $ |#1|) 54 (|has| $ (-6 -4412)))) (-4318 ((|#1| $ |#1|) 58 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4412))) (($ $ "rest" $) 55 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4411)))) (-2711 ((|#1| $) 66)) (-3760 (($) 7 T CONST)) (-3086 (($ $) 73) (($ $ (-768)) 71)) (-3104 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4411))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3528 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 87)) (-1418 (((-112) $) 83)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 50)) (-2272 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-1633 (($ (-768) |#1|) 108)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 95 (|has| (-564) (-847)))) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 94 (|has| (-564) (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2972 (((-112) $ (-768)) 10)) (-3848 (((-641 |#1|) $) 45)) (-2200 (((-112) $) 49)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2376 ((|#1| $) 70) (($ $ (-768)) 68)) (-3412 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-1371 (((-641 (-564)) $) 92)) (-3629 (((-112) (-564) $) 91)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3073 ((|#1| $) 76) (($ $ (-768)) 74)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2614 (($ $ |#1|) 96 (|has| $ (-6 -4412)))) (-2141 (((-112) $) 84)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) 90)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-3837 (((-564) $ $) 44)) (-2008 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-1867 (((-112) $) 46)) (-2294 (($ $) 62)) (-4207 (($ $) 59 (|has| $ (-6 -4412)))) (-2355 (((-768) $) 63)) (-4119 (($ $) 64)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2127 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 107)) (-2478 (($ $ $) 61 (|has| $ (-6 -4412))) (($ $ |#1|) 60 (|has| $ (-6 -4412)))) (-2817 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) 51)) (-1740 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-2603 (*1 *1 *1) (-4 *1 (-1138))) (-4177 (*1 *1 *1) (-4 *1 (-1138))) (-4225 (*1 *1 *1) (-4 *1 (-1138))) (-1412 (*1 *1 *1) (-4 *1 (-1138))) (-1490 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-1468 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-1445 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112)))) (-1414 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-768)))) (-2174 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112)))) (-4270 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564))))) (-3303 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)))) (-3303 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-4367 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-4367 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-2908 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-2908 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-2898 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-2898 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-4382 (*1 *1 *1 *1) (-4 *1 (-1138))))
+(-13 (-19 (-144)) (-10 -8 (-15 -2603 ($ $)) (-15 -4177 ($ $)) (-15 -4225 ($ $)) (-15 -1412 ($ $)) (-15 -1490 ((-112) $ $)) (-15 -1468 ((-112) $ $)) (-15 -1445 ((-112) $ $ (-564))) (-15 -1414 ((-768) $ $ (-144))) (-15 -2174 ((-112) $ $ (-144))) (-15 -4270 ($ $ (-1226 (-564)) $)) (-15 -3303 ((-564) $ $ (-564))) (-15 -3303 ((-564) (-141) $ (-564))) (-15 -3714 ($ (-144))) (-15 -3374 ((-641 $) $ (-144))) (-15 -3374 ((-641 $) $ (-141))) (-15 -4367 ($ $ (-144))) (-15 -4367 ($ $ (-141))) (-15 -2908 ($ $ (-144))) (-15 -2908 ($ $ (-141))) (-15 -2898 ($ $ (-144))) (-15 -2898 ($ $ (-141))) (-15 -4382 ($ $ $))))
+(((-34) . T) ((-102) -4012 (|has| (-144) (-1094)) (|has| (-144) (-847))) ((-611 (-859)) -4012 (|has| (-144) (-1094)) (|has| (-144) (-847)) (|has| (-144) (-611 (-859)))) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-847) |has| (-144) (-847)) ((-1094) -4012 (|has| (-144) (-1094)) (|has| (-144) (-847))) ((-1209) . T))
+((-3516 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-768)) 112)) (-2810 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768)) 61)) (-1383 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-768)) 98)) (-3834 (((-768) (-641 |#4|) (-641 |#5|)) 30)) (-2950 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768)) 63) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768) (-112)) 65)) (-3282 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 85)) (-2374 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) 90)) (-2176 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|) 60)) (-2166 (((-768) (-641 |#4|) (-641 |#5|)) 21)))
+(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2166 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3834 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -2810 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768))) (-15 -2810 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768))) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -3282 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3282 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3516 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-768))) (-15 -2374 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) (-15 -1383 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-768)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1139))
+((-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -4011 *9)))) (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -4011 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) (-5 *1 (-1139 *4 *5 *6 *7 *8)))) (-3516 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -4011 *11)))))) (-5 *6 (-768)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -4011 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-5 *1 (-1139 *7 *8 *9 *10 *11)))) (-3282 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-3282 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2950 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2950 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-2950 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) (-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-2176 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2166 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -3834 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2176 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -2810 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768))) (-15 -2810 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5| (-768))) (-15 -2950 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) |#4| |#5|)) (-15 -3282 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -3282 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3516 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))))) (-768))) (-15 -2374 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|)))) (-15 -1383 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -4011 |#5|))) (-768))))
+((-3702 (((-112) $ $) NIL)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |#4|)))) (-641 |#4|)) NIL)) (-4055 (((-641 $) (-641 |#4|)) 121) (((-641 $) (-641 |#4|) (-112)) 122) (((-641 $) (-641 |#4|) (-112) (-112)) 120) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 123)) (-4292 (((-641 |#3|) $) NIL)) (-3097 (((-112) $) NIL)) (-2092 (((-112) $) NIL (|has| |#1| (-556)))) (-1300 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3500 ((|#4| |#4| $) NIL)) (-1328 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| $) 94)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-4148 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412))) (((-3 |#4| "failed") $ |#3|) 72)) (-3180 (($) NIL T CONST)) (-2846 (((-112) $) 29 (|has| |#1| (-556)))) (-2228 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3171 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3798 (((-112) $) NIL (|has| |#1| (-556)))) (-1578 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1373 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2376 (($ (-641 |#4|)) NIL)) (-2063 (((-3 $ "failed") $) 45)) (-2687 ((|#4| |#4| $) 75)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-556)))) (-4300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4344 ((|#4| |#4| $) NIL)) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4412))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3151 (((-2 (|:| -3489 (-641 |#4|)) (|:| -1721 (-641 |#4|))) $) NIL)) (-2169 (((-112) |#4| $) NIL)) (-2358 (((-112) |#4| $) NIL)) (-2479 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3153 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 136)) (-4244 (((-641 |#4|) $) 18 (|has| $ (-6 -4412)))) (-2297 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2394 ((|#3| $) 38)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#4|) $) 19 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-1988 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 23)) (-3652 (((-641 |#3|) $) NIL)) (-1722 (((-112) |#3| $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-2881 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-2521 (((-641 (-2 (|:| |val| |#4|) (|:| -4011 $))) |#4| |#4| $) 114)) (-2541 (((-3 |#4| "failed") $) 42)) (-3607 (((-641 $) |#4| $) 99)) (-1779 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-1990 (((-641 (-2 (|:| |val| (-112)) (|:| -4011 $))) |#4| $) 109) (((-112) |#4| $) 62)) (-4302 (((-641 $) |#4| $) 118) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 119) (((-641 $) |#4| (-641 $)) NIL)) (-2186 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 131)) (-2737 (($ |#4| $) 85) (($ (-641 |#4|) $) 86) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 84)) (-4104 (((-641 |#4|) $) NIL)) (-1954 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1863 ((|#4| |#4| $) NIL)) (-1733 (((-112) $ $) NIL)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1485 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2543 ((|#4| |#4| $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 (((-3 |#4| "failed") $) 40)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2359 (((-3 $ "failed") $ |#4|) 57)) (-3042 (($ $ |#4|) NIL) (((-641 $) |#4| $) 101) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 96)) (-2280 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 17)) (-2834 (($) 14)) (-3475 (((-768) $) NIL)) (-3855 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) 13)) (-2374 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) 22)) (-3789 (($ $ |#3|) 52)) (-1896 (($ $ |#3|) 53)) (-3121 (($ $) NIL)) (-1632 (($ $ |#3|) NIL)) (-3714 (((-859) $) 35) (((-641 |#4|) $) 46)) (-4113 (((-768) $) NIL (|has| |#3| (-368)))) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4138 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-4158 (((-641 $) |#4| $) 63) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-4289 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3148 (((-641 |#3|) $) NIL)) (-3199 (((-112) |#4| $) NIL)) (-4368 (((-112) |#3| $) 71)) (-1720 (((-112) $ $) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1140 |#1| |#2| |#3| |#4|) (-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2737 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4055 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -4055 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2186 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -3153 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1140))
+((-2737 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3)) (-4 *3 (-1060 *5 *6 *7)))) (-4055 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-4055 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-2186 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-3153 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1140 *5 *6 *7 *8))))) (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
+(-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2737 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4055 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -4055 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2186 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -3153 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2667 ((|#1| $) 37)) (-2849 (($ (-641 |#1|)) 45)) (-2141 (((-112) $ (-768)) NIL)) (-3180 (($) NIL T CONST)) (-4377 ((|#1| |#1| $) 40)) (-2691 ((|#1| $) 35)) (-4244 (((-641 |#1|) $) 18 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 22)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2775 ((|#1| $) 38)) (-2373 (($ |#1| $) 41)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3950 ((|#1| $) 36)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 32)) (-2834 (($) 43)) (-3735 (((-768) $) 30)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) 27)) (-3714 (((-859) $) 14 (|has| |#1| (-611 (-859))))) (-3976 (($ (-641 |#1|)) NIL)) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 17 (|has| |#1| (-1094)))) (-2779 (((-768) $) 31 (|has| $ (-6 -4412)))))
+(((-1141 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -2849 ($ (-641 |#1|))))) (-1209)) (T -1141))
+((-2849 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3)))))
+(-13 (-1115 |#1|) (-10 -8 (-15 -2849 ($ (-641 |#1|)))))
+((-3868 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 54) ((|#2| $ (-564) |#2|) 51)) (-1635 (((-112) $) 11)) (-1988 (($ (-1 |#2| |#2|) $) 49)) (-2049 ((|#2| $) NIL) (($ $ (-768)) 19)) (-3538 (($ $ |#2|) 50)) (-2791 (((-112) $) 10)) (-4382 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1226 (-564))) 37) ((|#2| $ (-564)) 28) ((|#2| $ (-564) |#2|) NIL)) (-1711 (($ $ $) 57) (($ $ |#2|) NIL)) (-1865 (($ $ $) 39) (($ |#2| $) NIL) (($ (-641 $)) 46) (($ $ |#2|) NIL)))
+(((-1142 |#1| |#2|) (-10 -8 (-15 -1635 ((-112) |#1|)) (-15 -2791 ((-112) |#1|)) (-15 -3868 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -3538 (|#1| |#1| |#2|)) (-15 -1865 (|#1| |#1| |#2|)) (-15 -1865 (|#1| (-641 |#1|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -3868 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3868 (|#2| |#1| "last" |#2|)) (-15 -3868 (|#1| |#1| "rest" |#1|)) (-15 -3868 (|#2| |#1| "first" |#2|)) (-15 -1711 (|#1| |#1| |#2|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| "last")) (-15 -4382 (|#1| |#1| "rest")) (-15 -2049 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -2049 (|#2| |#1|)) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#1|)) (-15 -3868 (|#2| |#1| "value" |#2|)) (-15 -4382 (|#2| |#1| "value")) (-15 -1988 (|#1| (-1 |#2| |#2|) |#1|))) (-1143 |#2|) (-1209)) (T -1142))
+NIL
+(-10 -8 (-15 -1635 ((-112) |#1|)) (-15 -2791 ((-112) |#1|)) (-15 -3868 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -3538 (|#1| |#1| |#2|)) (-15 -1865 (|#1| |#1| |#2|)) (-15 -1865 (|#1| (-641 |#1|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -3868 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3868 (|#2| |#1| "last" |#2|)) (-15 -3868 (|#1| |#1| "rest" |#1|)) (-15 -3868 (|#2| |#1| "first" |#2|)) (-15 -1711 (|#1| |#1| |#2|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| "last")) (-15 -4382 (|#1| |#1| "rest")) (-15 -2049 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -2049 (|#2| |#1|)) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#1|)) (-15 -3868 (|#2| |#1| "value" |#2|)) (-15 -4382 (|#2| |#1| "value")) (-15 -1988 (|#1| (-1 |#2| |#2|) |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3387 ((|#1| $) 48)) (-2985 ((|#1| $) 65)) (-3794 (($ $) 67)) (-2399 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4413)))) (-4140 (($ $ (-564)) 52 (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) 8)) (-3242 ((|#1| $ |#1|) 39 (|has| $ (-6 -4413)))) (-3543 (($ $ $) 56 (|has| $ (-6 -4413)))) (-3186 ((|#1| $ |#1|) 54 (|has| $ (-6 -4413)))) (-1617 ((|#1| $ |#1|) 58 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4413))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4413))) (($ $ "rest" $) 55 (|has| $ (-6 -4413))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4413))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 41 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4412)))) (-2976 ((|#1| $) 66)) (-3180 (($) 7 T CONST)) (-2063 (($ $) 73) (($ $ (-768)) 71)) (-2084 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4412))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1998 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 87)) (-1635 (((-112) $) 83)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 50)) (-1543 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3564 (($ (-768) |#1|) 108)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 95 (|has| (-564) (-847)))) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 94 (|has| (-564) (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4144 (((-112) $ (-768)) 10)) (-2523 (((-641 |#1|) $) 45)) (-2120 (((-112) $) 49)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2541 ((|#1| $) 70) (($ $ (-768)) 68)) (-2455 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-3127 (((-641 (-564)) $) 92)) (-1338 (((-112) (-564) $) 91)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2049 ((|#1| $) 76) (($ $ (-768)) 74)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3538 (($ $ |#1|) 96 (|has| $ (-6 -4413)))) (-2791 (((-112) $) 84)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) 90)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-2774 (((-564) $ $) 44)) (-2090 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-1875 (((-112) $) 46)) (-3554 (($ $) 62)) (-1911 (($ $) 59 (|has| $ (-6 -4413)))) (-2966 (((-768) $) 63)) (-3414 (($ $) 64)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-2374 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 107)) (-1711 (($ $ $) 61 (|has| $ (-6 -4413))) (($ $ |#1|) 60 (|has| $ (-6 -4413)))) (-1865 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) 51)) (-3036 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-1143 |#1|) (-140) (-1209)) (T -1143))
-((-2141 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-1418 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(-13 (-1247 |t#1|) (-647 |t#1|) (-10 -8 (-15 -2141 ((-112) $)) (-15 -1418 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T) ((-1247 |#1|) . T))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3476 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#2| $ |#1| |#2|) NIL)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 |#2| "failed") |#1| $) NIL)) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) NIL)) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) NIL)) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 ((|#1| $) NIL (|has| |#1| (-847)))) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1479 ((|#1| $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3211 (((-641 |#1|) $) NIL)) (-4185 (((-112) |#1| $) NIL)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1371 (((-641 |#1|) $) NIL)) (-3629 (((-112) |#1| $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3073 ((|#2| $) NIL (|has| |#1| (-847)))) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-1765 (((-859) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-2791 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
+(-13 (-1247 |t#1|) (-647 |t#1|) (-10 -8 (-15 -2791 ((-112) $)) (-15 -1635 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T) ((-1247 |#1|) . T))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-2399 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#2| $ |#1| |#2|) NIL)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 |#2| "failed") |#1| $) NIL)) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) NIL)) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) NIL)) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 ((|#1| $) NIL (|has| |#1| (-847)))) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2415 ((|#1| $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4413))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1922 (((-641 |#1|) $) NIL)) (-1690 (((-112) |#1| $) NIL)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-3127 (((-641 |#1|) $) NIL)) (-1338 (((-112) |#1| $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2049 ((|#2| $) NIL (|has| |#1| (-847)))) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3714 (((-859) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-1144 |#1| |#2| |#3|) (-1185 |#1| |#2|) (-1094) (-1094) |#2|) (T -1144))
NIL
(-1185 |#1| |#2|)
-((-1754 (((-112) $ $) 7)) (-3374 (((-3 $ "failed") $) 13)) (-4202 (((-1152) $) 9)) (-1611 (($) 14 T CONST)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11)) (-1686 (((-112) $ $) 6)))
+((-3702 (((-112) $ $) 7)) (-3804 (((-3 $ "failed") $) 13)) (-1868 (((-1152) $) 9)) (-3304 (($) 14 T CONST)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11)) (-1720 (((-112) $ $) 6)))
(((-1145) (-140)) (T -1145))
-((-1611 (*1 *1) (-4 *1 (-1145))) (-3374 (*1 *1 *1) (|partial| -4 *1 (-1145))))
-(-13 (-1094) (-10 -8 (-15 -1611 ($) -3246) (-15 -3374 ((-3 $ "failed") $))))
+((-3304 (*1 *1) (-4 *1 (-1145))) (-3804 (*1 *1 *1) (|partial| -4 *1 (-1145))))
+(-13 (-1094) (-10 -8 (-15 -3304 ($) -2222) (-15 -3804 ((-3 $ "failed") $))))
(((-102) . T) ((-611 (-859)) . T) ((-1094) . T))
-((-3447 (((-1150 |#1|) (-1150 |#1|)) 17)) (-1680 (((-1150 |#1|) (-1150 |#1|)) 13)) (-1769 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 20)) (-3499 (((-1150 |#1|) (-1150 |#1|)) 15)))
-(((-1146 |#1|) (-10 -7 (-15 -1680 ((-1150 |#1|) (-1150 |#1|))) (-15 -3499 ((-1150 |#1|) (-1150 |#1|))) (-15 -3447 ((-1150 |#1|) (-1150 |#1|))) (-15 -1769 ((-1150 |#1|) (-1150 |#1|) (-564) (-564)))) (-13 (-556) (-147))) (T -1146))
-((-1769 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1146 *4)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))))
-(-10 -7 (-15 -1680 ((-1150 |#1|) (-1150 |#1|))) (-15 -3499 ((-1150 |#1|) (-1150 |#1|))) (-15 -3447 ((-1150 |#1|) (-1150 |#1|))) (-15 -1769 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))))
-((-2817 (((-1150 |#1|) (-1150 (-1150 |#1|))) 15)))
-(((-1147 |#1|) (-10 -7 (-15 -2817 ((-1150 |#1|) (-1150 (-1150 |#1|))))) (-1209)) (T -1147))
-((-2817 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1209)))))
-(-10 -7 (-15 -2817 ((-1150 |#1|) (-1150 (-1150 |#1|)))))
-((-4077 (((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 25)) (-4367 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 26)) (-2082 (((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)) 16)))
-(((-1148 |#1| |#2|) (-10 -7 (-15 -2082 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -4077 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -4367 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)))) (-1209) (-1209)) (T -1148))
-((-4367 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2)))) (-4077 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209)) (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6)))))
-(-10 -7 (-15 -2082 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -4077 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -4367 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))))
-((-2082 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)) 21)))
-(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -2082 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -1149))
-((-2082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-1149 *6 *7 *8)))))
-(-10 -7 (-15 -2082 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) NIL)) (-2722 ((|#1| $) NIL)) (-1882 (($ $) 66)) (-3476 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4412)))) (-3280 (($ $ (-564)) 126 (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-3534 (((-859) $) 55 (|has| |#1| (-1094)))) (-4038 (((-112)) 54 (|has| |#1| (-1094)))) (-3768 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-2293 (($ $ $) 114 (|has| $ (-6 -4412))) (($ $ (-564) $) 139)) (-3129 ((|#1| $ |#1|) 123 (|has| $ (-6 -4412)))) (-4318 ((|#1| $ |#1|) 118 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 120 (|has| $ (-6 -4412))) (($ $ "rest" $) 122 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 125 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 111 (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) 75 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) 78)) (-2711 ((|#1| $) NIL)) (-3760 (($) NIL T CONST)) (-2752 (($ $) 14)) (-3086 (($ $) 41) (($ $ (-768)) 109)) (-2019 (((-112) (-641 |#1|) $) 132 (|has| |#1| (-1094)))) (-3212 (($ (-641 |#1|)) 128)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) 77)) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1418 (((-112) $) NIL)) (-3080 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-1874 (((-1264) (-564) $) 138 (|has| |#1| (-1094)))) (-2551 (((-768) $) 135)) (-4321 (((-641 $) $) NIL)) (-2272 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1633 (($ (-768) |#1|) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 93 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 83) (($ (-1 |#1| |#1| |#1|) $ $) 87)) (-2972 (((-112) $ (-768)) NIL)) (-3848 (((-641 |#1|) $) NIL)) (-2200 (((-112) $) NIL)) (-1922 (($ $) 112)) (-3502 (((-112) $) 13)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2376 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-3412 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) 94)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2107 (($ (-1 |#1|)) 141) (($ (-1 |#1| |#1|) |#1|) 142)) (-4330 ((|#1| $) 10)) (-3073 ((|#1| $) 40) (($ $ (-768)) 64)) (-3861 (((-2 (|:| |cycle?| (-112)) (|:| -4000 (-768)) (|:| |period| (-768))) (-768) $) 35)) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2144 (($ (-1 (-112) |#1|) $) 143)) (-2155 (($ (-1 (-112) |#1|) $) 144)) (-2614 (($ $ |#1|) 88 (|has| $ (-6 -4412)))) (-2678 (($ $ (-564)) 44)) (-2141 (((-112) $) 92)) (-1660 (((-112) $) 12)) (-3074 (((-112) $) 134)) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 30)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) 20)) (-3845 (($) 59)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 73) ((|#1| $ (-564) |#1|) NIL)) (-3837 (((-564) $ $) 63)) (-2008 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3735 (($ (-1 $)) 62)) (-1867 (((-112) $) 89)) (-2294 (($ $) 90)) (-4207 (($ $) 115 (|has| $ (-6 -4412)))) (-2355 (((-768) $) NIL)) (-4119 (($ $) NIL)) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) 58)) (-2127 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 72)) (-4156 (($ |#1| $) 113)) (-2478 (($ $ $) 116 (|has| $ (-6 -4412))) (($ $ |#1|) 117 (|has| $ (-6 -4412)))) (-2817 (($ $ $) 99) (($ |#1| $) 60) (($ (-641 $)) 104) (($ $ |#1|) 98)) (-3204 (($ $) 65)) (-1765 (($ (-641 |#1|)) 127) (((-859) $) 56 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) NIL)) (-1740 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 130 (|has| |#1| (-1094)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1150 |#1|) (-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4412) (-15 -3212 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -2019 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -3861 ((-2 (|:| |cycle?| (-112)) (|:| -4000 (-768)) (|:| |period| (-768))) (-768) $)) (-15 -3735 ($ (-1 $))) (-15 -4156 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1874 ((-1264) (-564) $)) (-15 -3534 ((-859) $)) (-15 -4038 ((-112)))) |%noBranch|) (-15 -2293 ($ $ (-564) $)) (-15 -2107 ($ (-1 |#1|))) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2144 ($ (-1 (-112) |#1|) $)) (-15 -2155 ($ (-1 (-112) |#1|) $)))) (-1209)) (T -1150))
-((-3212 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2019 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)) (-5 *1 (-1150 *4)))) (-3861 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4000 (-768)) (|:| |period| (-768)))) (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-768)))) (-3735 (*1 *1 *2) (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-4156 (*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209)))) (-1874 (*1 *2 *3 *1) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-4038 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-2293 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-2107 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2107 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2144 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2155 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4412) (-15 -3212 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -2019 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -3861 ((-2 (|:| |cycle?| (-112)) (|:| -4000 (-768)) (|:| |period| (-768))) (-768) $)) (-15 -3735 ($ (-1 $))) (-15 -4156 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1874 ((-1264) (-564) $)) (-15 -3534 ((-859) $)) (-15 -4038 ((-112)))) |%noBranch|) (-15 -2293 ($ $ (-564) $)) (-15 -2107 ($ (-1 |#1|))) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2144 ($ (-1 (-112) |#1|) $)) (-15 -2155 ($ (-1 (-112) |#1|) $))))
-((-1754 (((-112) $ $) 19)) (-3318 (($ $) 120)) (-2851 (($ $) 121)) (-2567 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-3476 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-2490 (((-112) $ $) 118)) (-2471 (((-112) $ $ (-564)) 117)) (-1961 (($ (-564)) 127)) (-1654 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-4310 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-847)))) (-3606 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| (-144) (-847)) (|has| $ (-6 -4412))))) (-2494 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-847)))) (-3263 (((-112) $ (-768)) 8)) (-1881 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4412))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3919 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-3852 (($ $) 90 (|has| $ (-6 -4412)))) (-3716 (($ $) 100)) (-2856 (($ $ (-1226 (-564)) $) 114)) (-3104 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4411)))) (-4367 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4411)))) (-3528 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4412)))) (-3455 (((-144) $ (-564)) 51)) (-2516 (((-112) $ $) 119)) (-1356 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-3080 (((-641 (-144)) $) 30 (|has| $ (-6 -4411)))) (-1633 (($ (-768) (-144)) 69)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 43 (|has| (-564) (-847)))) (-3571 (($ $ $) 87 (|has| (-144) (-847)))) (-4012 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-847)))) (-3817 (((-641 (-144)) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 44 (|has| (-564) (-847)))) (-1547 (($ $ $) 86 (|has| (-144) (-847)))) (-3128 (((-112) $ $ (-144)) 115)) (-4299 (((-768) $ $ (-144)) 116)) (-3513 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-2847 (($ $) 122)) (-1816 (($ $) 123)) (-2972 (((-112) $ (-768)) 10)) (-3934 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-4202 (((-1152) $) 22)) (-3412 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-1371 (((-641 (-564)) $) 46)) (-3629 (((-112) (-564) $) 47)) (-3802 (((-1114) $) 21)) (-3073 (((-144) $) 42 (|has| (-564) (-847)))) (-2343 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2614 (($ $ (-144)) 41 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-3599 (((-641 (-144)) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-2008 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3815 (((-768) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4411))) (((-768) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-2286 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-1899 (($ $) 13)) (-2127 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-1776 (($ (-641 (-144))) 70)) (-2817 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1765 (($ (-144)) 111) (((-859) $) 18)) (-2237 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4411)))) (-3886 (((-1152) $) 131) (((-1152) $ (-112)) 130) (((-1264) (-819) $) 129) (((-1264) (-819) $ (-112)) 128)) (-1738 (((-112) $ $) 84 (|has| (-144) (-847)))) (-1715 (((-112) $ $) 83 (|has| (-144) (-847)))) (-1686 (((-112) $ $) 20)) (-1728 (((-112) $ $) 85 (|has| (-144) (-847)))) (-1705 (((-112) $ $) 82 (|has| (-144) (-847)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3255 (((-1150 |#1|) (-1150 |#1|)) 17)) (-3642 (((-1150 |#1|) (-1150 |#1|)) 13)) (-3274 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 20)) (-2625 (((-1150 |#1|) (-1150 |#1|)) 15)))
+(((-1146 |#1|) (-10 -7 (-15 -3642 ((-1150 |#1|) (-1150 |#1|))) (-15 -2625 ((-1150 |#1|) (-1150 |#1|))) (-15 -3255 ((-1150 |#1|) (-1150 |#1|))) (-15 -3274 ((-1150 |#1|) (-1150 |#1|) (-564) (-564)))) (-13 (-556) (-147))) (T -1146))
+((-3274 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1146 *4)))) (-3255 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))))
+(-10 -7 (-15 -3642 ((-1150 |#1|) (-1150 |#1|))) (-15 -2625 ((-1150 |#1|) (-1150 |#1|))) (-15 -3255 ((-1150 |#1|) (-1150 |#1|))) (-15 -3274 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))))
+((-1865 (((-1150 |#1|) (-1150 (-1150 |#1|))) 15)))
+(((-1147 |#1|) (-10 -7 (-15 -1865 ((-1150 |#1|) (-1150 (-1150 |#1|))))) (-1209)) (T -1147))
+((-1865 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1209)))))
+(-10 -7 (-15 -1865 ((-1150 |#1|) (-1150 (-1150 |#1|)))))
+((-3092 (((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 25)) (-1728 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 26)) (-2313 (((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)) 16)))
+(((-1148 |#1| |#2|) (-10 -7 (-15 -2313 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -3092 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -1728 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)))) (-1209) (-1209)) (T -1148))
+((-1728 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209)) (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6)))))
+(-10 -7 (-15 -2313 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -3092 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -1728 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))))
+((-2313 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)) 21)))
+(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -2313 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -1149))
+((-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-1149 *6 *7 *8)))))
+(-10 -7 (-15 -2313 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) NIL)) (-2985 ((|#1| $) NIL)) (-3794 (($ $) 66)) (-2399 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4413)))) (-4140 (($ $ (-564)) 126 (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-1676 (((-859) $) 55 (|has| |#1| (-1094)))) (-3919 (((-112)) 54 (|has| |#1| (-1094)))) (-3242 ((|#1| $ |#1|) NIL (|has| $ (-6 -4413)))) (-3543 (($ $ $) 114 (|has| $ (-6 -4413))) (($ $ (-564) $) 139)) (-3186 ((|#1| $ |#1|) 123 (|has| $ (-6 -4413)))) (-1617 ((|#1| $ |#1|) 118 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ "first" |#1|) 120 (|has| $ (-6 -4413))) (($ $ "rest" $) 122 (|has| $ (-6 -4413))) ((|#1| $ "last" |#1|) 125 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 111 (|has| $ (-6 -4413))) ((|#1| $ (-564) |#1|) 75 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) 78)) (-2976 ((|#1| $) NIL)) (-3180 (($) NIL T CONST)) (-2621 (($ $) 14)) (-2063 (($ $) 41) (($ $ (-768)) 109)) (-2823 (((-112) (-641 |#1|) $) 132 (|has| |#1| (-1094)))) (-1619 (($ (-641 |#1|)) 128)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) 77)) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-1635 (((-112) $) NIL)) (-4244 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3783 (((-1264) (-564) $) 138 (|has| |#1| (-1094)))) (-4204 (((-768) $) 135)) (-1647 (((-641 $) $) NIL)) (-1543 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3564 (($ (-768) |#1|) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 93 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 83) (($ (-1 |#1| |#1| |#1|) $ $) 87)) (-4144 (((-112) $ (-768)) NIL)) (-2523 (((-641 |#1|) $) NIL)) (-2120 (((-112) $) NIL)) (-4236 (($ $) 112)) (-2645 (((-112) $) 13)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2541 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2455 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) 94)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4077 (($ (-1 |#1|)) 141) (($ (-1 |#1| |#1|) |#1|) 142)) (-3517 ((|#1| $) 10)) (-2049 ((|#1| $) 40) (($ $ (-768)) 64)) (-1719 (((-2 (|:| |cycle?| (-112)) (|:| -2893 (-768)) (|:| |period| (-768))) (-768) $) 35)) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4123 (($ (-1 (-112) |#1|) $) 143)) (-4136 (($ (-1 (-112) |#1|) $) 144)) (-3538 (($ $ |#1|) 88 (|has| $ (-6 -4413)))) (-3042 (($ $ (-564)) 44)) (-2791 (((-112) $) 92)) (-3429 (((-112) $) 12)) (-3878 (((-112) $) 134)) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 30)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) 20)) (-2834 (($) 59)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 73) ((|#1| $ (-564) |#1|) NIL)) (-2774 (((-564) $ $) 63)) (-2090 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2999 (($ (-1 $)) 62)) (-1875 (((-112) $) 89)) (-3554 (($ $) 90)) (-1911 (($ $) 115 (|has| $ (-6 -4413)))) (-2966 (((-768) $) NIL)) (-3414 (($ $) NIL)) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) 58)) (-2374 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 72)) (-3053 (($ |#1| $) 113)) (-1711 (($ $ $) 116 (|has| $ (-6 -4413))) (($ $ |#1|) 117 (|has| $ (-6 -4413)))) (-1865 (($ $ $) 99) (($ |#1| $) 60) (($ (-641 $)) 104) (($ $ |#1|) 98)) (-2807 (($ $) 65)) (-3714 (($ (-641 |#1|)) 127) (((-859) $) 56 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) NIL)) (-3036 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 130 (|has| |#1| (-1094)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1150 |#1|) (-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4413) (-15 -1619 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -2823 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -1719 ((-2 (|:| |cycle?| (-112)) (|:| -2893 (-768)) (|:| |period| (-768))) (-768) $)) (-15 -2999 ($ (-1 $))) (-15 -3053 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -3783 ((-1264) (-564) $)) (-15 -1676 ((-859) $)) (-15 -3919 ((-112)))) |%noBranch|) (-15 -3543 ($ $ (-564) $)) (-15 -4077 ($ (-1 |#1|))) (-15 -4077 ($ (-1 |#1| |#1|) |#1|)) (-15 -4123 ($ (-1 (-112) |#1|) $)) (-15 -4136 ($ (-1 (-112) |#1|) $)))) (-1209)) (T -1150))
+((-1619 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2823 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)) (-5 *1 (-1150 *4)))) (-1719 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2893 (-768)) (|:| |period| (-768)))) (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-768)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-3053 (*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209)))) (-3783 (*1 *2 *3 *1) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-3919 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-3543 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-4123 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-4136 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
+(-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4413) (-15 -1619 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -2823 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -1719 ((-2 (|:| |cycle?| (-112)) (|:| -2893 (-768)) (|:| |period| (-768))) (-768) $)) (-15 -2999 ($ (-1 $))) (-15 -3053 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -3783 ((-1264) (-564) $)) (-15 -1676 ((-859) $)) (-15 -3919 ((-112)))) |%noBranch|) (-15 -3543 ($ $ (-564) $)) (-15 -4077 ($ (-1 |#1|))) (-15 -4077 ($ (-1 |#1| |#1|) |#1|)) (-15 -4123 ($ (-1 (-112) |#1|) $)) (-15 -4136 ($ (-1 (-112) |#1|) $))))
+((-3702 (((-112) $ $) 19)) (-1412 (($ $) 120)) (-4225 (($ $) 121)) (-4367 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2399 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4413)))) (-1468 (((-112) $ $) 118)) (-1445 (((-112) $ $ (-564)) 117)) (-3963 (($ (-564)) 127)) (-3374 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-1562 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-847)))) (-4194 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4413))) (($ $) 88 (-12 (|has| (-144) (-847)) (|has| $ (-6 -4413))))) (-2904 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-847)))) (-2141 (((-112) $ (-768)) 8)) (-3868 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4413))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-2898 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-1651 (($ $) 90 (|has| $ (-6 -4413)))) (-1923 (($ $) 100)) (-4270 (($ $ (-1226 (-564)) $) 114)) (-2084 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4412)))) (-1728 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4412))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4412)))) (-1998 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4413)))) (-3593 (((-144) $ (-564)) 51)) (-1490 (((-112) $ $) 119)) (-3303 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-4244 (((-641 (-144)) $) 30 (|has| $ (-6 -4412)))) (-3564 (($ (-768) (-144)) 69)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 43 (|has| (-564) (-847)))) (-3428 (($ $ $) 87 (|has| (-144) (-847)))) (-3678 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-847)))) (-2572 (((-641 (-144)) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-3413 (($ $ $) 86 (|has| (-144) (-847)))) (-2174 (((-112) $ $ (-144)) 115)) (-1414 (((-768) $ $ (-144)) 116)) (-1988 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-4177 (($ $) 122)) (-2603 (($ $) 123)) (-4144 (((-112) $ (-768)) 10)) (-2908 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-1868 (((-1152) $) 22)) (-2455 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-3127 (((-641 (-564)) $) 46)) (-1338 (((-112) (-564) $) 47)) (-3844 (((-1114) $) 21)) (-2049 (((-144) $) 42 (|has| (-564) (-847)))) (-2905 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-3538 (($ $ (-144)) 41 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-4121 (((-641 (-144)) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-2090 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3855 (((-768) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4412))) (((-768) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4412))))) (-3474 (($ $ $ (-564)) 91 (|has| $ (-6 -4413)))) (-3890 (($ $) 13)) (-2374 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-3725 (($ (-641 (-144))) 70)) (-1865 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3714 (($ (-144)) 111) (((-859) $) 18)) (-4289 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4412)))) (-1983 (((-1152) $) 131) (((-1152) $ (-112)) 130) (((-1264) (-819) $) 129) (((-1264) (-819) $ (-112)) 128)) (-1781 (((-112) $ $) 84 (|has| (-144) (-847)))) (-1758 (((-112) $ $) 83 (|has| (-144) (-847)))) (-1720 (((-112) $ $) 20)) (-1769 (((-112) $ $) 85 (|has| (-144) (-847)))) (-1746 (((-112) $ $) 82 (|has| (-144) (-847)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-1151) (-140)) (T -1151))
-((-1961 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151)))))
-(-13 (-1138) (-1094) (-825) (-10 -8 (-15 -1961 ($ (-564)))))
+((-3963 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151)))))
+(-13 (-1138) (-1094) (-825) (-10 -8 (-15 -3963 ($ (-564)))))
(((-34) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-825) . T) ((-847) |has| (-144) (-847)) ((-1094) . T) ((-1138) . T) ((-1209) . T))
-((-1754 (((-112) $ $) NIL)) (-3318 (($ $) NIL)) (-2851 (($ $) NIL)) (-2567 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-2490 (((-112) $ $) NIL)) (-2471 (((-112) $ $ (-564)) NIL)) (-1961 (($ (-564)) 8)) (-1654 (((-641 $) $ (-144)) NIL) (((-641 $) $ (-141)) NIL)) (-4310 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-847)))) (-3606 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-847))))) (-2494 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4412))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3919 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-2856 (($ $ (-1226 (-564)) $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2359 (($ (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4411)))) (-3528 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4412)))) (-3455 (((-144) $ (-564)) NIL)) (-2516 (((-112) $ $) NIL)) (-1356 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) NIL (|has| (-144) (-1094))) (((-564) $ $ (-564)) NIL) (((-564) (-141) $ (-564)) NIL)) (-3080 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-1633 (($ (-768) (-144)) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| (-144) (-847)))) (-4012 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-847)))) (-3817 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| (-144) (-847)))) (-3128 (((-112) $ $ (-144)) NIL)) (-4299 (((-768) $ $ (-144)) NIL)) (-3513 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2847 (($ $) NIL)) (-1816 (($ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-3934 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-4202 (((-1152) $) NIL)) (-3412 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 (((-144) $) NIL (|has| (-564) (-847)))) (-2343 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2614 (($ $ (-144)) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-3599 (((-641 (-144)) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) NIL)) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3815 (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411))) (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-1776 (($ (-641 (-144))) NIL)) (-2817 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1765 (($ (-144)) NIL) (((-859) $) NIL)) (-2237 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-3886 (((-1152) $) 19) (((-1152) $ (-112)) 21) (((-1264) (-819) $) 22) (((-1264) (-819) $ (-112)) 23)) (-1738 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1715 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1705 (((-112) $ $) NIL (|has| (-144) (-847)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1412 (($ $) NIL)) (-4225 (($ $) NIL)) (-4367 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1468 (((-112) $ $) NIL)) (-1445 (((-112) $ $ (-564)) NIL)) (-3963 (($ (-564)) 8)) (-3374 (((-641 $) $ (-144)) NIL) (((-641 $) $ (-141)) NIL)) (-1562 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-847)))) (-4194 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| (-144) (-847))))) (-2904 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4413))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-2898 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-4270 (($ $ (-1226 (-564)) $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-2514 (($ (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4412))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4412)))) (-1998 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4413)))) (-3593 (((-144) $ (-564)) NIL)) (-1490 (((-112) $ $) NIL)) (-3303 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) NIL (|has| (-144) (-1094))) (((-564) $ $ (-564)) NIL) (((-564) (-141) $ (-564)) NIL)) (-4244 (((-641 (-144)) $) NIL (|has| $ (-6 -4412)))) (-3564 (($ (-768) (-144)) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| (-144) (-847)))) (-3678 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-847)))) (-2572 (((-641 (-144)) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| (-144) (-847)))) (-2174 (((-112) $ $ (-144)) NIL)) (-1414 (((-768) $ $ (-144)) NIL)) (-1988 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4177 (($ $) NIL)) (-2603 (($ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-2908 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1868 (((-1152) $) NIL)) (-2455 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 (((-144) $) NIL (|has| (-564) (-847)))) (-2905 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3538 (($ $ (-144)) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-4121 (((-641 (-144)) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) NIL)) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3855 (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412))) (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-3725 (($ (-641 (-144))) NIL)) (-1865 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3714 (($ (-144)) NIL) (((-859) $) NIL)) (-4289 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4412)))) (-1983 (((-1152) $) 19) (((-1152) $ (-112)) 21) (((-1264) (-819) $) 22) (((-1264) (-819) $ (-112)) 23)) (-1781 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1758 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1746 (((-112) $ $) NIL (|has| (-144) (-847)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
(((-1152) (-1151)) (T -1152))
NIL
(-1151)
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL)) (-3476 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-1152) |#1|) NIL)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 |#1| "failed") (-1152) $) NIL)) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094))))) (-1907 (($ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#1| "failed") (-1152) $) NIL)) (-2359 (($ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-1152)) NIL)) (-3080 (((-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-1152) $) NIL (|has| (-1152) (-847)))) (-3817 (((-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-1152) $) NIL (|has| (-1152) (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-3211 (((-641 (-1152)) $) NIL)) (-4185 (((-112) (-1152) $) NIL)) (-1833 (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL)) (-2098 (($ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL)) (-1371 (((-641 (-1152)) $) NIL)) (-3629 (((-112) (-1152) $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-3073 ((|#1| $) NIL (|has| (-1152) (-847)))) (-2343 (((-3 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) "failed") (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (($ $ (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL (-12 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-309 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-1152)) NIL) ((|#1| $ (-1152) |#1|) NIL)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL)) (-1765 (((-859) $) NIL (-4002 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-611 (-859))) (|has| |#1| (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 (-1152)) (|:| -1327 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1153 |#1|) (-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4411))) (-1094)) (T -1153))
-NIL
-(-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4411)))
-((-2259 (((-1150 |#1|) (-1150 |#1|)) 84)) (-1926 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 42)) (-3869 (((-1150 |#1|) (-407 (-564)) (-1150 |#1|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2213 (((-1150 |#1|) |#1| (-1150 |#1|)) 141 (|has| |#1| (-363)))) (-1720 (((-1150 |#1|) (-1150 |#1|)) 99)) (-2503 (((-1150 (-564)) (-564)) 63)) (-2826 (((-1150 |#1|) (-1150 (-1150 |#1|))) 118 (|has| |#1| (-38 (-407 (-564)))))) (-1427 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 104)) (-2292 (((-1150 |#1|) |#1| (-564)) 53)) (-3628 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 66)) (-3394 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 138 (|has| |#1| (-363)))) (-2597 (((-1150 |#1|) |#1| (-1 (-1150 |#1|))) 117 (|has| |#1| (-38 (-407 (-564)))))) (-3705 (((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|))) 139 (|has| |#1| (-363)))) (-1444 (((-1150 |#1|) (-1150 |#1|)) 98)) (-3143 (((-1150 |#1|) (-1150 |#1|)) 82)) (-3191 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 105)) (-3591 (((-1150 |#1|) |#1| (-1150 |#1|)) 114 (|has| |#1| (-38 (-407 (-564)))))) (-2882 (((-1150 (-564)) (-564)) 62)) (-1410 (((-1150 |#1|) |#1|) 65)) (-1648 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 101)) (-2316 (((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|)) 72)) (-1343 (((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|)) 40)) (-1890 (((-1150 |#1|) (-1150 |#1|)) 100)) (-2407 (((-1150 |#1|) (-1150 |#1|) |#1|) 77)) (-2109 (((-1150 |#1|) (-1150 |#1|)) 68)) (-1979 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 78)) (-1765 (((-1150 |#1|) |#1|) 73)) (-2329 (((-1150 |#1|) (-1150 (-1150 |#1|))) 89)) (-1793 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41)) (-1783 (((-1150 |#1|) (-1150 |#1|)) 21) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 23)) (-1771 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 17)) (* (((-1150 |#1|) (-1150 |#1|) |#1|) 29) (((-1150 |#1|) |#1| (-1150 |#1|)) 26) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 27)))
-(((-1154 |#1|) (-10 -7 (-15 -1771 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1783 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1783 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1343 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -1793 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1926 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -2292 ((-1150 |#1|) |#1| (-564))) (-15 -2882 ((-1150 (-564)) (-564))) (-15 -2503 ((-1150 (-564)) (-564))) (-15 -1410 ((-1150 |#1|) |#1|)) (-15 -3628 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2109 ((-1150 |#1|) (-1150 |#1|))) (-15 -2316 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -1765 ((-1150 |#1|) |#1|)) (-15 -2407 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1979 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3143 ((-1150 |#1|) (-1150 |#1|))) (-15 -2259 ((-1150 |#1|) (-1150 |#1|))) (-15 -2329 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1444 ((-1150 |#1|) (-1150 |#1|))) (-15 -1720 ((-1150 |#1|) (-1150 |#1|))) (-15 -1890 ((-1150 |#1|) (-1150 |#1|))) (-15 -1648 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -1427 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -3191 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -2597 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -2826 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -3869 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3394 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3705 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -2213 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|)) (-1046)) (T -1154))
-((-2213 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)))) (-3394 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3869 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1046)) (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))) (-2597 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))) (-3591 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3191 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-1427 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-1648 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1444 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-1046)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3143 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1979 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2407 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1765 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-2316 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3628 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1410 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-2503 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) (-5 *3 (-564)))) (-2882 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) (-5 *3 (-564)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-1926 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1793 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1343 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1783 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1771 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
-(-10 -7 (-15 -1771 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1783 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1783 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1343 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -1793 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1926 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -2292 ((-1150 |#1|) |#1| (-564))) (-15 -2882 ((-1150 (-564)) (-564))) (-15 -2503 ((-1150 (-564)) (-564))) (-15 -1410 ((-1150 |#1|) |#1|)) (-15 -3628 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2109 ((-1150 |#1|) (-1150 |#1|))) (-15 -2316 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -1765 ((-1150 |#1|) |#1|)) (-15 -2407 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1979 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3143 ((-1150 |#1|) (-1150 |#1|))) (-15 -2259 ((-1150 |#1|) (-1150 |#1|))) (-15 -2329 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1444 ((-1150 |#1|) (-1150 |#1|))) (-15 -1720 ((-1150 |#1|) (-1150 |#1|))) (-15 -1890 ((-1150 |#1|) (-1150 |#1|))) (-15 -1648 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -1427 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -3191 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -2597 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -2826 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -3869 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3394 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3705 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -2213 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|))
-((-3904 (((-1150 |#1|) (-1150 |#1|)) 60)) (-3752 (((-1150 |#1|) (-1150 |#1|)) 42)) (-3879 (((-1150 |#1|) (-1150 |#1|)) 56)) (-3727 (((-1150 |#1|) (-1150 |#1|)) 38)) (-3933 (((-1150 |#1|) (-1150 |#1|)) 63)) (-3778 (((-1150 |#1|) (-1150 |#1|)) 45)) (-2186 (((-1150 |#1|) (-1150 |#1|)) 34)) (-2152 (((-1150 |#1|) (-1150 |#1|)) 29)) (-3949 (((-1150 |#1|) (-1150 |#1|)) 64)) (-3789 (((-1150 |#1|) (-1150 |#1|)) 46)) (-3918 (((-1150 |#1|) (-1150 |#1|)) 61)) (-3765 (((-1150 |#1|) (-1150 |#1|)) 43)) (-3891 (((-1150 |#1|) (-1150 |#1|)) 58)) (-3739 (((-1150 |#1|) (-1150 |#1|)) 40)) (-3991 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3827 (((-1150 |#1|) (-1150 |#1|)) 50)) (-3963 (((-1150 |#1|) (-1150 |#1|)) 66)) (-3801 (((-1150 |#1|) (-1150 |#1|)) 48)) (-4020 (((-1150 |#1|) (-1150 |#1|)) 71)) (-3854 (((-1150 |#1|) (-1150 |#1|)) 53)) (-3586 (((-1150 |#1|) (-1150 |#1|)) 72)) (-3867 (((-1150 |#1|) (-1150 |#1|)) 54)) (-4005 (((-1150 |#1|) (-1150 |#1|)) 70)) (-3840 (((-1150 |#1|) (-1150 |#1|)) 52)) (-3977 (((-1150 |#1|) (-1150 |#1|)) 69)) (-3814 (((-1150 |#1|) (-1150 |#1|)) 51)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 36)))
-(((-1155 |#1|) (-10 -7 (-15 -2152 ((-1150 |#1|) (-1150 |#1|))) (-15 -2186 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3727 ((-1150 |#1|) (-1150 |#1|))) (-15 -3739 ((-1150 |#1|) (-1150 |#1|))) (-15 -3752 ((-1150 |#1|) (-1150 |#1|))) (-15 -3765 ((-1150 |#1|) (-1150 |#1|))) (-15 -3778 ((-1150 |#1|) (-1150 |#1|))) (-15 -3789 ((-1150 |#1|) (-1150 |#1|))) (-15 -3801 ((-1150 |#1|) (-1150 |#1|))) (-15 -3814 ((-1150 |#1|) (-1150 |#1|))) (-15 -3827 ((-1150 |#1|) (-1150 |#1|))) (-15 -3840 ((-1150 |#1|) (-1150 |#1|))) (-15 -3854 ((-1150 |#1|) (-1150 |#1|))) (-15 -3867 ((-1150 |#1|) (-1150 |#1|))) (-15 -3879 ((-1150 |#1|) (-1150 |#1|))) (-15 -3891 ((-1150 |#1|) (-1150 |#1|))) (-15 -3904 ((-1150 |#1|) (-1150 |#1|))) (-15 -3918 ((-1150 |#1|) (-1150 |#1|))) (-15 -3933 ((-1150 |#1|) (-1150 |#1|))) (-15 -3949 ((-1150 |#1|) (-1150 |#1|))) (-15 -3963 ((-1150 |#1|) (-1150 |#1|))) (-15 -3977 ((-1150 |#1|) (-1150 |#1|))) (-15 -3991 ((-1150 |#1|) (-1150 |#1|))) (-15 -4005 ((-1150 |#1|) (-1150 |#1|))) (-15 -4020 ((-1150 |#1|) (-1150 |#1|))) (-15 -3586 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1155))
-((-3586 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-4020 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3977 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3867 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2186 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2152 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))))
-(-10 -7 (-15 -2152 ((-1150 |#1|) (-1150 |#1|))) (-15 -2186 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3727 ((-1150 |#1|) (-1150 |#1|))) (-15 -3739 ((-1150 |#1|) (-1150 |#1|))) (-15 -3752 ((-1150 |#1|) (-1150 |#1|))) (-15 -3765 ((-1150 |#1|) (-1150 |#1|))) (-15 -3778 ((-1150 |#1|) (-1150 |#1|))) (-15 -3789 ((-1150 |#1|) (-1150 |#1|))) (-15 -3801 ((-1150 |#1|) (-1150 |#1|))) (-15 -3814 ((-1150 |#1|) (-1150 |#1|))) (-15 -3827 ((-1150 |#1|) (-1150 |#1|))) (-15 -3840 ((-1150 |#1|) (-1150 |#1|))) (-15 -3854 ((-1150 |#1|) (-1150 |#1|))) (-15 -3867 ((-1150 |#1|) (-1150 |#1|))) (-15 -3879 ((-1150 |#1|) (-1150 |#1|))) (-15 -3891 ((-1150 |#1|) (-1150 |#1|))) (-15 -3904 ((-1150 |#1|) (-1150 |#1|))) (-15 -3918 ((-1150 |#1|) (-1150 |#1|))) (-15 -3933 ((-1150 |#1|) (-1150 |#1|))) (-15 -3949 ((-1150 |#1|) (-1150 |#1|))) (-15 -3963 ((-1150 |#1|) (-1150 |#1|))) (-15 -3977 ((-1150 |#1|) (-1150 |#1|))) (-15 -3991 ((-1150 |#1|) (-1150 |#1|))) (-15 -4005 ((-1150 |#1|) (-1150 |#1|))) (-15 -4020 ((-1150 |#1|) (-1150 |#1|))) (-15 -3586 ((-1150 |#1|) (-1150 |#1|))))
-((-3904 (((-1150 |#1|) (-1150 |#1|)) 108)) (-3752 (((-1150 |#1|) (-1150 |#1|)) 65)) (-3017 (((-2 (|:| -3879 (-1150 |#1|)) (|:| -3891 (-1150 |#1|))) (-1150 |#1|)) 104)) (-3879 (((-1150 |#1|) (-1150 |#1|)) 105)) (-3831 (((-2 (|:| -3727 (-1150 |#1|)) (|:| -3739 (-1150 |#1|))) (-1150 |#1|)) 54)) (-3727 (((-1150 |#1|) (-1150 |#1|)) 55)) (-3933 (((-1150 |#1|) (-1150 |#1|)) 110)) (-3778 (((-1150 |#1|) (-1150 |#1|)) 72)) (-2186 (((-1150 |#1|) (-1150 |#1|)) 40)) (-2152 (((-1150 |#1|) (-1150 |#1|)) 37)) (-3949 (((-1150 |#1|) (-1150 |#1|)) 111)) (-3789 (((-1150 |#1|) (-1150 |#1|)) 73)) (-3918 (((-1150 |#1|) (-1150 |#1|)) 109)) (-3765 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3891 (((-1150 |#1|) (-1150 |#1|)) 106)) (-3739 (((-1150 |#1|) (-1150 |#1|)) 56)) (-3991 (((-1150 |#1|) (-1150 |#1|)) 119)) (-3827 (((-1150 |#1|) (-1150 |#1|)) 94)) (-3963 (((-1150 |#1|) (-1150 |#1|)) 113)) (-3801 (((-1150 |#1|) (-1150 |#1|)) 90)) (-4020 (((-1150 |#1|) (-1150 |#1|)) 123)) (-3854 (((-1150 |#1|) (-1150 |#1|)) 98)) (-3586 (((-1150 |#1|) (-1150 |#1|)) 125)) (-3867 (((-1150 |#1|) (-1150 |#1|)) 100)) (-4005 (((-1150 |#1|) (-1150 |#1|)) 121)) (-3840 (((-1150 |#1|) (-1150 |#1|)) 96)) (-3977 (((-1150 |#1|) (-1150 |#1|)) 115)) (-3814 (((-1150 |#1|) (-1150 |#1|)) 92)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41)))
-(((-1156 |#1|) (-10 -7 (-15 -2152 ((-1150 |#1|) (-1150 |#1|))) (-15 -2186 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3831 ((-2 (|:| -3727 (-1150 |#1|)) (|:| -3739 (-1150 |#1|))) (-1150 |#1|))) (-15 -3727 ((-1150 |#1|) (-1150 |#1|))) (-15 -3739 ((-1150 |#1|) (-1150 |#1|))) (-15 -3752 ((-1150 |#1|) (-1150 |#1|))) (-15 -3765 ((-1150 |#1|) (-1150 |#1|))) (-15 -3778 ((-1150 |#1|) (-1150 |#1|))) (-15 -3789 ((-1150 |#1|) (-1150 |#1|))) (-15 -3801 ((-1150 |#1|) (-1150 |#1|))) (-15 -3814 ((-1150 |#1|) (-1150 |#1|))) (-15 -3827 ((-1150 |#1|) (-1150 |#1|))) (-15 -3840 ((-1150 |#1|) (-1150 |#1|))) (-15 -3854 ((-1150 |#1|) (-1150 |#1|))) (-15 -3867 ((-1150 |#1|) (-1150 |#1|))) (-15 -3017 ((-2 (|:| -3879 (-1150 |#1|)) (|:| -3891 (-1150 |#1|))) (-1150 |#1|))) (-15 -3879 ((-1150 |#1|) (-1150 |#1|))) (-15 -3891 ((-1150 |#1|) (-1150 |#1|))) (-15 -3904 ((-1150 |#1|) (-1150 |#1|))) (-15 -3918 ((-1150 |#1|) (-1150 |#1|))) (-15 -3933 ((-1150 |#1|) (-1150 |#1|))) (-15 -3949 ((-1150 |#1|) (-1150 |#1|))) (-15 -3963 ((-1150 |#1|) (-1150 |#1|))) (-15 -3977 ((-1150 |#1|) (-1150 |#1|))) (-15 -3991 ((-1150 |#1|) (-1150 |#1|))) (-15 -4005 ((-1150 |#1|) (-1150 |#1|))) (-15 -4020 ((-1150 |#1|) (-1150 |#1|))) (-15 -3586 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1156))
-((-3586 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-4020 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3977 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3017 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3879 (-1150 *4)) (|:| -3891 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (-3867 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -3727 (-1150 *4)) (|:| -3739 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2186 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2152 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))))
-(-10 -7 (-15 -2152 ((-1150 |#1|) (-1150 |#1|))) (-15 -2186 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3831 ((-2 (|:| -3727 (-1150 |#1|)) (|:| -3739 (-1150 |#1|))) (-1150 |#1|))) (-15 -3727 ((-1150 |#1|) (-1150 |#1|))) (-15 -3739 ((-1150 |#1|) (-1150 |#1|))) (-15 -3752 ((-1150 |#1|) (-1150 |#1|))) (-15 -3765 ((-1150 |#1|) (-1150 |#1|))) (-15 -3778 ((-1150 |#1|) (-1150 |#1|))) (-15 -3789 ((-1150 |#1|) (-1150 |#1|))) (-15 -3801 ((-1150 |#1|) (-1150 |#1|))) (-15 -3814 ((-1150 |#1|) (-1150 |#1|))) (-15 -3827 ((-1150 |#1|) (-1150 |#1|))) (-15 -3840 ((-1150 |#1|) (-1150 |#1|))) (-15 -3854 ((-1150 |#1|) (-1150 |#1|))) (-15 -3867 ((-1150 |#1|) (-1150 |#1|))) (-15 -3017 ((-2 (|:| -3879 (-1150 |#1|)) (|:| -3891 (-1150 |#1|))) (-1150 |#1|))) (-15 -3879 ((-1150 |#1|) (-1150 |#1|))) (-15 -3891 ((-1150 |#1|) (-1150 |#1|))) (-15 -3904 ((-1150 |#1|) (-1150 |#1|))) (-15 -3918 ((-1150 |#1|) (-1150 |#1|))) (-15 -3933 ((-1150 |#1|) (-1150 |#1|))) (-15 -3949 ((-1150 |#1|) (-1150 |#1|))) (-15 -3963 ((-1150 |#1|) (-1150 |#1|))) (-15 -3977 ((-1150 |#1|) (-1150 |#1|))) (-15 -3991 ((-1150 |#1|) (-1150 |#1|))) (-15 -4005 ((-1150 |#1|) (-1150 |#1|))) (-15 -4020 ((-1150 |#1|) (-1150 |#1|))) (-15 -3586 ((-1150 |#1|) (-1150 |#1|))))
-((-3764 (((-955 |#2|) |#2| |#2|) 50)) (-2190 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307)))))
-(((-1157 |#1| |#2|) (-10 -7 (-15 -3764 ((-955 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2190 (|#2| |#2| |#1|)) |%noBranch|)) (-556) (-1235 |#1|)) (T -1157))
-((-2190 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1235 *3)))) (-3764 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-955 *3)) (-5 *1 (-1157 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -3764 ((-955 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2190 (|#2| |#2| |#1|)) |%noBranch|))
-((-1754 (((-112) $ $) NIL)) (-3997 (($ $ (-641 (-768))) 80)) (-1542 (($) 32)) (-1642 (($ $) 50)) (-2436 (((-641 $) $) 59)) (-4259 (((-112) $) 19)) (-2736 (((-641 (-940 |#2|)) $) 87)) (-3699 (($ $) 81)) (-1497 (((-768) $) 46)) (-1633 (($) 31)) (-2584 (($ $ (-641 (-768)) (-940 |#2|)) 73) (($ $ (-641 (-768)) (-768)) 74) (($ $ (-768) (-940 |#2|)) 76)) (-4012 (($ $ $) 56) (($ (-641 $)) 58)) (-3299 (((-768) $) 88)) (-2200 (((-112) $) 15)) (-4202 (((-1152) $) NIL)) (-2682 (((-112) $) 21)) (-3802 (((-1114) $) NIL)) (-3585 (((-171) $) 86)) (-1425 (((-940 |#2|) $) 82)) (-2546 (((-768) $) 83)) (-1391 (((-112) $) 85)) (-2571 (($ $ (-641 (-768)) (-171)) 79)) (-1487 (($ $) 51)) (-1765 (((-859) $) 99)) (-3846 (($ $ (-641 (-768)) (-112)) 78)) (-3706 (((-641 $) $) 11)) (-1302 (($ $ (-768)) 45)) (-1340 (($ $) 42)) (-3052 (($ $ $ (-940 |#2|) (-768)) 69)) (-1300 (($ $ (-940 |#2|)) 68)) (-2192 (($ $ (-641 (-768)) (-940 |#2|)) 65) (($ $ (-641 (-768)) (-768)) 71) (((-768) $ (-940 |#2|)) 72)) (-1686 (((-112) $ $) 93)))
-(((-1158 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -2200 ((-112) $)) (-15 -4259 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -1633 ($)) (-15 -1542 ($)) (-15 -1340 ($ $)) (-15 -1302 ($ $ (-768))) (-15 -3706 ((-641 $) $)) (-15 -1497 ((-768) $)) (-15 -1642 ($ $)) (-15 -1487 ($ $)) (-15 -4012 ($ $ $)) (-15 -4012 ($ (-641 $))) (-15 -2436 ((-641 $) $)) (-15 -2192 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -1300 ($ $ (-940 |#2|))) (-15 -3052 ($ $ $ (-940 |#2|) (-768))) (-15 -2584 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2192 ($ $ (-641 (-768)) (-768))) (-15 -2584 ($ $ (-641 (-768)) (-768))) (-15 -2192 ((-768) $ (-940 |#2|))) (-15 -2584 ($ $ (-768) (-940 |#2|))) (-15 -3846 ($ $ (-641 (-768)) (-112))) (-15 -2571 ($ $ (-641 (-768)) (-171))) (-15 -3997 ($ $ (-641 (-768)))) (-15 -1425 ((-940 |#2|) $)) (-15 -2546 ((-768) $)) (-15 -1391 ((-112) $)) (-15 -3585 ((-171) $)) (-15 -3299 ((-768) $)) (-15 -3699 ($ $)) (-15 -2736 ((-641 (-940 |#2|)) $)))) (-918) (-1046)) (T -1158))
-((-2200 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-4259 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1633 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-1542 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-1340 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-1302 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1642 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-1487 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-4012 (*1 *1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-4012 (*1 *1 *2) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2192 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-1300 (*1 *1 *1 *2) (-12 (-5 *2 (-940 *4)) (-4 *4 (-1046)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)))) (-3052 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-940 *5)) (-5 *3 (-768)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2192 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-2584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-2192 (*1 *2 *1 *3) (-12 (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *2 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-3846 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-2571 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-3997 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-940 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3699 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-641 (-940 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))))
-(-13 (-1094) (-10 -8 (-15 -2200 ((-112) $)) (-15 -4259 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -1633 ($)) (-15 -1542 ($)) (-15 -1340 ($ $)) (-15 -1302 ($ $ (-768))) (-15 -3706 ((-641 $) $)) (-15 -1497 ((-768) $)) (-15 -1642 ($ $)) (-15 -1487 ($ $)) (-15 -4012 ($ $ $)) (-15 -4012 ($ (-641 $))) (-15 -2436 ((-641 $) $)) (-15 -2192 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -1300 ($ $ (-940 |#2|))) (-15 -3052 ($ $ $ (-940 |#2|) (-768))) (-15 -2584 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2192 ($ $ (-641 (-768)) (-768))) (-15 -2584 ($ $ (-641 (-768)) (-768))) (-15 -2192 ((-768) $ (-940 |#2|))) (-15 -2584 ($ $ (-768) (-940 |#2|))) (-15 -3846 ($ $ (-641 (-768)) (-112))) (-15 -2571 ($ $ (-641 (-768)) (-171))) (-15 -3997 ($ $ (-641 (-768)))) (-15 -1425 ((-940 |#2|) $)) (-15 -2546 ((-768) $)) (-15 -1391 ((-112) $)) (-15 -3585 ((-171) $)) (-15 -3299 ((-768) $)) (-15 -3699 ($ $)) (-15 -2736 ((-641 (-940 |#2|)) $))))
-((-1754 (((-112) $ $) NIL)) (-4324 ((|#2| $) 11)) (-4312 ((|#1| $) 10)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1776 (($ |#1| |#2|) 9)) (-1765 (((-859) $) 16)) (-1686 (((-112) $ $) NIL)))
-(((-1159 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1776 ($ |#1| |#2|)) (-15 -4312 (|#1| $)) (-15 -4324 (|#2| $)))) (-1094) (-1094)) (T -1159))
-((-1776 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094)))) (-4324 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094)))))
-(-13 (-1094) (-10 -8 (-15 -1776 ($ |#1| |#2|)) (-15 -4312 (|#1| $)) (-15 -4324 (|#2| $))))
-((-1754 (((-112) $ $) NIL)) (-3978 (((-1129) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-1160) (-13 (-1077) (-10 -8 (-15 -3978 ((-1129) $))))) (T -1160))
-((-3978 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160)))))
-(-13 (-1077) (-10 -8 (-15 -3978 ((-1129) $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) 11)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1840 (($ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-4035 (((-112) $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3742 (($ $ (-564)) NIL) (($ $ (-564) (-564)) 75)) (-3219 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-1581 (((-1168 |#1| |#2| |#3|) $) 42)) (-2961 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 32)) (-4223 (((-1168 |#1| |#2| |#3|) $) 33)) (-3904 (($ $) 116 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-1368 (($ $) NIL (|has| |#1| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3879 (($ $) 112 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3438 (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-3526 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3933 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-2064 (((-1168 |#1| |#2| |#3|) $) 140) (((-1170) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-3881 (($ $) 37) (($ (-564) $) 38)) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) NIL)) (-2620 (((-685 (-1168 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1447 (-685 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1168 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-1926 (((-3 $ "failed") $) 54)) (-2754 (((-407 (-949 |#1|)) $ (-564)) 74 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 76 (|has| |#1| (-556)))) (-2542 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3241 (((-112) $) NIL (|has| |#1| (-363)))) (-1751 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-1459 (((-112) $) 28)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-883 (-564))) (|has| |#1| (-363))))) (-2261 (((-564) $) NIL) (((-564) $ (-564)) 26)) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL (|has| |#1| (-363)))) (-1507 (((-1168 |#1| |#2| |#3|) $) 44 (|has| |#1| (-363)))) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3374 (((-3 $ "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2506 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2300 (($ $ (-918)) NIL)) (-3849 (($ (-1 |#1| (-564)) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-564)) 19) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-3571 (($ $ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1547 (($ $ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4235 (($ (-564) (-1168 |#1| |#2| |#3|)) 36)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-3591 (($ $) 79 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 80 (|has| |#1| (-38 (-407 (-564)))))) (-1611 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2002 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2677 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4006 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-2678 (($ $ (-564)) 158)) (-1343 (((-3 $ "failed") $ $) 55 (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2152 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1168 |#1| |#2| |#3|)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) NIL) (($ $ $) 61 (|has| (-564) (-1106))) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-286 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-3226 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 57) (($ $ (-768)) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 56 (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-3762 (($ $) NIL (|has| |#1| (-363)))) (-1517 (((-1168 |#1| |#2| |#3|) $) 46 (|has| |#1| (-363)))) (-3344 (((-564) $) 43)) (-3949 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 118 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 114 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-2127 (((-536) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3204 (($ $) NIL)) (-1765 (((-859) $) 162) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1168 |#1| |#2| |#3|)) 30) (($ (-1255 |#2|)) 25) (($ (-1170)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-1757 ((|#1| $ (-564)) 77)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-3415 ((|#1| $) 12)) (-2991 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3991 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3963 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 108 (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 110 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 106 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-2016 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-4317 (($) 21 T CONST)) (-4327 (($) 16 T CONST)) (-3190 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1738 (((-112) $ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1715 (((-112) $ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1705 (((-112) $ $) NIL (-4002 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 49 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 50 (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 23)) (** (($ $ (-918)) NIL) (($ $ (-768)) 60) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) 83 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1168 |#1| |#2| |#3|)) 48 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) $) 47 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1161 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -1765 ($ (-1255 |#2|))) (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1161))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
-(-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -1765 ($ (-1255 |#2|))) (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-1334 ((|#2| |#2| (-1086 |#2|)) 26) ((|#2| |#2| (-1170)) 28)))
-(((-1162 |#1| |#2|) (-10 -7 (-15 -1334 (|#2| |#2| (-1170))) (-15 -1334 (|#2| |#2| (-1086 |#2|)))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-430 |#1|) (-160) (-27) (-1194))) (T -1162))
-((-1334 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)))) (-1334 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))))))
-(-10 -7 (-15 -1334 (|#2| |#2| (-1170))) (-15 -1334 (|#2| |#2| (-1086 |#2|))))
-((-1334 (((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))) 31) (((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|))) 44) (((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170)) 33) (((-407 (-949 |#1|)) (-949 |#1|) (-1170)) 36)))
-(((-1163 |#1|) (-10 -7 (-15 -1334 ((-407 (-949 |#1|)) (-949 |#1|) (-1170))) (-15 -1334 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -1334 ((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|)))) (-15 -1334 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))))) (-13 (-556) (-847) (-1035 (-564)))) (T -1163))
-((-1334 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1163 *5)))) (-1334 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-949 *5))) (-5 *3 (-949 *5)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 *3)) (-5 *1 (-1163 *5)))) (-1334 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 (-407 (-949 *5)) (-316 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-407 (-949 *5))))) (-1334 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 (-949 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-949 *5)))))
-(-10 -7 (-15 -1334 ((-407 (-949 |#1|)) (-949 |#1|) (-1170))) (-15 -1334 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -1334 ((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|)))) (-15 -1334 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|))))))
-((-2082 (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 13)))
-(((-1164 |#1| |#2|) (-10 -7 (-15 -2082 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)))) (-1046) (-1046)) (T -1164))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6)))))
-(-10 -7 (-15 -2082 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))))
-((-3981 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 51)) (-4006 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 52)))
-(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4006 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -3981 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))))) (-790) (-847) (-452) (-946 |#3| |#1| |#2|)) (T -1165))
-((-3981 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))))
-(-10 -7 (-15 -4006 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -3981 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))))
-((-1754 (((-112) $ $) 169)) (-3976 (((-112) $) 42)) (-4128 (((-1259 |#1|) $ (-768)) NIL)) (-4170 (((-641 (-1076)) $) NIL)) (-2112 (($ (-1166 |#1|)) NIL)) (-3964 (((-1166 $) $ (-1076)) 81) (((-1166 |#1|) $) 70)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) 162 (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2673 (($ $ $) 156 (|has| |#1| (-556)))) (-1871 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-906)))) (-1368 (($ $) NIL (|has| |#1| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 114 (|has| |#1| (-906)))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3995 (($ $ (-768)) 60)) (-1692 (($ $ (-768)) 62)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2064 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL)) (-4267 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 158 (|has| |#1| (-172)))) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) 79)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3020 (($ $ $) 129)) (-1506 (($ $ $) NIL (|has| |#1| (-556)))) (-3363 (((-2 (|:| -1662 |#1|) (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-556)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2190 (($ $) 163 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#1| (-906)))) (-2877 (($ $ |#1| (-768) $) 68)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-3563 (((-859) $ (-859)) 146)) (-2261 (((-768) $ $) NIL (|has| |#1| (-556)))) (-2419 (((-112) $) 47)) (-3107 (((-768) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-4157 (($ (-1166 |#1|) (-1076)) 72) (($ (-1166 $) (-1076)) 88)) (-2300 (($ $ (-768)) 50)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-768)) 86) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-1076)) NIL) (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 151)) (-3829 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-2964 (($ (-1 (-768) (-768)) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2418 (((-1166 |#1|) $) NIL)) (-2022 (((-3 (-1076) "failed") $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) 75)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-4202 (((-1152) $) NIL)) (-2724 (((-2 (|:| -3741 $) (|:| -2746 $)) $ (-768)) 59)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-1076)) (|:| -3747 (-768))) "failed") $) NIL)) (-3591 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1611 (($) NIL (|has| |#1| (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) 49)) (-4298 ((|#1| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 102 (|has| |#1| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 165 (|has| |#1| (-452)))) (-2198 (($ $ (-768) |#1| $) 121)) (-3113 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) 99 (|has| |#1| (-906)))) (-4006 (((-418 $) $) 107 (|has| |#1| (-906)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-1343 (((-3 $ "failed") $ |#1|) 161 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 122 (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) 148) (($ $ $) 149) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-4135 (((-3 $ "failed") $ (-768)) 53)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 170 (|has| |#1| (-363)))) (-1938 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) 154 (|has| |#1| (-172)))) (-3226 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3344 (((-768) $) 77) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2712 ((|#1| $) 160 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-1765 (((-859) $) 147) (($ (-564)) NIL) (($ |#1|) 76) (($ (-1076)) NIL) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) 40 (|has| |#1| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) 17 T CONST)) (-4327 (($) 19 T CONST)) (-3190 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) 119)) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1793 (($ $ |#1|) 171 (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 89)) (** (($ $ (-918)) 14) (($ $ (-768)) 12)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 127) (($ $ |#1|) NIL)))
-(((-1166 |#1|) (-13 (-1235 |#1|) (-10 -8 (-15 -3563 ((-859) $ (-859))) (-15 -2198 ($ $ (-768) |#1| $)))) (-1046)) (T -1166))
-((-3563 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))) (-2198 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))))
-(-13 (-1235 |#1|) (-10 -8 (-15 -3563 ((-859) $ (-859))) (-15 -2198 ($ $ (-768) |#1| $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) 11)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3742 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-3219 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3879 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 36)) (-2064 (((-1161 |#1| |#2| |#3|) $) NIL) (((-1168 |#1| |#2| |#3|) $) NIL)) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-3079 (((-407 (-564)) $) 59)) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-4248 (($ (-407 (-564)) (-1161 |#1| |#2| |#3|)) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3241 (((-112) $) NIL (|has| |#1| (-363)))) (-1459 (((-112) $) NIL)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-407 (-564))) 20) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2498 (((-1161 |#1| |#2| |#3|) $) 41)) (-2737 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) NIL)) (-4235 (((-1161 |#1| |#2| |#3|) $) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-3591 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-2678 (($ $ (-407 (-564))) NIL)) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-3344 (((-407 (-564)) $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) NIL)) (-1765 (((-859) $) 62) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1161 |#1| |#2| |#3|)) 30) (($ (-1168 |#1| |#2| |#3|)) 31) (($ (-1255 |#2|)) 26) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-1757 ((|#1| $ (-407 (-564))) NIL)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-3415 ((|#1| $) 12)) (-3991 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 22 T CONST)) (-4327 (($) 16 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 24)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1167 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1035 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1167))
-((-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
-(-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1035 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 130)) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) 120)) (-3948 (((-1232 |#2| |#1|) $ (-768)) 68)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3742 (($ $ (-768)) 84) (($ $ (-768) (-768)) 81)) (-3219 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 106)) (-3904 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3879 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 119) (($ (-1150 |#1|)) 114)) (-3933 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) 25)) (-3781 (($ $) 28)) (-4191 (((-949 |#1|) $ (-768)) 80) (((-949 |#1|) $ (-768) (-768)) 82)) (-1459 (((-112) $) 125)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-768) $) 127) (((-768) $ (-768)) 129)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) NIL)) (-3849 (($ (-1 |#1| (-564)) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-768)) 13) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2186 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3591 (($ $) 134 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3802 (((-1114) $) NIL)) (-2678 (($ $ (-768)) 15)) (-1343 (((-3 $ "failed") $ $) 26 (|has| |#1| (-556)))) (-2152 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-4382 ((|#1| $ (-768)) 123) (($ $ $) 133 (|has| (-768) (-1106)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $ (-1255 |#2|)) 31)) (-3344 (((-768) $) NIL)) (-3949 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 156 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) NIL)) (-1765 (((-859) $) 207) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 131 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 54) (($ (-1255 |#2|)) 36)) (-4264 (((-1150 |#1|) $) 102)) (-1757 ((|#1| $ (-768)) 122)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-3415 ((|#1| $) 57)) (-3991 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 158 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-768)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 17 T CONST)) (-4327 (($) 20 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) 199)) (-1771 (($ $ $) 35)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#1|) 204 (|has| |#1| (-363))) (($ $ $) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 142 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 137) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1168 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -1765 ($ (-1232 |#2| |#1|))) (-15 -3948 ((-1232 |#2| |#1|) $ (-768))) (-15 -1765 ($ (-1255 |#2|))) (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1168))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
-(-13 (-1250 |#1|) (-10 -8 (-15 -1765 ($ (-1232 |#2| |#1|))) (-15 -3948 ((-1232 |#2| |#1|) $ (-768))) (-15 -1765 ($ (-1255 |#2|))) (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-1765 (((-859) $) 33) (($ (-1170)) 35)) (-4002 (($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 46)) (-3988 (($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39) (($ $) 40)) (-2242 (($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-2233 (($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 43)) (-2224 (($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 42)) (-2212 (($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 44)) (-3205 (($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 45)))
-(((-1169) (-13 (-611 (-859)) (-10 -8 (-15 -1765 ($ (-1170))) (-15 -2242 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2224 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2233 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2212 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4002 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3205 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3988 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3988 ($ $))))) (T -1169))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169)))) (-2242 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2224 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2233 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2212 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4002 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-3205 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-3988 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-3988 (*1 *1 *1) (-5 *1 (-1169))))
-(-13 (-611 (-859)) (-10 -8 (-15 -1765 ($ (-1170))) (-15 -2242 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2224 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2233 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2212 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4002 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3205 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3988 ($ (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3988 ($ $))))
-((-1754 (((-112) $ $) NIL)) (-1772 (($ $ (-641 (-859))) 64)) (-2389 (($ $ (-641 (-859))) 62)) (-1961 (((-1152) $) 103)) (-2576 (((-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859))) (|:| |args| (-641 (-859)))) $) 109)) (-1337 (((-112) $) 23)) (-3166 (($ $ (-641 (-641 (-859)))) 61) (($ $ (-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859))) (|:| |args| (-641 (-859))))) 101)) (-3760 (($) 163 T CONST)) (-3873 (((-1264)) 136)) (-2549 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 71) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 78)) (-1633 (($) 122) (($ $) 131)) (-4363 (($ $) 102)) (-3571 (($ $ $) NIL)) (-1547 (($ $ $) NIL)) (-2953 (((-641 $) $) 138)) (-4202 (((-1152) $) 114)) (-3802 (((-1114) $) NIL)) (-4382 (($ $ (-641 (-859))) 63)) (-2127 (((-536) $) 48) (((-1170) $) 49) (((-889 (-564)) $) 82) (((-889 (-379)) $) 80)) (-1765 (((-859) $) 55) (($ (-1152)) 50)) (-2463 (($ $ (-641 (-859))) 65)) (-3886 (((-1152) $) 34) (((-1152) $ (-112)) 35) (((-1264) (-819) $) 36) (((-1264) (-819) $ (-112)) 37)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) 51)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 52)))
-(((-1170) (-13 (-847) (-612 (-536)) (-825) (-612 (-1170)) (-614 (-1152)) (-612 (-889 (-564))) (-612 (-889 (-379))) (-883 (-564)) (-883 (-379)) (-10 -8 (-15 -1633 ($)) (-15 -1633 ($ $)) (-15 -3873 ((-1264))) (-15 -4363 ($ $)) (-15 -1337 ((-112) $)) (-15 -2576 ((-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859))) (|:| |args| (-641 (-859)))) $)) (-15 -3166 ($ $ (-641 (-641 (-859))))) (-15 -3166 ($ $ (-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859))) (|:| |args| (-641 (-859)))))) (-15 -2389 ($ $ (-641 (-859)))) (-15 -1772 ($ $ (-641 (-859)))) (-15 -2463 ($ $ (-641 (-859)))) (-15 -4382 ($ $ (-641 (-859)))) (-15 -1961 ((-1152) $)) (-15 -2953 ((-641 $) $)) (-15 -3760 ($) -3246)))) (T -1170))
-((-1633 (*1 *1) (-5 *1 (-1170))) (-1633 (*1 *1 *1) (-5 *1 (-1170))) (-3873 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170)))) (-4363 (*1 *1 *1) (-5 *1 (-1170))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859))) (|:| |args| (-641 (-859))))) (-5 *1 (-1170)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-1170)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859))) (|:| |args| (-641 (-859))))) (-5 *1 (-1170)))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-1772 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-2463 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170)))) (-3760 (*1 *1) (-5 *1 (-1170))))
-(-13 (-847) (-612 (-536)) (-825) (-612 (-1170)) (-614 (-1152)) (-612 (-889 (-564))) (-612 (-889 (-379))) (-883 (-564)) (-883 (-379)) (-10 -8 (-15 -1633 ($)) (-15 -1633 ($ $)) (-15 -3873 ((-1264))) (-15 -4363 ($ $)) (-15 -1337 ((-112) $)) (-15 -2576 ((-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859))) (|:| |args| (-641 (-859)))) $)) (-15 -3166 ($ $ (-641 (-641 (-859))))) (-15 -3166 ($ $ (-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859))) (|:| |args| (-641 (-859)))))) (-15 -2389 ($ $ (-641 (-859)))) (-15 -1772 ($ $ (-641 (-859)))) (-15 -2463 ($ $ (-641 (-859)))) (-15 -4382 ($ $ (-641 (-859)))) (-15 -1961 ((-1152) $)) (-15 -2953 ((-641 $) $)) (-15 -3760 ($) -3246)))
-((-2828 (((-1259 |#1|) |#1| (-918)) 18) (((-1259 |#1|) (-641 |#1|)) 25)))
-(((-1171 |#1|) (-10 -7 (-15 -2828 ((-1259 |#1|) (-641 |#1|))) (-15 -2828 ((-1259 |#1|) |#1| (-918)))) (-1046)) (T -1171))
-((-2828 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1046)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)) (-5 *1 (-1171 *4)))))
-(-10 -7 (-15 -2828 ((-1259 |#1|) (-641 |#1|))) (-15 -2828 ((-1259 |#1|) |#1| (-918))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2064 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2190 (($ $) NIL (|has| |#1| (-452)))) (-2877 (($ $ |#1| (-968) $) NIL)) (-2419 (((-112) $) 17)) (-3107 (((-768) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-968)) NIL)) (-3829 (((-968) $) NIL)) (-2964 (($ (-1 (-968) (-968)) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#1| $) NIL)) (-2198 (($ $ (-968) |#1| $) NIL (-12 (|has| (-968) (-131)) (|has| |#1| (-556))))) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-3344 (((-968) $) NIL)) (-2712 ((|#1| $) NIL (|has| |#1| (-452)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-4002 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ (-968)) NIL)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4317 (($) 11 T CONST)) (-4327 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 21)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1172 |#1|) (-13 (-326 |#1| (-968)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-968) (-131)) (-15 -2198 ($ $ (-968) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|))) (-1046)) (T -1172))
-((-2198 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-968)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
-(-13 (-326 |#1| (-968)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-968) (-131)) (-15 -2198 ($ $ (-968) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|)))
-((-2077 (((-1174) (-1170) $) 25)) (-1731 (($) 29)) (-3683 (((-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-1170) $) 22)) (-2370 (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3048 "void")) $) 41) (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) 42) (((-1264) (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) 43)) (-3494 (((-1264) (-1170)) 58)) (-2905 (((-1264) (-1170) $) 55) (((-1264) (-1170)) 56) (((-1264)) 57)) (-4053 (((-1264) (-1170)) 37)) (-2100 (((-1170)) 36)) (-3845 (($) 34)) (-3292 (((-437) (-1170) (-437) (-1170) $) 45) (((-437) (-641 (-1170)) (-437) (-1170) $) 49) (((-437) (-1170) (-437)) 46) (((-437) (-1170) (-437) (-1170)) 50)) (-2530 (((-1170)) 35)) (-1765 (((-859) $) 28)) (-2171 (((-1264)) 30) (((-1264) (-1170)) 33)) (-1612 (((-641 (-1170)) (-1170) $) 24)) (-2707 (((-1264) (-1170) (-641 (-1170)) $) 38) (((-1264) (-1170) (-641 (-1170))) 39) (((-1264) (-641 (-1170))) 40)))
-(((-1173) (-13 (-611 (-859)) (-10 -8 (-15 -1731 ($)) (-15 -2171 ((-1264))) (-15 -2171 ((-1264) (-1170))) (-15 -3292 ((-437) (-1170) (-437) (-1170) $)) (-15 -3292 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -3292 ((-437) (-1170) (-437))) (-15 -3292 ((-437) (-1170) (-437) (-1170))) (-15 -4053 ((-1264) (-1170))) (-15 -2530 ((-1170))) (-15 -2100 ((-1170))) (-15 -2707 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -2707 ((-1264) (-1170) (-641 (-1170)))) (-15 -2707 ((-1264) (-641 (-1170)))) (-15 -2370 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3048 "void")) $)) (-15 -2370 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3048 "void")))) (-15 -2370 ((-1264) (-3 (|:| |fst| (-434)) (|:| -3048 "void")))) (-15 -2905 ((-1264) (-1170) $)) (-15 -2905 ((-1264) (-1170))) (-15 -2905 ((-1264))) (-15 -3494 ((-1264) (-1170))) (-15 -3845 ($)) (-15 -3683 ((-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-1170) $)) (-15 -1612 ((-641 (-1170)) (-1170) $)) (-15 -2077 ((-1174) (-1170) $))))) (T -1173))
-((-1731 (*1 *1) (-5 *1 (-1173))) (-2171 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3292 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-3292 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170)) (-5 *1 (-1173)))) (-3292 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-3292 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2530 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-2100 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-2707 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2370 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2905 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2905 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3845 (*1 *1) (-5 *1 (-1173))) (-3683 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *1 (-1173)))) (-1612 (*1 *2 *3 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170)))) (-2077 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -1731 ($)) (-15 -2171 ((-1264))) (-15 -2171 ((-1264) (-1170))) (-15 -3292 ((-437) (-1170) (-437) (-1170) $)) (-15 -3292 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -3292 ((-437) (-1170) (-437))) (-15 -3292 ((-437) (-1170) (-437) (-1170))) (-15 -4053 ((-1264) (-1170))) (-15 -2530 ((-1170))) (-15 -2100 ((-1170))) (-15 -2707 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -2707 ((-1264) (-1170) (-641 (-1170)))) (-15 -2707 ((-1264) (-641 (-1170)))) (-15 -2370 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3048 "void")) $)) (-15 -2370 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3048 "void")))) (-15 -2370 ((-1264) (-3 (|:| |fst| (-434)) (|:| -3048 "void")))) (-15 -2905 ((-1264) (-1170) $)) (-15 -2905 ((-1264) (-1170))) (-15 -2905 ((-1264))) (-15 -3494 ((-1264) (-1170))) (-15 -3845 ($)) (-15 -3683 ((-3 (|:| |fst| (-434)) (|:| -3048 "void")) (-1170) $)) (-15 -1612 ((-641 (-1170)) (-1170) $)) (-15 -2077 ((-1174) (-1170) $))))
-((-4377 (((-641 (-641 (-3 (|:| -4363 (-1170)) (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $) 66)) (-4193 (((-641 (-3 (|:| -4363 (-1170)) (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $) 47)) (-1661 (($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-437))))) 17)) (-3494 (((-1264) $) 74)) (-1972 (((-641 (-1170)) $) 22)) (-2048 (((-1098) $) 60)) (-2215 (((-437) (-1170) $) 27)) (-3049 (((-641 (-1170)) $) 30)) (-3845 (($) 19)) (-3292 (((-437) (-641 (-1170)) (-437) $) 25) (((-437) (-1170) (-437) $) 24)) (-1765 (((-859) $) 9) (((-1182 (-1170) (-437)) $) 13)))
-(((-1174) (-13 (-611 (-859)) (-10 -8 (-15 -1765 ((-1182 (-1170) (-437)) $)) (-15 -3845 ($)) (-15 -3292 ((-437) (-641 (-1170)) (-437) $)) (-15 -3292 ((-437) (-1170) (-437) $)) (-15 -2215 ((-437) (-1170) $)) (-15 -1972 ((-641 (-1170)) $)) (-15 -4193 ((-641 (-3 (|:| -4363 (-1170)) (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $)) (-15 -3049 ((-641 (-1170)) $)) (-15 -4377 ((-641 (-641 (-3 (|:| -4363 (-1170)) (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $)) (-15 -2048 ((-1098) $)) (-15 -3494 ((-1264) $)) (-15 -1661 ($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-437))))))))) (T -1174))
-((-1765 (*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174)))) (-3845 (*1 *1) (-5 *1 (-1174))) (-3292 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174)))) (-3292 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174)))) (-2215 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174)))) (-1972 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-4193 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-641 (-3 (|:| -4363 (-1170)) (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) (-5 *1 (-1174)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-3 (|:| -4363 (-1170)) (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))))) (-5 *1 (-1174)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174)))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-437))))) (-5 *1 (-1174)))))
-(-13 (-611 (-859)) (-10 -8 (-15 -1765 ((-1182 (-1170) (-437)) $)) (-15 -3845 ($)) (-15 -3292 ((-437) (-641 (-1170)) (-437) $)) (-15 -3292 ((-437) (-1170) (-437) $)) (-15 -2215 ((-437) (-1170) $)) (-15 -1972 ((-641 (-1170)) $)) (-15 -4193 ((-641 (-3 (|:| -4363 (-1170)) (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $)) (-15 -3049 ((-641 (-1170)) $)) (-15 -4377 ((-641 (-641 (-3 (|:| -4363 (-1170)) (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $)) (-15 -2048 ((-1098) $)) (-15 -3494 ((-1264) $)) (-15 -1661 ($ (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-437))))))))
-((-1754 (((-112) $ $) NIL)) (-2013 (((-3 (-564) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-506) "failed") $) 43) (((-3 (-1152) "failed") $) 47)) (-2064 (((-564) $) 30) (((-225) $) 36) (((-506) $) 40) (((-1152) $) 48)) (-3188 (((-112) $) 53)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1967 (((-3 (-564) (-225) (-506) (-1152) $) $) 55)) (-3482 (((-641 $) $) 57)) (-2127 (((-1098) $) 24) (($ (-1098)) 25)) (-1699 (((-112) $) 56)) (-1765 (((-859) $) 23) (($ (-564)) 26) (($ (-225)) 32) (($ (-506)) 38) (($ (-1152)) 44) (((-536) $) 59) (((-564) $) 31) (((-225) $) 37) (((-506) $) 41) (((-1152) $) 49)) (-4305 (((-112) $ (|[\|\|]| (-564))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-506))) 19) (((-112) $ (|[\|\|]| (-1152))) 16)) (-3437 (($ (-506) (-641 $)) 51) (($ $ (-641 $)) 52)) (-1924 (((-564) $) 27) (((-225) $) 33) (((-506) $) 39) (((-1152) $) 45)) (-1686 (((-112) $ $) 7)))
-(((-1175) (-13 (-1254) (-1094) (-1035 (-564)) (-1035 (-225)) (-1035 (-506)) (-1035 (-1152)) (-611 (-536)) (-10 -8 (-15 -2127 ((-1098) $)) (-15 -2127 ($ (-1098))) (-15 -1765 ((-564) $)) (-15 -1924 ((-564) $)) (-15 -1765 ((-225) $)) (-15 -1924 ((-225) $)) (-15 -1765 ((-506) $)) (-15 -1924 ((-506) $)) (-15 -1765 ((-1152) $)) (-15 -1924 ((-1152) $)) (-15 -3437 ($ (-506) (-641 $))) (-15 -3437 ($ $ (-641 $))) (-15 -3188 ((-112) $)) (-15 -1967 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -3482 ((-641 $) $)) (-15 -1699 ((-112) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-564)))) (-15 -4305 ((-112) $ (|[\|\|]| (-225)))) (-15 -4305 ((-112) $ (|[\|\|]| (-506)))) (-15 -4305 ((-112) $ (|[\|\|]| (-1152))))))) (T -1175))
-((-2127 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-3437 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175))) (-5 *1 (-1175)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175)))))
-(-13 (-1254) (-1094) (-1035 (-564)) (-1035 (-225)) (-1035 (-506)) (-1035 (-1152)) (-611 (-536)) (-10 -8 (-15 -2127 ((-1098) $)) (-15 -2127 ($ (-1098))) (-15 -1765 ((-564) $)) (-15 -1924 ((-564) $)) (-15 -1765 ((-225) $)) (-15 -1924 ((-225) $)) (-15 -1765 ((-506) $)) (-15 -1924 ((-506) $)) (-15 -1765 ((-1152) $)) (-15 -1924 ((-1152) $)) (-15 -3437 ($ (-506) (-641 $))) (-15 -3437 ($ $ (-641 $))) (-15 -3188 ((-112) $)) (-15 -1967 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -3482 ((-641 $) $)) (-15 -1699 ((-112) $)) (-15 -4305 ((-112) $ (|[\|\|]| (-564)))) (-15 -4305 ((-112) $ (|[\|\|]| (-225)))) (-15 -4305 ((-112) $ (|[\|\|]| (-506)))) (-15 -4305 ((-112) $ (|[\|\|]| (-1152))))))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) 24)) (-3760 (($) 14 T CONST)) (-2542 (($) 29)) (-3571 (($ $ $) NIL) (($) 21 T CONST)) (-1547 (($ $ $) NIL) (($) 22 T CONST)) (-2209 (((-918) $) 26)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) 25)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-1176 |#1|) (-13 (-841) (-10 -8 (-15 -3760 ($) -3246))) (-918)) (T -1176))
-((-3760 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-918)))))
-(-13 (-841) (-10 -8 (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL)) (-2399 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-1152) |#1|) NIL)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 |#1| "failed") (-1152) $) NIL)) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094))))) (-4074 (($ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412))) (((-3 |#1| "failed") (-1152) $) NIL)) (-2514 (($ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-1152)) NIL)) (-4244 (((-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2572 (((-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-1152) $) NIL (|has| (-1152) (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4413))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-1922 (((-641 (-1152)) $) NIL)) (-1690 (((-112) (-1152) $) NIL)) (-2775 (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL)) (-2373 (($ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL)) (-3127 (((-641 (-1152)) $) NIL)) (-1338 (((-112) (-1152) $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2049 ((|#1| $) NIL (|has| (-1152) (-847)))) (-2905 (((-3 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) "failed") (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (($ $ (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL (-12 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-309 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-1152)) NIL) ((|#1| $ (-1152) |#1|) NIL)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL)) (-3714 (((-859) $) NIL (-4012 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-611 (-859))) (|has| |#1| (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 (-1152)) (|:| -2575 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1153 |#1|) (-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4412))) (-1094)) (T -1153))
+NIL
+(-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4412)))
+((-1432 (((-1150 |#1|) (-1150 |#1|)) 84)) (-4272 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 42)) (-1802 (((-1150 |#1|) (-407 (-564)) (-1150 |#1|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-4071 (((-1150 |#1|) |#1| (-1150 |#1|)) 141 (|has| |#1| (-363)))) (-2886 (((-1150 |#1|) (-1150 |#1|)) 99)) (-1966 (((-1150 (-564)) (-564)) 63)) (-2133 (((-1150 |#1|) (-1150 (-1150 |#1|))) 118 (|has| |#1| (-38 (-407 (-564)))))) (-1726 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 104)) (-2579 (((-1150 |#1|) |#1| (-564)) 53)) (-1326 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 66)) (-2854 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 138 (|has| |#1| (-363)))) (-1561 (((-1150 |#1|) |#1| (-1 (-1150 |#1|))) 117 (|has| |#1| (-38 (-407 (-564)))))) (-3903 (((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|))) 139 (|has| |#1| (-363)))) (-1889 (((-1150 |#1|) (-1150 |#1|)) 98)) (-3315 (((-1150 |#1|) (-1150 |#1|)) 82)) (-2685 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 105)) (-4039 (((-1150 |#1|) |#1| (-1150 |#1|)) 114 (|has| |#1| (-38 (-407 (-564)))))) (-1478 (((-1150 (-564)) (-564)) 62)) (-1890 (((-1150 |#1|) |#1|) 65)) (-3325 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 101)) (-3764 (((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|)) 72)) (-1347 (((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|)) 40)) (-2096 (((-1150 |#1|) (-1150 |#1|)) 100)) (-2582 (((-1150 |#1|) (-1150 |#1|) |#1|) 77)) (-2484 (((-1150 |#1|) (-1150 |#1|)) 68)) (-3514 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 78)) (-3714 (((-1150 |#1|) |#1|) 73)) (-3908 (((-1150 |#1|) (-1150 (-1150 |#1|))) 89)) (-1841 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41)) (-1828 (((-1150 |#1|) (-1150 |#1|)) 21) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 23)) (-1814 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 17)) (* (((-1150 |#1|) (-1150 |#1|) |#1|) 29) (((-1150 |#1|) |#1| (-1150 |#1|)) 26) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 27)))
+(((-1154 |#1|) (-10 -7 (-15 -1814 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1828 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1828 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1347 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -1841 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -4272 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -2579 ((-1150 |#1|) |#1| (-564))) (-15 -1478 ((-1150 (-564)) (-564))) (-15 -1966 ((-1150 (-564)) (-564))) (-15 -1890 ((-1150 |#1|) |#1|)) (-15 -1326 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2484 ((-1150 |#1|) (-1150 |#1|))) (-15 -3764 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -3714 ((-1150 |#1|) |#1|)) (-15 -2582 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -3514 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3315 ((-1150 |#1|) (-1150 |#1|))) (-15 -1432 ((-1150 |#1|) (-1150 |#1|))) (-15 -3908 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1889 ((-1150 |#1|) (-1150 |#1|))) (-15 -2886 ((-1150 |#1|) (-1150 |#1|))) (-15 -2096 ((-1150 |#1|) (-1150 |#1|))) (-15 -3325 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -1726 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -2685 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -1561 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -2133 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1802 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2854 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3903 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -4071 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|)) (-1046)) (T -1154))
+((-4071 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)))) (-2854 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1802 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1046)) (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4)))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))) (-1561 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))) (-4039 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2685 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-1726 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-3325 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-2096 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-1046)))) (-1432 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3514 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2582 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-3764 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1326 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1890 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-1966 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) (-5 *3 (-564)))) (-1478 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) (-5 *3 (-564)))) (-2579 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-4272 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1841 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1347 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1828 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1814 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
+(-10 -7 (-15 -1814 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1828 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1828 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1347 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -1841 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -4272 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -2579 ((-1150 |#1|) |#1| (-564))) (-15 -1478 ((-1150 (-564)) (-564))) (-15 -1966 ((-1150 (-564)) (-564))) (-15 -1890 ((-1150 |#1|) |#1|)) (-15 -1326 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2484 ((-1150 |#1|) (-1150 |#1|))) (-15 -3764 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -3714 ((-1150 |#1|) |#1|)) (-15 -2582 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -3514 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3315 ((-1150 |#1|) (-1150 |#1|))) (-15 -1432 ((-1150 |#1|) (-1150 |#1|))) (-15 -3908 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1889 ((-1150 |#1|) (-1150 |#1|))) (-15 -2886 ((-1150 |#1|) (-1150 |#1|))) (-15 -2096 ((-1150 |#1|) (-1150 |#1|))) (-15 -3325 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -1726 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -2685 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -1561 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -2133 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -1802 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2854 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3903 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -4071 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|))
+((-2657 (((-1150 |#1|) (-1150 |#1|)) 60)) (-2516 (((-1150 |#1|) (-1150 |#1|)) 42)) (-2635 (((-1150 |#1|) (-1150 |#1|)) 56)) (-2491 (((-1150 |#1|) (-1150 |#1|)) 38)) (-2679 (((-1150 |#1|) (-1150 |#1|)) 63)) (-2542 (((-1150 |#1|) (-1150 |#1|)) 45)) (-2305 (((-1150 |#1|) (-1150 |#1|)) 34)) (-4130 (((-1150 |#1|) (-1150 |#1|)) 29)) (-2692 (((-1150 |#1|) (-1150 |#1|)) 64)) (-2557 (((-1150 |#1|) (-1150 |#1|)) 46)) (-2669 (((-1150 |#1|) (-1150 |#1|)) 61)) (-2529 (((-1150 |#1|) (-1150 |#1|)) 43)) (-2647 (((-1150 |#1|) (-1150 |#1|)) 58)) (-2502 (((-1150 |#1|) (-1150 |#1|)) 40)) (-2728 (((-1150 |#1|) (-1150 |#1|)) 68)) (-2595 (((-1150 |#1|) (-1150 |#1|)) 50)) (-2704 (((-1150 |#1|) (-1150 |#1|)) 66)) (-2566 (((-1150 |#1|) (-1150 |#1|)) 48)) (-2751 (((-1150 |#1|) (-1150 |#1|)) 71)) (-2615 (((-1150 |#1|) (-1150 |#1|)) 53)) (-2053 (((-1150 |#1|) (-1150 |#1|)) 72)) (-2626 (((-1150 |#1|) (-1150 |#1|)) 54)) (-2740 (((-1150 |#1|) (-1150 |#1|)) 70)) (-2605 (((-1150 |#1|) (-1150 |#1|)) 52)) (-2716 (((-1150 |#1|) (-1150 |#1|)) 69)) (-2577 (((-1150 |#1|) (-1150 |#1|)) 51)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 36)))
+(((-1155 |#1|) (-10 -7 (-15 -4130 ((-1150 |#1|) (-1150 |#1|))) (-15 -2305 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2491 ((-1150 |#1|) (-1150 |#1|))) (-15 -2502 ((-1150 |#1|) (-1150 |#1|))) (-15 -2516 ((-1150 |#1|) (-1150 |#1|))) (-15 -2529 ((-1150 |#1|) (-1150 |#1|))) (-15 -2542 ((-1150 |#1|) (-1150 |#1|))) (-15 -2557 ((-1150 |#1|) (-1150 |#1|))) (-15 -2566 ((-1150 |#1|) (-1150 |#1|))) (-15 -2577 ((-1150 |#1|) (-1150 |#1|))) (-15 -2595 ((-1150 |#1|) (-1150 |#1|))) (-15 -2605 ((-1150 |#1|) (-1150 |#1|))) (-15 -2615 ((-1150 |#1|) (-1150 |#1|))) (-15 -2626 ((-1150 |#1|) (-1150 |#1|))) (-15 -2635 ((-1150 |#1|) (-1150 |#1|))) (-15 -2647 ((-1150 |#1|) (-1150 |#1|))) (-15 -2657 ((-1150 |#1|) (-1150 |#1|))) (-15 -2669 ((-1150 |#1|) (-1150 |#1|))) (-15 -2679 ((-1150 |#1|) (-1150 |#1|))) (-15 -2692 ((-1150 |#1|) (-1150 |#1|))) (-15 -2704 ((-1150 |#1|) (-1150 |#1|))) (-15 -2716 ((-1150 |#1|) (-1150 |#1|))) (-15 -2728 ((-1150 |#1|) (-1150 |#1|))) (-15 -2740 ((-1150 |#1|) (-1150 |#1|))) (-15 -2751 ((-1150 |#1|) (-1150 |#1|))) (-15 -2053 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1155))
+((-2053 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2740 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2728 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2716 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2704 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2692 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2679 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2669 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2657 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2647 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2577 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2557 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2529 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2491 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))))
+(-10 -7 (-15 -4130 ((-1150 |#1|) (-1150 |#1|))) (-15 -2305 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2491 ((-1150 |#1|) (-1150 |#1|))) (-15 -2502 ((-1150 |#1|) (-1150 |#1|))) (-15 -2516 ((-1150 |#1|) (-1150 |#1|))) (-15 -2529 ((-1150 |#1|) (-1150 |#1|))) (-15 -2542 ((-1150 |#1|) (-1150 |#1|))) (-15 -2557 ((-1150 |#1|) (-1150 |#1|))) (-15 -2566 ((-1150 |#1|) (-1150 |#1|))) (-15 -2577 ((-1150 |#1|) (-1150 |#1|))) (-15 -2595 ((-1150 |#1|) (-1150 |#1|))) (-15 -2605 ((-1150 |#1|) (-1150 |#1|))) (-15 -2615 ((-1150 |#1|) (-1150 |#1|))) (-15 -2626 ((-1150 |#1|) (-1150 |#1|))) (-15 -2635 ((-1150 |#1|) (-1150 |#1|))) (-15 -2647 ((-1150 |#1|) (-1150 |#1|))) (-15 -2657 ((-1150 |#1|) (-1150 |#1|))) (-15 -2669 ((-1150 |#1|) (-1150 |#1|))) (-15 -2679 ((-1150 |#1|) (-1150 |#1|))) (-15 -2692 ((-1150 |#1|) (-1150 |#1|))) (-15 -2704 ((-1150 |#1|) (-1150 |#1|))) (-15 -2716 ((-1150 |#1|) (-1150 |#1|))) (-15 -2728 ((-1150 |#1|) (-1150 |#1|))) (-15 -2740 ((-1150 |#1|) (-1150 |#1|))) (-15 -2751 ((-1150 |#1|) (-1150 |#1|))) (-15 -2053 ((-1150 |#1|) (-1150 |#1|))))
+((-2657 (((-1150 |#1|) (-1150 |#1|)) 108)) (-2516 (((-1150 |#1|) (-1150 |#1|)) 65)) (-1480 (((-2 (|:| -2635 (-1150 |#1|)) (|:| -2647 (-1150 |#1|))) (-1150 |#1|)) 104)) (-2635 (((-1150 |#1|) (-1150 |#1|)) 105)) (-2722 (((-2 (|:| -2491 (-1150 |#1|)) (|:| -2502 (-1150 |#1|))) (-1150 |#1|)) 54)) (-2491 (((-1150 |#1|) (-1150 |#1|)) 55)) (-2679 (((-1150 |#1|) (-1150 |#1|)) 110)) (-2542 (((-1150 |#1|) (-1150 |#1|)) 72)) (-2305 (((-1150 |#1|) (-1150 |#1|)) 40)) (-4130 (((-1150 |#1|) (-1150 |#1|)) 37)) (-2692 (((-1150 |#1|) (-1150 |#1|)) 111)) (-2557 (((-1150 |#1|) (-1150 |#1|)) 73)) (-2669 (((-1150 |#1|) (-1150 |#1|)) 109)) (-2529 (((-1150 |#1|) (-1150 |#1|)) 68)) (-2647 (((-1150 |#1|) (-1150 |#1|)) 106)) (-2502 (((-1150 |#1|) (-1150 |#1|)) 56)) (-2728 (((-1150 |#1|) (-1150 |#1|)) 119)) (-2595 (((-1150 |#1|) (-1150 |#1|)) 94)) (-2704 (((-1150 |#1|) (-1150 |#1|)) 113)) (-2566 (((-1150 |#1|) (-1150 |#1|)) 90)) (-2751 (((-1150 |#1|) (-1150 |#1|)) 123)) (-2615 (((-1150 |#1|) (-1150 |#1|)) 98)) (-2053 (((-1150 |#1|) (-1150 |#1|)) 125)) (-2626 (((-1150 |#1|) (-1150 |#1|)) 100)) (-2740 (((-1150 |#1|) (-1150 |#1|)) 121)) (-2605 (((-1150 |#1|) (-1150 |#1|)) 96)) (-2716 (((-1150 |#1|) (-1150 |#1|)) 115)) (-2577 (((-1150 |#1|) (-1150 |#1|)) 92)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41)))
+(((-1156 |#1|) (-10 -7 (-15 -4130 ((-1150 |#1|) (-1150 |#1|))) (-15 -2305 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2722 ((-2 (|:| -2491 (-1150 |#1|)) (|:| -2502 (-1150 |#1|))) (-1150 |#1|))) (-15 -2491 ((-1150 |#1|) (-1150 |#1|))) (-15 -2502 ((-1150 |#1|) (-1150 |#1|))) (-15 -2516 ((-1150 |#1|) (-1150 |#1|))) (-15 -2529 ((-1150 |#1|) (-1150 |#1|))) (-15 -2542 ((-1150 |#1|) (-1150 |#1|))) (-15 -2557 ((-1150 |#1|) (-1150 |#1|))) (-15 -2566 ((-1150 |#1|) (-1150 |#1|))) (-15 -2577 ((-1150 |#1|) (-1150 |#1|))) (-15 -2595 ((-1150 |#1|) (-1150 |#1|))) (-15 -2605 ((-1150 |#1|) (-1150 |#1|))) (-15 -2615 ((-1150 |#1|) (-1150 |#1|))) (-15 -2626 ((-1150 |#1|) (-1150 |#1|))) (-15 -1480 ((-2 (|:| -2635 (-1150 |#1|)) (|:| -2647 (-1150 |#1|))) (-1150 |#1|))) (-15 -2635 ((-1150 |#1|) (-1150 |#1|))) (-15 -2647 ((-1150 |#1|) (-1150 |#1|))) (-15 -2657 ((-1150 |#1|) (-1150 |#1|))) (-15 -2669 ((-1150 |#1|) (-1150 |#1|))) (-15 -2679 ((-1150 |#1|) (-1150 |#1|))) (-15 -2692 ((-1150 |#1|) (-1150 |#1|))) (-15 -2704 ((-1150 |#1|) (-1150 |#1|))) (-15 -2716 ((-1150 |#1|) (-1150 |#1|))) (-15 -2728 ((-1150 |#1|) (-1150 |#1|))) (-15 -2740 ((-1150 |#1|) (-1150 |#1|))) (-15 -2751 ((-1150 |#1|) (-1150 |#1|))) (-15 -2053 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1156))
+((-2053 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2740 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2728 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2716 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2704 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2692 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2679 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2669 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2657 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2647 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-1480 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -2635 (-1150 *4)) (|:| -2647 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2577 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2557 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2529 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2491 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2722 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -2491 (-1150 *4)) (|:| -2502 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))))
+(-10 -7 (-15 -4130 ((-1150 |#1|) (-1150 |#1|))) (-15 -2305 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2722 ((-2 (|:| -2491 (-1150 |#1|)) (|:| -2502 (-1150 |#1|))) (-1150 |#1|))) (-15 -2491 ((-1150 |#1|) (-1150 |#1|))) (-15 -2502 ((-1150 |#1|) (-1150 |#1|))) (-15 -2516 ((-1150 |#1|) (-1150 |#1|))) (-15 -2529 ((-1150 |#1|) (-1150 |#1|))) (-15 -2542 ((-1150 |#1|) (-1150 |#1|))) (-15 -2557 ((-1150 |#1|) (-1150 |#1|))) (-15 -2566 ((-1150 |#1|) (-1150 |#1|))) (-15 -2577 ((-1150 |#1|) (-1150 |#1|))) (-15 -2595 ((-1150 |#1|) (-1150 |#1|))) (-15 -2605 ((-1150 |#1|) (-1150 |#1|))) (-15 -2615 ((-1150 |#1|) (-1150 |#1|))) (-15 -2626 ((-1150 |#1|) (-1150 |#1|))) (-15 -1480 ((-2 (|:| -2635 (-1150 |#1|)) (|:| -2647 (-1150 |#1|))) (-1150 |#1|))) (-15 -2635 ((-1150 |#1|) (-1150 |#1|))) (-15 -2647 ((-1150 |#1|) (-1150 |#1|))) (-15 -2657 ((-1150 |#1|) (-1150 |#1|))) (-15 -2669 ((-1150 |#1|) (-1150 |#1|))) (-15 -2679 ((-1150 |#1|) (-1150 |#1|))) (-15 -2692 ((-1150 |#1|) (-1150 |#1|))) (-15 -2704 ((-1150 |#1|) (-1150 |#1|))) (-15 -2716 ((-1150 |#1|) (-1150 |#1|))) (-15 -2728 ((-1150 |#1|) (-1150 |#1|))) (-15 -2740 ((-1150 |#1|) (-1150 |#1|))) (-15 -2751 ((-1150 |#1|) (-1150 |#1|))) (-15 -2053 ((-1150 |#1|) (-1150 |#1|))))
+((-3216 (((-955 |#2|) |#2| |#2|) 50)) (-2015 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307)))))
+(((-1157 |#1| |#2|) (-10 -7 (-15 -3216 ((-955 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2015 (|#2| |#2| |#1|)) |%noBranch|)) (-556) (-1235 |#1|)) (T -1157))
+((-2015 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1235 *3)))) (-3216 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-955 *3)) (-5 *1 (-1157 *4 *3)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -3216 ((-955 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2015 (|#2| |#2| |#1|)) |%noBranch|))
+((-3702 (((-112) $ $) NIL)) (-3544 (($ $ (-641 (-768))) 80)) (-1776 (($) 32)) (-1452 (($ $) 50)) (-2530 (((-641 $) $) 59)) (-4205 (((-112) $) 19)) (-2439 (((-641 (-940 |#2|)) $) 87)) (-3836 (($ $) 81)) (-2607 (((-768) $) 46)) (-3564 (($) 31)) (-1449 (($ $ (-641 (-768)) (-940 |#2|)) 73) (($ $ (-641 (-768)) (-768)) 74) (($ $ (-768) (-940 |#2|)) 76)) (-3678 (($ $ $) 56) (($ (-641 $)) 58)) (-2273 (((-768) $) 88)) (-2120 (((-112) $) 15)) (-1868 (((-1152) $) NIL)) (-3079 (((-112) $) 21)) (-3844 (((-1114) $) NIL)) (-2167 (((-171) $) 86)) (-1702 (((-940 |#2|) $) 82)) (-4159 (((-768) $) 83)) (-2231 (((-112) $) 85)) (-1313 (($ $ (-641 (-768)) (-171)) 79)) (-2494 (($ $) 51)) (-3714 (((-859) $) 99)) (-2842 (($ $ (-641 (-768)) (-112)) 78)) (-3914 (((-641 $) $) 11)) (-2686 (($ $ (-768)) 45)) (-2434 (($ $) 42)) (-3649 (($ $ $ (-940 |#2|) (-768)) 69)) (-2995 (($ $ (-940 |#2|)) 68)) (-2036 (($ $ (-641 (-768)) (-940 |#2|)) 65) (($ $ (-641 (-768)) (-768)) 71) (((-768) $ (-940 |#2|)) 72)) (-1720 (((-112) $ $) 93)))
+(((-1158 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -2120 ((-112) $)) (-15 -4205 ((-112) $)) (-15 -3079 ((-112) $)) (-15 -3564 ($)) (-15 -1776 ($)) (-15 -2434 ($ $)) (-15 -2686 ($ $ (-768))) (-15 -3914 ((-641 $) $)) (-15 -2607 ((-768) $)) (-15 -1452 ($ $)) (-15 -2494 ($ $)) (-15 -3678 ($ $ $)) (-15 -3678 ($ (-641 $))) (-15 -2530 ((-641 $) $)) (-15 -2036 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2995 ($ $ (-940 |#2|))) (-15 -3649 ($ $ $ (-940 |#2|) (-768))) (-15 -1449 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2036 ($ $ (-641 (-768)) (-768))) (-15 -1449 ($ $ (-641 (-768)) (-768))) (-15 -2036 ((-768) $ (-940 |#2|))) (-15 -1449 ($ $ (-768) (-940 |#2|))) (-15 -2842 ($ $ (-641 (-768)) (-112))) (-15 -1313 ($ $ (-641 (-768)) (-171))) (-15 -3544 ($ $ (-641 (-768)))) (-15 -1702 ((-940 |#2|) $)) (-15 -4159 ((-768) $)) (-15 -2231 ((-112) $)) (-15 -2167 ((-171) $)) (-15 -2273 ((-768) $)) (-15 -3836 ($ $)) (-15 -2439 ((-641 (-940 |#2|)) $)))) (-918) (-1046)) (T -1158))
+((-2120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3564 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-1776 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-2434 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1452 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-2494 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-3678 (*1 *1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-3678 (*1 *1 *2) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2036 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-940 *4)) (-4 *4 (-1046)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)))) (-3649 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-940 *5)) (-5 *3 (-768)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-1449 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2036 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-1449 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-2036 (*1 *2 *1 *3) (-12 (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *2 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-1449 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2842 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-1313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-3544 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-940 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3836 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-641 (-940 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))))
+(-13 (-1094) (-10 -8 (-15 -2120 ((-112) $)) (-15 -4205 ((-112) $)) (-15 -3079 ((-112) $)) (-15 -3564 ($)) (-15 -1776 ($)) (-15 -2434 ($ $)) (-15 -2686 ($ $ (-768))) (-15 -3914 ((-641 $) $)) (-15 -2607 ((-768) $)) (-15 -1452 ($ $)) (-15 -2494 ($ $)) (-15 -3678 ($ $ $)) (-15 -3678 ($ (-641 $))) (-15 -2530 ((-641 $) $)) (-15 -2036 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2995 ($ $ (-940 |#2|))) (-15 -3649 ($ $ $ (-940 |#2|) (-768))) (-15 -1449 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2036 ($ $ (-641 (-768)) (-768))) (-15 -1449 ($ $ (-641 (-768)) (-768))) (-15 -2036 ((-768) $ (-940 |#2|))) (-15 -1449 ($ $ (-768) (-940 |#2|))) (-15 -2842 ($ $ (-641 (-768)) (-112))) (-15 -1313 ($ $ (-641 (-768)) (-171))) (-15 -3544 ($ $ (-641 (-768)))) (-15 -1702 ((-940 |#2|) $)) (-15 -4159 ((-768) $)) (-15 -2231 ((-112) $)) (-15 -2167 ((-171) $)) (-15 -2273 ((-768) $)) (-15 -3836 ($ $)) (-15 -2439 ((-641 (-940 |#2|)) $))))
+((-3702 (((-112) $ $) NIL)) (-3119 ((|#2| $) 11)) (-3109 ((|#1| $) 10)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3725 (($ |#1| |#2|) 9)) (-3714 (((-859) $) 16)) (-1720 (((-112) $ $) NIL)))
+(((-1159 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3725 ($ |#1| |#2|)) (-15 -3109 (|#1| $)) (-15 -3119 (|#2| $)))) (-1094) (-1094)) (T -1159))
+((-3725 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3109 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094)))) (-3119 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094)))))
+(-13 (-1094) (-10 -8 (-15 -3725 ($ |#1| |#2|)) (-15 -3109 (|#1| $)) (-15 -3119 (|#2| $))))
+((-3702 (((-112) $ $) NIL)) (-2638 (((-1129) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-1160) (-13 (-1077) (-10 -8 (-15 -2638 ((-1129) $))))) (T -1160))
+((-2638 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160)))))
+(-13 (-1077) (-10 -8 (-15 -2638 ((-1129) $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) 11)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1582 (($ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3897 (((-112) $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3043 (($ $ (-564)) NIL) (($ $ (-564) (-564)) 75)) (-1681 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-3969 (((-1168 |#1| |#2| |#3|) $) 42)) (-4027 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 32)) (-4350 (((-1168 |#1| |#2| |#3|) $) 33)) (-2657 (($ $) 116 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-1328 (($ $) NIL (|has| |#1| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2635 (($ $) 112 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3191 (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-3392 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-2679 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-2376 (((-1168 |#1| |#2| |#3|) $) 140) (((-1170) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-1928 (($ $) 37) (($ (-564) $) 38)) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) NIL)) (-3613 (((-685 (-1168 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1920 (-685 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1168 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-4272 (((-3 $ "failed") $) 54)) (-2643 (((-407 (-949 |#1|)) $ (-564)) 74 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 76 (|has| |#1| (-556)))) (-2939 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1926 (((-112) $) NIL (|has| |#1| (-363)))) (-3137 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2200 (((-112) $) 28)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-883 (-564))) (|has| |#1| (-363))))) (-1454 (((-564) $) NIL) (((-564) $ (-564)) 26)) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL (|has| |#1| (-363)))) (-1655 (((-1168 |#1| |#2| |#3|) $) 44 (|has| |#1| (-363)))) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3804 (((-3 $ "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2001 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-3619 (($ $ (-918)) NIL)) (-2860 (($ (-1 |#1| (-564)) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-564)) 19) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-3428 (($ $ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-3413 (($ $ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2305 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4362 (($ (-564) (-1168 |#1| |#2| |#3|)) 36)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-4039 (($ $) 79 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 80 (|has| |#1| (-38 (-407 (-564)))))) (-3304 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3782 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3034 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4139 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-3042 (($ $ (-564)) 158)) (-1347 (((-3 $ "failed") $ $) 55 (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4130 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1168 |#1| |#2| |#3|)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) NIL) (($ $ $) 61 (|has| (-564) (-1106))) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-286 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2203 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 57) (($ $ (-768)) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 56 (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-3197 (($ $) NIL (|has| |#1| (-363)))) (-1668 (((-1168 |#1| |#2| |#3|) $) 46 (|has| |#1| (-363)))) (-3475 (((-564) $) 43)) (-2692 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 118 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 114 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-2374 (((-536) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2807 (($ $) NIL)) (-3714 (((-859) $) 162) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1168 |#1| |#2| |#3|)) 30) (($ (-1255 |#2|)) 25) (($ (-1170)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-3181 ((|#1| $ (-564)) 77)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-2390 ((|#1| $) 12)) (-4296 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2728 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2704 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 108 (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 110 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 106 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-3920 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-4312 (($) 21 T CONST)) (-4323 (($) 16 T CONST)) (-2238 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1781 (((-112) $ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1758 (((-112) $ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1746 (((-112) $ $) NIL (-4012 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 49 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 50 (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 23)) (** (($ $ (-918)) NIL) (($ $ (-768)) 60) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) 83 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1168 |#1| |#2| |#3|)) 48 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) $) 47 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1161 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -3714 ($ (-1255 |#2|))) (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1161))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
+(-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -3714 ($ (-1255 |#2|))) (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|)))
+((-3064 ((|#2| |#2| (-1086 |#2|)) 26) ((|#2| |#2| (-1170)) 28)))
+(((-1162 |#1| |#2|) (-10 -7 (-15 -3064 (|#2| |#2| (-1170))) (-15 -3064 (|#2| |#2| (-1086 |#2|)))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-430 |#1|) (-160) (-27) (-1194))) (T -1162))
+((-3064 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))))))
+(-10 -7 (-15 -3064 (|#2| |#2| (-1170))) (-15 -3064 (|#2| |#2| (-1086 |#2|))))
+((-3064 (((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))) 31) (((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|))) 44) (((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170)) 33) (((-407 (-949 |#1|)) (-949 |#1|) (-1170)) 36)))
+(((-1163 |#1|) (-10 -7 (-15 -3064 ((-407 (-949 |#1|)) (-949 |#1|) (-1170))) (-15 -3064 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -3064 ((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|)))) (-15 -3064 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))))) (-13 (-556) (-847) (-1035 (-564)))) (T -1163))
+((-3064 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1163 *5)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-949 *5))) (-5 *3 (-949 *5)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 *3)) (-5 *1 (-1163 *5)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 (-407 (-949 *5)) (-316 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-407 (-949 *5))))) (-3064 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 (-949 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-949 *5)))))
+(-10 -7 (-15 -3064 ((-407 (-949 |#1|)) (-949 |#1|) (-1170))) (-15 -3064 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -3064 ((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|)))) (-15 -3064 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|))))))
+((-2313 (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 13)))
+(((-1164 |#1| |#2|) (-10 -7 (-15 -2313 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)))) (-1046) (-1046)) (T -1164))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6)))))
+(-10 -7 (-15 -2313 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))))
+((-1592 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 51)) (-4139 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 52)))
+(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4139 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -1592 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))))) (-790) (-847) (-452) (-946 |#3| |#1| |#2|)) (T -1165))
+((-1592 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))))
+(-10 -7 (-15 -4139 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -1592 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))))
+((-3702 (((-112) $ $) 169)) (-1556 (((-112) $) 42)) (-2401 (((-1259 |#1|) $ (-768)) NIL)) (-4292 (((-641 (-1076)) $) NIL)) (-2522 (($ (-1166 |#1|)) NIL)) (-4103 (((-1166 $) $ (-1076)) 81) (((-1166 |#1|) $) 70)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) 162 (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3000 (($ $ $) 156 (|has| |#1| (-556)))) (-1917 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-906)))) (-1328 (($ $) NIL (|has| |#1| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 114 (|has| |#1| (-906)))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3522 (($ $ (-768)) 60)) (-3752 (($ $ (-768)) 62)) (-2530 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2376 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL)) (-4275 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 158 (|has| |#1| (-172)))) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) 79)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-3330 (($ $ $) 129)) (-2696 (($ $ $) NIL (|has| |#1| (-556)))) (-3686 (((-2 (|:| -1817 |#1|) (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-556)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2015 (($ $) 163 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#1| (-906)))) (-1423 (($ $ |#1| (-768) $) 68)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1978 (((-859) $ (-859)) 146)) (-1454 (((-768) $ $) NIL (|has| |#1| (-556)))) (-2340 (((-112) $) 47)) (-2998 (((-768) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-4279 (($ (-1166 |#1|) (-1076)) 72) (($ (-1166 $) (-1076)) 88)) (-3619 (($ $ (-768)) 50)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-768)) 86) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-1076)) NIL) (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 151)) (-2700 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-4062 (($ (-1 (-768) (-768)) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2329 (((-1166 |#1|) $) NIL)) (-2848 (((-3 (-1076) "failed") $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) 75)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1868 (((-1152) $) NIL)) (-2315 (((-2 (|:| -3031 $) (|:| -2550 $)) $ (-768)) 59)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-1076)) (|:| -3078 (-768))) "failed") $) NIL)) (-4039 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3304 (($) NIL (|has| |#1| (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) 49)) (-1316 ((|#1| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 102 (|has| |#1| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 165 (|has| |#1| (-452)))) (-2102 (($ $ (-768) |#1| $) 121)) (-3048 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) 99 (|has| |#1| (-906)))) (-4139 (((-418 $) $) 107 (|has| |#1| (-906)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-1347 (((-3 $ "failed") $ |#1|) 161 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 122 (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) 148) (($ $ $) 149) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-2458 (((-3 $ "failed") $ (-768)) 53)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 170 (|has| |#1| (-363)))) (-4378 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) 154 (|has| |#1| (-172)))) (-2203 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3475 (((-768) $) 77) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3324 ((|#1| $) 160 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-2301 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-3714 (((-859) $) 147) (($ (-564)) NIL) (($ |#1|) 76) (($ (-1076)) NIL) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) 40 (|has| |#1| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) 17 T CONST)) (-4323 (($) 19 T CONST)) (-2238 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) 119)) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1841 (($ $ |#1|) 171 (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 89)) (** (($ $ (-918)) 14) (($ $ (-768)) 12)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 127) (($ $ |#1|) NIL)))
+(((-1166 |#1|) (-13 (-1235 |#1|) (-10 -8 (-15 -1978 ((-859) $ (-859))) (-15 -2102 ($ $ (-768) |#1| $)))) (-1046)) (T -1166))
+((-1978 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))) (-2102 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))))
+(-13 (-1235 |#1|) (-10 -8 (-15 -1978 ((-859) $ (-859))) (-15 -2102 ($ $ (-768) |#1| $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) 11)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-3043 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-1681 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-2657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2635 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-2679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 36)) (-2376 (((-1161 |#1| |#2| |#3|) $) NIL) (((-1168 |#1| |#2| |#3|) $) NIL)) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-3934 (((-407 (-564)) $) 59)) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ (-407 (-564)) (-1161 |#1| |#2| |#3|)) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1926 (((-112) $) NIL (|has| |#1| (-363)))) (-2200 (((-112) $) NIL)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-407 (-564))) 20) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2305 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1909 (((-1161 |#1| |#2| |#3|) $) 41)) (-2452 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) NIL)) (-4362 (((-1161 |#1| |#2| |#3|) $) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-4039 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-3042 (($ $ (-407 (-564))) NIL)) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4130 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-3475 (((-407 (-564)) $) NIL)) (-2692 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) NIL)) (-3714 (((-859) $) 62) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1161 |#1| |#2| |#3|)) 30) (($ (-1168 |#1| |#2| |#3|)) 31) (($ (-1255 |#2|)) 26) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3181 ((|#1| $ (-407 (-564))) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-2390 ((|#1| $) 12)) (-2728 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 22 T CONST)) (-4323 (($) 16 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 24)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1167 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1035 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1167))
+((-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
+(-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1035 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 130)) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) 120)) (-1298 (((-1232 |#2| |#1|) $ (-768)) 68)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-3043 (($ $ (-768)) 84) (($ $ (-768) (-768)) 81)) (-1681 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 106)) (-2657 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2635 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 119) (($ (-1150 |#1|)) 114)) (-2679 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) 25)) (-3343 (($ $) 28)) (-3357 (((-949 |#1|) $ (-768)) 80) (((-949 |#1|) $ (-768) (-768)) 82)) (-2200 (((-112) $) 125)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-768) $) 127) (((-768) $ (-768)) 129)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) NIL)) (-2860 (($ (-1 |#1| (-564)) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-768)) 13) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2305 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-4039 (($ $) 134 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3844 (((-1114) $) NIL)) (-3042 (($ $ (-768)) 15)) (-1347 (((-3 $ "failed") $ $) 26 (|has| |#1| (-556)))) (-4130 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-4382 ((|#1| $ (-768)) 123) (($ $ $) 133 (|has| (-768) (-1106)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $ (-1255 |#2|)) 31)) (-3475 (((-768) $) NIL)) (-2692 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 156 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) NIL)) (-3714 (((-859) $) 207) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 131 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 54) (($ (-1255 |#2|)) 36)) (-4252 (((-1150 |#1|) $) 102)) (-3181 ((|#1| $ (-768)) 122)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-2390 ((|#1| $) 57)) (-2728 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 158 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-768)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 17 T CONST)) (-4323 (($) 20 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) 199)) (-1814 (($ $ $) 35)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#1|) 204 (|has| |#1| (-363))) (($ $ $) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 142 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 137) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1168 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -3714 ($ (-1232 |#2| |#1|))) (-15 -1298 ((-1232 |#2| |#1|) $ (-768))) (-15 -3714 ($ (-1255 |#2|))) (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1168))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-1298 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
+(-13 (-1250 |#1|) (-10 -8 (-15 -3714 ($ (-1232 |#2| |#1|))) (-15 -1298 ((-1232 |#2| |#1|) $ (-768))) (-15 -3714 ($ (-1255 |#2|))) (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|)))
+((-3714 (((-859) $) 33) (($ (-1170)) 35)) (-4012 (($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 46)) (-4000 (($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39) (($ $) 40)) (-2365 (($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-2354 (($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 43)) (-2341 (($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 42)) (-2327 (($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 44)) (-3292 (($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 45)))
+(((-1169) (-13 (-611 (-859)) (-10 -8 (-15 -3714 ($ (-1170))) (-15 -2365 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2341 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2354 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2327 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4012 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3292 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4000 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4000 ($ $))))) (T -1169))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169)))) (-2365 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2341 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2354 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2327 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4012 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-3292 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4000 (*1 *1 *1) (-5 *1 (-1169))))
+(-13 (-611 (-859)) (-10 -8 (-15 -3714 ($ (-1170))) (-15 -2365 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2341 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2354 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2327 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4012 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3292 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4000 ($ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4000 ($ $))))
+((-3702 (((-112) $ $) NIL)) (-2154 (($ $ (-641 (-859))) 64)) (-3211 (($ $ (-641 (-859))) 62)) (-3963 (((-1152) $) 103)) (-3463 (((-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859))) (|:| |args| (-641 (-859)))) $) 109)) (-2402 (((-112) $) 23)) (-3465 (($ $ (-641 (-641 (-859)))) 61) (($ $ (-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859))) (|:| |args| (-641 (-859))))) 101)) (-3180 (($) 163 T CONST)) (-1852 (((-1264)) 136)) (-4181 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 71) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 78)) (-3564 (($) 122) (($ $) 131)) (-4337 (($ $) 102)) (-3428 (($ $ $) NIL)) (-3413 (($ $ $) NIL)) (-1929 (((-641 $) $) 138)) (-1868 (((-1152) $) 114)) (-3844 (((-1114) $) NIL)) (-4382 (($ $ (-641 (-859))) 63)) (-2374 (((-536) $) 48) (((-1170) $) 49) (((-889 (-564)) $) 82) (((-889 (-379)) $) 80)) (-3714 (((-859) $) 55) (($ (-1152)) 50)) (-2814 (($ $ (-641 (-859))) 65)) (-1983 (((-1152) $) 34) (((-1152) $ (-112)) 35) (((-1264) (-819) $) 36) (((-1264) (-819) $ (-112)) 37)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) 51)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) 52)))
+(((-1170) (-13 (-847) (-612 (-536)) (-825) (-612 (-1170)) (-614 (-1152)) (-612 (-889 (-564))) (-612 (-889 (-379))) (-883 (-564)) (-883 (-379)) (-10 -8 (-15 -3564 ($)) (-15 -3564 ($ $)) (-15 -1852 ((-1264))) (-15 -4337 ($ $)) (-15 -2402 ((-112) $)) (-15 -3463 ((-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859))) (|:| |args| (-641 (-859)))) $)) (-15 -3465 ($ $ (-641 (-641 (-859))))) (-15 -3465 ($ $ (-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859))) (|:| |args| (-641 (-859)))))) (-15 -3211 ($ $ (-641 (-859)))) (-15 -2154 ($ $ (-641 (-859)))) (-15 -2814 ($ $ (-641 (-859)))) (-15 -4382 ($ $ (-641 (-859)))) (-15 -3963 ((-1152) $)) (-15 -1929 ((-641 $) $)) (-15 -3180 ($) -2222)))) (T -1170))
+((-3564 (*1 *1) (-5 *1 (-1170))) (-3564 (*1 *1 *1) (-5 *1 (-1170))) (-1852 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170)))) (-4337 (*1 *1 *1) (-5 *1 (-1170))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859))) (|:| |args| (-641 (-859))))) (-5 *1 (-1170)))) (-3465 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-1170)))) (-3465 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859))) (|:| |args| (-641 (-859))))) (-5 *1 (-1170)))) (-3211 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-2814 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170)))) (-3180 (*1 *1) (-5 *1 (-1170))))
+(-13 (-847) (-612 (-536)) (-825) (-612 (-1170)) (-614 (-1152)) (-612 (-889 (-564))) (-612 (-889 (-379))) (-883 (-564)) (-883 (-379)) (-10 -8 (-15 -3564 ($)) (-15 -3564 ($ $)) (-15 -1852 ((-1264))) (-15 -4337 ($ $)) (-15 -2402 ((-112) $)) (-15 -3463 ((-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859))) (|:| |args| (-641 (-859)))) $)) (-15 -3465 ($ $ (-641 (-641 (-859))))) (-15 -3465 ($ $ (-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859))) (|:| |args| (-641 (-859)))))) (-15 -3211 ($ $ (-641 (-859)))) (-15 -2154 ($ $ (-641 (-859)))) (-15 -2814 ($ $ (-641 (-859)))) (-15 -4382 ($ $ (-641 (-859)))) (-15 -3963 ((-1152) $)) (-15 -1929 ((-641 $) $)) (-15 -3180 ($) -2222)))
+((-2153 (((-1259 |#1|) |#1| (-918)) 18) (((-1259 |#1|) (-641 |#1|)) 25)))
+(((-1171 |#1|) (-10 -7 (-15 -2153 ((-1259 |#1|) (-641 |#1|))) (-15 -2153 ((-1259 |#1|) |#1| (-918)))) (-1046)) (T -1171))
+((-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1046)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)) (-5 *1 (-1171 *4)))))
+(-10 -7 (-15 -2153 ((-1259 |#1|) (-641 |#1|))) (-15 -2153 ((-1259 |#1|) |#1| (-918))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2376 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-2015 (($ $) NIL (|has| |#1| (-452)))) (-1423 (($ $ |#1| (-968) $) NIL)) (-2340 (((-112) $) 17)) (-2998 (((-768) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-968)) NIL)) (-2700 (((-968) $) NIL)) (-4062 (($ (-1 (-968) (-968)) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#1| $) NIL)) (-2102 (($ $ (-968) |#1| $) NIL (-12 (|has| (-968) (-131)) (|has| |#1| (-556))))) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-3475 (((-968) $) NIL)) (-3324 ((|#1| $) NIL (|has| |#1| (-452)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-4012 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ (-968)) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4312 (($) 11 T CONST)) (-4323 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 21)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1172 |#1|) (-13 (-326 |#1| (-968)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-968) (-131)) (-15 -2102 ($ $ (-968) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|))) (-1046)) (T -1172))
+((-2102 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-968)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
+(-13 (-326 |#1| (-968)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-968) (-131)) (-15 -2102 ($ $ (-968) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|)))
+((-3307 (((-1174) (-1170) $) 25)) (-2964 (($) 29)) (-3672 (((-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-1170) $) 22)) (-3083 (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3035 "void")) $) 41) (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) 42) (((-1264) (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) 43)) (-2567 (((-1264) (-1170)) 58)) (-3511 (((-1264) (-1170) $) 55) (((-1264) (-1170)) 56) (((-1264)) 57)) (-4061 (((-1264) (-1170)) 37)) (-2395 (((-1170)) 36)) (-2834 (($) 34)) (-2267 (((-437) (-1170) (-437) (-1170) $) 45) (((-437) (-641 (-1170)) (-437) (-1170) $) 49) (((-437) (-1170) (-437)) 46) (((-437) (-1170) (-437) (-1170)) 50)) (-2178 (((-1170)) 35)) (-3714 (((-859) $) 28)) (-1811 (((-1264)) 30) (((-1264) (-1170)) 33)) (-4254 (((-641 (-1170)) (-1170) $) 24)) (-3290 (((-1264) (-1170) (-641 (-1170)) $) 38) (((-1264) (-1170) (-641 (-1170))) 39) (((-1264) (-641 (-1170))) 40)))
+(((-1173) (-13 (-611 (-859)) (-10 -8 (-15 -2964 ($)) (-15 -1811 ((-1264))) (-15 -1811 ((-1264) (-1170))) (-15 -2267 ((-437) (-1170) (-437) (-1170) $)) (-15 -2267 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -2267 ((-437) (-1170) (-437))) (-15 -2267 ((-437) (-1170) (-437) (-1170))) (-15 -4061 ((-1264) (-1170))) (-15 -2178 ((-1170))) (-15 -2395 ((-1170))) (-15 -3290 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -3290 ((-1264) (-1170) (-641 (-1170)))) (-15 -3290 ((-1264) (-641 (-1170)))) (-15 -3083 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3035 "void")) $)) (-15 -3083 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3035 "void")))) (-15 -3083 ((-1264) (-3 (|:| |fst| (-434)) (|:| -3035 "void")))) (-15 -3511 ((-1264) (-1170) $)) (-15 -3511 ((-1264) (-1170))) (-15 -3511 ((-1264))) (-15 -2567 ((-1264) (-1170))) (-15 -2834 ($)) (-15 -3672 ((-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-1170) $)) (-15 -4254 ((-641 (-1170)) (-1170) $)) (-15 -3307 ((-1174) (-1170) $))))) (T -1173))
+((-2964 (*1 *1) (-5 *1 (-1173))) (-1811 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2267 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-2267 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170)) (-5 *1 (-1173)))) (-2267 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-2267 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-4061 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2178 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-2395 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-3290 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3290 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3083 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3511 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3511 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2834 (*1 *1) (-5 *1 (-1173))) (-3672 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *1 (-1173)))) (-4254 (*1 *2 *3 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170)))) (-3307 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -2964 ($)) (-15 -1811 ((-1264))) (-15 -1811 ((-1264) (-1170))) (-15 -2267 ((-437) (-1170) (-437) (-1170) $)) (-15 -2267 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -2267 ((-437) (-1170) (-437))) (-15 -2267 ((-437) (-1170) (-437) (-1170))) (-15 -4061 ((-1264) (-1170))) (-15 -2178 ((-1170))) (-15 -2395 ((-1170))) (-15 -3290 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -3290 ((-1264) (-1170) (-641 (-1170)))) (-15 -3290 ((-1264) (-641 (-1170)))) (-15 -3083 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3035 "void")) $)) (-15 -3083 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -3035 "void")))) (-15 -3083 ((-1264) (-3 (|:| |fst| (-434)) (|:| -3035 "void")))) (-15 -3511 ((-1264) (-1170) $)) (-15 -3511 ((-1264) (-1170))) (-15 -3511 ((-1264))) (-15 -2567 ((-1264) (-1170))) (-15 -2834 ($)) (-15 -3672 ((-3 (|:| |fst| (-434)) (|:| -3035 "void")) (-1170) $)) (-15 -4254 ((-641 (-1170)) (-1170) $)) (-15 -3307 ((-1174) (-1170) $))))
+((-3948 (((-641 (-641 (-3 (|:| -4337 (-1170)) (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $) 66)) (-1763 (((-641 (-3 (|:| -4337 (-1170)) (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $) 47)) (-3342 (($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-437))))) 17)) (-2567 (((-1264) $) 74)) (-3435 (((-641 (-1170)) $) 22)) (-3068 (((-1098) $) 60)) (-4092 (((-437) (-1170) $) 27)) (-3611 (((-641 (-1170)) $) 30)) (-2834 (($) 19)) (-2267 (((-437) (-641 (-1170)) (-437) $) 25) (((-437) (-1170) (-437) $) 24)) (-3714 (((-859) $) 9) (((-1182 (-1170) (-437)) $) 13)))
+(((-1174) (-13 (-611 (-859)) (-10 -8 (-15 -3714 ((-1182 (-1170) (-437)) $)) (-15 -2834 ($)) (-15 -2267 ((-437) (-641 (-1170)) (-437) $)) (-15 -2267 ((-437) (-1170) (-437) $)) (-15 -4092 ((-437) (-1170) $)) (-15 -3435 ((-641 (-1170)) $)) (-15 -1763 ((-641 (-3 (|:| -4337 (-1170)) (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $)) (-15 -3611 ((-641 (-1170)) $)) (-15 -3948 ((-641 (-641 (-3 (|:| -4337 (-1170)) (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $)) (-15 -3068 ((-1098) $)) (-15 -2567 ((-1264) $)) (-15 -3342 ($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-437))))))))) (T -1174))
+((-3714 (*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174)))) (-2834 (*1 *1) (-5 *1 (-1174))) (-2267 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174)))) (-2267 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174)))) (-4092 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-1763 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-641 (-3 (|:| -4337 (-1170)) (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) (-5 *1 (-1174)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-3 (|:| -4337 (-1170)) (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))))) (-5 *1 (-1174)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174)))) (-3342 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-437))))) (-5 *1 (-1174)))))
+(-13 (-611 (-859)) (-10 -8 (-15 -3714 ((-1182 (-1170) (-437)) $)) (-15 -2834 ($)) (-15 -2267 ((-437) (-641 (-1170)) (-437) $)) (-15 -2267 ((-437) (-1170) (-437) $)) (-15 -4092 ((-437) (-1170) $)) (-15 -3435 ((-641 (-1170)) $)) (-15 -1763 ((-641 (-3 (|:| -4337 (-1170)) (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $)) (-15 -3611 ((-641 (-1170)) $)) (-15 -3948 ((-641 (-641 (-3 (|:| -4337 (-1170)) (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $)) (-15 -3068 ((-1098) $)) (-15 -2567 ((-1264) $)) (-15 -3342 ($ (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-437))))))))
+((-3702 (((-112) $ $) NIL)) (-2224 (((-3 (-564) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-506) "failed") $) 43) (((-3 (-1152) "failed") $) 47)) (-2376 (((-564) $) 30) (((-225) $) 36) (((-506) $) 40) (((-1152) $) 48)) (-2661 (((-112) $) 53)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3390 (((-3 (-564) (-225) (-506) (-1152) $) $) 55)) (-2445 (((-641 $) $) 57)) (-2374 (((-1098) $) 24) (($ (-1098)) 25)) (-3838 (((-112) $) 56)) (-3714 (((-859) $) 23) (($ (-564)) 26) (($ (-225)) 32) (($ (-506)) 38) (($ (-1152)) 44) (((-536) $) 59) (((-564) $) 31) (((-225) $) 37) (((-506) $) 41) (((-1152) $) 49)) (-4301 (((-112) $ (|[\|\|]| (-564))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-506))) 19) (((-112) $ (|[\|\|]| (-1152))) 16)) (-3183 (($ (-506) (-641 $)) 51) (($ $ (-641 $)) 52)) (-3921 (((-564) $) 27) (((-225) $) 33) (((-506) $) 39) (((-1152) $) 45)) (-1720 (((-112) $ $) 7)))
+(((-1175) (-13 (-1254) (-1094) (-1035 (-564)) (-1035 (-225)) (-1035 (-506)) (-1035 (-1152)) (-611 (-536)) (-10 -8 (-15 -2374 ((-1098) $)) (-15 -2374 ($ (-1098))) (-15 -3714 ((-564) $)) (-15 -3921 ((-564) $)) (-15 -3714 ((-225) $)) (-15 -3921 ((-225) $)) (-15 -3714 ((-506) $)) (-15 -3921 ((-506) $)) (-15 -3714 ((-1152) $)) (-15 -3921 ((-1152) $)) (-15 -3183 ($ (-506) (-641 $))) (-15 -3183 ($ $ (-641 $))) (-15 -2661 ((-112) $)) (-15 -3390 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -2445 ((-641 $) $)) (-15 -3838 ((-112) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-564)))) (-15 -4301 ((-112) $ (|[\|\|]| (-225)))) (-15 -4301 ((-112) $ (|[\|\|]| (-506)))) (-15 -4301 ((-112) $ (|[\|\|]| (-1152))))))) (T -1175))
+((-2374 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-3183 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175)))) (-3183 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175))) (-5 *1 (-1175)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175)))))
+(-13 (-1254) (-1094) (-1035 (-564)) (-1035 (-225)) (-1035 (-506)) (-1035 (-1152)) (-611 (-536)) (-10 -8 (-15 -2374 ((-1098) $)) (-15 -2374 ($ (-1098))) (-15 -3714 ((-564) $)) (-15 -3921 ((-564) $)) (-15 -3714 ((-225) $)) (-15 -3921 ((-225) $)) (-15 -3714 ((-506) $)) (-15 -3921 ((-506) $)) (-15 -3714 ((-1152) $)) (-15 -3921 ((-1152) $)) (-15 -3183 ($ (-506) (-641 $))) (-15 -3183 ($ $ (-641 $))) (-15 -2661 ((-112) $)) (-15 -3390 ((-3 (-564) (-225) (-506) (-1152) $) $)) (-15 -2445 ((-641 $) $)) (-15 -3838 ((-112) $)) (-15 -4301 ((-112) $ (|[\|\|]| (-564)))) (-15 -4301 ((-112) $ (|[\|\|]| (-225)))) (-15 -4301 ((-112) $ (|[\|\|]| (-506)))) (-15 -4301 ((-112) $ (|[\|\|]| (-1152))))))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) 24)) (-3180 (($) 14 T CONST)) (-2939 (($) 29)) (-3428 (($ $ $) NIL) (($) 21 T CONST)) (-3413 (($ $ $) NIL) (($) 22 T CONST)) (-4031 (((-918) $) 26)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) 25)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-1176 |#1|) (-13 (-841) (-10 -8 (-15 -3180 ($) -2222))) (-918)) (T -1176))
+((-3180 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-918)))))
+(-13 (-841) (-10 -8 (-15 -3180 ($) -2222)))
((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) 21 T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) 14 T CONST)) (-1547 (($ $ $) NIL) (($) 20 T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4096 (($ $ $) 23)) (-4080 (($ $ $) 22)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-1177 |#1|) (-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246))) (-918)) (T -1177))
-((-4080 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) (-4096 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) (-3760 (*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))))
-(-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) 21 T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) 14 T CONST)) (-3413 (($ $ $) NIL) (($) 20 T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-4072 (($ $ $) 23)) (-4058 (($ $ $) 22)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-1177 |#1|) (-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222))) (-918)) (T -1177))
+((-4058 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) (-4072 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) (-3180 (*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))))
+(-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))
((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-2935 (((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 70)) (-4325 (((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|)))) 84) (((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|))) 80) (((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170)) 85) (((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170)) 79) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|))))) 112) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|)))) 111) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170))) 113) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 110)))
-(((-1178 |#1|) (-10 -7 (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -4325 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -4325 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -4325 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)))) (-15 -4325 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))))) (-15 -2935 ((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))))) (-556)) (T -1178))
-((-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-949 *5)))) (-5 *1 (-1178 *5)))) (-4325 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-949 *4)))))) (-4325 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-407 (-949 *4))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-294 (-407 (-949 *5)))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-407 (-949 *5))))) (-4325 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-949 *4))))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5)) (-5 *3 (-641 (-294 (-407 (-949 *5))))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5)))))
-(-10 -7 (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))))) (-15 -4325 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -4325 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -4325 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -4325 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)))) (-15 -4325 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))))) (-15 -2935 ((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))))
-((-3649 (((-1152)) 7)) (-4234 (((-1152)) 11 T CONST)) (-2347 (((-1264) (-1152)) 13)) (-2235 (((-1152)) 8 T CONST)) (-2243 (((-130)) 10 T CONST)))
-(((-1179) (-13 (-1209) (-10 -7 (-15 -3649 ((-1152))) (-15 -2235 ((-1152)) -3246) (-15 -2243 ((-130)) -3246) (-15 -4234 ((-1152)) -3246) (-15 -2347 ((-1264) (-1152)))))) (T -1179))
-((-3649 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2235 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2243 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179)))) (-4234 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179)))))
-(-13 (-1209) (-10 -7 (-15 -3649 ((-1152))) (-15 -2235 ((-1152)) -3246) (-15 -2243 ((-130)) -3246) (-15 -4234 ((-1152)) -3246) (-15 -2347 ((-1264) (-1152)))))
-((-1668 (((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 55)) (-2539 (((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|))) 38)) (-4026 (((-1181 (-641 |#1|)) (-641 |#1|)) 49)) (-3495 (((-641 (-641 |#1|)) (-641 |#1|)) 45)) (-2354 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))) 52)) (-3340 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|)))) 51)) (-3122 (((-641 (-641 |#1|)) (-641 (-641 |#1|))) 43)) (-1675 (((-641 |#1|) (-641 |#1|)) 46)) (-4263 (((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 32)) (-2873 (((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 29)) (-2526 (((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|))) 24)) (-4353 (((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 57)) (-1774 (((-641 (-641 |#1|)) (-1181 (-641 |#1|))) 59)))
-(((-1180 |#1|) (-10 -7 (-15 -2526 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -2873 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -4263 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1668 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -4353 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -1774 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -2539 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -4026 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -3122 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -3495 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -1675 ((-641 |#1|) (-641 |#1|))) (-15 -3340 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -2354 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))))) (-847)) (T -1180))
-((-2354 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4)))) (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4)))))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4)))))) (-3340 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-847)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5) (|:| |f4| (-641 *5)))) (-5 *1 (-1180 *6)) (-5 *4 (-641 *5)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-1180 *3)))) (-3495 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-3122 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-847)) (-5 *1 (-1180 *3)))) (-4026 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-2539 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 (-641 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4))))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-4 *4 (-847)))) (-1668 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-4 *4 (-847)) (-5 *1 (-1180 *4)))) (-4263 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *1 (-1180 *4)))) (-2873 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-641 *5)) (-4 *5 (-847)) (-5 *1 (-1180 *5)))) (-2526 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-847)) (-5 *4 (-641 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4)))) (-5 *1 (-1180 *6)) (-5 *5 (-641 *4)))))
-(-10 -7 (-15 -2526 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -2873 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -4263 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1668 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -4353 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -1774 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -2539 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -4026 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -3122 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -3495 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -1675 ((-641 |#1|) (-641 |#1|))) (-15 -3340 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -2354 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|))))))
-((-3338 (($ (-641 (-641 |#1|))) 10)) (-3671 (((-641 (-641 |#1|)) $) 11)) (-1765 (((-859) $) 38)))
-(((-1181 |#1|) (-10 -8 (-15 -3338 ($ (-641 (-641 |#1|)))) (-15 -3671 ((-641 (-641 |#1|)) $)) (-15 -1765 ((-859) $))) (-1094)) (T -1181))
-((-1765 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3)))))
-(-10 -8 (-15 -3338 ($ (-641 (-641 |#1|)))) (-15 -3671 ((-641 (-641 |#1|)) $)) (-15 -1765 ((-859) $)))
-((-1754 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1622 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3476 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#2| $ |#1| |#2|) NIL)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1645 (((-3 |#2| "failed") |#1| $) NIL)) (-3760 (($) NIL T CONST)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) NIL)) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) NIL)) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) NIL)) (-4065 ((|#1| $) NIL (|has| |#1| (-847)))) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-1479 ((|#1| $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3211 (((-641 |#1|) $) NIL)) (-4185 (((-112) |#1| $) NIL)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1371 (((-641 |#1|) $) NIL)) (-3629 (((-112) |#1| $) NIL)) (-3802 (((-1114) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3073 ((|#2| $) NIL (|has| |#1| (-847)))) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL)) (-2614 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3784 (($) NIL) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-1765 (((-859) $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) NIL)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) NIL (-4002 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1182 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) (-1094) (-1094)) (T -1182))
-NIL
-(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411)))
-((-3078 ((|#1| (-641 |#1|)) 49)) (-2800 ((|#1| |#1| (-564)) 24)) (-4172 (((-1166 |#1|) |#1| (-918)) 20)))
-(((-1183 |#1|) (-10 -7 (-15 -3078 (|#1| (-641 |#1|))) (-15 -4172 ((-1166 |#1|) |#1| (-918))) (-15 -2800 (|#1| |#1| (-564)))) (-363)) (T -1183))
-((-2800 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-363)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))))
-(-10 -7 (-15 -3078 (|#1| (-641 |#1|))) (-15 -4172 ((-1166 |#1|) |#1| (-918))) (-15 -2800 (|#1| |#1| (-564))))
-((-1622 (($) 10) (($ (-641 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)))) 14)) (-1907 (($ (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3080 (((-641 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) $) 39) (((-641 |#3|) $) 41)) (-3513 (($ (-1 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2082 (($ (-1 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1833 (((-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) $) 60)) (-2098 (($ (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) $) 16)) (-1371 (((-641 |#2|) $) 19)) (-3629 (((-112) |#2| $) 65)) (-2343 (((-3 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) "failed") (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) $) 64)) (-3389 (((-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) $) 69)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 72)) (-3599 (((-641 |#3|) $) 43)) (-4382 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) $) NIL) (((-768) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) $) NIL) (((-768) |#3| $) NIL) (((-768) (-1 (-112) |#3|) $) 78)) (-1765 (((-859) $) 27)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-1686 (((-112) $ $) 51)))
-(((-1184 |#1| |#2| |#3|) (-10 -8 (-15 -1686 ((-112) |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -2082 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1622 (|#1| (-641 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))))) (-15 -1622 (|#1|)) (-15 -2082 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3513 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3815 ((-768) (-1 (-112) |#3|) |#1|)) (-15 -3080 ((-641 |#3|) |#1|)) (-15 -3815 ((-768) |#3| |#1|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -3599 ((-641 |#3|) |#1|)) (-15 -3629 ((-112) |#2| |#1|)) (-15 -1371 ((-641 |#2|) |#1|)) (-15 -1907 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1907 (|#1| (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -1907 (|#1| (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -2343 ((-3 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) "failed") (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -1833 ((-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -2098 (|#1| (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -3389 ((-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -3815 ((-768) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -3080 ((-641 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -3815 ((-768) (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -1467 ((-112) (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -2237 ((-112) (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -3513 (|#1| (-1 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -2082 (|#1| (-1 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|))) (-1185 |#2| |#3|) (-1094) (-1094)) (T -1184))
-NIL
-(-10 -8 (-15 -1686 ((-112) |#1| |#1|)) (-15 -1765 ((-859) |#1|)) (-15 -2082 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1622 (|#1| (-641 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))))) (-15 -1622 (|#1|)) (-15 -2082 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3513 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2237 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1467 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3815 ((-768) (-1 (-112) |#3|) |#1|)) (-15 -3080 ((-641 |#3|) |#1|)) (-15 -3815 ((-768) |#3| |#1|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -3599 ((-641 |#3|) |#1|)) (-15 -3629 ((-112) |#2| |#1|)) (-15 -1371 ((-641 |#2|) |#1|)) (-15 -1907 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1907 (|#1| (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -1907 (|#1| (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -2343 ((-3 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) "failed") (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -1833 ((-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -2098 (|#1| (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -3389 ((-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -3815 ((-768) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) |#1|)) (-15 -3080 ((-641 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -3815 ((-768) (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -1467 ((-112) (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -2237 ((-112) (-1 (-112) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -3513 (|#1| (-1 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)) (-15 -2082 (|#1| (-1 (-2 (|:| -2351 |#2|) (|:| -1327 |#3|)) (-2 (|:| -2351 |#2|) (|:| -1327 |#3|))) |#1|)))
-((-1754 (((-112) $ $) 19 (-4002 (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-1622 (($) 72) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 71)) (-3476 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) 8)) (-1881 ((|#2| $ |#1| |#2|) 73)) (-4194 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 45 (|has| $ (-6 -4411)))) (-2164 (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 55 (|has| $ (-6 -4411)))) (-1645 (((-3 |#2| "failed") |#1| $) 61)) (-3760 (($) 7 T CONST)) (-3104 (($ $) 58 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-1907 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 46 (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 62)) (-2359 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 54 (|has| $ (-6 -4411)))) (-4367 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 56 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 53 (|has| $ (-6 -4411))) (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 52 (|has| $ (-6 -4411)))) (-3528 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4412)))) (-3455 ((|#2| $ |#1|) 88)) (-3080 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 30 (|has| $ (-6 -4411))) (((-641 |#2|) $) 79 (|has| $ (-6 -4411)))) (-2830 (((-112) $ (-768)) 9)) (-4065 ((|#1| $) 96 (|has| |#1| (-847)))) (-3817 (((-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 29 (|has| $ (-6 -4411))) (((-641 |#2|) $) 80 (|has| $ (-6 -4411)))) (-3675 (((-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-1479 ((|#1| $) 95 (|has| |#1| (-847)))) (-3513 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 34 (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4412)))) (-2082 (($ (-1 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2972 (((-112) $ (-768)) 10)) (-4202 (((-1152) $) 22 (-4002 (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-3211 (((-641 |#1|) $) 63)) (-4185 (((-112) |#1| $) 64)) (-1833 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 39)) (-2098 (($ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 40)) (-1371 (((-641 |#1|) $) 93)) (-3629 (((-112) |#1| $) 92)) (-3802 (((-1114) $) 21 (-4002 (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-3073 ((|#2| $) 97 (|has| |#1| (-847)))) (-2343 (((-3 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) "failed") (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 51)) (-2614 (($ $ |#2|) 98 (|has| $ (-6 -4412)))) (-3389 (((-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 41)) (-1467 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 32 (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))))) 26 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 25 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) 24 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 23 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3599 (((-641 |#2|) $) 91)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3784 (($) 49) (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 48)) (-3815 (((-768) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 31 (|has| $ (-6 -4411))) (((-768) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-768) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4411)))) (-1899 (($ $) 13)) (-2127 (((-536) $) 59 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))))) (-1776 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 50)) (-1765 (((-859) $) 18 (-4002 (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859)))))) (-2652 (($ (-641 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) 42)) (-2237 (((-112) (-1 (-112) (-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) $) 33 (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (-4002 (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3865 (((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 70)) (-3472 (((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|)))) 84) (((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|))) 80) (((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170)) 85) (((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170)) 79) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|))))) 112) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|)))) 111) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170))) 113) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 110)))
+(((-1178 |#1|) (-10 -7 (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -3472 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -3472 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -3472 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)))) (-15 -3472 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))))) (-15 -3865 ((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))))) (-556)) (T -1178))
+((-3865 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-949 *5)))) (-5 *1 (-1178 *5)))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-949 *4)))))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-407 (-949 *4))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-294 (-407 (-949 *5)))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-407 (-949 *5))))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-949 *4))))))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5)) (-5 *3 (-641 (-294 (-407 (-949 *5))))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5)))))
+(-10 -7 (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))))) (-15 -3472 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -3472 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -3472 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -3472 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)))) (-15 -3472 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))))) (-15 -3865 ((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))))
+((-1550 (((-1152)) 7)) (-2158 (((-1152)) 11 T CONST)) (-2515 (((-1264) (-1152)) 13)) (-4268 (((-1152)) 8 T CONST)) (-4349 (((-130)) 10 T CONST)))
+(((-1179) (-13 (-1209) (-10 -7 (-15 -1550 ((-1152))) (-15 -4268 ((-1152)) -2222) (-15 -4349 ((-130)) -2222) (-15 -2158 ((-1152)) -2222) (-15 -2515 ((-1264) (-1152)))))) (T -1179))
+((-1550 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-4268 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-4349 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179)))) (-2158 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179)))))
+(-13 (-1209) (-10 -7 (-15 -1550 ((-1152))) (-15 -4268 ((-1152)) -2222) (-15 -4349 ((-130)) -2222) (-15 -2158 ((-1152)) -2222) (-15 -2515 ((-1264) (-1152)))))
+((-3496 (((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 55)) (-4088 (((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|))) 38)) (-3806 (((-1181 (-641 |#1|)) (-641 |#1|)) 49)) (-2581 (((-641 (-641 |#1|)) (-641 |#1|)) 45)) (-3070 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))) 52)) (-3431 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|)))) 51)) (-3133 (((-641 (-641 |#1|)) (-641 (-641 |#1|))) 43)) (-3577 (((-641 |#1|) (-641 |#1|)) 46)) (-4240 (((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 32)) (-1376 (((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 29)) (-2147 (((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|))) 24)) (-3740 (((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 57)) (-2175 (((-641 (-641 |#1|)) (-1181 (-641 |#1|))) 59)))
+(((-1180 |#1|) (-10 -7 (-15 -2147 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -1376 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -4240 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -3496 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -3740 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -2175 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -4088 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -3806 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -3133 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -2581 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -3577 ((-641 |#1|) (-641 |#1|))) (-15 -3431 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -3070 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))))) (-847)) (T -1180))
+((-3070 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4)))) (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4)))))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4)))))) (-3431 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-847)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5) (|:| |f4| (-641 *5)))) (-5 *1 (-1180 *6)) (-5 *4 (-641 *5)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-1180 *3)))) (-2581 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-3133 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-847)) (-5 *1 (-1180 *3)))) (-3806 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 (-641 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4))))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-4 *4 (-847)))) (-3496 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-4 *4 (-847)) (-5 *1 (-1180 *4)))) (-4240 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *1 (-1180 *4)))) (-1376 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-641 *5)) (-4 *5 (-847)) (-5 *1 (-1180 *5)))) (-2147 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-847)) (-5 *4 (-641 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4)))) (-5 *1 (-1180 *6)) (-5 *5 (-641 *4)))))
+(-10 -7 (-15 -2147 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -1376 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -4240 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -3496 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -3740 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -2175 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -4088 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -3806 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -3133 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -2581 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -3577 ((-641 |#1|) (-641 |#1|))) (-15 -3431 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -3070 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|))))))
+((-3422 (($ (-641 (-641 |#1|))) 10)) (-3549 (((-641 (-641 |#1|)) $) 11)) (-3714 (((-859) $) 38)))
+(((-1181 |#1|) (-10 -8 (-15 -3422 ($ (-641 (-641 |#1|)))) (-15 -3549 ((-641 (-641 |#1|)) $)) (-15 -3714 ((-859) $))) (-1094)) (T -1181))
+((-3714 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3)))))
+(-10 -8 (-15 -3422 ($ (-641 (-641 |#1|)))) (-15 -3549 ((-641 (-641 |#1|)) $)) (-15 -3714 ((-859) $)))
+((-3702 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3553 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-2399 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#2| $ |#1| |#2|) NIL)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-3576 (((-3 |#2| "failed") |#1| $) NIL)) (-3180 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) NIL)) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) NIL)) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) NIL)) (-2994 ((|#1| $) NIL (|has| |#1| (-847)))) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-641 |#2|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-2415 ((|#1| $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4413))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1922 (((-641 |#1|) $) NIL)) (-1690 (((-112) |#1| $) NIL)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-3127 (((-641 |#1|) $) NIL)) (-1338 (((-112) |#1| $) NIL)) (-3844 (((-1114) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2049 ((|#2| $) NIL (|has| |#1| (-847)))) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL)) (-3538 (($ $ |#2|) NIL (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3372 (($) NIL) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-3714 (((-859) $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) NIL)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) NIL (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) NIL (-4012 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1182 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4412))) (-1094) (-1094)) (T -1182))
+NIL
+(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4412)))
+((-3922 ((|#1| (-641 |#1|)) 49)) (-1874 ((|#1| |#1| (-564)) 24)) (-2806 (((-1166 |#1|) |#1| (-918)) 20)))
+(((-1183 |#1|) (-10 -7 (-15 -3922 (|#1| (-641 |#1|))) (-15 -2806 ((-1166 |#1|) |#1| (-918))) (-15 -1874 (|#1| |#1| (-564)))) (-363)) (T -1183))
+((-1874 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-363)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))))
+(-10 -7 (-15 -3922 (|#1| (-641 |#1|))) (-15 -2806 ((-1166 |#1|) |#1| (-918))) (-15 -1874 (|#1| |#1| (-564))))
+((-3553 (($) 10) (($ (-641 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)))) 14)) (-4074 (($ (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-4244 (((-641 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) $) 39) (((-641 |#3|) $) 41)) (-1988 (($ (-1 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2313 (($ (-1 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2775 (((-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) $) 60)) (-2373 (($ (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) $) 16)) (-3127 (((-641 |#2|) $) 19)) (-1338 (((-112) |#2| $) 65)) (-2905 (((-3 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) "failed") (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) $) 64)) (-3950 (((-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) $) 69)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 72)) (-4121 (((-641 |#3|) $) 43)) (-4382 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) $) NIL) (((-768) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) $) NIL) (((-768) |#3| $) NIL) (((-768) (-1 (-112) |#3|) $) 78)) (-3714 (((-859) $) 27)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-1720 (((-112) $ $) 51)))
+(((-1184 |#1| |#2| |#3|) (-10 -8 (-15 -1720 ((-112) |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -2313 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3553 (|#1| (-641 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))))) (-15 -3553 (|#1|)) (-15 -2313 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1988 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3855 ((-768) (-1 (-112) |#3|) |#1|)) (-15 -4244 ((-641 |#3|) |#1|)) (-15 -3855 ((-768) |#3| |#1|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -4121 ((-641 |#3|) |#1|)) (-15 -1338 ((-112) |#2| |#1|)) (-15 -3127 ((-641 |#2|) |#1|)) (-15 -4074 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4074 (|#1| (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -4074 (|#1| (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -2905 ((-3 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) "failed") (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -2775 ((-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -2373 (|#1| (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -3950 ((-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -3855 ((-768) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -4244 ((-641 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -3855 ((-768) (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -2280 ((-112) (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -4289 ((-112) (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -1988 (|#1| (-1 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -2313 (|#1| (-1 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|))) (-1185 |#2| |#3|) (-1094) (-1094)) (T -1184))
+NIL
+(-10 -8 (-15 -1720 ((-112) |#1| |#1|)) (-15 -3714 ((-859) |#1|)) (-15 -2313 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3553 (|#1| (-641 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))))) (-15 -3553 (|#1|)) (-15 -2313 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1988 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4289 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2280 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3855 ((-768) (-1 (-112) |#3|) |#1|)) (-15 -4244 ((-641 |#3|) |#1|)) (-15 -3855 ((-768) |#3| |#1|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -4121 ((-641 |#3|) |#1|)) (-15 -1338 ((-112) |#2| |#1|)) (-15 -3127 ((-641 |#2|) |#1|)) (-15 -4074 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4074 (|#1| (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -4074 (|#1| (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -2905 ((-3 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) "failed") (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -2775 ((-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -2373 (|#1| (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -3950 ((-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -3855 ((-768) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) |#1|)) (-15 -4244 ((-641 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -3855 ((-768) (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -2280 ((-112) (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -4289 ((-112) (-1 (-112) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -1988 (|#1| (-1 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)) (-15 -2313 (|#1| (-1 (-2 (|:| -1350 |#2|) (|:| -2575 |#3|)) (-2 (|:| -1350 |#2|) (|:| -2575 |#3|))) |#1|)))
+((-3702 (((-112) $ $) 19 (-4012 (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-3553 (($) 72) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 71)) (-2399 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) 8)) (-3868 ((|#2| $ |#1| |#2|) 73)) (-1773 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 45 (|has| $ (-6 -4412)))) (-4148 (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 55 (|has| $ (-6 -4412)))) (-3576 (((-3 |#2| "failed") |#1| $) 61)) (-3180 (($) 7 T CONST)) (-2084 (($ $) 58 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412))))) (-4074 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 47 (|has| $ (-6 -4412))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 46 (|has| $ (-6 -4412))) (((-3 |#2| "failed") |#1| $) 62)) (-2514 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 54 (|has| $ (-6 -4412)))) (-1728 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 56 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 53 (|has| $ (-6 -4412))) (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 52 (|has| $ (-6 -4412)))) (-1998 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4413)))) (-3593 ((|#2| $ |#1|) 88)) (-4244 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 30 (|has| $ (-6 -4412))) (((-641 |#2|) $) 79 (|has| $ (-6 -4412)))) (-2173 (((-112) $ (-768)) 9)) (-2994 ((|#1| $) 96 (|has| |#1| (-847)))) (-2572 (((-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 29 (|has| $ (-6 -4412))) (((-641 |#2|) $) 80 (|has| $ (-6 -4412)))) (-3601 (((-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412))))) (-2415 ((|#1| $) 95 (|has| |#1| (-847)))) (-1988 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 34 (|has| $ (-6 -4413))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4413)))) (-2313 (($ (-1 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4144 (((-112) $ (-768)) 10)) (-1868 (((-1152) $) 22 (-4012 (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-1922 (((-641 |#1|) $) 63)) (-1690 (((-112) |#1| $) 64)) (-2775 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 39)) (-2373 (($ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 40)) (-3127 (((-641 |#1|) $) 93)) (-1338 (((-112) |#1| $) 92)) (-3844 (((-1114) $) 21 (-4012 (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-2049 ((|#2| $) 97 (|has| |#1| (-847)))) (-2905 (((-3 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) "failed") (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 51)) (-3538 (($ $ |#2|) 98 (|has| $ (-6 -4413)))) (-3950 (((-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 41)) (-2280 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 32 (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))))) 26 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 25 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) 24 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 23 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4412)) (|has| |#2| (-1094))))) (-4121 (((-641 |#2|) $) 91)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3372 (($) 49) (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 48)) (-3855 (((-768) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 31 (|has| $ (-6 -4412))) (((-768) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| $ (-6 -4412)))) (((-768) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4412)))) (-3890 (($ $) 13)) (-2374 (((-536) $) 59 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))))) (-3725 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 50)) (-3714 (((-859) $) 18 (-4012 (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859)))))) (-3976 (($ (-641 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) 42)) (-4289 (((-112) (-1 (-112) (-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) $) 33 (|has| $ (-6 -4412))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (-4012 (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-1185 |#1| |#2|) (-140) (-1094) (-1094)) (T -1185))
-((-1881 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1622 (*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1622 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2351 *3) (|:| -1327 *4)))) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4)))) (-2082 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
-(-13 (-608 |t#1| |t#2|) (-602 |t#1| |t#2|) (-10 -8 (-15 -1881 (|t#2| $ |t#1| |t#2|)) (-15 -1622 ($)) (-15 -1622 ($ (-641 (-2 (|:| -2351 |t#1|) (|:| -1327 |t#2|))))) (-15 -2082 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2351 |#1|) (|:| -1327 |#2|))) . T) ((-102) -4002 (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) ((-611 (-859)) -4002 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-611 (-859)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-602 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-309 (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)))) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-1094) -4002 (|has| |#2| (-1094)) (|has| (-2 (|:| -2351 |#1|) (|:| -1327 |#2|)) (-1094))) ((-1209) . T))
-((-1894 (((-112)) 29)) (-1946 (((-1264) (-1152)) 31)) (-1535 (((-112)) 41)) (-3515 (((-1264)) 39)) (-2252 (((-1264) (-1152) (-1152)) 30)) (-2480 (((-112)) 42)) (-2098 (((-1264) |#1| |#2|) 53)) (-1947 (((-1264)) 27)) (-4166 (((-3 |#2| "failed") |#1|) 51)) (-2990 (((-1264)) 40)))
-(((-1186 |#1| |#2|) (-10 -7 (-15 -1947 ((-1264))) (-15 -2252 ((-1264) (-1152) (-1152))) (-15 -1946 ((-1264) (-1152))) (-15 -3515 ((-1264))) (-15 -2990 ((-1264))) (-15 -1894 ((-112))) (-15 -1535 ((-112))) (-15 -2480 ((-112))) (-15 -4166 ((-3 |#2| "failed") |#1|)) (-15 -2098 ((-1264) |#1| |#2|))) (-1094) (-1094)) (T -1186))
-((-2098 (*1 *2 *3 *4) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4166 (*1 *2 *3) (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094)))) (-2480 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1535 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1894 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2990 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3515 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-2252 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-1947 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
-(-10 -7 (-15 -1947 ((-1264))) (-15 -2252 ((-1264) (-1152) (-1152))) (-15 -1946 ((-1264) (-1152))) (-15 -3515 ((-1264))) (-15 -2990 ((-1264))) (-15 -1894 ((-112))) (-15 -1535 ((-112))) (-15 -2480 ((-112))) (-15 -4166 ((-3 |#2| "failed") |#1|)) (-15 -2098 ((-1264) |#1| |#2|)))
-((-2569 (((-1152) (-1152)) 22)) (-2865 (((-52) (-1152)) 25)))
-(((-1187) (-10 -7 (-15 -2865 ((-52) (-1152))) (-15 -2569 ((-1152) (-1152))))) (T -1187))
-((-2569 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187)))))
-(-10 -7 (-15 -2865 ((-52) (-1152))) (-15 -2569 ((-1152) (-1152))))
-((-1765 (((-1189) |#1|) 11)))
-(((-1188 |#1|) (-10 -7 (-15 -1765 ((-1189) |#1|))) (-1094)) (T -1188))
-((-1765 (*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094)))))
-(-10 -7 (-15 -1765 ((-1189) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3201 (((-641 (-1152)) $) 39)) (-2918 (((-641 (-1152)) $ (-641 (-1152))) 42)) (-2130 (((-641 (-1152)) $ (-641 (-1152))) 41)) (-3498 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-2229 (((-641 (-1152)) $) 38)) (-1633 (($) 26)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2618 (((-641 (-1152)) $) 40)) (-3463 (((-1264) $ (-564)) 35) (((-1264) $) 36)) (-2127 (($ (-859) (-564)) 32) (($ (-859) (-564) (-859)) NIL)) (-1765 (((-859) $) 53) (($ (-859)) 31)) (-1686 (((-112) $ $) NIL)))
-(((-1189) (-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2127 ($ (-859) (-564))) (-15 -2127 ($ (-859) (-564) (-859))) (-15 -3463 ((-1264) $ (-564))) (-15 -3463 ((-1264) $)) (-15 -2618 ((-641 (-1152)) $)) (-15 -3201 ((-641 (-1152)) $)) (-15 -1633 ($)) (-15 -2229 ((-641 (-1152)) $)) (-15 -3498 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2918 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2130 ((-641 (-1152)) $ (-641 (-1152))))))) (T -1189))
-((-2127 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-2127 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-3463 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-1633 (*1 *1) (-5 *1 (-1189))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3498 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2918 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2130 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2127 ($ (-859) (-564))) (-15 -2127 ($ (-859) (-564) (-859))) (-15 -3463 ((-1264) $ (-564))) (-15 -3463 ((-1264) $)) (-15 -2618 ((-641 (-1152)) $)) (-15 -3201 ((-641 (-1152)) $)) (-15 -1633 ($)) (-15 -2229 ((-641 (-1152)) $)) (-15 -3498 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2918 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2130 ((-641 (-1152)) $ (-641 (-1152))))))
-((-1754 (((-112) $ $) NIL)) (-3326 (((-1152) $ (-1152)) 17) (((-1152) $) 16)) (-4309 (((-1152) $ (-1152)) 15)) (-2559 (($ $ (-1152)) NIL)) (-3480 (((-3 (-1152) "failed") $) 11)) (-2936 (((-1152) $) 8)) (-3930 (((-3 (-1152) "failed") $) 12)) (-3893 (((-1152) $) 9)) (-1589 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-4363 (((-388) $) NIL)) (-4202 (((-1152) $) NIL)) (-3533 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1752 (((-112) $) 21)) (-1765 (((-859) $) NIL)) (-3713 (($ $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-1190) (-13 (-364 (-388) (-1152)) (-10 -8 (-15 -3326 ((-1152) $ (-1152))) (-15 -3326 ((-1152) $)) (-15 -2936 ((-1152) $)) (-15 -3480 ((-3 (-1152) "failed") $)) (-15 -3930 ((-3 (-1152) "failed") $)) (-15 -1752 ((-112) $))))) (T -1190))
-((-3326 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3480 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3930 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))))
-(-13 (-364 (-388) (-1152)) (-10 -8 (-15 -3326 ((-1152) $ (-1152))) (-15 -3326 ((-1152) $)) (-15 -2936 ((-1152) $)) (-15 -3480 ((-3 (-1152) "failed") $)) (-15 -3930 ((-3 (-1152) "failed") $)) (-15 -1752 ((-112) $))))
-((-3438 (((-3 (-564) "failed") |#1|) 19)) (-3622 (((-3 (-564) "failed") |#1|) 14)) (-2900 (((-564) (-1152)) 33)))
-(((-1191 |#1|) (-10 -7 (-15 -3438 ((-3 (-564) "failed") |#1|)) (-15 -3622 ((-3 (-564) "failed") |#1|)) (-15 -2900 ((-564) (-1152)))) (-1046)) (T -1191))
-((-2900 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4)) (-4 *4 (-1046)))) (-3622 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))) (-3438 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))))
-(-10 -7 (-15 -3438 ((-3 (-564) "failed") |#1|)) (-15 -3622 ((-3 (-564) "failed") |#1|)) (-15 -2900 ((-564) (-1152))))
-((-2256 (((-1127 (-225))) 9)))
-(((-1192) (-10 -7 (-15 -2256 ((-1127 (-225)))))) (T -1192))
-((-2256 (*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192)))))
-(-10 -7 (-15 -2256 ((-1127 (-225)))))
-((-1539 (($) 12)) (-3991 (($ $) 36)) (-3963 (($ $) 34)) (-3801 (($ $) 26)) (-4020 (($ $) 18)) (-3586 (($ $) 16)) (-4005 (($ $) 20)) (-3840 (($ $) 31)) (-3977 (($ $) 35)) (-3814 (($ $) 30)))
-(((-1193 |#1|) (-10 -8 (-15 -1539 (|#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3977 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3814 (|#1| |#1|))) (-1194)) (T -1193))
-NIL
-(-10 -8 (-15 -1539 (|#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3977 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)))
-((-3904 (($ $) 26)) (-3752 (($ $) 11)) (-3879 (($ $) 27)) (-3727 (($ $) 10)) (-3933 (($ $) 28)) (-3778 (($ $) 9)) (-1539 (($) 16)) (-2186 (($ $) 19)) (-2152 (($ $) 18)) (-3949 (($ $) 29)) (-3789 (($ $) 8)) (-3918 (($ $) 30)) (-3765 (($ $) 7)) (-3891 (($ $) 31)) (-3739 (($ $) 6)) (-3991 (($ $) 20)) (-3827 (($ $) 32)) (-3963 (($ $) 21)) (-3801 (($ $) 33)) (-4020 (($ $) 22)) (-3854 (($ $) 34)) (-3586 (($ $) 23)) (-3867 (($ $) 35)) (-4005 (($ $) 24)) (-3840 (($ $) 36)) (-3977 (($ $) 25)) (-3814 (($ $) 37)) (** (($ $ $) 17)))
+((-3868 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3553 (*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1350 *3) (|:| -2575 *4)))) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4)))) (-2313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(-13 (-608 |t#1| |t#2|) (-602 |t#1| |t#2|) (-10 -8 (-15 -3868 (|t#2| $ |t#1| |t#2|)) (-15 -3553 ($)) (-15 -3553 ($ (-641 (-2 (|:| -1350 |t#1|) (|:| -2575 |t#2|))))) (-15 -2313 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1350 |#1|) (|:| -2575 |#2|))) . T) ((-102) -4012 (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) ((-611 (-859)) -4012 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-611 (-859)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-602 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-309 (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)))) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-1094) -4012 (|has| |#2| (-1094)) (|has| (-2 (|:| -1350 |#1|) (|:| -2575 |#2|)) (-1094))) ((-1209) . T))
+((-2136 (((-112)) 29)) (-1381 (((-1264) (-1152)) 31)) (-1704 (((-112)) 41)) (-2769 (((-1264)) 39)) (-1360 (((-1264) (-1152) (-1152)) 30)) (-1738 (((-112)) 42)) (-2373 (((-1264) |#1| |#2|) 53)) (-1392 (((-1264)) 27)) (-2770 (((-3 |#2| "failed") |#1|) 51)) (-4284 (((-1264)) 40)))
+(((-1186 |#1| |#2|) (-10 -7 (-15 -1392 ((-1264))) (-15 -1360 ((-1264) (-1152) (-1152))) (-15 -1381 ((-1264) (-1152))) (-15 -2769 ((-1264))) (-15 -4284 ((-1264))) (-15 -2136 ((-112))) (-15 -1704 ((-112))) (-15 -1738 ((-112))) (-15 -2770 ((-3 |#2| "failed") |#1|)) (-15 -2373 ((-1264) |#1| |#2|))) (-1094) (-1094)) (T -1186))
+((-2373 (*1 *2 *3 *4) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2770 (*1 *2 *3) (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094)))) (-1738 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1704 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2136 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-4284 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2769 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-1360 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-1392 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))))
+(-10 -7 (-15 -1392 ((-1264))) (-15 -1360 ((-1264) (-1152) (-1152))) (-15 -1381 ((-1264) (-1152))) (-15 -2769 ((-1264))) (-15 -4284 ((-1264))) (-15 -2136 ((-112))) (-15 -1704 ((-112))) (-15 -1738 ((-112))) (-15 -2770 ((-3 |#2| "failed") |#1|)) (-15 -2373 ((-1264) |#1| |#2|)))
+((-4391 (((-1152) (-1152)) 22)) (-4375 (((-52) (-1152)) 25)))
+(((-1187) (-10 -7 (-15 -4375 ((-52) (-1152))) (-15 -4391 ((-1152) (-1152))))) (T -1187))
+((-4391 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187)))))
+(-10 -7 (-15 -4375 ((-52) (-1152))) (-15 -4391 ((-1152) (-1152))))
+((-3714 (((-1189) |#1|) 11)))
+(((-1188 |#1|) (-10 -7 (-15 -3714 ((-1189) |#1|))) (-1094)) (T -1188))
+((-3714 (*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094)))))
+(-10 -7 (-15 -3714 ((-1189) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-3499 (((-641 (-1152)) $) 39)) (-3668 (((-641 (-1152)) $ (-641 (-1152))) 42)) (-2708 (((-641 (-1152)) $ (-641 (-1152))) 41)) (-2616 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-4209 (((-641 (-1152)) $) 38)) (-3564 (($) 26)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3586 (((-641 (-1152)) $) 40)) (-3512 (((-1264) $ (-564)) 35) (((-1264) $) 36)) (-2374 (($ (-859) (-564)) 32) (($ (-859) (-564) (-859)) NIL)) (-3714 (((-859) $) 53) (($ (-859)) 31)) (-1720 (((-112) $ $) NIL)))
+(((-1189) (-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2374 ($ (-859) (-564))) (-15 -2374 ($ (-859) (-564) (-859))) (-15 -3512 ((-1264) $ (-564))) (-15 -3512 ((-1264) $)) (-15 -3586 ((-641 (-1152)) $)) (-15 -3499 ((-641 (-1152)) $)) (-15 -3564 ($)) (-15 -4209 ((-641 (-1152)) $)) (-15 -2616 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3668 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2708 ((-641 (-1152)) $ (-641 (-1152))))))) (T -1189))
+((-2374 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-2374 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3564 (*1 *1) (-5 *1 (-1189))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2616 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3668 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2708 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
+(-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2374 ($ (-859) (-564))) (-15 -2374 ($ (-859) (-564) (-859))) (-15 -3512 ((-1264) $ (-564))) (-15 -3512 ((-1264) $)) (-15 -3586 ((-641 (-1152)) $)) (-15 -3499 ((-641 (-1152)) $)) (-15 -3564 ($)) (-15 -4209 ((-641 (-1152)) $)) (-15 -2616 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -3668 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2708 ((-641 (-1152)) $ (-641 (-1152))))))
+((-3702 (((-112) $ $) NIL)) (-1499 (((-1152) $ (-1152)) 17) (((-1152) $) 16)) (-1551 (((-1152) $ (-1152)) 15)) (-4295 (($ $ (-1152)) NIL)) (-2422 (((-3 (-1152) "failed") $) 11)) (-3876 (((-1152) $) 8)) (-4235 (((-3 (-1152) "failed") $) 12)) (-2047 (((-1152) $) 9)) (-1721 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-4337 (((-388) $) NIL)) (-1868 (((-1152) $) NIL)) (-1665 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3145 (((-112) $) 21)) (-3714 (((-859) $) NIL)) (-3977 (($ $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-1190) (-13 (-364 (-388) (-1152)) (-10 -8 (-15 -1499 ((-1152) $ (-1152))) (-15 -1499 ((-1152) $)) (-15 -3876 ((-1152) $)) (-15 -2422 ((-3 (-1152) "failed") $)) (-15 -4235 ((-3 (-1152) "failed") $)) (-15 -3145 ((-112) $))))) (T -1190))
+((-1499 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-2422 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-4235 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))))
+(-13 (-364 (-388) (-1152)) (-10 -8 (-15 -1499 ((-1152) $ (-1152))) (-15 -1499 ((-1152) $)) (-15 -3876 ((-1152) $)) (-15 -2422 ((-3 (-1152) "failed") $)) (-15 -4235 ((-3 (-1152) "failed") $)) (-15 -3145 ((-112) $))))
+((-3191 (((-3 (-564) "failed") |#1|) 19)) (-4356 (((-3 (-564) "failed") |#1|) 14)) (-3466 (((-564) (-1152)) 33)))
+(((-1191 |#1|) (-10 -7 (-15 -3191 ((-3 (-564) "failed") |#1|)) (-15 -4356 ((-3 (-564) "failed") |#1|)) (-15 -3466 ((-564) (-1152)))) (-1046)) (T -1191))
+((-3466 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4)) (-4 *4 (-1046)))) (-4356 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))) (-3191 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))))
+(-10 -7 (-15 -3191 ((-3 (-564) "failed") |#1|)) (-15 -4356 ((-3 (-564) "failed") |#1|)) (-15 -3466 ((-564) (-1152))))
+((-1400 (((-1127 (-225))) 9)))
+(((-1192) (-10 -7 (-15 -1400 ((-1127 (-225)))))) (T -1192))
+((-1400 (*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192)))))
+(-10 -7 (-15 -1400 ((-1127 (-225)))))
+((-1688 (($) 12)) (-2728 (($ $) 36)) (-2704 (($ $) 34)) (-2566 (($ $) 26)) (-2751 (($ $) 18)) (-2053 (($ $) 16)) (-2740 (($ $) 20)) (-2605 (($ $) 31)) (-2716 (($ $) 35)) (-2577 (($ $) 30)))
+(((-1193 |#1|) (-10 -8 (-15 -1688 (|#1|)) (-15 -2728 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2751 (|#1| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2716 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -2577 (|#1| |#1|))) (-1194)) (T -1193))
+NIL
+(-10 -8 (-15 -1688 (|#1|)) (-15 -2728 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2751 (|#1| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2716 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)))
+((-2657 (($ $) 26)) (-2516 (($ $) 11)) (-2635 (($ $) 27)) (-2491 (($ $) 10)) (-2679 (($ $) 28)) (-2542 (($ $) 9)) (-1688 (($) 16)) (-2305 (($ $) 19)) (-4130 (($ $) 18)) (-2692 (($ $) 29)) (-2557 (($ $) 8)) (-2669 (($ $) 30)) (-2529 (($ $) 7)) (-2647 (($ $) 31)) (-2502 (($ $) 6)) (-2728 (($ $) 20)) (-2595 (($ $) 32)) (-2704 (($ $) 21)) (-2566 (($ $) 33)) (-2751 (($ $) 22)) (-2615 (($ $) 34)) (-2053 (($ $) 23)) (-2626 (($ $) 35)) (-2740 (($ $) 24)) (-2605 (($ $) 36)) (-2716 (($ $) 25)) (-2577 (($ $) 37)) (** (($ $ $) 17)))
(((-1194) (-140)) (T -1194))
-((-1539 (*1 *1) (-4 *1 (-1194))))
-(-13 (-1197) (-95) (-493) (-35) (-284) (-10 -8 (-15 -1539 ($))))
+((-1688 (*1 *1) (-4 *1 (-1194))))
+(-13 (-1197) (-95) (-493) (-35) (-284) (-10 -8 (-15 -1688 ($))))
(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-1197) . T))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1451 ((|#1| $) 19)) (-2367 (($ |#1| (-641 $)) 28) (($ (-641 |#1|)) 35) (($ |#1|) 30)) (-3263 (((-112) $ (-768)) 70)) (-3768 ((|#1| $ |#1|) 14 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 13 (|has| $ (-6 -4412)))) (-3760 (($) NIL T CONST)) (-3080 (((-641 |#1|) $) 74 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 62)) (-2272 (((-112) $ $) 48 (|has| |#1| (-1094)))) (-2830 (((-112) $ (-768)) 60)) (-3817 (((-641 |#1|) $) 75 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3513 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 27)) (-2972 (((-112) $ (-768)) 59)) (-3848 (((-641 |#1|) $) 53)) (-2200 (((-112) $) 51)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1467 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 104)) (-2742 (((-112) $) 9)) (-3845 (($) 10)) (-4382 ((|#1| $ "value") NIL)) (-3837 (((-564) $ $) 47)) (-4174 (((-641 $) $) 87)) (-3223 (((-112) $ $) 107)) (-1603 (((-641 $) $) 102)) (-2489 (($ $) 103)) (-1867 (((-112) $) 82)) (-3815 (((-768) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4411))) (((-768) |#1| $) 17 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1899 (($ $) 86)) (-1765 (((-859) $) 89 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) 12)) (-1740 (((-112) $ $) 39 (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) 71 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 37 (|has| |#1| (-1094)))) (-2589 (((-768) $) 57 (|has| $ (-6 -4411)))))
-(((-1195 |#1|) (-13 (-1007 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -2367 ($ |#1| (-641 $))) (-15 -2367 ($ (-641 |#1|))) (-15 -2367 ($ |#1|)) (-15 -1867 ((-112) $)) (-15 -2489 ($ $)) (-15 -1603 ((-641 $) $)) (-15 -3223 ((-112) $ $)) (-15 -4174 ((-641 $) $)))) (-1094)) (T -1195))
-((-1867 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-2367 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3)))) (-2367 (*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2489 (*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-3223 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(-13 (-1007 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -2367 ($ |#1| (-641 $))) (-15 -2367 ($ (-641 |#1|))) (-15 -2367 ($ |#1|)) (-15 -1867 ((-112) $)) (-15 -2489 ($ $)) (-15 -1603 ((-641 $) $)) (-15 -3223 ((-112) $ $)) (-15 -4174 ((-641 $) $))))
-((-3752 (($ $) 15)) (-3778 (($ $) 12)) (-3789 (($ $) 10)) (-3765 (($ $) 17)))
-(((-1196 |#1|) (-10 -8 (-15 -3765 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3752 (|#1| |#1|))) (-1197)) (T -1196))
-NIL
-(-10 -8 (-15 -3765 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3752 (|#1| |#1|)))
-((-3752 (($ $) 11)) (-3727 (($ $) 10)) (-3778 (($ $) 9)) (-3789 (($ $) 8)) (-3765 (($ $) 7)) (-3739 (($ $) 6)))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3387 ((|#1| $) 19)) (-2747 (($ |#1| (-641 $)) 28) (($ (-641 |#1|)) 35) (($ |#1|) 30)) (-2141 (((-112) $ (-768)) 70)) (-3242 ((|#1| $ |#1|) 14 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 13 (|has| $ (-6 -4413)))) (-3180 (($) NIL T CONST)) (-4244 (((-641 |#1|) $) 74 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 62)) (-1543 (((-112) $ $) 48 (|has| |#1| (-1094)))) (-2173 (((-112) $ (-768)) 60)) (-2572 (((-641 |#1|) $) 75 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-1988 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 27)) (-4144 (((-112) $ (-768)) 59)) (-2523 (((-641 |#1|) $) 53)) (-2120 (((-112) $) 51)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2280 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 104)) (-2510 (((-112) $) 9)) (-2834 (($) 10)) (-4382 ((|#1| $ "value") NIL)) (-2774 (((-564) $ $) 47)) (-2821 (((-641 $) $) 87)) (-1732 (((-112) $ $) 107)) (-4174 (((-641 $) $) 102)) (-1832 (($ $) 103)) (-1875 (((-112) $) 82)) (-3855 (((-768) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4412))) (((-768) |#1| $) 17 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3890 (($ $) 86)) (-3714 (((-859) $) 89 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) 12)) (-3036 (((-112) $ $) 39 (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) 71 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 37 (|has| |#1| (-1094)))) (-2779 (((-768) $) 57 (|has| $ (-6 -4412)))))
+(((-1195 |#1|) (-13 (-1007 |#1|) (-10 -8 (-6 -4412) (-6 -4413) (-15 -2747 ($ |#1| (-641 $))) (-15 -2747 ($ (-641 |#1|))) (-15 -2747 ($ |#1|)) (-15 -1875 ((-112) $)) (-15 -1832 ($ $)) (-15 -4174 ((-641 $) $)) (-15 -1732 ((-112) $ $)) (-15 -2821 ((-641 $) $)))) (-1094)) (T -1195))
+((-1875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-2747 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2747 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3)))) (-2747 (*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-1832 (*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-1732 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
+(-13 (-1007 |#1|) (-10 -8 (-6 -4412) (-6 -4413) (-15 -2747 ($ |#1| (-641 $))) (-15 -2747 ($ (-641 |#1|))) (-15 -2747 ($ |#1|)) (-15 -1875 ((-112) $)) (-15 -1832 ($ $)) (-15 -4174 ((-641 $) $)) (-15 -1732 ((-112) $ $)) (-15 -2821 ((-641 $) $))))
+((-2516 (($ $) 15)) (-2542 (($ $) 12)) (-2557 (($ $) 10)) (-2529 (($ $) 17)))
+(((-1196 |#1|) (-10 -8 (-15 -2529 (|#1| |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -2542 (|#1| |#1|)) (-15 -2516 (|#1| |#1|))) (-1197)) (T -1196))
+NIL
+(-10 -8 (-15 -2529 (|#1| |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -2542 (|#1| |#1|)) (-15 -2516 (|#1| |#1|)))
+((-2516 (($ $) 11)) (-2491 (($ $) 10)) (-2542 (($ $) 9)) (-2557 (($ $) 8)) (-2529 (($ $) 7)) (-2502 (($ $) 6)))
(((-1197) (-140)) (T -1197))
-((-3752 (*1 *1 *1) (-4 *1 (-1197))) (-3727 (*1 *1 *1) (-4 *1 (-1197))) (-3778 (*1 *1 *1) (-4 *1 (-1197))) (-3789 (*1 *1 *1) (-4 *1 (-1197))) (-3765 (*1 *1 *1) (-4 *1 (-1197))) (-3739 (*1 *1 *1) (-4 *1 (-1197))))
-(-13 (-10 -8 (-15 -3739 ($ $)) (-15 -3765 ($ $)) (-15 -3789 ($ $)) (-15 -3778 ($ $)) (-15 -3727 ($ $)) (-15 -3752 ($ $))))
-((-3811 ((|#2| |#2|) 99)) (-4122 (((-112) |#2|) 29)) (-4032 ((|#2| |#2|) 33)) (-4045 ((|#2| |#2|) 35)) (-3459 ((|#2| |#2| (-1170)) 93) ((|#2| |#2|) 94)) (-2853 (((-169 |#2|) |#2|) 31)) (-1832 ((|#2| |#2| (-1170)) 95) ((|#2| |#2|) 96)))
-(((-1198 |#1| |#2|) (-10 -7 (-15 -3459 (|#2| |#2|)) (-15 -3459 (|#2| |#2| (-1170))) (-15 -1832 (|#2| |#2|)) (-15 -1832 (|#2| |#2| (-1170))) (-15 -3811 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -4122 ((-112) |#2|)) (-15 -2853 ((-169 |#2|) |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -1198))
-((-2853 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4122 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-1832 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1832 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-3459 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
-(-10 -7 (-15 -3459 (|#2| |#2|)) (-15 -3459 (|#2| |#2| (-1170))) (-15 -1832 (|#2| |#2|)) (-15 -1832 (|#2| |#2| (-1170))) (-15 -3811 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -4045 (|#2| |#2|)) (-15 -4122 ((-112) |#2|)) (-15 -2853 ((-169 |#2|) |#2|)))
-((-3576 ((|#4| |#4| |#1|) 32)) (-3878 ((|#4| |#4| |#1|) 33)))
-(((-1199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3576 (|#4| |#4| |#1|)) (-15 -3878 (|#4| |#4| |#1|))) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1199))
-((-3878 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3576 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(-10 -7 (-15 -3576 (|#4| |#4| |#1|)) (-15 -3878 (|#4| |#4| |#1|)))
-((-2244 ((|#2| |#2|) 148)) (-3426 ((|#2| |#2|) 145)) (-4344 ((|#2| |#2|) 136)) (-2860 ((|#2| |#2|) 133)) (-3348 ((|#2| |#2|) 141)) (-1729 ((|#2| |#2|) 129)) (-1317 ((|#2| |#2|) 44)) (-2591 ((|#2| |#2|) 105)) (-3133 ((|#2| |#2|) 88)) (-1292 ((|#2| |#2|) 143)) (-2947 ((|#2| |#2|) 131)) (-2907 ((|#2| |#2|) 153)) (-3372 ((|#2| |#2|) 151)) (-2874 ((|#2| |#2|) 152)) (-3809 ((|#2| |#2|) 150)) (-3413 ((|#2| |#2|) 163)) (-4075 ((|#2| |#2|) 30 (-12 (|has| |#2| (-612 (-889 |#1|))) (|has| |#2| (-883 |#1|)) (|has| |#1| (-612 (-889 |#1|))) (|has| |#1| (-883 |#1|))))) (-3392 ((|#2| |#2|) 89)) (-1625 ((|#2| |#2|) 154)) (-2134 ((|#2| |#2|) 155)) (-3751 ((|#2| |#2|) 142)) (-4313 ((|#2| |#2|) 130)) (-4326 ((|#2| |#2|) 149)) (-2889 ((|#2| |#2|) 147)) (-1687 ((|#2| |#2|) 137)) (-4067 ((|#2| |#2|) 135)) (-1575 ((|#2| |#2|) 139)) (-2508 ((|#2| |#2|) 127)))
-(((-1200 |#1| |#2|) (-10 -7 (-15 -2134 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -3413 (|#2| |#2|)) (-15 -2591 (|#2| |#2|)) (-15 -1317 (|#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -2508 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -4326 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -3751 (|#2| |#2|)) (-15 -2947 (|#2| |#2|)) (-15 -1292 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -4344 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -3426 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -2889 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3372 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -2907 (|#2| |#2|)) (IF (|has| |#1| (-883 |#1|)) (IF (|has| |#1| (-612 (-889 |#1|))) (IF (|has| |#2| (-612 (-889 |#1|))) (IF (|has| |#2| (-883 |#1|)) (-15 -4075 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-847) (-452)) (-13 (-430 |#1|) (-1194))) (T -1200))
-((-4075 (*1 *2 *2) (-12 (-4 *3 (-612 (-889 *3))) (-4 *3 (-883 *3)) (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-612 (-889 *3))) (-4 *2 (-883 *3)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2907 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3372 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2889 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3426 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2860 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4344 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1292 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2947 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3751 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4313 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4326 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2508 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1625 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1317 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2591 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3413 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3133 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2134 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))))
-(-10 -7 (-15 -2134 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -3413 (|#2| |#2|)) (-15 -2591 (|#2| |#2|)) (-15 -1317 (|#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -2508 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -4326 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -3751 (|#2| |#2|)) (-15 -2947 (|#2| |#2|)) (-15 -1292 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -4344 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -3426 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -2889 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3372 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -2907 (|#2| |#2|)) (IF (|has| |#1| (-883 |#1|)) (IF (|has| |#1| (-612 (-889 |#1|))) (IF (|has| |#2| (-612 (-889 |#1|))) (IF (|has| |#2| (-883 |#1|)) (-15 -4075 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1940 (((-112) |#5| $) 67) (((-112) $) 109)) (-3993 ((|#5| |#5| $) 82)) (-2164 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 126)) (-3207 (((-641 |#5|) (-641 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 80)) (-2013 (((-3 $ "failed") (-641 |#5|)) 134)) (-3086 (((-3 $ "failed") $) 119)) (-2758 ((|#5| |#5| $) 101)) (-4269 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 35)) (-3621 ((|#5| |#5| $) 105)) (-4367 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 76)) (-2058 (((-2 (|:| -3439 (-641 |#5|)) (|:| -1589 (-641 |#5|))) $) 62)) (-2415 (((-112) |#5| $) 65) (((-112) $) 110)) (-3162 ((|#4| $) 115)) (-2376 (((-3 |#5| "failed") $) 117)) (-3277 (((-641 |#5|) $) 54)) (-3561 (((-112) |#5| $) 74) (((-112) $) 114)) (-3874 ((|#5| |#5| $) 88)) (-3862 (((-112) $ $) 28)) (-1512 (((-112) |#5| $) 70) (((-112) $) 112)) (-3491 ((|#5| |#5| $) 85)) (-3073 (((-3 |#5| "failed") $) 116)) (-2678 (($ $ |#5|) 135)) (-3344 (((-768) $) 59)) (-1776 (($ (-641 |#5|)) 132)) (-2318 (($ $ |#4|) 130)) (-1869 (($ $ |#4|) 128)) (-3430 (($ $) 127)) (-1765 (((-859) $) NIL) (((-641 |#5|) $) 120)) (-1597 (((-768) $) 139)) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|)) 48) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 50)) (-1599 (((-112) $ (-1 (-112) |#5| (-641 |#5|))) 107)) (-2380 (((-641 |#4|) $) 122)) (-3623 (((-112) |#4| $) 125)) (-1686 (((-112) $ $) 20)))
-(((-1201 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1597 ((-768) |#1|)) (-15 -2678 (|#1| |#1| |#5|)) (-15 -2164 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3623 ((-112) |#4| |#1|)) (-15 -2380 ((-641 |#4|) |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 -2376 ((-3 |#5| "failed") |#1|)) (-15 -3073 ((-3 |#5| "failed") |#1|)) (-15 -3621 (|#5| |#5| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -2758 (|#5| |#5| |#1|)) (-15 -3874 (|#5| |#5| |#1|)) (-15 -3491 (|#5| |#5| |#1|)) (-15 -3993 (|#5| |#5| |#1|)) (-15 -3207 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4367 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3561 ((-112) |#1|)) (-15 -1512 ((-112) |#1|)) (-15 -1940 ((-112) |#1|)) (-15 -1599 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -3561 ((-112) |#5| |#1|)) (-15 -1512 ((-112) |#5| |#1|)) (-15 -1940 ((-112) |#5| |#1|)) (-15 -4269 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2415 ((-112) |#1|)) (-15 -2415 ((-112) |#5| |#1|)) (-15 -2058 ((-2 (|:| -3439 (-641 |#5|)) (|:| -1589 (-641 |#5|))) |#1|)) (-15 -3344 ((-768) |#1|)) (-15 -3277 ((-641 |#5|) |#1|)) (-15 -3063 ((-3 (-2 (|:| |bas| |#1|) (|:| -1417 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3063 ((-3 (-2 (|:| |bas| |#1|) (|:| -1417 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3862 ((-112) |#1| |#1|)) (-15 -2318 (|#1| |#1| |#4|)) (-15 -1869 (|#1| |#1| |#4|)) (-15 -3162 (|#4| |#1|)) (-15 -2013 ((-3 |#1| "failed") (-641 |#5|))) (-15 -1765 ((-641 |#5|) |#1|)) (-15 -1776 (|#1| (-641 |#5|))) (-15 -4367 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4367 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2164 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4367 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|))) (-1202 |#2| |#3| |#4| |#5|) (-556) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -1201))
-NIL
-(-10 -8 (-15 -1597 ((-768) |#1|)) (-15 -2678 (|#1| |#1| |#5|)) (-15 -2164 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3623 ((-112) |#4| |#1|)) (-15 -2380 ((-641 |#4|) |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 -2376 ((-3 |#5| "failed") |#1|)) (-15 -3073 ((-3 |#5| "failed") |#1|)) (-15 -3621 (|#5| |#5| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -2758 (|#5| |#5| |#1|)) (-15 -3874 (|#5| |#5| |#1|)) (-15 -3491 (|#5| |#5| |#1|)) (-15 -3993 (|#5| |#5| |#1|)) (-15 -3207 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4367 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3561 ((-112) |#1|)) (-15 -1512 ((-112) |#1|)) (-15 -1940 ((-112) |#1|)) (-15 -1599 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -3561 ((-112) |#5| |#1|)) (-15 -1512 ((-112) |#5| |#1|)) (-15 -1940 ((-112) |#5| |#1|)) (-15 -4269 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2415 ((-112) |#1|)) (-15 -2415 ((-112) |#5| |#1|)) (-15 -2058 ((-2 (|:| -3439 (-641 |#5|)) (|:| -1589 (-641 |#5|))) |#1|)) (-15 -3344 ((-768) |#1|)) (-15 -3277 ((-641 |#5|) |#1|)) (-15 -3063 ((-3 (-2 (|:| |bas| |#1|) (|:| -1417 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3063 ((-3 (-2 (|:| |bas| |#1|) (|:| -1417 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3862 ((-112) |#1| |#1|)) (-15 -2318 (|#1| |#1| |#4|)) (-15 -1869 (|#1| |#1| |#4|)) (-15 -3162 (|#4| |#1|)) (-15 -2013 ((-3 |#1| "failed") (-641 |#5|))) (-15 -1765 ((-641 |#5|) |#1|)) (-15 -1776 (|#1| (-641 |#5|))) (-15 -4367 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4367 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2164 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4367 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1765 ((-859) |#1|)) (-15 -1686 ((-112) |#1| |#1|)))
-((-1754 (((-112) $ $) 7)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |#4|)))) (-641 |#4|)) 85)) (-4389 (((-641 $) (-641 |#4|)) 86)) (-4170 (((-641 |#3|) $) 33)) (-1747 (((-112) $) 26)) (-2197 (((-112) $) 17 (|has| |#1| (-556)))) (-1940 (((-112) |#4| $) 101) (((-112) $) 97)) (-3993 ((|#4| |#4| $) 92)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) 27)) (-3263 (((-112) $ (-768)) 44)) (-2164 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-3760 (($) 45 T CONST)) (-4177 (((-112) $) 22 (|has| |#1| (-556)))) (-3911 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2694 (((-112) $ $) 23 (|has| |#1| (-556)))) (-1378 (((-112) $) 25 (|has| |#1| (-556)))) (-3207 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2254 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) 36)) (-2064 (($ (-641 |#4|)) 35)) (-3086 (((-3 $ "failed") $) 82)) (-2758 ((|#4| |#4| $) 89)) (-3104 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4269 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3621 ((|#4| |#4| $) 87)) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2058 (((-2 (|:| -3439 (-641 |#4|)) (|:| -1589 (-641 |#4|))) $) 105)) (-3080 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-2415 (((-112) |#4| $) 104) (((-112) $) 103)) (-3162 ((|#3| $) 34)) (-2830 (((-112) $ (-768)) 43)) (-3817 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) 47)) (-4343 (((-641 |#3|) $) 32)) (-1853 (((-112) |#3| $) 31)) (-2972 (((-112) $ (-768)) 42)) (-4202 (((-1152) $) 9)) (-2376 (((-3 |#4| "failed") $) 83)) (-3277 (((-641 |#4|) $) 107)) (-3561 (((-112) |#4| $) 99) (((-112) $) 95)) (-3874 ((|#4| |#4| $) 90)) (-3862 (((-112) $ $) 110)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1512 (((-112) |#4| $) 100) (((-112) $) 96)) (-3491 ((|#4| |#4| $) 91)) (-3802 (((-1114) $) 10)) (-3073 (((-3 |#4| "failed") $) 84)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3159 (((-3 $ "failed") $ |#4|) 78)) (-2678 (($ $ |#4|) 77)) (-1467 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) 38)) (-2742 (((-112) $) 41)) (-3845 (($) 40)) (-3344 (((-768) $) 106)) (-3815 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-1899 (($ $) 39)) (-2127 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) 60)) (-2318 (($ $ |#3|) 28)) (-1869 (($ $ |#3|) 30)) (-3430 (($ $) 88)) (-1845 (($ $ |#3|) 29)) (-1765 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1597 (((-768) $) 76 (|has| |#3| (-368)))) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1599 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-2237 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-2380 (((-641 |#3|) $) 81)) (-3623 (((-112) |#3| $) 80)) (-1686 (((-112) $ $) 6)) (-2589 (((-768) $) 46 (|has| $ (-6 -4411)))))
+((-2516 (*1 *1 *1) (-4 *1 (-1197))) (-2491 (*1 *1 *1) (-4 *1 (-1197))) (-2542 (*1 *1 *1) (-4 *1 (-1197))) (-2557 (*1 *1 *1) (-4 *1 (-1197))) (-2529 (*1 *1 *1) (-4 *1 (-1197))) (-2502 (*1 *1 *1) (-4 *1 (-1197))))
+(-13 (-10 -8 (-15 -2502 ($ $)) (-15 -2529 ($ $)) (-15 -2557 ($ $)) (-15 -2542 ($ $)) (-15 -2491 ($ $)) (-15 -2516 ($ $))))
+((-2525 ((|#2| |#2|) 99)) (-2330 (((-112) |#2|) 29)) (-4164 ((|#2| |#2|) 33)) (-4175 ((|#2| |#2|) 35)) (-2232 ((|#2| |#2| (-1170)) 93) ((|#2| |#2|) 94)) (-4247 (((-169 |#2|) |#2|) 31)) (-2767 ((|#2| |#2| (-1170)) 95) ((|#2| |#2|) 96)))
+(((-1198 |#1| |#2|) (-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1170))) (-15 -2767 (|#2| |#2|)) (-15 -2767 (|#2| |#2| (-1170))) (-15 -2525 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -2330 ((-112) |#2|)) (-15 -4247 ((-169 |#2|) |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -1198))
+((-4247 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-2330 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2525 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2767 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2767 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2232 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
+(-10 -7 (-15 -2232 (|#2| |#2|)) (-15 -2232 (|#2| |#2| (-1170))) (-15 -2767 (|#2| |#2|)) (-15 -2767 (|#2| |#2| (-1170))) (-15 -2525 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -2330 ((-112) |#2|)) (-15 -4247 ((-169 |#2|) |#2|)))
+((-2098 ((|#4| |#4| |#1|) 32)) (-1906 ((|#4| |#4| |#1|) 33)))
+(((-1199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2098 (|#4| |#4| |#1|)) (-15 -1906 (|#4| |#4| |#1|))) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1199))
+((-1906 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2098 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
+(-10 -7 (-15 -2098 (|#4| |#4| |#1|)) (-15 -1906 (|#4| |#4| |#1|)))
+((-4361 ((|#2| |#2|) 148)) (-3091 ((|#2| |#2|) 145)) (-3663 ((|#2| |#2|) 136)) (-4317 ((|#2| |#2|) 133)) (-3520 ((|#2| |#2|) 141)) (-2948 ((|#2| |#2|) 129)) (-2220 ((|#2| |#2|) 44)) (-1505 ((|#2| |#2|) 105)) (-3223 ((|#2| |#2|) 88)) (-3072 ((|#2| |#2|) 143)) (-3991 ((|#2| |#2|) 131)) (-3534 ((|#2| |#2|) 153)) (-3775 ((|#2| |#2|) 151)) (-1389 ((|#2| |#2|) 152)) (-2498 ((|#2| |#2|) 150)) (-3003 ((|#2| |#2|) 163)) (-3075 ((|#2| |#2|) 30 (-12 (|has| |#2| (-612 (-889 |#1|))) (|has| |#2| (-883 |#1|)) (|has| |#1| (-612 (-889 |#1|))) (|has| |#1| (-883 |#1|))))) (-3981 ((|#2| |#2|) 89)) (-4383 ((|#2| |#2|) 154)) (-4111 ((|#2| |#2|) 155)) (-3116 ((|#2| |#2|) 142)) (-1574 ((|#2| |#2|) 130)) (-3483 ((|#2| |#2|) 149)) (-1557 ((|#2| |#2|) 147)) (-3695 ((|#2| |#2|) 137)) (-3014 ((|#2| |#2|) 135)) (-2091 ((|#2| |#2|) 139)) (-2023 ((|#2| |#2|) 127)))
+(((-1200 |#1| |#2|) (-10 -7 (-15 -4111 (|#2| |#2|)) (-15 -3223 (|#2| |#2|)) (-15 -3003 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2220 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -4383 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -3116 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -3520 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -3534 (|#2| |#2|)) (IF (|has| |#1| (-883 |#1|)) (IF (|has| |#1| (-612 (-889 |#1|))) (IF (|has| |#2| (-612 (-889 |#1|))) (IF (|has| |#2| (-883 |#1|)) (-15 -3075 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-847) (-452)) (-13 (-430 |#1|) (-1194))) (T -1200))
+((-3075 (*1 *2 *2) (-12 (-4 *3 (-612 (-889 *3))) (-4 *3 (-883 *3)) (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-612 (-889 *3))) (-4 *2 (-883 *3)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3534 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2498 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4317 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4361 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3520 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3072 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3116 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2023 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4383 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3003 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3223 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4111 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))))
+(-10 -7 (-15 -4111 (|#2| |#2|)) (-15 -3223 (|#2| |#2|)) (-15 -3003 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2220 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -4383 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -3116 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -3520 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -4361 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -3534 (|#2| |#2|)) (IF (|has| |#1| (-883 |#1|)) (IF (|has| |#1| (-612 (-889 |#1|))) (IF (|has| |#2| (-612 (-889 |#1|))) (IF (|has| |#2| (-883 |#1|)) (-15 -3075 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1300 (((-112) |#5| $) 67) (((-112) $) 109)) (-3500 ((|#5| |#5| $) 82)) (-4148 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 126)) (-1578 (((-641 |#5|) (-641 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 80)) (-2224 (((-3 $ "failed") (-641 |#5|)) 134)) (-2063 (((-3 $ "failed") $) 119)) (-2687 ((|#5| |#5| $) 101)) (-4300 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 35)) (-4344 ((|#5| |#5| $) 105)) (-1728 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 76)) (-3151 (((-2 (|:| -3489 (-641 |#5|)) (|:| -1721 (-641 |#5|))) $) 62)) (-2297 (((-112) |#5| $) 65) (((-112) $) 110)) (-2394 ((|#4| $) 115)) (-2541 (((-3 |#5| "failed") $) 117)) (-4104 (((-641 |#5|) $) 54)) (-1954 (((-112) |#5| $) 74) (((-112) $) 114)) (-1863 ((|#5| |#5| $) 88)) (-1733 (((-112) $ $) 28)) (-1485 (((-112) |#5| $) 70) (((-112) $) 112)) (-2543 ((|#5| |#5| $) 85)) (-2049 (((-3 |#5| "failed") $) 116)) (-3042 (($ $ |#5|) 135)) (-3475 (((-768) $) 59)) (-3725 (($ (-641 |#5|)) 132)) (-3789 (($ $ |#4|) 130)) (-1896 (($ $ |#4|) 128)) (-3121 (($ $) 127)) (-3714 (((-859) $) NIL) (((-641 |#5|) $) 120)) (-4113 (((-768) $) 139)) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|)) 48) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 50)) (-4138 (((-112) $ (-1 (-112) |#5| (-641 |#5|))) 107)) (-3148 (((-641 |#4|) $) 122)) (-4368 (((-112) |#4| $) 125)) (-1720 (((-112) $ $) 20)))
+(((-1201 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4113 ((-768) |#1|)) (-15 -3042 (|#1| |#1| |#5|)) (-15 -4148 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4368 ((-112) |#4| |#1|)) (-15 -3148 ((-641 |#4|) |#1|)) (-15 -2063 ((-3 |#1| "failed") |#1|)) (-15 -2541 ((-3 |#5| "failed") |#1|)) (-15 -2049 ((-3 |#5| "failed") |#1|)) (-15 -4344 (|#5| |#5| |#1|)) (-15 -3121 (|#1| |#1|)) (-15 -2687 (|#5| |#5| |#1|)) (-15 -1863 (|#5| |#5| |#1|)) (-15 -2543 (|#5| |#5| |#1|)) (-15 -3500 (|#5| |#5| |#1|)) (-15 -1578 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1728 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1954 ((-112) |#1|)) (-15 -1485 ((-112) |#1|)) (-15 -1300 ((-112) |#1|)) (-15 -4138 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -1954 ((-112) |#5| |#1|)) (-15 -1485 ((-112) |#5| |#1|)) (-15 -1300 ((-112) |#5| |#1|)) (-15 -4300 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2297 ((-112) |#1|)) (-15 -2297 ((-112) |#5| |#1|)) (-15 -3151 ((-2 (|:| -3489 (-641 |#5|)) (|:| -1721 (-641 |#5|))) |#1|)) (-15 -3475 ((-768) |#1|)) (-15 -4104 ((-641 |#5|) |#1|)) (-15 -3769 ((-3 (-2 (|:| |bas| |#1|) (|:| -2667 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3769 ((-3 (-2 (|:| |bas| |#1|) (|:| -2667 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3789 (|#1| |#1| |#4|)) (-15 -1896 (|#1| |#1| |#4|)) (-15 -2394 (|#4| |#1|)) (-15 -2224 ((-3 |#1| "failed") (-641 |#5|))) (-15 -3714 ((-641 |#5|) |#1|)) (-15 -3725 (|#1| (-641 |#5|))) (-15 -1728 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1728 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4148 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1728 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|))) (-1202 |#2| |#3| |#4| |#5|) (-556) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -1201))
+NIL
+(-10 -8 (-15 -4113 ((-768) |#1|)) (-15 -3042 (|#1| |#1| |#5|)) (-15 -4148 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4368 ((-112) |#4| |#1|)) (-15 -3148 ((-641 |#4|) |#1|)) (-15 -2063 ((-3 |#1| "failed") |#1|)) (-15 -2541 ((-3 |#5| "failed") |#1|)) (-15 -2049 ((-3 |#5| "failed") |#1|)) (-15 -4344 (|#5| |#5| |#1|)) (-15 -3121 (|#1| |#1|)) (-15 -2687 (|#5| |#5| |#1|)) (-15 -1863 (|#5| |#5| |#1|)) (-15 -2543 (|#5| |#5| |#1|)) (-15 -3500 (|#5| |#5| |#1|)) (-15 -1578 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1728 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1954 ((-112) |#1|)) (-15 -1485 ((-112) |#1|)) (-15 -1300 ((-112) |#1|)) (-15 -4138 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -1954 ((-112) |#5| |#1|)) (-15 -1485 ((-112) |#5| |#1|)) (-15 -1300 ((-112) |#5| |#1|)) (-15 -4300 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2297 ((-112) |#1|)) (-15 -2297 ((-112) |#5| |#1|)) (-15 -3151 ((-2 (|:| -3489 (-641 |#5|)) (|:| -1721 (-641 |#5|))) |#1|)) (-15 -3475 ((-768) |#1|)) (-15 -4104 ((-641 |#5|) |#1|)) (-15 -3769 ((-3 (-2 (|:| |bas| |#1|) (|:| -2667 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3769 ((-3 (-2 (|:| |bas| |#1|) (|:| -2667 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3789 (|#1| |#1| |#4|)) (-15 -1896 (|#1| |#1| |#4|)) (-15 -2394 (|#4| |#1|)) (-15 -2224 ((-3 |#1| "failed") (-641 |#5|))) (-15 -3714 ((-641 |#5|) |#1|)) (-15 -3725 (|#1| (-641 |#5|))) (-15 -1728 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1728 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4148 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1728 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3714 ((-859) |#1|)) (-15 -1720 ((-112) |#1| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |#4|)))) (-641 |#4|)) 85)) (-4055 (((-641 $) (-641 |#4|)) 86)) (-4292 (((-641 |#3|) $) 33)) (-3097 (((-112) $) 26)) (-2092 (((-112) $) 17 (|has| |#1| (-556)))) (-1300 (((-112) |#4| $) 101) (((-112) $) 97)) (-3500 ((|#4| |#4| $) 92)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) 27)) (-2141 (((-112) $ (-768)) 44)) (-4148 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4412))) (((-3 |#4| "failed") $ |#3|) 79)) (-3180 (($) 45 T CONST)) (-2846 (((-112) $) 22 (|has| |#1| (-556)))) (-2228 (((-112) $ $) 24 (|has| |#1| (-556)))) (-3171 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3798 (((-112) $) 25 (|has| |#1| (-556)))) (-1578 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1373 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) 36)) (-2376 (($ (-641 |#4|)) 35)) (-2063 (((-3 $ "failed") $) 82)) (-2687 ((|#4| |#4| $) 89)) (-2084 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-4300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4344 ((|#4| |#4| $) 87)) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4412))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3151 (((-2 (|:| -3489 (-641 |#4|)) (|:| -1721 (-641 |#4|))) $) 105)) (-4244 (((-641 |#4|) $) 52 (|has| $ (-6 -4412)))) (-2297 (((-112) |#4| $) 104) (((-112) $) 103)) (-2394 ((|#3| $) 34)) (-2173 (((-112) $ (-768)) 43)) (-2572 (((-641 |#4|) $) 53 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) 47)) (-3652 (((-641 |#3|) $) 32)) (-1722 (((-112) |#3| $) 31)) (-4144 (((-112) $ (-768)) 42)) (-1868 (((-1152) $) 9)) (-2541 (((-3 |#4| "failed") $) 83)) (-4104 (((-641 |#4|) $) 107)) (-1954 (((-112) |#4| $) 99) (((-112) $) 95)) (-1863 ((|#4| |#4| $) 90)) (-1733 (((-112) $ $) 110)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-1485 (((-112) |#4| $) 100) (((-112) $) 96)) (-2543 ((|#4| |#4| $) 91)) (-3844 (((-1114) $) 10)) (-2049 (((-3 |#4| "failed") $) 84)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2359 (((-3 $ "failed") $ |#4|) 78)) (-3042 (($ $ |#4|) 77)) (-2280 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) 38)) (-2510 (((-112) $) 41)) (-2834 (($) 40)) (-3475 (((-768) $) 106)) (-3855 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4412)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4412)))) (-3890 (($ $) 39)) (-2374 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) 60)) (-3789 (($ $ |#3|) 28)) (-1896 (($ $ |#3|) 30)) (-3121 (($ $) 88)) (-1632 (($ $ |#3|) 29)) (-3714 (((-859) $) 11) (((-641 |#4|) $) 37)) (-4113 (((-768) $) 76 (|has| |#3| (-368)))) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4138 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-4289 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4412)))) (-3148 (((-641 |#3|) $) 81)) (-4368 (((-112) |#3| $) 80)) (-1720 (((-112) $ $) 6)) (-2779 (((-768) $) 46 (|has| $ (-6 -4412)))))
(((-1202 |#1| |#2| |#3| |#4|) (-140) (-556) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1202))
-((-3862 (*1 *2 *1 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-3063 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1417 (-641 *8)))) (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))) (-3063 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1417 (-641 *9)))) (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *6)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-768)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-2 (|:| -3439 (-641 *6)) (|:| -1589 (-641 *6)))))) (-2415 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-4269 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)))) (-1940 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1512 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3561 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1599 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-4367 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *2 (-1060 *5 *6 *7)))) (-3207 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)))) (-3993 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3491 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3874 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2758 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3430 (*1 *1 *1) (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) (-3621 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-4389 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-2163 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| -3439 *1) (|:| -1589 (-641 *7))))) (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-3073 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2376 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3086 (*1 *1 *1) (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-3623 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) (-2164 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *2 (-1060 *4 *5 *3)))) (-3159 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2678 (*1 *1 *1 *2) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-768)))))
-(-13 (-973 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -3862 ((-112) $ $)) (-15 -3063 ((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3063 ((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3277 ((-641 |t#4|) $)) (-15 -3344 ((-768) $)) (-15 -2058 ((-2 (|:| -3439 (-641 |t#4|)) (|:| -1589 (-641 |t#4|))) $)) (-15 -2415 ((-112) |t#4| $)) (-15 -2415 ((-112) $)) (-15 -4269 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1940 ((-112) |t#4| $)) (-15 -1512 ((-112) |t#4| $)) (-15 -3561 ((-112) |t#4| $)) (-15 -1599 ((-112) $ (-1 (-112) |t#4| (-641 |t#4|)))) (-15 -1940 ((-112) $)) (-15 -1512 ((-112) $)) (-15 -3561 ((-112) $)) (-15 -4367 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3207 ((-641 |t#4|) (-641 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3993 (|t#4| |t#4| $)) (-15 -3491 (|t#4| |t#4| $)) (-15 -3874 (|t#4| |t#4| $)) (-15 -2758 (|t#4| |t#4| $)) (-15 -3430 ($ $)) (-15 -3621 (|t#4| |t#4| $)) (-15 -4389 ((-641 $) (-641 |t#4|))) (-15 -2163 ((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |t#4|)))) (-641 |t#4|))) (-15 -3073 ((-3 |t#4| "failed") $)) (-15 -2376 ((-3 |t#4| "failed") $)) (-15 -3086 ((-3 $ "failed") $)) (-15 -2380 ((-641 |t#3|) $)) (-15 -3623 ((-112) |t#3| $)) (-15 -2164 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3159 ((-3 $ "failed") $ |t#4|)) (-15 -2678 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -1597 ((-768) $)) |%noBranch|)))
+((-1733 (*1 *2 *1 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-3769 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2667 (-641 *8)))) (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))) (-3769 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2667 (-641 *9)))) (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *6)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-768)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-2 (|:| -3489 (-641 *6)) (|:| -1721 (-641 *6)))))) (-2297 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-4300 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)))) (-1300 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1485 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1954 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-4138 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1300 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1728 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *2 (-1060 *5 *6 *7)))) (-1578 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)))) (-3500 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2543 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-1863 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2687 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3121 (*1 *1 *1) (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) (-4344 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-1743 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| -3489 *1) (|:| -1721 (-641 *7))))) (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-2049 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2541 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2063 (*1 *1 *1) (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-4368 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) (-4148 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *2 (-1060 *4 *5 *3)))) (-2359 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3042 (*1 *1 *1 *2) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-768)))))
+(-13 (-973 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4412) (-6 -4413) (-15 -1733 ((-112) $ $)) (-15 -3769 ((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3769 ((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4104 ((-641 |t#4|) $)) (-15 -3475 ((-768) $)) (-15 -3151 ((-2 (|:| -3489 (-641 |t#4|)) (|:| -1721 (-641 |t#4|))) $)) (-15 -2297 ((-112) |t#4| $)) (-15 -2297 ((-112) $)) (-15 -4300 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1300 ((-112) |t#4| $)) (-15 -1485 ((-112) |t#4| $)) (-15 -1954 ((-112) |t#4| $)) (-15 -4138 ((-112) $ (-1 (-112) |t#4| (-641 |t#4|)))) (-15 -1300 ((-112) $)) (-15 -1485 ((-112) $)) (-15 -1954 ((-112) $)) (-15 -1728 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1578 ((-641 |t#4|) (-641 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3500 (|t#4| |t#4| $)) (-15 -2543 (|t#4| |t#4| $)) (-15 -1863 (|t#4| |t#4| $)) (-15 -2687 (|t#4| |t#4| $)) (-15 -3121 ($ $)) (-15 -4344 (|t#4| |t#4| $)) (-15 -4055 ((-641 $) (-641 |t#4|))) (-15 -1743 ((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |t#4|)))) (-641 |t#4|))) (-15 -2049 ((-3 |t#4| "failed") $)) (-15 -2541 ((-3 |t#4| "failed") $)) (-15 -2063 ((-3 $ "failed") $)) (-15 -3148 ((-641 |t#3|) $)) (-15 -4368 ((-112) |t#3| $)) (-15 -4148 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2359 ((-3 $ "failed") $ |t#4|)) (-15 -3042 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -4113 ((-768) $)) |%noBranch|)))
(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1209) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-1170)) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3879 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-4191 (((-949 |#1|) $ (-768)) 19) (((-949 |#1|) $ (-768) (-768)) NIL)) (-1459 (((-112) $) NIL)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-768) $ (-1170)) NIL) (((-768) $ (-1170) (-768)) NIL)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3101 (((-112) $) NIL)) (-4145 (($ $ (-641 (-1170)) (-641 (-531 (-1170)))) NIL) (($ $ (-1170) (-531 (-1170))) NIL) (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3591 (($ $ (-1170)) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3802 (((-1114) $) NIL)) (-3857 (($ (-1 $) (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2678 (($ $ (-768)) NIL)) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2407 (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-3226 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-3344 (((-531 (-1170)) $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-1170)) NIL) (($ (-949 |#1|)) NIL)) (-1757 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (((-949 |#1|) $ (-768)) NIL)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-3991 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3586 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) NIL T CONST)) (-4327 (($) NIL T CONST)) (-3190 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1203 |#1|) (-13 (-737 |#1| (-1170)) (-10 -8 (-15 -1757 ((-949 |#1|) $ (-768))) (-15 -1765 ($ (-1170))) (-15 -1765 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $ (-1170) |#1|)) (-15 -3857 ($ (-1 $) (-1170) |#1|))) |%noBranch|))) (-1046)) (T -1203))
-((-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-949 *4)) (-5 *1 (-1203 *4)) (-4 *4 (-1046)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1046)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-5 *1 (-1203 *3)))) (-3591 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))) (-3857 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))))
-(-13 (-737 |#1| (-1170)) (-10 -8 (-15 -1757 ((-949 |#1|) $ (-768))) (-15 -1765 ($ (-1170))) (-15 -1765 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $ (-1170) |#1|)) (-15 -3857 ($ (-1 $) (-1170) |#1|))) |%noBranch|)))
-((-3095 (($ |#1| (-641 (-641 (-940 (-225)))) (-112)) 18)) (-4308 (((-112) $ (-112)) 17)) (-3626 (((-112) $) 16)) (-2721 (((-641 (-641 (-940 (-225)))) $) 13)) (-3593 ((|#1| $) 8)) (-3037 (((-112) $) 15)))
-(((-1204 |#1|) (-10 -8 (-15 -3593 (|#1| $)) (-15 -2721 ((-641 (-641 (-940 (-225)))) $)) (-15 -3037 ((-112) $)) (-15 -3626 ((-112) $)) (-15 -4308 ((-112) $ (-112))) (-15 -3095 ($ |#1| (-641 (-641 (-940 (-225)))) (-112)))) (-971)) (T -1204))
-((-3095 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-112)) (-5 *1 (-1204 *2)) (-4 *2 (-971)))) (-4308 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-3593 (*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-971)))))
-(-10 -8 (-15 -3593 (|#1| $)) (-15 -2721 ((-641 (-641 (-940 (-225)))) $)) (-15 -3037 ((-112) $)) (-15 -3626 ((-112) $)) (-15 -4308 ((-112) $ (-112))) (-15 -3095 ($ |#1| (-641 (-641 (-940 (-225)))) (-112))))
-((-3473 (((-940 (-225)) (-940 (-225))) 31)) (-3489 (((-940 (-225)) (-225) (-225) (-225) (-225)) 10)) (-2702 (((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225)))) 59)) (-4158 (((-225) (-940 (-225)) (-940 (-225))) 27)) (-3663 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 28)) (-2563 (((-641 (-641 (-225))) (-564)) 48)) (-1783 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 26)) (-1771 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 24)) (* (((-940 (-225)) (-225) (-940 (-225))) 22)))
-(((-1205) (-10 -7 (-15 -3489 ((-940 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-940 (-225)) (-225) (-940 (-225)))) (-15 -1771 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1783 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -4158 ((-225) (-940 (-225)) (-940 (-225)))) (-15 -3663 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -3473 ((-940 (-225)) (-940 (-225)))) (-15 -2563 ((-641 (-641 (-225))) (-564))) (-15 -2702 ((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225))))))) (T -1205))
-((-2702 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 (-940 *4))) (-5 *1 (-1205)) (-5 *3 (-940 *4)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-3663 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-4158 (*1 *2 *3 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-225)) (-5 *1 (-1205)))) (-1783 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-1771 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-940 (-225))) (-5 *3 (-225)) (-5 *1 (-1205)))) (-3489 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)) (-5 *3 (-225)))))
-(-10 -7 (-15 -3489 ((-940 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-940 (-225)) (-225) (-940 (-225)))) (-15 -1771 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1783 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -4158 ((-225) (-940 (-225)) (-940 (-225)))) (-15 -3663 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -3473 ((-940 (-225)) (-940 (-225)))) (-15 -2563 ((-641 (-641 (-225))) (-564))) (-15 -2702 ((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225))))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2164 ((|#1| $ (-768)) 18)) (-2564 (((-768) $) 13)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1765 (((-955 |#1|) $) 12) (($ (-955 |#1|)) 11) (((-859) $) 29 (|has| |#1| (-611 (-859))))) (-1686 (((-112) $ $) 22 (|has| |#1| (-1094)))))
-(((-1206 |#1|) (-13 (-490 (-955 |#1|)) (-10 -8 (-15 -2164 (|#1| $ (-768))) (-15 -2564 ((-768) $)) (IF (|has| |#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1206))
-((-2164 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-1206 *2)) (-4 *2 (-1209)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1206 *3)) (-4 *3 (-1209)))))
-(-13 (-490 (-955 |#1|)) (-10 -8 (-15 -2164 (|#1| $ (-768))) (-15 -2564 ((-768) $)) (IF (|has| |#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
-((-2180 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)) 96)) (-3297 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 88)) (-2710 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 70)))
-(((-1207 |#1|) (-10 -7 (-15 -3297 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2710 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2180 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)))) (-349)) (T -1207))
-((-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5)))) (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5))))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))) (-3297 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))))
-(-10 -7 (-15 -3297 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2710 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2180 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 9) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-1170)) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-2657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-3357 (((-949 |#1|) $ (-768)) 19) (((-949 |#1|) $ (-768) (-768)) NIL)) (-2200 (((-112) $) NIL)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-768) $ (-1170)) NIL) (((-768) $ (-1170) (-768)) NIL)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2961 (((-112) $) NIL)) (-4267 (($ $ (-641 (-1170)) (-641 (-531 (-1170)))) NIL) (($ $ (-1170) (-531 (-1170))) NIL) (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2305 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-4039 (($ $ (-1170)) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3844 (((-1114) $) NIL)) (-1674 (($ (-1 $) (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3042 (($ $ (-768)) NIL)) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4130 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2582 (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-2203 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-3475 (((-531 (-1170)) $) NIL)) (-2692 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-1170)) NIL) (($ (-949 |#1|)) NIL)) (-3181 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (((-949 |#1|) $ (-768)) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-2728 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2053 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) NIL T CONST)) (-4323 (($) NIL T CONST)) (-2238 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1203 |#1|) (-13 (-737 |#1| (-1170)) (-10 -8 (-15 -3181 ((-949 |#1|) $ (-768))) (-15 -3714 ($ (-1170))) (-15 -3714 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $ (-1170) |#1|)) (-15 -1674 ($ (-1 $) (-1170) |#1|))) |%noBranch|))) (-1046)) (T -1203))
+((-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-949 *4)) (-5 *1 (-1203 *4)) (-4 *4 (-1046)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1046)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-5 *1 (-1203 *3)))) (-4039 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))) (-1674 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))))
+(-13 (-737 |#1| (-1170)) (-10 -8 (-15 -3181 ((-949 |#1|) $ (-768))) (-15 -3714 ($ (-1170))) (-15 -3714 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $ (-1170) |#1|)) (-15 -1674 ($ (-1 $) (-1170) |#1|))) |%noBranch|)))
+((-2910 (($ |#1| (-641 (-641 (-940 (-225)))) (-112)) 18)) (-1541 (((-112) $ (-112)) 17)) (-1302 (((-112) $) 16)) (-2294 (((-641 (-641 (-940 (-225)))) $) 13)) (-4066 ((|#1| $) 8)) (-3491 (((-112) $) 15)))
+(((-1204 |#1|) (-10 -8 (-15 -4066 (|#1| $)) (-15 -2294 ((-641 (-641 (-940 (-225)))) $)) (-15 -3491 ((-112) $)) (-15 -1302 ((-112) $)) (-15 -1541 ((-112) $ (-112))) (-15 -2910 ($ |#1| (-641 (-641 (-940 (-225)))) (-112)))) (-971)) (T -1204))
+((-2910 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-112)) (-5 *1 (-1204 *2)) (-4 *2 (-971)))) (-1541 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-4066 (*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-971)))))
+(-10 -8 (-15 -4066 (|#1| $)) (-15 -2294 ((-641 (-641 (-940 (-225)))) $)) (-15 -3491 ((-112) $)) (-15 -1302 ((-112) $)) (-15 -1541 ((-112) $ (-112))) (-15 -2910 ($ |#1| (-641 (-641 (-940 (-225)))) (-112))))
+((-2366 (((-940 (-225)) (-940 (-225))) 31)) (-3362 (((-940 (-225)) (-225) (-225) (-225) (-225)) 10)) (-3243 (((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225)))) 59)) (-2681 (((-225) (-940 (-225)) (-940 (-225))) 27)) (-3482 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 28)) (-4333 (((-641 (-641 (-225))) (-564)) 48)) (-1828 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 26)) (-1814 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 24)) (* (((-940 (-225)) (-225) (-940 (-225))) 22)))
+(((-1205) (-10 -7 (-15 -3362 ((-940 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-940 (-225)) (-225) (-940 (-225)))) (-15 -1814 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1828 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -2681 ((-225) (-940 (-225)) (-940 (-225)))) (-15 -3482 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -2366 ((-940 (-225)) (-940 (-225)))) (-15 -4333 ((-641 (-641 (-225))) (-564))) (-15 -3243 ((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225))))))) (T -1205))
+((-3243 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 (-940 *4))) (-5 *1 (-1205)) (-5 *3 (-940 *4)))) (-4333 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-3482 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-2681 (*1 *2 *3 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-225)) (-5 *1 (-1205)))) (-1828 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-1814 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-940 (-225))) (-5 *3 (-225)) (-5 *1 (-1205)))) (-3362 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)) (-5 *3 (-225)))))
+(-10 -7 (-15 -3362 ((-940 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-940 (-225)) (-225) (-940 (-225)))) (-15 -1814 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1828 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -2681 ((-225) (-940 (-225)) (-940 (-225)))) (-15 -3482 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -2366 ((-940 (-225)) (-940 (-225)))) (-15 -4333 ((-641 (-641 (-225))) (-564))) (-15 -3243 ((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225))))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4148 ((|#1| $ (-768)) 18)) (-3451 (((-768) $) 13)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3714 (((-955 |#1|) $) 12) (($ (-955 |#1|)) 11) (((-859) $) 29 (|has| |#1| (-611 (-859))))) (-1720 (((-112) $ $) 22 (|has| |#1| (-1094)))))
+(((-1206 |#1|) (-13 (-490 (-955 |#1|)) (-10 -8 (-15 -4148 (|#1| $ (-768))) (-15 -3451 ((-768) $)) (IF (|has| |#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1206))
+((-4148 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-1206 *2)) (-4 *2 (-1209)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1206 *3)) (-4 *3 (-1209)))))
+(-13 (-490 (-955 |#1|)) (-10 -8 (-15 -4148 (|#1| $ (-768))) (-15 -3451 ((-768) $)) (IF (|has| |#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|)))
+((-1914 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)) 96)) (-4304 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 88)) (-3317 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 70)))
+(((-1207 |#1|) (-10 -7 (-15 -4304 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -3317 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -1914 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)))) (-349)) (T -1207))
+((-1914 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5)))) (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5))))) (-3317 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))) (-4304 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))))
+(-10 -7 (-15 -4304 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -3317 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -1914 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 9) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
(((-1208) (-1077)) (T -1208))
NIL
(-1077)
NIL
(((-1209) (-140)) (T -1209))
NIL
-(-13 (-10 -7 (-6 -2268)))
-((-2465 (((-112)) 17)) (-1948 (((-1264) (-641 |#1|) (-641 |#1|)) 21) (((-1264) (-641 |#1|)) 22)) (-2830 (((-112) |#1| |#1|) 37 (|has| |#1| (-847)))) (-2972 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1347 ((|#1| (-641 |#1|)) 38 (|has| |#1| (-847))) ((|#1| (-641 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3770 (((-2 (|:| -3557 (-641 |#1|)) (|:| -2781 (-641 |#1|)))) 19)))
-(((-1210 |#1|) (-10 -7 (-15 -1948 ((-1264) (-641 |#1|))) (-15 -1948 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -3770 ((-2 (|:| -3557 (-641 |#1|)) (|:| -2781 (-641 |#1|))))) (-15 -2972 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2972 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1347 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2465 ((-112))) (IF (|has| |#1| (-847)) (PROGN (-15 -1347 (|#1| (-641 |#1|))) (-15 -2830 ((-112) |#1| |#1|))) |%noBranch|)) (-1094)) (T -1210))
-((-2830 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-847)) (-5 *1 (-1210 *2)))) (-2465 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-1094)))) (-2972 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112)) (-5 *1 (-1210 *3)))) (-2972 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-3770 (*1 *2) (-12 (-5 *2 (-2 (|:| -3557 (-641 *3)) (|:| -2781 (-641 *3)))) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-1948 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4)))))
-(-10 -7 (-15 -1948 ((-1264) (-641 |#1|))) (-15 -1948 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -3770 ((-2 (|:| -3557 (-641 |#1|)) (|:| -2781 (-641 |#1|))))) (-15 -2972 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2972 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1347 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2465 ((-112))) (IF (|has| |#1| (-847)) (PROGN (-15 -1347 (|#1| (-641 |#1|))) (-15 -2830 ((-112) |#1| |#1|))) |%noBranch|))
-((-1568 (((-1264) (-641 (-1170)) (-641 (-1170))) 14) (((-1264) (-641 (-1170))) 12)) (-2992 (((-1264)) 16)) (-2017 (((-2 (|:| -2781 (-641 (-1170))) (|:| -3557 (-641 (-1170))))) 20)))
-(((-1211) (-10 -7 (-15 -1568 ((-1264) (-641 (-1170)))) (-15 -1568 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -2017 ((-2 (|:| -2781 (-641 (-1170))) (|:| -3557 (-641 (-1170)))))) (-15 -2992 ((-1264))))) (T -1211))
-((-2992 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211)))) (-2017 (*1 *2) (-12 (-5 *2 (-2 (|:| -2781 (-641 (-1170))) (|:| -3557 (-641 (-1170))))) (-5 *1 (-1211)))) (-1568 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))))
-(-10 -7 (-15 -1568 ((-1264) (-641 (-1170)))) (-15 -1568 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -2017 ((-2 (|:| -2781 (-641 (-1170))) (|:| -3557 (-641 (-1170)))))) (-15 -2992 ((-1264))))
-((-1368 (($ $) 17)) (-3241 (((-112) $) 28)))
-(((-1212 |#1|) (-10 -8 (-15 -1368 (|#1| |#1|)) (-15 -3241 ((-112) |#1|))) (-1213)) (T -1212))
-NIL
-(-10 -8 (-15 -1368 (|#1| |#1|)) (-15 -3241 ((-112) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 52)) (-3981 (((-418 $) $) 53)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-3241 (((-112) $) 54)) (-2419 (((-112) $) 31)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-4006 (((-418 $) $) 51)) (-1343 (((-3 $ "failed") $ $) 43)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
+(-13 (-10 -7 (-6 -2408)))
+((-2829 (((-112)) 17)) (-1405 (((-1264) (-641 |#1|) (-641 |#1|)) 21) (((-1264) (-641 |#1|)) 22)) (-2173 (((-112) |#1| |#1|) 37 (|has| |#1| (-847)))) (-4144 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2504 ((|#1| (-641 |#1|)) 38 (|has| |#1| (-847))) ((|#1| (-641 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3262 (((-2 (|:| -1908 (-641 |#1|)) (|:| -1652 (-641 |#1|)))) 19)))
+(((-1210 |#1|) (-10 -7 (-15 -1405 ((-1264) (-641 |#1|))) (-15 -1405 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -3262 ((-2 (|:| -1908 (-641 |#1|)) (|:| -1652 (-641 |#1|))))) (-15 -4144 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4144 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2504 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2829 ((-112))) (IF (|has| |#1| (-847)) (PROGN (-15 -2504 (|#1| (-641 |#1|))) (-15 -2173 ((-112) |#1| |#1|))) |%noBranch|)) (-1094)) (T -1210))
+((-2173 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-847)) (-5 *1 (-1210 *2)))) (-2829 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-1094)))) (-4144 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112)) (-5 *1 (-1210 *3)))) (-4144 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-3262 (*1 *2) (-12 (-5 *2 (-2 (|:| -1908 (-641 *3)) (|:| -1652 (-641 *3)))) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-1405 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4)))))
+(-10 -7 (-15 -1405 ((-1264) (-641 |#1|))) (-15 -1405 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -3262 ((-2 (|:| -1908 (-641 |#1|)) (|:| -1652 (-641 |#1|))))) (-15 -4144 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4144 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2504 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2829 ((-112))) (IF (|has| |#1| (-847)) (PROGN (-15 -2504 (|#1| (-641 |#1|))) (-15 -2173 ((-112) |#1| |#1|))) |%noBranch|))
+((-2025 (((-1264) (-641 (-1170)) (-641 (-1170))) 14) (((-1264) (-641 (-1170))) 12)) (-4308 (((-1264)) 16)) (-3933 (((-2 (|:| -1652 (-641 (-1170))) (|:| -1908 (-641 (-1170))))) 20)))
+(((-1211) (-10 -7 (-15 -2025 ((-1264) (-641 (-1170)))) (-15 -2025 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -3933 ((-2 (|:| -1652 (-641 (-1170))) (|:| -1908 (-641 (-1170)))))) (-15 -4308 ((-1264))))) (T -1211))
+((-4308 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211)))) (-3933 (*1 *2) (-12 (-5 *2 (-2 (|:| -1652 (-641 (-1170))) (|:| -1908 (-641 (-1170))))) (-5 *1 (-1211)))) (-2025 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))))
+(-10 -7 (-15 -2025 ((-1264) (-641 (-1170)))) (-15 -2025 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -3933 ((-2 (|:| -1652 (-641 (-1170))) (|:| -1908 (-641 (-1170)))))) (-15 -4308 ((-1264))))
+((-1328 (($ $) 17)) (-1926 (((-112) $) 28)))
+(((-1212 |#1|) (-10 -8 (-15 -1328 (|#1| |#1|)) (-15 -1926 ((-112) |#1|))) (-1213)) (T -1212))
+NIL
+(-10 -8 (-15 -1328 (|#1| |#1|)) (-15 -1926 ((-112) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 52)) (-1592 (((-418 $) $) 53)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-1926 (((-112) $) 54)) (-2340 (((-112) $) 31)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-4139 (((-418 $) $) 51)) (-1347 (((-3 $ "failed") $ $) 43)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24)))
(((-1213) (-140)) (T -1213))
-((-3241 (*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) (-1368 (*1 *1 *1) (-4 *1 (-1213))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))))
-(-13 (-452) (-10 -8 (-15 -3241 ((-112) $)) (-15 -3981 ((-418 $) $)) (-15 -1368 ($ $)) (-15 -4006 ((-418 $) $))))
+((-1926 (*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) (-1328 (*1 *1 *1) (-4 *1 (-1213))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))))
+(-13 (-452) (-10 -8 (-15 -1926 ((-112) $)) (-15 -1592 ((-418 $) $)) (-15 -1328 ($ $)) (-15 -4139 ((-418 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4096 (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-1214) (-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))) (T -1214))
-((-4080 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4096 (*1 *1 *1 *1) (-5 *1 (-1214))) (-3760 (*1 *1) (-5 *1 (-1214))))
-(-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-4072 (($ $ $) NIL)) (-4058 (($ $ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-1214) (-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))) (T -1214))
+((-4058 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4072 (*1 *1 *1 *1) (-5 *1 (-1214))) (-3180 (*1 *1) (-5 *1 (-1214))))
+(-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))
((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4096 (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-1215) (-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))) (T -1215))
-((-4080 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4096 (*1 *1 *1 *1) (-5 *1 (-1215))) (-3760 (*1 *1) (-5 *1 (-1215))))
-(-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-4072 (($ $ $) NIL)) (-4058 (($ $ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-1215) (-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))) (T -1215))
+((-4058 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4072 (*1 *1 *1 *1) (-5 *1 (-1215))) (-3180 (*1 *1) (-5 *1 (-1215))))
+(-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))
((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4096 (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-1216) (-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))) (T -1216))
-((-4080 (*1 *1 *1 *1) (-5 *1 (-1216))) (-4096 (*1 *1 *1 *1) (-5 *1 (-1216))) (-3760 (*1 *1) (-5 *1 (-1216))))
-(-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-4072 (($ $ $) NIL)) (-4058 (($ $ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-1216) (-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))) (T -1216))
+((-4058 (*1 *1 *1 *1) (-5 *1 (-1216))) (-4072 (*1 *1 *1 *1) (-5 *1 (-1216))) (-3180 (*1 *1) (-5 *1 (-1216))))
+(-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))
((|NonNegativeInteger|) (COND ((< 64 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-1754 (((-112) $ $) NIL)) (-3042 (((-768)) NIL)) (-3760 (($) NIL T CONST)) (-2542 (($) NIL)) (-3571 (($ $ $) NIL) (($) NIL T CONST)) (-1547 (($ $ $) NIL) (($) NIL T CONST)) (-2209 (((-918) $) NIL)) (-4202 (((-1152) $) NIL)) (-1403 (($ (-918)) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) NIL)) (-4096 (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (-1738 (((-112) $ $) NIL)) (-1715 (((-112) $ $) NIL)) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)))
-(((-1217) (-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))) (T -1217))
-((-4080 (*1 *1 *1 *1) (-5 *1 (-1217))) (-4096 (*1 *1 *1 *1) (-5 *1 (-1217))) (-3760 (*1 *1) (-5 *1 (-1217))))
-(-13 (-841) (-10 -8 (-15 -4080 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3760 ($) -3246)))
+((-3702 (((-112) $ $) NIL)) (-2018 (((-768)) NIL)) (-3180 (($) NIL T CONST)) (-2939 (($) NIL)) (-3428 (($ $ $) NIL) (($) NIL T CONST)) (-3413 (($ $ $) NIL) (($) NIL T CONST)) (-4031 (((-918) $) NIL)) (-1868 (((-1152) $) NIL)) (-3338 (($ (-918)) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) NIL)) (-4072 (($ $ $) NIL)) (-4058 (($ $ $) NIL)) (-1781 (((-112) $ $) NIL)) (-1758 (((-112) $ $) NIL)) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL)) (-1746 (((-112) $ $) NIL)))
+(((-1217) (-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))) (T -1217))
+((-4058 (*1 *1 *1 *1) (-5 *1 (-1217))) (-4072 (*1 *1 *1 *1) (-5 *1 (-1217))) (-3180 (*1 *1) (-5 *1 (-1217))))
+(-13 (-841) (-10 -8 (-15 -4058 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -3180 ($) -2222)))
((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T))))
-((-2082 (((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)) 23)))
-(((-1218 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2082 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) (-1046) (-1046) (-1170) (-1170) |#1| |#2|) (T -1218))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170)))))
-(-10 -7 (-15 -2082 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4170 (((-641 (-1076)) $) 77)) (-3657 (((-1170) $) 106)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1840 (($ $) 55 (|has| |#1| (-556)))) (-4035 (((-112) $) 57 (|has| |#1| (-556)))) (-3742 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-3219 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-3904 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 165 (|has| |#1| (-363)))) (-3981 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4019 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3385 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3879 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-3933 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) 17 T CONST)) (-1387 (($ $ $) 160 (|has| |#1| (-363)))) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-2754 (((-407 (-949 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-1366 (($ $ $) 159 (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-3241 (((-112) $) 167 (|has| |#1| (-363)))) (-1459 (((-112) $) 76)) (-1539 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-564) $) 103) (((-564) $ (-564)) 102)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) 104)) (-3849 (($ (-1 |#1| (-564)) $) 175)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-3101 (((-112) $) 65)) (-4145 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-2082 (($ (-1 |#1| |#1|) $) 66)) (-2186 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) 68)) (-4323 ((|#1| $) 69)) (-2488 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-4202 (((-1152) $) 9)) (-4272 (($ $) 168 (|has| |#1| (-363)))) (-3591 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4002 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2527 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4006 (((-418 $) $) 164 (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 161 (|has| |#1| (-363)))) (-2678 (($ $ (-564)) 98)) (-1343 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-2152 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-3712 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 158 (|has| |#1| (-363)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-3344 (((-564) $) 67)) (-3949 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) 75)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-1757 ((|#1| $ (-564)) 62)) (-2864 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-3415 ((|#1| $) 105)) (-3991 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3963 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
+((-2313 (((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)) 23)))
+(((-1218 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2313 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) (-1046) (-1046) (-1170) (-1170) |#1| |#2|) (T -1218))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170)))))
+(-10 -7 (-15 -2313 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4292 (((-641 (-1076)) $) 77)) (-3832 (((-1170) $) 106)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1582 (($ $) 55 (|has| |#1| (-556)))) (-3897 (((-112) $) 57 (|has| |#1| (-556)))) (-3043 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-1681 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-2657 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 165 (|has| |#1| (-363)))) (-1592 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4152 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-112) $ $) 156 (|has| |#1| (-363)))) (-2635 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-2679 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) 17 T CONST)) (-1399 (($ $ $) 160 (|has| |#1| (-363)))) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-2643 (((-407 (-949 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-1371 (($ $ $) 159 (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-1926 (((-112) $) 167 (|has| |#1| (-363)))) (-2200 (((-112) $) 76)) (-1688 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-564) $) 103) (((-564) $ (-564)) 102)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) 104)) (-2860 (($ (-1 |#1| (-564)) $) 175)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2961 (((-112) $) 65)) (-4267 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-2313 (($ (-1 |#1| |#1|) $) 66)) (-2305 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) 68)) (-1345 ((|#1| $) 69)) (-2688 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-1868 (((-1152) $) 9)) (-1295 (($ $) 168 (|has| |#1| (-363)))) (-4039 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4012 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2727 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4139 (((-418 $) $) 164 (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 161 (|has| |#1| (-363)))) (-3042 (($ $ (-564)) 98)) (-1347 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4130 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-3966 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 158 (|has| |#1| (-363)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-3475 (((-564) $) 67)) (-2692 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) 75)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-3181 ((|#1| $ (-564)) 62)) (-4363 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-2390 ((|#1| $) 105)) (-2728 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2704 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
(((-1219 |#1|) (-140) (-1046)) (T -1219))
-((-3526 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1046)) (-4 *1 (-1219 *3)))) (-3849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1046)))) (-2754 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) (-5 *2 (-407 (-949 *4))))) (-2754 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) (-5 *2 (-407 (-949 *4))))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-3591 (*1 *1 *1 *2) (-4002 (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -4170 ((-641 *2) *3))) (|has| *3 (-15 -3591 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
-(-13 (-1237 |t#1| (-564)) (-10 -8 (-15 -3526 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |t#1|))))) (-15 -3849 ($ (-1 |t#1| (-564)) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -2754 ((-407 (-949 |t#1|)) $ (-564))) (-15 -2754 ((-407 (-949 |t#1|)) $ (-564) (-564)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $)) (IF (|has| |t#1| (-15 -3591 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -4170 ((-641 (-1170)) |t#1|))) (-15 -3591 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -3591 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-564) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T))
-((-3976 (((-112) $) 12)) (-2013 (((-3 |#3| "failed") $) 17) (((-3 (-1170) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL)) (-2064 ((|#3| $) 14) (((-1170) $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL)))
-(((-1220 |#1| |#2| |#3|) (-10 -8 (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-1170) "failed") |#1|)) (-15 -2064 ((-1170) |#1|)) (-15 -2013 ((-3 |#3| "failed") |#1|)) (-15 -2064 (|#3| |#1|)) (-15 -3976 ((-112) |#1|))) (-1221 |#2| |#3|) (-1046) (-1250 |#2|)) (T -1220))
-NIL
-(-10 -8 (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2013 ((-3 (-1170) "failed") |#1|)) (-15 -2064 ((-1170) |#1|)) (-15 -2013 ((-3 |#3| "failed") |#1|)) (-15 -2064 (|#3| |#1|)) (-15 -3976 ((-112) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4328 ((|#2| $) 231 (-4266 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-4170 (((-641 (-1076)) $) 77)) (-3657 (((-1170) $) 106)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1840 (($ $) 55 (|has| |#1| (-556)))) (-4035 (((-112) $) 57 (|has| |#1| (-556)))) (-3742 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-3219 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-1581 ((|#2| $) 267)) (-2961 (((-3 |#2| "failed") $) 263)) (-4223 ((|#2| $) 264)) (-3904 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) 19)) (-1871 (((-418 (-1166 $)) (-1166 $)) 240 (-4266 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-1368 (($ $) 165 (|has| |#1| (-363)))) (-3981 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4019 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 237 (-4266 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3385 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3879 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3438 (((-564) $) 249 (-4266 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-3526 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-3933 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#2| "failed") $) 270) (((-3 (-564) "failed") $) 260 (-4266 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) 258 (-4266 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) 242 (-4266 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-2064 ((|#2| $) 271) (((-564) $) 259 (-4266 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) 257 (-4266 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-1170) $) 241 (-4266 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-3881 (($ $) 266) (($ (-564) $) 265)) (-1387 (($ $ $) 160 (|has| |#1| (-363)))) (-4346 (($ $) 63)) (-2620 (((-685 |#2|) (-685 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 220 (|has| |#1| (-363))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 219 (-4266 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) 218 (-4266 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-1926 (((-3 $ "failed") $) 33)) (-2754 (((-407 (-949 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-2542 (($) 233 (-4266 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1366 (($ $ $) 159 (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-3241 (((-112) $) 167 (|has| |#1| (-363)))) (-1751 (((-112) $) 247 (-4266 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-1459 (((-112) $) 76)) (-1539 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 225 (-4266 (|has| |#2| (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 224 (-4266 (|has| |#2| (-883 (-564))) (|has| |#1| (-363))))) (-2261 (((-564) $) 103) (((-564) $ (-564)) 102)) (-2419 (((-112) $) 31)) (-1957 (($ $) 229 (|has| |#1| (-363)))) (-1507 ((|#2| $) 227 (|has| |#1| (-363)))) (-1935 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-3374 (((-3 $ "failed") $) 261 (-4266 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2506 (((-112) $) 248 (-4266 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2300 (($ $ (-918)) 104)) (-3849 (($ (-1 |#1| (-564)) $) 175)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-3101 (((-112) $) 65)) (-4145 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-3571 (($ $ $) 251 (-4266 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1547 (($ $ $) 252 (-4266 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2082 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-363)))) (-2186 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) 68)) (-4323 ((|#1| $) 69)) (-2488 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-4235 (($ (-564) |#2|) 268)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 168 (|has| |#1| (-363)))) (-3591 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4002 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-1611 (($) 262 (-4266 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2527 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2002 (($ $) 232 (-4266 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2677 ((|#2| $) 235 (-4266 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3113 (((-418 (-1166 $)) (-1166 $)) 238 (-4266 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-1761 (((-418 (-1166 $)) (-1166 $)) 239 (-4266 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-4006 (((-418 $) $) 164 (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 161 (|has| |#1| (-363)))) (-2678 (($ $ (-564)) 98)) (-1343 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-2152 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) 212 (-4266 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) 211 (-4266 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) 210 (-4266 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 209 (-4266 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 208 (-4266 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) 207 (-4266 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-3712 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106))) (($ $ |#2|) 206 (-4266 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 158 (|has| |#1| (-363)))) (-3226 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) 216 (|has| |#1| (-363))) (($ $ (-768)) 87 (-4002 (-4266 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 85 (-4002 (-4266 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) 92 (-4002 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-768)) 91 (-4002 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 90 (-4002 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 89 (-4002 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-3762 (($ $) 230 (|has| |#1| (-363)))) (-1517 ((|#2| $) 228 (|has| |#1| (-363)))) (-3344 (((-564) $) 67)) (-3949 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2127 (((-225) $) 246 (-4266 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-379) $) 245 (-4266 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-536) $) 244 (-4266 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-889 (-379)) $) 223 (-4266 (|has| |#2| (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) 222 (-4266 (|has| |#2| (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 236 (-4266 (-4266 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#1| (-363))))) (-3204 (($ $) 75)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 269) (($ (-1170)) 243 (-4266 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-1757 ((|#1| $ (-564)) 62)) (-2864 (((-3 $ "failed") $) 51 (-4002 (-4266 (-4002 (|has| |#2| (-145)) (-4266 (|has| $ (-145)) (|has| |#2| (-906)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-1965 (((-768)) 28 T CONST)) (-3415 ((|#1| $) 105)) (-2991 ((|#2| $) 234 (-4266 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3991 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3963 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2016 (($ $) 250 (-4266 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) 214 (|has| |#1| (-363))) (($ $ (-768)) 88 (-4002 (-4266 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 86 (-4002 (-4266 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) 96 (-4002 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-768)) 95 (-4002 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 94 (-4002 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 93 (-4002 (-4266 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-1738 (((-112) $ $) 254 (-4266 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1715 (((-112) $ $) 255 (-4266 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 253 (-4266 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1705 (((-112) $ $) 256 (-4266 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1793 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363))) (($ |#2| |#2|) 226 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-363))) (($ |#2| $) 204 (|has| |#1| (-363))) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
+((-3392 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1046)) (-4 *1 (-1219 *3)))) (-2860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1046)))) (-2643 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) (-5 *2 (-407 (-949 *4))))) (-2643 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) (-5 *2 (-407 (-949 *4))))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-4039 (*1 *1 *1 *2) (-4012 (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -4292 ((-641 *2) *3))) (|has| *3 (-15 -4039 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
+(-13 (-1237 |t#1| (-564)) (-10 -8 (-15 -3392 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |t#1|))))) (-15 -2860 ($ (-1 |t#1| (-564)) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -2643 ((-407 (-949 |t#1|)) $ (-564))) (-15 -2643 ((-407 (-949 |t#1|)) $ (-564) (-564)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $)) (IF (|has| |t#1| (-15 -4039 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -4292 ((-641 (-1170)) |t#1|))) (-15 -4039 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -4039 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-564) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T))
+((-1556 (((-112) $) 12)) (-2224 (((-3 |#3| "failed") $) 17) (((-3 (-1170) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL)) (-2376 ((|#3| $) 14) (((-1170) $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL)))
+(((-1220 |#1| |#2| |#3|) (-10 -8 (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-1170) "failed") |#1|)) (-15 -2376 ((-1170) |#1|)) (-15 -2224 ((-3 |#3| "failed") |#1|)) (-15 -2376 (|#3| |#1|)) (-15 -1556 ((-112) |#1|))) (-1221 |#2| |#3|) (-1046) (-1250 |#2|)) (T -1220))
+NIL
+(-10 -8 (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2224 ((-3 (-1170) "failed") |#1|)) (-15 -2376 ((-1170) |#1|)) (-15 -2224 ((-3 |#3| "failed") |#1|)) (-15 -2376 (|#3| |#1|)) (-15 -1556 ((-112) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3494 ((|#2| $) 231 (-4264 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-4292 (((-641 (-1076)) $) 77)) (-3832 (((-1170) $) 106)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1582 (($ $) 55 (|has| |#1| (-556)))) (-3897 (((-112) $) 57 (|has| |#1| (-556)))) (-3043 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-1681 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-3969 ((|#2| $) 267)) (-4027 (((-3 |#2| "failed") $) 263)) (-4350 ((|#2| $) 264)) (-2657 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) 19)) (-1917 (((-418 (-1166 $)) (-1166 $)) 240 (-4264 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-1328 (($ $) 165 (|has| |#1| (-363)))) (-1592 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4152 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 237 (-4264 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3907 (((-112) $ $) 156 (|has| |#1| (-363)))) (-2635 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3191 (((-564) $) 249 (-4264 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-3392 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-2679 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#2| "failed") $) 270) (((-3 (-564) "failed") $) 260 (-4264 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) 258 (-4264 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) 242 (-4264 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-2376 ((|#2| $) 271) (((-564) $) 259 (-4264 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) 257 (-4264 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-1170) $) 241 (-4264 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-1928 (($ $) 266) (($ (-564) $) 265)) (-1399 (($ $ $) 160 (|has| |#1| (-363)))) (-1374 (($ $) 63)) (-3613 (((-685 |#2|) (-685 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 220 (|has| |#1| (-363))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 219 (-4264 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) 218 (-4264 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-4272 (((-3 $ "failed") $) 33)) (-2643 (((-407 (-949 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-2939 (($) 233 (-4264 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1371 (($ $ $) 159 (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-1926 (((-112) $) 167 (|has| |#1| (-363)))) (-3137 (((-112) $) 247 (-4264 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2200 (((-112) $) 76)) (-1688 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 225 (-4264 (|has| |#2| (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 224 (-4264 (|has| |#2| (-883 (-564))) (|has| |#1| (-363))))) (-1454 (((-564) $) 103) (((-564) $ (-564)) 102)) (-2340 (((-112) $) 31)) (-1492 (($ $) 229 (|has| |#1| (-363)))) (-1655 ((|#2| $) 227 (|has| |#1| (-363)))) (-4342 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-3804 (((-3 $ "failed") $) 261 (-4264 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2001 (((-112) $) 248 (-4264 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-3619 (($ $ (-918)) 104)) (-2860 (($ (-1 |#1| (-564)) $) 175)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2961 (((-112) $) 65)) (-4267 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-3428 (($ $ $) 251 (-4264 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-3413 (($ $ $) 252 (-4264 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2313 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-363)))) (-2305 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) 68)) (-1345 ((|#1| $) 69)) (-2688 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-4362 (($ (-564) |#2|) 268)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 168 (|has| |#1| (-363)))) (-4039 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4012 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3304 (($) 262 (-4264 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2727 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-3782 (($ $) 232 (-4264 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3034 ((|#2| $) 235 (-4264 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3048 (((-418 (-1166 $)) (-1166 $)) 238 (-4264 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3209 (((-418 (-1166 $)) (-1166 $)) 239 (-4264 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-4139 (((-418 $) $) 164 (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 161 (|has| |#1| (-363)))) (-3042 (($ $ (-564)) 98)) (-1347 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4130 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) 212 (-4264 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) 211 (-4264 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) 210 (-4264 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 209 (-4264 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 208 (-4264 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) 207 (-4264 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-3966 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106))) (($ $ |#2|) 206 (-4264 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 158 (|has| |#1| (-363)))) (-2203 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) 216 (|has| |#1| (-363))) (($ $ (-768)) 87 (-4012 (-4264 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 85 (-4012 (-4264 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) 92 (-4012 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-768)) 91 (-4012 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 90 (-4012 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 89 (-4012 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-3197 (($ $) 230 (|has| |#1| (-363)))) (-1668 ((|#2| $) 228 (|has| |#1| (-363)))) (-3475 (((-564) $) 67)) (-2692 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2374 (((-225) $) 246 (-4264 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-379) $) 245 (-4264 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-536) $) 244 (-4264 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-889 (-379)) $) 223 (-4264 (|has| |#2| (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) 222 (-4264 (|has| |#2| (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 236 (-4264 (-4264 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#1| (-363))))) (-2807 (($ $) 75)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 269) (($ (-1170)) 243 (-4264 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-3181 ((|#1| $ (-564)) 62)) (-4363 (((-3 $ "failed") $) 51 (-4012 (-4264 (-4012 (|has| |#2| (-145)) (-4264 (|has| $ (-145)) (|has| |#2| (-906)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3379 (((-768)) 28 T CONST)) (-2390 ((|#1| $) 105)) (-4296 ((|#2| $) 234 (-4264 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2728 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2704 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-3920 (($ $) 250 (-4264 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) 214 (|has| |#1| (-363))) (($ $ (-768)) 88 (-4012 (-4264 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 86 (-4012 (-4264 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) 96 (-4012 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-768)) 95 (-4012 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 94 (-4012 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 93 (-4012 (-4264 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-1781 (((-112) $ $) 254 (-4264 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1758 (((-112) $ $) 255 (-4264 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 253 (-4264 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1746 (((-112) $ $) 256 (-4264 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1841 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363))) (($ |#2| |#2|) 226 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-363))) (($ |#2| $) 204 (|has| |#1| (-363))) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
(((-1221 |#1| |#2|) (-140) (-1046) (-1250 |t#1|)) (T -1221))
-((-3344 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)) (-5 *2 (-564)))) (-4235 (*1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *4 (-1046)) (-4 *1 (-1221 *4 *3)) (-4 *3 (-1250 *4)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))) (-3881 (*1 *1 *1) (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1250 *2)))) (-3881 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))) (-2961 (*1 *2 *1) (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))))
-(-13 (-1219 |t#1|) (-1035 |t#2|) (-614 |t#2|) (-10 -8 (-15 -4235 ($ (-564) |t#2|)) (-15 -3344 ((-564) $)) (-15 -1581 (|t#2| $)) (-15 -3881 ($ $)) (-15 -3881 ($ (-564) $)) (-15 -4223 (|t#2| $)) (-15 -2961 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-989 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -4002 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -4002 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-614 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-612 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-612 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-564))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -4002 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 (-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-556) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 |#2|) |has| |#1| (-363)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((-637 |#2|) |has| |#1| (-363)) ((-714 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 |#2|) |has| |#1| (-363)) ((-714 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-789) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-791) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-792) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-817) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-845) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-847) -4002 (-12 (|has| |#1| (-363)) (|has| |#2| (-847))) (-12 (|has| |#1| (-363)) (|has| |#2| (-817)))) ((-897 (-1170)) -4002 (-12 (|has| |#1| (-363)) (|has| |#2| (-897 (-1170)))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) ((-883 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-564)))) ((-881 |#2|) |has| |#1| (-363)) ((-906) -12 (|has| |#1| (-363)) (|has| |#2| (-906))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-989 |#2|) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1019) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-1035 (-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) ((-1035 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) ((-1035 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) ((-1035 |#2|) . T) ((-1052 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 |#2|) |has| |#1| (-363)) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) -12 (|has| |#1| (-363)) (|has| |#2| (-1145))) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1209) |has| |#1| (-363)) ((-1213) |has| |#1| (-363)) ((-1219 |#1|) . T) ((-1237 |#1| #0#) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 79)) (-4328 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) 98)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3742 (($ $ (-564)) 107) (($ $ (-564) (-564)) 109)) (-3219 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 51)) (-1581 ((|#2| $) 11)) (-2961 (((-3 |#2| "failed") $) 35)) (-4223 ((|#2| $) 36)) (-3904 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-1368 (($ $) NIL (|has| |#1| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3879 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3438 (((-564) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-3526 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 59)) (-3933 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) 155) (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-2064 ((|#2| $) 154) (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-1170) $) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-3881 (($ $) 65) (($ (-564) $) 28)) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) NIL)) (-2620 (((-685 |#2|) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-1926 (((-3 $ "failed") $) 86)) (-2754 (((-407 (-949 |#1|)) $ (-564)) 122 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 124 (|has| |#1| (-556)))) (-2542 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3241 (((-112) $) NIL (|has| |#1| (-363)))) (-1751 (((-112) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-1459 (((-112) $) 72)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#2| (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#2| (-883 (-564))) (|has| |#1| (-363))))) (-2261 (((-564) $) 103) (((-564) $ (-564)) 105)) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL (|has| |#1| (-363)))) (-1507 ((|#2| $) 163 (|has| |#1| (-363)))) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3374 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2506 (((-112) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2300 (($ $ (-918)) 146)) (-3849 (($ (-1 |#1| (-564)) $) 142)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-564)) 20) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-3571 (($ $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1547 (($ $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2082 (($ (-1 |#1| |#1|) $) 139) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4235 (($ (-564) |#2|) 10)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 157 (|has| |#1| (-363)))) (-3591 (($ $) 226 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 231 (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-1611 (($) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2002 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2677 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-4006 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-2678 (($ $ (-564)) 136)) (-1343 (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2152 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) 101) (($ $ $) 88 (|has| (-564) (-1106))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-3226 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4002 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 147 (-4002 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4002 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4002 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4002 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) 151 (-4002 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-3762 (($ $) NIL (|has| |#1| (-363)))) (-1517 ((|#2| $) 164 (|has| |#1| (-363)))) (-3344 (((-564) $) 12)) (-3949 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2127 (((-225) $) NIL (-12 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| |#2| (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| |#2| (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3204 (($ $) 134)) (-1765 (((-859) $) 264) (($ (-564)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1170)) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 167 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-1757 ((|#1| $ (-564)) 83)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#2| (-906)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-1965 (((-768)) 153 T CONST)) (-3415 ((|#1| $) 100)) (-2991 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3991 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 220 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-564)) 132 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) 222 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-2016 (($ $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-4317 (($) 13 T CONST)) (-4327 (($) 18 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4002 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4002 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4002 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4002 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4002 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1738 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1715 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1686 (((-112) $ $) 71)) (-1728 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1705 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 161 (|has| |#1| (-363))) (($ |#2| |#2|) 162 (|has| |#1| (-363)))) (-1783 (($ $) 225) (($ $ $) 76)) (-1771 (($ $ $) 74)) (** (($ $ (-918)) NIL) (($ $ (-768)) 82) (($ $ (-564)) 158 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 170 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 77) (($ $ |#1|) NIL) (($ |#1| $) 150) (($ $ |#2|) 160 (|has| |#1| (-363))) (($ |#2| $) 159 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+((-3475 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)) (-5 *2 (-564)))) (-4362 (*1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *4 (-1046)) (-4 *1 (-1221 *4 *3)) (-4 *3 (-1250 *4)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))) (-1928 (*1 *1 *1) (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1250 *2)))) (-1928 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))) (-4027 (*1 *2 *1) (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))))
+(-13 (-1219 |t#1|) (-1035 |t#2|) (-614 |t#2|) (-10 -8 (-15 -4362 ($ (-564) |t#2|)) (-15 -3475 ((-564) $)) (-15 -3969 (|t#2| $)) (-15 -1928 ($ $)) (-15 -1928 ($ (-564) $)) (-15 -4350 (|t#2| $)) (-15 -4027 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-989 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -4012 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -4012 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-614 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-612 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-612 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-564))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -4012 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 (-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-556) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 |#2|) |has| |#1| (-363)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((-637 |#2|) |has| |#1| (-363)) ((-714 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 |#2|) |has| |#1| (-363)) ((-714 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-789) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-791) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-792) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-817) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-845) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-847) -4012 (-12 (|has| |#1| (-363)) (|has| |#2| (-847))) (-12 (|has| |#1| (-363)) (|has| |#2| (-817)))) ((-897 (-1170)) -4012 (-12 (|has| |#1| (-363)) (|has| |#2| (-897 (-1170)))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) ((-883 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-564)))) ((-881 |#2|) |has| |#1| (-363)) ((-906) -12 (|has| |#1| (-363)) (|has| |#2| (-906))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-989 |#2|) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1019) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-1035 (-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) ((-1035 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) ((-1035 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) ((-1035 |#2|) . T) ((-1052 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 |#2|) |has| |#1| (-363)) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) -12 (|has| |#1| (-363)) (|has| |#2| (-1145))) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1209) |has| |#1| (-363)) ((-1213) |has| |#1| (-363)) ((-1219 |#1|) . T) ((-1237 |#1| #0#) . T))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 79)) (-3494 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) 98)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-3043 (($ $ (-564)) 107) (($ $ (-564) (-564)) 109)) (-1681 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 51)) (-3969 ((|#2| $) 11)) (-4027 (((-3 |#2| "failed") $) 35)) (-4350 ((|#2| $) 36)) (-2657 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-1328 (($ $) NIL (|has| |#1| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2635 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3191 (((-564) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-3392 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 59)) (-2679 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) 155) (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-2376 ((|#2| $) 154) (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-1170) $) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-1928 (($ $) 65) (($ (-564) $) 28)) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) NIL)) (-3613 (((-685 |#2|) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-4272 (((-3 $ "failed") $) 86)) (-2643 (((-407 (-949 |#1|)) $ (-564)) 122 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 124 (|has| |#1| (-556)))) (-2939 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1926 (((-112) $) NIL (|has| |#1| (-363)))) (-3137 (((-112) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2200 (((-112) $) 72)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#2| (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#2| (-883 (-564))) (|has| |#1| (-363))))) (-1454 (((-564) $) 103) (((-564) $ (-564)) 105)) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL (|has| |#1| (-363)))) (-1655 ((|#2| $) 163 (|has| |#1| (-363)))) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3804 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2001 (((-112) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-3619 (($ $ (-918)) 146)) (-2860 (($ (-1 |#1| (-564)) $) 142)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-564)) 20) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-3428 (($ $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-3413 (($ $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2313 (($ (-1 |#1| |#1|) $) 139) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-2305 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4362 (($ (-564) |#2|) 10)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 157 (|has| |#1| (-363)))) (-4039 (($ $) 226 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 231 (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-3304 (($) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3782 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3034 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-4139 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-3042 (($ $ (-564)) 136)) (-1347 (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4130 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) 101) (($ $ $) 88 (|has| (-564) (-1106))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2203 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4012 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 147 (-4012 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4012 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4012 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4012 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) 151 (-4012 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-3197 (($ $) NIL (|has| |#1| (-363)))) (-1668 ((|#2| $) 164 (|has| |#1| (-363)))) (-3475 (((-564) $) 12)) (-2692 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2374 (((-225) $) NIL (-12 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| |#2| (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| |#2| (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2807 (($ $) 134)) (-3714 (((-859) $) 264) (($ (-564)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1170)) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 167 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3181 ((|#1| $ (-564)) 83)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#2| (-906)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3379 (((-768)) 153 T CONST)) (-2390 ((|#1| $) 100)) (-4296 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2728 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 220 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-564)) 132 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) 222 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3920 (($ $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-4312 (($) 13 T CONST)) (-4323 (($) 18 T CONST)) (-2238 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4012 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4012 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4012 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4012 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4012 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1781 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1758 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1720 (((-112) $ $) 71)) (-1769 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1746 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 161 (|has| |#1| (-363))) (($ |#2| |#2|) 162 (|has| |#1| (-363)))) (-1828 (($ $) 225) (($ $ $) 76)) (-1814 (($ $ $) 74)) (** (($ $ (-918)) NIL) (($ $ (-768)) 82) (($ $ (-564)) 158 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 170 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 77) (($ $ |#1|) NIL) (($ |#1| $) 150) (($ $ |#2|) 160 (|has| |#1| (-363))) (($ |#2| $) 159 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
(((-1222 |#1| |#2|) (-1221 |#1| |#2|) (-1046) (-1250 |#1|)) (T -1222))
NIL
(-1221 |#1| |#2|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4328 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) 10)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1840 (($ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-4035 (((-112) $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3742 (($ $ (-564)) NIL) (($ $ (-564) (-564)) NIL)) (-3219 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-1581 (((-1251 |#1| |#2| |#3|) $) NIL)) (-2961 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL)) (-4223 (((-1251 |#1| |#2| |#3|) $) NIL)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-1368 (($ $) NIL (|has| |#1| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3879 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3438 (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-3526 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-2064 (((-1251 |#1| |#2| |#3|) $) NIL) (((-1170) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-3881 (($ $) NIL) (($ (-564) $) NIL)) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) NIL)) (-2620 (((-685 (-1251 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1447 (-685 (-1251 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1251 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-1926 (((-3 $ "failed") $) NIL)) (-2754 (((-407 (-949 |#1|)) $ (-564)) NIL (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) NIL (|has| |#1| (-556)))) (-2542 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3241 (((-112) $) NIL (|has| |#1| (-363)))) (-1751 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-1459 (((-112) $) NIL)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-883 (-564))) (|has| |#1| (-363))))) (-2261 (((-564) $) NIL) (((-564) $ (-564)) NIL)) (-2419 (((-112) $) NIL)) (-1957 (($ $) NIL (|has| |#1| (-363)))) (-1507 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3374 (((-3 $ "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2506 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2300 (($ $ (-918)) NIL)) (-3849 (($ (-1 |#1| (-564)) $) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-564)) 18) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-3571 (($ $ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1547 (($ $ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4235 (($ (-564) (-1251 |#1| |#2| |#3|)) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-3591 (($ $) 27 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 28 (|has| |#1| (-38 (-407 (-564)))))) (-1611 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2002 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2677 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4006 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-2678 (($ $ (-564)) NIL)) (-1343 (((-3 $ "failed") $ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1251 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1251 |#1| |#2| |#3|)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) NIL) (($ $ $) NIL (|has| (-564) (-1106))) (($ $ (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-286 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-3226 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 26) (($ $ (-768)) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 25 (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-3762 (($ $) NIL (|has| |#1| (-363)))) (-1517 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-3344 (((-564) $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2127 (((-536) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3204 (($ $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1251 |#1| |#2| |#3|)) NIL) (($ (-1255 |#2|)) 24) (($ (-1170)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-1757 ((|#1| $ (-564)) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-1965 (((-768)) NIL T CONST)) (-3415 ((|#1| $) 11)) (-2991 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3991 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3963 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2016 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-4317 (($) 20 T CONST)) (-4327 (($) 15 T CONST)) (-3190 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1738 (((-112) $ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1715 (((-112) $ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1705 (((-112) $ $) NIL (-4002 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 22)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1223 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -1765 ($ (-1255 |#2|))) (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1223))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
-(-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -1765 ($ (-1255 |#2|))) (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-1435 (((-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))) |#1| (-112)) 13)) (-2708 (((-418 |#1|) |#1|) 26)) (-4006 (((-418 |#1|) |#1|) 24)))
-(((-1224 |#1|) (-10 -7 (-15 -4006 ((-418 |#1|) |#1|)) (-15 -2708 ((-418 |#1|) |#1|)) (-15 -1435 ((-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))) |#1| (-112)))) (-1235 (-564))) (T -1224))
-((-1435 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| *3) (|:| -1490 (-564))))))) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-4006 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
-(-10 -7 (-15 -4006 ((-418 |#1|) |#1|)) (-15 -2708 ((-418 |#1|) |#1|)) (-15 -1435 ((-2 (|:| |contp| (-564)) (|:| -2362 (-641 (-2 (|:| |irr| |#1|) (|:| -1490 (-564)))))) |#1| (-112))))
-((-2082 (((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 23 (|has| |#1| (-845))) (((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 17)))
-(((-1225 |#1| |#2|) (-10 -7 (-15 -2082 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-845)) (-15 -2082 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1225))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-845)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1225 *5 *6)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6)))))
-(-10 -7 (-15 -2082 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-845)) (-15 -2082 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3371 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2082 (((-1150 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-845)))) (-3557 ((|#1| $) 15)) (-1519 ((|#1| $) 12)) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1529 (((-564) $) 19)) (-2781 ((|#1| $) 18)) (-1652 ((|#1| $) 13)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1399 (((-112) $) 17)) (-2134 (((-1150 |#1|) $) 41 (|has| |#1| (-845))) (((-1150 |#1|) (-641 $)) 40 (|has| |#1| (-845)))) (-2127 (($ |#1|) 26)) (-1765 (($ (-1088 |#1|)) 25) (((-859) $) 37 (|has| |#1| (-1094)))) (-2167 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-1463 (($ $ (-564)) 14)) (-1686 (((-112) $ $) 30 (|has| |#1| (-1094)))))
-(((-1226 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -2167 ($ |#1|)) (-15 -3371 ($ |#1|)) (-15 -1765 ($ (-1088 |#1|))) (-15 -1399 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|))) (-1209)) (T -1226))
-((-2167 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-3371 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209)))))
-(-13 (-1087 |#1|) (-10 -8 (-15 -2167 ($ |#1|)) (-15 -3371 ($ |#1|)) (-15 -1765 ($ (-1088 |#1|))) (-15 -1399 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|)))
-((-2082 (((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)) 15)))
-(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)))) (-1170) (-1046) (-1170) (-1046)) (T -1227))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1232 *5 *6)) (-14 *5 (-1170)) (-4 *6 (-1046)) (-4 *8 (-1046)) (-5 *2 (-1232 *7 *8)) (-5 *1 (-1227 *5 *6 *7 *8)) (-14 *7 (-1170)))))
-(-10 -7 (-15 -2082 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|))))
-((-3470 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3946 ((|#1| |#3|) 13)) (-4149 ((|#3| |#3|) 19)))
-(((-1228 |#1| |#2| |#3|) (-10 -7 (-15 -3946 (|#1| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -3470 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-989 |#1|) (-1235 |#2|)) (T -1228))
-((-3470 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-1228 *3 *4 *2)) (-4 *2 (-1235 *4)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -3946 (|#1| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -3470 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3579 (((-3 |#2| "failed") |#2| (-768) |#1|) 37)) (-2315 (((-3 |#2| "failed") |#2| (-768)) 38)) (-2214 (((-3 (-2 (|:| -3538 |#2|) (|:| -3549 |#2|)) "failed") |#2|) 51)) (-1576 (((-641 |#2|) |#2|) 53)) (-3230 (((-3 |#2| "failed") |#2| |#2|) 47)))
-(((-1229 |#1| |#2|) (-10 -7 (-15 -2315 ((-3 |#2| "failed") |#2| (-768))) (-15 -3579 ((-3 |#2| "failed") |#2| (-768) |#1|)) (-15 -3230 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2214 ((-3 (-2 (|:| -3538 |#2|) (|:| -3549 |#2|)) "failed") |#2|)) (-15 -1576 ((-641 |#2|) |#2|))) (-13 (-556) (-147)) (-1235 |#1|)) (T -1229))
-((-1576 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3)) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-2214 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| -3538 *3) (|:| -3549 *3))) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-3230 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1235 *3)))) (-3579 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))) (-2315 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))))
-(-10 -7 (-15 -2315 ((-3 |#2| "failed") |#2| (-768))) (-15 -3579 ((-3 |#2| "failed") |#2| (-768) |#1|)) (-15 -3230 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2214 ((-3 (-2 (|:| -3538 |#2|) (|:| -3549 |#2|)) "failed") |#2|)) (-15 -1576 ((-641 |#2|) |#2|)))
-((-2178 (((-3 (-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) "failed") |#2| |#2|) 29)))
-(((-1230 |#1| |#2|) (-10 -7 (-15 -2178 ((-3 (-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) "failed") |#2| |#2|))) (-556) (-1235 |#1|)) (T -1230))
-((-2178 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-1230 *4 *3)) (-4 *3 (-1235 *4)))))
-(-10 -7 (-15 -2178 ((-3 (-2 (|:| -3741 |#2|) (|:| -2746 |#2|)) "failed") |#2| |#2|)))
-((-2627 ((|#2| |#2| |#2|) 22)) (-4051 ((|#2| |#2| |#2|) 36)) (-3099 ((|#2| |#2| |#2| (-768) (-768)) 44)))
-(((-1231 |#1| |#2|) (-10 -7 (-15 -2627 (|#2| |#2| |#2|)) (-15 -4051 (|#2| |#2| |#2|)) (-15 -3099 (|#2| |#2| |#2| (-768) (-768)))) (-1046) (-1235 |#1|)) (T -1231))
-((-3099 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-1231 *4 *2)) (-4 *2 (-1235 *4)))) (-4051 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))) (-2627 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))))
-(-10 -7 (-15 -2627 (|#2| |#2| |#2|)) (-15 -4051 (|#2| |#2| |#2|)) (-15 -3099 (|#2| |#2| |#2| (-768) (-768))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4128 (((-1259 |#2|) $ (-768)) NIL)) (-4170 (((-641 (-1076)) $) NIL)) (-2112 (($ (-1166 |#2|)) NIL)) (-3964 (((-1166 $) $ (-1076)) NIL) (((-1166 |#2|) $) NIL)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1840 (($ $) NIL (|has| |#2| (-556)))) (-4035 (((-112) $) NIL (|has| |#2| (-556)))) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2673 (($ $ $) NIL (|has| |#2| (-556)))) (-1871 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1368 (($ $) NIL (|has| |#2| (-452)))) (-3981 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3385 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3995 (($ $ (-768)) NIL)) (-1692 (($ $ (-768)) NIL)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2064 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-1076) $) NIL)) (-4267 (($ $ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-1387 (($ $ $) NIL (|has| |#2| (-363)))) (-4346 (($ $) NIL)) (-2620 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-1366 (($ $ $) NIL (|has| |#2| (-363)))) (-3020 (($ $ $) NIL)) (-1506 (($ $ $) NIL (|has| |#2| (-556)))) (-3363 (((-2 (|:| -1662 |#2|) (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#2| (-556)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-2190 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-4334 (((-641 $) $) NIL)) (-3241 (((-112) $) NIL (|has| |#2| (-906)))) (-2877 (($ $ |#2| (-768) $) NIL)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-2261 (((-768) $ $) NIL (|has| |#2| (-556)))) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-3374 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-4157 (($ (-1166 |#2|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-2300 (($ $ (-768)) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-4145 (($ |#2| (-768)) 18) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-1076)) NIL) (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL)) (-3829 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-3571 (($ $ $) NIL (|has| |#2| (-847)))) (-1547 (($ $ $) NIL (|has| |#2| (-847)))) (-2964 (($ (-1 (-768) (-768)) $) NIL)) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2418 (((-1166 |#2|) $) NIL)) (-2022 (((-3 (-1076) "failed") $) NIL)) (-4311 (($ $) NIL)) (-4323 ((|#2| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-4202 (((-1152) $) NIL)) (-2724 (((-2 (|:| -3741 $) (|:| -2746 $)) $ (-768)) NIL)) (-1964 (((-3 (-641 $) "failed") $) NIL)) (-1295 (((-3 (-641 $) "failed") $) NIL)) (-1691 (((-3 (-2 (|:| |var| (-1076)) (|:| -3747 (-768))) "failed") $) NIL)) (-3591 (($ $) NIL (|has| |#2| (-38 (-407 (-564)))))) (-1611 (($) NIL (|has| |#2| (-1145)) CONST)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 ((|#2| $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2527 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2198 (($ $ (-768) |#2| $) NIL)) (-3113 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4006 (((-418 $) $) NIL (|has| |#2| (-906)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#2| (-363)))) (-1343 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2407 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) NIL) (($ $ (-641 (-1076)) (-641 |#2|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3712 (((-768) $) NIL (|has| |#2| (-363)))) (-4382 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-556))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-556)))) (-4135 (((-3 $ "failed") $ (-768)) NIL)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#2| (-363)))) (-1938 (($ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-3226 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3344 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2127 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-2712 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3154 (((-3 $ "failed") $ $) NIL (|has| |#2| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-556)))) (-1765 (((-859) $) 13) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) NIL) (($ (-1255 |#1|)) 20) (($ (-407 (-564))) NIL (-4002 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-4264 (((-641 |#2|) $) NIL)) (-1757 ((|#2| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2864 (((-3 $ "failed") $) NIL (-4002 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-1582 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4317 (($) NIL T CONST)) (-4327 (($) 14 T CONST)) (-3190 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1738 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1686 (((-112) $ $) NIL)) (-1728 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1793 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1232 |#1| |#2|) (-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -2198 ($ $ (-768) |#2| $)))) (-1170) (-1046)) (T -1232))
-((-2198 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170)) (-4 *3 (-1046)))))
-(-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -2198 ($ $ (-768) |#2| $))))
-((-2082 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1233 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 (|#4| (-1 |#3| |#1|) |#2|))) (-1046) (-1235 |#1|) (-1046) (-1235 |#3|)) (T -1233))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *2 (-1235 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1235 *5)))))
-(-10 -7 (-15 -2082 (|#4| (-1 |#3| |#1|) |#2|)))
-((-4128 (((-1259 |#2|) $ (-768)) 129)) (-4170 (((-641 (-1076)) $) 16)) (-2112 (($ (-1166 |#2|)) 80)) (-2831 (((-768) $) NIL) (((-768) $ (-641 (-1076))) 21)) (-1871 (((-418 (-1166 $)) (-1166 $)) 205)) (-1368 (($ $) 195)) (-3981 (((-418 $) $) 193)) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 95)) (-3995 (($ $ (-768)) 84)) (-1692 (($ $ (-768)) 86)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 146)) (-2013 (((-3 |#2| "failed") $) 132) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL)) (-2064 ((|#2| $) 130) (((-407 (-564)) $) NIL) (((-564) $) NIL) (((-1076) $) NIL)) (-1506 (($ $ $) 172)) (-3363 (((-2 (|:| -1662 |#2|) (|:| -3741 $) (|:| -2746 $)) $ $) 174)) (-2261 (((-768) $ $) 190)) (-3374 (((-3 $ "failed") $) 139)) (-4145 (($ |#2| (-768)) NIL) (($ $ (-1076) (-768)) 59) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-3829 (((-768) $) NIL) (((-768) $ (-1076)) 54) (((-641 (-768)) $ (-641 (-1076))) 55)) (-2418 (((-1166 |#2|) $) 72)) (-2022 (((-3 (-1076) "failed") $) 52)) (-2724 (((-2 (|:| -3741 $) (|:| -2746 $)) $ (-768)) 83)) (-3591 (($ $) 218)) (-1611 (($) 134)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 202)) (-3113 (((-418 (-1166 $)) (-1166 $)) 101)) (-1761 (((-418 (-1166 $)) (-1166 $)) 99)) (-4006 (((-418 $) $) 120)) (-2407 (($ $ (-641 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) 39) (($ $ (-641 (-1076)) (-641 |#2|)) 36) (($ $ (-1076) $) 32) (($ $ (-641 (-1076)) (-641 $)) 30)) (-3712 (((-768) $) 208)) (-4382 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 166) ((|#2| (-407 $) |#2|) 207) (((-407 $) $ (-407 $)) 189)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 212)) (-3226 (($ $ (-1076)) 159) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) 157) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 156) (($ $ (-1 |#2| |#2|) $) 151)) (-3344 (((-768) $) NIL) (((-768) $ (-1076)) 17) (((-641 (-768)) $ (-641 (-1076))) 23)) (-2712 ((|#2| $) NIL) (($ $ (-1076)) 141)) (-3154 (((-3 $ "failed") $ $) 182) (((-3 (-407 $) "failed") (-407 $) $) 178)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) 64) (($ (-407 (-564))) NIL) (($ $) NIL)))
-(((-1234 |#1| |#2|) (-10 -8 (-15 -1765 (|#1| |#1|)) (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1611 (|#1|)) (-15 -3374 ((-3 |#1| "failed") |#1|)) (-15 -4382 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -3712 ((-768) |#1|)) (-15 -1959 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -4382 (|#2| (-407 |#1|) |#2|)) (-15 -2436 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3363 ((-2 (|:| -1662 |#2|) (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -1506 (|#1| |#1| |#1|)) (-15 -3154 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -3154 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2261 ((-768) |#1| |#1|)) (-15 -4382 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1692 (|#1| |#1| (-768))) (-15 -3995 (|#1| |#1| (-768))) (-15 -2724 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| (-768))) (-15 -2112 (|#1| (-1166 |#2|))) (-15 -2418 ((-1166 |#2|) |#1|)) (-15 -4128 ((-1259 |#2|) |#1| (-768))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| |#2|)) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -1871 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1761 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3113 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2111 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2712 (|#1| |#1| (-1076))) (-15 -4170 ((-641 (-1076)) |#1|)) (-15 -2831 ((-768) |#1| (-641 (-1076)))) (-15 -2831 ((-768) |#1|)) (-15 -4145 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -4145 (|#1| |#1| (-1076) (-768))) (-15 -3829 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -3829 ((-768) |#1| (-1076))) (-15 -2022 ((-3 (-1076) "failed") |#1|)) (-15 -3344 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -3344 ((-768) |#1| (-1076))) (-15 -1765 (|#1| (-1076))) (-15 -2013 ((-3 (-1076) "failed") |#1|)) (-15 -2064 ((-1076) |#1|)) (-15 -2407 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -2407 (|#1| |#1| (-1076) |#1|)) (-15 -2407 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -2407 (|#1| |#1| (-1076) |#2|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3344 ((-768) |#1|)) (-15 -4145 (|#1| |#2| (-768))) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -3829 ((-768) |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -3226 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1076) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1076)))) (-15 -3226 (|#1| |#1| (-1076))) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|))) (-1235 |#2|) (-1046)) (T -1234))
-NIL
-(-10 -8 (-15 -1765 (|#1| |#1|)) (-15 -3281 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3981 ((-418 |#1|) |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1611 (|#1|)) (-15 -3374 ((-3 |#1| "failed") |#1|)) (-15 -4382 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -3712 ((-768) |#1|)) (-15 -1959 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -4382 (|#2| (-407 |#1|) |#2|)) (-15 -2436 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3363 ((-2 (|:| -1662 |#2|) (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| |#1|)) (-15 -1506 (|#1| |#1| |#1|)) (-15 -3154 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -3154 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2261 ((-768) |#1| |#1|)) (-15 -4382 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1692 (|#1| |#1| (-768))) (-15 -3995 (|#1| |#1| (-768))) (-15 -2724 ((-2 (|:| -3741 |#1|) (|:| -2746 |#1|)) |#1| (-768))) (-15 -2112 (|#1| (-1166 |#2|))) (-15 -2418 ((-1166 |#2|) |#1|)) (-15 -4128 ((-1259 |#2|) |#1| (-768))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3226 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1170) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1170)))) (-15 -3226 (|#1| |#1| (-1170))) (-15 -3226 (|#1| |#1|)) (-15 -3226 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| |#2|)) (-15 -4006 ((-418 |#1|) |#1|)) (-15 -1871 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -1761 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3113 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2111 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2712 (|#1| |#1| (-1076))) (-15 -4170 ((-641 (-1076)) |#1|)) (-15 -2831 ((-768) |#1| (-641 (-1076)))) (-15 -2831 ((-768) |#1|)) (-15 -4145 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -4145 (|#1| |#1| (-1076) (-768))) (-15 -3829 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -3829 ((-768) |#1| (-1076))) (-15 -2022 ((-3 (-1076) "failed") |#1|)) (-15 -3344 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -3344 ((-768) |#1| (-1076))) (-15 -1765 (|#1| (-1076))) (-15 -2013 ((-3 (-1076) "failed") |#1|)) (-15 -2064 ((-1076) |#1|)) (-15 -2407 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -2407 (|#1| |#1| (-1076) |#1|)) (-15 -2407 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -2407 (|#1| |#1| (-1076) |#2|)) (-15 -2407 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2407 (|#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| |#1| (-294 |#1|))) (-15 -2407 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3344 ((-768) |#1|)) (-15 -4145 (|#1| |#2| (-768))) (-15 -2013 ((-3 (-564) "failed") |#1|)) (-15 -2064 ((-564) |#1|)) (-15 -2013 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2064 ((-407 (-564)) |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -2013 ((-3 |#2| "failed") |#1|)) (-15 -1765 (|#1| |#2|)) (-15 -3829 ((-768) |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -3226 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -3226 (|#1| |#1| (-1076) (-768))) (-15 -3226 (|#1| |#1| (-641 (-1076)))) (-15 -3226 (|#1| |#1| (-1076))) (-15 -1765 (|#1| (-564))) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4128 (((-1259 |#1|) $ (-768)) 238)) (-4170 (((-641 (-1076)) $) 110)) (-2112 (($ (-1166 |#1|)) 236)) (-3964 (((-1166 $) $ (-1076)) 125) (((-1166 |#1|) $) 124)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1840 (($ $) 88 (|has| |#1| (-556)))) (-4035 (((-112) $) 90 (|has| |#1| (-556)))) (-2831 (((-768) $) 112) (((-768) $ (-641 (-1076))) 111)) (-3936 (((-3 $ "failed") $ $) 19)) (-2673 (($ $ $) 223 (|has| |#1| (-556)))) (-1871 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-1368 (($ $) 98 (|has| |#1| (-452)))) (-3981 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2111 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-3385 (((-112) $ $) 208 (|has| |#1| (-363)))) (-3995 (($ $ (-768)) 231)) (-1692 (($ $ (-768)) 230)) (-2436 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-452)))) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) 136)) (-2064 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) (((-1076) $) 137)) (-4267 (($ $ $ (-1076)) 108 (|has| |#1| (-172))) ((|#1| $ $) 226 (|has| |#1| (-172)))) (-1387 (($ $ $) 212 (|has| |#1| (-363)))) (-4346 (($ $) 154)) (-2620 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1447 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 211 (|has| |#1| (-363)))) (-3020 (($ $ $) 229)) (-1506 (($ $ $) 220 (|has| |#1| (-556)))) (-3363 (((-2 (|:| -1662 |#1|) (|:| -3741 $) (|:| -2746 $)) $ $) 219 (|has| |#1| (-556)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 206 (|has| |#1| (-363)))) (-2190 (($ $) 176 (|has| |#1| (-452))) (($ $ (-1076)) 105 (|has| |#1| (-452)))) (-4334 (((-641 $) $) 109)) (-3241 (((-112) $) 96 (|has| |#1| (-906)))) (-2877 (($ $ |#1| (-768) $) 172)) (-2549 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-2261 (((-768) $ $) 224 (|has| |#1| (-556)))) (-2419 (((-112) $) 31)) (-3107 (((-768) $) 169)) (-3374 (((-3 $ "failed") $) 204 (|has| |#1| (-1145)))) (-4157 (($ (-1166 |#1|) (-1076)) 117) (($ (-1166 $) (-1076)) 116)) (-2300 (($ $ (-768)) 235)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 215 (|has| |#1| (-363)))) (-2791 (((-641 $) $) 126)) (-3101 (((-112) $) 152)) (-4145 (($ |#1| (-768)) 153) (($ $ (-1076) (-768)) 119) (($ $ (-641 (-1076)) (-641 (-768))) 118)) (-2547 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $ (-1076)) 120) (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 233)) (-3829 (((-768) $) 170) (((-768) $ (-1076)) 122) (((-641 (-768)) $ (-641 (-1076))) 121)) (-3571 (($ $ $) 79 (|has| |#1| (-847)))) (-1547 (($ $ $) 78 (|has| |#1| (-847)))) (-2964 (($ (-1 (-768) (-768)) $) 171)) (-2082 (($ (-1 |#1| |#1|) $) 151)) (-2418 (((-1166 |#1|) $) 237)) (-2022 (((-3 (-1076) "failed") $) 123)) (-4311 (($ $) 149)) (-4323 ((|#1| $) 148)) (-2488 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-4202 (((-1152) $) 9)) (-2724 (((-2 (|:| -3741 $) (|:| -2746 $)) $ (-768)) 232)) (-1964 (((-3 (-641 $) "failed") $) 114)) (-1295 (((-3 (-641 $) "failed") $) 115)) (-1691 (((-3 (-2 (|:| |var| (-1076)) (|:| -3747 (-768))) "failed") $) 113)) (-3591 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-1611 (($) 203 (|has| |#1| (-1145)) CONST)) (-3802 (((-1114) $) 10)) (-4285 (((-112) $) 166)) (-4298 ((|#1| $) 167)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2527 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3113 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-1761 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4006 (((-418 $) $) 99 (|has| |#1| (-906)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 213 (|has| |#1| (-363)))) (-1343 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 207 (|has| |#1| (-363)))) (-2407 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ (-1076) |#1|) 141) (($ $ (-641 (-1076)) (-641 |#1|)) 140) (($ $ (-1076) $) 139) (($ $ (-641 (-1076)) (-641 $)) 138)) (-3712 (((-768) $) 209 (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-407 $) (-407 $) (-407 $)) 225 (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) 217 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 205 (|has| |#1| (-556)))) (-4135 (((-3 $ "failed") $ (-768)) 234)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 210 (|has| |#1| (-363)))) (-1938 (($ $ (-1076)) 107 (|has| |#1| (-172))) ((|#1| $) 227 (|has| |#1| (-172)))) (-3226 (($ $ (-1076)) 42) (($ $ (-641 (-1076))) 41) (($ $ (-1076) (-768)) 40) (($ $ (-641 (-1076)) (-641 (-768))) 39) (($ $ (-768)) 253) (($ $) 251) (($ $ (-1170)) 250 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 249 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 248 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 247 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3344 (((-768) $) 150) (((-768) $ (-1076)) 130) (((-641 (-768)) $ (-641 (-1076))) 129)) (-2127 (((-889 (-379)) $) 82 (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-2712 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ (-1076)) 106 (|has| |#1| (-452)))) (-2574 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4266 (|has| $ (-145)) (|has| |#1| (-906))))) (-3154 (((-3 $ "failed") $ $) 222 (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) 221 (|has| |#1| (-556)))) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ (-1076)) 135) (($ (-407 (-564))) 72 (-4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-4264 (((-641 |#1|) $) 168)) (-1757 ((|#1| $ (-768)) 155) (($ $ (-1076) (-768)) 128) (($ $ (-641 (-1076)) (-641 (-768))) 127)) (-2864 (((-3 $ "failed") $) 73 (-4002 (-4266 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-1965 (((-768)) 28 T CONST)) (-2958 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-1582 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-1076)) 38) (($ $ (-641 (-1076))) 37) (($ $ (-1076) (-768)) 36) (($ $ (-641 (-1076)) (-641 (-768))) 35) (($ $ (-768)) 254) (($ $) 252) (($ $ (-1170)) 246 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 245 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 244 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 243 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1738 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 6)) (-1728 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1793 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3494 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) 10)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1582 (($ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3897 (((-112) $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3043 (($ $ (-564)) NIL) (($ $ (-564) (-564)) NIL)) (-1681 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-3969 (((-1251 |#1| |#2| |#3|) $) NIL)) (-4027 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL)) (-4350 (((-1251 |#1| |#2| |#3|) $) NIL)) (-2657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-1328 (($ $) NIL (|has| |#1| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2635 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3191 (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-3392 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-2679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-2376 (((-1251 |#1| |#2| |#3|) $) NIL) (((-1170) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-1928 (($ $) NIL) (($ (-564) $) NIL)) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) NIL)) (-3613 (((-685 (-1251 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1920 (-685 (-1251 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1251 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-4272 (((-3 $ "failed") $) NIL)) (-2643 (((-407 (-949 |#1|)) $ (-564)) NIL (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) NIL (|has| |#1| (-556)))) (-2939 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1926 (((-112) $) NIL (|has| |#1| (-363)))) (-3137 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2200 (((-112) $) NIL)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-883 (-564))) (|has| |#1| (-363))))) (-1454 (((-564) $) NIL) (((-564) $ (-564)) NIL)) (-2340 (((-112) $) NIL)) (-1492 (($ $) NIL (|has| |#1| (-363)))) (-1655 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3804 (((-3 $ "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2001 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-3619 (($ $ (-918)) NIL)) (-2860 (($ (-1 |#1| (-564)) $) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-564)) 18) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-3428 (($ $ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-3413 (($ $ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2305 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4362 (($ (-564) (-1251 |#1| |#2| |#3|)) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-4039 (($ $) 27 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 28 (|has| |#1| (-38 (-407 (-564)))))) (-3304 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3782 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3034 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4139 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-3042 (($ $ (-564)) NIL)) (-1347 (((-3 $ "failed") $ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4130 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1251 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1251 |#1| |#2| |#3|)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) NIL) (($ $ $) NIL (|has| (-564) (-1106))) (($ $ (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-286 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2203 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 26) (($ $ (-768)) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 25 (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-3197 (($ $) NIL (|has| |#1| (-363)))) (-1668 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-3475 (((-564) $) NIL)) (-2692 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2374 (((-536) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2807 (($ $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1251 |#1| |#2| |#3|)) NIL) (($ (-1255 |#2|)) 24) (($ (-1170)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-3181 ((|#1| $ (-564)) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3379 (((-768)) NIL T CONST)) (-2390 ((|#1| $) 11)) (-4296 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2728 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3920 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-4312 (($) 20 T CONST)) (-4323 (($) 15 T CONST)) (-2238 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1781 (((-112) $ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1758 (((-112) $ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1746 (((-112) $ $) NIL (-4012 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 22)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1223 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -3714 ($ (-1255 |#2|))) (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1223))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
+(-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -3714 ($ (-1255 |#2|))) (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|)))
+((-1797 (((-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))) |#1| (-112)) 13)) (-3299 (((-418 |#1|) |#1|) 26)) (-4139 (((-418 |#1|) |#1|) 24)))
+(((-1224 |#1|) (-10 -7 (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3299 ((-418 |#1|) |#1|)) (-15 -1797 ((-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))) |#1| (-112)))) (-1235 (-564))) (T -1224))
+((-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| *3) (|:| -2534 (-564))))))) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-3299 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-4139 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
+(-10 -7 (-15 -4139 ((-418 |#1|) |#1|)) (-15 -3299 ((-418 |#1|) |#1|)) (-15 -1797 ((-2 (|:| |contp| (-564)) (|:| -3020 (-641 (-2 (|:| |irr| |#1|) (|:| -2534 (-564)))))) |#1| (-112))))
+((-2313 (((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 23 (|has| |#1| (-845))) (((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 17)))
+(((-1225 |#1| |#2|) (-10 -7 (-15 -2313 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-845)) (-15 -2313 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1225))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-845)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1225 *5 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6)))))
+(-10 -7 (-15 -2313 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-845)) (-15 -2313 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2346 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2313 (((-1150 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-845)))) (-1908 ((|#1| $) 15)) (-3380 ((|#1| $) 12)) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3391 (((-564) $) 19)) (-1652 ((|#1| $) 18)) (-3505 ((|#1| $) 13)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1664 (((-112) $) 17)) (-4111 (((-1150 |#1|) $) 41 (|has| |#1| (-845))) (((-1150 |#1|) (-641 $)) 40 (|has| |#1| (-845)))) (-2374 (($ |#1|) 26)) (-3714 (($ (-1088 |#1|)) 25) (((-859) $) 37 (|has| |#1| (-1094)))) (-4223 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-1493 (($ $ (-564)) 14)) (-1720 (((-112) $ $) 30 (|has| |#1| (-1094)))))
+(((-1226 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -4223 ($ |#1|)) (-15 -2346 ($ |#1|)) (-15 -3714 ($ (-1088 |#1|))) (-15 -1664 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|))) (-1209)) (T -1226))
+((-4223 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-2346 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209)))))
+(-13 (-1087 |#1|) (-10 -8 (-15 -4223 ($ |#1|)) (-15 -2346 ($ |#1|)) (-15 -3714 ($ (-1088 |#1|))) (-15 -1664 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|)))
+((-2313 (((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)) 15)))
+(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)))) (-1170) (-1046) (-1170) (-1046)) (T -1227))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1232 *5 *6)) (-14 *5 (-1170)) (-4 *6 (-1046)) (-4 *8 (-1046)) (-5 *2 (-1232 *7 *8)) (-5 *1 (-1227 *5 *6 *7 *8)) (-14 *7 (-1170)))))
+(-10 -7 (-15 -2313 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|))))
+((-2328 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4376 ((|#1| |#3|) 13)) (-2606 ((|#3| |#3|) 19)))
+(((-1228 |#1| |#2| |#3|) (-10 -7 (-15 -4376 (|#1| |#3|)) (-15 -2606 (|#3| |#3|)) (-15 -2328 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-989 |#1|) (-1235 |#2|)) (T -1228))
+((-2328 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-2606 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-1228 *3 *4 *2)) (-4 *2 (-1235 *4)))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -4376 (|#1| |#3|)) (-15 -2606 (|#3| |#3|)) (-15 -2328 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2127 (((-3 |#2| "failed") |#2| (-768) |#1|) 37)) (-3754 (((-3 |#2| "failed") |#2| (-768)) 38)) (-4082 (((-3 (-2 (|:| -2578 |#2|) (|:| -2592 |#2|)) "failed") |#2|) 51)) (-2100 (((-641 |#2|) |#2|) 53)) (-1800 (((-3 |#2| "failed") |#2| |#2|) 47)))
+(((-1229 |#1| |#2|) (-10 -7 (-15 -3754 ((-3 |#2| "failed") |#2| (-768))) (-15 -2127 ((-3 |#2| "failed") |#2| (-768) |#1|)) (-15 -1800 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4082 ((-3 (-2 (|:| -2578 |#2|) (|:| -2592 |#2|)) "failed") |#2|)) (-15 -2100 ((-641 |#2|) |#2|))) (-13 (-556) (-147)) (-1235 |#1|)) (T -1229))
+((-2100 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3)) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-4082 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| -2578 *3) (|:| -2592 *3))) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-1800 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1235 *3)))) (-2127 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))) (-3754 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))))
+(-10 -7 (-15 -3754 ((-3 |#2| "failed") |#2| (-768))) (-15 -2127 ((-3 |#2| "failed") |#2| (-768) |#1|)) (-15 -1800 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4082 ((-3 (-2 (|:| -2578 |#2|) (|:| -2592 |#2|)) "failed") |#2|)) (-15 -2100 ((-641 |#2|) |#2|)))
+((-1893 (((-3 (-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) "failed") |#2| |#2|) 29)))
+(((-1230 |#1| |#2|) (-10 -7 (-15 -1893 ((-3 (-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) "failed") |#2| |#2|))) (-556) (-1235 |#1|)) (T -1230))
+((-1893 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-1230 *4 *3)) (-4 *3 (-1235 *4)))))
+(-10 -7 (-15 -1893 ((-3 (-2 (|:| -3031 |#2|) (|:| -2550 |#2|)) "failed") |#2| |#2|)))
+((-3692 ((|#2| |#2| |#2|) 22)) (-4034 ((|#2| |#2| |#2|) 36)) (-2945 ((|#2| |#2| |#2| (-768) (-768)) 44)))
+(((-1231 |#1| |#2|) (-10 -7 (-15 -3692 (|#2| |#2| |#2|)) (-15 -4034 (|#2| |#2| |#2|)) (-15 -2945 (|#2| |#2| |#2| (-768) (-768)))) (-1046) (-1235 |#1|)) (T -1231))
+((-2945 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-1231 *4 *2)) (-4 *2 (-1235 *4)))) (-4034 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))) (-3692 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))))
+(-10 -7 (-15 -3692 (|#2| |#2| |#2|)) (-15 -4034 (|#2| |#2| |#2|)) (-15 -2945 (|#2| |#2| |#2| (-768) (-768))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-2401 (((-1259 |#2|) $ (-768)) NIL)) (-4292 (((-641 (-1076)) $) NIL)) (-2522 (($ (-1166 |#2|)) NIL)) (-4103 (((-1166 $) $ (-1076)) NIL) (((-1166 |#2|) $) NIL)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1582 (($ $) NIL (|has| |#2| (-556)))) (-3897 (((-112) $) NIL (|has| |#2| (-556)))) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3000 (($ $ $) NIL (|has| |#2| (-556)))) (-1917 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-1328 (($ $) NIL (|has| |#2| (-452)))) (-1592 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3907 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3522 (($ $ (-768)) NIL)) (-3752 (($ $ (-768)) NIL)) (-2530 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2376 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-1076) $) NIL)) (-4275 (($ $ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-1399 (($ $ $) NIL (|has| |#2| (-363)))) (-1374 (($ $) NIL)) (-3613 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-1371 (($ $ $) NIL (|has| |#2| (-363)))) (-3330 (($ $ $) NIL)) (-2696 (($ $ $) NIL (|has| |#2| (-556)))) (-3686 (((-2 (|:| -1817 |#2|) (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#2| (-556)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-2015 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-1359 (((-641 $) $) NIL)) (-1926 (((-112) $) NIL (|has| |#2| (-906)))) (-1423 (($ $ |#2| (-768) $) NIL)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-1454 (((-768) $ $) NIL (|has| |#2| (-556)))) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-3804 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-4279 (($ (-1166 |#2|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-3619 (($ $ (-768)) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-4267 (($ |#2| (-768)) 18) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-1076)) NIL) (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL)) (-2700 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-3428 (($ $ $) NIL (|has| |#2| (-847)))) (-3413 (($ $ $) NIL (|has| |#2| (-847)))) (-4062 (($ (-1 (-768) (-768)) $) NIL)) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-2329 (((-1166 |#2|) $) NIL)) (-2848 (((-3 (-1076) "failed") $) NIL)) (-1330 (($ $) NIL)) (-1345 ((|#2| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1868 (((-1152) $) NIL)) (-2315 (((-2 (|:| -3031 $) (|:| -2550 $)) $ (-768)) NIL)) (-3370 (((-3 (-641 $) "failed") $) NIL)) (-3591 (((-3 (-641 $) "failed") $) NIL)) (-3741 (((-3 (-2 (|:| |var| (-1076)) (|:| -3078 (-768))) "failed") $) NIL)) (-4039 (($ $) NIL (|has| |#2| (-38 (-407 (-564)))))) (-3304 (($) NIL (|has| |#2| (-1145)) CONST)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 ((|#2| $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2727 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2102 (($ $ (-768) |#2| $) NIL)) (-3048 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4139 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#2| (-363)))) (-1347 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2582 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) NIL) (($ $ (-641 (-1076)) (-641 |#2|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-3966 (((-768) $) NIL (|has| |#2| (-363)))) (-4382 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-556))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-556)))) (-2458 (((-3 $ "failed") $ (-768)) NIL)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#2| (-363)))) (-4378 (($ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-2203 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3475 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2374 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-3324 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-2301 (((-3 $ "failed") $ $) NIL (|has| |#2| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-556)))) (-3714 (((-859) $) 13) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) NIL) (($ (-1255 |#1|)) 20) (($ (-407 (-564))) NIL (-4012 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-4252 (((-641 |#2|) $) NIL)) (-3181 ((|#2| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4363 (((-3 $ "failed") $) NIL (-4012 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3979 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4312 (($) NIL T CONST)) (-4323 (($) 14 T CONST)) (-2238 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1781 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1720 (((-112) $ $) NIL)) (-1769 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1841 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1232 |#1| |#2|) (-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -2102 ($ $ (-768) |#2| $)))) (-1170) (-1046)) (T -1232))
+((-2102 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170)) (-4 *3 (-1046)))))
+(-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -2102 ($ $ (-768) |#2| $))))
+((-2313 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1233 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 (|#4| (-1 |#3| |#1|) |#2|))) (-1046) (-1235 |#1|) (-1046) (-1235 |#3|)) (T -1233))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *2 (-1235 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1235 *5)))))
+(-10 -7 (-15 -2313 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2401 (((-1259 |#2|) $ (-768)) 129)) (-4292 (((-641 (-1076)) $) 16)) (-2522 (($ (-1166 |#2|)) 80)) (-2181 (((-768) $) NIL) (((-768) $ (-641 (-1076))) 21)) (-1917 (((-418 (-1166 $)) (-1166 $)) 205)) (-1328 (($ $) 195)) (-1592 (((-418 $) $) 193)) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 95)) (-3522 (($ $ (-768)) 84)) (-3752 (($ $ (-768)) 86)) (-2530 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 146)) (-2224 (((-3 |#2| "failed") $) 132) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL)) (-2376 ((|#2| $) 130) (((-407 (-564)) $) NIL) (((-564) $) NIL) (((-1076) $) NIL)) (-2696 (($ $ $) 172)) (-3686 (((-2 (|:| -1817 |#2|) (|:| -3031 $) (|:| -2550 $)) $ $) 174)) (-1454 (((-768) $ $) 190)) (-3804 (((-3 $ "failed") $) 139)) (-4267 (($ |#2| (-768)) NIL) (($ $ (-1076) (-768)) 59) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2700 (((-768) $) NIL) (((-768) $ (-1076)) 54) (((-641 (-768)) $ (-641 (-1076))) 55)) (-2329 (((-1166 |#2|) $) 72)) (-2848 (((-3 (-1076) "failed") $) 52)) (-2315 (((-2 (|:| -3031 $) (|:| -2550 $)) $ (-768)) 83)) (-4039 (($ $) 218)) (-3304 (($) 134)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 202)) (-3048 (((-418 (-1166 $)) (-1166 $)) 101)) (-3209 (((-418 (-1166 $)) (-1166 $)) 99)) (-4139 (((-418 $) $) 120)) (-2582 (($ $ (-641 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) 39) (($ $ (-641 (-1076)) (-641 |#2|)) 36) (($ $ (-1076) $) 32) (($ $ (-641 (-1076)) (-641 $)) 30)) (-3966 (((-768) $) 208)) (-4382 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 166) ((|#2| (-407 $) |#2|) 207) (((-407 $) $ (-407 $)) 189)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 212)) (-2203 (($ $ (-1076)) 159) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) 157) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 156) (($ $ (-1 |#2| |#2|) $) 151)) (-3475 (((-768) $) NIL) (((-768) $ (-1076)) 17) (((-641 (-768)) $ (-641 (-1076))) 23)) (-3324 ((|#2| $) NIL) (($ $ (-1076)) 141)) (-2301 (((-3 $ "failed") $ $) 182) (((-3 (-407 $) "failed") (-407 $) $) 178)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) 64) (($ (-407 (-564))) NIL) (($ $) NIL)))
+(((-1234 |#1| |#2|) (-10 -8 (-15 -3714 (|#1| |#1|)) (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3304 (|#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -4382 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -3966 ((-768) |#1|)) (-15 -3329 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -4382 (|#2| (-407 |#1|) |#2|)) (-15 -2530 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3686 ((-2 (|:| -1817 |#2|) (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -2696 (|#1| |#1| |#1|)) (-15 -2301 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -2301 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1454 ((-768) |#1| |#1|)) (-15 -4382 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3752 (|#1| |#1| (-768))) (-15 -3522 (|#1| |#1| (-768))) (-15 -2315 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| (-768))) (-15 -2522 (|#1| (-1166 |#2|))) (-15 -2329 ((-1166 |#2|) |#1|)) (-15 -2401 ((-1259 |#2|) |#1| (-768))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| |#2|)) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -1917 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3048 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2508 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3324 (|#1| |#1| (-1076))) (-15 -4292 ((-641 (-1076)) |#1|)) (-15 -2181 ((-768) |#1| (-641 (-1076)))) (-15 -2181 ((-768) |#1|)) (-15 -4267 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -4267 (|#1| |#1| (-1076) (-768))) (-15 -2700 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -2700 ((-768) |#1| (-1076))) (-15 -2848 ((-3 (-1076) "failed") |#1|)) (-15 -3475 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -3475 ((-768) |#1| (-1076))) (-15 -3714 (|#1| (-1076))) (-15 -2224 ((-3 (-1076) "failed") |#1|)) (-15 -2376 ((-1076) |#1|)) (-15 -2582 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -2582 (|#1| |#1| (-1076) |#1|)) (-15 -2582 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -2582 (|#1| |#1| (-1076) |#2|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3475 ((-768) |#1|)) (-15 -4267 (|#1| |#2| (-768))) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2700 ((-768) |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -2203 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1076) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1076)))) (-15 -2203 (|#1| |#1| (-1076))) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|))) (-1235 |#2|) (-1046)) (T -1234))
+NIL
+(-10 -8 (-15 -3714 (|#1| |#1|)) (-15 -4150 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1592 ((-418 |#1|) |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3304 (|#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)) (-15 -4382 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -3966 ((-768) |#1|)) (-15 -3329 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -4382 (|#2| (-407 |#1|) |#2|)) (-15 -2530 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3686 ((-2 (|:| -1817 |#2|) (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| |#1|)) (-15 -2696 (|#1| |#1| |#1|)) (-15 -2301 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -2301 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1454 ((-768) |#1| |#1|)) (-15 -4382 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3752 (|#1| |#1| (-768))) (-15 -3522 (|#1| |#1| (-768))) (-15 -2315 ((-2 (|:| -3031 |#1|) (|:| -2550 |#1|)) |#1| (-768))) (-15 -2522 (|#1| (-1166 |#2|))) (-15 -2329 ((-1166 |#2|) |#1|)) (-15 -2401 ((-1259 |#2|) |#1| (-768))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2203 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1170) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1170)))) (-15 -2203 (|#1| |#1| (-1170))) (-15 -2203 (|#1| |#1|)) (-15 -2203 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| |#2|)) (-15 -4139 ((-418 |#1|) |#1|)) (-15 -1917 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3209 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3048 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2508 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -3324 (|#1| |#1| (-1076))) (-15 -4292 ((-641 (-1076)) |#1|)) (-15 -2181 ((-768) |#1| (-641 (-1076)))) (-15 -2181 ((-768) |#1|)) (-15 -4267 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -4267 (|#1| |#1| (-1076) (-768))) (-15 -2700 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -2700 ((-768) |#1| (-1076))) (-15 -2848 ((-3 (-1076) "failed") |#1|)) (-15 -3475 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -3475 ((-768) |#1| (-1076))) (-15 -3714 (|#1| (-1076))) (-15 -2224 ((-3 (-1076) "failed") |#1|)) (-15 -2376 ((-1076) |#1|)) (-15 -2582 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -2582 (|#1| |#1| (-1076) |#1|)) (-15 -2582 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -2582 (|#1| |#1| (-1076) |#2|)) (-15 -2582 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2582 (|#1| |#1| |#1| |#1|)) (-15 -2582 (|#1| |#1| (-294 |#1|))) (-15 -2582 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3475 ((-768) |#1|)) (-15 -4267 (|#1| |#2| (-768))) (-15 -2224 ((-3 (-564) "failed") |#1|)) (-15 -2376 ((-564) |#1|)) (-15 -2224 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2376 ((-407 (-564)) |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2224 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#1| |#2|)) (-15 -2700 ((-768) |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -2203 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -2203 (|#1| |#1| (-1076) (-768))) (-15 -2203 (|#1| |#1| (-641 (-1076)))) (-15 -2203 (|#1| |#1| (-1076))) (-15 -3714 (|#1| (-564))) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2401 (((-1259 |#1|) $ (-768)) 238)) (-4292 (((-641 (-1076)) $) 110)) (-2522 (($ (-1166 |#1|)) 236)) (-4103 (((-1166 $) $ (-1076)) 125) (((-1166 |#1|) $) 124)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1582 (($ $) 88 (|has| |#1| (-556)))) (-3897 (((-112) $) 90 (|has| |#1| (-556)))) (-2181 (((-768) $) 112) (((-768) $ (-641 (-1076))) 111)) (-4281 (((-3 $ "failed") $ $) 19)) (-3000 (($ $ $) 223 (|has| |#1| (-556)))) (-1917 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-1328 (($ $) 98 (|has| |#1| (-452)))) (-1592 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2508 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-3907 (((-112) $ $) 208 (|has| |#1| (-363)))) (-3522 (($ $ (-768)) 231)) (-3752 (($ $ (-768)) 230)) (-2530 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-452)))) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) 136)) (-2376 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) (((-1076) $) 137)) (-4275 (($ $ $ (-1076)) 108 (|has| |#1| (-172))) ((|#1| $ $) 226 (|has| |#1| (-172)))) (-1399 (($ $ $) 212 (|has| |#1| (-363)))) (-1374 (($ $) 154)) (-3613 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -1920 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 211 (|has| |#1| (-363)))) (-3330 (($ $ $) 229)) (-2696 (($ $ $) 220 (|has| |#1| (-556)))) (-3686 (((-2 (|:| -1817 |#1|) (|:| -3031 $) (|:| -2550 $)) $ $) 219 (|has| |#1| (-556)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 206 (|has| |#1| (-363)))) (-2015 (($ $) 176 (|has| |#1| (-452))) (($ $ (-1076)) 105 (|has| |#1| (-452)))) (-1359 (((-641 $) $) 109)) (-1926 (((-112) $) 96 (|has| |#1| (-906)))) (-1423 (($ $ |#1| (-768) $) 172)) (-4181 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1454 (((-768) $ $) 224 (|has| |#1| (-556)))) (-2340 (((-112) $) 31)) (-2998 (((-768) $) 169)) (-3804 (((-3 $ "failed") $) 204 (|has| |#1| (-1145)))) (-4279 (($ (-1166 |#1|) (-1076)) 117) (($ (-1166 $) (-1076)) 116)) (-3619 (($ $ (-768)) 235)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 215 (|has| |#1| (-363)))) (-1767 (((-641 $) $) 126)) (-2961 (((-112) $) 152)) (-4267 (($ |#1| (-768)) 153) (($ $ (-1076) (-768)) 119) (($ $ (-641 (-1076)) (-641 (-768))) 118)) (-4171 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $ (-1076)) 120) (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 233)) (-2700 (((-768) $) 170) (((-768) $ (-1076)) 122) (((-641 (-768)) $ (-641 (-1076))) 121)) (-3428 (($ $ $) 79 (|has| |#1| (-847)))) (-3413 (($ $ $) 78 (|has| |#1| (-847)))) (-4062 (($ (-1 (-768) (-768)) $) 171)) (-2313 (($ (-1 |#1| |#1|) $) 151)) (-2329 (((-1166 |#1|) $) 237)) (-2848 (((-3 (-1076) "failed") $) 123)) (-1330 (($ $) 149)) (-1345 ((|#1| $) 148)) (-2688 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1868 (((-1152) $) 9)) (-2315 (((-2 (|:| -3031 $) (|:| -2550 $)) $ (-768)) 232)) (-3370 (((-3 (-641 $) "failed") $) 114)) (-3591 (((-3 (-641 $) "failed") $) 115)) (-3741 (((-3 (-2 (|:| |var| (-1076)) (|:| -3078 (-768))) "failed") $) 113)) (-4039 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3304 (($) 203 (|has| |#1| (-1145)) CONST)) (-3844 (((-1114) $) 10)) (-1304 (((-112) $) 166)) (-1316 ((|#1| $) 167)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2727 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-3048 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-3209 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4139 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 213 (|has| |#1| (-363)))) (-1347 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 207 (|has| |#1| (-363)))) (-2582 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ (-1076) |#1|) 141) (($ $ (-641 (-1076)) (-641 |#1|)) 140) (($ $ (-1076) $) 139) (($ $ (-641 (-1076)) (-641 $)) 138)) (-3966 (((-768) $) 209 (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-407 $) (-407 $) (-407 $)) 225 (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) 217 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 205 (|has| |#1| (-556)))) (-2458 (((-3 $ "failed") $ (-768)) 234)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 210 (|has| |#1| (-363)))) (-4378 (($ $ (-1076)) 107 (|has| |#1| (-172))) ((|#1| $) 227 (|has| |#1| (-172)))) (-2203 (($ $ (-1076)) 42) (($ $ (-641 (-1076))) 41) (($ $ (-1076) (-768)) 40) (($ $ (-641 (-1076)) (-641 (-768))) 39) (($ $ (-768)) 253) (($ $) 251) (($ $ (-1170)) 250 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 249 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 248 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 247 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3475 (((-768) $) 150) (((-768) $ (-1076)) 130) (((-641 (-768)) $ (-641 (-1076))) 129)) (-2374 (((-889 (-379)) $) 82 (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-3324 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ (-1076)) 106 (|has| |#1| (-452)))) (-1352 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4264 (|has| $ (-145)) (|has| |#1| (-906))))) (-2301 (((-3 $ "failed") $ $) 222 (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) 221 (|has| |#1| (-556)))) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ (-1076)) 135) (($ (-407 (-564))) 72 (-4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-4252 (((-641 |#1|) $) 168)) (-3181 ((|#1| $ (-768)) 155) (($ $ (-1076) (-768)) 128) (($ $ (-641 (-1076)) (-641 (-768))) 127)) (-4363 (((-3 $ "failed") $) 73 (-4012 (-4264 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3379 (((-768)) 28 T CONST)) (-3993 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3979 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-1076)) 38) (($ $ (-641 (-1076))) 37) (($ $ (-1076) (-768)) 36) (($ $ (-641 (-1076)) (-641 (-768))) 35) (($ $ (-768)) 254) (($ $) 252) (($ $ (-1170)) 246 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 245 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 244 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 243 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1781 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 6)) (-1769 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1841 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
(((-1235 |#1|) (-140) (-1046)) (T -1235))
-((-4128 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1235 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-5 *2 (-1166 *3)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1046)) (-4 *1 (-1235 *3)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-4135 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-1235 *3)))) (-2724 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-1235 *4)))) (-3995 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-3020 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)))) (-3226 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))) (-4267 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))) (-4382 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)))) (-2261 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)) (-5 *2 (-768)))) (-2673 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-3154 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-3154 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)))) (-1506 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-3363 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -1662 *3) (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-1235 *3)))) (-2436 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1235 *3)))) (-4382 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))))
-(-13 (-946 |t#1| (-768) (-1076)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4128 ((-1259 |t#1|) $ (-768))) (-15 -2418 ((-1166 |t#1|) $)) (-15 -2112 ($ (-1166 |t#1|))) (-15 -2300 ($ $ (-768))) (-15 -4135 ((-3 $ "failed") $ (-768))) (-15 -2547 ((-2 (|:| -3741 $) (|:| -2746 $)) $ $)) (-15 -2724 ((-2 (|:| -3741 $) (|:| -2746 $)) $ (-768))) (-15 -3995 ($ $ (-768))) (-15 -1692 ($ $ (-768))) (-15 -3020 ($ $ $)) (-15 -3226 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -1938 (|t#1| $)) (-15 -4267 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -4382 ((-407 $) (-407 $) (-407 $))) (-15 -2261 ((-768) $ $)) (-15 -2673 ($ $ $)) (-15 -3154 ((-3 $ "failed") $ $)) (-15 -3154 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -1506 ($ $ $)) (-15 -3363 ((-2 (|:| -1662 |t#1|) (|:| -3741 $) (|:| -2746 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -2436 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4407) (-15 -4382 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-15 -3591 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-768)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4002 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1076)) . T) ((-614 |#1|) . T) ((-614 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-556)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4002 (|has| |#1| (-906)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-556) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 #2#) . T) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) -12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379)))) ((-883 (-564)) -12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))) ((-946 |#1| #0# #2#) . T) ((-906) |has| |#1| (-906)) ((-917) |has| |#1| (-363)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 |#1|) . T) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1213) |has| |#1| (-906)))
-((-4170 (((-641 (-1076)) $) 34)) (-4346 (($ $) 31)) (-4145 (($ |#2| |#3|) NIL) (($ $ (-1076) |#3|) 28) (($ $ (-641 (-1076)) (-641 |#3|)) 27)) (-4311 (($ $) 14)) (-4323 ((|#2| $) 12)) (-3344 ((|#3| $) 10)))
-(((-1236 |#1| |#2| |#3|) (-10 -8 (-15 -4170 ((-641 (-1076)) |#1|)) (-15 -4145 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -4145 (|#1| |#1| (-1076) |#3|)) (-15 -4346 (|#1| |#1|)) (-15 -4145 (|#1| |#2| |#3|)) (-15 -3344 (|#3| |#1|)) (-15 -4311 (|#1| |#1|)) (-15 -4323 (|#2| |#1|))) (-1237 |#2| |#3|) (-1046) (-789)) (T -1236))
-NIL
-(-10 -8 (-15 -4170 ((-641 (-1076)) |#1|)) (-15 -4145 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -4145 (|#1| |#1| (-1076) |#3|)) (-15 -4346 (|#1| |#1|)) (-15 -4145 (|#1| |#2| |#3|)) (-15 -3344 (|#3| |#1|)) (-15 -4311 (|#1| |#1|)) (-15 -4323 (|#2| |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4170 (((-641 (-1076)) $) 77)) (-3657 (((-1170) $) 106)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1840 (($ $) 55 (|has| |#1| (-556)))) (-4035 (((-112) $) 57 (|has| |#1| (-556)))) (-3742 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-3219 (((-1150 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-1459 (((-112) $) 76)) (-2261 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-2419 (((-112) $) 31)) (-2300 (($ $ (-918)) 104)) (-3101 (((-112) $) 65)) (-4145 (($ |#1| |#2|) 64) (($ $ (-1076) |#2|) 79) (($ $ (-641 (-1076)) (-641 |#2|)) 78)) (-2082 (($ (-1 |#1| |#1|) $) 66)) (-4311 (($ $) 68)) (-4323 ((|#1| $) 69)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-2678 (($ $ |#2|) 98)) (-1343 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2407 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4382 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1106)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3344 ((|#2| $) 67)) (-3204 (($ $) 75)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-1757 ((|#1| $ |#2|) 62)) (-2864 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-3415 ((|#1| $) 105)) (-1582 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2299 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
+((-2401 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1235 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-5 *2 (-1166 *3)))) (-2522 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1046)) (-4 *1 (-1235 *3)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-2458 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-4171 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-1235 *3)))) (-2315 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-1235 *4)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-3330 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)))) (-2203 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))) (-4275 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))) (-4382 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)))) (-1454 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)) (-5 *2 (-768)))) (-3000 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-2301 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-2301 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)))) (-2696 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-3686 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -1817 *3) (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-1235 *3)))) (-2530 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1235 *3)))) (-4382 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))))
+(-13 (-946 |t#1| (-768) (-1076)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -2401 ((-1259 |t#1|) $ (-768))) (-15 -2329 ((-1166 |t#1|) $)) (-15 -2522 ($ (-1166 |t#1|))) (-15 -3619 ($ $ (-768))) (-15 -2458 ((-3 $ "failed") $ (-768))) (-15 -4171 ((-2 (|:| -3031 $) (|:| -2550 $)) $ $)) (-15 -2315 ((-2 (|:| -3031 $) (|:| -2550 $)) $ (-768))) (-15 -3522 ($ $ (-768))) (-15 -3752 ($ $ (-768))) (-15 -3330 ($ $ $)) (-15 -2203 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4378 (|t#1| $)) (-15 -4275 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -4382 ((-407 $) (-407 $) (-407 $))) (-15 -1454 ((-768) $ $)) (-15 -3000 ($ $ $)) (-15 -2301 ((-3 $ "failed") $ $)) (-15 -2301 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -2696 ($ $ $)) (-15 -3686 ((-2 (|:| -1817 |t#1|) (|:| -3031 $) (|:| -2550 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -2530 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4408) (-15 -4382 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-15 -4039 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-768)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4012 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1076)) . T) ((-614 |#1|) . T) ((-614 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-556)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4012 (|has| |#1| (-906)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-556) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 #2#) . T) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) -12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379)))) ((-883 (-564)) -12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))) ((-946 |#1| #0# #2#) . T) ((-906) |has| |#1| (-906)) ((-917) |has| |#1| (-363)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 |#1|) . T) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1213) |has| |#1| (-906)))
+((-4292 (((-641 (-1076)) $) 34)) (-1374 (($ $) 31)) (-4267 (($ |#2| |#3|) NIL) (($ $ (-1076) |#3|) 28) (($ $ (-641 (-1076)) (-641 |#3|)) 27)) (-1330 (($ $) 14)) (-1345 ((|#2| $) 12)) (-3475 ((|#3| $) 10)))
+(((-1236 |#1| |#2| |#3|) (-10 -8 (-15 -4292 ((-641 (-1076)) |#1|)) (-15 -4267 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -4267 (|#1| |#1| (-1076) |#3|)) (-15 -1374 (|#1| |#1|)) (-15 -4267 (|#1| |#2| |#3|)) (-15 -3475 (|#3| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -1345 (|#2| |#1|))) (-1237 |#2| |#3|) (-1046) (-789)) (T -1236))
+NIL
+(-10 -8 (-15 -4292 ((-641 (-1076)) |#1|)) (-15 -4267 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -4267 (|#1| |#1| (-1076) |#3|)) (-15 -1374 (|#1| |#1|)) (-15 -4267 (|#1| |#2| |#3|)) (-15 -3475 (|#3| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -1345 (|#2| |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4292 (((-641 (-1076)) $) 77)) (-3832 (((-1170) $) 106)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1582 (($ $) 55 (|has| |#1| (-556)))) (-3897 (((-112) $) 57 (|has| |#1| (-556)))) (-3043 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-1681 (((-1150 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-2200 (((-112) $) 76)) (-1454 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-2340 (((-112) $) 31)) (-3619 (($ $ (-918)) 104)) (-2961 (((-112) $) 65)) (-4267 (($ |#1| |#2|) 64) (($ $ (-1076) |#2|) 79) (($ $ (-641 (-1076)) (-641 |#2|)) 78)) (-2313 (($ (-1 |#1| |#1|) $) 66)) (-1330 (($ $) 68)) (-1345 ((|#1| $) 69)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3042 (($ $ |#2|) 98)) (-1347 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2582 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4382 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1106)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3475 ((|#2| $) 67)) (-2807 (($ $) 75)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3181 ((|#1| $ |#2|) 62)) (-4363 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-2390 ((|#1| $) 105)) (-3979 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2441 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
(((-1237 |#1| |#2|) (-140) (-1046) (-789)) (T -1237))
-((-3219 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4382 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-1170)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2261 (*1 *2 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-3742 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-3742 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2299 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1765 (*2 (-1170)))) (-4 *2 (-1046)))) (-2678 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2407 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3)))))
-(-13 (-970 |t#1| |t#2| (-1076)) (-10 -8 (-15 -3219 ((-1150 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4382 (|t#1| $ |t#2|)) (-15 -3657 ((-1170) $)) (-15 -3415 (|t#1| $)) (-15 -2300 ($ $ (-918))) (-15 -2261 (|t#2| $)) (-15 -2261 (|t#2| $ |t#2|)) (-15 -3742 ($ $ |t#2|)) (-15 -3742 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1765 (|t#1| (-1170)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2299 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2678 ($ $ |t#2|)) (IF (|has| |t#2| (-1106)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2407 ((-1150 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1106)) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| |#2| (-1076)) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1368 ((|#2| |#2|) 12)) (-3981 (((-418 |#2|) |#2|) 14)) (-3644 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))) 30)))
-(((-1238 |#1| |#2|) (-10 -7 (-15 -3981 ((-418 |#2|) |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -3644 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) (-556) (-13 (-1235 |#1|) (-556) (-10 -8 (-15 -2527 ($ $ $))))) (T -1238))
-((-3644 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-564)))) (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2527 ($ $ $))))) (-4 *3 (-556)) (-5 *1 (-1238 *3 *4)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2527 ($ $ $))))))) (-3981 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3)) (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2527 ($ $ $))))))))
-(-10 -7 (-15 -3981 ((-418 |#2|) |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -3644 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))))))
-((-2082 (((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)) 24)))
-(((-1239 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2082 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) (-1046) (-1046) (-1170) (-1170) |#1| |#2|) (T -1239))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170)))))
-(-10 -7 (-15 -2082 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4170 (((-641 (-1076)) $) 77)) (-3657 (((-1170) $) 106)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1840 (($ $) 55 (|has| |#1| (-556)))) (-4035 (((-112) $) 57 (|has| |#1| (-556)))) (-3742 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-3219 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-3904 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 165 (|has| |#1| (-363)))) (-3981 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4019 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3385 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3879 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-3933 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) 17 T CONST)) (-1387 (($ $ $) 160 (|has| |#1| (-363)))) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 159 (|has| |#1| (-363)))) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-3241 (((-112) $) 167 (|has| |#1| (-363)))) (-1459 (((-112) $) 76)) (-1539 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) 104) (($ $ (-407 (-564))) 173)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-3101 (((-112) $) 65)) (-4145 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-2082 (($ (-1 |#1| |#1|) $) 66)) (-2186 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) 68)) (-4323 ((|#1| $) 69)) (-2488 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-4202 (((-1152) $) 9)) (-4272 (($ $) 168 (|has| |#1| (-363)))) (-3591 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4002 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2527 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4006 (((-418 $) $) 164 (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 161 (|has| |#1| (-363)))) (-2678 (($ $ (-407 (-564))) 98)) (-1343 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-2152 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3712 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 158 (|has| |#1| (-363)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3344 (((-407 (-564)) $) 67)) (-3949 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) 75)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-1757 ((|#1| $ (-407 (-564))) 62)) (-2864 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-3415 ((|#1| $) 105)) (-3991 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3963 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
+((-1681 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4382 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-1170)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-1454 (*1 *2 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-3043 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-3043 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2441 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3714 (*2 (-1170)))) (-4 *2 (-1046)))) (-3042 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2582 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3)))))
+(-13 (-970 |t#1| |t#2| (-1076)) (-10 -8 (-15 -1681 ((-1150 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4382 (|t#1| $ |t#2|)) (-15 -3832 ((-1170) $)) (-15 -2390 (|t#1| $)) (-15 -3619 ($ $ (-918))) (-15 -1454 (|t#2| $)) (-15 -1454 (|t#2| $ |t#2|)) (-15 -3043 ($ $ |t#2|)) (-15 -3043 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3714 (|t#1| (-1170)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2441 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3042 ($ $ |t#2|)) (IF (|has| |t#2| (-1106)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2582 ((-1150 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1106)) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| |#2| (-1076)) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
+((-1328 ((|#2| |#2|) 12)) (-1592 (((-418 |#2|) |#2|) 14)) (-1506 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))) 30)))
+(((-1238 |#1| |#2|) (-10 -7 (-15 -1592 ((-418 |#2|) |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -1506 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) (-556) (-13 (-1235 |#1|) (-556) (-10 -8 (-15 -2727 ($ $ $))))) (T -1238))
+((-1506 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-564)))) (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2727 ($ $ $))))) (-4 *3 (-556)) (-5 *1 (-1238 *3 *4)))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2727 ($ $ $))))))) (-1592 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3)) (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2727 ($ $ $))))))))
+(-10 -7 (-15 -1592 ((-418 |#2|) |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -1506 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))))))
+((-2313 (((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)) 24)))
+(((-1239 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2313 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) (-1046) (-1046) (-1170) (-1170) |#1| |#2|) (T -1239))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170)))))
+(-10 -7 (-15 -2313 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4292 (((-641 (-1076)) $) 77)) (-3832 (((-1170) $) 106)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1582 (($ $) 55 (|has| |#1| (-556)))) (-3897 (((-112) $) 57 (|has| |#1| (-556)))) (-3043 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-1681 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-2657 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 165 (|has| |#1| (-363)))) (-1592 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4152 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-112) $ $) 156 (|has| |#1| (-363)))) (-2635 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-2679 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) 17 T CONST)) (-1399 (($ $ $) 160 (|has| |#1| (-363)))) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 159 (|has| |#1| (-363)))) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-1926 (((-112) $) 167 (|has| |#1| (-363)))) (-2200 (((-112) $) 76)) (-1688 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) 104) (($ $ (-407 (-564))) 173)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2961 (((-112) $) 65)) (-4267 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-2313 (($ (-1 |#1| |#1|) $) 66)) (-2305 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) 68)) (-1345 ((|#1| $) 69)) (-2688 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-1868 (((-1152) $) 9)) (-1295 (($ $) 168 (|has| |#1| (-363)))) (-4039 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4012 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2727 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4139 (((-418 $) $) 164 (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 161 (|has| |#1| (-363)))) (-3042 (($ $ (-407 (-564))) 98)) (-1347 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4130 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3966 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 158 (|has| |#1| (-363)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3475 (((-407 (-564)) $) 67)) (-2692 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) 75)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-3181 ((|#1| $ (-407 (-564))) 62)) (-4363 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-2390 ((|#1| $) 105)) (-2728 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2704 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
(((-1240 |#1|) (-140) (-1046)) (T -1240))
-((-3526 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) (-4 *4 (-1046)) (-4 *1 (-1240 *4)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1046)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-3591 (*1 *1 *1 *2) (-4002 (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -4170 ((-641 *2) *3))) (|has| *3 (-15 -3591 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
-(-13 (-1237 |t#1| (-407 (-564))) (-10 -8 (-15 -3526 ($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |t#1|))))) (-15 -2300 ($ $ (-407 (-564)))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $)) (IF (|has| |t#1| (-15 -3591 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -4170 ((-641 (-1170)) |t#1|))) (-15 -3591 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -3591 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T))
-((-3976 (((-112) $) 12)) (-2013 (((-3 |#3| "failed") $) 17)) (-2064 ((|#3| $) 14)))
-(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -2013 ((-3 |#3| "failed") |#1|)) (-15 -2064 (|#3| |#1|)) (-15 -3976 ((-112) |#1|))) (-1242 |#2| |#3|) (-1046) (-1219 |#2|)) (T -1241))
-NIL
-(-10 -8 (-15 -2013 ((-3 |#3| "failed") |#1|)) (-15 -2064 (|#3| |#1|)) (-15 -3976 ((-112) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4170 (((-641 (-1076)) $) 77)) (-3657 (((-1170) $) 106)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1840 (($ $) 55 (|has| |#1| (-556)))) (-4035 (((-112) $) 57 (|has| |#1| (-556)))) (-3742 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-3219 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-3904 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 165 (|has| |#1| (-363)))) (-3981 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4019 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3385 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3879 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-3933 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#2| "failed") $) 185)) (-2064 ((|#2| $) 186)) (-1387 (($ $ $) 160 (|has| |#1| (-363)))) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-3079 (((-407 (-564)) $) 182)) (-1366 (($ $ $) 159 (|has| |#1| (-363)))) (-4248 (($ (-407 (-564)) |#2|) 183)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-3241 (((-112) $) 167 (|has| |#1| (-363)))) (-1459 (((-112) $) 76)) (-1539 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) 104) (($ $ (-407 (-564))) 173)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-3101 (((-112) $) 65)) (-4145 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-2082 (($ (-1 |#1| |#1|) $) 66)) (-2186 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) 68)) (-4323 ((|#1| $) 69)) (-2488 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-2498 ((|#2| $) 181)) (-2737 (((-3 |#2| "failed") $) 179)) (-4235 ((|#2| $) 180)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 168 (|has| |#1| (-363)))) (-3591 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4002 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2527 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4006 (((-418 $) $) 164 (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 161 (|has| |#1| (-363)))) (-2678 (($ $ (-407 (-564))) 98)) (-1343 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-2152 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3712 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 158 (|has| |#1| (-363)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3344 (((-407 (-564)) $) 67)) (-3949 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) 75)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 184) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-1757 ((|#1| $ (-407 (-564))) 62)) (-2864 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-3415 ((|#1| $) 105)) (-3991 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3963 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
+((-3392 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) (-4 *4 (-1046)) (-4 *1 (-1240 *4)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1046)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-4039 (*1 *1 *1 *2) (-4012 (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -4292 ((-641 *2) *3))) (|has| *3 (-15 -4039 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
+(-13 (-1237 |t#1| (-407 (-564))) (-10 -8 (-15 -3392 ($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |t#1|))))) (-15 -3619 ($ $ (-407 (-564)))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $)) (IF (|has| |t#1| (-15 -4039 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -4292 ((-641 (-1170)) |t#1|))) (-15 -4039 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -4039 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T))
+((-1556 (((-112) $) 12)) (-2224 (((-3 |#3| "failed") $) 17)) (-2376 ((|#3| $) 14)))
+(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -2224 ((-3 |#3| "failed") |#1|)) (-15 -2376 (|#3| |#1|)) (-15 -1556 ((-112) |#1|))) (-1242 |#2| |#3|) (-1046) (-1219 |#2|)) (T -1241))
+NIL
+(-10 -8 (-15 -2224 ((-3 |#3| "failed") |#1|)) (-15 -2376 (|#3| |#1|)) (-15 -1556 ((-112) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4292 (((-641 (-1076)) $) 77)) (-3832 (((-1170) $) 106)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1582 (($ $) 55 (|has| |#1| (-556)))) (-3897 (((-112) $) 57 (|has| |#1| (-556)))) (-3043 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-1681 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-2657 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 165 (|has| |#1| (-363)))) (-1592 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4152 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-112) $ $) 156 (|has| |#1| (-363)))) (-2635 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-2679 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#2| "failed") $) 185)) (-2376 ((|#2| $) 186)) (-1399 (($ $ $) 160 (|has| |#1| (-363)))) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-3934 (((-407 (-564)) $) 182)) (-1371 (($ $ $) 159 (|has| |#1| (-363)))) (-4374 (($ (-407 (-564)) |#2|) 183)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-1926 (((-112) $) 167 (|has| |#1| (-363)))) (-2200 (((-112) $) 76)) (-1688 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) 104) (($ $ (-407 (-564))) 173)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2961 (((-112) $) 65)) (-4267 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-2313 (($ (-1 |#1| |#1|) $) 66)) (-2305 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) 68)) (-1345 ((|#1| $) 69)) (-2688 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-1909 ((|#2| $) 181)) (-2452 (((-3 |#2| "failed") $) 179)) (-4362 ((|#2| $) 180)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 168 (|has| |#1| (-363)))) (-4039 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4012 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2727 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4139 (((-418 $) $) 164 (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 161 (|has| |#1| (-363)))) (-3042 (($ $ (-407 (-564))) 98)) (-1347 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4130 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3966 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 158 (|has| |#1| (-363)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3475 (((-407 (-564)) $) 67)) (-2692 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) 75)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 184) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-3181 ((|#1| $ (-407 (-564))) 62)) (-4363 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-2390 ((|#1| $) 105)) (-2728 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2704 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
(((-1242 |#1| |#2|) (-140) (-1046) (-1219 |t#1|)) (T -1242))
-((-3344 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-4248 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1046)) (-4 *1 (-1242 *4 *3)) (-4 *3 (-1219 *4)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-2498 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))) (-4235 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))) (-2737 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))))
-(-13 (-1240 |t#1|) (-1035 |t#2|) (-614 |t#2|) (-10 -8 (-15 -4248 ($ (-407 (-564)) |t#2|)) (-15 -3079 ((-407 (-564)) $)) (-15 -2498 (|t#2| $)) (-15 -3344 ((-407 (-564)) $)) (-15 -4235 (|t#2| $)) (-15 -2737 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1035 |#2|) . T) ((-1052 #1#) -4002 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T) ((-1240 |#1|) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) 104)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3742 (($ $ (-407 (-564))) 116) (($ $ (-407 (-564)) (-407 (-564))) 118)) (-3219 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 54)) (-3904 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3879 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 65)) (-3933 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) NIL)) (-2064 ((|#2| $) NIL)) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) 85)) (-3079 (((-407 (-564)) $) 13)) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-4248 (($ (-407 (-564)) |#2|) 11)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3241 (((-112) $) NIL (|has| |#1| (-363)))) (-1459 (((-112) $) 74)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-407 (-564)) $) 113) (((-407 (-564)) $ (-407 (-564))) 114)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) 130) (($ $ (-407 (-564))) 128)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-407 (-564))) 33) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2082 (($ (-1 |#1| |#1|) $) 125)) (-2186 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2498 ((|#2| $) 12)) (-2737 (((-3 |#2| "failed") $) 44)) (-4235 ((|#2| $) 45)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) 101 (|has| |#1| (-363)))) (-3591 (($ $) 146 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 151 (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-2678 (($ $ (-407 (-564))) 122)) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2152 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) 108) (($ $ $) 94 (|has| (-407 (-564)) (-1106)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 138 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3344 (((-407 (-564)) $) 16)) (-3949 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) 120)) (-1765 (((-859) $) NIL) (($ (-564)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-407 (-564))) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-1757 ((|#1| $ (-407 (-564))) 107)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) 127 T CONST)) (-3415 ((|#1| $) 106)) (-3991 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 21 T CONST)) (-4327 (($) 17 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1686 (((-112) $ $) 72)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-1783 (($ $) 142) (($ $ $) 78)) (-1771 (($ $ $) 76)) (** (($ $ (-918)) NIL) (($ $ (-768)) 82) (($ $ (-564)) 157 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+((-3475 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-4374 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1046)) (-4 *1 (-1242 *4 *3)) (-4 *3 (-1219 *4)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))) (-2452 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))))
+(-13 (-1240 |t#1|) (-1035 |t#2|) (-614 |t#2|) (-10 -8 (-15 -4374 ($ (-407 (-564)) |t#2|)) (-15 -3934 ((-407 (-564)) $)) (-15 -1909 (|t#2| $)) (-15 -3475 ((-407 (-564)) $)) (-15 -4362 (|t#2| $)) (-15 -2452 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1035 |#2|) . T) ((-1052 #1#) -4012 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T) ((-1240 |#1|) . T))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) 104)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-3043 (($ $ (-407 (-564))) 116) (($ $ (-407 (-564)) (-407 (-564))) 118)) (-1681 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 54)) (-2657 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2635 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 65)) (-2679 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) NIL)) (-2376 ((|#2| $) NIL)) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) 85)) (-3934 (((-407 (-564)) $) 13)) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ (-407 (-564)) |#2|) 11)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1926 (((-112) $) NIL (|has| |#1| (-363)))) (-2200 (((-112) $) 74)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-407 (-564)) $) 113) (((-407 (-564)) $ (-407 (-564))) 114)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) 130) (($ $ (-407 (-564))) 128)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-407 (-564))) 33) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2313 (($ (-1 |#1| |#1|) $) 125)) (-2305 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1909 ((|#2| $) 12)) (-2452 (((-3 |#2| "failed") $) 44)) (-4362 ((|#2| $) 45)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) 101 (|has| |#1| (-363)))) (-4039 (($ $) 146 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 151 (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-3042 (($ $ (-407 (-564))) 122)) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4130 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) 108) (($ $ $) 94 (|has| (-407 (-564)) (-1106)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 138 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-3475 (((-407 (-564)) $) 16)) (-2692 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) 120)) (-3714 (((-859) $) NIL) (($ (-564)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-407 (-564))) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3181 ((|#1| $ (-407 (-564))) 107)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) 127 T CONST)) (-2390 ((|#1| $) 106)) (-2728 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 21 T CONST)) (-4323 (($) 17 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1720 (((-112) $ $) 72)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-1828 (($ $) 142) (($ $ $) 78)) (-1814 (($ $ $) 76)) (** (($ $ (-918)) NIL) (($ $ (-768)) 82) (($ $ (-564)) 157 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
(((-1243 |#1| |#2|) (-1242 |#1| |#2|) (-1046) (-1219 |#1|)) (T -1243))
NIL
(-1242 |#1| |#2|)
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) 11)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) NIL (|has| |#1| (-556)))) (-3742 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-3219 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-363)))) (-3981 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3385 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3879 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1251 |#1| |#2| |#3|) "failed") $) 22)) (-2064 (((-1223 |#1| |#2| |#3|) $) NIL) (((-1251 |#1| |#2| |#3|) $) NIL)) (-1387 (($ $ $) NIL (|has| |#1| (-363)))) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-3079 (((-407 (-564)) $) 69)) (-1366 (($ $ $) NIL (|has| |#1| (-363)))) (-4248 (($ (-407 (-564)) (-1223 |#1| |#2| |#3|)) NIL)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-3241 (((-112) $) NIL (|has| |#1| (-363)))) (-1459 (((-112) $) NIL)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-2419 (((-112) $) NIL)) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-407 (-564))) 30) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-2488 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2498 (((-1223 |#1| |#2| |#3|) $) 72)) (-2737 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) NIL)) (-4235 (((-1223 |#1| |#2| |#3|) $) NIL)) (-4202 (((-1152) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-363)))) (-3591 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3802 (((-1114) $) NIL)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2527 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4006 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2887 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) NIL (|has| |#1| (-363)))) (-2678 (($ $ (-407 (-564))) NIL)) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2001 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3712 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) NIL (|has| |#1| (-363)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-3344 (((-407 (-564)) $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) NIL)) (-1765 (((-859) $) 108) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1223 |#1| |#2| |#3|)) 16) (($ (-1251 |#1| |#2| |#3|)) 17) (($ (-1255 |#2|)) 36) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-1757 ((|#1| $ (-407 (-564))) NIL)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-3415 ((|#1| $) 12)) (-3991 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-407 (-564))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 32 T CONST)) (-4327 (($) 26 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 34)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1244 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1035 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1244))
-((-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
-(-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1035 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -3226 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 37)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1840 (($ $) NIL)) (-4035 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 (-564) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 22)) (-2064 (((-564) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-4346 (($ $) 41)) (-1926 (((-3 $ "failed") $) 27)) (-2190 (($ $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-2877 (($ $ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) 11)) (-3101 (((-112) $) NIL)) (-4145 (($ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 25)) (-3829 (((-319 |#2| |#3| |#4|) $) NIL)) (-2964 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-2082 (($ (-1 (-1244 |#2| |#3| |#4|) (-1244 |#2| |#3| |#4|)) $) NIL)) (-2150 (((-3 (-840 |#2|) "failed") $) 90)) (-4311 (($ $) NIL)) (-4323 (((-1244 |#2| |#3| |#4|) $) 20)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-4285 (((-112) $) NIL)) (-4298 (((-1244 |#2| |#3| |#4|) $) NIL)) (-1343 (((-3 $ "failed") $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-556))) (((-3 $ "failed") $ $) NIL)) (-4027 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $) 72)) (-3344 (((-319 |#2| |#3| |#4|) $) 17)) (-2712 (((-1244 |#2| |#3| |#4|) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ (-1244 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL (-4002 (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))) (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))))) (-4264 (((-641 (-1244 |#2| |#3| |#4|)) $) NIL)) (-1757 (((-1244 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-2864 (((-3 $ "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-145)))) (-1965 (((-768)) NIL T CONST)) (-2958 (($ $ $ (-768)) NIL (|has| (-1244 |#2| |#3| |#4|) (-172)))) (-1582 (((-112) $ $) NIL)) (-4317 (($) 78 T CONST)) (-4327 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-1244 |#2| |#3| |#4|)) NIL) (($ (-1244 |#2| |#3| |#4|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))))))
-(((-1245 |#1| |#2| |#3| |#4|) (-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -2150 ((-3 (-840 |#2|) "failed") $)) (-15 -4027 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $)))) (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -1245))
-((-2150 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-840 *4)) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))) (-4027 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) (|:| |%type| (-1152)))) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))))
-(-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -2150 ((-3 (-840 |#2|) "failed") $)) (-15 -4027 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $))))
-((-1451 ((|#2| $) 33)) (-2722 ((|#2| $) 18)) (-1882 (($ $) 51)) (-3280 (($ $ (-564)) 83)) (-3263 (((-112) $ (-768)) 45)) (-3768 ((|#2| $ |#2|) 81)) (-3129 ((|#2| $ |#2|) 77)) (-1881 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 70) (($ $ "rest" $) 74) ((|#2| $ "last" |#2|) 72)) (-2534 (($ $ (-641 $)) 80)) (-2711 ((|#2| $) 17)) (-3086 (($ $) NIL) (($ $ (-768)) 58)) (-4321 (((-641 $) $) 30)) (-2272 (((-112) $ $) 68)) (-2830 (((-112) $ (-768)) 44)) (-2972 (((-112) $ (-768)) 42)) (-2200 (((-112) $) 32)) (-2376 ((|#2| $) 24) (($ $ (-768)) 63)) (-4382 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1867 (((-112) $) 22)) (-2294 (($ $) 54)) (-4207 (($ $) 84)) (-2355 (((-768) $) 57)) (-4119 (($ $) 56)) (-2817 (($ $ $) 76) (($ |#2| $) NIL)) (-3706 (((-641 $) $) 31)) (-1686 (((-112) $ $) 66)) (-2589 (((-768) $) 50)))
-(((-1246 |#1| |#2|) (-10 -8 (-15 -3280 (|#1| |#1| (-564))) (-15 -1881 (|#2| |#1| "last" |#2|)) (-15 -3129 (|#2| |#1| |#2|)) (-15 -1881 (|#1| |#1| "rest" |#1|)) (-15 -1881 (|#2| |#1| "first" |#2|)) (-15 -4207 (|#1| |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -2355 ((-768) |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2722 (|#2| |#1|)) (-15 -2711 (|#2| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -2376 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2376 (|#2| |#1|)) (-15 -3086 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -3086 (|#1| |#1|)) (-15 -4382 (|#2| |#1| "first")) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#1|)) (-15 -3768 (|#2| |#1| |#2|)) (-15 -1881 (|#2| |#1| "value" |#2|)) (-15 -2534 (|#1| |#1| (-641 |#1|))) (-15 -2272 ((-112) |#1| |#1|)) (-15 -1867 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -1451 (|#2| |#1|)) (-15 -2200 ((-112) |#1|)) (-15 -4321 ((-641 |#1|) |#1|)) (-15 -3706 ((-641 |#1|) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -2589 ((-768) |#1|)) (-15 -3263 ((-112) |#1| (-768))) (-15 -2830 ((-112) |#1| (-768))) (-15 -2972 ((-112) |#1| (-768)))) (-1247 |#2|) (-1209)) (T -1246))
-NIL
-(-10 -8 (-15 -3280 (|#1| |#1| (-564))) (-15 -1881 (|#2| |#1| "last" |#2|)) (-15 -3129 (|#2| |#1| |#2|)) (-15 -1881 (|#1| |#1| "rest" |#1|)) (-15 -1881 (|#2| |#1| "first" |#2|)) (-15 -4207 (|#1| |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -2355 ((-768) |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2722 (|#2| |#1|)) (-15 -2711 (|#2| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -2376 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2376 (|#2| |#1|)) (-15 -3086 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -3086 (|#1| |#1|)) (-15 -4382 (|#2| |#1| "first")) (-15 -2817 (|#1| |#2| |#1|)) (-15 -2817 (|#1| |#1| |#1|)) (-15 -3768 (|#2| |#1| |#2|)) (-15 -1881 (|#2| |#1| "value" |#2|)) (-15 -2534 (|#1| |#1| (-641 |#1|))) (-15 -2272 ((-112) |#1| |#1|)) (-15 -1867 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -1451 (|#2| |#1|)) (-15 -2200 ((-112) |#1|)) (-15 -4321 ((-641 |#1|) |#1|)) (-15 -3706 ((-641 |#1|) |#1|)) (-15 -1686 ((-112) |#1| |#1|)) (-15 -2589 ((-768) |#1|)) (-15 -3263 ((-112) |#1| (-768))) (-15 -2830 ((-112) |#1| (-768))) (-15 -2972 ((-112) |#1| (-768))))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1451 ((|#1| $) 48)) (-2722 ((|#1| $) 65)) (-1882 (($ $) 67)) (-3280 (($ $ (-564)) 52 (|has| $ (-6 -4412)))) (-3263 (((-112) $ (-768)) 8)) (-3768 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-2293 (($ $ $) 56 (|has| $ (-6 -4412)))) (-3129 ((|#1| $ |#1|) 54 (|has| $ (-6 -4412)))) (-4318 ((|#1| $ |#1|) 58 (|has| $ (-6 -4412)))) (-1881 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4412))) (($ $ "rest" $) 55 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4412)))) (-2534 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-2711 ((|#1| $) 66)) (-3760 (($) 7 T CONST)) (-3086 (($ $) 73) (($ $ (-768)) 71)) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4321 (((-641 $) $) 50)) (-2272 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2830 (((-112) $ (-768)) 9)) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35)) (-2972 (((-112) $ (-768)) 10)) (-3848 (((-641 |#1|) $) 45)) (-2200 (((-112) $) 49)) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2376 ((|#1| $) 70) (($ $ (-768)) 68)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3073 ((|#1| $) 76) (($ $ (-768)) 74)) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3837 (((-564) $ $) 44)) (-1867 (((-112) $) 46)) (-2294 (($ $) 62)) (-4207 (($ $) 59 (|has| $ (-6 -4412)))) (-2355 (((-768) $) 63)) (-4119 (($ $) 64)) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1899 (($ $) 13)) (-2478 (($ $ $) 61 (|has| $ (-6 -4412))) (($ $ |#1|) 60 (|has| $ (-6 -4412)))) (-2817 (($ $ $) 78) (($ |#1| $) 77)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3706 (((-641 $) $) 51)) (-1740 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) 11)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) NIL (|has| |#1| (-556)))) (-3043 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-1681 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-2657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-363)))) (-1592 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2635 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-2679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1251 |#1| |#2| |#3|) "failed") $) 22)) (-2376 (((-1223 |#1| |#2| |#3|) $) NIL) (((-1251 |#1| |#2| |#3|) $) NIL)) (-1399 (($ $ $) NIL (|has| |#1| (-363)))) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-3934 (((-407 (-564)) $) 69)) (-1371 (($ $ $) NIL (|has| |#1| (-363)))) (-4374 (($ (-407 (-564)) (-1223 |#1| |#2| |#3|)) NIL)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1926 (((-112) $) NIL (|has| |#1| (-363)))) (-2200 (((-112) $) NIL)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-2340 (((-112) $) NIL)) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-407 (-564))) 30) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-2305 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-2688 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1909 (((-1223 |#1| |#2| |#3|) $) 72)) (-2452 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) NIL)) (-4362 (((-1223 |#1| |#2| |#3|) $) NIL)) (-1868 (((-1152) $) NIL)) (-1295 (($ $) NIL (|has| |#1| (-363)))) (-4039 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3844 (((-1114) $) NIL)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2727 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4139 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1534 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) NIL (|has| |#1| (-363)))) (-3042 (($ $ (-407 (-564))) NIL)) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3768 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4130 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-3966 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) NIL (|has| |#1| (-363)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-3475 (((-407 (-564)) $) NIL)) (-2692 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) NIL)) (-3714 (((-859) $) 108) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1223 |#1| |#2| |#3|)) 16) (($ (-1251 |#1| |#2| |#3|)) 17) (($ (-1255 |#2|)) 36) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-3181 ((|#1| $ (-407 (-564))) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-2390 ((|#1| $) 12)) (-2728 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-407 (-564))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 32 T CONST)) (-4323 (($) 26 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 34)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1244 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1035 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1244))
+((-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
+(-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1035 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -2203 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 37)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL)) (-1582 (($ $) NIL)) (-3897 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 (-564) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 22)) (-2376 (((-564) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-1374 (($ $) 41)) (-4272 (((-3 $ "failed") $) 27)) (-2015 (($ $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-1423 (($ $ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) 11)) (-2961 (((-112) $) NIL)) (-4267 (($ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 25)) (-2700 (((-319 |#2| |#3| |#4|) $) NIL)) (-4062 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-2313 (($ (-1 (-1244 |#2| |#3| |#4|) (-1244 |#2| |#3| |#4|)) $) NIL)) (-1620 (((-3 (-840 |#2|) "failed") $) 90)) (-1330 (($ $) NIL)) (-1345 (((-1244 |#2| |#3| |#4|) $) 20)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-1304 (((-112) $) NIL)) (-1316 (((-1244 |#2| |#3| |#4|) $) NIL)) (-1347 (((-3 $ "failed") $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-556))) (((-3 $ "failed") $ $) NIL)) (-3819 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $) 72)) (-3475 (((-319 |#2| |#3| |#4|) $) 17)) (-3324 (((-1244 |#2| |#3| |#4|) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ (-1244 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL (-4012 (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))) (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))))) (-4252 (((-641 (-1244 |#2| |#3| |#4|)) $) NIL)) (-3181 (((-1244 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-145)))) (-3379 (((-768)) NIL T CONST)) (-3993 (($ $ $ (-768)) NIL (|has| (-1244 |#2| |#3| |#4|) (-172)))) (-3979 (((-112) $ $) NIL)) (-4312 (($) 78 T CONST)) (-4323 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-1244 |#2| |#3| |#4|)) NIL) (($ (-1244 |#2| |#3| |#4|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))))))
+(((-1245 |#1| |#2| |#3| |#4|) (-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -1620 ((-3 (-840 |#2|) "failed") $)) (-15 -3819 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $)))) (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -1245))
+((-1620 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-840 *4)) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))) (-3819 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) (|:| |%type| (-1152)))) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))))
+(-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -1620 ((-3 (-840 |#2|) "failed") $)) (-15 -3819 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $))))
+((-3387 ((|#2| $) 33)) (-2985 ((|#2| $) 18)) (-3794 (($ $) 51)) (-4140 (($ $ (-564)) 83)) (-2141 (((-112) $ (-768)) 45)) (-3242 ((|#2| $ |#2|) 81)) (-3186 ((|#2| $ |#2|) 77)) (-3868 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 70) (($ $ "rest" $) 74) ((|#2| $ "last" |#2|) 72)) (-4038 (($ $ (-641 $)) 80)) (-2976 ((|#2| $) 17)) (-2063 (($ $) NIL) (($ $ (-768)) 58)) (-1647 (((-641 $) $) 30)) (-1543 (((-112) $ $) 68)) (-2173 (((-112) $ (-768)) 44)) (-4144 (((-112) $ (-768)) 42)) (-2120 (((-112) $) 32)) (-2541 ((|#2| $) 24) (($ $ (-768)) 63)) (-4382 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1875 (((-112) $) 22)) (-3554 (($ $) 54)) (-1911 (($ $) 84)) (-2966 (((-768) $) 57)) (-3414 (($ $) 56)) (-1865 (($ $ $) 76) (($ |#2| $) NIL)) (-3914 (((-641 $) $) 31)) (-1720 (((-112) $ $) 66)) (-2779 (((-768) $) 50)))
+(((-1246 |#1| |#2|) (-10 -8 (-15 -4140 (|#1| |#1| (-564))) (-15 -3868 (|#2| |#1| "last" |#2|)) (-15 -3186 (|#2| |#1| |#2|)) (-15 -3868 (|#1| |#1| "rest" |#1|)) (-15 -3868 (|#2| |#1| "first" |#2|)) (-15 -1911 (|#1| |#1|)) (-15 -3554 (|#1| |#1|)) (-15 -2966 ((-768) |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -2985 (|#2| |#1|)) (-15 -2976 (|#2| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -2541 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2541 (|#2| |#1|)) (-15 -2063 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -2063 (|#1| |#1|)) (-15 -4382 (|#2| |#1| "first")) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#1|)) (-15 -3242 (|#2| |#1| |#2|)) (-15 -3868 (|#2| |#1| "value" |#2|)) (-15 -4038 (|#1| |#1| (-641 |#1|))) (-15 -1543 ((-112) |#1| |#1|)) (-15 -1875 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3387 (|#2| |#1|)) (-15 -2120 ((-112) |#1|)) (-15 -1647 ((-641 |#1|) |#1|)) (-15 -3914 ((-641 |#1|) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -2779 ((-768) |#1|)) (-15 -2141 ((-112) |#1| (-768))) (-15 -2173 ((-112) |#1| (-768))) (-15 -4144 ((-112) |#1| (-768)))) (-1247 |#2|) (-1209)) (T -1246))
+NIL
+(-10 -8 (-15 -4140 (|#1| |#1| (-564))) (-15 -3868 (|#2| |#1| "last" |#2|)) (-15 -3186 (|#2| |#1| |#2|)) (-15 -3868 (|#1| |#1| "rest" |#1|)) (-15 -3868 (|#2| |#1| "first" |#2|)) (-15 -1911 (|#1| |#1|)) (-15 -3554 (|#1| |#1|)) (-15 -2966 ((-768) |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -2985 (|#2| |#1|)) (-15 -2976 (|#2| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -2541 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2541 (|#2| |#1|)) (-15 -2063 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -2063 (|#1| |#1|)) (-15 -4382 (|#2| |#1| "first")) (-15 -1865 (|#1| |#2| |#1|)) (-15 -1865 (|#1| |#1| |#1|)) (-15 -3242 (|#2| |#1| |#2|)) (-15 -3868 (|#2| |#1| "value" |#2|)) (-15 -4038 (|#1| |#1| (-641 |#1|))) (-15 -1543 ((-112) |#1| |#1|)) (-15 -1875 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3387 (|#2| |#1|)) (-15 -2120 ((-112) |#1|)) (-15 -1647 ((-641 |#1|) |#1|)) (-15 -3914 ((-641 |#1|) |#1|)) (-15 -1720 ((-112) |#1| |#1|)) (-15 -2779 ((-768) |#1|)) (-15 -2141 ((-112) |#1| (-768))) (-15 -2173 ((-112) |#1| (-768))) (-15 -4144 ((-112) |#1| (-768))))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3387 ((|#1| $) 48)) (-2985 ((|#1| $) 65)) (-3794 (($ $) 67)) (-4140 (($ $ (-564)) 52 (|has| $ (-6 -4413)))) (-2141 (((-112) $ (-768)) 8)) (-3242 ((|#1| $ |#1|) 39 (|has| $ (-6 -4413)))) (-3543 (($ $ $) 56 (|has| $ (-6 -4413)))) (-3186 ((|#1| $ |#1|) 54 (|has| $ (-6 -4413)))) (-1617 ((|#1| $ |#1|) 58 (|has| $ (-6 -4413)))) (-3868 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4413))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4413))) (($ $ "rest" $) 55 (|has| $ (-6 -4413))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4413)))) (-4038 (($ $ (-641 $)) 41 (|has| $ (-6 -4413)))) (-2976 ((|#1| $) 66)) (-3180 (($) 7 T CONST)) (-2063 (($ $) 73) (($ $ (-768)) 71)) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-1647 (((-641 $) $) 50)) (-1543 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2173 (((-112) $ (-768)) 9)) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35)) (-4144 (((-112) $ (-768)) 10)) (-2523 (((-641 |#1|) $) 45)) (-2120 (((-112) $) 49)) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2541 ((|#1| $) 70) (($ $ (-768)) 68)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2049 ((|#1| $) 76) (($ $ (-768)) 74)) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2774 (((-564) $ $) 44)) (-1875 (((-112) $) 46)) (-3554 (($ $) 62)) (-1911 (($ $) 59 (|has| $ (-6 -4413)))) (-2966 (((-768) $) 63)) (-3414 (($ $) 64)) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3890 (($ $) 13)) (-1711 (($ $ $) 61 (|has| $ (-6 -4413))) (($ $ |#1|) 60 (|has| $ (-6 -4413)))) (-1865 (($ $ $) 78) (($ |#1| $) 77)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3914 (((-641 $) $) 51)) (-3036 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-1247 |#1|) (-140) (-1209)) (T -1247))
-((-2817 (*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2817 (*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3086 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3086 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-1882 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4119 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2355 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-2294 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2478 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2478 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4207 (*1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4318 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1881 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2293 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1881 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3129 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1881 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3280 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4412)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))))
-(-13 (-1007 |t#1|) (-10 -8 (-15 -2817 ($ $ $)) (-15 -2817 ($ |t#1| $)) (-15 -3073 (|t#1| $)) (-15 -4382 (|t#1| $ "first")) (-15 -3073 ($ $ (-768))) (-15 -3086 ($ $)) (-15 -4382 ($ $ "rest")) (-15 -3086 ($ $ (-768))) (-15 -2376 (|t#1| $)) (-15 -4382 (|t#1| $ "last")) (-15 -2376 ($ $ (-768))) (-15 -1882 ($ $)) (-15 -2711 (|t#1| $)) (-15 -2722 (|t#1| $)) (-15 -4119 ($ $)) (-15 -2355 ((-768) $)) (-15 -2294 ($ $)) (IF (|has| $ (-6 -4412)) (PROGN (-15 -2478 ($ $ $)) (-15 -2478 ($ $ |t#1|)) (-15 -4207 ($ $)) (-15 -4318 (|t#1| $ |t#1|)) (-15 -1881 (|t#1| $ "first" |t#1|)) (-15 -2293 ($ $ $)) (-15 -1881 ($ $ "rest" $)) (-15 -3129 (|t#1| $ |t#1|)) (-15 -1881 (|t#1| $ "last" |t#1|)) (-15 -3280 ($ $ (-564)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
-((-2082 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2082 (|#4| (-1 |#2| |#1|) |#3|))) (-1046) (-1046) (-1250 |#1|) (-1250 |#2|)) (T -1248))
-((-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *2 (-1250 *6)) (-5 *1 (-1248 *5 *6 *4 *2)) (-4 *4 (-1250 *5)))))
-(-10 -7 (-15 -2082 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3976 (((-112) $) 17)) (-3904 (($ $) 105)) (-3752 (($ $) 81)) (-3879 (($ $) 101)) (-3727 (($ $) 77)) (-3933 (($ $) 109)) (-3778 (($ $) 85)) (-2186 (($ $) 75)) (-2152 (($ $) 73)) (-3949 (($ $) 111)) (-3789 (($ $) 87)) (-3918 (($ $) 107)) (-3765 (($ $) 83)) (-3891 (($ $) 103)) (-3739 (($ $) 79)) (-1765 (((-859) $) 61) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3991 (($ $) 117)) (-3827 (($ $) 93)) (-3963 (($ $) 113)) (-3801 (($ $) 89)) (-4020 (($ $) 121)) (-3854 (($ $) 97)) (-3586 (($ $) 123)) (-3867 (($ $) 99)) (-4005 (($ $) 119)) (-3840 (($ $) 95)) (-3977 (($ $) 115)) (-3814 (($ $) 91)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-407 (-564))) 71)))
-(((-1249 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3752 (|#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3867 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3977 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -3976 ((-112) |#1|)) (-15 -1765 ((-859) |#1|))) (-1250 |#2|) (-1046)) (T -1249))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3752 (|#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3867 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3977 (|#1| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -3586 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1765 (|#1| |#2|)) (-15 -1765 (|#1| |#1|)) (-15 -1765 (|#1| (-407 (-564)))) (-15 -1765 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -3976 ((-112) |#1|)) (-15 -1765 ((-859) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-4170 (((-641 (-1076)) $) 77)) (-3657 (((-1170) $) 106)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1840 (($ $) 55 (|has| |#1| (-556)))) (-4035 (((-112) $) 57 (|has| |#1| (-556)))) (-3742 (($ $ (-768)) 101) (($ $ (-768) (-768)) 100)) (-3219 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 108)) (-3904 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) 19)) (-4019 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3879 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 158) (($ (-1150 |#1|)) 156)) (-3933 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) 17 T CONST)) (-4346 (($ $) 63)) (-1926 (((-3 $ "failed") $) 33)) (-3781 (($ $) 155)) (-4191 (((-949 |#1|) $ (-768)) 153) (((-949 |#1|) $ (-768) (-768)) 152)) (-1459 (((-112) $) 76)) (-1539 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-768) $) 103) (((-768) $ (-768)) 102)) (-2419 (((-112) $) 31)) (-1935 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2300 (($ $ (-918)) 104)) (-3849 (($ (-1 |#1| (-564)) $) 154)) (-3101 (((-112) $) 65)) (-4145 (($ |#1| (-768)) 64) (($ $ (-1076) (-768)) 79) (($ $ (-641 (-1076)) (-641 (-768))) 78)) (-2082 (($ (-1 |#1| |#1|) $) 66)) (-2186 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) 68)) (-4323 ((|#1| $) 69)) (-4202 (((-1152) $) 9)) (-3591 (($ $) 150 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 149 (-4002 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3802 (((-1114) $) 10)) (-2678 (($ $ (-768)) 98)) (-1343 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2152 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2407 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-4382 ((|#1| $ (-768)) 107) (($ $ $) 84 (|has| (-768) (-1106)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-3344 (((-768) $) 67)) (-3949 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) 75)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-4264 (((-1150 |#1|) $) 157)) (-1757 ((|#1| $ (-768)) 62)) (-2864 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1965 (((-768)) 28 T CONST)) (-3415 ((|#1| $) 105)) (-3991 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) 56 (|has| |#1| (-556)))) (-3963 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-768)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ |#1|) 151 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
+((-1865 (*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1865 (*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2063 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2063 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2541 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-3554 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1711 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1711 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1911 (*1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1617 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3868 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3543 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3868 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4413)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3186 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3868 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4413)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))))
+(-13 (-1007 |t#1|) (-10 -8 (-15 -1865 ($ $ $)) (-15 -1865 ($ |t#1| $)) (-15 -2049 (|t#1| $)) (-15 -4382 (|t#1| $ "first")) (-15 -2049 ($ $ (-768))) (-15 -2063 ($ $)) (-15 -4382 ($ $ "rest")) (-15 -2063 ($ $ (-768))) (-15 -2541 (|t#1| $)) (-15 -4382 (|t#1| $ "last")) (-15 -2541 ($ $ (-768))) (-15 -3794 ($ $)) (-15 -2976 (|t#1| $)) (-15 -2985 (|t#1| $)) (-15 -3414 ($ $)) (-15 -2966 ((-768) $)) (-15 -3554 ($ $)) (IF (|has| $ (-6 -4413)) (PROGN (-15 -1711 ($ $ $)) (-15 -1711 ($ $ |t#1|)) (-15 -1911 ($ $)) (-15 -1617 (|t#1| $ |t#1|)) (-15 -3868 (|t#1| $ "first" |t#1|)) (-15 -3543 ($ $ $)) (-15 -3868 ($ $ "rest" $)) (-15 -3186 (|t#1| $ |t#1|)) (-15 -3868 (|t#1| $ "last" |t#1|)) (-15 -4140 ($ $ (-564)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T))
+((-2313 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2313 (|#4| (-1 |#2| |#1|) |#3|))) (-1046) (-1046) (-1250 |#1|) (-1250 |#2|)) (T -1248))
+((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *2 (-1250 *6)) (-5 *1 (-1248 *5 *6 *4 *2)) (-4 *4 (-1250 *5)))))
+(-10 -7 (-15 -2313 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1556 (((-112) $) 17)) (-2657 (($ $) 105)) (-2516 (($ $) 81)) (-2635 (($ $) 101)) (-2491 (($ $) 77)) (-2679 (($ $) 109)) (-2542 (($ $) 85)) (-2305 (($ $) 75)) (-4130 (($ $) 73)) (-2692 (($ $) 111)) (-2557 (($ $) 87)) (-2669 (($ $) 107)) (-2529 (($ $) 83)) (-2647 (($ $) 103)) (-2502 (($ $) 79)) (-3714 (((-859) $) 61) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2728 (($ $) 117)) (-2595 (($ $) 93)) (-2704 (($ $) 113)) (-2566 (($ $) 89)) (-2751 (($ $) 121)) (-2615 (($ $) 97)) (-2053 (($ $) 123)) (-2626 (($ $) 99)) (-2740 (($ $) 119)) (-2605 (($ $) 95)) (-2716 (($ $) 115)) (-2577 (($ $) 91)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-407 (-564))) 71)))
+(((-1249 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2516 (|#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -2542 (|#1| |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -2529 (|#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2657 (|#1| |#1|)) (-15 -2716 (|#1| |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -2751 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2728 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -1556 ((-112) |#1|)) (-15 -3714 ((-859) |#1|))) (-1250 |#2|) (-1046)) (T -1249))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2516 (|#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -2542 (|#1| |#1|)) (-15 -2557 (|#1| |#1|)) (-15 -2529 (|#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2615 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2679 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2657 (|#1| |#1|)) (-15 -2716 (|#1| |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -2751 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2728 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3714 (|#1| |#2|)) (-15 -3714 (|#1| |#1|)) (-15 -3714 (|#1| (-407 (-564)))) (-15 -3714 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -1556 ((-112) |#1|)) (-15 -3714 ((-859) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4292 (((-641 (-1076)) $) 77)) (-3832 (((-1170) $) 106)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1582 (($ $) 55 (|has| |#1| (-556)))) (-3897 (((-112) $) 57 (|has| |#1| (-556)))) (-3043 (($ $ (-768)) 101) (($ $ (-768) (-768)) 100)) (-1681 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 108)) (-2657 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) 19)) (-4152 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2635 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 158) (($ (-1150 |#1|)) 156)) (-2679 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) 17 T CONST)) (-1374 (($ $) 63)) (-4272 (((-3 $ "failed") $) 33)) (-3343 (($ $) 155)) (-3357 (((-949 |#1|) $ (-768)) 153) (((-949 |#1|) $ (-768) (-768)) 152)) (-2200 (((-112) $) 76)) (-1688 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-768) $) 103) (((-768) $ (-768)) 102)) (-2340 (((-112) $) 31)) (-4342 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-3619 (($ $ (-918)) 104)) (-2860 (($ (-1 |#1| (-564)) $) 154)) (-2961 (((-112) $) 65)) (-4267 (($ |#1| (-768)) 64) (($ $ (-1076) (-768)) 79) (($ $ (-641 (-1076)) (-641 (-768))) 78)) (-2313 (($ (-1 |#1| |#1|) $) 66)) (-2305 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) 68)) (-1345 ((|#1| $) 69)) (-1868 (((-1152) $) 9)) (-4039 (($ $) 150 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 149 (-4012 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3844 (((-1114) $) 10)) (-3042 (($ $ (-768)) 98)) (-1347 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-4130 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2582 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-4382 ((|#1| $ (-768)) 107) (($ $ $) 84 (|has| (-768) (-1106)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-3475 (((-768) $) 67)) (-2692 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) 75)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-4252 (((-1150 |#1|) $) 157)) (-3181 ((|#1| $ (-768)) 62)) (-4363 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3379 (((-768)) 28 T CONST)) (-2390 ((|#1| $) 105)) (-2728 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2704 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-768)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ |#1|) 151 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564)))))))
(((-1250 |#1|) (-140) (-1046)) (T -1250))
-((-3526 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-768)) (|:| |c| *3)))) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-5 *2 (-1150 *3)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)))) (-3849 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1046)))) (-4191 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) (-5 *2 (-949 *4)))) (-4191 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) (-5 *2 (-949 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-3591 (*1 *1 *1 *2) (-4002 (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -4170 ((-641 *2) *3))) (|has| *3 (-15 -3591 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
-(-13 (-1237 |t#1| (-768)) (-10 -8 (-15 -3526 ($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |t#1|))))) (-15 -4264 ((-1150 |t#1|) $)) (-15 -3526 ($ (-1150 |t#1|))) (-15 -3781 ($ $)) (-15 -3849 ($ (-1 |t#1| (-564)) $)) (-15 -4191 ((-949 |t#1|) $ (-768))) (-15 -4191 ((-949 |t#1|) $ (-768) (-768))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3591 ($ $)) (IF (|has| |t#1| (-15 -3591 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -4170 ((-641 (-1170)) |t#1|))) (-15 -3591 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -3591 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-768)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-768) |#1|))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-768) (-1106)) ((-290) |has| |#1| (-556)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4002 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1237 |#1| #0#) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-4170 (((-641 (-1076)) $) NIL)) (-3657 (((-1170) $) 92)) (-3948 (((-1232 |#2| |#1|) $ (-768)) 74)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1840 (($ $) NIL (|has| |#1| (-556)))) (-4035 (((-112) $) 143 (|has| |#1| (-556)))) (-3742 (($ $ (-768)) 129) (($ $ (-768) (-768)) 131)) (-3219 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 43)) (-3904 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3752 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3936 (((-3 $ "failed") $ $) NIL)) (-4019 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3879 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3526 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 53) (($ (-1150 |#1|)) NIL)) (-3933 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3760 (($) NIL T CONST)) (-2259 (($ $) 135)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-3781 (($ $) 141)) (-4191 (((-949 |#1|) $ (-768)) 64) (((-949 |#1|) $ (-768) (-768)) 66)) (-1459 (((-112) $) NIL)) (-1539 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2261 (((-768) $) NIL) (((-768) $ (-768)) NIL)) (-2419 (((-112) $) NIL)) (-1720 (($ $) 119)) (-1935 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1427 (($ (-564) (-564) $) 137)) (-2300 (($ $ (-918)) 140)) (-3849 (($ (-1 |#1| (-564)) $) 113)) (-3101 (((-112) $) NIL)) (-4145 (($ |#1| (-768)) 16) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2082 (($ (-1 |#1| |#1|) $) 100)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($ $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-1444 (($ $) 117)) (-3143 (($ $) 115)) (-3191 (($ (-564) (-564) $) 139)) (-3591 (($ $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 157 (-4002 (-12 (|has| |#1| (-15 -3591 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4170 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3802 (((-1114) $) NIL)) (-1648 (($ $ (-564) (-564)) 123)) (-2678 (($ $ (-768)) 125)) (-1343 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1890 (($ $) 121)) (-2407 (((-1150 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-4382 ((|#1| $ (-768)) 97) (($ $ $) 133 (|has| (-768) (-1106)))) (-3226 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 110 (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $ (-1255 |#2|)) 105)) (-3344 (((-768) $) NIL)) (-3949 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3789 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3918 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3765 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3891 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3739 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3204 (($ $) 127)) (-1765 (((-859) $) NIL) (($ (-564)) 26) (($ (-407 (-564))) 149 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 83) (($ (-1255 |#2|)) 22)) (-4264 (((-1150 |#1|) $) NIL)) (-1757 ((|#1| $ (-768)) 96)) (-2864 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1965 (((-768)) NIL T CONST)) (-3415 ((|#1| $) 93)) (-3991 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3827 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1582 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3963 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2299 ((|#1| $ (-768)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -1765 (|#1| (-1170))))))) (-3586 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3867 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4005 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3977 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3814 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4317 (($) 18 T CONST)) (-4327 (($) 13 T CONST)) (-3190 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1686 (((-112) $ $) NIL)) (-1793 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) 109)) (-1771 (($ $ $) 20)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#1|) 146 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
-(((-1251 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -1765 ($ (-1232 |#2| |#1|))) (-15 -3948 ((-1232 |#2| |#1|) $ (-768))) (-15 -1765 ($ (-1255 |#2|))) (-15 -3226 ($ $ (-1255 |#2|))) (-15 -3143 ($ $)) (-15 -1444 ($ $)) (-15 -1720 ($ $)) (-15 -1890 ($ $)) (-15 -1648 ($ $ (-564) (-564))) (-15 -2259 ($ $)) (-15 -1427 ($ (-564) (-564) $)) (-15 -3191 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1251))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5)))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6)) (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3143 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-1444 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-1720 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-1890 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-1648 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-2259 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-1427 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-3191 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
-(-13 (-1250 |#1|) (-10 -8 (-15 -1765 ($ (-1232 |#2| |#1|))) (-15 -3948 ((-1232 |#2| |#1|) $ (-768))) (-15 -1765 ($ (-1255 |#2|))) (-15 -3226 ($ $ (-1255 |#2|))) (-15 -3143 ($ $)) (-15 -1444 ($ $)) (-15 -1720 ($ $)) (-15 -1890 ($ $)) (-15 -1648 ($ $ (-564) (-564))) (-15 -2259 ($ $)) (-15 -1427 ($ (-564) (-564) $)) (-15 -3191 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3591 ($ $ (-1255 |#2|))) |%noBranch|)))
-((-2450 (((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|))) 24)) (-3474 (((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1375 (((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|)) 13)) (-4213 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1627 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1676 ((|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|)) 60)) (-4271 (((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))) 66)) (-1326 ((|#2| |#2| |#2|) 43)))
-(((-1252 |#1| |#2|) (-10 -7 (-15 -1375 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -3474 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2450 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -1326 (|#2| |#2| |#2|)) (-15 -1627 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4213 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1676 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -4271 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))))) (-38 (-407 (-564))) (-1250 |#1|)) (T -1252))
-((-4271 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6)))) (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6)) (-5 *1 (-1252 *5 *6)))) (-1676 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5)) (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5)) (-5 *1 (-1252 *5 *2)))) (-4213 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-1326 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1250 *3)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))))
-(-10 -7 (-15 -1375 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -3474 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2450 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -1326 (|#2| |#2| |#2|)) (-15 -1627 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4213 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1676 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -4271 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|))))))
-((-4295 ((|#2| |#4| (-768)) 34)) (-2049 ((|#4| |#2|) 29)) (-2608 ((|#4| (-407 |#2|)) 53 (|has| |#1| (-556)))) (-1548 (((-1 |#4| (-641 |#4|)) |#3|) 46)))
-(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2049 (|#4| |#2|)) (-15 -4295 (|#2| |#4| (-768))) (-15 -1548 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2608 (|#4| (-407 |#2|))) |%noBranch|)) (-1046) (-1235 |#1|) (-652 |#2|) (-1250 |#1|)) (T -1253))
-((-2608 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556)) (-4 *4 (-1046)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2)) (-4 *6 (-652 *5)))) (-1548 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6))) (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5)))) (-2049 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3)))))
-(-10 -7 (-15 -2049 (|#4| |#2|)) (-15 -4295 (|#2| |#4| (-768))) (-15 -1548 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -2608 (|#4| (-407 |#2|))) |%noBranch|))
+((-3392 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-768)) (|:| |c| *3)))) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-5 *2 (-1150 *3)))) (-3392 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) (-3343 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)))) (-2860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1046)))) (-3357 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) (-5 *2 (-949 *4)))) (-3357 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) (-5 *2 (-949 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-4039 (*1 *1 *1 *2) (-4012 (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -4292 ((-641 *2) *3))) (|has| *3 (-15 -4039 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))))
+(-13 (-1237 |t#1| (-768)) (-10 -8 (-15 -3392 ($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |t#1|))))) (-15 -4252 ((-1150 |t#1|) $)) (-15 -3392 ($ (-1150 |t#1|))) (-15 -3343 ($ $)) (-15 -2860 ($ (-1 |t#1| (-564)) $)) (-15 -3357 ((-949 |t#1|) $ (-768))) (-15 -3357 ((-949 |t#1|) $ (-768) (-768))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -4039 ($ $)) (IF (|has| |t#1| (-15 -4039 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -4292 ((-641 (-1170)) |t#1|))) (-15 -4039 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -4039 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-768)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-768) |#1|))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-768) (-1106)) ((-290) |has| |#1| (-556)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4012 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1237 |#1| #0#) . T))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4292 (((-641 (-1076)) $) NIL)) (-3832 (((-1170) $) 92)) (-1298 (((-1232 |#2| |#1|) $ (-768)) 74)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1582 (($ $) NIL (|has| |#1| (-556)))) (-3897 (((-112) $) 143 (|has| |#1| (-556)))) (-3043 (($ $ (-768)) 129) (($ $ (-768) (-768)) 131)) (-1681 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 43)) (-2657 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2516 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4281 (((-3 $ "failed") $ $) NIL)) (-4152 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2491 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3392 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 53) (($ (-1150 |#1|)) NIL)) (-2679 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2542 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3180 (($) NIL T CONST)) (-1432 (($ $) 135)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-3343 (($ $) 141)) (-3357 (((-949 |#1|) $ (-768)) 64) (((-949 |#1|) $ (-768) (-768)) 66)) (-2200 (((-112) $) NIL)) (-1688 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1454 (((-768) $) NIL) (((-768) $ (-768)) NIL)) (-2340 (((-112) $) NIL)) (-2886 (($ $) 119)) (-4342 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1726 (($ (-564) (-564) $) 137)) (-3619 (($ $ (-918)) 140)) (-2860 (($ (-1 |#1| (-564)) $) 113)) (-2961 (((-112) $) NIL)) (-4267 (($ |#1| (-768)) 16) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2313 (($ (-1 |#1| |#1|) $) 100)) (-2305 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-1889 (($ $) 117)) (-3315 (($ $) 115)) (-2685 (($ (-564) (-564) $) 139)) (-4039 (($ $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 157 (-4012 (-12 (|has| |#1| (-15 -4039 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4292 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3844 (((-1114) $) NIL)) (-3325 (($ $ (-564) (-564)) 123)) (-3042 (($ $ (-768)) 125)) (-1347 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4130 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2096 (($ $) 121)) (-2582 (((-1150 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-4382 ((|#1| $ (-768)) 97) (($ $ $) 133 (|has| (-768) (-1106)))) (-2203 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 110 (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $ (-1255 |#2|)) 105)) (-3475 (((-768) $) NIL)) (-2692 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2557 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2669 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2529 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2502 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2807 (($ $) 127)) (-3714 (((-859) $) NIL) (($ (-564)) 26) (($ (-407 (-564))) 149 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 83) (($ (-1255 |#2|)) 22)) (-4252 (((-1150 |#1|) $) NIL)) (-3181 ((|#1| $ (-768)) 96)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3379 (((-768)) NIL T CONST)) (-2390 ((|#1| $) 93)) (-2728 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2595 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3979 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2704 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2566 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2615 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2441 ((|#1| $ (-768)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -3714 (|#1| (-1170))))))) (-2053 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2740 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2605 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2716 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2577 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4312 (($) 18 T CONST)) (-4323 (($) 13 T CONST)) (-2238 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1720 (((-112) $ $) NIL)) (-1841 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) 109)) (-1814 (($ $ $) 20)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#1|) 146 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))))
+(((-1251 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -3714 ($ (-1232 |#2| |#1|))) (-15 -1298 ((-1232 |#2| |#1|) $ (-768))) (-15 -3714 ($ (-1255 |#2|))) (-15 -2203 ($ $ (-1255 |#2|))) (-15 -3315 ($ $)) (-15 -1889 ($ $)) (-15 -2886 ($ $)) (-15 -2096 ($ $)) (-15 -3325 ($ $ (-564) (-564))) (-15 -1432 ($ $)) (-15 -1726 ($ (-564) (-564) $)) (-15 -2685 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1251))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5)))) (-1298 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6)) (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) (-3714 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-2203 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3315 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-1889 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-2886 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-2096 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-3325 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-1432 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-1726 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-2685 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-4039 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
+(-13 (-1250 |#1|) (-10 -8 (-15 -3714 ($ (-1232 |#2| |#1|))) (-15 -1298 ((-1232 |#2| |#1|) $ (-768))) (-15 -3714 ($ (-1255 |#2|))) (-15 -2203 ($ $ (-1255 |#2|))) (-15 -3315 ($ $)) (-15 -1889 ($ $)) (-15 -2886 ($ $)) (-15 -2096 ($ $)) (-15 -3325 ($ $ (-564) (-564))) (-15 -1432 ($ $)) (-15 -1726 ($ (-564) (-564) $)) (-15 -2685 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -4039 ($ $ (-1255 |#2|))) |%noBranch|)))
+((-2680 (((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|))) 24)) (-2379 (((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3826 (((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|)) 13)) (-1979 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1305 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3592 ((|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|)) 60)) (-4322 (((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))) 66)) (-2320 ((|#2| |#2| |#2|) 43)))
+(((-1252 |#1| |#2|) (-10 -7 (-15 -3826 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -2379 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2680 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -2320 (|#2| |#2| |#2|)) (-15 -1305 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1979 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3592 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -4322 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))))) (-38 (-407 (-564))) (-1250 |#1|)) (T -1252))
+((-4322 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6)))) (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6)) (-5 *1 (-1252 *5 *6)))) (-3592 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5)) (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5)) (-5 *1 (-1252 *5 *2)))) (-1979 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-1305 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-2320 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1250 *3)))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))))
+(-10 -7 (-15 -3826 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -2379 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2680 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -2320 (|#2| |#2| |#2|)) (-15 -1305 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1979 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3592 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -4322 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|))))))
+((-1439 ((|#2| |#4| (-768)) 34)) (-3077 ((|#4| |#2|) 29)) (-3471 ((|#4| (-407 |#2|)) 53 (|has| |#1| (-556)))) (-1836 (((-1 |#4| (-641 |#4|)) |#3|) 46)))
+(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3077 (|#4| |#2|)) (-15 -1439 (|#2| |#4| (-768))) (-15 -1836 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -3471 (|#4| (-407 |#2|))) |%noBranch|)) (-1046) (-1235 |#1|) (-652 |#2|) (-1250 |#1|)) (T -1253))
+((-3471 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556)) (-4 *4 (-1046)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2)) (-4 *6 (-652 *5)))) (-1836 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6))) (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4)))) (-1439 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5)))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3)))))
+(-10 -7 (-15 -3077 (|#4| |#2|)) (-15 -1439 (|#2| |#4| (-768))) (-15 -1836 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -3471 (|#4| (-407 |#2|))) |%noBranch|))
NIL
(((-1254) (-140)) (T -1254))
NIL
-(-13 (-10 -7 (-6 -2268)))
-((-1754 (((-112) $ $) NIL)) (-3657 (((-1170)) 12)) (-4202 (((-1152) $) 18)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 11) (((-1170) $) 8)) (-1686 (((-112) $ $) 15)))
-(((-1255 |#1|) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -1765 ((-1170) $)) (-15 -3657 ((-1170))))) (-1170)) (T -1255))
-((-1765 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))) (-3657 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))))
-(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -1765 ((-1170) $)) (-15 -3657 ((-1170)))))
-((-1398 (($ (-768)) 19)) (-4147 (((-685 |#2|) $ $) 41)) (-3500 ((|#2| $) 51)) (-2564 ((|#2| $) 50)) (-4158 ((|#2| $ $) 36)) (-3663 (($ $ $) 47)) (-1783 (($ $) 23) (($ $ $) 29)) (-1771 (($ $ $) 15)) (* (($ (-564) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1256 |#1| |#2|) (-10 -8 (-15 -3500 (|#2| |#1|)) (-15 -2564 (|#2| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -4147 ((-685 |#2|) |#1| |#1|)) (-15 -4158 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1398 (|#1| (-768))) (-15 -1771 (|#1| |#1| |#1|))) (-1257 |#2|) (-1209)) (T -1256))
+(-13 (-10 -7 (-6 -2408)))
+((-3702 (((-112) $ $) NIL)) (-3832 (((-1170)) 12)) (-1868 (((-1152) $) 18)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 11) (((-1170) $) 8)) (-1720 (((-112) $ $) 15)))
+(((-1255 |#1|) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -3714 ((-1170) $)) (-15 -3832 ((-1170))))) (-1170)) (T -1255))
+((-3714 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))) (-3832 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))))
+(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -3714 ((-1170) $)) (-15 -3832 ((-1170)))))
+((-1532 (($ (-768)) 19)) (-2996 (((-685 |#2|) $ $) 41)) (-2636 ((|#2| $) 51)) (-3451 ((|#2| $) 50)) (-2681 ((|#2| $ $) 36)) (-3482 (($ $ $) 47)) (-1828 (($ $) 23) (($ $ $) 29)) (-1814 (($ $ $) 15)) (* (($ (-564) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1256 |#1| |#2|) (-10 -8 (-15 -2636 (|#2| |#1|)) (-15 -3451 (|#2| |#1|)) (-15 -3482 (|#1| |#1| |#1|)) (-15 -2996 ((-685 |#2|) |#1| |#1|)) (-15 -2681 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1532 (|#1| (-768))) (-15 -1814 (|#1| |#1| |#1|))) (-1257 |#2|) (-1209)) (T -1256))
NIL
-(-10 -8 (-15 -3500 (|#2| |#1|)) (-15 -2564 (|#2| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -4147 ((-685 |#2|) |#1| |#1|)) (-15 -4158 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1398 (|#1| (-768))) (-15 -1771 (|#1| |#1| |#1|)))
-((-1754 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1398 (($ (-768)) 112 (|has| |#1| (-23)))) (-3476 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) 8)) (-1881 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-3760 (($) 7 T CONST)) (-3852 (($ $) 90 (|has| $ (-6 -4412)))) (-3716 (($ $) 100)) (-3104 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2359 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) 51)) (-1356 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3080 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4147 (((-685 |#1|) $ $) 105 (|has| |#1| (-1046)))) (-1633 (($ (-768) |#1|) 69)) (-2830 (((-112) $ (-768)) 9)) (-4065 (((-564) $) 43 (|has| (-564) (-847)))) (-3571 (($ $ $) 87 (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1479 (((-564) $) 44 (|has| (-564) (-847)))) (-1547 (($ $ $) 86 (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3500 ((|#1| $) 102 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-2972 (((-112) $ (-768)) 10)) (-2564 ((|#1| $) 103 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-4202 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-1371 (((-641 (-564)) $) 46)) (-3629 (((-112) (-564) $) 47)) (-3802 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3073 ((|#1| $) 42 (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2614 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) 14)) (-3471 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) 48)) (-2742 (((-112) $) 11)) (-3845 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-4158 ((|#1| $ $) 106 (|has| |#1| (-1046)))) (-2008 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3663 (($ $ $) 104 (|has| |#1| (-1046)))) (-3815 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2286 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-1899 (($ $) 13)) (-2127 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 70)) (-2817 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-1765 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1715 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1686 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1728 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 82 (|has| |#1| (-847)))) (-1783 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1771 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-723))) (($ $ |#1|) 107 (|has| |#1| (-723)))) (-2589 (((-768) $) 6 (|has| $ (-6 -4411)))))
+(-10 -8 (-15 -2636 (|#2| |#1|)) (-15 -3451 (|#2| |#1|)) (-15 -3482 (|#1| |#1| |#1|)) (-15 -2996 ((-685 |#2|) |#1| |#1|)) (-15 -2681 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1828 (|#1| |#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -1532 (|#1| (-768))) (-15 -1814 (|#1| |#1| |#1|)))
+((-3702 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1532 (($ (-768)) 112 (|has| |#1| (-23)))) (-2399 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4413))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4413))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) 8)) (-3868 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4412)))) (-3180 (($) 7 T CONST)) (-1651 (($ $) 90 (|has| $ (-6 -4413)))) (-1923 (($ $) 100)) (-2084 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2514 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) 51)) (-3303 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-4244 (((-641 |#1|) $) 30 (|has| $ (-6 -4412)))) (-2996 (((-685 |#1|) $ $) 105 (|has| |#1| (-1046)))) (-3564 (($ (-768) |#1|) 69)) (-2173 (((-112) $ (-768)) 9)) (-2994 (((-564) $) 43 (|has| (-564) (-847)))) (-3428 (($ $ $) 87 (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) 29 (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-2415 (((-564) $) 44 (|has| (-564) (-847)))) (-3413 (($ $ $) 86 (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2636 ((|#1| $) 102 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-4144 (((-112) $ (-768)) 10)) (-3451 ((|#1| $) 103 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-1868 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-3127 (((-641 (-564)) $) 46)) (-1338 (((-112) (-564) $) 47)) (-3844 (((-1114) $) 21 (|has| |#1| (-1094)))) (-2049 ((|#1| $) 42 (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3538 (($ $ |#1|) 41 (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) 14)) (-2338 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) 48)) (-2510 (((-112) $) 11)) (-2834 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2681 ((|#1| $ $) 106 (|has| |#1| (-1046)))) (-2090 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3482 (($ $ $) 104 (|has| |#1| (-1046)))) (-3855 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4412))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4412))))) (-3474 (($ $ $ (-564)) 91 (|has| $ (-6 -4413)))) (-3890 (($ $) 13)) (-2374 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 70)) (-1865 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3714 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1758 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1720 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1769 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1746 (((-112) $ $) 82 (|has| |#1| (-847)))) (-1828 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1814 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-723))) (($ $ |#1|) 107 (|has| |#1| (-723)))) (-2779 (((-768) $) 6 (|has| $ (-6 -4412)))))
(((-1257 |#1|) (-140) (-1209)) (T -1257))
-((-1771 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25)))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209)))) (-1783 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (-1783 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (-4158 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (-4147 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1046)) (-5 *2 (-685 *3)))) (-3663 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) (-4 *2 (-1046)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) (-4 *2 (-1046)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1771 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1398 ($ (-768))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1783 ($ $)) (-15 -1783 ($ $ $)) (-15 * ($ (-564) $))) |%noBranch|) (IF (|has| |t#1| (-723)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1046)) (PROGN (-15 -4158 (|t#1| $ $)) (-15 -4147 ((-685 |t#1|) $ $)) (-15 -3663 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-999)) (IF (|has| |t#1| (-1046)) (PROGN (-15 -2564 (|t#1| $)) (-15 -3500 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4002 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T))
-((-4077 (((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 13)) (-4367 ((|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 15)) (-2082 (((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)) 30) (((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 18)))
-(((-1258 |#1| |#2|) (-10 -7 (-15 -4077 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -4367 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -2082 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -2082 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)))) (-1209) (-1209)) (T -1258))
-((-2082 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-4367 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2)))) (-4077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5)))))
-(-10 -7 (-15 -4077 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -4367 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -2082 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -2082 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|))))
-((-1754 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1398 (($ (-768)) NIL (|has| |#1| (-23)))) (-1721 (($ (-641 |#1|)) 11)) (-3476 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-4310 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-3606 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2494 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-3263 (((-112) $ (-768)) NIL)) (-1881 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3760 (($) NIL T CONST)) (-3852 (($ $) NIL (|has| $ (-6 -4412)))) (-3716 (($ $) NIL)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2359 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-4367 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3528 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-3455 ((|#1| $ (-564)) NIL)) (-1356 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3080 (((-641 |#1|) $) 15 (|has| $ (-6 -4411)))) (-4147 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-1633 (($ (-768) |#1|) NIL)) (-2830 (((-112) $ (-768)) NIL)) (-4065 (((-564) $) NIL (|has| (-564) (-847)))) (-3571 (($ $ $) NIL (|has| |#1| (-847)))) (-4012 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-3817 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3675 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1479 (((-564) $) NIL (|has| (-564) (-847)))) (-1547 (($ $ $) NIL (|has| |#1| (-847)))) (-3513 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3500 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-2972 (((-112) $ (-768)) NIL)) (-2564 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-4202 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3412 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-1371 (((-641 (-564)) $) NIL)) (-3629 (((-112) (-564) $) NIL)) (-3802 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3073 ((|#1| $) NIL (|has| (-564) (-847)))) (-2343 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2614 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-1467 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-2606 (((-112) $ $) NIL)) (-3471 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3599 (((-641 |#1|) $) NIL)) (-2742 (((-112) $) NIL)) (-3845 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-4158 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-2008 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3663 (($ $ $) NIL (|has| |#1| (-1046)))) (-3815 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2286 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) 19 (|has| |#1| (-612 (-536))))) (-1776 (($ (-641 |#1|)) 10)) (-2817 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-1765 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2237 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1738 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1715 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1686 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1728 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1783 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1771 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1259 |#1|) (-13 (-1257 |#1|) (-10 -8 (-15 -1721 ($ (-641 |#1|))))) (-1209)) (T -1259))
-((-1721 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3)))))
-(-13 (-1257 |#1|) (-10 -8 (-15 -1721 ($ (-641 |#1|)))))
-((-1754 (((-112) $ $) NIL)) (-2548 (((-1152) $ (-1152)) 109) (((-1152) $ (-1152) (-1152)) 107) (((-1152) $ (-1152) (-641 (-1152))) 106)) (-3147 (($) 69)) (-1305 (((-1264) $ (-468) (-918)) 54)) (-2310 (((-1264) $ (-918) (-1152)) 91) (((-1264) $ (-918) (-871)) 92)) (-3082 (((-1264) $ (-918) (-379) (-379)) 57)) (-3708 (((-1264) $ (-1152)) 86)) (-3692 (((-1264) $ (-918) (-1152)) 96)) (-3427 (((-1264) $ (-918) (-379) (-379)) 58)) (-2765 (((-1264) $ (-918) (-918)) 55)) (-2525 (((-1264) $) 87)) (-2796 (((-1264) $ (-918) (-1152)) 95)) (-3182 (((-1264) $ (-468) (-918)) 40)) (-3604 (((-1264) $ (-918) (-1152)) 94)) (-1933 (((-641 (-263)) $) 29) (($ $ (-641 (-263))) 30)) (-1872 (((-1264) $ (-768) (-768)) 52)) (-4039 (($ $) 71) (($ (-468) (-641 (-263))) 72)) (-4202 (((-1152) $) NIL)) (-2351 (((-564) $) 47)) (-3802 (((-1114) $) NIL)) (-2631 (((-1259 (-3 (-468) "undefined")) $) 46)) (-3379 (((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3604 (-564)) (|:| -4338 (-564)) (|:| |spline| (-564)) (|:| -4184 (-564)) (|:| |axesColor| (-871)) (|:| -2310 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $) 45)) (-2537 (((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564)) 85)) (-2726 (((-641 (-940 (-225))) $) NIL)) (-3169 (((-468) $ (-918)) 42)) (-3163 (((-1264) $ (-768) (-768) (-918) (-918)) 50)) (-4355 (((-1264) $ (-1152)) 97)) (-4338 (((-1264) $ (-918) (-1152)) 93)) (-1765 (((-859) $) 104)) (-3439 (((-1264) $) 98)) (-4184 (((-1264) $ (-918) (-1152)) 89) (((-1264) $ (-918) (-871)) 90)) (-1686 (((-112) $ $) NIL)))
-(((-1260) (-13 (-1094) (-10 -8 (-15 -2726 ((-641 (-940 (-225))) $)) (-15 -3147 ($)) (-15 -4039 ($ $)) (-15 -1933 ((-641 (-263)) $)) (-15 -1933 ($ $ (-641 (-263)))) (-15 -4039 ($ (-468) (-641 (-263)))) (-15 -2537 ((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564))) (-15 -3379 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3604 (-564)) (|:| -4338 (-564)) (|:| |spline| (-564)) (|:| -4184 (-564)) (|:| |axesColor| (-871)) (|:| -2310 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $)) (-15 -2631 ((-1259 (-3 (-468) "undefined")) $)) (-15 -3708 ((-1264) $ (-1152))) (-15 -3182 ((-1264) $ (-468) (-918))) (-15 -3169 ((-468) $ (-918))) (-15 -4184 ((-1264) $ (-918) (-1152))) (-15 -4184 ((-1264) $ (-918) (-871))) (-15 -2310 ((-1264) $ (-918) (-1152))) (-15 -2310 ((-1264) $ (-918) (-871))) (-15 -3604 ((-1264) $ (-918) (-1152))) (-15 -2796 ((-1264) $ (-918) (-1152))) (-15 -4338 ((-1264) $ (-918) (-1152))) (-15 -4355 ((-1264) $ (-1152))) (-15 -3439 ((-1264) $)) (-15 -3163 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -3427 ((-1264) $ (-918) (-379) (-379))) (-15 -3082 ((-1264) $ (-918) (-379) (-379))) (-15 -3692 ((-1264) $ (-918) (-1152))) (-15 -1872 ((-1264) $ (-768) (-768))) (-15 -1305 ((-1264) $ (-468) (-918))) (-15 -2765 ((-1264) $ (-918) (-918))) (-15 -2548 ((-1152) $ (-1152))) (-15 -2548 ((-1152) $ (-1152) (-1152))) (-15 -2548 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -2525 ((-1264) $)) (-15 -2351 ((-564) $)) (-15 -1765 ((-859) $))))) (T -1260))
-((-1765 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1260)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-641 (-940 (-225)))) (-5 *1 (-1260)))) (-3147 (*1 *1) (-5 *1 (-1260))) (-4039 (*1 *1 *1) (-5 *1 (-1260))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-1933 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-4039 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260)))) (-2537 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-918)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3604 (-564)) (|:| -4338 (-564)) (|:| |spline| (-564)) (|:| -4184 (-564)) (|:| |axesColor| (-871)) (|:| -2310 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564))))) (-5 *1 (-1260)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260)))) (-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3182 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3169 (*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-5 *2 (-468)) (-5 *1 (-1260)))) (-4184 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4184 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2310 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2310 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3604 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2796 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4338 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4355 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3163 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3427 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3082 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3692 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1305 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2765 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2548 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-2548 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-2548 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260)))))
-(-13 (-1094) (-10 -8 (-15 -2726 ((-641 (-940 (-225))) $)) (-15 -3147 ($)) (-15 -4039 ($ $)) (-15 -1933 ((-641 (-263)) $)) (-15 -1933 ($ $ (-641 (-263)))) (-15 -4039 ($ (-468) (-641 (-263)))) (-15 -2537 ((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564))) (-15 -3379 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3604 (-564)) (|:| -4338 (-564)) (|:| |spline| (-564)) (|:| -4184 (-564)) (|:| |axesColor| (-871)) (|:| -2310 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $)) (-15 -2631 ((-1259 (-3 (-468) "undefined")) $)) (-15 -3708 ((-1264) $ (-1152))) (-15 -3182 ((-1264) $ (-468) (-918))) (-15 -3169 ((-468) $ (-918))) (-15 -4184 ((-1264) $ (-918) (-1152))) (-15 -4184 ((-1264) $ (-918) (-871))) (-15 -2310 ((-1264) $ (-918) (-1152))) (-15 -2310 ((-1264) $ (-918) (-871))) (-15 -3604 ((-1264) $ (-918) (-1152))) (-15 -2796 ((-1264) $ (-918) (-1152))) (-15 -4338 ((-1264) $ (-918) (-1152))) (-15 -4355 ((-1264) $ (-1152))) (-15 -3439 ((-1264) $)) (-15 -3163 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -3427 ((-1264) $ (-918) (-379) (-379))) (-15 -3082 ((-1264) $ (-918) (-379) (-379))) (-15 -3692 ((-1264) $ (-918) (-1152))) (-15 -1872 ((-1264) $ (-768) (-768))) (-15 -1305 ((-1264) $ (-468) (-918))) (-15 -2765 ((-1264) $ (-918) (-918))) (-15 -2548 ((-1152) $ (-1152))) (-15 -2548 ((-1152) $ (-1152) (-1152))) (-15 -2548 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -2525 ((-1264) $)) (-15 -2351 ((-564) $)) (-15 -1765 ((-859) $))))
-((-1754 (((-112) $ $) NIL)) (-2638 (((-1264) $ (-379)) 172) (((-1264) $ (-379) (-379) (-379)) 173)) (-2548 (((-1152) $ (-1152)) 180) (((-1152) $ (-1152) (-1152)) 178) (((-1152) $ (-1152) (-641 (-1152))) 177)) (-3821 (($) 67)) (-3239 (((-1264) $ (-379) (-379) (-379) (-379) (-379)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1264) $ (-564) (-564) (-379) (-379) (-379)) 147) (((-1264) $ (-379) (-379)) 148) (((-1264) $ (-379) (-379) (-379)) 155)) (-1737 (((-379)) 125) (((-379) (-379)) 126)) (-1943 (((-379)) 120) (((-379) (-379)) 122)) (-2249 (((-379)) 123) (((-379) (-379)) 124)) (-2704 (((-379)) 129) (((-379) (-379)) 130)) (-1844 (((-379)) 127) (((-379) (-379)) 128)) (-3082 (((-1264) $ (-379) (-379)) 174)) (-3708 (((-1264) $ (-1152)) 156)) (-1542 (((-1127 (-225)) $) 68) (($ $ (-1127 (-225))) 69)) (-4016 (((-1264) $ (-1152)) 188)) (-1910 (((-1264) $ (-1152)) 189)) (-2284 (((-1264) $ (-379) (-379)) 154) (((-1264) $ (-564) (-564)) 171)) (-2765 (((-1264) $ (-918) (-918)) 163)) (-2525 (((-1264) $) 140)) (-2884 (((-1264) $ (-1152)) 187)) (-1685 (((-1264) $ (-1152)) 137)) (-1933 (((-641 (-263)) $) 70) (($ $ (-641 (-263))) 71)) (-1872 (((-1264) $ (-768) (-768)) 162)) (-2176 (((-1264) $ (-768) (-940 (-225))) 194)) (-3301 (($ $) 73) (($ (-1127 (-225)) (-1152)) 74) (($ (-1127 (-225)) (-641 (-263))) 75)) (-3053 (((-1264) $ (-379) (-379) (-379)) 134)) (-4202 (((-1152) $) NIL)) (-2351 (((-564) $) 131)) (-3483 (((-1264) $ (-379)) 175)) (-2124 (((-1264) $ (-379)) 192)) (-3802 (((-1114) $) NIL)) (-3440 (((-1264) $ (-379)) 191)) (-2039 (((-1264) $ (-1152)) 139)) (-3163 (((-1264) $ (-768) (-768) (-918) (-918)) 161)) (-1621 (((-1264) $ (-1152)) 136)) (-4355 (((-1264) $ (-1152)) 138)) (-1310 (((-1264) $ (-157) (-157)) 160)) (-1765 (((-859) $) 169)) (-3439 (((-1264) $) 141)) (-4322 (((-1264) $ (-1152)) 190)) (-4184 (((-1264) $ (-1152)) 135)) (-1686 (((-112) $ $) NIL)))
-(((-1261) (-13 (-1094) (-10 -8 (-15 -1943 ((-379))) (-15 -1943 ((-379) (-379))) (-15 -2249 ((-379))) (-15 -2249 ((-379) (-379))) (-15 -1737 ((-379))) (-15 -1737 ((-379) (-379))) (-15 -1844 ((-379))) (-15 -1844 ((-379) (-379))) (-15 -2704 ((-379))) (-15 -2704 ((-379) (-379))) (-15 -3821 ($)) (-15 -3301 ($ $)) (-15 -3301 ($ (-1127 (-225)) (-1152))) (-15 -3301 ($ (-1127 (-225)) (-641 (-263)))) (-15 -1542 ((-1127 (-225)) $)) (-15 -1542 ($ $ (-1127 (-225)))) (-15 -2176 ((-1264) $ (-768) (-940 (-225)))) (-15 -1933 ((-641 (-263)) $)) (-15 -1933 ($ $ (-641 (-263)))) (-15 -1872 ((-1264) $ (-768) (-768))) (-15 -2765 ((-1264) $ (-918) (-918))) (-15 -3708 ((-1264) $ (-1152))) (-15 -3163 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -3239 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -3239 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3239 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3239 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -3239 ((-1264) $ (-379) (-379))) (-15 -3239 ((-1264) $ (-379) (-379) (-379))) (-15 -4355 ((-1264) $ (-1152))) (-15 -4184 ((-1264) $ (-1152))) (-15 -1621 ((-1264) $ (-1152))) (-15 -1685 ((-1264) $ (-1152))) (-15 -2039 ((-1264) $ (-1152))) (-15 -2284 ((-1264) $ (-379) (-379))) (-15 -2284 ((-1264) $ (-564) (-564))) (-15 -2638 ((-1264) $ (-379))) (-15 -2638 ((-1264) $ (-379) (-379) (-379))) (-15 -3082 ((-1264) $ (-379) (-379))) (-15 -2884 ((-1264) $ (-1152))) (-15 -3440 ((-1264) $ (-379))) (-15 -2124 ((-1264) $ (-379))) (-15 -4016 ((-1264) $ (-1152))) (-15 -1910 ((-1264) $ (-1152))) (-15 -4322 ((-1264) $ (-1152))) (-15 -3053 ((-1264) $ (-379) (-379) (-379))) (-15 -3483 ((-1264) $ (-379))) (-15 -2525 ((-1264) $)) (-15 -1310 ((-1264) $ (-157) (-157))) (-15 -2548 ((-1152) $ (-1152))) (-15 -2548 ((-1152) $ (-1152) (-1152))) (-15 -2548 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3439 ((-1264) $)) (-15 -2351 ((-564) $))))) (T -1261))
-((-1943 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1943 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2249 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1737 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1844 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2704 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2704 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3821 (*1 *1) (-5 *1 (-1261))) (-3301 (*1 *1 *1) (-5 *1 (-1261))) (-3301 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261)))) (-3301 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-2176 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-1933 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-1872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2765 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3163 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3239 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1261)))) (-3239 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3239 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3239 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3239 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4355 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1621 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1685 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2039 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2284 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2284 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2638 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2638 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3082 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2884 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3440 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2124 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4016 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1910 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4322 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3053 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3483 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1310 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2548 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-2548 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-2548 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261)))))
-(-13 (-1094) (-10 -8 (-15 -1943 ((-379))) (-15 -1943 ((-379) (-379))) (-15 -2249 ((-379))) (-15 -2249 ((-379) (-379))) (-15 -1737 ((-379))) (-15 -1737 ((-379) (-379))) (-15 -1844 ((-379))) (-15 -1844 ((-379) (-379))) (-15 -2704 ((-379))) (-15 -2704 ((-379) (-379))) (-15 -3821 ($)) (-15 -3301 ($ $)) (-15 -3301 ($ (-1127 (-225)) (-1152))) (-15 -3301 ($ (-1127 (-225)) (-641 (-263)))) (-15 -1542 ((-1127 (-225)) $)) (-15 -1542 ($ $ (-1127 (-225)))) (-15 -2176 ((-1264) $ (-768) (-940 (-225)))) (-15 -1933 ((-641 (-263)) $)) (-15 -1933 ($ $ (-641 (-263)))) (-15 -1872 ((-1264) $ (-768) (-768))) (-15 -2765 ((-1264) $ (-918) (-918))) (-15 -3708 ((-1264) $ (-1152))) (-15 -3163 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -3239 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -3239 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3239 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3239 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -3239 ((-1264) $ (-379) (-379))) (-15 -3239 ((-1264) $ (-379) (-379) (-379))) (-15 -4355 ((-1264) $ (-1152))) (-15 -4184 ((-1264) $ (-1152))) (-15 -1621 ((-1264) $ (-1152))) (-15 -1685 ((-1264) $ (-1152))) (-15 -2039 ((-1264) $ (-1152))) (-15 -2284 ((-1264) $ (-379) (-379))) (-15 -2284 ((-1264) $ (-564) (-564))) (-15 -2638 ((-1264) $ (-379))) (-15 -2638 ((-1264) $ (-379) (-379) (-379))) (-15 -3082 ((-1264) $ (-379) (-379))) (-15 -2884 ((-1264) $ (-1152))) (-15 -3440 ((-1264) $ (-379))) (-15 -2124 ((-1264) $ (-379))) (-15 -4016 ((-1264) $ (-1152))) (-15 -1910 ((-1264) $ (-1152))) (-15 -4322 ((-1264) $ (-1152))) (-15 -3053 ((-1264) $ (-379) (-379) (-379))) (-15 -3483 ((-1264) $ (-379))) (-15 -2525 ((-1264) $)) (-15 -1310 ((-1264) $ (-157) (-157))) (-15 -2548 ((-1152) $ (-1152))) (-15 -2548 ((-1152) $ (-1152) (-1152))) (-15 -2548 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3439 ((-1264) $)) (-15 -2351 ((-564) $))))
-((-3640 (((-641 (-1152)) (-641 (-1152))) 104) (((-641 (-1152))) 96)) (-1634 (((-641 (-1152))) 94)) (-3575 (((-641 (-918)) (-641 (-918))) 69) (((-641 (-918))) 64)) (-1419 (((-641 (-768)) (-641 (-768))) 61) (((-641 (-768))) 55)) (-2994 (((-1264)) 71)) (-1852 (((-918) (-918)) 87) (((-918)) 86)) (-3283 (((-918) (-918)) 85) (((-918)) 84)) (-2715 (((-871) (-871)) 81) (((-871)) 80)) (-3990 (((-225)) 91) (((-225) (-379)) 93)) (-3925 (((-918)) 88) (((-918) (-918)) 89)) (-1466 (((-918) (-918)) 83) (((-918)) 82)) (-2145 (((-871) (-871)) 75) (((-871)) 73)) (-2126 (((-871) (-871)) 77) (((-871)) 76)) (-2908 (((-871) (-871)) 79) (((-871)) 78)))
-(((-1262) (-10 -7 (-15 -2145 ((-871))) (-15 -2145 ((-871) (-871))) (-15 -2126 ((-871))) (-15 -2126 ((-871) (-871))) (-15 -2908 ((-871))) (-15 -2908 ((-871) (-871))) (-15 -2715 ((-871))) (-15 -2715 ((-871) (-871))) (-15 -1466 ((-918))) (-15 -1466 ((-918) (-918))) (-15 -1419 ((-641 (-768)))) (-15 -1419 ((-641 (-768)) (-641 (-768)))) (-15 -3575 ((-641 (-918)))) (-15 -3575 ((-641 (-918)) (-641 (-918)))) (-15 -2994 ((-1264))) (-15 -3640 ((-641 (-1152)))) (-15 -3640 ((-641 (-1152)) (-641 (-1152)))) (-15 -1634 ((-641 (-1152)))) (-15 -3283 ((-918))) (-15 -1852 ((-918))) (-15 -3283 ((-918) (-918))) (-15 -1852 ((-918) (-918))) (-15 -3925 ((-918) (-918))) (-15 -3925 ((-918))) (-15 -3990 ((-225) (-379))) (-15 -3990 ((-225))))) (T -1262))
-((-3990 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262)))) (-3925 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-1852 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-3283 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-1634 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-3640 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-2994 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) (-3575 (*1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) (-1419 (*1 *2 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) (-1419 (*1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) (-1466 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-1466 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2715 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2908 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2908 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2126 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2126 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2145 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
-(-10 -7 (-15 -2145 ((-871))) (-15 -2145 ((-871) (-871))) (-15 -2126 ((-871))) (-15 -2126 ((-871) (-871))) (-15 -2908 ((-871))) (-15 -2908 ((-871) (-871))) (-15 -2715 ((-871))) (-15 -2715 ((-871) (-871))) (-15 -1466 ((-918))) (-15 -1466 ((-918) (-918))) (-15 -1419 ((-641 (-768)))) (-15 -1419 ((-641 (-768)) (-641 (-768)))) (-15 -3575 ((-641 (-918)))) (-15 -3575 ((-641 (-918)) (-641 (-918)))) (-15 -2994 ((-1264))) (-15 -3640 ((-641 (-1152)))) (-15 -3640 ((-641 (-1152)) (-641 (-1152)))) (-15 -1634 ((-641 (-1152)))) (-15 -3283 ((-918))) (-15 -1852 ((-918))) (-15 -3283 ((-918) (-918))) (-15 -1852 ((-918) (-918))) (-15 -3925 ((-918) (-918))) (-15 -3925 ((-918))) (-15 -3990 ((-225) (-379))) (-15 -3990 ((-225))))
-((-4142 (((-468) (-641 (-641 (-940 (-225)))) (-641 (-263))) 22) (((-468) (-641 (-641 (-940 (-225))))) 21) (((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263))) 20)) (-1879 (((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263))) 33) (((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263))) 32)) (-1765 (((-1260) (-468)) 48)))
-(((-1263) (-10 -7 (-15 -4142 ((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -4142 ((-468) (-641 (-641 (-940 (-225)))))) (-15 -4142 ((-468) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -1879 ((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -1879 ((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -1765 ((-1260) (-468))))) (T -1263))
-((-1765 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-1879 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-4142 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))))
-(-10 -7 (-15 -4142 ((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -4142 ((-468) (-641 (-641 (-940 (-225)))))) (-15 -4142 ((-468) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -1879 ((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -1879 ((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -1765 ((-1260) (-468))))
-((-3048 (($) 7)) (-1765 (((-859) $) 10)))
-(((-1264) (-13 (-611 (-859)) (-10 -8 (-15 -3048 ($))))) (T -1264))
-((-3048 (*1 *1) (-5 *1 (-1264))))
-(-13 (-611 (-859)) (-10 -8 (-15 -3048 ($))))
-((-1793 (($ $ |#2|) 10)))
-(((-1265 |#1| |#2|) (-10 -8 (-15 -1793 (|#1| |#1| |#2|))) (-1266 |#2|) (-363)) (T -1265))
-NIL
-(-10 -8 (-15 -1793 (|#1| |#1| |#2|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3850 (((-134)) 28)) (-1765 (((-859) $) 11)) (-4317 (($) 18 T CONST)) (-1686 (((-112) $ $) 6)) (-1793 (($ $ |#1|) 29)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-1814 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209)))) (-1828 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (-1828 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (-2681 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (-2996 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1046)) (-5 *2 (-685 *3)))) (-3482 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) (-4 *2 (-1046)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) (-4 *2 (-1046)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1814 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1532 ($ (-768))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1828 ($ $)) (-15 -1828 ($ $ $)) (-15 * ($ (-564) $))) |%noBranch|) (IF (|has| |t#1| (-723)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1046)) (PROGN (-15 -2681 (|t#1| $ $)) (-15 -2996 ((-685 |t#1|) $ $)) (-15 -3482 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-999)) (IF (|has| |t#1| (-1046)) (PROGN (-15 -3451 (|t#1| $)) (-15 -2636 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4012 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T))
+((-3092 (((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 13)) (-1728 ((|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 15)) (-2313 (((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)) 30) (((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 18)))
+(((-1258 |#1| |#2|) (-10 -7 (-15 -3092 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -1728 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -2313 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -2313 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)))) (-1209) (-1209)) (T -1258))
+((-2313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-1728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5)))))
+(-10 -7 (-15 -3092 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -1728 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -2313 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -2313 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|))))
+((-3702 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1532 (($ (-768)) NIL (|has| |#1| (-23)))) (-3597 (($ (-641 |#1|)) 11)) (-2399 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4413)))) (-1562 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-4194 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4413))) (($ $) NIL (-12 (|has| $ (-6 -4413)) (|has| |#1| (-847))))) (-2904 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2141 (((-112) $ (-768)) NIL)) (-3868 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4413)))) (-4148 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-3180 (($) NIL T CONST)) (-1651 (($ $) NIL (|has| $ (-6 -4413)))) (-1923 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2514 (($ |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1728 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4412))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-1998 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4413)))) (-3593 ((|#1| $ (-564)) NIL)) (-3303 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-4244 (((-641 |#1|) $) 15 (|has| $ (-6 -4412)))) (-2996 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-3564 (($ (-768) |#1|) NIL)) (-2173 (((-112) $ (-768)) NIL)) (-2994 (((-564) $) NIL (|has| (-564) (-847)))) (-3428 (($ $ $) NIL (|has| |#1| (-847)))) (-3678 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-2572 (((-641 |#1|) $) NIL (|has| $ (-6 -4412)))) (-3601 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-2415 (((-564) $) NIL (|has| (-564) (-847)))) (-3413 (($ $ $) NIL (|has| |#1| (-847)))) (-1988 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2636 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-4144 (((-112) $ (-768)) NIL)) (-3451 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-1868 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2455 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-3127 (((-641 (-564)) $) NIL)) (-1338 (((-112) (-564) $) NIL)) (-3844 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2049 ((|#1| $) NIL (|has| (-564) (-847)))) (-2905 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3538 (($ $ |#1|) NIL (|has| $ (-6 -4413)))) (-2280 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2338 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-4121 (((-641 |#1|) $) NIL)) (-2510 (((-112) $) NIL)) (-2834 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2681 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-2090 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3482 (($ $ $) NIL (|has| |#1| (-1046)))) (-3855 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-1094))))) (-3474 (($ $ $ (-564)) NIL (|has| $ (-6 -4413)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) 19 (|has| |#1| (-612 (-536))))) (-3725 (($ (-641 |#1|)) 10)) (-1865 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3714 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-4289 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4412)))) (-1781 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1758 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1720 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1769 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1746 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1828 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1814 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1259 |#1|) (-13 (-1257 |#1|) (-10 -8 (-15 -3597 ($ (-641 |#1|))))) (-1209)) (T -1259))
+((-3597 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3)))))
+(-13 (-1257 |#1|) (-10 -8 (-15 -3597 ($ (-641 |#1|)))))
+((-3702 (((-112) $ $) NIL)) (-1520 (((-1152) $ (-1152)) 109) (((-1152) $ (-1152) (-1152)) 107) (((-1152) $ (-1152) (-641 (-1152))) 106)) (-2225 (($) 69)) (-3256 (((-1264) $ (-468) (-918)) 54)) (-1294 (((-1264) $ (-918) (-1152)) 91) (((-1264) $ (-918) (-871)) 92)) (-2069 (((-1264) $ (-918) (-379) (-379)) 57)) (-2755 (((-1264) $ (-1152)) 86)) (-3746 (((-1264) $ (-918) (-1152)) 96)) (-3099 (((-1264) $ (-918) (-379) (-379)) 58)) (-2757 (((-1264) $ (-918) (-918)) 55)) (-1500 (((-1264) $) 87)) (-1827 (((-1264) $ (-918) (-1152)) 95)) (-2599 (((-1264) $ (-468) (-918)) 40)) (-4182 (((-1264) $ (-918) (-1152)) 94)) (-3931 (((-641 (-263)) $) 29) (($ $ (-641 (-263))) 30)) (-1930 (((-1264) $ (-768) (-768)) 52)) (-3930 (($ $) 71) (($ (-468) (-641 (-263))) 72)) (-1868 (((-1152) $) NIL)) (-1350 (((-564) $) 47)) (-3844 (((-1114) $) NIL)) (-3739 (((-1259 (-3 (-468) "undefined")) $) 46)) (-3852 (((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4182 (-564)) (|:| -3588 (-564)) (|:| |spline| (-564)) (|:| -1679 (-564)) (|:| |axesColor| (-871)) (|:| -1294 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $) 45)) (-4076 (((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564)) 85)) (-2337 (((-641 (-940 (-225))) $) NIL)) (-2462 (((-468) $ (-918)) 42)) (-2405 (((-1264) $ (-768) (-768) (-918) (-918)) 50)) (-3761 (((-1264) $ (-1152)) 97)) (-3588 (((-1264) $ (-918) (-1152)) 93)) (-3714 (((-859) $) 104)) (-3489 (((-1264) $) 98)) (-1679 (((-1264) $ (-918) (-1152)) 89) (((-1264) $ (-918) (-871)) 90)) (-1720 (((-112) $ $) NIL)))
+(((-1260) (-13 (-1094) (-10 -8 (-15 -2337 ((-641 (-940 (-225))) $)) (-15 -2225 ($)) (-15 -3930 ($ $)) (-15 -3931 ((-641 (-263)) $)) (-15 -3931 ($ $ (-641 (-263)))) (-15 -3930 ($ (-468) (-641 (-263)))) (-15 -4076 ((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564))) (-15 -3852 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4182 (-564)) (|:| -3588 (-564)) (|:| |spline| (-564)) (|:| -1679 (-564)) (|:| |axesColor| (-871)) (|:| -1294 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $)) (-15 -3739 ((-1259 (-3 (-468) "undefined")) $)) (-15 -2755 ((-1264) $ (-1152))) (-15 -2599 ((-1264) $ (-468) (-918))) (-15 -2462 ((-468) $ (-918))) (-15 -1679 ((-1264) $ (-918) (-1152))) (-15 -1679 ((-1264) $ (-918) (-871))) (-15 -1294 ((-1264) $ (-918) (-1152))) (-15 -1294 ((-1264) $ (-918) (-871))) (-15 -4182 ((-1264) $ (-918) (-1152))) (-15 -1827 ((-1264) $ (-918) (-1152))) (-15 -3588 ((-1264) $ (-918) (-1152))) (-15 -3761 ((-1264) $ (-1152))) (-15 -3489 ((-1264) $)) (-15 -2405 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -3099 ((-1264) $ (-918) (-379) (-379))) (-15 -2069 ((-1264) $ (-918) (-379) (-379))) (-15 -3746 ((-1264) $ (-918) (-1152))) (-15 -1930 ((-1264) $ (-768) (-768))) (-15 -3256 ((-1264) $ (-468) (-918))) (-15 -2757 ((-1264) $ (-918) (-918))) (-15 -1520 ((-1152) $ (-1152))) (-15 -1520 ((-1152) $ (-1152) (-1152))) (-15 -1520 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -1500 ((-1264) $)) (-15 -1350 ((-564) $)) (-15 -3714 ((-859) $))))) (T -1260))
+((-3714 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1260)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-641 (-940 (-225)))) (-5 *1 (-1260)))) (-2225 (*1 *1) (-5 *1 (-1260))) (-3930 (*1 *1 *1) (-5 *1 (-1260))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-3930 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260)))) (-4076 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-918)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4182 (-564)) (|:| -3588 (-564)) (|:| |spline| (-564)) (|:| -1679 (-564)) (|:| |axesColor| (-871)) (|:| -1294 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564))))) (-5 *1 (-1260)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260)))) (-2755 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2599 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2462 (*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-5 *2 (-468)) (-5 *1 (-1260)))) (-1679 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1679 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1294 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1294 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4182 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1827 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3588 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3761 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2405 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3099 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2069 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3746 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1930 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3256 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2757 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1520 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-1520 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-1520 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1350 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260)))))
+(-13 (-1094) (-10 -8 (-15 -2337 ((-641 (-940 (-225))) $)) (-15 -2225 ($)) (-15 -3930 ($ $)) (-15 -3931 ((-641 (-263)) $)) (-15 -3931 ($ $ (-641 (-263)))) (-15 -3930 ($ (-468) (-641 (-263)))) (-15 -4076 ((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564))) (-15 -3852 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4182 (-564)) (|:| -3588 (-564)) (|:| |spline| (-564)) (|:| -1679 (-564)) (|:| |axesColor| (-871)) (|:| -1294 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $)) (-15 -3739 ((-1259 (-3 (-468) "undefined")) $)) (-15 -2755 ((-1264) $ (-1152))) (-15 -2599 ((-1264) $ (-468) (-918))) (-15 -2462 ((-468) $ (-918))) (-15 -1679 ((-1264) $ (-918) (-1152))) (-15 -1679 ((-1264) $ (-918) (-871))) (-15 -1294 ((-1264) $ (-918) (-1152))) (-15 -1294 ((-1264) $ (-918) (-871))) (-15 -4182 ((-1264) $ (-918) (-1152))) (-15 -1827 ((-1264) $ (-918) (-1152))) (-15 -3588 ((-1264) $ (-918) (-1152))) (-15 -3761 ((-1264) $ (-1152))) (-15 -3489 ((-1264) $)) (-15 -2405 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -3099 ((-1264) $ (-918) (-379) (-379))) (-15 -2069 ((-1264) $ (-918) (-379) (-379))) (-15 -3746 ((-1264) $ (-918) (-1152))) (-15 -1930 ((-1264) $ (-768) (-768))) (-15 -3256 ((-1264) $ (-468) (-918))) (-15 -2757 ((-1264) $ (-918) (-918))) (-15 -1520 ((-1152) $ (-1152))) (-15 -1520 ((-1152) $ (-1152) (-1152))) (-15 -1520 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -1500 ((-1264) $)) (-15 -1350 ((-564) $)) (-15 -3714 ((-859) $))))
+((-3702 (((-112) $ $) NIL)) (-3824 (((-1264) $ (-379)) 172) (((-1264) $ (-379) (-379) (-379)) 173)) (-1520 (((-1152) $ (-1152)) 180) (((-1152) $ (-1152) (-1152)) 178) (((-1152) $ (-1152) (-641 (-1152))) 177)) (-2622 (($) 67)) (-1904 (((-1264) $ (-379) (-379) (-379) (-379) (-379)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1264) $ (-564) (-564) (-379) (-379) (-379)) 147) (((-1264) $ (-379) (-379)) 148) (((-1264) $ (-379) (-379) (-379)) 155)) (-3019 (((-379)) 125) (((-379) (-379)) 126)) (-1336 (((-379)) 120) (((-379) (-379)) 122)) (-1320 (((-379)) 123) (((-379) (-379)) 124)) (-3263 (((-379)) 129) (((-379) (-379)) 130)) (-1623 (((-379)) 127) (((-379) (-379)) 128)) (-2069 (((-1264) $ (-379) (-379)) 174)) (-2755 (((-1264) $ (-1152)) 156)) (-1776 (((-1127 (-225)) $) 68) (($ $ (-1127 (-225))) 69)) (-3711 (((-1264) $ (-1152)) 188)) (-4108 (((-1264) $ (-1152)) 189)) (-3453 (((-1264) $ (-379) (-379)) 154) (((-1264) $ (-564) (-564)) 171)) (-2757 (((-1264) $ (-918) (-918)) 163)) (-1500 (((-1264) $) 140)) (-1502 (((-1264) $ (-1152)) 187)) (-3684 (((-1264) $ (-1152)) 137)) (-3931 (((-641 (-263)) $) 70) (($ $ (-641 (-263))) 71)) (-1930 (((-1264) $ (-768) (-768)) 162)) (-1872 (((-1264) $ (-768) (-940 (-225))) 194)) (-4338 (($ $) 73) (($ (-1127 (-225)) (-1152)) 74) (($ (-1127 (-225)) (-641 (-263))) 75)) (-3660 (((-1264) $ (-379) (-379) (-379)) 134)) (-1868 (((-1152) $) NIL)) (-1350 (((-564) $) 131)) (-2457 (((-1264) $ (-379)) 175)) (-2651 (((-1264) $ (-379)) 192)) (-3844 (((-1114) $) NIL)) (-3201 (((-1264) $ (-379)) 191)) (-2988 (((-1264) $ (-1152)) 139)) (-2405 (((-1264) $ (-768) (-768) (-918) (-918)) 161)) (-4348 (((-1264) $ (-1152)) 136)) (-3761 (((-1264) $ (-1152)) 138)) (-2146 (((-1264) $ (-157) (-157)) 160)) (-3714 (((-859) $) 169)) (-3489 (((-1264) $) 141)) (-1658 (((-1264) $ (-1152)) 190)) (-1679 (((-1264) $ (-1152)) 135)) (-1720 (((-112) $ $) NIL)))
+(((-1261) (-13 (-1094) (-10 -8 (-15 -1336 ((-379))) (-15 -1336 ((-379) (-379))) (-15 -1320 ((-379))) (-15 -1320 ((-379) (-379))) (-15 -3019 ((-379))) (-15 -3019 ((-379) (-379))) (-15 -1623 ((-379))) (-15 -1623 ((-379) (-379))) (-15 -3263 ((-379))) (-15 -3263 ((-379) (-379))) (-15 -2622 ($)) (-15 -4338 ($ $)) (-15 -4338 ($ (-1127 (-225)) (-1152))) (-15 -4338 ($ (-1127 (-225)) (-641 (-263)))) (-15 -1776 ((-1127 (-225)) $)) (-15 -1776 ($ $ (-1127 (-225)))) (-15 -1872 ((-1264) $ (-768) (-940 (-225)))) (-15 -3931 ((-641 (-263)) $)) (-15 -3931 ($ $ (-641 (-263)))) (-15 -1930 ((-1264) $ (-768) (-768))) (-15 -2757 ((-1264) $ (-918) (-918))) (-15 -2755 ((-1264) $ (-1152))) (-15 -2405 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -1904 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1904 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1904 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1904 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -1904 ((-1264) $ (-379) (-379))) (-15 -1904 ((-1264) $ (-379) (-379) (-379))) (-15 -3761 ((-1264) $ (-1152))) (-15 -1679 ((-1264) $ (-1152))) (-15 -4348 ((-1264) $ (-1152))) (-15 -3684 ((-1264) $ (-1152))) (-15 -2988 ((-1264) $ (-1152))) (-15 -3453 ((-1264) $ (-379) (-379))) (-15 -3453 ((-1264) $ (-564) (-564))) (-15 -3824 ((-1264) $ (-379))) (-15 -3824 ((-1264) $ (-379) (-379) (-379))) (-15 -2069 ((-1264) $ (-379) (-379))) (-15 -1502 ((-1264) $ (-1152))) (-15 -3201 ((-1264) $ (-379))) (-15 -2651 ((-1264) $ (-379))) (-15 -3711 ((-1264) $ (-1152))) (-15 -4108 ((-1264) $ (-1152))) (-15 -1658 ((-1264) $ (-1152))) (-15 -3660 ((-1264) $ (-379) (-379) (-379))) (-15 -2457 ((-1264) $ (-379))) (-15 -1500 ((-1264) $)) (-15 -2146 ((-1264) $ (-157) (-157))) (-15 -1520 ((-1152) $ (-1152))) (-15 -1520 ((-1152) $ (-1152) (-1152))) (-15 -1520 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3489 ((-1264) $)) (-15 -1350 ((-564) $))))) (T -1261))
+((-1336 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1336 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1320 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1320 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3019 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3019 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1623 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1623 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3263 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2622 (*1 *1) (-5 *1 (-1261))) (-4338 (*1 *1 *1) (-5 *1 (-1261))) (-4338 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261)))) (-4338 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-1776 (*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-1872 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-1930 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2757 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2755 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2405 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1904 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1261)))) (-1904 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1904 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1904 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1904 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3761 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1679 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4348 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3684 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2988 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3453 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3453 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3824 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3824 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2069 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1502 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2651 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3711 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1658 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3660 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2457 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2146 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1520 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-1520 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-1520 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1350 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261)))))
+(-13 (-1094) (-10 -8 (-15 -1336 ((-379))) (-15 -1336 ((-379) (-379))) (-15 -1320 ((-379))) (-15 -1320 ((-379) (-379))) (-15 -3019 ((-379))) (-15 -3019 ((-379) (-379))) (-15 -1623 ((-379))) (-15 -1623 ((-379) (-379))) (-15 -3263 ((-379))) (-15 -3263 ((-379) (-379))) (-15 -2622 ($)) (-15 -4338 ($ $)) (-15 -4338 ($ (-1127 (-225)) (-1152))) (-15 -4338 ($ (-1127 (-225)) (-641 (-263)))) (-15 -1776 ((-1127 (-225)) $)) (-15 -1776 ($ $ (-1127 (-225)))) (-15 -1872 ((-1264) $ (-768) (-940 (-225)))) (-15 -3931 ((-641 (-263)) $)) (-15 -3931 ($ $ (-641 (-263)))) (-15 -1930 ((-1264) $ (-768) (-768))) (-15 -2757 ((-1264) $ (-918) (-918))) (-15 -2755 ((-1264) $ (-1152))) (-15 -2405 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -1904 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -1904 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -1904 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1904 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -1904 ((-1264) $ (-379) (-379))) (-15 -1904 ((-1264) $ (-379) (-379) (-379))) (-15 -3761 ((-1264) $ (-1152))) (-15 -1679 ((-1264) $ (-1152))) (-15 -4348 ((-1264) $ (-1152))) (-15 -3684 ((-1264) $ (-1152))) (-15 -2988 ((-1264) $ (-1152))) (-15 -3453 ((-1264) $ (-379) (-379))) (-15 -3453 ((-1264) $ (-564) (-564))) (-15 -3824 ((-1264) $ (-379))) (-15 -3824 ((-1264) $ (-379) (-379) (-379))) (-15 -2069 ((-1264) $ (-379) (-379))) (-15 -1502 ((-1264) $ (-1152))) (-15 -3201 ((-1264) $ (-379))) (-15 -2651 ((-1264) $ (-379))) (-15 -3711 ((-1264) $ (-1152))) (-15 -4108 ((-1264) $ (-1152))) (-15 -1658 ((-1264) $ (-1152))) (-15 -3660 ((-1264) $ (-379) (-379) (-379))) (-15 -2457 ((-1264) $ (-379))) (-15 -1500 ((-1264) $)) (-15 -2146 ((-1264) $ (-157) (-157))) (-15 -1520 ((-1152) $ (-1152))) (-15 -1520 ((-1152) $ (-1152) (-1152))) (-15 -1520 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3489 ((-1264) $)) (-15 -1350 ((-564) $))))
+((-1460 (((-641 (-1152)) (-641 (-1152))) 104) (((-641 (-1152))) 96)) (-1372 (((-641 (-1152))) 94)) (-2087 (((-641 (-918)) (-641 (-918))) 69) (((-641 (-918))) 64)) (-1646 (((-641 (-768)) (-641 (-768))) 61) (((-641 (-768))) 55)) (-4331 (((-1264)) 71)) (-1709 (((-918) (-918)) 87) (((-918)) 86)) (-4176 (((-918) (-918)) 85) (((-918)) 84)) (-3351 (((-871) (-871)) 81) (((-871)) 80)) (-3477 (((-225)) 91) (((-225) (-379)) 93)) (-4178 (((-918)) 88) (((-918) (-918)) 89)) (-2268 (((-918) (-918)) 83) (((-918)) 82)) (-1565 (((-871) (-871)) 75) (((-871)) 73)) (-2673 (((-871) (-871)) 77) (((-871)) 76)) (-3545 (((-871) (-871)) 79) (((-871)) 78)))
+(((-1262) (-10 -7 (-15 -1565 ((-871))) (-15 -1565 ((-871) (-871))) (-15 -2673 ((-871))) (-15 -2673 ((-871) (-871))) (-15 -3545 ((-871))) (-15 -3545 ((-871) (-871))) (-15 -3351 ((-871))) (-15 -3351 ((-871) (-871))) (-15 -2268 ((-918))) (-15 -2268 ((-918) (-918))) (-15 -1646 ((-641 (-768)))) (-15 -1646 ((-641 (-768)) (-641 (-768)))) (-15 -2087 ((-641 (-918)))) (-15 -2087 ((-641 (-918)) (-641 (-918)))) (-15 -4331 ((-1264))) (-15 -1460 ((-641 (-1152)))) (-15 -1460 ((-641 (-1152)) (-641 (-1152)))) (-15 -1372 ((-641 (-1152)))) (-15 -4176 ((-918))) (-15 -1709 ((-918))) (-15 -4176 ((-918) (-918))) (-15 -1709 ((-918) (-918))) (-15 -4178 ((-918) (-918))) (-15 -4178 ((-918))) (-15 -3477 ((-225) (-379))) (-15 -3477 ((-225))))) (T -1262))
+((-3477 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262)))) (-4178 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-4178 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-1709 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-1709 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-4176 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-1372 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-1460 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-4331 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) (-2087 (*1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) (-1646 (*1 *2 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) (-1646 (*1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2268 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-3351 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-3545 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2673 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-1565 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-1565 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
+(-10 -7 (-15 -1565 ((-871))) (-15 -1565 ((-871) (-871))) (-15 -2673 ((-871))) (-15 -2673 ((-871) (-871))) (-15 -3545 ((-871))) (-15 -3545 ((-871) (-871))) (-15 -3351 ((-871))) (-15 -3351 ((-871) (-871))) (-15 -2268 ((-918))) (-15 -2268 ((-918) (-918))) (-15 -1646 ((-641 (-768)))) (-15 -1646 ((-641 (-768)) (-641 (-768)))) (-15 -2087 ((-641 (-918)))) (-15 -2087 ((-641 (-918)) (-641 (-918)))) (-15 -4331 ((-1264))) (-15 -1460 ((-641 (-1152)))) (-15 -1460 ((-641 (-1152)) (-641 (-1152)))) (-15 -1372 ((-641 (-1152)))) (-15 -4176 ((-918))) (-15 -1709 ((-918))) (-15 -4176 ((-918) (-918))) (-15 -1709 ((-918) (-918))) (-15 -4178 ((-918) (-918))) (-15 -4178 ((-918))) (-15 -3477 ((-225) (-379))) (-15 -3477 ((-225))))
+((-2545 (((-468) (-641 (-641 (-940 (-225)))) (-641 (-263))) 22) (((-468) (-641 (-641 (-940 (-225))))) 21) (((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263))) 20)) (-1999 (((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263))) 33) (((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263))) 32)) (-3714 (((-1260) (-468)) 48)))
+(((-1263) (-10 -7 (-15 -2545 ((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -2545 ((-468) (-641 (-641 (-940 (-225)))))) (-15 -2545 ((-468) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -1999 ((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -1999 ((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -3714 ((-1260) (-468))))) (T -1263))
+((-3714 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-1999 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-1999 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-2545 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-2545 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))))
+(-10 -7 (-15 -2545 ((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -2545 ((-468) (-641 (-641 (-940 (-225)))))) (-15 -2545 ((-468) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -1999 ((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -1999 ((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -3714 ((-1260) (-468))))
+((-3035 (($) 7)) (-3714 (((-859) $) 10)))
+(((-1264) (-13 (-611 (-859)) (-10 -8 (-15 -3035 ($))))) (T -1264))
+((-3035 (*1 *1) (-5 *1 (-1264))))
+(-13 (-611 (-859)) (-10 -8 (-15 -3035 ($))))
+((-1841 (($ $ |#2|) 10)))
+(((-1265 |#1| |#2|) (-10 -8 (-15 -1841 (|#1| |#1| |#2|))) (-1266 |#2|) (-363)) (T -1265))
+NIL
+(-10 -8 (-15 -1841 (|#1| |#1| |#2|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-2869 (((-134)) 28)) (-3714 (((-859) $) 11)) (-4312 (($) 18 T CONST)) (-1720 (((-112) $ $) 6)) (-1841 (($ $ |#1|) 29)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-1266 |#1|) (-140) (-363)) (T -1266))
-((-1793 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363)))) (-3850 (*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
-(-13 (-714 |t#1|) (-10 -8 (-15 -1793 ($ $ |t#1|)) (-15 -3850 ((-134)))))
+((-1841 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363)))) (-2869 (*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
+(-13 (-714 |t#1|) (-10 -8 (-15 -1841 ($ $ |t#1|)) (-15 -2869 ((-134)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-1052 |#1|) . T) ((-1094) . T))
-((-2660 (((-641 (-1203 |#1|)) (-1170) (-1203 |#1|)) 83)) (-2815 (((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|))) 63)) (-4044 (((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))) 74)) (-4073 (((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768)) 65)) (-1656 (((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170)) 32)) (-4218 (((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768)) 64)))
-(((-1267 |#1|) (-10 -7 (-15 -4073 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -4218 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -2815 ((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|)))) (-15 -1656 ((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170))) (-15 -2660 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -4044 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))))) (-363)) (T -1267))
-((-4044 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-768)) (-4 *6 (-363)) (-5 *4 (-1203 *6)) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6)) (-5 *5 (-1150 *4)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5))) (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-949 *4)) (-949 *4))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-2815 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-949 *5)))) (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-949 *5))))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
-(-10 -7 (-15 -4073 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -4218 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -2815 ((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|)))) (-15 -1656 ((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170))) (-15 -2660 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -4044 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|)))))
-((-4018 (((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 85)) (-1791 (((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 84)))
-(((-1268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1791 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -4018 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|))) (-349) (-1235 |#1|) (-1235 |#2|) (-409 |#2| |#3|)) (T -1268))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-1791 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -3941 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
-(-10 -7 (-15 -1791 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -4018 ((-2 (|:| -3941 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)))
-((-1754 (((-112) $ $) NIL)) (-2158 (((-1129) $) 11)) (-3145 (((-1129) $) 9)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-1269) (-13 (-1077) (-10 -8 (-15 -3145 ((-1129) $)) (-15 -2158 ((-1129) $))))) (T -1269))
-((-3145 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))))
-(-13 (-1077) (-10 -8 (-15 -3145 ((-1129) $)) (-15 -2158 ((-1129) $))))
-((-1754 (((-112) $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2092 (((-1129) $) 9)) (-1765 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1686 (((-112) $ $) NIL)))
-(((-1270) (-13 (-1077) (-10 -8 (-15 -2092 ((-1129) $))))) (T -1270))
-((-2092 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270)))))
-(-13 (-1077) (-10 -8 (-15 -2092 ((-1129) $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 56)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) NIL)) (-2419 (((-112) $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-1765 (((-859) $) 79) (($ (-564)) NIL) (($ |#4|) 63) ((|#4| $) 68) (($ |#1|) NIL (|has| |#1| (-172)))) (-1965 (((-768)) NIL T CONST)) (-3451 (((-1264) (-768)) 16)) (-4317 (($) 37 T CONST)) (-4327 (($) 82 T CONST)) (-1686 (((-112) $ $) 85)) (-1793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1783 (($ $) 87) (($ $ $) NIL)) (-1771 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 89) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-1271 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1046) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1793 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3451 ((-1264) (-768))))) (-1046) (-847) (-790) (-946 |#1| |#3| |#2|) (-641 |#2|) (-641 (-768)) (-768)) (T -1271))
-((-1793 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-790)) (-14 *6 (-641 *3)) (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-946 *2 *4 *3)) (-14 *7 (-641 (-768))) (-14 *8 (-768)))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-14 *8 (-641 *5)) (-5 *2 (-1264)) (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-946 *4 *6 *5)) (-14 *9 (-641 *3)) (-14 *10 *3))))
-(-13 (-1046) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1793 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3451 ((-1264) (-768)))))
-((-1754 (((-112) $ $) NIL)) (-2163 (((-641 (-2 (|:| -3439 $) (|:| -1589 (-641 |#4|)))) (-641 |#4|)) NIL)) (-4389 (((-641 $) (-641 |#4|)) 95)) (-4170 (((-641 |#3|) $) NIL)) (-1747 (((-112) $) NIL)) (-2197 (((-112) $) NIL (|has| |#1| (-556)))) (-1940 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3993 ((|#4| |#4| $) NIL)) (-2494 (((-2 (|:| |under| $) (|:| -2677 $) (|:| |upper| $)) $ |#3|) NIL)) (-3263 (((-112) $ (-768)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3760 (($) NIL T CONST)) (-4177 (((-112) $) NIL (|has| |#1| (-556)))) (-3911 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2694 (((-112) $ $) NIL (|has| |#1| (-556)))) (-1378 (((-112) $) NIL (|has| |#1| (-556)))) (-3207 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 30)) (-2254 (((-641 |#4|) (-641 |#4|) $) 27 (|has| |#1| (-556)))) (-2821 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2013 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2064 (($ (-641 |#4|)) NIL)) (-3086 (((-3 $ "failed") $) 77)) (-2758 ((|#4| |#4| $) 82)) (-3104 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2359 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2746 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4269 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3621 ((|#4| |#4| $) NIL)) (-4367 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2058 (((-2 (|:| -3439 (-641 |#4|)) (|:| -1589 (-641 |#4|))) $) NIL)) (-3080 (((-641 |#4|) $) NIL (|has| $ (-6 -4411)))) (-2415 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3162 ((|#3| $) 83)) (-2830 (((-112) $ (-768)) NIL)) (-3817 (((-641 |#4|) $) 31 (|has| $ (-6 -4411)))) (-3675 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-1973 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 34) (((-3 $ "failed") (-641 |#4|)) 37)) (-3513 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4412)))) (-2082 (($ (-1 |#4| |#4|) $) NIL)) (-4343 (((-641 |#3|) $) NIL)) (-1853 (((-112) |#3| $) NIL)) (-2972 (((-112) $ (-768)) NIL)) (-4202 (((-1152) $) NIL)) (-2376 (((-3 |#4| "failed") $) NIL)) (-3277 (((-641 |#4|) $) 53)) (-3561 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3874 ((|#4| |#4| $) 81)) (-3862 (((-112) $ $) 92)) (-3962 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1512 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3491 ((|#4| |#4| $) NIL)) (-3802 (((-1114) $) NIL)) (-3073 (((-3 |#4| "failed") $) 76)) (-2343 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3159 (((-3 $ "failed") $ |#4|) NIL)) (-2678 (($ $ |#4|) NIL)) (-1467 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2407 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-2606 (((-112) $ $) NIL)) (-2742 (((-112) $) 74)) (-3845 (($) 45)) (-3344 (((-768) $) NIL)) (-3815 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1899 (($ $) NIL)) (-2127 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-1776 (($ (-641 |#4|)) NIL)) (-2318 (($ $ |#3|) NIL)) (-1869 (($ $ |#3|) NIL)) (-3430 (($ $) NIL)) (-1845 (($ $ |#3|) NIL)) (-1765 (((-859) $) NIL) (((-641 |#4|) $) 62)) (-1597 (((-768) $) NIL (|has| |#3| (-368)))) (-2413 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43) (((-3 $ "failed") (-641 |#4|)) 44)) (-4108 (((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72) (((-641 $) (-641 |#4|)) 73)) (-3063 (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 26) (((-3 (-2 (|:| |bas| $) (|:| -1417 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1599 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-2237 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2380 (((-641 |#3|) $) NIL)) (-3623 (((-112) |#3| $) NIL)) (-1686 (((-112) $ $) NIL)) (-2589 (((-768) $) NIL (|has| $ (-6 -4411)))))
-(((-1272 |#1| |#2| |#3| |#4|) (-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1973 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1973 ((-3 $ "failed") (-641 |#4|))) (-15 -2413 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2413 ((-3 $ "failed") (-641 |#4|))) (-15 -4108 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4108 ((-641 $) (-641 |#4|))))) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1272))
-((-1973 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-1973 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-2413 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-2413 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-641 (-1272 *6 *7 *8 *9))) (-5 *1 (-1272 *6 *7 *8 *9)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-1272 *4 *5 *6 *7))) (-5 *1 (-1272 *4 *5 *6 *7)))))
-(-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1973 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1973 ((-3 $ "failed") (-641 |#4|))) (-15 -2413 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2413 ((-3 $ "failed") (-641 |#4|))) (-15 -4108 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4108 ((-641 $) (-641 |#4|)))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3936 (((-3 $ "failed") $ $) 19)) (-3760 (($) 17 T CONST)) (-1926 (((-3 $ "failed") $) 33)) (-2419 (((-112) $) 31)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 39)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
+((-2903 (((-641 (-1203 |#1|)) (-1170) (-1203 |#1|)) 83)) (-2038 (((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|))) 63)) (-3983 (((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))) 74)) (-3056 (((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768)) 65)) (-3394 (((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170)) 32)) (-2033 (((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768)) 64)))
+(((-1267 |#1|) (-10 -7 (-15 -3056 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -2033 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -2038 ((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|)))) (-15 -3394 ((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170))) (-15 -2903 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -3983 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))))) (-363)) (T -1267))
+((-3983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-768)) (-4 *6 (-363)) (-5 *4 (-1203 *6)) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6)) (-5 *5 (-1150 *4)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5))) (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-949 *4)) (-949 *4))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-949 *5)))) (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-949 *5))))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
+(-10 -7 (-15 -3056 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -2033 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -2038 ((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|)))) (-15 -3394 ((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170))) (-15 -2903 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -3983 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|)))))
+((-3733 (((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 85)) (-2339 (((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 84)))
+(((-1268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2339 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3733 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|))) (-349) (-1235 |#1|) (-1235 |#2|) (-409 |#2| |#3|)) (T -1268))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-2339 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -4339 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
+(-10 -7 (-15 -2339 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -3733 ((-2 (|:| -4339 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)))
+((-3702 (((-112) $ $) NIL)) (-1682 (((-1129) $) 11)) (-2202 (((-1129) $) 9)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-1269) (-13 (-1077) (-10 -8 (-15 -2202 ((-1129) $)) (-15 -1682 ((-1129) $))))) (T -1269))
+((-2202 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))))
+(-13 (-1077) (-10 -8 (-15 -2202 ((-1129) $)) (-15 -1682 ((-1129) $))))
+((-3702 (((-112) $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4059 (((-1129) $) 9)) (-3714 (((-859) $) 15) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1720 (((-112) $ $) NIL)))
+(((-1270) (-13 (-1077) (-10 -8 (-15 -4059 ((-1129) $))))) (T -1270))
+((-4059 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270)))))
+(-13 (-1077) (-10 -8 (-15 -4059 ((-1129) $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 56)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) NIL)) (-2340 (((-112) $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3714 (((-859) $) 79) (($ (-564)) NIL) (($ |#4|) 63) ((|#4| $) 68) (($ |#1|) NIL (|has| |#1| (-172)))) (-3379 (((-768)) NIL T CONST)) (-3294 (((-1264) (-768)) 16)) (-4312 (($) 37 T CONST)) (-4323 (($) 82 T CONST)) (-1720 (((-112) $ $) 85)) (-1841 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1828 (($ $) 87) (($ $ $) NIL)) (-1814 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 89) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-1271 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1046) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1841 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3294 ((-1264) (-768))))) (-1046) (-847) (-790) (-946 |#1| |#3| |#2|) (-641 |#2|) (-641 (-768)) (-768)) (T -1271))
+((-1841 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-790)) (-14 *6 (-641 *3)) (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-946 *2 *4 *3)) (-14 *7 (-641 (-768))) (-14 *8 (-768)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-14 *8 (-641 *5)) (-5 *2 (-1264)) (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-946 *4 *6 *5)) (-14 *9 (-641 *3)) (-14 *10 *3))))
+(-13 (-1046) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1841 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3294 ((-1264) (-768)))))
+((-3702 (((-112) $ $) NIL)) (-1743 (((-641 (-2 (|:| -3489 $) (|:| -1721 (-641 |#4|)))) (-641 |#4|)) NIL)) (-4055 (((-641 $) (-641 |#4|)) 95)) (-4292 (((-641 |#3|) $) NIL)) (-3097 (((-112) $) NIL)) (-2092 (((-112) $) NIL (|has| |#1| (-556)))) (-1300 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3500 ((|#4| |#4| $) NIL)) (-2904 (((-2 (|:| |under| $) (|:| -3034 $) (|:| |upper| $)) $ |#3|) NIL)) (-2141 (((-112) $ (-768)) NIL)) (-4148 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3180 (($) NIL T CONST)) (-2846 (((-112) $) NIL (|has| |#1| (-556)))) (-2228 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3171 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3798 (((-112) $) NIL (|has| |#1| (-556)))) (-1578 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 30)) (-1373 (((-641 |#4|) (-641 |#4|) $) 27 (|has| |#1| (-556)))) (-2094 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2224 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2376 (($ (-641 |#4|)) NIL)) (-2063 (((-3 $ "failed") $) 77)) (-2687 ((|#4| |#4| $) 82)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-2514 (($ |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2550 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-4300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4344 ((|#4| |#4| $) NIL)) (-1728 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4412))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4412))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3151 (((-2 (|:| -3489 (-641 |#4|)) (|:| -1721 (-641 |#4|))) $) NIL)) (-4244 (((-641 |#4|) $) NIL (|has| $ (-6 -4412)))) (-2297 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2394 ((|#3| $) 83)) (-2173 (((-112) $ (-768)) NIL)) (-2572 (((-641 |#4|) $) 31 (|has| $ (-6 -4412)))) (-3601 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094))))) (-3446 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 34) (((-3 $ "failed") (-641 |#4|)) 37)) (-1988 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4413)))) (-2313 (($ (-1 |#4| |#4|) $) NIL)) (-3652 (((-641 |#3|) $) NIL)) (-1722 (((-112) |#3| $) NIL)) (-4144 (((-112) $ (-768)) NIL)) (-1868 (((-1152) $) NIL)) (-2541 (((-3 |#4| "failed") $) NIL)) (-4104 (((-641 |#4|) $) 53)) (-1954 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1863 ((|#4| |#4| $) 81)) (-1733 (((-112) $ $) 92)) (-1434 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1485 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2543 ((|#4| |#4| $) NIL)) (-3844 (((-1114) $) NIL)) (-2049 (((-3 |#4| "failed") $) 76)) (-2905 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2359 (((-3 $ "failed") $ |#4|) NIL)) (-3042 (($ $ |#4|) NIL)) (-2280 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-2582 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-3447 (((-112) $ $) NIL)) (-2510 (((-112) $) 74)) (-2834 (($) 45)) (-3475 (((-768) $) NIL)) (-3855 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3890 (($ $) NIL)) (-2374 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-3725 (($ (-641 |#4|)) NIL)) (-3789 (($ $ |#3|) NIL)) (-1896 (($ $ |#3|) NIL)) (-3121 (($ $) NIL)) (-1632 (($ $ |#3|) NIL)) (-3714 (((-859) $) NIL) (((-641 |#4|) $) 62)) (-4113 (((-768) $) NIL (|has| |#3| (-368)))) (-2276 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43) (((-3 $ "failed") (-641 |#4|)) 44)) (-3313 (((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72) (((-641 $) (-641 |#4|)) 73)) (-3769 (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 26) (((-3 (-2 (|:| |bas| $) (|:| -2667 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4138 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-4289 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4412)))) (-3148 (((-641 |#3|) $) NIL)) (-4368 (((-112) |#3| $) NIL)) (-1720 (((-112) $ $) NIL)) (-2779 (((-768) $) NIL (|has| $ (-6 -4412)))))
+(((-1272 |#1| |#2| |#3| |#4|) (-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3446 ((-3 $ "failed") (-641 |#4|))) (-15 -2276 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2276 ((-3 $ "failed") (-641 |#4|))) (-15 -3313 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3313 ((-641 $) (-641 |#4|))))) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1272))
+((-3446 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-3446 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-2276 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-2276 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-641 (-1272 *6 *7 *8 *9))) (-5 *1 (-1272 *6 *7 *8 *9)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-1272 *4 *5 *6 *7))) (-5 *1 (-1272 *4 *5 *6 *7)))))
+(-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3446 ((-3 $ "failed") (-641 |#4|))) (-15 -2276 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2276 ((-3 $ "failed") (-641 |#4|))) (-15 -3313 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3313 ((-641 $) (-641 |#4|)))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-4281 (((-3 $ "failed") $ $) 19)) (-3180 (($) 17 T CONST)) (-4272 (((-3 $ "failed") $) 33)) (-2340 (((-112) $) 31)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 39)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40)))
(((-1273 |#1|) (-140) (-1046)) (T -1273))
NIL
(-13 (-1046) (-111 |t#1| |t#1|) (-614 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T))
-((-1754 (((-112) $ $) 66)) (-3976 (((-112) $) NIL)) (-3265 (((-641 |#1|) $) 52)) (-2496 (($ $ (-768)) 46)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2024 (($ $ (-768)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-3760 (($) NIL T CONST)) (-2839 (($ $ $) 69) (($ $ (-816 |#1|)) 55) (($ $ |#1|) 59)) (-2013 (((-3 (-816 |#1|) "failed") $) NIL)) (-2064 (((-816 |#1|) $) NIL)) (-4346 (($ $) 39)) (-1926 (((-3 $ "failed") $) NIL)) (-2046 (((-112) $) NIL)) (-4036 (($ $) NIL)) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-2292 (($ (-816 |#1|) |#2|) 38)) (-2776 (($ $) 40)) (-2950 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 12)) (-2872 (((-816 |#1|) $) NIL)) (-3399 (((-816 |#1|) $) 41)) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2558 (($ $ $) 68) (($ $ (-816 |#1|)) 57) (($ $ |#1|) 61)) (-2536 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4311 (((-816 |#1|) $) 35)) (-4323 ((|#2| $) 37)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-3344 (((-768) $) 43)) (-2813 (((-112) $) 47)) (-3246 ((|#2| $) NIL)) (-1765 (((-859) $) NIL) (($ (-816 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-564)) NIL)) (-4264 (((-641 |#2|) $) NIL)) (-1757 ((|#2| $ (-816 |#1|)) NIL)) (-1662 ((|#2| $ $) 75) ((|#2| $ (-816 |#1|)) NIL)) (-1965 (((-768)) NIL T CONST)) (-4317 (($) 13 T CONST)) (-4327 (($) 19 T CONST)) (-3723 (((-641 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1686 (((-112) $ $) 44)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 28)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 67) (($ |#2| (-816 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+((-3702 (((-112) $ $) 66)) (-1556 (((-112) $) NIL)) (-3441 (((-641 |#1|) $) 52)) (-1887 (($ $ (-768)) 46)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2867 (($ $ (-768)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-3180 (($) NIL T CONST)) (-4084 (($ $ $) 69) (($ $ (-816 |#1|)) 55) (($ $ |#1|) 59)) (-2224 (((-3 (-816 |#1|) "failed") $) NIL)) (-2376 (((-816 |#1|) $) NIL)) (-1374 (($ $) 39)) (-4272 (((-3 $ "failed") $) NIL)) (-3049 (((-112) $) NIL)) (-3910 (($ $) NIL)) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-2579 (($ (-816 |#1|) |#2|) 38)) (-2843 (($ $) 40)) (-4025 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 12)) (-1362 (((-816 |#1|) $) NIL)) (-2888 (((-816 |#1|) $) 41)) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-4286 (($ $ $) 68) (($ $ (-816 |#1|)) 57) (($ $ |#1|) 61)) (-4063 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1330 (((-816 |#1|) $) 35)) (-1345 ((|#2| $) 37)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-3475 (((-768) $) 43)) (-2017 (((-112) $) 47)) (-2222 ((|#2| $) NIL)) (-3714 (((-859) $) NIL) (($ (-816 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-564)) NIL)) (-4252 (((-641 |#2|) $) NIL)) (-3181 ((|#2| $ (-816 |#1|)) NIL)) (-1817 ((|#2| $ $) 75) ((|#2| $ (-816 |#1|)) NIL)) (-3379 (((-768)) NIL T CONST)) (-4312 (($) 13 T CONST)) (-4323 (($) 19 T CONST)) (-2902 (((-641 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1720 (((-112) $ $) 44)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 28)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 67) (($ |#2| (-816 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
(((-1274 |#1| |#2|) (-13 (-382 |#2| (-816 |#1|)) (-1280 |#1| |#2|)) (-847) (-1046)) (T -1274))
NIL
(-13 (-382 |#2| (-816 |#1|)) (-1280 |#1| |#2|))
-((-2186 ((|#3| |#3| (-768)) 30)) (-2152 ((|#3| |#3| (-768)) 36)) (-2402 ((|#3| |#3| |#3| (-768)) 37)))
-(((-1275 |#1| |#2| |#3|) (-10 -7 (-15 -2152 (|#3| |#3| (-768))) (-15 -2186 (|#3| |#3| (-768))) (-15 -2402 (|#3| |#3| |#3| (-768)))) (-13 (-1046) (-714 (-407 (-564)))) (-847) (-1280 |#2| |#1|)) (T -1275))
-((-2402 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-2186 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-2152 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))))
-(-10 -7 (-15 -2152 (|#3| |#3| (-768))) (-15 -2186 (|#3| |#3| (-768))) (-15 -2402 (|#3| |#3| |#3| (-768))))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3265 (((-641 |#1|) $) 41)) (-3936 (((-3 $ "failed") $ $) 19)) (-2024 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-768)) 43 (|has| |#2| (-172)))) (-3760 (($) 17 T CONST)) (-2839 (($ $ |#1|) 55) (($ $ (-816 |#1|)) 54) (($ $ $) 53)) (-2013 (((-3 (-816 |#1|) "failed") $) 65)) (-2064 (((-816 |#1|) $) 66)) (-1926 (((-3 $ "failed") $) 33)) (-2046 (((-112) $) 46)) (-4036 (($ $) 45)) (-2419 (((-112) $) 31)) (-3101 (((-112) $) 51)) (-2292 (($ (-816 |#1|) |#2|) 52)) (-2776 (($ $) 50)) (-2950 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 61)) (-2872 (((-816 |#1|) $) 62)) (-2082 (($ (-1 |#2| |#2|) $) 42)) (-2558 (($ $ |#1|) 58) (($ $ (-816 |#1|)) 57) (($ $ $) 56)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-2813 (((-112) $) 48)) (-3246 ((|#2| $) 47)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-816 |#1|)) 64) (($ |#1|) 49)) (-1662 ((|#2| $ (-816 |#1|)) 60) ((|#2| $ $) 59)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+((-2305 ((|#3| |#3| (-768)) 30)) (-4130 ((|#3| |#3| (-768)) 36)) (-3312 ((|#3| |#3| |#3| (-768)) 37)))
+(((-1275 |#1| |#2| |#3|) (-10 -7 (-15 -4130 (|#3| |#3| (-768))) (-15 -2305 (|#3| |#3| (-768))) (-15 -3312 (|#3| |#3| |#3| (-768)))) (-13 (-1046) (-714 (-407 (-564)))) (-847) (-1280 |#2| |#1|)) (T -1275))
+((-3312 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-2305 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-4130 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))))
+(-10 -7 (-15 -4130 (|#3| |#3| (-768))) (-15 -2305 (|#3| |#3| (-768))) (-15 -3312 (|#3| |#3| |#3| (-768))))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3441 (((-641 |#1|) $) 41)) (-4281 (((-3 $ "failed") $ $) 19)) (-2867 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-768)) 43 (|has| |#2| (-172)))) (-3180 (($) 17 T CONST)) (-4084 (($ $ |#1|) 55) (($ $ (-816 |#1|)) 54) (($ $ $) 53)) (-2224 (((-3 (-816 |#1|) "failed") $) 65)) (-2376 (((-816 |#1|) $) 66)) (-4272 (((-3 $ "failed") $) 33)) (-3049 (((-112) $) 46)) (-3910 (($ $) 45)) (-2340 (((-112) $) 31)) (-2961 (((-112) $) 51)) (-2579 (($ (-816 |#1|) |#2|) 52)) (-2843 (($ $) 50)) (-4025 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 61)) (-1362 (((-816 |#1|) $) 62)) (-2313 (($ (-1 |#2| |#2|) $) 42)) (-4286 (($ $ |#1|) 58) (($ $ (-816 |#1|)) 57) (($ $ $) 56)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-2017 (((-112) $) 48)) (-2222 ((|#2| $) 47)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-816 |#1|)) 64) (($ |#1|) 49)) (-1817 ((|#2| $ (-816 |#1|)) 60) ((|#2| $ $) 59)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
(((-1276 |#1| |#2|) (-140) (-847) (-1046)) (T -1276))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-816 *3)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-2 (|:| |k| (-816 *3)) (|:| |c| *4))))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-816 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-847)) (-4 *2 (-1046)))) (-1662 (*1 *2 *1 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (-2558 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2558 (*1 *1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-2558 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2839 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2839 (*1 *1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-2839 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2292 (*1 *1 *2 *3) (-12 (-5 *2 (-816 *4)) (-4 *4 (-847)) (-4 *1 (-1276 *4 *3)) (-4 *3 (-1046)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-2776 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-1765 (*1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-3246 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-4036 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2024 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)) (-4 *3 (-172)))) (-2024 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-4 *4 (-172)))) (-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-641 *3)))))
-(-13 (-1046) (-1273 |t#2|) (-1035 (-816 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2872 ((-816 |t#1|) $)) (-15 -2950 ((-2 (|:| |k| (-816 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1662 (|t#2| $ (-816 |t#1|))) (-15 -1662 (|t#2| $ $)) (-15 -2558 ($ $ |t#1|)) (-15 -2558 ($ $ (-816 |t#1|))) (-15 -2558 ($ $ $)) (-15 -2839 ($ $ |t#1|)) (-15 -2839 ($ $ (-816 |t#1|))) (-15 -2839 ($ $ $)) (-15 -2292 ($ (-816 |t#1|) |t#2|)) (-15 -3101 ((-112) $)) (-15 -2776 ($ $)) (-15 -1765 ($ |t#1|)) (-15 -2813 ((-112) $)) (-15 -3246 (|t#2| $)) (-15 -2046 ((-112) $)) (-15 -4036 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -2024 ($ $ $)) (-15 -2024 ($ $ (-768)))) |%noBranch|) (-15 -2082 ($ (-1 |t#2| |t#2|) $)) (-15 -3265 ((-641 |t#1|) $)) (IF (|has| |t#2| (-6 -4404)) (-6 -4404) |%noBranch|)))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-816 *3)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-2 (|:| |k| (-816 *3)) (|:| |c| *4))))) (-1817 (*1 *2 *1 *3) (-12 (-5 *3 (-816 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-847)) (-4 *2 (-1046)))) (-1817 (*1 *2 *1 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (-4286 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-4286 (*1 *1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-4286 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-4084 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-4084 (*1 *1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-4084 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2579 (*1 *1 *2 *3) (-12 (-5 *2 (-816 *4)) (-4 *4 (-847)) (-4 *1 (-1276 *4 *3)) (-4 *3 (-1046)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-2843 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-3714 (*1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-3910 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2867 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)) (-4 *3 (-172)))) (-2867 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-4 *4 (-172)))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-641 *3)))))
+(-13 (-1046) (-1273 |t#2|) (-1035 (-816 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1362 ((-816 |t#1|) $)) (-15 -4025 ((-2 (|:| |k| (-816 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1817 (|t#2| $ (-816 |t#1|))) (-15 -1817 (|t#2| $ $)) (-15 -4286 ($ $ |t#1|)) (-15 -4286 ($ $ (-816 |t#1|))) (-15 -4286 ($ $ $)) (-15 -4084 ($ $ |t#1|)) (-15 -4084 ($ $ (-816 |t#1|))) (-15 -4084 ($ $ $)) (-15 -2579 ($ (-816 |t#1|) |t#2|)) (-15 -2961 ((-112) $)) (-15 -2843 ($ $)) (-15 -3714 ($ |t#1|)) (-15 -2017 ((-112) $)) (-15 -2222 (|t#2| $)) (-15 -3049 ((-112) $)) (-15 -3910 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -2867 ($ $ $)) (-15 -2867 ($ $ (-768)))) |%noBranch|) (-15 -2313 ($ (-1 |t#2| |t#2|) $)) (-15 -3441 ((-641 |t#1|) $)) (IF (|has| |t#2| (-6 -4405)) (-6 -4405) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-816 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-714 |#2|) |has| |#2| (-172)) ((-723) . T) ((-1035 #0#) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T))
-((-2868 (((-112) $) 14)) (-3623 (((-112) $) 13)) (-1560 (($ $) 18) (($ $ (-768)) 20)))
-(((-1277 |#1| |#2|) (-10 -8 (-15 -1560 (|#1| |#1| (-768))) (-15 -1560 (|#1| |#1|)) (-15 -2868 ((-112) |#1|)) (-15 -3623 ((-112) |#1|))) (-1278 |#2|) (-363)) (T -1277))
+((-1309 (((-112) $) 14)) (-4368 (((-112) $) 13)) (-1946 (($ $) 18) (($ $ (-768)) 20)))
+(((-1277 |#1| |#2|) (-10 -8 (-15 -1946 (|#1| |#1| (-768))) (-15 -1946 (|#1| |#1|)) (-15 -1309 ((-112) |#1|)) (-15 -4368 ((-112) |#1|))) (-1278 |#2|) (-363)) (T -1277))
NIL
-(-10 -8 (-15 -1560 (|#1| |#1| (-768))) (-15 -1560 (|#1| |#1|)) (-15 -2868 ((-112) |#1|)) (-15 -3623 ((-112) |#1|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3584 (((-2 (|:| -1950 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1840 (($ $) 41)) (-4035 (((-112) $) 39)) (-2868 (((-112) $) 95)) (-1743 (((-768)) 91)) (-3936 (((-3 $ "failed") $ $) 19)) (-1368 (($ $) 74)) (-3981 (((-418 $) $) 73)) (-3385 (((-112) $ $) 60)) (-3760 (($) 17 T CONST)) (-2013 (((-3 |#1| "failed") $) 102)) (-2064 ((|#1| $) 103)) (-1387 (($ $ $) 56)) (-1926 (((-3 $ "failed") $) 33)) (-1366 (($ $ $) 57)) (-3508 (((-2 (|:| -1662 (-641 $)) (|:| -1502 $)) (-641 $)) 52)) (-2184 (($ $ (-768)) 88 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3241 (((-112) $) 72)) (-2261 (((-830 (-918)) $) 85 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2419 (((-112) $) 31)) (-1953 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2488 (($ $ $) 47) (($ (-641 $)) 46)) (-4202 (((-1152) $) 9)) (-4272 (($ $) 71)) (-4120 (((-112) $) 94)) (-3802 (((-1114) $) 10)) (-3281 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2527 (($ $ $) 49) (($ (-641 $)) 48)) (-4006 (((-418 $) $) 75)) (-1369 (((-830 (-918))) 92)) (-2887 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1502 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1343 (((-3 $ "failed") $ $) 43)) (-2001 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3712 (((-768) $) 59)) (-1959 (((-2 (|:| -3741 $) (|:| -2746 $)) $ $) 58)) (-1504 (((-3 (-768) "failed") $ $) 86 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3850 (((-134)) 100)) (-3344 (((-830 (-918)) $) 93)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-2864 (((-3 $ "failed") $) 84 (-4002 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1965 (((-768)) 28 T CONST)) (-1582 (((-112) $ $) 40)) (-3623 (((-112) $) 96)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1560 (($ $) 90 (|has| |#1| (-368))) (($ $ (-768)) 89 (|has| |#1| (-368)))) (-1686 (((-112) $ $) 6)) (-1793 (($ $ $) 66) (($ $ |#1|) 99)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
+(-10 -8 (-15 -1946 (|#1| |#1| (-768))) (-15 -1946 (|#1| |#1|)) (-15 -1309 ((-112) |#1|)) (-15 -4368 ((-112) |#1|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-2156 (((-2 (|:| -1425 $) (|:| -4399 $) (|:| |associate| $)) $) 42)) (-1582 (($ $) 41)) (-3897 (((-112) $) 39)) (-1309 (((-112) $) 95)) (-3062 (((-768)) 91)) (-4281 (((-3 $ "failed") $ $) 19)) (-1328 (($ $) 74)) (-1592 (((-418 $) $) 73)) (-3907 (((-112) $ $) 60)) (-3180 (($) 17 T CONST)) (-2224 (((-3 |#1| "failed") $) 102)) (-2376 ((|#1| $) 103)) (-1399 (($ $ $) 56)) (-4272 (((-3 $ "failed") $) 33)) (-1371 (($ $ $) 57)) (-2701 (((-2 (|:| -1817 (-641 $)) (|:| -1729 $)) (-641 $)) 52)) (-1957 (($ $ (-768)) 88 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1926 (((-112) $) 72)) (-1454 (((-830 (-918)) $) 85 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2340 (((-112) $) 31)) (-1457 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2688 (($ $ $) 47) (($ (-641 $)) 46)) (-1868 (((-1152) $) 9)) (-1295 (($ $) 71)) (-2309 (((-112) $) 94)) (-3844 (((-1114) $) 10)) (-4150 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2727 (($ $ $) 49) (($ (-641 $)) 48)) (-4139 (((-418 $) $) 75)) (-3117 (((-830 (-918))) 92)) (-1534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1729 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1347 (((-3 $ "failed") $ $) 43)) (-3768 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3966 (((-768) $) 59)) (-3329 (((-2 (|:| -3031 $) (|:| -2550 $)) $ $) 58)) (-2671 (((-3 (-768) "failed") $ $) 86 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2869 (((-134)) 100)) (-3475 (((-830 (-918)) $) 93)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-4363 (((-3 $ "failed") $) 84 (-4012 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3379 (((-768)) 28 T CONST)) (-3979 (((-112) $ $) 40)) (-4368 (((-112) $) 96)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1946 (($ $) 90 (|has| |#1| (-368))) (($ $ (-768)) 89 (|has| |#1| (-368)))) (-1720 (((-112) $ $) 6)) (-1841 (($ $ $) 66) (($ $ |#1|) 99)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97)))
(((-1278 |#1|) (-140) (-363)) (T -1278))
-((-3623 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2868 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) (-1369 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) (-1743 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-768)))) (-1560 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368)))))
-(-13 (-363) (-1035 |t#1|) (-1266 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -3623 ((-112) $)) (-15 -2868 ((-112) $)) (-15 -4120 ((-112) $)) (-15 -3344 ((-830 (-918)) $)) (-15 -1369 ((-830 (-918)))) (-15 -1743 ((-768))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -1560 ($ $)) (-15 -1560 ($ $ (-768)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4002 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -4002 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T) ((-1266 |#1|) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3265 (((-641 |#1|) $) 98)) (-2496 (($ $ (-768)) 102)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2024 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-768)) NIL (|has| |#2| (-172)))) (-3760 (($) NIL T CONST)) (-2839 (($ $ |#1|) NIL) (($ $ (-816 |#1|)) NIL) (($ $ $) NIL)) (-2013 (((-3 (-816 |#1|) "failed") $) NIL) (((-3 (-890 |#1|) "failed") $) NIL)) (-2064 (((-816 |#1|) $) NIL) (((-890 |#1|) $) NIL)) (-4346 (($ $) 101)) (-1926 (((-3 $ "failed") $) NIL)) (-2046 (((-112) $) 90)) (-4036 (($ $) 93)) (-3123 (($ $ $ (-768)) 103)) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-2292 (($ (-816 |#1|) |#2|) NIL) (($ (-890 |#1|) |#2|) 28)) (-2776 (($ $) 120)) (-2950 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2872 (((-816 |#1|) $) NIL)) (-3399 (((-816 |#1|) $) NIL)) (-2082 (($ (-1 |#2| |#2|) $) NIL)) (-2558 (($ $ |#1|) NIL) (($ $ (-816 |#1|)) NIL) (($ $ $) NIL)) (-2186 (($ $ (-768)) 113 (|has| |#2| (-714 (-407 (-564)))))) (-2536 (((-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4311 (((-890 |#1|) $) 83)) (-4323 ((|#2| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2152 (($ $ (-768)) 110 (|has| |#2| (-714 (-407 (-564)))))) (-3344 (((-768) $) 99)) (-2813 (((-112) $) 84)) (-3246 ((|#2| $) 88)) (-1765 (((-859) $) 69) (($ (-564)) NIL) (($ |#2|) 59) (($ (-816 |#1|)) NIL) (($ |#1|) 71) (($ (-890 |#1|)) NIL) (($ (-660 |#1| |#2|)) 47) (((-1274 |#1| |#2|) $) 76) (((-1283 |#1| |#2|) $) 81)) (-4264 (((-641 |#2|) $) NIL)) (-1757 ((|#2| $ (-890 |#1|)) NIL)) (-1662 ((|#2| $ (-816 |#1|)) NIL) ((|#2| $ $) NIL)) (-1965 (((-768)) NIL T CONST)) (-4317 (($) 21 T CONST)) (-4327 (($) 27 T CONST)) (-3723 (((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3257 (((-3 (-660 |#1| |#2|) "failed") $) 119)) (-1686 (((-112) $ $) 77)) (-1783 (($ $) 112) (($ $ $) 111)) (-1771 (($ $ $) 20)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 48) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-890 |#1|)) NIL)))
-(((-1279 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-382 |#2| (-890 |#1|)) (-10 -8 (-15 -1765 ($ (-660 |#1| |#2|))) (-15 -1765 ((-1274 |#1| |#2|) $)) (-15 -1765 ((-1283 |#1| |#2|) $)) (-15 -3257 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -3123 ($ $ $ (-768))) (IF (|has| |#2| (-714 (-407 (-564)))) (PROGN (-15 -2152 ($ $ (-768))) (-15 -2186 ($ $ (-768)))) |%noBranch|))) (-847) (-172)) (T -1279))
-((-1765 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *1 (-1279 *3 *4)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3257 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3123 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-2152 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))) (-2186 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))))
-(-13 (-1280 |#1| |#2|) (-382 |#2| (-890 |#1|)) (-10 -8 (-15 -1765 ($ (-660 |#1| |#2|))) (-15 -1765 ((-1274 |#1| |#2|) $)) (-15 -1765 ((-1283 |#1| |#2|) $)) (-15 -3257 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -3123 ($ $ $ (-768))) (IF (|has| |#2| (-714 (-407 (-564)))) (PROGN (-15 -2152 ($ $ (-768))) (-15 -2186 ($ $ (-768)))) |%noBranch|)))
-((-1754 (((-112) $ $) 7)) (-3976 (((-112) $) 16)) (-3265 (((-641 |#1|) $) 41)) (-2496 (($ $ (-768)) 74)) (-3936 (((-3 $ "failed") $ $) 19)) (-2024 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-768)) 43 (|has| |#2| (-172)))) (-3760 (($) 17 T CONST)) (-2839 (($ $ |#1|) 55) (($ $ (-816 |#1|)) 54) (($ $ $) 53)) (-2013 (((-3 (-816 |#1|) "failed") $) 65)) (-2064 (((-816 |#1|) $) 66)) (-1926 (((-3 $ "failed") $) 33)) (-2046 (((-112) $) 46)) (-4036 (($ $) 45)) (-2419 (((-112) $) 31)) (-3101 (((-112) $) 51)) (-2292 (($ (-816 |#1|) |#2|) 52)) (-2776 (($ $) 50)) (-2950 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 61)) (-2872 (((-816 |#1|) $) 62)) (-3399 (((-816 |#1|) $) 76)) (-2082 (($ (-1 |#2| |#2|) $) 42)) (-2558 (($ $ |#1|) 58) (($ $ (-816 |#1|)) 57) (($ $ $) 56)) (-4202 (((-1152) $) 9)) (-3802 (((-1114) $) 10)) (-3344 (((-768) $) 75)) (-2813 (((-112) $) 48)) (-3246 ((|#2| $) 47)) (-1765 (((-859) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-816 |#1|)) 64) (($ |#1|) 49)) (-1662 ((|#2| $ (-816 |#1|)) 60) ((|#2| $ $) 59)) (-1965 (((-768)) 28 T CONST)) (-4317 (($) 18 T CONST)) (-4327 (($) 30 T CONST)) (-1686 (((-112) $ $) 6)) (-1783 (($ $) 22) (($ $ $) 21)) (-1771 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
+((-4368 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1309 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) (-3117 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) (-3062 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-768)))) (-1946 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-1946 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368)))))
+(-13 (-363) (-1035 |t#1|) (-1266 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -4368 ((-112) $)) (-15 -1309 ((-112) $)) (-15 -2309 ((-112) $)) (-15 -3475 ((-830 (-918)) $)) (-15 -3117 ((-830 (-918)))) (-15 -3062 ((-768))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -1946 ($ $)) (-15 -1946 ($ $ (-768)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4012 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -4012 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T) ((-1266 |#1|) . T))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3441 (((-641 |#1|) $) 98)) (-1887 (($ $ (-768)) 102)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2867 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-768)) NIL (|has| |#2| (-172)))) (-3180 (($) NIL T CONST)) (-4084 (($ $ |#1|) NIL) (($ $ (-816 |#1|)) NIL) (($ $ $) NIL)) (-2224 (((-3 (-816 |#1|) "failed") $) NIL) (((-3 (-890 |#1|) "failed") $) NIL)) (-2376 (((-816 |#1|) $) NIL) (((-890 |#1|) $) NIL)) (-1374 (($ $) 101)) (-4272 (((-3 $ "failed") $) NIL)) (-3049 (((-112) $) 90)) (-3910 (($ $) 93)) (-3142 (($ $ $ (-768)) 103)) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-2579 (($ (-816 |#1|) |#2|) NIL) (($ (-890 |#1|) |#2|) 28)) (-2843 (($ $) 120)) (-4025 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1362 (((-816 |#1|) $) NIL)) (-2888 (((-816 |#1|) $) NIL)) (-2313 (($ (-1 |#2| |#2|) $) NIL)) (-4286 (($ $ |#1|) NIL) (($ $ (-816 |#1|)) NIL) (($ $ $) NIL)) (-2305 (($ $ (-768)) 113 (|has| |#2| (-714 (-407 (-564)))))) (-4063 (((-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1330 (((-890 |#1|) $) 83)) (-1345 ((|#2| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4130 (($ $ (-768)) 110 (|has| |#2| (-714 (-407 (-564)))))) (-3475 (((-768) $) 99)) (-2017 (((-112) $) 84)) (-2222 ((|#2| $) 88)) (-3714 (((-859) $) 69) (($ (-564)) NIL) (($ |#2|) 59) (($ (-816 |#1|)) NIL) (($ |#1|) 71) (($ (-890 |#1|)) NIL) (($ (-660 |#1| |#2|)) 47) (((-1274 |#1| |#2|) $) 76) (((-1283 |#1| |#2|) $) 81)) (-4252 (((-641 |#2|) $) NIL)) (-3181 ((|#2| $ (-890 |#1|)) NIL)) (-1817 ((|#2| $ (-816 |#1|)) NIL) ((|#2| $ $) NIL)) (-3379 (((-768)) NIL T CONST)) (-4312 (($) 21 T CONST)) (-4323 (($) 27 T CONST)) (-2902 (((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2093 (((-3 (-660 |#1| |#2|) "failed") $) 119)) (-1720 (((-112) $ $) 77)) (-1828 (($ $) 112) (($ $ $) 111)) (-1814 (($ $ $) 20)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 48) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-890 |#1|)) NIL)))
+(((-1279 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-382 |#2| (-890 |#1|)) (-10 -8 (-15 -3714 ($ (-660 |#1| |#2|))) (-15 -3714 ((-1274 |#1| |#2|) $)) (-15 -3714 ((-1283 |#1| |#2|) $)) (-15 -2093 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -3142 ($ $ $ (-768))) (IF (|has| |#2| (-714 (-407 (-564)))) (PROGN (-15 -4130 ($ $ (-768))) (-15 -2305 ($ $ (-768)))) |%noBranch|))) (-847) (-172)) (T -1279))
+((-3714 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *1 (-1279 *3 *4)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-2093 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3142 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))))
+(-13 (-1280 |#1| |#2|) (-382 |#2| (-890 |#1|)) (-10 -8 (-15 -3714 ($ (-660 |#1| |#2|))) (-15 -3714 ((-1274 |#1| |#2|) $)) (-15 -3714 ((-1283 |#1| |#2|) $)) (-15 -2093 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -3142 ($ $ $ (-768))) (IF (|has| |#2| (-714 (-407 (-564)))) (PROGN (-15 -4130 ($ $ (-768))) (-15 -2305 ($ $ (-768)))) |%noBranch|)))
+((-3702 (((-112) $ $) 7)) (-1556 (((-112) $) 16)) (-3441 (((-641 |#1|) $) 41)) (-1887 (($ $ (-768)) 74)) (-4281 (((-3 $ "failed") $ $) 19)) (-2867 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-768)) 43 (|has| |#2| (-172)))) (-3180 (($) 17 T CONST)) (-4084 (($ $ |#1|) 55) (($ $ (-816 |#1|)) 54) (($ $ $) 53)) (-2224 (((-3 (-816 |#1|) "failed") $) 65)) (-2376 (((-816 |#1|) $) 66)) (-4272 (((-3 $ "failed") $) 33)) (-3049 (((-112) $) 46)) (-3910 (($ $) 45)) (-2340 (((-112) $) 31)) (-2961 (((-112) $) 51)) (-2579 (($ (-816 |#1|) |#2|) 52)) (-2843 (($ $) 50)) (-4025 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 61)) (-1362 (((-816 |#1|) $) 62)) (-2888 (((-816 |#1|) $) 76)) (-2313 (($ (-1 |#2| |#2|) $) 42)) (-4286 (($ $ |#1|) 58) (($ $ (-816 |#1|)) 57) (($ $ $) 56)) (-1868 (((-1152) $) 9)) (-3844 (((-1114) $) 10)) (-3475 (((-768) $) 75)) (-2017 (((-112) $) 48)) (-2222 ((|#2| $) 47)) (-3714 (((-859) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-816 |#1|)) 64) (($ |#1|) 49)) (-1817 ((|#2| $ (-816 |#1|)) 60) ((|#2| $ $) 59)) (-3379 (((-768)) 28 T CONST)) (-4312 (($) 18 T CONST)) (-4323 (($) 30 T CONST)) (-1720 (((-112) $ $) 6)) (-1828 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63)))
(((-1280 |#1| |#2|) (-140) (-847) (-1046)) (T -1280))
-((-3399 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-816 *3)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-768)))) (-2496 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))))
-(-13 (-1276 |t#1| |t#2|) (-10 -8 (-15 -3399 ((-816 |t#1|) $)) (-15 -3344 ((-768) $)) (-15 -2496 ($ $ (-768)))))
+((-2888 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-816 *3)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-768)))) (-1887 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))))
+(-13 (-1276 |t#1| |t#2|) (-10 -8 (-15 -2888 ((-816 |t#1|) $)) (-15 -3475 ((-768) $)) (-15 -1887 ($ $ (-768)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-816 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-714 |#2|) |has| |#2| (-172)) ((-723) . T) ((-1035 #0#) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T) ((-1276 |#1| |#2|) . T))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3265 (((-641 (-1170)) $) NIL)) (-1784 (($ (-1274 (-1170) |#1|)) NIL)) (-2496 (($ $ (-768)) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2024 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-768)) NIL (|has| |#1| (-172)))) (-3760 (($) NIL T CONST)) (-2839 (($ $ (-1170)) NIL) (($ $ (-816 (-1170))) NIL) (($ $ $) NIL)) (-2013 (((-3 (-816 (-1170)) "failed") $) NIL)) (-2064 (((-816 (-1170)) $) NIL)) (-1926 (((-3 $ "failed") $) NIL)) (-2046 (((-112) $) NIL)) (-4036 (($ $) NIL)) (-2419 (((-112) $) NIL)) (-3101 (((-112) $) NIL)) (-2292 (($ (-816 (-1170)) |#1|) NIL)) (-2776 (($ $) NIL)) (-2950 (((-2 (|:| |k| (-816 (-1170))) (|:| |c| |#1|)) $) NIL)) (-2872 (((-816 (-1170)) $) NIL)) (-3399 (((-816 (-1170)) $) NIL)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2558 (($ $ (-1170)) NIL) (($ $ (-816 (-1170))) NIL) (($ $ $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2134 (((-1274 (-1170) |#1|) $) NIL)) (-3344 (((-768) $) NIL)) (-2813 (((-112) $) NIL)) (-3246 ((|#1| $) NIL)) (-1765 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-816 (-1170))) NIL) (($ (-1170)) NIL)) (-1662 ((|#1| $ (-816 (-1170))) NIL) ((|#1| $ $) NIL)) (-1965 (((-768)) NIL T CONST)) (-4317 (($) NIL T CONST)) (-2475 (((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $) NIL)) (-4327 (($) NIL T CONST)) (-1686 (((-112) $ $) NIL)) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1170) $) NIL)))
-(((-1281 |#1|) (-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -2134 ((-1274 (-1170) |#1|) $)) (-15 -1784 ($ (-1274 (-1170) |#1|))) (-15 -2475 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $)))) (-1046)) (T -1281))
-((-2134 (*1 *2 *1) (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1046)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1046)) (-5 *1 (-1281 *3)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3))))) (-5 *1 (-1281 *3)) (-4 *3 (-1046)))))
-(-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -2134 ((-1274 (-1170) |#1|) $)) (-15 -1784 ($ (-1274 (-1170) |#1|))) (-15 -2475 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $))))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) NIL)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3760 (($) NIL T CONST)) (-2013 (((-3 |#2| "failed") $) NIL)) (-2064 ((|#2| $) NIL)) (-4346 (($ $) NIL)) (-1926 (((-3 $ "failed") $) 40)) (-2046 (((-112) $) 35)) (-4036 (($ $) 36)) (-2419 (((-112) $) NIL)) (-3107 (((-768) $) NIL)) (-2791 (((-641 $) $) NIL)) (-3101 (((-112) $) NIL)) (-2292 (($ |#2| |#1|) NIL)) (-2872 ((|#2| $) 24)) (-3399 ((|#2| $) 22)) (-2082 (($ (-1 |#1| |#1|) $) NIL)) (-2536 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4311 ((|#2| $) NIL)) (-4323 ((|#1| $) NIL)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2813 (((-112) $) 32)) (-3246 ((|#1| $) 33)) (-1765 (((-859) $) 63) (($ (-564)) 44) (($ |#1|) 39) (($ |#2|) NIL)) (-4264 (((-641 |#1|) $) NIL)) (-1757 ((|#1| $ |#2|) NIL)) (-1662 ((|#1| $ |#2|) 28)) (-1965 (((-768)) 14 T CONST)) (-4317 (($) 29 T CONST)) (-4327 (($) 11 T CONST)) (-3723 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1686 (((-112) $ $) 30)) (-1793 (($ $ |#1|) 65 (|has| |#1| (-363)))) (-1783 (($ $) NIL) (($ $ $) NIL)) (-1771 (($ $ $) 48)) (** (($ $ (-918)) NIL) (($ $ (-768)) 50)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 49) (($ |#1| $) 45) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2589 (((-768) $) 16)))
-(((-1282 |#1| |#2|) (-13 (-1046) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2589 ((-768) $)) (-15 -3399 (|#2| $)) (-15 -2872 (|#2| $)) (-15 -4346 ($ $)) (-15 -1662 (|#1| $ |#2|)) (-15 -2813 ((-112) $)) (-15 -3246 (|#1| $)) (-15 -2046 ((-112) $)) (-15 -4036 ($ $)) (-15 -2082 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1793 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|))) (-1046) (-843)) (T -1282))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-4346 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-2082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-843)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-3399 (*1 *2 *1) (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))) (-2872 (*1 *2 *1) (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))) (-1662 (*1 *2 *1 *3) (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-3246 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-4036 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-1793 (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-843)))))
-(-13 (-1046) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2589 ((-768) $)) (-15 -3399 (|#2| $)) (-15 -2872 (|#2| $)) (-15 -4346 ($ $)) (-15 -1662 (|#1| $ |#2|)) (-15 -2813 ((-112) $)) (-15 -3246 (|#1| $)) (-15 -2046 ((-112) $)) (-15 -4036 ($ $)) (-15 -2082 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1793 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|)))
-((-1754 (((-112) $ $) 27)) (-3976 (((-112) $) NIL)) (-3265 (((-641 |#1|) $) 131)) (-1784 (($ (-1274 |#1| |#2|)) 50)) (-2496 (($ $ (-768)) 38)) (-3936 (((-3 $ "failed") $ $) NIL)) (-2024 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-768)) 52 (|has| |#2| (-172)))) (-3760 (($) NIL T CONST)) (-2839 (($ $ |#1|) 113) (($ $ (-816 |#1|)) 114) (($ $ $) 26)) (-2013 (((-3 (-816 |#1|) "failed") $) NIL)) (-2064 (((-816 |#1|) $) NIL)) (-1926 (((-3 $ "failed") $) 121)) (-2046 (((-112) $) 116)) (-4036 (($ $) 117)) (-2419 (((-112) $) NIL)) (-3101 (((-112) $) NIL)) (-2292 (($ (-816 |#1|) |#2|) 20)) (-2776 (($ $) NIL)) (-2950 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2872 (((-816 |#1|) $) 122)) (-3399 (((-816 |#1|) $) 125)) (-2082 (($ (-1 |#2| |#2|) $) 130)) (-2558 (($ $ |#1|) 111) (($ $ (-816 |#1|)) 112) (($ $ $) 62)) (-4202 (((-1152) $) NIL)) (-3802 (((-1114) $) NIL)) (-2134 (((-1274 |#1| |#2|) $) 93)) (-3344 (((-768) $) 128)) (-2813 (((-112) $) 80)) (-3246 ((|#2| $) 32)) (-1765 (((-859) $) 72) (($ (-564)) 86) (($ |#2|) 84) (($ (-816 |#1|)) 18) (($ |#1|) 83)) (-1662 ((|#2| $ (-816 |#1|)) 115) ((|#2| $ $) 28)) (-1965 (((-768)) 119 T CONST)) (-4317 (($) 15 T CONST)) (-2475 (((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-4327 (($) 33 T CONST)) (-1686 (((-112) $ $) 14)) (-1783 (($ $) 97) (($ $ $) 100)) (-1771 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55)) (* (($ (-918) $) NIL) (($ (-768) $) 53) (($ (-564) $) 105) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 91)))
-(((-1283 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-10 -8 (-15 -2134 ((-1274 |#1| |#2|) $)) (-15 -1784 ($ (-1274 |#1| |#2|))) (-15 -2475 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-847) (-1046)) (T -1283))
-((-2134 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *1 (-1283 *3 *4)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4))))) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))))
-(-13 (-1280 |#1| |#2|) (-10 -8 (-15 -2134 ((-1274 |#1| |#2|) $)) (-15 -1784 ($ (-1274 |#1| |#2|))) (-15 -2475 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-4203 (((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)) 20) (((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|))) 13)))
-(((-1284 |#1|) (-10 -7 (-15 -4203 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -4203 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)))) (-1209)) (T -1284))
-((-4203 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564)) (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1284 *4)) (-4 *4 (-1209)))))
-(-10 -7 (-15 -4203 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -4203 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564))))
-((-1796 (((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|))) 173) (((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112)) 172) (((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)) 171) (((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112)) 170) (((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-1043 |#1| |#2|)) 155)) (-3719 (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|))) 84) (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112)) 83) (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112)) 82)) (-3981 (((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|)) 72)) (-2854 (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|))) 139) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112)) 138) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112)) 137) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112)) 136) (((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|)) 131)) (-2633 (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|))) 144) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112)) 143) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112)) 142) (((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|)) 141)) (-2127 (((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) 110) (((-1166 (-1021 (-407 |#1|))) (-1166 |#1|)) 101) (((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|))) 108) (((-949 (-1021 (-407 |#1|))) (-949 |#1|)) 106) (((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|))) 32)))
-(((-1285 |#1| |#2| |#3|) (-10 -7 (-15 -3719 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3719 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112))) (-15 -3719 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-1043 |#1| |#2|))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -2633 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -2633 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2633 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -2633 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -3981 ((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|))) (-15 -2127 ((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|)))) (-15 -2127 ((-949 (-1021 (-407 |#1|))) (-949 |#1|))) (-15 -2127 ((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|)))) (-15 -2127 ((-1166 (-1021 (-407 |#1|))) (-1166 |#1|))) (-15 -2127 ((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))))) (-13 (-845) (-307) (-147) (-1019)) (-641 (-1170)) (-641 (-1170))) (T -1285))
-((-2127 (*1 *2 *3) (-12 (-5 *3 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6)))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-777 *4 (-861 *6)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-1166 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-777 *4 (-861 *6))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-777 *4 (-861 *5))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-777 *4 (-861 *6))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2633 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2854 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-1796 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3707 (-1166 *4)) (|:| -3072 (-641 (-949 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-949 *4))) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-1796 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-1796 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-1796 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-2 (|:| -3707 (-1166 *4)) (|:| -3072 (-641 (-949 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *4 *5))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3719 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))))
-(-10 -7 (-15 -3719 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3719 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112))) (-15 -3719 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-1043 |#1| |#2|))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -1796 ((-641 (-2 (|:| -3707 (-1166 |#1|)) (|:| -3072 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -2854 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -2633 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -2633 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2633 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -2633 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -3981 ((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|))) (-15 -2127 ((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|)))) (-15 -2127 ((-949 (-1021 (-407 |#1|))) (-949 |#1|))) (-15 -2127 ((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|)))) (-15 -2127 ((-1166 (-1021 (-407 |#1|))) (-1166 |#1|))) (-15 -2127 ((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|))))))
-((-2788 (((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|) 21)) (-3609 (((-112) (-1259 |#1|)) 12)) (-2716 (((-3 (-1259 (-564)) "failed") (-1259 |#1|)) 16)))
-(((-1286 |#1|) (-10 -7 (-15 -3609 ((-112) (-1259 |#1|))) (-15 -2716 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -2788 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|))) (-637 (-564))) (T -1286))
-((-2788 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4)))) (-2716 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) (-5 *1 (-1286 *4)))))
-(-10 -7 (-15 -3609 ((-112) (-1259 |#1|))) (-15 -2716 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -2788 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|)))
-((-1754 (((-112) $ $) NIL)) (-3976 (((-112) $) 11)) (-3936 (((-3 $ "failed") $ $) NIL)) (-3042 (((-768)) 8)) (-3760 (($) NIL T CONST)) (-1926 (((-3 $ "failed") $) 58)) (-2542 (($) 49)) (-2419 (((-112) $) 57)) (-3374 (((-3 $ "failed") $) 40)) (-2209 (((-918) $) 15)) (-4202 (((-1152) $) NIL)) (-1611 (($) 32 T CONST)) (-1403 (($ (-918)) 50)) (-3802 (((-1114) $) NIL)) (-2127 (((-564) $) 13)) (-1765 (((-859) $) 27) (($ (-564)) 24)) (-1965 (((-768)) 9 T CONST)) (-4317 (($) 29 T CONST)) (-4327 (($) 31 T CONST)) (-1686 (((-112) $ $) 38)) (-1783 (($ $) 52) (($ $ $) 47)) (-1771 (($ $ $) 35)) (** (($ $ (-918)) NIL) (($ $ (-768)) 54)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 44) (($ $ $) 43)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-3441 (((-641 (-1170)) $) NIL)) (-2260 (($ (-1274 (-1170) |#1|)) NIL)) (-1887 (($ $ (-768)) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2867 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-768)) NIL (|has| |#1| (-172)))) (-3180 (($) NIL T CONST)) (-4084 (($ $ (-1170)) NIL) (($ $ (-816 (-1170))) NIL) (($ $ $) NIL)) (-2224 (((-3 (-816 (-1170)) "failed") $) NIL)) (-2376 (((-816 (-1170)) $) NIL)) (-4272 (((-3 $ "failed") $) NIL)) (-3049 (((-112) $) NIL)) (-3910 (($ $) NIL)) (-2340 (((-112) $) NIL)) (-2961 (((-112) $) NIL)) (-2579 (($ (-816 (-1170)) |#1|) NIL)) (-2843 (($ $) NIL)) (-4025 (((-2 (|:| |k| (-816 (-1170))) (|:| |c| |#1|)) $) NIL)) (-1362 (((-816 (-1170)) $) NIL)) (-2888 (((-816 (-1170)) $) NIL)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4286 (($ $ (-1170)) NIL) (($ $ (-816 (-1170))) NIL) (($ $ $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4111 (((-1274 (-1170) |#1|) $) NIL)) (-3475 (((-768) $) NIL)) (-2017 (((-112) $) NIL)) (-2222 ((|#1| $) NIL)) (-3714 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-816 (-1170))) NIL) (($ (-1170)) NIL)) (-1817 ((|#1| $ (-816 (-1170))) NIL) ((|#1| $ $) NIL)) (-3379 (((-768)) NIL T CONST)) (-4312 (($) NIL T CONST)) (-1677 (((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $) NIL)) (-4323 (($) NIL T CONST)) (-1720 (((-112) $ $) NIL)) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1170) $) NIL)))
+(((-1281 |#1|) (-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -4111 ((-1274 (-1170) |#1|) $)) (-15 -2260 ($ (-1274 (-1170) |#1|))) (-15 -1677 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $)))) (-1046)) (T -1281))
+((-4111 (*1 *2 *1) (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1046)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1046)) (-5 *1 (-1281 *3)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3))))) (-5 *1 (-1281 *3)) (-4 *3 (-1046)))))
+(-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -4111 ((-1274 (-1170) |#1|) $)) (-15 -2260 ($ (-1274 (-1170) |#1|))) (-15 -1677 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $))))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) NIL)) (-4281 (((-3 $ "failed") $ $) NIL)) (-3180 (($) NIL T CONST)) (-2224 (((-3 |#2| "failed") $) NIL)) (-2376 ((|#2| $) NIL)) (-1374 (($ $) NIL)) (-4272 (((-3 $ "failed") $) 40)) (-3049 (((-112) $) 35)) (-3910 (($ $) 36)) (-2340 (((-112) $) NIL)) (-2998 (((-768) $) NIL)) (-1767 (((-641 $) $) NIL)) (-2961 (((-112) $) NIL)) (-2579 (($ |#2| |#1|) NIL)) (-1362 ((|#2| $) 24)) (-2888 ((|#2| $) 22)) (-2313 (($ (-1 |#1| |#1|) $) NIL)) (-4063 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1330 ((|#2| $) NIL)) (-1345 ((|#1| $) NIL)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-2017 (((-112) $) 32)) (-2222 ((|#1| $) 33)) (-3714 (((-859) $) 63) (($ (-564)) 44) (($ |#1|) 39) (($ |#2|) NIL)) (-4252 (((-641 |#1|) $) NIL)) (-3181 ((|#1| $ |#2|) NIL)) (-1817 ((|#1| $ |#2|) 28)) (-3379 (((-768)) 14 T CONST)) (-4312 (($) 29 T CONST)) (-4323 (($) 11 T CONST)) (-2902 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1720 (((-112) $ $) 30)) (-1841 (($ $ |#1|) 65 (|has| |#1| (-363)))) (-1828 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 48)) (** (($ $ (-918)) NIL) (($ $ (-768)) 50)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 49) (($ |#1| $) 45) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2779 (((-768) $) 16)))
+(((-1282 |#1| |#2|) (-13 (-1046) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2779 ((-768) $)) (-15 -2888 (|#2| $)) (-15 -1362 (|#2| $)) (-15 -1374 ($ $)) (-15 -1817 (|#1| $ |#2|)) (-15 -2017 ((-112) $)) (-15 -2222 (|#1| $)) (-15 -3049 ((-112) $)) (-15 -3910 ($ $)) (-15 -2313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1841 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|))) (-1046) (-843)) (T -1282))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-1374 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-2313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-843)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-2888 (*1 *2 *1) (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))) (-1362 (*1 *2 *1) (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))) (-1817 (*1 *2 *1 *3) (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-2222 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-1841 (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-843)))))
+(-13 (-1046) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2779 ((-768) $)) (-15 -2888 (|#2| $)) (-15 -1362 (|#2| $)) (-15 -1374 ($ $)) (-15 -1817 (|#1| $ |#2|)) (-15 -2017 ((-112) $)) (-15 -2222 (|#1| $)) (-15 -3049 ((-112) $)) (-15 -3910 ($ $)) (-15 -2313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1841 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|) (IF (|has| |#1| (-6 -4410)) (-6 -4410) |%noBranch|)))
+((-3702 (((-112) $ $) 27)) (-1556 (((-112) $) NIL)) (-3441 (((-641 |#1|) $) 131)) (-2260 (($ (-1274 |#1| |#2|)) 50)) (-1887 (($ $ (-768)) 38)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2867 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-768)) 52 (|has| |#2| (-172)))) (-3180 (($) NIL T CONST)) (-4084 (($ $ |#1|) 113) (($ $ (-816 |#1|)) 114) (($ $ $) 26)) (-2224 (((-3 (-816 |#1|) "failed") $) NIL)) (-2376 (((-816 |#1|) $) NIL)) (-4272 (((-3 $ "failed") $) 121)) (-3049 (((-112) $) 116)) (-3910 (($ $) 117)) (-2340 (((-112) $) NIL)) (-2961 (((-112) $) NIL)) (-2579 (($ (-816 |#1|) |#2|) 20)) (-2843 (($ $) NIL)) (-4025 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1362 (((-816 |#1|) $) 122)) (-2888 (((-816 |#1|) $) 125)) (-2313 (($ (-1 |#2| |#2|) $) 130)) (-4286 (($ $ |#1|) 111) (($ $ (-816 |#1|)) 112) (($ $ $) 62)) (-1868 (((-1152) $) NIL)) (-3844 (((-1114) $) NIL)) (-4111 (((-1274 |#1| |#2|) $) 93)) (-3475 (((-768) $) 128)) (-2017 (((-112) $) 80)) (-2222 ((|#2| $) 32)) (-3714 (((-859) $) 72) (($ (-564)) 86) (($ |#2|) 84) (($ (-816 |#1|)) 18) (($ |#1|) 83)) (-1817 ((|#2| $ (-816 |#1|)) 115) ((|#2| $ $) 28)) (-3379 (((-768)) 119 T CONST)) (-4312 (($) 15 T CONST)) (-1677 (((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-4323 (($) 33 T CONST)) (-1720 (((-112) $ $) 14)) (-1828 (($ $) 97) (($ $ $) 100)) (-1814 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55)) (* (($ (-918) $) NIL) (($ (-768) $) 53) (($ (-564) $) 105) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 91)))
+(((-1283 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-10 -8 (-15 -4111 ((-1274 |#1| |#2|) $)) (-15 -2260 ($ (-1274 |#1| |#2|))) (-15 -1677 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-847) (-1046)) (T -1283))
+((-4111 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *1 (-1283 *3 *4)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4))))) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))))
+(-13 (-1280 |#1| |#2|) (-10 -8 (-15 -4111 ((-1274 |#1| |#2|) $)) (-15 -2260 ($ (-1274 |#1| |#2|))) (-15 -1677 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-4192 (((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)) 20) (((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|))) 13)))
+(((-1284 |#1|) (-10 -7 (-15 -4192 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -4192 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)))) (-1209)) (T -1284))
+((-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564)) (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1284 *4)) (-4 *4 (-1209)))))
+(-10 -7 (-15 -4192 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -4192 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564))))
+((-2388 (((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|))) 173) (((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112)) 172) (((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)) 171) (((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112)) 170) (((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-1043 |#1| |#2|)) 155)) (-4006 (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|))) 84) (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112)) 83) (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112)) 82)) (-1592 (((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|)) 72)) (-4258 (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|))) 139) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112)) 138) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112)) 137) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112)) 136) (((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|)) 131)) (-3760 (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|))) 144) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112)) 143) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112)) 142) (((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|)) 141)) (-2374 (((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) 110) (((-1166 (-1021 (-407 |#1|))) (-1166 |#1|)) 101) (((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|))) 108) (((-949 (-1021 (-407 |#1|))) (-949 |#1|)) 106) (((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|))) 32)))
+(((-1285 |#1| |#2| |#3|) (-10 -7 (-15 -4006 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112))) (-15 -4006 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112))) (-15 -4006 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-1043 |#1| |#2|))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -3760 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -3760 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3760 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -3760 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -1592 ((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|))) (-15 -2374 ((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|)))) (-15 -2374 ((-949 (-1021 (-407 |#1|))) (-949 |#1|))) (-15 -2374 ((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|)))) (-15 -2374 ((-1166 (-1021 (-407 |#1|))) (-1166 |#1|))) (-15 -2374 ((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))))) (-13 (-845) (-307) (-147) (-1019)) (-641 (-1170)) (-641 (-1170))) (T -1285))
+((-2374 (*1 *2 *3) (-12 (-5 *3 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6)))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-777 *4 (-861 *6)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-1166 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-777 *4 (-861 *6))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-777 *4 (-861 *5))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-777 *4 (-861 *6))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3760 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3760 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4258 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4258 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2388 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3924 (-1166 *4)) (|:| -3867 (-641 (-949 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-949 *4))) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2388 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2388 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2388 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-2 (|:| -3924 (-1166 *4)) (|:| -3867 (-641 (-949 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *4 *5))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4006 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))))
+(-10 -7 (-15 -4006 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112))) (-15 -4006 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112))) (-15 -4006 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-1043 |#1| |#2|))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -2388 ((-641 (-2 (|:| -3924 (-1166 |#1|)) (|:| -3867 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -4258 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -3760 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -3760 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3760 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -3760 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -1592 ((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|))) (-15 -2374 ((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|)))) (-15 -2374 ((-949 (-1021 (-407 |#1|))) (-949 |#1|))) (-15 -2374 ((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|)))) (-15 -2374 ((-1166 (-1021 (-407 |#1|))) (-1166 |#1|))) (-15 -2374 ((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|))))))
+((-1734 (((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|) 21)) (-4229 (((-112) (-1259 |#1|)) 12)) (-3360 (((-3 (-1259 (-564)) "failed") (-1259 |#1|)) 16)))
+(((-1286 |#1|) (-10 -7 (-15 -4229 ((-112) (-1259 |#1|))) (-15 -3360 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -1734 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|))) (-637 (-564))) (T -1286))
+((-1734 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4)))) (-3360 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4)))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) (-5 *1 (-1286 *4)))))
+(-10 -7 (-15 -4229 ((-112) (-1259 |#1|))) (-15 -3360 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -1734 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|)))
+((-3702 (((-112) $ $) NIL)) (-1556 (((-112) $) 11)) (-4281 (((-3 $ "failed") $ $) NIL)) (-2018 (((-768)) 8)) (-3180 (($) NIL T CONST)) (-4272 (((-3 $ "failed") $) 58)) (-2939 (($) 49)) (-2340 (((-112) $) 57)) (-3804 (((-3 $ "failed") $) 40)) (-4031 (((-918) $) 15)) (-1868 (((-1152) $) NIL)) (-3304 (($) 32 T CONST)) (-3338 (($ (-918)) 50)) (-3844 (((-1114) $) NIL)) (-2374 (((-564) $) 13)) (-3714 (((-859) $) 27) (($ (-564)) 24)) (-3379 (((-768)) 9 T CONST)) (-4312 (($) 29 T CONST)) (-4323 (($) 31 T CONST)) (-1720 (((-112) $ $) 38)) (-1828 (($ $) 52) (($ $ $) 47)) (-1814 (($ $ $) 35)) (** (($ $ (-918)) NIL) (($ $ (-768)) 54)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 44) (($ $ $) 43)))
(((-1287 |#1|) (-13 (-172) (-368) (-612 (-564)) (-1145)) (-918)) (T -1287))
NIL
(-13 (-172) (-368) (-612 (-564)) (-1145))
@@ -5306,4 +5306,4 @@ NIL
NIL
NIL
NIL
-((-3 3199892 3199897 3199902 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3199877 3199882 3199887 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3199862 3199867 3199872 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3199847 3199852 3199857 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1287 3199016 3199722 3199799 "ZMOD" 3199804 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1286 3198126 3198290 3198499 "ZLINDEP" 3198848 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1285 3187426 3189194 3191166 "ZDSOLVE" 3196256 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1284 3186672 3186813 3187002 "YSTREAM" 3187272 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1283 3184473 3185973 3186177 "XRPOLY" 3186515 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1282 3181053 3182344 3182919 "XPR" 3183945 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1281 3178801 3180384 3180588 "XPOLY" 3180884 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1280 3176584 3177926 3177981 "XPOLYC" 3178269 NIL XPOLYC (NIL T T) -9 NIL 3178382 NIL) (-1279 3172987 3175101 3175489 "XPBWPOLY" 3176242 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1278 3168890 3171150 3171192 "XF" 3171813 NIL XF (NIL T) -9 NIL 3172213 NIL) (-1277 3168511 3168599 3168768 "XF-" 3168773 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1276 3163837 3165100 3165155 "XFALG" 3167327 NIL XFALG (NIL T T) -9 NIL 3168116 NIL) (-1275 3162970 3163074 3163279 "XEXPPKG" 3163729 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1274 3161106 3162820 3162916 "XDPOLY" 3162921 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1273 3160043 3160617 3160660 "XALG" 3160665 NIL XALG (NIL T) -9 NIL 3160776 NIL) (-1272 3153512 3158020 3158514 "WUTSET" 3159635 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1271 3151795 3152564 3152887 "WP" 3153323 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1270 3151424 3151617 3151687 "WHILEAST" 3151747 T WHILEAST (NIL) -8 NIL NIL NIL) (-1269 3150923 3151141 3151235 "WHEREAST" 3151352 T WHEREAST (NIL) -8 NIL NIL NIL) (-1268 3149809 3150007 3150302 "WFFINTBS" 3150720 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1267 3147713 3148140 3148602 "WEIER" 3149381 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1266 3146860 3147284 3147326 "VSPACE" 3147462 NIL VSPACE (NIL T) -9 NIL 3147536 NIL) (-1265 3146698 3146725 3146816 "VSPACE-" 3146821 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1264 3146506 3146549 3146617 "VOID" 3146652 T VOID (NIL) -8 NIL NIL NIL) (-1263 3144642 3145001 3145407 "VIEW" 3146122 T VIEW (NIL) -7 NIL NIL NIL) (-1262 3141066 3141705 3142442 "VIEWDEF" 3143927 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1261 3130397 3132614 3134787 "VIEW3D" 3138915 T VIEW3D (NIL) -8 NIL NIL NIL) (-1260 3122675 3124308 3125887 "VIEW2D" 3128840 T VIEW2D (NIL) -8 NIL NIL NIL) (-1259 3118077 3122445 3122537 "VECTOR" 3122618 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1258 3116654 3116913 3117231 "VECTOR2" 3117807 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1257 3110181 3114438 3114481 "VECTCAT" 3115474 NIL VECTCAT (NIL T) -9 NIL 3116060 NIL) (-1256 3109195 3109449 3109839 "VECTCAT-" 3109844 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1255 3108676 3108846 3108966 "VARIABLE" 3109110 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1254 3108609 3108614 3108644 "UTYPE" 3108649 T UTYPE (NIL) -9 NIL NIL NIL) (-1253 3107439 3107593 3107855 "UTSODETL" 3108435 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1252 3104879 3105339 3105863 "UTSODE" 3106980 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1251 3096743 3102505 3102994 "UTS" 3104448 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3087978 3093310 3093353 "UTSCAT" 3094465 NIL UTSCAT (NIL T) -9 NIL 3095222 NIL) (-1249 3085326 3086048 3087037 "UTSCAT-" 3087042 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1248 3084953 3084996 3085129 "UTS2" 3085277 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1247 3079226 3081791 3081834 "URAGG" 3083904 NIL URAGG (NIL T) -9 NIL 3084627 NIL) (-1246 3076165 3077028 3078151 "URAGG-" 3078156 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1245 3071881 3074779 3075251 "UPXSSING" 3075829 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1244 3063974 3071128 3071401 "UPXS" 3071666 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1243 3057074 3063878 3063950 "UPXSCONS" 3063955 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1242 3047311 3054069 3054131 "UPXSCCA" 3054705 NIL UPXSCCA (NIL T T) -9 NIL 3054938 NIL) (-1241 3046949 3047034 3047208 "UPXSCCA-" 3047213 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1240 3037039 3043570 3043613 "UPXSCAT" 3044261 NIL UPXSCAT (NIL T) -9 NIL 3044869 NIL) (-1239 3036469 3036548 3036727 "UPXS2" 3036954 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1238 3035123 3035376 3035727 "UPSQFREE" 3036212 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1237 3028903 3031925 3031980 "UPSCAT" 3033141 NIL UPSCAT (NIL T T) -9 NIL 3033915 NIL) (-1236 3028107 3028314 3028641 "UPSCAT-" 3028646 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1235 3013949 3021955 3021998 "UPOLYC" 3024099 NIL UPOLYC (NIL T) -9 NIL 3025320 NIL) (-1234 3005277 3007703 3010850 "UPOLYC-" 3010855 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1233 3004904 3004947 3005080 "UPOLYC2" 3005228 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1232 2996470 3004587 3004716 "UP" 3004823 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1231 2995809 2995916 2996080 "UPMP" 2996359 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1230 2995362 2995443 2995582 "UPDIVP" 2995722 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1229 2993930 2994179 2994495 "UPDECOMP" 2995111 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1228 2993165 2993277 2993462 "UPCDEN" 2993814 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1227 2992684 2992753 2992902 "UP2" 2993090 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1226 2991199 2991888 2992165 "UNISEG" 2992442 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1225 2990414 2990541 2990746 "UNISEG2" 2991042 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1224 2989474 2989654 2989880 "UNIFACT" 2990230 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1223 2973433 2988651 2988902 "ULS" 2989281 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1222 2961459 2973337 2973409 "ULSCONS" 2973414 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1221 2944067 2956017 2956079 "ULSCCAT" 2956717 NIL ULSCCAT (NIL T T) -9 NIL 2957005 NIL) (-1220 2943117 2943362 2943750 "ULSCCAT-" 2943755 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1219 2932984 2939429 2939472 "ULSCAT" 2940335 NIL ULSCAT (NIL T) -9 NIL 2941065 NIL) (-1218 2932414 2932493 2932672 "ULS2" 2932899 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1217 2931531 2932014 2932121 "UINT8" 2932232 T UINT8 (NIL) -8 NIL NIL 2932317) (-1216 2930647 2931130 2931237 "UINT64" 2931348 T UINT64 (NIL) -8 NIL NIL 2931433) (-1215 2929763 2930246 2930353 "UINT32" 2930464 T UINT32 (NIL) -8 NIL NIL 2930549) (-1214 2928879 2929362 2929469 "UINT16" 2929580 T UINT16 (NIL) -8 NIL NIL 2929665) (-1213 2927274 2928205 2928235 "UFD" 2928447 T UFD (NIL) -9 NIL 2928561 NIL) (-1212 2927068 2927114 2927209 "UFD-" 2927214 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1211 2926150 2926333 2926549 "UDVO" 2926874 T UDVO (NIL) -7 NIL NIL NIL) (-1210 2923966 2924375 2924846 "UDPO" 2925714 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1209 2923899 2923904 2923934 "TYPE" 2923939 T TYPE (NIL) -9 NIL NIL NIL) (-1208 2923686 2923854 2923885 "TYPEAST" 2923890 T TYPEAST (NIL) -8 NIL NIL NIL) (-1207 2922657 2922859 2923099 "TWOFACT" 2923480 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1206 2921728 2922066 2922301 "TUPLE" 2922457 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1205 2919419 2919938 2920477 "TUBETOOL" 2921211 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1204 2918268 2918473 2918714 "TUBE" 2919212 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1203 2913024 2917240 2917523 "TS" 2918020 NIL TS (NIL T) -8 NIL NIL NIL) (-1202 2901691 2905783 2905880 "TSETCAT" 2911149 NIL TSETCAT (NIL T T T T) -9 NIL 2912680 NIL) (-1201 2896423 2898023 2899914 "TSETCAT-" 2899919 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1200 2890685 2891532 2892474 "TRMANIP" 2895559 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1199 2890126 2890189 2890352 "TRIMAT" 2890617 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1198 2887922 2888159 2888523 "TRIGMNIP" 2889875 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1197 2887442 2887555 2887585 "TRIGCAT" 2887798 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1196 2887111 2887190 2887331 "TRIGCAT-" 2887336 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1195 2884004 2885969 2886250 "TREE" 2886865 NIL TREE (NIL T) -8 NIL NIL NIL) (-1194 2883278 2883806 2883836 "TRANFUN" 2883871 T TRANFUN (NIL) -9 NIL 2883937 NIL) (-1193 2882557 2882748 2883028 "TRANFUN-" 2883033 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1192 2882361 2882393 2882454 "TOPSP" 2882518 T TOPSP (NIL) -7 NIL NIL NIL) (-1191 2881709 2881824 2881978 "TOOLSIGN" 2882242 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1190 2880370 2880886 2881125 "TEXTFILE" 2881492 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1189 2878309 2878823 2879252 "TEX" 2879963 T TEX (NIL) -8 NIL NIL NIL) (-1188 2878090 2878121 2878193 "TEX1" 2878272 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1187 2877738 2877801 2877891 "TEMUTL" 2878022 T TEMUTL (NIL) -7 NIL NIL NIL) (-1186 2875892 2876172 2876497 "TBCMPPK" 2877461 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1185 2867780 2874052 2874108 "TBAGG" 2874508 NIL TBAGG (NIL T T) -9 NIL 2874719 NIL) (-1184 2862850 2864338 2866092 "TBAGG-" 2866097 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1183 2862234 2862341 2862486 "TANEXP" 2862739 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1182 2855735 2862091 2862184 "TABLE" 2862189 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1181 2855147 2855246 2855384 "TABLEAU" 2855632 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1180 2849755 2850975 2852223 "TABLBUMP" 2853933 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1179 2848977 2849124 2849305 "SYSTEM" 2849596 T SYSTEM (NIL) -8 NIL NIL NIL) (-1178 2845436 2846135 2846918 "SYSSOLP" 2848228 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1177 2844470 2844948 2845067 "SYSNNI" 2845253 NIL SYSNNI (NIL NIL) -8 NIL NIL 2845338) (-1176 2843767 2844199 2844278 "SYSINT" 2844338 NIL SYSINT (NIL NIL) -8 NIL NIL 2844383) (-1175 2840126 2841045 2841755 "SYNTAX" 2843079 T SYNTAX (NIL) -8 NIL NIL NIL) (-1174 2837284 2837886 2838518 "SYMTAB" 2839516 T SYMTAB (NIL) -8 NIL NIL NIL) (-1173 2832533 2833435 2834418 "SYMS" 2836323 T SYMS (NIL) -8 NIL NIL NIL) (-1172 2829795 2831991 2832221 "SYMPOLY" 2832338 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1171 2829312 2829387 2829510 "SYMFUNC" 2829707 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1170 2825358 2826624 2827437 "SYMBOL" 2828521 T SYMBOL (NIL) -8 NIL NIL NIL) (-1169 2818897 2820586 2822306 "SWITCH" 2823660 T SWITCH (NIL) -8 NIL NIL NIL) (-1168 2812158 2817718 2818021 "SUTS" 2818652 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2804251 2811405 2811678 "SUPXS" 2811943 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2795766 2803869 2803995 "SUP" 2804160 NIL SUP (NIL T) -8 NIL NIL NIL) (-1165 2794925 2795052 2795269 "SUPFRACF" 2795634 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1164 2794546 2794605 2794718 "SUP2" 2794860 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1163 2792959 2793233 2793596 "SUMRF" 2794245 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1162 2792273 2792339 2792538 "SUMFS" 2792880 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1161 2776267 2791450 2791701 "SULS" 2792080 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2775896 2776089 2776159 "SUCHTAST" 2776219 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1159 2775218 2775421 2775561 "SUCH" 2775804 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1158 2769112 2770124 2771083 "SUBSPACE" 2774306 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1157 2768542 2768632 2768796 "SUBRESP" 2769000 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1156 2761907 2763207 2764518 "STTF" 2767278 NIL STTF (NIL T) -7 NIL NIL NIL) (-1155 2756080 2757200 2758347 "STTFNC" 2760807 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1154 2747391 2749262 2751056 "STTAYLOR" 2754321 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1153 2740635 2747255 2747338 "STRTBL" 2747343 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1152 2736026 2740590 2740621 "STRING" 2740626 T STRING (NIL) -8 NIL NIL NIL) (-1151 2730914 2735399 2735429 "STRICAT" 2735488 T STRICAT (NIL) -9 NIL 2735550 NIL) (-1150 2723717 2728533 2729144 "STREAM" 2730338 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1149 2723227 2723304 2723448 "STREAM3" 2723634 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1148 2722209 2722392 2722627 "STREAM2" 2723040 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1147 2721897 2721949 2722042 "STREAM1" 2722151 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1146 2720913 2721094 2721325 "STINPROD" 2721713 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1145 2720491 2720675 2720705 "STEP" 2720785 T STEP (NIL) -9 NIL 2720863 NIL) (-1144 2714034 2720390 2720467 "STBL" 2720472 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1143 2709208 2713255 2713298 "STAGG" 2713451 NIL STAGG (NIL T) -9 NIL 2713540 NIL) (-1142 2706910 2707512 2708384 "STAGG-" 2708389 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1141 2705105 2706680 2706772 "STACK" 2706853 NIL STACK (NIL T) -8 NIL NIL NIL) (-1140 2697828 2703246 2703702 "SREGSET" 2704735 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1139 2690253 2691622 2693135 "SRDCMPK" 2696434 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1138 2683220 2687693 2687723 "SRAGG" 2689026 T SRAGG (NIL) -9 NIL 2689634 NIL) (-1137 2682237 2682492 2682871 "SRAGG-" 2682876 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1136 2676724 2681184 2681605 "SQMATRIX" 2681863 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1135 2670471 2673442 2674169 "SPLTREE" 2676069 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1134 2666461 2667127 2667773 "SPLNODE" 2669897 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1133 2665508 2665741 2665771 "SPFCAT" 2666215 T SPFCAT (NIL) -9 NIL NIL NIL) (-1132 2664245 2664455 2664719 "SPECOUT" 2665266 T SPECOUT (NIL) -7 NIL NIL NIL) (-1131 2655897 2657641 2657671 "SPADXPT" 2662063 T SPADXPT (NIL) -9 NIL 2664097 NIL) (-1130 2655658 2655698 2655767 "SPADPRSR" 2655850 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1129 2653840 2655613 2655644 "SPADAST" 2655649 T SPADAST (NIL) -8 NIL NIL NIL) (-1128 2645811 2647558 2647601 "SPACEC" 2651974 NIL SPACEC (NIL T) -9 NIL 2653790 NIL) (-1127 2643968 2645743 2645792 "SPACE3" 2645797 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1126 2642720 2642891 2643182 "SORTPAK" 2643773 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1125 2640770 2641073 2641492 "SOLVETRA" 2642384 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1124 2639781 2640003 2640277 "SOLVESER" 2640543 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1123 2634992 2635882 2636884 "SOLVERAD" 2638833 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1122 2630807 2631416 2632145 "SOLVEFOR" 2634359 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1121 2625104 2630156 2630253 "SNTSCAT" 2630258 NIL SNTSCAT (NIL T T T T) -9 NIL 2630328 NIL) (-1120 2619237 2623427 2623818 "SMTS" 2624794 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1119 2613677 2619125 2619202 "SMP" 2619207 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1118 2611836 2612137 2612535 "SMITH" 2613374 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1117 2604723 2608887 2608990 "SMATCAT" 2610341 NIL SMATCAT (NIL NIL T T T) -9 NIL 2610891 NIL) (-1116 2601663 2602486 2603664 "SMATCAT-" 2603669 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1115 2599376 2600899 2600942 "SKAGG" 2601203 NIL SKAGG (NIL T) -9 NIL 2601338 NIL) (-1114 2595711 2598792 2598987 "SINT" 2599174 T SINT (NIL) -8 NIL NIL 2599347) (-1113 2595483 2595521 2595587 "SIMPAN" 2595667 T SIMPAN (NIL) -7 NIL NIL NIL) (-1112 2594789 2595018 2595158 "SIG" 2595365 T SIG (NIL) -8 NIL NIL NIL) (-1111 2593627 2593848 2594123 "SIGNRF" 2594548 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1110 2592432 2592583 2592874 "SIGNEF" 2593456 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1109 2591765 2592015 2592139 "SIGAST" 2592330 T SIGAST (NIL) -8 NIL NIL NIL) (-1108 2589455 2589909 2590415 "SHP" 2591306 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1107 2583355 2589356 2589432 "SHDP" 2589437 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1106 2582954 2583120 2583150 "SGROUP" 2583243 T SGROUP (NIL) -9 NIL 2583305 NIL) (-1105 2582812 2582838 2582911 "SGROUP-" 2582916 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1104 2579647 2580345 2581068 "SGCF" 2582111 T SGCF (NIL) -7 NIL NIL NIL) (-1103 2574042 2579094 2579191 "SFRTCAT" 2579196 NIL SFRTCAT (NIL T T T T) -9 NIL 2579235 NIL) (-1102 2567463 2568481 2569617 "SFRGCD" 2573025 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1101 2560590 2561662 2562848 "SFQCMPK" 2566396 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1100 2560212 2560301 2560411 "SFORT" 2560531 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1099 2559357 2560052 2560173 "SEXOF" 2560178 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1098 2558491 2559238 2559306 "SEX" 2559311 T SEX (NIL) -8 NIL NIL NIL) (-1097 2554030 2554719 2554814 "SEXCAT" 2557751 NIL SEXCAT (NIL T T T T T) -9 NIL 2558329 NIL) (-1096 2551210 2553964 2554012 "SET" 2554017 NIL SET (NIL T) -8 NIL NIL NIL) (-1095 2549461 2549923 2550228 "SETMN" 2550951 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1094 2549067 2549193 2549223 "SETCAT" 2549340 T SETCAT (NIL) -9 NIL 2549425 NIL) (-1093 2548847 2548899 2548998 "SETCAT-" 2549003 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1092 2545234 2547308 2547351 "SETAGG" 2548221 NIL SETAGG (NIL T) -9 NIL 2548561 NIL) (-1091 2544692 2544808 2545045 "SETAGG-" 2545050 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1090 2544162 2544388 2544489 "SEQAST" 2544613 T SEQAST (NIL) -8 NIL NIL NIL) (-1089 2543361 2543655 2543716 "SEGXCAT" 2544002 NIL SEGXCAT (NIL T T) -9 NIL 2544122 NIL) (-1088 2542415 2543027 2543209 "SEG" 2543214 NIL SEG (NIL T) -8 NIL NIL NIL) (-1087 2541394 2541608 2541651 "SEGCAT" 2542173 NIL SEGCAT (NIL T) -9 NIL 2542394 NIL) (-1086 2540443 2540773 2540973 "SEGBIND" 2541229 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1085 2540064 2540123 2540236 "SEGBIND2" 2540378 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1084 2539664 2539865 2539942 "SEGAST" 2540009 T SEGAST (NIL) -8 NIL NIL NIL) (-1083 2538883 2539009 2539213 "SEG2" 2539508 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1082 2538320 2538818 2538865 "SDVAR" 2538870 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1081 2530602 2538090 2538220 "SDPOL" 2538225 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1080 2529195 2529461 2529780 "SCPKG" 2530317 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1079 2528355 2528528 2528721 "SCOPE" 2529024 T SCOPE (NIL) -8 NIL NIL NIL) (-1078 2527575 2527709 2527888 "SCACHE" 2528210 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1077 2527247 2527407 2527437 "SASTCAT" 2527442 T SASTCAT (NIL) -9 NIL 2527455 NIL) (-1076 2526761 2527082 2527158 "SAOS" 2527193 T SAOS (NIL) -8 NIL NIL NIL) (-1075 2526326 2526361 2526534 "SAERFFC" 2526720 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1074 2520292 2526223 2526303 "SAE" 2526308 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1073 2519885 2519920 2520079 "SAEFACT" 2520251 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1072 2518206 2518520 2518921 "RURPK" 2519551 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1071 2516842 2517121 2517433 "RULESET" 2518040 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1070 2514029 2514532 2514997 "RULE" 2516523 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1069 2513668 2513823 2513906 "RULECOLD" 2513981 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1068 2513166 2513385 2513479 "RSTRCAST" 2513596 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1067 2508014 2508809 2509729 "RSETGCD" 2512365 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1066 2497271 2502323 2502420 "RSETCAT" 2506539 NIL RSETCAT (NIL T T T T) -9 NIL 2507636 NIL) (-1065 2495198 2495737 2496561 "RSETCAT-" 2496566 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1064 2487583 2488960 2490480 "RSDCMPK" 2493797 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1063 2485588 2486029 2486103 "RRCC" 2487189 NIL RRCC (NIL T T) -9 NIL 2487533 NIL) (-1062 2484939 2485113 2485392 "RRCC-" 2485397 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1061 2484409 2484635 2484736 "RPTAST" 2484860 T RPTAST (NIL) -8 NIL NIL NIL) (-1060 2458407 2468002 2468069 "RPOLCAT" 2478733 NIL RPOLCAT (NIL T T T) -9 NIL 2481892 NIL) (-1059 2449905 2452245 2455367 "RPOLCAT-" 2455372 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1058 2440952 2448116 2448598 "ROUTINE" 2449445 T ROUTINE (NIL) -8 NIL NIL NIL) (-1057 2437777 2440578 2440718 "ROMAN" 2440834 T ROMAN (NIL) -8 NIL NIL NIL) (-1056 2436048 2436637 2436897 "ROIRC" 2437582 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1055 2432433 2434684 2434714 "RNS" 2435018 T RNS (NIL) -9 NIL 2435291 NIL) (-1054 2430942 2431325 2431859 "RNS-" 2431934 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1053 2430391 2430773 2430803 "RNG" 2430808 T RNG (NIL) -9 NIL 2430829 NIL) (-1052 2429783 2430145 2430188 "RMODULE" 2430250 NIL RMODULE (NIL T) -9 NIL 2430292 NIL) (-1051 2428619 2428713 2429049 "RMCAT2" 2429684 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1050 2425496 2427965 2428262 "RMATRIX" 2428381 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1049 2418438 2420672 2420787 "RMATCAT" 2424146 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2425128 NIL) (-1048 2417813 2417960 2418267 "RMATCAT-" 2418272 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1047 2417380 2417455 2417583 "RINTERP" 2417732 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1046 2416499 2417027 2417057 "RING" 2417113 T RING (NIL) -9 NIL 2417205 NIL) (-1045 2416291 2416335 2416432 "RING-" 2416437 NIL RING- (NIL T) -8 NIL NIL NIL) (-1044 2415132 2415369 2415627 "RIDIST" 2416055 T RIDIST (NIL) -7 NIL NIL NIL) (-1043 2406448 2414600 2414806 "RGCHAIN" 2414980 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1042 2405824 2406204 2406245 "RGBCSPC" 2406303 NIL RGBCSPC (NIL T) -9 NIL 2406355 NIL) (-1041 2405008 2405363 2405404 "RGBCMDL" 2405636 NIL RGBCMDL (NIL T) -9 NIL 2405750 NIL) (-1040 2402002 2402616 2403286 "RF" 2404372 NIL RF (NIL T) -7 NIL NIL NIL) (-1039 2401648 2401711 2401814 "RFFACTOR" 2401933 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1038 2401373 2401408 2401505 "RFFACT" 2401607 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1037 2399490 2399854 2400236 "RFDIST" 2401013 T RFDIST (NIL) -7 NIL NIL NIL) (-1036 2398943 2399035 2399198 "RETSOL" 2399392 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1035 2398579 2398659 2398702 "RETRACT" 2398835 NIL RETRACT (NIL T) -9 NIL 2398922 NIL) (-1034 2398428 2398453 2398540 "RETRACT-" 2398545 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1033 2398057 2398250 2398320 "RETAST" 2398380 T RETAST (NIL) -8 NIL NIL NIL) (-1032 2390911 2397710 2397837 "RESULT" 2397952 T RESULT (NIL) -8 NIL NIL NIL) (-1031 2389529 2390180 2390379 "RESRING" 2390814 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1030 2389165 2389214 2389312 "RESLATC" 2389466 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1029 2388870 2388905 2389012 "REPSQ" 2389124 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1028 2386292 2386872 2387474 "REP" 2388290 T REP (NIL) -7 NIL NIL NIL) (-1027 2385989 2386024 2386135 "REPDB" 2386251 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1026 2379889 2381278 2382501 "REP2" 2384801 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1025 2376266 2376947 2377755 "REP1" 2379116 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1024 2368989 2374407 2374863 "REGSET" 2375896 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1023 2367802 2368137 2368387 "REF" 2368774 NIL REF (NIL T) -8 NIL NIL NIL) (-1022 2367179 2367282 2367449 "REDORDER" 2367686 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1021 2363174 2366392 2366619 "RECLOS" 2367007 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1020 2362226 2362407 2362622 "REALSOLV" 2362981 T REALSOLV (NIL) -7 NIL NIL NIL) (-1019 2362072 2362113 2362143 "REAL" 2362148 T REAL (NIL) -9 NIL 2362183 NIL) (-1018 2358555 2359357 2360241 "REAL0Q" 2361237 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1017 2354156 2355144 2356205 "REAL0" 2357536 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1016 2353654 2353873 2353967 "RDUCEAST" 2354084 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1015 2353059 2353131 2353338 "RDIV" 2353576 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1014 2352127 2352301 2352514 "RDIST" 2352881 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1013 2350724 2351011 2351383 "RDETRS" 2351835 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1012 2348536 2348990 2349528 "RDETR" 2350266 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1011 2347147 2347425 2347829 "RDEEFS" 2348252 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1010 2345642 2345948 2346380 "RDEEF" 2346835 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1009 2339895 2342778 2342808 "RCFIELD" 2344103 T RCFIELD (NIL) -9 NIL 2344833 NIL) (-1008 2337959 2338463 2339159 "RCFIELD-" 2339234 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1007 2334275 2336060 2336103 "RCAGG" 2337187 NIL RCAGG (NIL T) -9 NIL 2337652 NIL) (-1006 2333903 2333997 2334160 "RCAGG-" 2334165 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1005 2333238 2333350 2333515 "RATRET" 2333787 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1004 2332791 2332858 2332979 "RATFACT" 2333166 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1003 2332099 2332219 2332371 "RANDSRC" 2332661 T RANDSRC (NIL) -7 NIL NIL NIL) (-1002 2331833 2331877 2331950 "RADUTIL" 2332048 T RADUTIL (NIL) -7 NIL NIL NIL) (-1001 2324976 2330666 2330976 "RADIX" 2331557 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1000 2316622 2324818 2324948 "RADFF" 2324953 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-999 2316274 2316349 2316377 "RADCAT" 2316534 T RADCAT (NIL) -9 NIL NIL NIL) (-998 2316059 2316107 2316204 "RADCAT-" 2316209 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-997 2314210 2315834 2315923 "QUEUE" 2316003 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-996 2310778 2314147 2314192 "QUAT" 2314197 NIL QUAT (NIL T) -8 NIL NIL NIL) (-995 2310416 2310459 2310586 "QUATCT2" 2310729 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-994 2304155 2307465 2307505 "QUATCAT" 2308285 NIL QUATCAT (NIL T) -9 NIL 2309051 NIL) (-993 2300299 2301336 2302723 "QUATCAT-" 2302817 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-992 2297819 2299383 2299424 "QUAGG" 2299799 NIL QUAGG (NIL T) -9 NIL 2299974 NIL) (-991 2297451 2297644 2297712 "QQUTAST" 2297771 T QQUTAST (NIL) -8 NIL NIL NIL) (-990 2296376 2296849 2297021 "QFORM" 2297323 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-989 2287580 2292793 2292833 "QFCAT" 2293491 NIL QFCAT (NIL T) -9 NIL 2294492 NIL) (-988 2283152 2284353 2285944 "QFCAT-" 2286038 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-987 2282790 2282833 2282960 "QFCAT2" 2283103 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-986 2282250 2282360 2282490 "QEQUAT" 2282680 T QEQUAT (NIL) -8 NIL NIL NIL) (-985 2275397 2276469 2277653 "QCMPACK" 2281183 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-984 2272973 2273394 2273822 "QALGSET" 2275052 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-983 2272218 2272392 2272624 "QALGSET2" 2272793 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-982 2270908 2271132 2271449 "PWFFINTB" 2271991 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-981 2269090 2269258 2269612 "PUSHVAR" 2270722 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-980 2265008 2266062 2266103 "PTRANFN" 2267987 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-979 2263410 2263701 2264023 "PTPACK" 2264719 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-978 2263042 2263099 2263208 "PTFUNC2" 2263347 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-977 2257569 2261914 2261955 "PTCAT" 2262251 NIL PTCAT (NIL T) -9 NIL 2262404 NIL) (-976 2257227 2257262 2257386 "PSQFR" 2257528 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-975 2255822 2256120 2256454 "PSEUDLIN" 2256925 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-974 2242585 2244956 2247280 "PSETPK" 2253582 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-973 2235629 2238343 2238439 "PSETCAT" 2241460 NIL PSETCAT (NIL T T T T) -9 NIL 2242274 NIL) (-972 2233465 2234099 2234920 "PSETCAT-" 2234925 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-971 2232814 2232979 2233007 "PSCURVE" 2233275 T PSCURVE (NIL) -9 NIL 2233442 NIL) (-970 2229162 2230652 2230717 "PSCAT" 2231561 NIL PSCAT (NIL T T T) -9 NIL 2231801 NIL) (-969 2228225 2228441 2228841 "PSCAT-" 2228846 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-968 2226957 2227590 2227795 "PRTITION" 2228040 T PRTITION (NIL) -8 NIL NIL NIL) (-967 2226459 2226678 2226770 "PRTDAST" 2226885 T PRTDAST (NIL) -8 NIL NIL NIL) (-966 2215549 2217763 2219951 "PRS" 2224321 NIL PRS (NIL T T) -7 NIL NIL NIL) (-965 2213407 2214899 2214939 "PRQAGG" 2215122 NIL PRQAGG (NIL T) -9 NIL 2215224 NIL) (-964 2212793 2213022 2213050 "PROPLOG" 2213235 T PROPLOG (NIL) -9 NIL 2213357 NIL) (-963 2209963 2210607 2211071 "PROPFRML" 2212361 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-962 2209423 2209533 2209663 "PROPERTY" 2209853 T PROPERTY (NIL) -8 NIL NIL NIL) (-961 2203508 2207589 2208409 "PRODUCT" 2208649 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-960 2200813 2202966 2203200 "PR" 2203319 NIL PR (NIL T T) -8 NIL NIL NIL) (-959 2200609 2200641 2200700 "PRINT" 2200774 T PRINT (NIL) -7 NIL NIL NIL) (-958 2199949 2200066 2200218 "PRIMES" 2200489 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-957 2198014 2198415 2198881 "PRIMELT" 2199528 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-956 2197743 2197792 2197820 "PRIMCAT" 2197944 T PRIMCAT (NIL) -9 NIL NIL NIL) (-955 2193904 2197681 2197726 "PRIMARR" 2197731 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-954 2192911 2193089 2193317 "PRIMARR2" 2193722 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-953 2192554 2192610 2192721 "PREASSOC" 2192849 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-952 2192029 2192162 2192190 "PPCURVE" 2192395 T PPCURVE (NIL) -9 NIL 2192531 NIL) (-951 2191651 2191824 2191907 "PORTNUM" 2191966 T PORTNUM (NIL) -8 NIL NIL NIL) (-950 2189010 2189409 2190001 "POLYROOT" 2191232 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-949 2182947 2188614 2188774 "POLY" 2188883 NIL POLY (NIL T) -8 NIL NIL NIL) (-948 2182330 2182388 2182622 "POLYLIFT" 2182883 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-947 2178605 2179054 2179683 "POLYCATQ" 2181875 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-946 2165414 2170780 2170845 "POLYCAT" 2174359 NIL POLYCAT (NIL T T T) -9 NIL 2176287 NIL) (-945 2158863 2160725 2163109 "POLYCAT-" 2163114 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-944 2158450 2158518 2158638 "POLY2UP" 2158789 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-943 2158082 2158139 2158248 "POLY2" 2158387 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-942 2156767 2157006 2157282 "POLUTIL" 2157856 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-941 2155122 2155399 2155730 "POLTOPOL" 2156489 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-940 2150639 2155058 2155104 "POINT" 2155109 NIL POINT (NIL T) -8 NIL NIL NIL) (-939 2148826 2149183 2149558 "PNTHEORY" 2150284 T PNTHEORY (NIL) -7 NIL NIL NIL) (-938 2147245 2147542 2147954 "PMTOOLS" 2148524 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-937 2146838 2146916 2147033 "PMSYM" 2147161 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-936 2146348 2146417 2146591 "PMQFCAT" 2146763 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-935 2145703 2145813 2145969 "PMPRED" 2146225 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-934 2145099 2145185 2145346 "PMPREDFS" 2145604 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-933 2143742 2143950 2144335 "PMPLCAT" 2144861 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-932 2143274 2143353 2143505 "PMLSAGG" 2143657 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-931 2142749 2142825 2143006 "PMKERNEL" 2143192 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-930 2142366 2142441 2142554 "PMINS" 2142668 NIL PMINS (NIL T) -7 NIL NIL NIL) (-929 2141794 2141863 2142079 "PMFS" 2142291 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-928 2141022 2141140 2141345 "PMDOWN" 2141671 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-927 2140185 2140344 2140526 "PMASS" 2140860 T PMASS (NIL) -7 NIL NIL NIL) (-926 2139459 2139570 2139733 "PMASSFS" 2140071 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-925 2139114 2139182 2139276 "PLOTTOOL" 2139385 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-924 2133721 2134925 2136073 "PLOT" 2137986 T PLOT (NIL) -8 NIL NIL NIL) (-923 2129525 2130569 2131490 "PLOT3D" 2132820 T PLOT3D (NIL) -8 NIL NIL NIL) (-922 2128437 2128614 2128849 "PLOT1" 2129329 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-921 2103826 2108503 2113354 "PLEQN" 2123703 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-920 2103144 2103266 2103446 "PINTERP" 2103691 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-919 2102837 2102884 2102987 "PINTERPA" 2103091 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-918 2102085 2102606 2102693 "PI" 2102733 T PI (NIL) -8 NIL NIL 2102800) (-917 2100474 2101423 2101451 "PID" 2101633 T PID (NIL) -9 NIL 2101767 NIL) (-916 2100199 2100236 2100324 "PICOERCE" 2100431 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-915 2099519 2099658 2099834 "PGROEB" 2100055 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-914 2095106 2095920 2096825 "PGE" 2098634 T PGE (NIL) -7 NIL NIL NIL) (-913 2093229 2093476 2093842 "PGCD" 2094823 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-912 2092567 2092670 2092831 "PFRPAC" 2093113 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-911 2089235 2091115 2091468 "PFR" 2092246 NIL PFR (NIL T) -8 NIL NIL NIL) (-910 2087624 2087868 2088193 "PFOTOOLS" 2088982 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-909 2086157 2086396 2086747 "PFOQ" 2087381 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-908 2084630 2084842 2085205 "PFO" 2085941 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-907 2081210 2084519 2084588 "PF" 2084593 NIL PF (NIL NIL) -8 NIL NIL NIL) (-906 2078636 2079881 2079909 "PFECAT" 2080494 T PFECAT (NIL) -9 NIL 2080878 NIL) (-905 2078081 2078235 2078449 "PFECAT-" 2078454 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-904 2076684 2076936 2077237 "PFBRU" 2077830 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-903 2074549 2074902 2075334 "PFBR" 2076335 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-902 2070458 2071925 2072601 "PERM" 2073906 NIL PERM (NIL T) -8 NIL NIL NIL) (-901 2065719 2066665 2067535 "PERMGRP" 2069621 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-900 2063851 2064782 2064823 "PERMCAT" 2065269 NIL PERMCAT (NIL T) -9 NIL 2065574 NIL) (-899 2063504 2063545 2063669 "PERMAN" 2063804 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-898 2061040 2063169 2063291 "PENDTREE" 2063415 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-897 2059125 2059867 2059908 "PDRING" 2060565 NIL PDRING (NIL T) -9 NIL 2060851 NIL) (-896 2058228 2058446 2058808 "PDRING-" 2058813 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-895 2055470 2056221 2056889 "PDEPROB" 2057580 T PDEPROB (NIL) -8 NIL NIL NIL) (-894 2053015 2053519 2054074 "PDEPACK" 2054935 T PDEPACK (NIL) -7 NIL NIL NIL) (-893 2051927 2052117 2052368 "PDECOMP" 2052814 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-892 2049532 2050349 2050377 "PDECAT" 2051164 T PDECAT (NIL) -9 NIL 2051877 NIL) (-891 2049283 2049316 2049406 "PCOMP" 2049493 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-890 2047488 2048084 2048381 "PBWLB" 2049012 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-889 2039988 2041561 2042899 "PATTERN" 2046171 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-888 2039620 2039677 2039786 "PATTERN2" 2039925 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-887 2037377 2037765 2038222 "PATTERN1" 2039209 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-886 2034772 2035326 2035807 "PATRES" 2036942 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-885 2034336 2034403 2034535 "PATRES2" 2034699 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-884 2032219 2032624 2033031 "PATMATCH" 2034003 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-883 2031755 2031938 2031979 "PATMAB" 2032086 NIL PATMAB (NIL T) -9 NIL 2032169 NIL) (-882 2030300 2030609 2030867 "PATLRES" 2031560 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-881 2029846 2029969 2030010 "PATAB" 2030015 NIL PATAB (NIL T) -9 NIL 2030187 NIL) (-880 2027327 2027859 2028432 "PARTPERM" 2029293 T PARTPERM (NIL) -7 NIL NIL NIL) (-879 2026948 2027011 2027113 "PARSURF" 2027258 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-878 2026580 2026637 2026746 "PARSU2" 2026885 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-877 2026344 2026384 2026451 "PARSER" 2026533 T PARSER (NIL) -7 NIL NIL NIL) (-876 2025965 2026028 2026130 "PARSCURV" 2026275 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-875 2025597 2025654 2025763 "PARSC2" 2025902 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-874 2025236 2025294 2025391 "PARPCURV" 2025533 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-873 2024868 2024925 2025034 "PARPC2" 2025173 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-872 2024388 2024474 2024593 "PAN2EXPR" 2024769 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-871 2023192 2023509 2023737 "PALETTE" 2024180 T PALETTE (NIL) -8 NIL NIL NIL) (-870 2021660 2022197 2022557 "PAIR" 2022878 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-869 2015557 2020919 2021113 "PADICRC" 2021515 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-868 2008813 2014903 2015087 "PADICRAT" 2015405 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-867 2007155 2008750 2008795 "PADIC" 2008800 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-866 2004357 2005895 2005935 "PADICCT" 2006516 NIL PADICCT (NIL NIL) -9 NIL 2006798 NIL) (-865 2003314 2003514 2003782 "PADEPAC" 2004144 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-864 2002526 2002659 2002865 "PADE" 2003176 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-863 2000940 2001734 2002014 "OWP" 2002330 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-862 2000460 2000646 2000743 "OVERSET" 2000863 T OVERSET (NIL) -8 NIL NIL NIL) (-861 1999533 2000065 2000237 "OVAR" 2000328 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-860 1998797 1998918 1999079 "OUT" 1999392 T OUT (NIL) -7 NIL NIL NIL) (-859 1987695 1989906 1992106 "OUTFORM" 1996617 T OUTFORM (NIL) -8 NIL NIL NIL) (-858 1987031 1987292 1987419 "OUTBFILE" 1987588 T OUTBFILE (NIL) -8 NIL NIL NIL) (-857 1986338 1986503 1986531 "OUTBCON" 1986849 T OUTBCON (NIL) -9 NIL 1987015 NIL) (-856 1985939 1986051 1986208 "OUTBCON-" 1986213 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-855 1985346 1985668 1985757 "OSI" 1985870 T OSI (NIL) -8 NIL NIL NIL) (-854 1984902 1985214 1985242 "OSGROUP" 1985247 T OSGROUP (NIL) -9 NIL 1985269 NIL) (-853 1983647 1983874 1984159 "ORTHPOL" 1984649 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-852 1981225 1983482 1983603 "OREUP" 1983608 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-851 1978655 1980916 1981043 "ORESUP" 1981167 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-850 1976183 1976683 1977244 "OREPCTO" 1978144 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-849 1969999 1972174 1972215 "OREPCAT" 1974563 NIL OREPCAT (NIL T) -9 NIL 1975667 NIL) (-848 1967146 1967928 1968986 "OREPCAT-" 1968991 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-847 1966323 1966595 1966623 "ORDSET" 1966932 T ORDSET (NIL) -9 NIL 1967096 NIL) (-846 1965842 1965964 1966157 "ORDSET-" 1966162 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-845 1964468 1965233 1965261 "ORDRING" 1965463 T ORDRING (NIL) -9 NIL 1965588 NIL) (-844 1964113 1964207 1964351 "ORDRING-" 1964356 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-843 1963519 1963956 1963984 "ORDMON" 1963989 T ORDMON (NIL) -9 NIL 1964010 NIL) (-842 1962681 1962828 1963023 "ORDFUNS" 1963368 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-841 1962045 1962438 1962466 "ORDFIN" 1962531 T ORDFIN (NIL) -9 NIL 1962605 NIL) (-840 1958631 1960631 1961040 "ORDCOMP" 1961669 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-839 1957897 1958024 1958210 "ORDCOMP2" 1958491 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-838 1954505 1955388 1956202 "OPTPROB" 1957103 T OPTPROB (NIL) -8 NIL NIL NIL) (-837 1951307 1951946 1952650 "OPTPACK" 1953821 T OPTPACK (NIL) -7 NIL NIL NIL) (-836 1949020 1949760 1949788 "OPTCAT" 1950607 T OPTCAT (NIL) -9 NIL 1951257 NIL) (-835 1948463 1948697 1948802 "OPSIG" 1948935 T OPSIG (NIL) -8 NIL NIL NIL) (-834 1948231 1948270 1948336 "OPQUERY" 1948417 T OPQUERY (NIL) -7 NIL NIL NIL) (-833 1945389 1946542 1947046 "OP" 1947760 NIL OP (NIL T) -8 NIL NIL NIL) (-832 1944924 1945095 1945136 "OPERCAT" 1945271 NIL OPERCAT (NIL T) -9 NIL 1945339 NIL) (-831 1944770 1944797 1944883 "OPERCAT-" 1944888 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-830 1941609 1943567 1943936 "ONECOMP" 1944434 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-829 1940914 1941029 1941203 "ONECOMP2" 1941481 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-828 1940333 1940439 1940569 "OMSERVER" 1940804 T OMSERVER (NIL) -7 NIL NIL NIL) (-827 1937221 1939773 1939813 "OMSAGG" 1939874 NIL OMSAGG (NIL T) -9 NIL 1939938 NIL) (-826 1935844 1936107 1936389 "OMPKG" 1936959 T OMPKG (NIL) -7 NIL NIL NIL) (-825 1935274 1935377 1935405 "OM" 1935704 T OM (NIL) -9 NIL NIL NIL) (-824 1933848 1934823 1934992 "OMLO" 1935155 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-823 1932773 1932920 1933147 "OMEXPR" 1933674 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-822 1932091 1932319 1932455 "OMERR" 1932657 T OMERR (NIL) -8 NIL NIL NIL) (-821 1931269 1931512 1931672 "OMERRK" 1931951 T OMERRK (NIL) -8 NIL NIL NIL) (-820 1930747 1930946 1931054 "OMENC" 1931181 T OMENC (NIL) -8 NIL NIL NIL) (-819 1924642 1925827 1926998 "OMDEV" 1929596 T OMDEV (NIL) -8 NIL NIL NIL) (-818 1923711 1923882 1924076 "OMCONN" 1924468 T OMCONN (NIL) -8 NIL NIL NIL) (-817 1922324 1923274 1923302 "OINTDOM" 1923307 T OINTDOM (NIL) -9 NIL 1923328 NIL) (-816 1918130 1919314 1920030 "OFMONOID" 1921640 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-815 1917568 1918067 1918112 "ODVAR" 1918117 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-814 1915018 1917313 1917468 "ODR" 1917473 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-813 1907354 1914794 1914920 "ODPOL" 1914925 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-812 1901224 1907226 1907331 "ODP" 1907336 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-811 1899990 1900205 1900480 "ODETOOLS" 1900998 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-810 1896957 1897615 1898331 "ODESYS" 1899323 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-809 1891839 1892747 1893772 "ODERTRIC" 1896032 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-808 1891265 1891347 1891541 "ODERED" 1891751 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-807 1888153 1888701 1889378 "ODERAT" 1890688 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-806 1885110 1885577 1886174 "ODEPRRIC" 1887682 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-805 1883080 1883649 1884135 "ODEPROB" 1884644 T ODEPROB (NIL) -8 NIL NIL NIL) (-804 1879600 1880085 1880732 "ODEPRIM" 1882559 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-803 1878849 1878951 1879211 "ODEPAL" 1879492 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-802 1875011 1875802 1876666 "ODEPACK" 1878005 T ODEPACK (NIL) -7 NIL NIL NIL) (-801 1874044 1874151 1874380 "ODEINT" 1874900 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-800 1868145 1869570 1871017 "ODEIFTBL" 1872617 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-799 1863480 1864266 1865225 "ODEEF" 1867304 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-798 1862815 1862904 1863134 "ODECONST" 1863385 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-797 1860966 1861601 1861629 "ODECAT" 1862234 T ODECAT (NIL) -9 NIL 1862765 NIL) (-796 1857865 1860678 1860797 "OCT" 1860879 NIL OCT (NIL T) -8 NIL NIL NIL) (-795 1857503 1857546 1857673 "OCTCT2" 1857816 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-794 1852269 1854677 1854717 "OC" 1855814 NIL OC (NIL T) -9 NIL 1856672 NIL) (-793 1849496 1850244 1851234 "OC-" 1851328 NIL OC- (NIL T T) -8 NIL NIL NIL) (-792 1848874 1849316 1849344 "OCAMON" 1849349 T OCAMON (NIL) -9 NIL 1849370 NIL) (-791 1848431 1848746 1848774 "OASGP" 1848779 T OASGP (NIL) -9 NIL 1848799 NIL) (-790 1847718 1848181 1848209 "OAMONS" 1848249 T OAMONS (NIL) -9 NIL 1848292 NIL) (-789 1847158 1847565 1847593 "OAMON" 1847598 T OAMON (NIL) -9 NIL 1847618 NIL) (-788 1846462 1846954 1846982 "OAGROUP" 1846987 T OAGROUP (NIL) -9 NIL 1847007 NIL) (-787 1846152 1846202 1846290 "NUMTUBE" 1846406 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-786 1839725 1841243 1842779 "NUMQUAD" 1844636 T NUMQUAD (NIL) -7 NIL NIL NIL) (-785 1835481 1836469 1837494 "NUMODE" 1838720 T NUMODE (NIL) -7 NIL NIL NIL) (-784 1832862 1833716 1833744 "NUMINT" 1834667 T NUMINT (NIL) -9 NIL 1835431 NIL) (-783 1831810 1832007 1832225 "NUMFMT" 1832664 T NUMFMT (NIL) -7 NIL NIL NIL) (-782 1818169 1821114 1823646 "NUMERIC" 1829317 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-781 1812566 1817618 1817713 "NTSCAT" 1817718 NIL NTSCAT (NIL T T T T) -9 NIL 1817757 NIL) (-780 1811760 1811925 1812118 "NTPOLFN" 1812405 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-779 1799592 1808585 1809397 "NSUP" 1810981 NIL NSUP (NIL T) -8 NIL NIL NIL) (-778 1799224 1799281 1799390 "NSUP2" 1799529 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-777 1789207 1798998 1799131 "NSMP" 1799136 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-776 1787639 1787940 1788297 "NREP" 1788895 NIL NREP (NIL T) -7 NIL NIL NIL) (-775 1786230 1786482 1786840 "NPCOEF" 1787382 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-774 1785296 1785411 1785627 "NORMRETR" 1786111 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-773 1783337 1783627 1784036 "NORMPK" 1785004 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-772 1783022 1783050 1783174 "NORMMA" 1783303 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-771 1782849 1782979 1783008 "NONE" 1783013 T NONE (NIL) -8 NIL NIL NIL) (-770 1782638 1782667 1782736 "NONE1" 1782813 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-769 1782121 1782183 1782369 "NODE1" 1782570 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-768 1780391 1781215 1781470 "NNI" 1781817 T NNI (NIL) -8 NIL NIL 1782052) (-767 1778811 1779124 1779488 "NLINSOL" 1780059 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-766 1775079 1776047 1776946 "NIPROB" 1777932 T NIPROB (NIL) -8 NIL NIL NIL) (-765 1773836 1774070 1774372 "NFINTBAS" 1774841 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-764 1773010 1773486 1773527 "NETCLT" 1773699 NIL NETCLT (NIL T) -9 NIL 1773781 NIL) (-763 1771718 1771949 1772230 "NCODIV" 1772778 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-762 1771480 1771517 1771592 "NCNTFRAC" 1771675 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-761 1769660 1770024 1770444 "NCEP" 1771105 NIL NCEP (NIL T) -7 NIL NIL NIL) (-760 1768557 1769304 1769332 "NASRING" 1769442 T NASRING (NIL) -9 NIL 1769522 NIL) (-759 1768352 1768396 1768490 "NASRING-" 1768495 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-758 1767505 1768004 1768032 "NARNG" 1768149 T NARNG (NIL) -9 NIL 1768240 NIL) (-757 1767197 1767264 1767398 "NARNG-" 1767403 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-756 1766076 1766283 1766518 "NAGSP" 1766982 T NAGSP (NIL) -7 NIL NIL NIL) (-755 1757348 1759032 1760705 "NAGS" 1764423 T NAGS (NIL) -7 NIL NIL NIL) (-754 1755896 1756204 1756535 "NAGF07" 1757037 T NAGF07 (NIL) -7 NIL NIL NIL) (-753 1750434 1751725 1753032 "NAGF04" 1754609 T NAGF04 (NIL) -7 NIL NIL NIL) (-752 1743402 1745016 1746649 "NAGF02" 1748821 T NAGF02 (NIL) -7 NIL NIL NIL) (-751 1738626 1739726 1740843 "NAGF01" 1742305 T NAGF01 (NIL) -7 NIL NIL NIL) (-750 1732254 1733820 1735405 "NAGE04" 1737061 T NAGE04 (NIL) -7 NIL NIL NIL) (-749 1723423 1725544 1727674 "NAGE02" 1730144 T NAGE02 (NIL) -7 NIL NIL NIL) (-748 1719376 1720323 1721287 "NAGE01" 1722479 T NAGE01 (NIL) -7 NIL NIL NIL) (-747 1717171 1717705 1718263 "NAGD03" 1718838 T NAGD03 (NIL) -7 NIL NIL NIL) (-746 1708921 1710849 1712803 "NAGD02" 1715237 T NAGD02 (NIL) -7 NIL NIL NIL) (-745 1702732 1704157 1705597 "NAGD01" 1707501 T NAGD01 (NIL) -7 NIL NIL NIL) (-744 1698941 1699763 1700600 "NAGC06" 1701915 T NAGC06 (NIL) -7 NIL NIL NIL) (-743 1697406 1697738 1698094 "NAGC05" 1698605 T NAGC05 (NIL) -7 NIL NIL NIL) (-742 1696782 1696901 1697045 "NAGC02" 1697282 T NAGC02 (NIL) -7 NIL NIL NIL) (-741 1695842 1696399 1696439 "NAALG" 1696518 NIL NAALG (NIL T) -9 NIL 1696579 NIL) (-740 1695677 1695706 1695796 "NAALG-" 1695801 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-739 1689627 1690735 1691922 "MULTSQFR" 1694573 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-738 1688946 1689021 1689205 "MULTFACT" 1689539 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-737 1682031 1685909 1685962 "MTSCAT" 1687032 NIL MTSCAT (NIL T T) -9 NIL 1687546 NIL) (-736 1681743 1681797 1681889 "MTHING" 1681971 NIL MTHING (NIL T) -7 NIL NIL NIL) (-735 1681535 1681568 1681628 "MSYSCMD" 1681703 T MSYSCMD (NIL) -7 NIL NIL NIL) (-734 1677644 1680290 1680610 "MSET" 1681248 NIL MSET (NIL T) -8 NIL NIL NIL) (-733 1674739 1677205 1677246 "MSETAGG" 1677251 NIL MSETAGG (NIL T) -9 NIL 1677285 NIL) (-732 1670607 1672118 1672863 "MRING" 1674039 NIL MRING (NIL T T) -8 NIL NIL NIL) (-731 1670173 1670240 1670371 "MRF2" 1670534 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-730 1669791 1669826 1669970 "MRATFAC" 1670132 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-729 1667403 1667698 1668129 "MPRFF" 1669496 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-728 1661455 1667257 1667354 "MPOLY" 1667359 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-727 1660945 1660980 1661188 "MPCPF" 1661414 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-726 1660459 1660502 1660686 "MPC3" 1660896 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-725 1659654 1659735 1659956 "MPC2" 1660374 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1657955 1658292 1658682 "MONOTOOL" 1659314 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-723 1657206 1657497 1657525 "MONOID" 1657744 T MONOID (NIL) -9 NIL 1657891 NIL) (-722 1656752 1656871 1657052 "MONOID-" 1657057 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-721 1647603 1653519 1653578 "MONOGEN" 1654252 NIL MONOGEN (NIL T T) -9 NIL 1654708 NIL) (-720 1644821 1645556 1646556 "MONOGEN-" 1646675 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-719 1643680 1644100 1644128 "MONADWU" 1644520 T MONADWU (NIL) -9 NIL 1644758 NIL) (-718 1643052 1643211 1643459 "MONADWU-" 1643464 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-717 1642437 1642655 1642683 "MONAD" 1642890 T MONAD (NIL) -9 NIL 1643002 NIL) (-716 1642122 1642200 1642332 "MONAD-" 1642337 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-715 1640438 1641035 1641314 "MOEBIUS" 1641875 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-714 1639830 1640208 1640248 "MODULE" 1640253 NIL MODULE (NIL T) -9 NIL 1640279 NIL) (-713 1639398 1639494 1639684 "MODULE-" 1639689 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-712 1637105 1637762 1638089 "MODRING" 1639222 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1634076 1635210 1635731 "MODOP" 1636634 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-710 1632691 1633143 1633420 "MODMONOM" 1633939 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-709 1622488 1630982 1631396 "MODMON" 1632328 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-708 1619671 1621332 1621608 "MODFIELD" 1622363 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-707 1618675 1618952 1619142 "MMLFORM" 1619501 T MMLFORM (NIL) -8 NIL NIL NIL) (-706 1618201 1618244 1618423 "MMAP" 1618626 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-705 1616410 1617151 1617192 "MLO" 1617615 NIL MLO (NIL T) -9 NIL 1617857 NIL) (-704 1613776 1614292 1614894 "MLIFT" 1615891 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-703 1613167 1613251 1613405 "MKUCFUNC" 1613687 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-702 1612766 1612836 1612959 "MKRECORD" 1613090 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-701 1611813 1611975 1612203 "MKFUNC" 1612577 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-700 1611201 1611305 1611461 "MKFLCFN" 1611696 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-699 1610744 1611111 1611170 "MKCHSET" 1611175 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-698 1610021 1610123 1610308 "MKBCFUNC" 1610637 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-697 1606755 1609575 1609711 "MINT" 1609905 T MINT (NIL) -8 NIL NIL NIL) (-696 1605567 1605810 1606087 "MHROWRED" 1606510 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-695 1600974 1604102 1604507 "MFLOAT" 1605182 T MFLOAT (NIL) -8 NIL NIL NIL) (-694 1600331 1600407 1600578 "MFINFACT" 1600886 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-693 1596646 1597494 1598378 "MESH" 1599467 T MESH (NIL) -7 NIL NIL NIL) (-692 1595036 1595348 1595701 "MDDFACT" 1596333 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-691 1591878 1594195 1594236 "MDAGG" 1594491 NIL MDAGG (NIL T) -9 NIL 1594634 NIL) (-690 1581648 1591171 1591378 "MCMPLX" 1591691 T MCMPLX (NIL) -8 NIL NIL NIL) (-689 1580789 1580935 1581135 "MCDEN" 1581497 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-688 1578679 1578949 1579329 "MCALCFN" 1580519 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-687 1577604 1577844 1578077 "MAYBE" 1578485 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-686 1575216 1575739 1576301 "MATSTOR" 1577075 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-685 1571221 1574588 1574836 "MATRIX" 1575001 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-684 1566985 1567694 1568430 "MATLIN" 1570578 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-683 1557139 1560277 1560354 "MATCAT" 1565234 NIL MATCAT (NIL T T T) -9 NIL 1566651 NIL) (-682 1553495 1554516 1555872 "MATCAT-" 1555877 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-681 1552089 1552242 1552575 "MATCAT2" 1553330 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-680 1550201 1550525 1550909 "MAPPKG3" 1551764 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-679 1549182 1549355 1549577 "MAPPKG2" 1550025 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-678 1547681 1547965 1548292 "MAPPKG1" 1548888 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-677 1546787 1547087 1547264 "MAPPAST" 1547524 T MAPPAST (NIL) -8 NIL NIL NIL) (-676 1546398 1546456 1546579 "MAPHACK3" 1546723 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-675 1545990 1546051 1546165 "MAPHACK2" 1546330 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-674 1545427 1545531 1545673 "MAPHACK1" 1545881 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-673 1543533 1544127 1544431 "MAGMA" 1545155 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-672 1543039 1543257 1543348 "MACROAST" 1543462 T MACROAST (NIL) -8 NIL NIL NIL) (-671 1539505 1541278 1541739 "M3D" 1542611 NIL M3D (NIL T) -8 NIL NIL NIL) (-670 1533659 1537874 1537915 "LZSTAGG" 1538697 NIL LZSTAGG (NIL T) -9 NIL 1538992 NIL) (-669 1529616 1530790 1532247 "LZSTAGG-" 1532252 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-668 1526730 1527507 1527994 "LWORD" 1529161 NIL LWORD (NIL T) -8 NIL NIL NIL) (-667 1526333 1526534 1526609 "LSTAST" 1526675 T LSTAST (NIL) -8 NIL NIL NIL) (-666 1519526 1526104 1526238 "LSQM" 1526243 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-665 1518750 1518889 1519117 "LSPP" 1519381 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-664 1516562 1516863 1517319 "LSMP" 1518439 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-663 1513341 1514015 1514745 "LSMP1" 1515864 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-662 1507266 1512508 1512549 "LSAGG" 1512611 NIL LSAGG (NIL T) -9 NIL 1512689 NIL) (-661 1503961 1504885 1506098 "LSAGG-" 1506103 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-660 1501587 1503105 1503354 "LPOLY" 1503756 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-659 1501169 1501254 1501377 "LPEFRAC" 1501496 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-658 1499516 1500263 1500516 "LO" 1501001 NIL LO (NIL T T T) -8 NIL NIL NIL) (-657 1499168 1499280 1499308 "LOGIC" 1499419 T LOGIC (NIL) -9 NIL 1499500 NIL) (-656 1499030 1499053 1499124 "LOGIC-" 1499129 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-655 1498223 1498363 1498556 "LODOOPS" 1498886 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-654 1495673 1498139 1498205 "LODO" 1498210 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-653 1494211 1494446 1494799 "LODOF" 1495420 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-652 1490559 1492964 1493005 "LODOCAT" 1493443 NIL LODOCAT (NIL T) -9 NIL 1493654 NIL) (-651 1490292 1490350 1490477 "LODOCAT-" 1490482 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-650 1487639 1490133 1490251 "LODO2" 1490256 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-649 1485101 1487576 1487621 "LODO1" 1487626 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-648 1483961 1484126 1484438 "LODEEF" 1484924 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-647 1479247 1482091 1482132 "LNAGG" 1483079 NIL LNAGG (NIL T) -9 NIL 1483523 NIL) (-646 1478394 1478608 1478950 "LNAGG-" 1478955 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-645 1474557 1475319 1475958 "LMOPS" 1477809 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-644 1473952 1474314 1474355 "LMODULE" 1474416 NIL LMODULE (NIL T) -9 NIL 1474458 NIL) (-643 1471198 1473597 1473720 "LMDICT" 1473862 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-642 1470924 1471106 1471166 "LITERAL" 1471171 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-641 1464155 1469870 1470168 "LIST" 1470659 NIL LIST (NIL T) -8 NIL NIL NIL) (-640 1463680 1463754 1463893 "LIST3" 1464075 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-639 1462687 1462865 1463093 "LIST2" 1463498 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-638 1460821 1461133 1461532 "LIST2MAP" 1462334 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-637 1459543 1460187 1460228 "LINEXP" 1460483 NIL LINEXP (NIL T) -9 NIL 1460632 NIL) (-636 1458190 1458450 1458747 "LINDEP" 1459295 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-635 1454957 1455676 1456453 "LIMITRF" 1457445 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-634 1453232 1453528 1453944 "LIMITPS" 1454652 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-633 1447687 1452743 1452971 "LIE" 1453053 NIL LIE (NIL T T) -8 NIL NIL NIL) (-632 1446736 1447179 1447219 "LIECAT" 1447359 NIL LIECAT (NIL T) -9 NIL 1447510 NIL) (-631 1446577 1446604 1446692 "LIECAT-" 1446697 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-630 1439189 1446026 1446191 "LIB" 1446432 T LIB (NIL) -8 NIL NIL NIL) (-629 1434824 1435707 1436642 "LGROBP" 1438306 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-628 1432690 1432964 1433326 "LF" 1434545 NIL LF (NIL T T) -7 NIL NIL NIL) (-627 1431530 1432222 1432250 "LFCAT" 1432457 T LFCAT (NIL) -9 NIL 1432596 NIL) (-626 1428432 1429062 1429750 "LEXTRIPK" 1430894 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-625 1425203 1426002 1426505 "LEXP" 1428012 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-624 1424706 1424924 1425016 "LETAST" 1425131 T LETAST (NIL) -8 NIL NIL NIL) (-623 1423104 1423417 1423818 "LEADCDET" 1424388 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-622 1422294 1422368 1422597 "LAZM3PK" 1423025 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-621 1417238 1420371 1420909 "LAUPOL" 1421806 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-620 1416803 1416847 1417015 "LAPLACE" 1417188 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-619 1414769 1415904 1416155 "LA" 1416636 NIL LA (NIL T T T) -8 NIL NIL NIL) (-618 1413842 1414400 1414441 "LALG" 1414503 NIL LALG (NIL T) -9 NIL 1414562 NIL) (-617 1413556 1413615 1413751 "LALG-" 1413756 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-616 1413391 1413415 1413456 "KVTFROM" 1413518 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-615 1412191 1412608 1412837 "KTVLOGIC" 1413182 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-614 1412026 1412050 1412091 "KRCFROM" 1412153 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-613 1410930 1411117 1411416 "KOVACIC" 1411826 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-612 1410765 1410789 1410830 "KONVERT" 1410892 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-611 1410600 1410624 1410665 "KOERCE" 1410727 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-610 1408334 1409094 1409487 "KERNEL" 1410239 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-609 1407836 1407917 1408047 "KERNEL2" 1408248 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-608 1401687 1406375 1406429 "KDAGG" 1406806 NIL KDAGG (NIL T T) -9 NIL 1407012 NIL) (-607 1401216 1401340 1401545 "KDAGG-" 1401550 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-606 1394391 1400877 1401032 "KAFILE" 1401094 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-605 1388846 1393902 1394130 "JORDAN" 1394212 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-604 1388252 1388495 1388616 "JOINAST" 1388745 T JOINAST (NIL) -8 NIL NIL NIL) (-603 1388098 1388157 1388212 "JAVACODE" 1388217 T JAVACODE (NIL) -8 NIL NIL NIL) (-602 1384397 1386303 1386357 "IXAGG" 1387286 NIL IXAGG (NIL T T) -9 NIL 1387745 NIL) (-601 1383316 1383622 1384041 "IXAGG-" 1384046 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-600 1378896 1383238 1383297 "IVECTOR" 1383302 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-599 1377662 1377899 1378165 "ITUPLE" 1378663 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-598 1376098 1376275 1376581 "ITRIGMNP" 1377484 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-597 1374843 1375047 1375330 "ITFUN3" 1375874 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-596 1374475 1374532 1374641 "ITFUN2" 1374780 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-595 1372304 1373337 1373636 "ITAYLOR" 1374209 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-594 1361276 1366441 1367604 "ISUPS" 1371174 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-593 1360380 1360520 1360756 "ISUMP" 1361123 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-592 1355644 1360181 1360260 "ISTRING" 1360333 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-591 1355147 1355365 1355457 "ISAST" 1355572 T ISAST (NIL) -8 NIL NIL NIL) (-590 1354357 1354438 1354654 "IRURPK" 1355061 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-589 1353293 1353494 1353734 "IRSN" 1354137 T IRSN (NIL) -7 NIL NIL NIL) (-588 1351322 1351677 1352113 "IRRF2F" 1352931 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-587 1351069 1351107 1351183 "IRREDFFX" 1351278 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-586 1349684 1349943 1350242 "IROOT" 1350802 NIL IROOT (NIL T) -7 NIL NIL NIL) (-585 1346315 1347368 1348060 "IR" 1349024 NIL IR (NIL T) -8 NIL NIL NIL) (-584 1343928 1344423 1344989 "IR2" 1345793 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-583 1343000 1343113 1343334 "IR2F" 1343811 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-582 1342791 1342825 1342885 "IPRNTPK" 1342960 T IPRNTPK (NIL) -7 NIL NIL NIL) (-581 1339398 1342680 1342749 "IPF" 1342754 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-580 1337752 1339323 1339380 "IPADIC" 1339385 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-579 1337091 1337312 1337442 "IP4ADDR" 1337642 T IP4ADDR (NIL) -8 NIL NIL NIL) (-578 1336591 1336795 1336905 "IOMODE" 1337001 T IOMODE (NIL) -8 NIL NIL NIL) (-577 1335664 1336188 1336315 "IOBFILE" 1336484 T IOBFILE (NIL) -8 NIL NIL NIL) (-576 1335152 1335568 1335596 "IOBCON" 1335601 T IOBCON (NIL) -9 NIL 1335622 NIL) (-575 1334649 1334707 1334897 "INVLAPLA" 1335088 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-574 1324297 1326651 1329037 "INTTR" 1332313 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-573 1320641 1321383 1322247 "INTTOOLS" 1323482 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-572 1320227 1320318 1320435 "INTSLPE" 1320544 T INTSLPE (NIL) -7 NIL NIL NIL) (-571 1318208 1320150 1320209 "INTRVL" 1320214 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-570 1315810 1316322 1316897 "INTRF" 1317693 NIL INTRF (NIL T) -7 NIL NIL NIL) (-569 1315221 1315318 1315460 "INTRET" 1315708 NIL INTRET (NIL T) -7 NIL NIL NIL) (-568 1313218 1313607 1314077 "INTRAT" 1314829 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-567 1310446 1311029 1311655 "INTPM" 1312703 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-566 1307148 1307748 1308493 "INTPAF" 1309832 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-565 1302327 1303289 1304340 "INTPACK" 1306117 T INTPACK (NIL) -7 NIL NIL NIL) (-564 1299231 1302056 1302183 "INT" 1302220 T INT (NIL) -8 NIL NIL NIL) (-563 1298483 1298635 1298843 "INTHERTR" 1299073 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-562 1297922 1298002 1298190 "INTHERAL" 1298397 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-561 1295768 1296211 1296668 "INTHEORY" 1297485 T INTHEORY (NIL) -7 NIL NIL NIL) (-560 1287076 1288697 1290476 "INTG0" 1294120 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-559 1267649 1272439 1277249 "INTFTBL" 1282286 T INTFTBL (NIL) -8 NIL NIL NIL) (-558 1266898 1267036 1267209 "INTFACT" 1267508 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-557 1264283 1264729 1265293 "INTEF" 1266452 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-556 1262742 1263455 1263483 "INTDOM" 1263784 T INTDOM (NIL) -9 NIL 1263991 NIL) (-555 1262111 1262285 1262527 "INTDOM-" 1262532 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-554 1258598 1260495 1260549 "INTCAT" 1261348 NIL INTCAT (NIL T) -9 NIL 1261668 NIL) (-553 1258070 1258173 1258301 "INTBIT" 1258490 T INTBIT (NIL) -7 NIL NIL NIL) (-552 1256741 1256895 1257209 "INTALG" 1257915 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-551 1256198 1256288 1256458 "INTAF" 1256645 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-550 1249652 1256008 1256148 "INTABL" 1256153 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-549 1248983 1249422 1249487 "INT8" 1249521 T INT8 (NIL) -8 NIL NIL 1249566) (-548 1248313 1248752 1248817 "INT64" 1248851 T INT64 (NIL) -8 NIL NIL 1248896) (-547 1247643 1248082 1248147 "INT32" 1248181 T INT32 (NIL) -8 NIL NIL 1248226) (-546 1246973 1247412 1247477 "INT16" 1247511 T INT16 (NIL) -8 NIL NIL 1247556) (-545 1241980 1244662 1244690 "INS" 1245624 T INS (NIL) -9 NIL 1246289 NIL) (-544 1239220 1239991 1240965 "INS-" 1241038 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1237995 1238222 1238520 "INPSIGN" 1238973 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1237113 1237230 1237427 "INPRODPF" 1237875 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1236007 1236124 1236361 "INPRODFF" 1236993 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1235007 1235159 1235419 "INNMFACT" 1235843 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1234204 1234301 1234489 "INMODGCD" 1234906 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1232712 1232957 1233281 "INFSP" 1233949 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1231896 1232013 1232196 "INFPROD0" 1232592 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1228778 1229961 1230476 "INFORM" 1231389 T INFORM (NIL) -8 NIL NIL NIL) (-535 1228388 1228448 1228546 "INFORM1" 1228713 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1227911 1228000 1228114 "INFINITY" 1228294 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1227087 1227631 1227732 "INETCLTS" 1227830 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1225703 1225953 1226274 "INEP" 1226835 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1224979 1225600 1225665 "INDE" 1225670 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1224543 1224611 1224728 "INCRMAPS" 1224906 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1223361 1223812 1224018 "INBFILE" 1224357 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1218661 1219597 1220541 "INBFF" 1222449 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1217569 1217838 1217866 "INBCON" 1218379 T INBCON (NIL) -9 NIL 1218645 NIL) (-526 1216821 1217044 1217320 "INBCON-" 1217325 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1216327 1216545 1216636 "INAST" 1216750 T INAST (NIL) -8 NIL NIL NIL) (-524 1215781 1216006 1216112 "IMPTAST" 1216241 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1212275 1215625 1215729 "IMATRIX" 1215734 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1210987 1211110 1211425 "IMATQF" 1212131 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1209207 1209434 1209771 "IMATLIN" 1210743 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1203833 1209131 1209189 "ILIST" 1209194 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1201786 1203693 1203806 "IIARRAY2" 1203811 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1197211 1201697 1201761 "IFF" 1201766 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1196585 1196828 1196944 "IFAST" 1197115 T IFAST (NIL) -8 NIL NIL NIL) (-516 1191628 1195877 1196065 "IFARRAY" 1196442 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1190835 1191532 1191605 "IFAMON" 1191610 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1190419 1190484 1190538 "IEVALAB" 1190745 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1190094 1190162 1190322 "IEVALAB-" 1190327 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1189752 1190008 1190071 "IDPO" 1190076 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1189029 1189641 1189716 "IDPOAMS" 1189721 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1188363 1188918 1188993 "IDPOAM" 1188998 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1187448 1187698 1187751 "IDPC" 1188164 NIL IDPC (NIL T T) -9 NIL 1188313 NIL) (-508 1186944 1187340 1187413 "IDPAM" 1187418 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1186347 1186836 1186909 "IDPAG" 1186914 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1186019 1186183 1186258 "IDENT" 1186292 T IDENT (NIL) -8 NIL NIL NIL) (-505 1182274 1183122 1184017 "IDECOMP" 1185176 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1175138 1176197 1177244 "IDEAL" 1181310 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1174302 1174414 1174613 "ICDEN" 1175022 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1173400 1173782 1173929 "ICARD" 1174175 T ICARD (NIL) -8 NIL NIL NIL) (-501 1171460 1171773 1172178 "IBPTOOLS" 1173077 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1167094 1171080 1171193 "IBITS" 1171379 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1163817 1164393 1165088 "IBATOOL" 1166511 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1161596 1162058 1162591 "IBACHIN" 1163352 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1159473 1161442 1161545 "IARRAY2" 1161550 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1155626 1159399 1159456 "IARRAY1" 1159461 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1149610 1154038 1154519 "IAN" 1155165 T IAN (NIL) -8 NIL NIL NIL) (-494 1149121 1149178 1149351 "IALGFACT" 1149547 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1148649 1148762 1148790 "HYPCAT" 1148997 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1148187 1148304 1148490 "HYPCAT-" 1148495 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1147809 1147982 1148065 "HOSTNAME" 1148124 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1147654 1147691 1147732 "HOMOTOP" 1147737 NIL HOMOTOP (NIL T) -9 NIL 1147770 NIL) (-489 1144333 1145664 1145705 "HOAGG" 1146686 NIL HOAGG (NIL T) -9 NIL 1147365 NIL) (-488 1142927 1143326 1143852 "HOAGG-" 1143857 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1136958 1142522 1142671 "HEXADEC" 1142798 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1135706 1135928 1136191 "HEUGCD" 1136735 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1134809 1135543 1135673 "HELLFDIV" 1135678 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1133036 1134586 1134674 "HEAP" 1134753 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1132326 1132588 1132722 "HEADAST" 1132922 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1126240 1132241 1132303 "HDP" 1132308 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1119983 1125875 1126027 "HDMP" 1126141 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1119307 1119447 1119611 "HB" 1119839 T HB (NIL) -7 NIL NIL NIL) (-479 1112804 1119153 1119257 "HASHTBL" 1119262 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1112307 1112525 1112617 "HASAST" 1112732 T HASAST (NIL) -8 NIL NIL NIL) (-477 1110112 1111929 1112111 "HACKPI" 1112145 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1105807 1109965 1110078 "GTSET" 1110083 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1099333 1105685 1105783 "GSTBL" 1105788 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1091638 1098364 1098629 "GSERIES" 1099124 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1090805 1091196 1091224 "GROUP" 1091427 T GROUP (NIL) -9 NIL 1091561 NIL) (-472 1090171 1090330 1090581 "GROUP-" 1090586 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1088538 1088859 1089246 "GROEBSOL" 1089848 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1087478 1087740 1087791 "GRMOD" 1088320 NIL GRMOD (NIL T T) -9 NIL 1088488 NIL) (-469 1087246 1087282 1087410 "GRMOD-" 1087415 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1082563 1083600 1084600 "GRIMAGE" 1086266 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1081029 1081290 1081614 "GRDEF" 1082259 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1080473 1080589 1080730 "GRAY" 1080908 T GRAY (NIL) -7 NIL NIL NIL) (-465 1079686 1080066 1080117 "GRALG" 1080270 NIL GRALG (NIL T T) -9 NIL 1080363 NIL) (-464 1079347 1079420 1079583 "GRALG-" 1079588 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1076151 1078932 1079110 "GPOLSET" 1079254 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1075505 1075562 1075820 "GOSPER" 1076088 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1071264 1071943 1072469 "GMODPOL" 1075204 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1070269 1070453 1070691 "GHENSEL" 1071076 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1064320 1065163 1066190 "GENUPS" 1069353 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1064017 1064068 1064157 "GENUFACT" 1064263 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1063429 1063506 1063671 "GENPGCD" 1063935 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1062903 1062938 1063151 "GENMFACT" 1063388 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1061469 1061726 1062033 "GENEEZ" 1062646 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1055370 1061080 1061242 "GDMP" 1061392 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1044739 1049141 1050247 "GCNAALG" 1054353 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1043158 1043994 1044022 "GCDDOM" 1044277 T GCDDOM (NIL) -9 NIL 1044434 NIL) (-451 1042628 1042755 1042970 "GCDDOM-" 1042975 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1041300 1041485 1041789 "GB" 1042407 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1029916 1032246 1034638 "GBINTERN" 1038991 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1027753 1028045 1028466 "GBF" 1029591 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1026534 1026699 1026966 "GBEUCLID" 1027569 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1025883 1026008 1026157 "GAUSSFAC" 1026405 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1024250 1024552 1024866 "GALUTIL" 1025602 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1022558 1022832 1023156 "GALPOLYU" 1023977 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1019923 1020213 1020620 "GALFACTU" 1022255 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1011729 1013228 1014836 "GALFACT" 1018355 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1009117 1009775 1009803 "FVFUN" 1010959 T FVFUN (NIL) -9 NIL 1011679 NIL) (-440 1008383 1008565 1008593 "FVC" 1008884 T FVC (NIL) -9 NIL 1009067 NIL) (-439 1008053 1008208 1008276 "FUNDESC" 1008335 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1007695 1007850 1007931 "FUNCTION" 1008005 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1005466 1006017 1006483 "FT" 1007249 T FT (NIL) -8 NIL NIL NIL) (-436 1004284 1004767 1004970 "FTEM" 1005283 T FTEM (NIL) -8 NIL NIL NIL) (-435 1002540 1002829 1003233 "FSUPFACT" 1003975 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1000937 1001226 1001558 "FST" 1002228 T FST (NIL) -8 NIL NIL NIL) (-433 1000108 1000214 1000409 "FSRED" 1000819 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 998786 999042 999396 "FSPRMELT" 999823 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 995871 996309 996808 "FSPECF" 998349 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 977925 986374 986414 "FS" 990262 NIL FS (NIL T) -9 NIL 992551 NIL) (-429 966572 969565 973621 "FS-" 973918 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 966086 966140 966317 "FSINT" 966513 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 964405 965079 965382 "FSERIES" 965865 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 963419 963535 963766 "FSCINT" 964285 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 959653 962363 962404 "FSAGG" 962774 NIL FSAGG (NIL T) -9 NIL 963033 NIL) (-424 957415 958016 958812 "FSAGG-" 958907 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 956457 956600 956827 "FSAGG2" 957268 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 954111 954391 954945 "FS2UPS" 956175 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 953693 953736 953891 "FS2" 954062 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 952550 952721 953030 "FS2EXPXP" 953518 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 951976 952091 952243 "FRUTIL" 952430 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 943416 947471 948829 "FR" 950650 NIL FR (NIL T) -8 NIL NIL NIL) (-417 938491 941134 941174 "FRNAALG" 942570 NIL FRNAALG (NIL T) -9 NIL 943177 NIL) (-416 934164 935240 936515 "FRNAALG-" 937265 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 933802 933845 933972 "FRNAAF2" 934115 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 932209 932656 932951 "FRMOD" 933614 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 929987 930592 930909 "FRIDEAL" 932000 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 929182 929269 929558 "FRIDEAL2" 929894 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 928315 928729 928770 "FRETRCT" 928775 NIL FRETRCT (NIL T) -9 NIL 928951 NIL) (-410 927427 927658 928009 "FRETRCT-" 928014 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 924631 925815 925874 "FRAMALG" 926756 NIL FRAMALG (NIL T T) -9 NIL 927048 NIL) (-408 922765 923220 923850 "FRAMALG-" 924073 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 916713 922240 922516 "FRAC" 922521 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 916349 916406 916513 "FRAC2" 916650 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 915985 916042 916149 "FR2" 916286 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 910650 913510 913538 "FPS" 914657 T FPS (NIL) -9 NIL 915214 NIL) (-403 910099 910208 910372 "FPS-" 910518 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 907545 909188 909216 "FPC" 909441 T FPC (NIL) -9 NIL 909583 NIL) (-401 907338 907378 907475 "FPC-" 907480 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 906216 906826 906867 "FPATMAB" 906872 NIL FPATMAB (NIL T) -9 NIL 907024 NIL) (-399 903916 904392 904818 "FPARFRAC" 905853 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 899309 899808 900490 "FORTRAN" 903348 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 897025 897525 898064 "FORT" 898790 T FORT (NIL) -7 NIL NIL NIL) (-396 894701 895263 895291 "FORTFN" 896351 T FORTFN (NIL) -9 NIL 896975 NIL) (-395 894465 894515 894543 "FORTCAT" 894602 T FORTCAT (NIL) -9 NIL 894664 NIL) (-394 892598 893081 893471 "FORMULA" 894095 T FORMULA (NIL) -8 NIL NIL NIL) (-393 892386 892416 892485 "FORMULA1" 892562 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 891909 891961 892134 "FORDER" 892328 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 891005 891169 891362 "FOP" 891736 T FOP (NIL) -7 NIL NIL NIL) (-390 889613 890285 890459 "FNLA" 890887 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 888368 888757 888785 "FNCAT" 889245 T FNCAT (NIL) -9 NIL 889505 NIL) (-388 887934 888327 888355 "FNAME" 888360 T FNAME (NIL) -8 NIL NIL NIL) (-387 886589 887526 887554 "FMTC" 887559 T FMTC (NIL) -9 NIL 887595 NIL) (-386 882949 884112 884741 "FMONOID" 885993 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 882168 882691 882840 "FM" 882845 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 879592 880238 880266 "FMFUN" 881410 T FMFUN (NIL) -9 NIL 882118 NIL) (-383 878861 879042 879070 "FMC" 879360 T FMC (NIL) -9 NIL 879542 NIL) (-382 876055 876889 876943 "FMCAT" 878138 NIL FMCAT (NIL T T) -9 NIL 878633 NIL) (-381 874948 875821 875921 "FM1" 876000 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 872722 873138 873632 "FLOATRP" 874499 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 866323 870451 871072 "FLOAT" 872121 T FLOAT (NIL) -8 NIL NIL NIL) (-378 863761 864261 864839 "FLOATCP" 865790 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 862562 863374 863415 "FLINEXP" 863420 NIL FLINEXP (NIL T) -9 NIL 863513 NIL) (-376 861716 861951 862279 "FLINEXP-" 862284 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 860792 860936 861160 "FLASORT" 861568 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 858009 858851 858903 "FLALG" 860130 NIL FLALG (NIL T T) -9 NIL 860597 NIL) (-373 851793 855495 855536 "FLAGG" 856798 NIL FLAGG (NIL T) -9 NIL 857450 NIL) (-372 850519 850858 851348 "FLAGG-" 851353 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 849561 849704 849931 "FLAGG2" 850372 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 846528 847510 847569 "FINRALG" 848697 NIL FINRALG (NIL T T) -9 NIL 849205 NIL) (-369 845688 845917 846256 "FINRALG-" 846261 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 845094 845307 845335 "FINITE" 845531 T FINITE (NIL) -9 NIL 845638 NIL) (-367 837552 839713 839753 "FINAALG" 843420 NIL FINAALG (NIL T) -9 NIL 844873 NIL) (-366 832884 833934 835078 "FINAALG-" 836457 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 832279 832639 832742 "FILE" 832814 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 830963 831275 831329 "FILECAT" 832013 NIL FILECAT (NIL T T) -9 NIL 832229 NIL) (-363 828823 830325 830353 "FIELD" 830393 T FIELD (NIL) -9 NIL 830473 NIL) (-362 827443 827828 828339 "FIELD-" 828344 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 825320 826078 826425 "FGROUP" 827129 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 824410 824574 824794 "FGLMICPK" 825152 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 820269 824335 824392 "FFX" 824397 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 819870 819931 820066 "FFSLPE" 820202 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 815859 816642 817438 "FFPOLY" 819106 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 815363 815399 815608 "FFPOLY2" 815817 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 811233 815282 815345 "FFP" 815350 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 806658 811144 811208 "FF" 811213 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 801811 806001 806191 "FFNBX" 806512 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 796767 800946 801204 "FFNBP" 801665 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 791427 796051 796262 "FFNB" 796600 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 790259 790457 790772 "FFINTBAS" 791224 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 786479 788666 788694 "FFIELDC" 789314 T FFIELDC (NIL) -9 NIL 789690 NIL) (-348 785141 785512 786009 "FFIELDC-" 786014 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 784710 784756 784880 "FFHOM" 785083 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 782405 782892 783409 "FFF" 784225 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 778050 782147 782248 "FFCGX" 782348 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 773698 777782 777889 "FFCGP" 777993 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 768908 773425 773533 "FFCG" 773634 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 750733 759779 759865 "FFCAT" 765030 NIL FFCAT (NIL T T T) -9 NIL 766481 NIL) (-341 745931 746978 748292 "FFCAT-" 749522 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 745342 745385 745620 "FFCAT2" 745882 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 734539 738314 739534 "FEXPR" 744194 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 733539 733974 734015 "FEVALAB" 734099 NIL FEVALAB (NIL T) -9 NIL 734360 NIL) (-337 732698 732908 733246 "FEVALAB-" 733251 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 731291 732081 732284 "FDIV" 732597 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 728357 729072 729187 "FDIVCAT" 730755 NIL FDIVCAT (NIL T T T T) -9 NIL 731192 NIL) (-334 728119 728146 728316 "FDIVCAT-" 728321 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 727339 727426 727703 "FDIV2" 728026 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 726025 726284 726573 "FCPAK1" 727070 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 725151 725525 725666 "FCOMP" 725916 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 708880 712301 715839 "FC" 721633 T FC (NIL) -8 NIL NIL NIL) (-329 701451 705444 705484 "FAXF" 707286 NIL FAXF (NIL T) -9 NIL 707978 NIL) (-328 698727 699385 700210 "FAXF-" 700675 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 693827 698103 698279 "FARRAY" 698584 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 689072 691112 691165 "FAMR" 692188 NIL FAMR (NIL T T) -9 NIL 692648 NIL) (-325 687962 688264 688699 "FAMR-" 688704 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 687158 687884 687937 "FAMONOID" 687942 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 684970 685654 685707 "FAMONC" 686648 NIL FAMONC (NIL T T) -9 NIL 687034 NIL) (-322 683662 684724 684861 "FAGROUP" 684866 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 681457 681776 682179 "FACUTIL" 683343 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 680556 680741 680963 "FACTFUNC" 681267 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 672953 679807 680019 "EXPUPXS" 680412 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 670436 670976 671562 "EXPRTUBE" 672387 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 666630 667222 667959 "EXPRODE" 669775 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 651996 665285 665713 "EXPR" 666234 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 646403 646990 647803 "EXPR2UPS" 651294 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 646039 646096 646203 "EXPR2" 646340 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 637436 645171 645468 "EXPEXPAN" 645876 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 637263 637393 637422 "EXIT" 637427 T EXIT (NIL) -8 NIL NIL NIL) (-311 636770 636987 637078 "EXITAST" 637192 T EXITAST (NIL) -8 NIL NIL NIL) (-310 636397 636459 636572 "EVALCYC" 636702 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 635938 636056 636097 "EVALAB" 636267 NIL EVALAB (NIL T) -9 NIL 636371 NIL) (-308 635419 635541 635762 "EVALAB-" 635767 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 632879 634155 634183 "EUCDOM" 634738 T EUCDOM (NIL) -9 NIL 635088 NIL) (-306 631284 631726 632316 "EUCDOM-" 632321 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 618822 621582 624332 "ESTOOLS" 628554 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 618454 618511 618620 "ESTOOLS2" 618759 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 618205 618247 618327 "ESTOOLS1" 618406 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 612110 613838 613866 "ES" 616634 T ES (NIL) -9 NIL 618043 NIL) (-301 607057 608344 610161 "ES-" 610325 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 603431 604192 604972 "ESCONT" 606297 T ESCONT (NIL) -7 NIL NIL NIL) (-299 603176 603208 603290 "ESCONT1" 603393 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 602851 602901 603001 "ES2" 603120 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 602481 602539 602648 "ES1" 602787 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 601697 601826 602002 "ERROR" 602325 T ERROR (NIL) -7 NIL NIL NIL) (-295 595200 601556 601647 "EQTBL" 601652 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 587751 590514 591963 "EQ" 593784 NIL -3205 (NIL T) -8 NIL NIL NIL) (-293 587383 587440 587549 "EQ2" 587688 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 582672 583721 584814 "EP" 586322 NIL EP (NIL T) -7 NIL NIL NIL) (-291 581250 581547 581859 "ENV" 582380 T ENV (NIL) -8 NIL NIL NIL) (-290 580421 580949 580977 "ENTIRER" 580982 T ENTIRER (NIL) -9 NIL 581028 NIL) (-289 576915 578376 578746 "EMR" 580220 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 576059 576244 576298 "ELTAGG" 576678 NIL ELTAGG (NIL T T) -9 NIL 576889 NIL) (-287 575778 575840 575981 "ELTAGG-" 575986 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 575567 575596 575650 "ELTAB" 575734 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 574693 574839 575038 "ELFUTS" 575418 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 574435 574491 574519 "ELEMFUN" 574624 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 574305 574326 574394 "ELEMFUN-" 574399 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 569196 572405 572446 "ELAGG" 573386 NIL ELAGG (NIL T) -9 NIL 573849 NIL) (-281 567481 567915 568578 "ELAGG-" 568583 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 566146 566424 566717 "ELABEXPR" 567208 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 559010 560813 561640 "EFUPXS" 565422 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 552460 554261 555071 "EFULS" 558286 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 549882 550240 550719 "EFSTRUC" 552092 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 538953 540519 542079 "EF" 548397 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 538054 538438 538587 "EAB" 538824 T EAB (NIL) -8 NIL NIL NIL) (-274 537263 538013 538041 "E04UCFA" 538046 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 536472 537222 537250 "E04NAFA" 537255 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 535681 536431 536459 "E04MBFA" 536464 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 534890 535640 535668 "E04JAFA" 535673 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 534101 534849 534877 "E04GCFA" 534882 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 533312 534060 534088 "E04FDFA" 534093 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 532521 533271 533299 "E04DGFA" 533304 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 526694 528046 529410 "E04AGNT" 531177 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 525400 525880 525920 "DVARCAT" 526395 NIL DVARCAT (NIL T) -9 NIL 526594 NIL) (-265 524604 524816 525130 "DVARCAT-" 525135 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 517496 524403 524532 "DSMP" 524537 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 512305 513441 514509 "DROPT" 516448 T DROPT (NIL) -8 NIL NIL NIL) (-262 511970 512029 512127 "DROPT1" 512240 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 507085 508211 509348 "DROPT0" 510853 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 505430 505755 506141 "DRAWPT" 506719 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 500017 500940 502019 "DRAW" 504404 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 499650 499703 499821 "DRAWHACK" 499958 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 498381 498650 498941 "DRAWCX" 499379 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 497896 497965 498116 "DRAWCURV" 498307 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 488364 490326 492441 "DRAWCFUN" 495801 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 485177 487059 487100 "DQAGG" 487729 NIL DQAGG (NIL T) -9 NIL 488002 NIL) (-253 473448 480155 480238 "DPOLCAT" 482090 NIL DPOLCAT (NIL T T T T) -9 NIL 482635 NIL) (-252 468284 469633 471591 "DPOLCAT-" 471596 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 461433 468145 468243 "DPMO" 468248 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 454485 461213 461380 "DPMM" 461385 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 454117 454404 454452 "DOMCTOR" 454457 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 453412 453639 453776 "DOMAIN" 454000 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 447155 453047 453199 "DMP" 453313 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 446755 446811 446955 "DLP" 447093 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 440625 446082 446272 "DLIST" 446597 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 437469 439478 439519 "DLAGG" 440069 NIL DLAGG (NIL T) -9 NIL 440299 NIL) (-243 436274 436912 436940 "DIVRING" 437032 T DIVRING (NIL) -9 NIL 437115 NIL) (-242 435511 435701 436001 "DIVRING-" 436006 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 433613 433970 434376 "DISPLAY" 435125 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 427549 433527 433590 "DIRPROD" 433595 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 426397 426600 426865 "DIRPROD2" 427342 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 415654 421612 421665 "DIRPCAT" 422075 NIL DIRPCAT (NIL NIL T) -9 NIL 422915 NIL) (-237 412980 413622 414503 "DIRPCAT-" 414840 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 412267 412427 412613 "DIOSP" 412814 T DIOSP (NIL) -7 NIL NIL NIL) (-235 408969 411179 411220 "DIOPS" 411654 NIL DIOPS (NIL T) -9 NIL 411883 NIL) (-234 408518 408632 408823 "DIOPS-" 408828 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 407402 408004 408032 "DIFRING" 408219 T DIFRING (NIL) -9 NIL 408329 NIL) (-232 407048 407125 407277 "DIFRING-" 407282 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 404845 406091 406132 "DIFEXT" 406495 NIL DIFEXT (NIL T) -9 NIL 406789 NIL) (-230 403130 403558 404224 "DIFEXT-" 404229 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 400452 402662 402703 "DIAGG" 402708 NIL DIAGG (NIL T) -9 NIL 402728 NIL) (-228 399836 399993 400245 "DIAGG-" 400250 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 395301 398795 399072 "DHMATRIX" 399605 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 390913 391822 392832 "DFSFUN" 394311 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 386018 389844 390156 "DFLOAT" 390621 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 384246 384527 384923 "DFINTTLS" 385726 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 381302 382267 382667 "DERHAM" 383912 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 379151 381077 381166 "DEQUEUE" 381246 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 378366 378499 378695 "DEGRED" 379013 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 374761 375506 376359 "DEFINTRF" 377594 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 372288 372757 373356 "DEFINTEF" 374280 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 371665 371908 372023 "DEFAST" 372193 T DEFAST (NIL) -8 NIL NIL NIL) (-217 365696 371260 371409 "DECIMAL" 371536 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 363206 363666 364172 "DDFACT" 365240 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 362802 362845 362996 "DBLRESP" 363157 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 360701 361035 361395 "DBASE" 362569 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 359970 360181 360327 "DATAARY" 360600 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 359103 359929 359957 "D03FAFA" 359962 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 358237 359062 359090 "D03EEFA" 359095 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 356187 356653 357142 "D03AGNT" 357768 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 355503 356146 356174 "D02EJFA" 356179 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 354819 355462 355490 "D02CJFA" 355495 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 354135 354778 354806 "D02BHFA" 354811 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 353451 354094 354122 "D02BBFA" 354127 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 346648 348237 349843 "D02AGNT" 351865 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 344416 344939 345485 "D01WGTS" 346122 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 343510 344375 344403 "D01TRNS" 344408 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 342605 343469 343497 "D01GBFA" 343502 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 341700 342564 342592 "D01FCFA" 342597 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 340795 341659 341687 "D01ASFA" 341692 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 339890 340754 340782 "D01AQFA" 340787 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 338985 339849 339877 "D01APFA" 339882 T D01APFA (NIL) -8 NIL NIL NIL) (-197 338080 338944 338972 "D01ANFA" 338977 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 337175 338039 338067 "D01AMFA" 338072 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 336270 337134 337162 "D01ALFA" 337167 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 335365 336229 336257 "D01AKFA" 336262 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 334460 335324 335352 "D01AJFA" 335357 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 327755 329308 330869 "D01AGNT" 332919 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 327092 327220 327372 "CYCLOTOM" 327623 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 323827 324540 325267 "CYCLES" 326385 T CYCLES (NIL) -7 NIL NIL NIL) (-189 323139 323273 323444 "CVMP" 323688 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 320910 321168 321544 "CTRIGMNP" 322867 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 320401 320701 320775 "CTOR" 320856 T CTOR (NIL) -8 NIL NIL NIL) (-186 319937 320132 320233 "CTORKIND" 320320 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 319285 319544 319572 "CTORCAT" 319754 T CTORCAT (NIL) -9 NIL 319867 NIL) (-184 318883 318994 319153 "CTORCAT-" 319158 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 318399 318586 318684 "CTORCALL" 318805 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 317773 317872 318025 "CSTTOOLS" 318296 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 313572 314229 314987 "CRFP" 317085 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 313074 313293 313385 "CRCEAST" 313500 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 312121 312306 312534 "CRAPACK" 312878 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 311505 311606 311810 "CPMATCH" 311997 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 311230 311258 311364 "CPIMA" 311471 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 307594 308266 308984 "COORDSYS" 310565 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 307002 307124 307267 "CONTOUR" 307471 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 302920 305005 305497 "CONTFRAC" 306542 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 302800 302821 302849 "CONDUIT" 302886 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 301965 302493 302521 "COMRING" 302526 T COMRING (NIL) -9 NIL 302578 NIL) (-171 301046 301323 301507 "COMPPROP" 301801 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 300707 300742 300870 "COMPLPAT" 301005 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 290756 300516 300625 "COMPLEX" 300630 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 290392 290449 290556 "COMPLEX2" 290693 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 290110 290145 290243 "COMPFACT" 290351 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 274264 284492 284532 "COMPCAT" 285536 NIL COMPCAT (NIL T) -9 NIL 286932 NIL) (-165 263775 266703 270330 "COMPCAT-" 270686 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 263504 263532 263635 "COMMUPC" 263741 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 263299 263332 263391 "COMMONOP" 263465 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 262882 263050 263137 "COMM" 263232 T COMM (NIL) -8 NIL NIL NIL) (-161 262485 262686 262761 "COMMAAST" 262827 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 261734 261928 261956 "COMBOPC" 262294 T COMBOPC (NIL) -9 NIL 262469 NIL) (-159 260630 260840 261082 "COMBINAT" 261524 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 256827 257401 258041 "COMBF" 260052 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 255612 255943 256178 "COLOR" 256612 T COLOR (NIL) -8 NIL NIL NIL) (-156 255115 255333 255425 "COLONAST" 255540 T COLONAST (NIL) -8 NIL NIL NIL) (-155 254755 254802 254927 "CMPLXRT" 255062 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 254230 254455 254554 "CLLCTAST" 254676 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 249730 250760 251840 "CLIP" 253170 T CLIP (NIL) -7 NIL NIL NIL) (-152 248103 248836 249075 "CLIF" 249557 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 244325 246249 246290 "CLAGG" 247219 NIL CLAGG (NIL T) -9 NIL 247755 NIL) (-150 242747 243204 243787 "CLAGG-" 243792 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 242291 242376 242516 "CINTSLPE" 242656 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 239792 240263 240811 "CHVAR" 241819 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 239027 239555 239583 "CHARZ" 239588 T CHARZ (NIL) -9 NIL 239603 NIL) (-146 238781 238821 238899 "CHARPOL" 238981 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 237900 238461 238489 "CHARNZ" 238536 T CHARNZ (NIL) -9 NIL 238592 NIL) (-144 235889 236590 236925 "CHAR" 237585 T CHAR (NIL) -8 NIL NIL NIL) (-143 235615 235676 235704 "CFCAT" 235815 T CFCAT (NIL) -9 NIL NIL NIL) (-142 234860 234971 235153 "CDEN" 235499 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 230852 234013 234293 "CCLASS" 234600 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230159 230302 230465 "CATEGORY" 230709 T -10 (NIL) -8 NIL NIL NIL) (-139 229791 230078 230126 "CATCTOR" 230131 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229269 229494 229592 "CATAST" 229713 T CATAST (NIL) -8 NIL NIL NIL) (-137 228772 228990 229082 "CASEAST" 229197 T CASEAST (NIL) -8 NIL NIL NIL) (-136 223808 224801 225554 "CARTEN" 228075 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 222916 223064 223285 "CARTEN2" 223655 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221258 222066 222323 "CARD" 222679 T CARD (NIL) -8 NIL NIL NIL) (-133 220861 221062 221137 "CAPSLAST" 221203 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220233 220561 220589 "CACHSET" 220721 T CACHSET (NIL) -9 NIL 220798 NIL) (-131 219729 220025 220053 "CABMON" 220103 T CABMON (NIL) -9 NIL 220159 NIL) (-130 219229 219433 219543 "BYTEORD" 219639 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 218232 218763 218905 "BYTE" 219068 T BYTE (NIL) -8 NIL NIL 219190) (-128 213632 217737 217909 "BYTEBUF" 218080 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211189 213324 213431 "BTREE" 213558 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208686 210837 210959 "BTOURN" 211099 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206103 208156 208197 "BTCAT" 208265 NIL BTCAT (NIL T) -9 NIL 208342 NIL) (-124 205770 205850 205999 "BTCAT-" 206004 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201062 204913 204941 "BTAGG" 205163 T BTAGG (NIL) -9 NIL 205324 NIL) (-122 200552 200677 200883 "BTAGG-" 200888 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197595 199830 200045 "BSTREE" 200369 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196733 196859 197043 "BRILL" 197451 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193432 195459 195500 "BRAGG" 196149 NIL BRAGG (NIL T) -9 NIL 196407 NIL) (-118 191961 192367 192922 "BRAGG-" 192927 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185217 191307 191491 "BPADICRT" 191809 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183559 185154 185199 "BPADIC" 185204 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183257 183287 183401 "BOUNDZRO" 183523 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178772 179863 180730 "BOP" 182410 T BOP (NIL) -8 NIL NIL NIL) (-113 176393 176837 177357 "BOP1" 178285 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 175095 175817 176010 "BOOLEAN" 176220 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174457 174835 174889 "BMODULE" 174894 NIL BMODULE (NIL T T) -9 NIL 174959 NIL) (-110 170285 174255 174328 "BITS" 174404 T BITS (NIL) -8 NIL NIL NIL) (-109 169697 169819 169961 "BINDING" 170163 T BINDING (NIL) -8 NIL NIL NIL) (-108 163731 169294 169442 "BINARY" 169569 T BINARY (NIL) -8 NIL NIL NIL) (-107 161558 162986 163027 "BGAGG" 163287 NIL BGAGG (NIL T) -9 NIL 163424 NIL) (-106 161389 161421 161512 "BGAGG-" 161517 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160487 160773 160978 "BFUNCT" 161204 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159177 159355 159643 "BEZOUT" 160311 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155694 158029 158359 "BBTREE" 158880 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155428 155481 155509 "BASTYPE" 155628 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155281 155309 155382 "BASTYPE-" 155387 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154715 154791 154943 "BALFACT" 155192 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153598 154130 154316 "AUTOMOR" 154560 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153324 153329 153355 "ATTREG" 153360 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151603 152021 152373 "ATTRBUT" 152990 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151238 151431 151497 "ATTRAST" 151555 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150774 150887 150913 "ATRIG" 151114 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150583 150624 150711 "ATRIG-" 150716 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150254 150414 150440 "ASTCAT" 150445 T ASTCAT (NIL) -9 NIL 150475 NIL) (-92 149981 150040 150159 "ASTCAT-" 150164 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148178 149757 149845 "ASTACK" 149924 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146683 146980 147345 "ASSOCEQ" 147860 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145715 146342 146466 "ASP9" 146590 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145478 145663 145702 "ASP8" 145707 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144346 145083 145225 "ASP80" 145367 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143244 143981 144113 "ASP7" 144245 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142198 142921 143039 "ASP78" 143157 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141167 141878 141995 "ASP77" 142112 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140079 140805 140936 "ASP74" 141067 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138979 139714 139846 "ASP73" 139978 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138083 138805 138905 "ASP6" 138910 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137027 137760 137878 "ASP55" 137996 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135976 136701 136820 "ASP50" 136939 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135064 135677 135787 "ASP4" 135897 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134152 134765 134875 "ASP49" 134985 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132936 133691 133859 "ASP42" 134041 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131712 132469 132639 "ASP41" 132823 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130662 131389 131507 "ASP35" 131625 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130427 130610 130649 "ASP34" 130654 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130164 130231 130307 "ASP33" 130382 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129057 129799 129931 "ASP31" 130063 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128822 129005 129044 "ASP30" 129049 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128557 128626 128702 "ASP29" 128777 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128322 128505 128544 "ASP28" 128549 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128087 128270 128309 "ASP27" 128314 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127171 127785 127896 "ASP24" 128007 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126247 126973 127085 "ASP20" 127090 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125335 125948 126058 "ASP1" 126168 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124277 125009 125128 "ASP19" 125247 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124014 124081 124157 "ASP12" 124232 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122866 123613 123757 "ASP10" 123901 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120765 122710 122801 "ARRAY2" 122806 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116579 120413 120527 "ARRAY1" 120682 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115611 115784 116005 "ARRAY12" 116402 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109970 111841 111916 "ARR2CAT" 114546 NIL ARR2CAT (NIL T T T) -9 NIL 115304 NIL) (-56 107404 108148 109102 "ARR2CAT-" 109107 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106996 107231 107310 "ARITY" 107343 T ARITY (NIL) -8 NIL NIL NIL) (-54 105744 105896 106202 "APPRULE" 106832 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105395 105443 105562 "APPLYORE" 105690 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104369 104660 104855 "ANY" 105218 T ANY (NIL) -8 NIL NIL NIL) (-51 103647 103770 103927 "ANY1" 104243 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101204 102084 102411 "ANTISYM" 103371 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100723 100911 101007 "ANON" 101126 T ANON (NIL) -8 NIL NIL NIL) (-48 94847 99262 99716 "AN" 100287 T AN (NIL) -8 NIL NIL NIL) (-47 91095 92457 92508 "AMR" 93256 NIL AMR (NIL T T) -9 NIL 93856 NIL) (-46 90207 90428 90791 "AMR-" 90796 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74757 90124 90185 "ALIST" 90190 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71586 74351 74520 "ALGSC" 74675 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68141 68696 69303 "ALGPKG" 71026 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67418 67519 67703 "ALGMFACT" 68027 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63155 63842 64497 "ALGMANIP" 66941 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54552 62781 62931 "ALGFF" 63088 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53748 53879 54058 "ALGFACT" 54410 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52805 53379 53417 "ALGEBRA" 53422 NIL ALGEBRA (NIL T) -9 NIL 53463 NIL) (-37 52523 52582 52714 "ALGEBRA-" 52719 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34782 50525 50577 "ALAGG" 50713 NIL ALAGG (NIL T T) -9 NIL 50874 NIL) (-35 34318 34431 34457 "AHYP" 34658 T AHYP (NIL) -9 NIL NIL NIL) (-34 33249 33497 33523 "AGG" 34022 T AGG (NIL) -9 NIL 34301 NIL) (-33 32683 32845 33059 "AGG-" 33064 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30359 30782 31200 "AF" 32325 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29866 30084 30174 "ADDAST" 30287 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29134 29393 29549 "ACPLOT" 29728 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18418 26347 26398 "ACFS" 27109 NIL ACFS (NIL T) -9 NIL 27348 NIL) (-28 16432 16922 17697 "ACFS-" 17702 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14599 14625 "ACF" 15504 T ACF (NIL) -9 NIL 15916 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-3 3200364 3200369 3200374 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3200349 3200354 3200359 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3200334 3200339 3200344 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3200319 3200324 3200329 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1287 3199488 3200194 3200271 "ZMOD" 3200276 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1286 3198598 3198762 3198971 "ZLINDEP" 3199320 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1285 3187898 3189666 3191638 "ZDSOLVE" 3196728 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1284 3187144 3187285 3187474 "YSTREAM" 3187744 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1283 3184945 3186445 3186649 "XRPOLY" 3186987 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1282 3181525 3182816 3183391 "XPR" 3184417 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1281 3179273 3180856 3181060 "XPOLY" 3181356 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1280 3177056 3178398 3178453 "XPOLYC" 3178741 NIL XPOLYC (NIL T T) -9 NIL 3178854 NIL) (-1279 3173459 3175573 3175961 "XPBWPOLY" 3176714 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1278 3169362 3171622 3171664 "XF" 3172285 NIL XF (NIL T) -9 NIL 3172685 NIL) (-1277 3168983 3169071 3169240 "XF-" 3169245 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1276 3164309 3165572 3165627 "XFALG" 3167799 NIL XFALG (NIL T T) -9 NIL 3168588 NIL) (-1275 3163442 3163546 3163751 "XEXPPKG" 3164201 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1274 3161578 3163292 3163388 "XDPOLY" 3163393 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1273 3160515 3161089 3161132 "XALG" 3161137 NIL XALG (NIL T) -9 NIL 3161248 NIL) (-1272 3153984 3158492 3158986 "WUTSET" 3160107 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1271 3152267 3153036 3153359 "WP" 3153795 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1270 3151896 3152089 3152159 "WHILEAST" 3152219 T WHILEAST (NIL) -8 NIL NIL NIL) (-1269 3151395 3151613 3151707 "WHEREAST" 3151824 T WHEREAST (NIL) -8 NIL NIL NIL) (-1268 3150281 3150479 3150774 "WFFINTBS" 3151192 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1267 3148185 3148612 3149074 "WEIER" 3149853 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1266 3147332 3147756 3147798 "VSPACE" 3147934 NIL VSPACE (NIL T) -9 NIL 3148008 NIL) (-1265 3147170 3147197 3147288 "VSPACE-" 3147293 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1264 3146978 3147021 3147089 "VOID" 3147124 T VOID (NIL) -8 NIL NIL NIL) (-1263 3145114 3145473 3145879 "VIEW" 3146594 T VIEW (NIL) -7 NIL NIL NIL) (-1262 3141538 3142177 3142914 "VIEWDEF" 3144399 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1261 3130869 3133086 3135259 "VIEW3D" 3139387 T VIEW3D (NIL) -8 NIL NIL NIL) (-1260 3123147 3124780 3126359 "VIEW2D" 3129312 T VIEW2D (NIL) -8 NIL NIL NIL) (-1259 3118549 3122917 3123009 "VECTOR" 3123090 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1258 3117126 3117385 3117703 "VECTOR2" 3118279 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1257 3110653 3114910 3114953 "VECTCAT" 3115946 NIL VECTCAT (NIL T) -9 NIL 3116532 NIL) (-1256 3109667 3109921 3110311 "VECTCAT-" 3110316 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1255 3109148 3109318 3109438 "VARIABLE" 3109582 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1254 3109081 3109086 3109116 "UTYPE" 3109121 T UTYPE (NIL) -9 NIL NIL NIL) (-1253 3107911 3108065 3108327 "UTSODETL" 3108907 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1252 3105351 3105811 3106335 "UTSODE" 3107452 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1251 3097215 3102977 3103466 "UTS" 3104920 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3088450 3093782 3093825 "UTSCAT" 3094937 NIL UTSCAT (NIL T) -9 NIL 3095694 NIL) (-1249 3085798 3086520 3087509 "UTSCAT-" 3087514 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1248 3085425 3085468 3085601 "UTS2" 3085749 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1247 3079698 3082263 3082306 "URAGG" 3084376 NIL URAGG (NIL T) -9 NIL 3085099 NIL) (-1246 3076637 3077500 3078623 "URAGG-" 3078628 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1245 3072353 3075251 3075723 "UPXSSING" 3076301 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1244 3064446 3071600 3071873 "UPXS" 3072138 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1243 3057546 3064350 3064422 "UPXSCONS" 3064427 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1242 3047783 3054541 3054603 "UPXSCCA" 3055177 NIL UPXSCCA (NIL T T) -9 NIL 3055410 NIL) (-1241 3047421 3047506 3047680 "UPXSCCA-" 3047685 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1240 3037511 3044042 3044085 "UPXSCAT" 3044733 NIL UPXSCAT (NIL T) -9 NIL 3045341 NIL) (-1239 3036941 3037020 3037199 "UPXS2" 3037426 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1238 3035595 3035848 3036199 "UPSQFREE" 3036684 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1237 3029375 3032397 3032452 "UPSCAT" 3033613 NIL UPSCAT (NIL T T) -9 NIL 3034387 NIL) (-1236 3028579 3028786 3029113 "UPSCAT-" 3029118 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1235 3014421 3022427 3022470 "UPOLYC" 3024571 NIL UPOLYC (NIL T) -9 NIL 3025792 NIL) (-1234 3005749 3008175 3011322 "UPOLYC-" 3011327 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1233 3005376 3005419 3005552 "UPOLYC2" 3005700 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1232 2996942 3005059 3005188 "UP" 3005295 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1231 2996281 2996388 2996552 "UPMP" 2996831 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1230 2995834 2995915 2996054 "UPDIVP" 2996194 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1229 2994402 2994651 2994967 "UPDECOMP" 2995583 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1228 2993637 2993749 2993934 "UPCDEN" 2994286 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1227 2993156 2993225 2993374 "UP2" 2993562 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1226 2991671 2992360 2992637 "UNISEG" 2992914 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1225 2990886 2991013 2991218 "UNISEG2" 2991514 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1224 2989946 2990126 2990352 "UNIFACT" 2990702 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1223 2973905 2989123 2989374 "ULS" 2989753 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1222 2961931 2973809 2973881 "ULSCONS" 2973886 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1221 2944539 2956489 2956551 "ULSCCAT" 2957189 NIL ULSCCAT (NIL T T) -9 NIL 2957477 NIL) (-1220 2943589 2943834 2944222 "ULSCCAT-" 2944227 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1219 2933456 2939901 2939944 "ULSCAT" 2940807 NIL ULSCAT (NIL T) -9 NIL 2941537 NIL) (-1218 2932886 2932965 2933144 "ULS2" 2933371 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1217 2932003 2932486 2932593 "UINT8" 2932704 T UINT8 (NIL) -8 NIL NIL 2932789) (-1216 2931119 2931602 2931709 "UINT64" 2931820 T UINT64 (NIL) -8 NIL NIL 2931905) (-1215 2930235 2930718 2930825 "UINT32" 2930936 T UINT32 (NIL) -8 NIL NIL 2931021) (-1214 2929351 2929834 2929941 "UINT16" 2930052 T UINT16 (NIL) -8 NIL NIL 2930137) (-1213 2927746 2928677 2928707 "UFD" 2928919 T UFD (NIL) -9 NIL 2929033 NIL) (-1212 2927540 2927586 2927681 "UFD-" 2927686 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1211 2926622 2926805 2927021 "UDVO" 2927346 T UDVO (NIL) -7 NIL NIL NIL) (-1210 2924438 2924847 2925318 "UDPO" 2926186 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1209 2924371 2924376 2924406 "TYPE" 2924411 T TYPE (NIL) -9 NIL NIL NIL) (-1208 2924158 2924326 2924357 "TYPEAST" 2924362 T TYPEAST (NIL) -8 NIL NIL NIL) (-1207 2923129 2923331 2923571 "TWOFACT" 2923952 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1206 2922200 2922538 2922773 "TUPLE" 2922929 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1205 2919891 2920410 2920949 "TUBETOOL" 2921683 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1204 2918740 2918945 2919186 "TUBE" 2919684 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1203 2913496 2917712 2917995 "TS" 2918492 NIL TS (NIL T) -8 NIL NIL NIL) (-1202 2902163 2906255 2906352 "TSETCAT" 2911621 NIL TSETCAT (NIL T T T T) -9 NIL 2913152 NIL) (-1201 2896895 2898495 2900386 "TSETCAT-" 2900391 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1200 2891157 2892004 2892946 "TRMANIP" 2896031 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1199 2890598 2890661 2890824 "TRIMAT" 2891089 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1198 2888394 2888631 2888995 "TRIGMNIP" 2890347 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1197 2887914 2888027 2888057 "TRIGCAT" 2888270 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1196 2887583 2887662 2887803 "TRIGCAT-" 2887808 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1195 2884476 2886441 2886722 "TREE" 2887337 NIL TREE (NIL T) -8 NIL NIL NIL) (-1194 2883750 2884278 2884308 "TRANFUN" 2884343 T TRANFUN (NIL) -9 NIL 2884409 NIL) (-1193 2883029 2883220 2883500 "TRANFUN-" 2883505 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1192 2882833 2882865 2882926 "TOPSP" 2882990 T TOPSP (NIL) -7 NIL NIL NIL) (-1191 2882181 2882296 2882450 "TOOLSIGN" 2882714 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1190 2880842 2881358 2881597 "TEXTFILE" 2881964 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1189 2878781 2879295 2879724 "TEX" 2880435 T TEX (NIL) -8 NIL NIL NIL) (-1188 2878562 2878593 2878665 "TEX1" 2878744 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1187 2878210 2878273 2878363 "TEMUTL" 2878494 T TEMUTL (NIL) -7 NIL NIL NIL) (-1186 2876364 2876644 2876969 "TBCMPPK" 2877933 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1185 2868252 2874524 2874580 "TBAGG" 2874980 NIL TBAGG (NIL T T) -9 NIL 2875191 NIL) (-1184 2863322 2864810 2866564 "TBAGG-" 2866569 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1183 2862706 2862813 2862958 "TANEXP" 2863211 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1182 2856207 2862563 2862656 "TABLE" 2862661 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1181 2855619 2855718 2855856 "TABLEAU" 2856104 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1180 2850227 2851447 2852695 "TABLBUMP" 2854405 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1179 2849449 2849596 2849777 "SYSTEM" 2850068 T SYSTEM (NIL) -8 NIL NIL NIL) (-1178 2845908 2846607 2847390 "SYSSOLP" 2848700 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1177 2844942 2845420 2845539 "SYSNNI" 2845725 NIL SYSNNI (NIL NIL) -8 NIL NIL 2845810) (-1176 2844239 2844671 2844750 "SYSINT" 2844810 NIL SYSINT (NIL NIL) -8 NIL NIL 2844855) (-1175 2840598 2841517 2842227 "SYNTAX" 2843551 T SYNTAX (NIL) -8 NIL NIL NIL) (-1174 2837756 2838358 2838990 "SYMTAB" 2839988 T SYMTAB (NIL) -8 NIL NIL NIL) (-1173 2833005 2833907 2834890 "SYMS" 2836795 T SYMS (NIL) -8 NIL NIL NIL) (-1172 2830267 2832463 2832693 "SYMPOLY" 2832810 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1171 2829784 2829859 2829982 "SYMFUNC" 2830179 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1170 2825830 2827096 2827909 "SYMBOL" 2828993 T SYMBOL (NIL) -8 NIL NIL NIL) (-1169 2819369 2821058 2822778 "SWITCH" 2824132 T SWITCH (NIL) -8 NIL NIL NIL) (-1168 2812630 2818190 2818493 "SUTS" 2819124 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2804723 2811877 2812150 "SUPXS" 2812415 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2796238 2804341 2804467 "SUP" 2804632 NIL SUP (NIL T) -8 NIL NIL NIL) (-1165 2795397 2795524 2795741 "SUPFRACF" 2796106 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1164 2795018 2795077 2795190 "SUP2" 2795332 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1163 2793431 2793705 2794068 "SUMRF" 2794717 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1162 2792745 2792811 2793010 "SUMFS" 2793352 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1161 2776739 2791922 2792173 "SULS" 2792552 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2776368 2776561 2776631 "SUCHTAST" 2776691 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1159 2775690 2775893 2776033 "SUCH" 2776276 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1158 2769584 2770596 2771555 "SUBSPACE" 2774778 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1157 2769014 2769104 2769268 "SUBRESP" 2769472 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1156 2762379 2763679 2764990 "STTF" 2767750 NIL STTF (NIL T) -7 NIL NIL NIL) (-1155 2756552 2757672 2758819 "STTFNC" 2761279 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1154 2747863 2749734 2751528 "STTAYLOR" 2754793 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1153 2741107 2747727 2747810 "STRTBL" 2747815 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1152 2736498 2741062 2741093 "STRING" 2741098 T STRING (NIL) -8 NIL NIL NIL) (-1151 2731386 2735871 2735901 "STRICAT" 2735960 T STRICAT (NIL) -9 NIL 2736022 NIL) (-1150 2724189 2729005 2729616 "STREAM" 2730810 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1149 2723699 2723776 2723920 "STREAM3" 2724106 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1148 2722681 2722864 2723099 "STREAM2" 2723512 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1147 2722369 2722421 2722514 "STREAM1" 2722623 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1146 2721385 2721566 2721797 "STINPROD" 2722185 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1145 2720963 2721147 2721177 "STEP" 2721257 T STEP (NIL) -9 NIL 2721335 NIL) (-1144 2714506 2720862 2720939 "STBL" 2720944 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1143 2709680 2713727 2713770 "STAGG" 2713923 NIL STAGG (NIL T) -9 NIL 2714012 NIL) (-1142 2707382 2707984 2708856 "STAGG-" 2708861 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1141 2705577 2707152 2707244 "STACK" 2707325 NIL STACK (NIL T) -8 NIL NIL NIL) (-1140 2698300 2703718 2704174 "SREGSET" 2705207 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1139 2690725 2692094 2693607 "SRDCMPK" 2696906 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1138 2683692 2688165 2688195 "SRAGG" 2689498 T SRAGG (NIL) -9 NIL 2690106 NIL) (-1137 2682709 2682964 2683343 "SRAGG-" 2683348 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1136 2677196 2681656 2682077 "SQMATRIX" 2682335 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1135 2670943 2673914 2674641 "SPLTREE" 2676541 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1134 2666933 2667599 2668245 "SPLNODE" 2670369 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1133 2665980 2666213 2666243 "SPFCAT" 2666687 T SPFCAT (NIL) -9 NIL NIL NIL) (-1132 2664717 2664927 2665191 "SPECOUT" 2665738 T SPECOUT (NIL) -7 NIL NIL NIL) (-1131 2656369 2658113 2658143 "SPADXPT" 2662535 T SPADXPT (NIL) -9 NIL 2664569 NIL) (-1130 2656130 2656170 2656239 "SPADPRSR" 2656322 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1129 2654312 2656085 2656116 "SPADAST" 2656121 T SPADAST (NIL) -8 NIL NIL NIL) (-1128 2646283 2648030 2648073 "SPACEC" 2652446 NIL SPACEC (NIL T) -9 NIL 2654262 NIL) (-1127 2644440 2646215 2646264 "SPACE3" 2646269 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1126 2643192 2643363 2643654 "SORTPAK" 2644245 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1125 2641242 2641545 2641964 "SOLVETRA" 2642856 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1124 2640253 2640475 2640749 "SOLVESER" 2641015 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1123 2635464 2636354 2637356 "SOLVERAD" 2639305 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1122 2631279 2631888 2632617 "SOLVEFOR" 2634831 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1121 2625576 2630628 2630725 "SNTSCAT" 2630730 NIL SNTSCAT (NIL T T T T) -9 NIL 2630800 NIL) (-1120 2619709 2623899 2624290 "SMTS" 2625266 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1119 2614149 2619597 2619674 "SMP" 2619679 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1118 2612308 2612609 2613007 "SMITH" 2613846 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1117 2605195 2609359 2609462 "SMATCAT" 2610813 NIL SMATCAT (NIL NIL T T T) -9 NIL 2611363 NIL) (-1116 2602135 2602958 2604136 "SMATCAT-" 2604141 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1115 2599848 2601371 2601414 "SKAGG" 2601675 NIL SKAGG (NIL T) -9 NIL 2601810 NIL) (-1114 2596183 2599264 2599459 "SINT" 2599646 T SINT (NIL) -8 NIL NIL 2599819) (-1113 2595955 2595993 2596059 "SIMPAN" 2596139 T SIMPAN (NIL) -7 NIL NIL NIL) (-1112 2595261 2595490 2595630 "SIG" 2595837 T SIG (NIL) -8 NIL NIL NIL) (-1111 2594099 2594320 2594595 "SIGNRF" 2595020 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1110 2592904 2593055 2593346 "SIGNEF" 2593928 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1109 2592237 2592487 2592611 "SIGAST" 2592802 T SIGAST (NIL) -8 NIL NIL NIL) (-1108 2589927 2590381 2590887 "SHP" 2591778 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1107 2583827 2589828 2589904 "SHDP" 2589909 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1106 2583426 2583592 2583622 "SGROUP" 2583715 T SGROUP (NIL) -9 NIL 2583777 NIL) (-1105 2583284 2583310 2583383 "SGROUP-" 2583388 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1104 2580119 2580817 2581540 "SGCF" 2582583 T SGCF (NIL) -7 NIL NIL NIL) (-1103 2574514 2579566 2579663 "SFRTCAT" 2579668 NIL SFRTCAT (NIL T T T T) -9 NIL 2579707 NIL) (-1102 2567935 2568953 2570089 "SFRGCD" 2573497 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1101 2561062 2562134 2563320 "SFQCMPK" 2566868 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1100 2560684 2560773 2560883 "SFORT" 2561003 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1099 2559829 2560524 2560645 "SEXOF" 2560650 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1098 2558963 2559710 2559778 "SEX" 2559783 T SEX (NIL) -8 NIL NIL NIL) (-1097 2554502 2555191 2555286 "SEXCAT" 2558223 NIL SEXCAT (NIL T T T T T) -9 NIL 2558801 NIL) (-1096 2551682 2554436 2554484 "SET" 2554489 NIL SET (NIL T) -8 NIL NIL NIL) (-1095 2549933 2550395 2550700 "SETMN" 2551423 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1094 2549539 2549665 2549695 "SETCAT" 2549812 T SETCAT (NIL) -9 NIL 2549897 NIL) (-1093 2549319 2549371 2549470 "SETCAT-" 2549475 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1092 2545706 2547780 2547823 "SETAGG" 2548693 NIL SETAGG (NIL T) -9 NIL 2549033 NIL) (-1091 2545164 2545280 2545517 "SETAGG-" 2545522 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1090 2544634 2544860 2544961 "SEQAST" 2545085 T SEQAST (NIL) -8 NIL NIL NIL) (-1089 2543833 2544127 2544188 "SEGXCAT" 2544474 NIL SEGXCAT (NIL T T) -9 NIL 2544594 NIL) (-1088 2542887 2543499 2543681 "SEG" 2543686 NIL SEG (NIL T) -8 NIL NIL NIL) (-1087 2541866 2542080 2542123 "SEGCAT" 2542645 NIL SEGCAT (NIL T) -9 NIL 2542866 NIL) (-1086 2540915 2541245 2541445 "SEGBIND" 2541701 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1085 2540536 2540595 2540708 "SEGBIND2" 2540850 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1084 2540136 2540337 2540414 "SEGAST" 2540481 T SEGAST (NIL) -8 NIL NIL NIL) (-1083 2539355 2539481 2539685 "SEG2" 2539980 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1082 2538792 2539290 2539337 "SDVAR" 2539342 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1081 2531074 2538562 2538692 "SDPOL" 2538697 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1080 2529667 2529933 2530252 "SCPKG" 2530789 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1079 2528827 2529000 2529193 "SCOPE" 2529496 T SCOPE (NIL) -8 NIL NIL NIL) (-1078 2528047 2528181 2528360 "SCACHE" 2528682 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1077 2527719 2527879 2527909 "SASTCAT" 2527914 T SASTCAT (NIL) -9 NIL 2527927 NIL) (-1076 2527233 2527554 2527630 "SAOS" 2527665 T SAOS (NIL) -8 NIL NIL NIL) (-1075 2526798 2526833 2527006 "SAERFFC" 2527192 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1074 2520764 2526695 2526775 "SAE" 2526780 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1073 2520357 2520392 2520551 "SAEFACT" 2520723 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1072 2518678 2518992 2519393 "RURPK" 2520023 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1071 2517314 2517593 2517905 "RULESET" 2518512 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1070 2514501 2515004 2515469 "RULE" 2516995 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1069 2514140 2514295 2514378 "RULECOLD" 2514453 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1068 2513638 2513857 2513951 "RSTRCAST" 2514068 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1067 2508486 2509281 2510201 "RSETGCD" 2512837 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1066 2497743 2502795 2502892 "RSETCAT" 2507011 NIL RSETCAT (NIL T T T T) -9 NIL 2508108 NIL) (-1065 2495670 2496209 2497033 "RSETCAT-" 2497038 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1064 2488055 2489432 2490952 "RSDCMPK" 2494269 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1063 2486060 2486501 2486575 "RRCC" 2487661 NIL RRCC (NIL T T) -9 NIL 2488005 NIL) (-1062 2485411 2485585 2485864 "RRCC-" 2485869 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1061 2484881 2485107 2485208 "RPTAST" 2485332 T RPTAST (NIL) -8 NIL NIL NIL) (-1060 2458879 2468474 2468541 "RPOLCAT" 2479205 NIL RPOLCAT (NIL T T T) -9 NIL 2482364 NIL) (-1059 2450377 2452717 2455839 "RPOLCAT-" 2455844 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1058 2441424 2448588 2449070 "ROUTINE" 2449917 T ROUTINE (NIL) -8 NIL NIL NIL) (-1057 2438249 2441050 2441190 "ROMAN" 2441306 T ROMAN (NIL) -8 NIL NIL NIL) (-1056 2436520 2437109 2437369 "ROIRC" 2438054 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1055 2432905 2435156 2435186 "RNS" 2435490 T RNS (NIL) -9 NIL 2435763 NIL) (-1054 2431414 2431797 2432331 "RNS-" 2432406 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1053 2430863 2431245 2431275 "RNG" 2431280 T RNG (NIL) -9 NIL 2431301 NIL) (-1052 2430255 2430617 2430660 "RMODULE" 2430722 NIL RMODULE (NIL T) -9 NIL 2430764 NIL) (-1051 2429091 2429185 2429521 "RMCAT2" 2430156 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1050 2425968 2428437 2428734 "RMATRIX" 2428853 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1049 2418910 2421144 2421259 "RMATCAT" 2424618 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2425600 NIL) (-1048 2418285 2418432 2418739 "RMATCAT-" 2418744 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1047 2417852 2417927 2418055 "RINTERP" 2418204 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1046 2416971 2417499 2417529 "RING" 2417585 T RING (NIL) -9 NIL 2417677 NIL) (-1045 2416763 2416807 2416904 "RING-" 2416909 NIL RING- (NIL T) -8 NIL NIL NIL) (-1044 2415604 2415841 2416099 "RIDIST" 2416527 T RIDIST (NIL) -7 NIL NIL NIL) (-1043 2406920 2415072 2415278 "RGCHAIN" 2415452 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1042 2406296 2406676 2406717 "RGBCSPC" 2406775 NIL RGBCSPC (NIL T) -9 NIL 2406827 NIL) (-1041 2405480 2405835 2405876 "RGBCMDL" 2406108 NIL RGBCMDL (NIL T) -9 NIL 2406222 NIL) (-1040 2402474 2403088 2403758 "RF" 2404844 NIL RF (NIL T) -7 NIL NIL NIL) (-1039 2402120 2402183 2402286 "RFFACTOR" 2402405 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1038 2401845 2401880 2401977 "RFFACT" 2402079 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1037 2399962 2400326 2400708 "RFDIST" 2401485 T RFDIST (NIL) -7 NIL NIL NIL) (-1036 2399415 2399507 2399670 "RETSOL" 2399864 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1035 2399051 2399131 2399174 "RETRACT" 2399307 NIL RETRACT (NIL T) -9 NIL 2399394 NIL) (-1034 2398900 2398925 2399012 "RETRACT-" 2399017 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1033 2398529 2398722 2398792 "RETAST" 2398852 T RETAST (NIL) -8 NIL NIL NIL) (-1032 2391383 2398182 2398309 "RESULT" 2398424 T RESULT (NIL) -8 NIL NIL NIL) (-1031 2390001 2390652 2390851 "RESRING" 2391286 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1030 2389637 2389686 2389784 "RESLATC" 2389938 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1029 2389342 2389377 2389484 "REPSQ" 2389596 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1028 2386764 2387344 2387946 "REP" 2388762 T REP (NIL) -7 NIL NIL NIL) (-1027 2386461 2386496 2386607 "REPDB" 2386723 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1026 2380361 2381750 2382973 "REP2" 2385273 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1025 2376738 2377419 2378227 "REP1" 2379588 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1024 2369461 2374879 2375335 "REGSET" 2376368 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1023 2368274 2368609 2368859 "REF" 2369246 NIL REF (NIL T) -8 NIL NIL NIL) (-1022 2367651 2367754 2367921 "REDORDER" 2368158 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1021 2363646 2366864 2367091 "RECLOS" 2367479 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1020 2362698 2362879 2363094 "REALSOLV" 2363453 T REALSOLV (NIL) -7 NIL NIL NIL) (-1019 2362544 2362585 2362615 "REAL" 2362620 T REAL (NIL) -9 NIL 2362655 NIL) (-1018 2359027 2359829 2360713 "REAL0Q" 2361709 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1017 2354628 2355616 2356677 "REAL0" 2358008 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1016 2354126 2354345 2354439 "RDUCEAST" 2354556 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1015 2353531 2353603 2353810 "RDIV" 2354048 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1014 2352599 2352773 2352986 "RDIST" 2353353 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1013 2351196 2351483 2351855 "RDETRS" 2352307 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1012 2349008 2349462 2350000 "RDETR" 2350738 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1011 2347619 2347897 2348301 "RDEEFS" 2348724 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1010 2346114 2346420 2346852 "RDEEF" 2347307 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1009 2340367 2343250 2343280 "RCFIELD" 2344575 T RCFIELD (NIL) -9 NIL 2345305 NIL) (-1008 2338431 2338935 2339631 "RCFIELD-" 2339706 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1007 2334747 2336532 2336575 "RCAGG" 2337659 NIL RCAGG (NIL T) -9 NIL 2338124 NIL) (-1006 2334375 2334469 2334632 "RCAGG-" 2334637 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1005 2333710 2333822 2333987 "RATRET" 2334259 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1004 2333263 2333330 2333451 "RATFACT" 2333638 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1003 2332571 2332691 2332843 "RANDSRC" 2333133 T RANDSRC (NIL) -7 NIL NIL NIL) (-1002 2332305 2332349 2332422 "RADUTIL" 2332520 T RADUTIL (NIL) -7 NIL NIL NIL) (-1001 2325448 2331138 2331448 "RADIX" 2332029 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1000 2317094 2325290 2325420 "RADFF" 2325425 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-999 2316746 2316821 2316849 "RADCAT" 2317006 T RADCAT (NIL) -9 NIL NIL NIL) (-998 2316531 2316579 2316676 "RADCAT-" 2316681 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-997 2314682 2316306 2316395 "QUEUE" 2316475 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-996 2311250 2314619 2314664 "QUAT" 2314669 NIL QUAT (NIL T) -8 NIL NIL NIL) (-995 2310888 2310931 2311058 "QUATCT2" 2311201 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-994 2304627 2307937 2307977 "QUATCAT" 2308757 NIL QUATCAT (NIL T) -9 NIL 2309523 NIL) (-993 2300771 2301808 2303195 "QUATCAT-" 2303289 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-992 2298291 2299855 2299896 "QUAGG" 2300271 NIL QUAGG (NIL T) -9 NIL 2300446 NIL) (-991 2297923 2298116 2298184 "QQUTAST" 2298243 T QQUTAST (NIL) -8 NIL NIL NIL) (-990 2296848 2297321 2297493 "QFORM" 2297795 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-989 2288052 2293265 2293305 "QFCAT" 2293963 NIL QFCAT (NIL T) -9 NIL 2294964 NIL) (-988 2283624 2284825 2286416 "QFCAT-" 2286510 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-987 2283262 2283305 2283432 "QFCAT2" 2283575 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-986 2282722 2282832 2282962 "QEQUAT" 2283152 T QEQUAT (NIL) -8 NIL NIL NIL) (-985 2275869 2276941 2278125 "QCMPACK" 2281655 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-984 2273445 2273866 2274294 "QALGSET" 2275524 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-983 2272690 2272864 2273096 "QALGSET2" 2273265 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-982 2271380 2271604 2271921 "PWFFINTB" 2272463 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-981 2269562 2269730 2270084 "PUSHVAR" 2271194 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-980 2265480 2266534 2266575 "PTRANFN" 2268459 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-979 2263882 2264173 2264495 "PTPACK" 2265191 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-978 2263514 2263571 2263680 "PTFUNC2" 2263819 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-977 2258041 2262386 2262427 "PTCAT" 2262723 NIL PTCAT (NIL T) -9 NIL 2262876 NIL) (-976 2257699 2257734 2257858 "PSQFR" 2258000 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-975 2256294 2256592 2256926 "PSEUDLIN" 2257397 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-974 2243057 2245428 2247752 "PSETPK" 2254054 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-973 2236101 2238815 2238911 "PSETCAT" 2241932 NIL PSETCAT (NIL T T T T) -9 NIL 2242746 NIL) (-972 2233937 2234571 2235392 "PSETCAT-" 2235397 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-971 2233286 2233451 2233479 "PSCURVE" 2233747 T PSCURVE (NIL) -9 NIL 2233914 NIL) (-970 2229634 2231124 2231189 "PSCAT" 2232033 NIL PSCAT (NIL T T T) -9 NIL 2232273 NIL) (-969 2228697 2228913 2229313 "PSCAT-" 2229318 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-968 2227429 2228062 2228267 "PRTITION" 2228512 T PRTITION (NIL) -8 NIL NIL NIL) (-967 2226931 2227150 2227242 "PRTDAST" 2227357 T PRTDAST (NIL) -8 NIL NIL NIL) (-966 2216021 2218235 2220423 "PRS" 2224793 NIL PRS (NIL T T) -7 NIL NIL NIL) (-965 2213879 2215371 2215411 "PRQAGG" 2215594 NIL PRQAGG (NIL T) -9 NIL 2215696 NIL) (-964 2213265 2213494 2213522 "PROPLOG" 2213707 T PROPLOG (NIL) -9 NIL 2213829 NIL) (-963 2210435 2211079 2211543 "PROPFRML" 2212833 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-962 2209895 2210005 2210135 "PROPERTY" 2210325 T PROPERTY (NIL) -8 NIL NIL NIL) (-961 2203980 2208061 2208881 "PRODUCT" 2209121 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-960 2201285 2203438 2203672 "PR" 2203791 NIL PR (NIL T T) -8 NIL NIL NIL) (-959 2201081 2201113 2201172 "PRINT" 2201246 T PRINT (NIL) -7 NIL NIL NIL) (-958 2200421 2200538 2200690 "PRIMES" 2200961 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-957 2198486 2198887 2199353 "PRIMELT" 2200000 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-956 2198215 2198264 2198292 "PRIMCAT" 2198416 T PRIMCAT (NIL) -9 NIL NIL NIL) (-955 2194378 2198153 2198198 "PRIMARR" 2198203 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-954 2193385 2193563 2193791 "PRIMARR2" 2194196 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-953 2193028 2193084 2193195 "PREASSOC" 2193323 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-952 2192503 2192636 2192664 "PPCURVE" 2192869 T PPCURVE (NIL) -9 NIL 2193005 NIL) (-951 2192125 2192298 2192381 "PORTNUM" 2192440 T PORTNUM (NIL) -8 NIL NIL NIL) (-950 2189484 2189883 2190475 "POLYROOT" 2191706 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-949 2183421 2189088 2189248 "POLY" 2189357 NIL POLY (NIL T) -8 NIL NIL NIL) (-948 2182804 2182862 2183096 "POLYLIFT" 2183357 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-947 2179079 2179528 2180157 "POLYCATQ" 2182349 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-946 2165888 2171254 2171319 "POLYCAT" 2174833 NIL POLYCAT (NIL T T T) -9 NIL 2176761 NIL) (-945 2159337 2161199 2163583 "POLYCAT-" 2163588 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-944 2158924 2158992 2159112 "POLY2UP" 2159263 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-943 2158556 2158613 2158722 "POLY2" 2158861 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-942 2157241 2157480 2157756 "POLUTIL" 2158330 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-941 2155596 2155873 2156204 "POLTOPOL" 2156963 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-940 2151111 2155532 2155578 "POINT" 2155583 NIL POINT (NIL T) -8 NIL NIL NIL) (-939 2149298 2149655 2150030 "PNTHEORY" 2150756 T PNTHEORY (NIL) -7 NIL NIL NIL) (-938 2147717 2148014 2148426 "PMTOOLS" 2148996 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-937 2147310 2147388 2147505 "PMSYM" 2147633 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-936 2146820 2146889 2147063 "PMQFCAT" 2147235 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-935 2146175 2146285 2146441 "PMPRED" 2146697 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-934 2145571 2145657 2145818 "PMPREDFS" 2146076 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-933 2144214 2144422 2144807 "PMPLCAT" 2145333 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-932 2143746 2143825 2143977 "PMLSAGG" 2144129 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-931 2143221 2143297 2143478 "PMKERNEL" 2143664 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-930 2142838 2142913 2143026 "PMINS" 2143140 NIL PMINS (NIL T) -7 NIL NIL NIL) (-929 2142266 2142335 2142551 "PMFS" 2142763 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-928 2141494 2141612 2141817 "PMDOWN" 2142143 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-927 2140657 2140816 2140998 "PMASS" 2141332 T PMASS (NIL) -7 NIL NIL NIL) (-926 2139931 2140042 2140205 "PMASSFS" 2140543 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-925 2139586 2139654 2139748 "PLOTTOOL" 2139857 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-924 2134193 2135397 2136545 "PLOT" 2138458 T PLOT (NIL) -8 NIL NIL NIL) (-923 2129997 2131041 2131962 "PLOT3D" 2133292 T PLOT3D (NIL) -8 NIL NIL NIL) (-922 2128909 2129086 2129321 "PLOT1" 2129801 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-921 2104298 2108975 2113826 "PLEQN" 2124175 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-920 2103616 2103738 2103918 "PINTERP" 2104163 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-919 2103309 2103356 2103459 "PINTERPA" 2103563 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-918 2102557 2103078 2103165 "PI" 2103205 T PI (NIL) -8 NIL NIL 2103272) (-917 2100946 2101895 2101923 "PID" 2102105 T PID (NIL) -9 NIL 2102239 NIL) (-916 2100671 2100708 2100796 "PICOERCE" 2100903 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-915 2099991 2100130 2100306 "PGROEB" 2100527 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-914 2095578 2096392 2097297 "PGE" 2099106 T PGE (NIL) -7 NIL NIL NIL) (-913 2093701 2093948 2094314 "PGCD" 2095295 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-912 2093039 2093142 2093303 "PFRPAC" 2093585 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-911 2089707 2091587 2091940 "PFR" 2092718 NIL PFR (NIL T) -8 NIL NIL NIL) (-910 2088096 2088340 2088665 "PFOTOOLS" 2089454 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-909 2086629 2086868 2087219 "PFOQ" 2087853 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-908 2085102 2085314 2085677 "PFO" 2086413 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-907 2081682 2084991 2085060 "PF" 2085065 NIL PF (NIL NIL) -8 NIL NIL NIL) (-906 2079108 2080353 2080381 "PFECAT" 2080966 T PFECAT (NIL) -9 NIL 2081350 NIL) (-905 2078553 2078707 2078921 "PFECAT-" 2078926 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-904 2077156 2077408 2077709 "PFBRU" 2078302 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-903 2075021 2075374 2075806 "PFBR" 2076807 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-902 2070930 2072397 2073073 "PERM" 2074378 NIL PERM (NIL T) -8 NIL NIL NIL) (-901 2066191 2067137 2068007 "PERMGRP" 2070093 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-900 2064323 2065254 2065295 "PERMCAT" 2065741 NIL PERMCAT (NIL T) -9 NIL 2066046 NIL) (-899 2063976 2064017 2064141 "PERMAN" 2064276 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-898 2061512 2063641 2063763 "PENDTREE" 2063887 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-897 2059597 2060339 2060380 "PDRING" 2061037 NIL PDRING (NIL T) -9 NIL 2061323 NIL) (-896 2058700 2058918 2059280 "PDRING-" 2059285 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-895 2055942 2056693 2057361 "PDEPROB" 2058052 T PDEPROB (NIL) -8 NIL NIL NIL) (-894 2053487 2053991 2054546 "PDEPACK" 2055407 T PDEPACK (NIL) -7 NIL NIL NIL) (-893 2052399 2052589 2052840 "PDECOMP" 2053286 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-892 2050004 2050821 2050849 "PDECAT" 2051636 T PDECAT (NIL) -9 NIL 2052349 NIL) (-891 2049755 2049788 2049878 "PCOMP" 2049965 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-890 2047960 2048556 2048853 "PBWLB" 2049484 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-889 2040460 2042033 2043371 "PATTERN" 2046643 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-888 2040092 2040149 2040258 "PATTERN2" 2040397 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-887 2037849 2038237 2038694 "PATTERN1" 2039681 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-886 2035244 2035798 2036279 "PATRES" 2037414 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-885 2034808 2034875 2035007 "PATRES2" 2035171 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-884 2032691 2033096 2033503 "PATMATCH" 2034475 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-883 2032227 2032410 2032451 "PATMAB" 2032558 NIL PATMAB (NIL T) -9 NIL 2032641 NIL) (-882 2030772 2031081 2031339 "PATLRES" 2032032 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-881 2030318 2030441 2030482 "PATAB" 2030487 NIL PATAB (NIL T) -9 NIL 2030659 NIL) (-880 2027799 2028331 2028904 "PARTPERM" 2029765 T PARTPERM (NIL) -7 NIL NIL NIL) (-879 2027420 2027483 2027585 "PARSURF" 2027730 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-878 2027052 2027109 2027218 "PARSU2" 2027357 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-877 2026816 2026856 2026923 "PARSER" 2027005 T PARSER (NIL) -7 NIL NIL NIL) (-876 2026437 2026500 2026602 "PARSCURV" 2026747 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-875 2026069 2026126 2026235 "PARSC2" 2026374 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-874 2025708 2025766 2025863 "PARPCURV" 2026005 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-873 2025340 2025397 2025506 "PARPC2" 2025645 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-872 2024860 2024946 2025065 "PAN2EXPR" 2025241 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-871 2023664 2023981 2024209 "PALETTE" 2024652 T PALETTE (NIL) -8 NIL NIL NIL) (-870 2022132 2022669 2023029 "PAIR" 2023350 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-869 2016029 2021391 2021585 "PADICRC" 2021987 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-868 2009285 2015375 2015559 "PADICRAT" 2015877 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-867 2007627 2009222 2009267 "PADIC" 2009272 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-866 2004829 2006367 2006407 "PADICCT" 2006988 NIL PADICCT (NIL NIL) -9 NIL 2007270 NIL) (-865 2003786 2003986 2004254 "PADEPAC" 2004616 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-864 2002998 2003131 2003337 "PADE" 2003648 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-863 2001412 2002206 2002486 "OWP" 2002802 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-862 2000932 2001118 2001215 "OVERSET" 2001335 T OVERSET (NIL) -8 NIL NIL NIL) (-861 2000005 2000537 2000709 "OVAR" 2000800 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-860 1999269 1999390 1999551 "OUT" 1999864 T OUT (NIL) -7 NIL NIL NIL) (-859 1988167 1990378 1992578 "OUTFORM" 1997089 T OUTFORM (NIL) -8 NIL NIL NIL) (-858 1987503 1987764 1987891 "OUTBFILE" 1988060 T OUTBFILE (NIL) -8 NIL NIL NIL) (-857 1986810 1986975 1987003 "OUTBCON" 1987321 T OUTBCON (NIL) -9 NIL 1987487 NIL) (-856 1986411 1986523 1986680 "OUTBCON-" 1986685 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-855 1985818 1986140 1986229 "OSI" 1986342 T OSI (NIL) -8 NIL NIL NIL) (-854 1985374 1985686 1985714 "OSGROUP" 1985719 T OSGROUP (NIL) -9 NIL 1985741 NIL) (-853 1984119 1984346 1984631 "ORTHPOL" 1985121 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-852 1981697 1983954 1984075 "OREUP" 1984080 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-851 1979127 1981388 1981515 "ORESUP" 1981639 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-850 1976655 1977155 1977716 "OREPCTO" 1978616 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-849 1970471 1972646 1972687 "OREPCAT" 1975035 NIL OREPCAT (NIL T) -9 NIL 1976139 NIL) (-848 1967618 1968400 1969458 "OREPCAT-" 1969463 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-847 1966795 1967067 1967095 "ORDSET" 1967404 T ORDSET (NIL) -9 NIL 1967568 NIL) (-846 1966314 1966436 1966629 "ORDSET-" 1966634 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-845 1964940 1965705 1965733 "ORDRING" 1965935 T ORDRING (NIL) -9 NIL 1966060 NIL) (-844 1964585 1964679 1964823 "ORDRING-" 1964828 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-843 1963991 1964428 1964456 "ORDMON" 1964461 T ORDMON (NIL) -9 NIL 1964482 NIL) (-842 1963153 1963300 1963495 "ORDFUNS" 1963840 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-841 1962517 1962910 1962938 "ORDFIN" 1963003 T ORDFIN (NIL) -9 NIL 1963077 NIL) (-840 1959103 1961103 1961512 "ORDCOMP" 1962141 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-839 1958369 1958496 1958682 "ORDCOMP2" 1958963 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-838 1954977 1955860 1956674 "OPTPROB" 1957575 T OPTPROB (NIL) -8 NIL NIL NIL) (-837 1951779 1952418 1953122 "OPTPACK" 1954293 T OPTPACK (NIL) -7 NIL NIL NIL) (-836 1949492 1950232 1950260 "OPTCAT" 1951079 T OPTCAT (NIL) -9 NIL 1951729 NIL) (-835 1948935 1949169 1949274 "OPSIG" 1949407 T OPSIG (NIL) -8 NIL NIL NIL) (-834 1948703 1948742 1948808 "OPQUERY" 1948889 T OPQUERY (NIL) -7 NIL NIL NIL) (-833 1945861 1947014 1947518 "OP" 1948232 NIL OP (NIL T) -8 NIL NIL NIL) (-832 1945396 1945567 1945608 "OPERCAT" 1945743 NIL OPERCAT (NIL T) -9 NIL 1945811 NIL) (-831 1945242 1945269 1945355 "OPERCAT-" 1945360 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-830 1942081 1944039 1944408 "ONECOMP" 1944906 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-829 1941386 1941501 1941675 "ONECOMP2" 1941953 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-828 1940805 1940911 1941041 "OMSERVER" 1941276 T OMSERVER (NIL) -7 NIL NIL NIL) (-827 1937693 1940245 1940285 "OMSAGG" 1940346 NIL OMSAGG (NIL T) -9 NIL 1940410 NIL) (-826 1936316 1936579 1936861 "OMPKG" 1937431 T OMPKG (NIL) -7 NIL NIL NIL) (-825 1935746 1935849 1935877 "OM" 1936176 T OM (NIL) -9 NIL NIL NIL) (-824 1934320 1935295 1935464 "OMLO" 1935627 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-823 1933245 1933392 1933619 "OMEXPR" 1934146 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-822 1932563 1932791 1932927 "OMERR" 1933129 T OMERR (NIL) -8 NIL NIL NIL) (-821 1931741 1931984 1932144 "OMERRK" 1932423 T OMERRK (NIL) -8 NIL NIL NIL) (-820 1931219 1931418 1931526 "OMENC" 1931653 T OMENC (NIL) -8 NIL NIL NIL) (-819 1925114 1926299 1927470 "OMDEV" 1930068 T OMDEV (NIL) -8 NIL NIL NIL) (-818 1924183 1924354 1924548 "OMCONN" 1924940 T OMCONN (NIL) -8 NIL NIL NIL) (-817 1922796 1923746 1923774 "OINTDOM" 1923779 T OINTDOM (NIL) -9 NIL 1923800 NIL) (-816 1918602 1919786 1920502 "OFMONOID" 1922112 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-815 1918040 1918539 1918584 "ODVAR" 1918589 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-814 1915490 1917785 1917940 "ODR" 1917945 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-813 1907826 1915266 1915392 "ODPOL" 1915397 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-812 1901696 1907698 1907803 "ODP" 1907808 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-811 1900462 1900677 1900952 "ODETOOLS" 1901470 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-810 1897429 1898087 1898803 "ODESYS" 1899795 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-809 1892311 1893219 1894244 "ODERTRIC" 1896504 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-808 1891737 1891819 1892013 "ODERED" 1892223 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-807 1888625 1889173 1889850 "ODERAT" 1891160 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-806 1885582 1886049 1886646 "ODEPRRIC" 1888154 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-805 1883552 1884121 1884607 "ODEPROB" 1885116 T ODEPROB (NIL) -8 NIL NIL NIL) (-804 1880072 1880557 1881204 "ODEPRIM" 1883031 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-803 1879321 1879423 1879683 "ODEPAL" 1879964 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-802 1875483 1876274 1877138 "ODEPACK" 1878477 T ODEPACK (NIL) -7 NIL NIL NIL) (-801 1874516 1874623 1874852 "ODEINT" 1875372 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-800 1868617 1870042 1871489 "ODEIFTBL" 1873089 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-799 1863952 1864738 1865697 "ODEEF" 1867776 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-798 1863287 1863376 1863606 "ODECONST" 1863857 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-797 1861438 1862073 1862101 "ODECAT" 1862706 T ODECAT (NIL) -9 NIL 1863237 NIL) (-796 1858337 1861150 1861269 "OCT" 1861351 NIL OCT (NIL T) -8 NIL NIL NIL) (-795 1857975 1858018 1858145 "OCTCT2" 1858288 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-794 1852741 1855149 1855189 "OC" 1856286 NIL OC (NIL T) -9 NIL 1857144 NIL) (-793 1849968 1850716 1851706 "OC-" 1851800 NIL OC- (NIL T T) -8 NIL NIL NIL) (-792 1849346 1849788 1849816 "OCAMON" 1849821 T OCAMON (NIL) -9 NIL 1849842 NIL) (-791 1848903 1849218 1849246 "OASGP" 1849251 T OASGP (NIL) -9 NIL 1849271 NIL) (-790 1848190 1848653 1848681 "OAMONS" 1848721 T OAMONS (NIL) -9 NIL 1848764 NIL) (-789 1847630 1848037 1848065 "OAMON" 1848070 T OAMON (NIL) -9 NIL 1848090 NIL) (-788 1846934 1847426 1847454 "OAGROUP" 1847459 T OAGROUP (NIL) -9 NIL 1847479 NIL) (-787 1846624 1846674 1846762 "NUMTUBE" 1846878 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-786 1840197 1841715 1843251 "NUMQUAD" 1845108 T NUMQUAD (NIL) -7 NIL NIL NIL) (-785 1835953 1836941 1837966 "NUMODE" 1839192 T NUMODE (NIL) -7 NIL NIL NIL) (-784 1833334 1834188 1834216 "NUMINT" 1835139 T NUMINT (NIL) -9 NIL 1835903 NIL) (-783 1832282 1832479 1832697 "NUMFMT" 1833136 T NUMFMT (NIL) -7 NIL NIL NIL) (-782 1818641 1821586 1824118 "NUMERIC" 1829789 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-781 1813038 1818090 1818185 "NTSCAT" 1818190 NIL NTSCAT (NIL T T T T) -9 NIL 1818229 NIL) (-780 1812232 1812397 1812590 "NTPOLFN" 1812877 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-779 1800064 1809057 1809869 "NSUP" 1811453 NIL NSUP (NIL T) -8 NIL NIL NIL) (-778 1799696 1799753 1799862 "NSUP2" 1800001 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-777 1789679 1799470 1799603 "NSMP" 1799608 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-776 1788111 1788412 1788769 "NREP" 1789367 NIL NREP (NIL T) -7 NIL NIL NIL) (-775 1786702 1786954 1787312 "NPCOEF" 1787854 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-774 1785768 1785883 1786099 "NORMRETR" 1786583 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-773 1783809 1784099 1784508 "NORMPK" 1785476 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-772 1783494 1783522 1783646 "NORMMA" 1783775 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-771 1783321 1783451 1783480 "NONE" 1783485 T NONE (NIL) -8 NIL NIL NIL) (-770 1783110 1783139 1783208 "NONE1" 1783285 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-769 1782593 1782655 1782841 "NODE1" 1783042 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-768 1780863 1781687 1781942 "NNI" 1782289 T NNI (NIL) -8 NIL NIL 1782524) (-767 1779283 1779596 1779960 "NLINSOL" 1780531 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-766 1775551 1776519 1777418 "NIPROB" 1778404 T NIPROB (NIL) -8 NIL NIL NIL) (-765 1774308 1774542 1774844 "NFINTBAS" 1775313 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-764 1773482 1773958 1773999 "NETCLT" 1774171 NIL NETCLT (NIL T) -9 NIL 1774253 NIL) (-763 1772190 1772421 1772702 "NCODIV" 1773250 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-762 1771952 1771989 1772064 "NCNTFRAC" 1772147 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-761 1770132 1770496 1770916 "NCEP" 1771577 NIL NCEP (NIL T) -7 NIL NIL NIL) (-760 1769029 1769776 1769804 "NASRING" 1769914 T NASRING (NIL) -9 NIL 1769994 NIL) (-759 1768824 1768868 1768962 "NASRING-" 1768967 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-758 1767977 1768476 1768504 "NARNG" 1768621 T NARNG (NIL) -9 NIL 1768712 NIL) (-757 1767669 1767736 1767870 "NARNG-" 1767875 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-756 1766548 1766755 1766990 "NAGSP" 1767454 T NAGSP (NIL) -7 NIL NIL NIL) (-755 1757820 1759504 1761177 "NAGS" 1764895 T NAGS (NIL) -7 NIL NIL NIL) (-754 1756368 1756676 1757007 "NAGF07" 1757509 T NAGF07 (NIL) -7 NIL NIL NIL) (-753 1750906 1752197 1753504 "NAGF04" 1755081 T NAGF04 (NIL) -7 NIL NIL NIL) (-752 1743874 1745488 1747121 "NAGF02" 1749293 T NAGF02 (NIL) -7 NIL NIL NIL) (-751 1739098 1740198 1741315 "NAGF01" 1742777 T NAGF01 (NIL) -7 NIL NIL NIL) (-750 1732726 1734292 1735877 "NAGE04" 1737533 T NAGE04 (NIL) -7 NIL NIL NIL) (-749 1723895 1726016 1728146 "NAGE02" 1730616 T NAGE02 (NIL) -7 NIL NIL NIL) (-748 1719848 1720795 1721759 "NAGE01" 1722951 T NAGE01 (NIL) -7 NIL NIL NIL) (-747 1717643 1718177 1718735 "NAGD03" 1719310 T NAGD03 (NIL) -7 NIL NIL NIL) (-746 1709393 1711321 1713275 "NAGD02" 1715709 T NAGD02 (NIL) -7 NIL NIL NIL) (-745 1703204 1704629 1706069 "NAGD01" 1707973 T NAGD01 (NIL) -7 NIL NIL NIL) (-744 1699413 1700235 1701072 "NAGC06" 1702387 T NAGC06 (NIL) -7 NIL NIL NIL) (-743 1697878 1698210 1698566 "NAGC05" 1699077 T NAGC05 (NIL) -7 NIL NIL NIL) (-742 1697254 1697373 1697517 "NAGC02" 1697754 T NAGC02 (NIL) -7 NIL NIL NIL) (-741 1696314 1696871 1696911 "NAALG" 1696990 NIL NAALG (NIL T) -9 NIL 1697051 NIL) (-740 1696149 1696178 1696268 "NAALG-" 1696273 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-739 1690099 1691207 1692394 "MULTSQFR" 1695045 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-738 1689418 1689493 1689677 "MULTFACT" 1690011 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-737 1682503 1686381 1686434 "MTSCAT" 1687504 NIL MTSCAT (NIL T T) -9 NIL 1688018 NIL) (-736 1682215 1682269 1682361 "MTHING" 1682443 NIL MTHING (NIL T) -7 NIL NIL NIL) (-735 1682007 1682040 1682100 "MSYSCMD" 1682175 T MSYSCMD (NIL) -7 NIL NIL NIL) (-734 1678116 1680762 1681082 "MSET" 1681720 NIL MSET (NIL T) -8 NIL NIL NIL) (-733 1675211 1677677 1677718 "MSETAGG" 1677723 NIL MSETAGG (NIL T) -9 NIL 1677757 NIL) (-732 1671079 1672590 1673335 "MRING" 1674511 NIL MRING (NIL T T) -8 NIL NIL NIL) (-731 1670645 1670712 1670843 "MRF2" 1671006 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-730 1670263 1670298 1670442 "MRATFAC" 1670604 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-729 1667875 1668170 1668601 "MPRFF" 1669968 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-728 1661927 1667729 1667826 "MPOLY" 1667831 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-727 1661417 1661452 1661660 "MPCPF" 1661886 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-726 1660931 1660974 1661158 "MPC3" 1661368 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-725 1660126 1660207 1660428 "MPC2" 1660846 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1658427 1658764 1659154 "MONOTOOL" 1659786 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-723 1657678 1657969 1657997 "MONOID" 1658216 T MONOID (NIL) -9 NIL 1658363 NIL) (-722 1657224 1657343 1657524 "MONOID-" 1657529 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-721 1648075 1653991 1654050 "MONOGEN" 1654724 NIL MONOGEN (NIL T T) -9 NIL 1655180 NIL) (-720 1645293 1646028 1647028 "MONOGEN-" 1647147 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-719 1644152 1644572 1644600 "MONADWU" 1644992 T MONADWU (NIL) -9 NIL 1645230 NIL) (-718 1643524 1643683 1643931 "MONADWU-" 1643936 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-717 1642909 1643127 1643155 "MONAD" 1643362 T MONAD (NIL) -9 NIL 1643474 NIL) (-716 1642594 1642672 1642804 "MONAD-" 1642809 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-715 1640910 1641507 1641786 "MOEBIUS" 1642347 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-714 1640302 1640680 1640720 "MODULE" 1640725 NIL MODULE (NIL T) -9 NIL 1640751 NIL) (-713 1639870 1639966 1640156 "MODULE-" 1640161 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-712 1637577 1638234 1638561 "MODRING" 1639694 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1634548 1635682 1636203 "MODOP" 1637106 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-710 1633163 1633615 1633892 "MODMONOM" 1634411 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-709 1622960 1631454 1631868 "MODMON" 1632800 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-708 1620143 1621804 1622080 "MODFIELD" 1622835 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-707 1619147 1619424 1619614 "MMLFORM" 1619973 T MMLFORM (NIL) -8 NIL NIL NIL) (-706 1618673 1618716 1618895 "MMAP" 1619098 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-705 1616882 1617623 1617664 "MLO" 1618087 NIL MLO (NIL T) -9 NIL 1618329 NIL) (-704 1614248 1614764 1615366 "MLIFT" 1616363 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-703 1613639 1613723 1613877 "MKUCFUNC" 1614159 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-702 1613238 1613308 1613431 "MKRECORD" 1613562 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-701 1612285 1612447 1612675 "MKFUNC" 1613049 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-700 1611673 1611777 1611933 "MKFLCFN" 1612168 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-699 1611216 1611583 1611642 "MKCHSET" 1611647 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-698 1610493 1610595 1610780 "MKBCFUNC" 1611109 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-697 1607227 1610047 1610183 "MINT" 1610377 T MINT (NIL) -8 NIL NIL NIL) (-696 1606039 1606282 1606559 "MHROWRED" 1606982 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-695 1601446 1604574 1604979 "MFLOAT" 1605654 T MFLOAT (NIL) -8 NIL NIL NIL) (-694 1600803 1600879 1601050 "MFINFACT" 1601358 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-693 1597118 1597966 1598850 "MESH" 1599939 T MESH (NIL) -7 NIL NIL NIL) (-692 1595508 1595820 1596173 "MDDFACT" 1596805 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-691 1592350 1594667 1594708 "MDAGG" 1594963 NIL MDAGG (NIL T) -9 NIL 1595106 NIL) (-690 1582120 1591643 1591850 "MCMPLX" 1592163 T MCMPLX (NIL) -8 NIL NIL NIL) (-689 1581261 1581407 1581607 "MCDEN" 1581969 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-688 1579151 1579421 1579801 "MCALCFN" 1580991 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-687 1578076 1578316 1578549 "MAYBE" 1578957 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-686 1575688 1576211 1576773 "MATSTOR" 1577547 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-685 1571693 1575060 1575308 "MATRIX" 1575473 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-684 1567457 1568166 1568902 "MATLIN" 1571050 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-683 1557611 1560749 1560826 "MATCAT" 1565706 NIL MATCAT (NIL T T T) -9 NIL 1567123 NIL) (-682 1553967 1554988 1556344 "MATCAT-" 1556349 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-681 1552561 1552714 1553047 "MATCAT2" 1553802 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-680 1550673 1550997 1551381 "MAPPKG3" 1552236 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-679 1549654 1549827 1550049 "MAPPKG2" 1550497 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-678 1548153 1548437 1548764 "MAPPKG1" 1549360 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-677 1547259 1547559 1547736 "MAPPAST" 1547996 T MAPPAST (NIL) -8 NIL NIL NIL) (-676 1546870 1546928 1547051 "MAPHACK3" 1547195 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-675 1546462 1546523 1546637 "MAPHACK2" 1546802 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-674 1545899 1546003 1546145 "MAPHACK1" 1546353 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-673 1544005 1544599 1544903 "MAGMA" 1545627 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-672 1543511 1543729 1543820 "MACROAST" 1543934 T MACROAST (NIL) -8 NIL NIL NIL) (-671 1539977 1541750 1542211 "M3D" 1543083 NIL M3D (NIL T) -8 NIL NIL NIL) (-670 1534131 1538346 1538387 "LZSTAGG" 1539169 NIL LZSTAGG (NIL T) -9 NIL 1539464 NIL) (-669 1530088 1531262 1532719 "LZSTAGG-" 1532724 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-668 1527202 1527979 1528466 "LWORD" 1529633 NIL LWORD (NIL T) -8 NIL NIL NIL) (-667 1526805 1527006 1527081 "LSTAST" 1527147 T LSTAST (NIL) -8 NIL NIL NIL) (-666 1519998 1526576 1526710 "LSQM" 1526715 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-665 1519222 1519361 1519589 "LSPP" 1519853 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-664 1517034 1517335 1517791 "LSMP" 1518911 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-663 1513813 1514487 1515217 "LSMP1" 1516336 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-662 1507738 1512980 1513021 "LSAGG" 1513083 NIL LSAGG (NIL T) -9 NIL 1513161 NIL) (-661 1504433 1505357 1506570 "LSAGG-" 1506575 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-660 1502059 1503577 1503826 "LPOLY" 1504228 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-659 1501641 1501726 1501849 "LPEFRAC" 1501968 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-658 1499988 1500735 1500988 "LO" 1501473 NIL LO (NIL T T T) -8 NIL NIL NIL) (-657 1499640 1499752 1499780 "LOGIC" 1499891 T LOGIC (NIL) -9 NIL 1499972 NIL) (-656 1499502 1499525 1499596 "LOGIC-" 1499601 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-655 1498695 1498835 1499028 "LODOOPS" 1499358 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-654 1496145 1498611 1498677 "LODO" 1498682 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-653 1494683 1494918 1495271 "LODOF" 1495892 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-652 1491031 1493436 1493477 "LODOCAT" 1493915 NIL LODOCAT (NIL T) -9 NIL 1494126 NIL) (-651 1490764 1490822 1490949 "LODOCAT-" 1490954 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-650 1488111 1490605 1490723 "LODO2" 1490728 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-649 1485573 1488048 1488093 "LODO1" 1488098 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-648 1484433 1484598 1484910 "LODEEF" 1485396 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-647 1479719 1482563 1482604 "LNAGG" 1483551 NIL LNAGG (NIL T) -9 NIL 1483995 NIL) (-646 1478866 1479080 1479422 "LNAGG-" 1479427 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-645 1475029 1475791 1476430 "LMOPS" 1478281 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-644 1474424 1474786 1474827 "LMODULE" 1474888 NIL LMODULE (NIL T) -9 NIL 1474930 NIL) (-643 1471670 1474069 1474192 "LMDICT" 1474334 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-642 1471396 1471578 1471638 "LITERAL" 1471643 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-641 1464627 1470342 1470640 "LIST" 1471131 NIL LIST (NIL T) -8 NIL NIL NIL) (-640 1464152 1464226 1464365 "LIST3" 1464547 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-639 1463159 1463337 1463565 "LIST2" 1463970 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-638 1461293 1461605 1462004 "LIST2MAP" 1462806 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-637 1460015 1460659 1460700 "LINEXP" 1460955 NIL LINEXP (NIL T) -9 NIL 1461104 NIL) (-636 1458662 1458922 1459219 "LINDEP" 1459767 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-635 1455429 1456148 1456925 "LIMITRF" 1457917 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-634 1453704 1454000 1454416 "LIMITPS" 1455124 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-633 1448159 1453215 1453443 "LIE" 1453525 NIL LIE (NIL T T) -8 NIL NIL NIL) (-632 1447208 1447651 1447691 "LIECAT" 1447831 NIL LIECAT (NIL T) -9 NIL 1447982 NIL) (-631 1447049 1447076 1447164 "LIECAT-" 1447169 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-630 1439661 1446498 1446663 "LIB" 1446904 T LIB (NIL) -8 NIL NIL NIL) (-629 1435296 1436179 1437114 "LGROBP" 1438778 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-628 1433162 1433436 1433798 "LF" 1435017 NIL LF (NIL T T) -7 NIL NIL NIL) (-627 1432002 1432694 1432722 "LFCAT" 1432929 T LFCAT (NIL) -9 NIL 1433068 NIL) (-626 1428904 1429534 1430222 "LEXTRIPK" 1431366 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-625 1425675 1426474 1426977 "LEXP" 1428484 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-624 1425178 1425396 1425488 "LETAST" 1425603 T LETAST (NIL) -8 NIL NIL NIL) (-623 1423576 1423889 1424290 "LEADCDET" 1424860 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-622 1422766 1422840 1423069 "LAZM3PK" 1423497 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-621 1417710 1420843 1421381 "LAUPOL" 1422278 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-620 1417275 1417319 1417487 "LAPLACE" 1417660 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-619 1415241 1416376 1416627 "LA" 1417108 NIL LA (NIL T T T) -8 NIL NIL NIL) (-618 1414314 1414872 1414913 "LALG" 1414975 NIL LALG (NIL T) -9 NIL 1415034 NIL) (-617 1414028 1414087 1414223 "LALG-" 1414228 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-616 1413863 1413887 1413928 "KVTFROM" 1413990 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-615 1412663 1413080 1413309 "KTVLOGIC" 1413654 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-614 1412498 1412522 1412563 "KRCFROM" 1412625 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-613 1411402 1411589 1411888 "KOVACIC" 1412298 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-612 1411237 1411261 1411302 "KONVERT" 1411364 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-611 1411072 1411096 1411137 "KOERCE" 1411199 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-610 1408806 1409566 1409959 "KERNEL" 1410711 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-609 1408308 1408389 1408519 "KERNEL2" 1408720 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-608 1402159 1406847 1406901 "KDAGG" 1407278 NIL KDAGG (NIL T T) -9 NIL 1407484 NIL) (-607 1401688 1401812 1402017 "KDAGG-" 1402022 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-606 1394863 1401349 1401504 "KAFILE" 1401566 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-605 1389318 1394374 1394602 "JORDAN" 1394684 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-604 1388724 1388967 1389088 "JOINAST" 1389217 T JOINAST (NIL) -8 NIL NIL NIL) (-603 1388570 1388629 1388684 "JAVACODE" 1388689 T JAVACODE (NIL) -8 NIL NIL NIL) (-602 1384869 1386775 1386829 "IXAGG" 1387758 NIL IXAGG (NIL T T) -9 NIL 1388217 NIL) (-601 1383788 1384094 1384513 "IXAGG-" 1384518 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-600 1379368 1383710 1383769 "IVECTOR" 1383774 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-599 1378134 1378371 1378637 "ITUPLE" 1379135 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-598 1376570 1376747 1377053 "ITRIGMNP" 1377956 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-597 1375315 1375519 1375802 "ITFUN3" 1376346 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-596 1374947 1375004 1375113 "ITFUN2" 1375252 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-595 1372776 1373809 1374108 "ITAYLOR" 1374681 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-594 1361748 1366913 1368076 "ISUPS" 1371646 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-593 1360852 1360992 1361228 "ISUMP" 1361595 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-592 1356116 1360653 1360732 "ISTRING" 1360805 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-591 1355619 1355837 1355929 "ISAST" 1356044 T ISAST (NIL) -8 NIL NIL NIL) (-590 1354829 1354910 1355126 "IRURPK" 1355533 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-589 1353765 1353966 1354206 "IRSN" 1354609 T IRSN (NIL) -7 NIL NIL NIL) (-588 1351794 1352149 1352585 "IRRF2F" 1353403 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-587 1351541 1351579 1351655 "IRREDFFX" 1351750 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-586 1350156 1350415 1350714 "IROOT" 1351274 NIL IROOT (NIL T) -7 NIL NIL NIL) (-585 1346787 1347840 1348532 "IR" 1349496 NIL IR (NIL T) -8 NIL NIL NIL) (-584 1344400 1344895 1345461 "IR2" 1346265 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-583 1343472 1343585 1343806 "IR2F" 1344283 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-582 1343263 1343297 1343357 "IPRNTPK" 1343432 T IPRNTPK (NIL) -7 NIL NIL NIL) (-581 1339870 1343152 1343221 "IPF" 1343226 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-580 1338224 1339795 1339852 "IPADIC" 1339857 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-579 1337563 1337784 1337914 "IP4ADDR" 1338114 T IP4ADDR (NIL) -8 NIL NIL NIL) (-578 1337063 1337267 1337377 "IOMODE" 1337473 T IOMODE (NIL) -8 NIL NIL NIL) (-577 1336136 1336660 1336787 "IOBFILE" 1336956 T IOBFILE (NIL) -8 NIL NIL NIL) (-576 1335624 1336040 1336068 "IOBCON" 1336073 T IOBCON (NIL) -9 NIL 1336094 NIL) (-575 1335121 1335179 1335369 "INVLAPLA" 1335560 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-574 1324769 1327123 1329509 "INTTR" 1332785 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-573 1321113 1321855 1322719 "INTTOOLS" 1323954 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-572 1320699 1320790 1320907 "INTSLPE" 1321016 T INTSLPE (NIL) -7 NIL NIL NIL) (-571 1318680 1320622 1320681 "INTRVL" 1320686 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-570 1316282 1316794 1317369 "INTRF" 1318165 NIL INTRF (NIL T) -7 NIL NIL NIL) (-569 1315693 1315790 1315932 "INTRET" 1316180 NIL INTRET (NIL T) -7 NIL NIL NIL) (-568 1313690 1314079 1314549 "INTRAT" 1315301 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-567 1310918 1311501 1312127 "INTPM" 1313175 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-566 1307620 1308220 1308965 "INTPAF" 1310304 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-565 1302799 1303761 1304812 "INTPACK" 1306589 T INTPACK (NIL) -7 NIL NIL NIL) (-564 1299703 1302528 1302655 "INT" 1302692 T INT (NIL) -8 NIL NIL NIL) (-563 1298955 1299107 1299315 "INTHERTR" 1299545 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-562 1298394 1298474 1298662 "INTHERAL" 1298869 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-561 1296240 1296683 1297140 "INTHEORY" 1297957 T INTHEORY (NIL) -7 NIL NIL NIL) (-560 1287548 1289169 1290948 "INTG0" 1294592 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-559 1268121 1272911 1277721 "INTFTBL" 1282758 T INTFTBL (NIL) -8 NIL NIL NIL) (-558 1267370 1267508 1267681 "INTFACT" 1267980 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-557 1264755 1265201 1265765 "INTEF" 1266924 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-556 1263214 1263927 1263955 "INTDOM" 1264256 T INTDOM (NIL) -9 NIL 1264463 NIL) (-555 1262583 1262757 1262999 "INTDOM-" 1263004 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-554 1259070 1260967 1261021 "INTCAT" 1261820 NIL INTCAT (NIL T) -9 NIL 1262140 NIL) (-553 1258542 1258645 1258773 "INTBIT" 1258962 T INTBIT (NIL) -7 NIL NIL NIL) (-552 1257213 1257367 1257681 "INTALG" 1258387 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-551 1256670 1256760 1256930 "INTAF" 1257117 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-550 1250124 1256480 1256620 "INTABL" 1256625 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-549 1249455 1249894 1249959 "INT8" 1249993 T INT8 (NIL) -8 NIL NIL 1250038) (-548 1248785 1249224 1249289 "INT64" 1249323 T INT64 (NIL) -8 NIL NIL 1249368) (-547 1248115 1248554 1248619 "INT32" 1248653 T INT32 (NIL) -8 NIL NIL 1248698) (-546 1247445 1247884 1247949 "INT16" 1247983 T INT16 (NIL) -8 NIL NIL 1248028) (-545 1242452 1245134 1245162 "INS" 1246096 T INS (NIL) -9 NIL 1246761 NIL) (-544 1239692 1240463 1241437 "INS-" 1241510 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1238467 1238694 1238992 "INPSIGN" 1239445 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1237585 1237702 1237899 "INPRODPF" 1238347 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1236479 1236596 1236833 "INPRODFF" 1237465 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1235479 1235631 1235891 "INNMFACT" 1236315 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1234676 1234773 1234961 "INMODGCD" 1235378 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1233184 1233429 1233753 "INFSP" 1234421 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1232368 1232485 1232668 "INFPROD0" 1233064 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1229250 1230433 1230948 "INFORM" 1231861 T INFORM (NIL) -8 NIL NIL NIL) (-535 1228860 1228920 1229018 "INFORM1" 1229185 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1228383 1228472 1228586 "INFINITY" 1228766 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1227559 1228103 1228204 "INETCLTS" 1228302 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1226175 1226425 1226746 "INEP" 1227307 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1225451 1226072 1226137 "INDE" 1226142 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1225015 1225083 1225200 "INCRMAPS" 1225378 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1223833 1224284 1224490 "INBFILE" 1224829 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1219133 1220069 1221013 "INBFF" 1222921 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1218041 1218310 1218338 "INBCON" 1218851 T INBCON (NIL) -9 NIL 1219117 NIL) (-526 1217293 1217516 1217792 "INBCON-" 1217797 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1216799 1217017 1217108 "INAST" 1217222 T INAST (NIL) -8 NIL NIL NIL) (-524 1216253 1216478 1216584 "IMPTAST" 1216713 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1212747 1216097 1216201 "IMATRIX" 1216206 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1211459 1211582 1211897 "IMATQF" 1212603 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1209679 1209906 1210243 "IMATLIN" 1211215 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1204305 1209603 1209661 "ILIST" 1209666 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1202258 1204165 1204278 "IIARRAY2" 1204283 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1197683 1202169 1202233 "IFF" 1202238 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1197057 1197300 1197416 "IFAST" 1197587 T IFAST (NIL) -8 NIL NIL NIL) (-516 1192100 1196349 1196537 "IFARRAY" 1196914 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1191307 1192004 1192077 "IFAMON" 1192082 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1190891 1190956 1191010 "IEVALAB" 1191217 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1190566 1190634 1190794 "IEVALAB-" 1190799 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1190224 1190480 1190543 "IDPO" 1190548 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1189501 1190113 1190188 "IDPOAMS" 1190193 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1188835 1189390 1189465 "IDPOAM" 1189470 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1187920 1188170 1188223 "IDPC" 1188636 NIL IDPC (NIL T T) -9 NIL 1188785 NIL) (-508 1187416 1187812 1187885 "IDPAM" 1187890 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1186819 1187308 1187381 "IDPAG" 1187386 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1186491 1186655 1186730 "IDENT" 1186764 T IDENT (NIL) -8 NIL NIL NIL) (-505 1182746 1183594 1184489 "IDECOMP" 1185648 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1175610 1176669 1177716 "IDEAL" 1181782 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1174774 1174886 1175085 "ICDEN" 1175494 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1173872 1174254 1174401 "ICARD" 1174647 T ICARD (NIL) -8 NIL NIL NIL) (-501 1171932 1172245 1172650 "IBPTOOLS" 1173549 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1167566 1171552 1171665 "IBITS" 1171851 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1164289 1164865 1165560 "IBATOOL" 1166983 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1162068 1162530 1163063 "IBACHIN" 1163824 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1159945 1161914 1162017 "IARRAY2" 1162022 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1156099 1159871 1159928 "IARRAY1" 1159933 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1150083 1154511 1154992 "IAN" 1155638 T IAN (NIL) -8 NIL NIL NIL) (-494 1149594 1149651 1149824 "IALGFACT" 1150020 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1149122 1149235 1149263 "HYPCAT" 1149470 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1148660 1148777 1148963 "HYPCAT-" 1148968 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1148282 1148455 1148538 "HOSTNAME" 1148597 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1148127 1148164 1148205 "HOMOTOP" 1148210 NIL HOMOTOP (NIL T) -9 NIL 1148243 NIL) (-489 1144806 1146137 1146178 "HOAGG" 1147159 NIL HOAGG (NIL T) -9 NIL 1147838 NIL) (-488 1143400 1143799 1144325 "HOAGG-" 1144330 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1137431 1142995 1143144 "HEXADEC" 1143271 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1136179 1136401 1136664 "HEUGCD" 1137208 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1135282 1136016 1136146 "HELLFDIV" 1136151 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1133509 1135059 1135147 "HEAP" 1135226 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1132799 1133061 1133195 "HEADAST" 1133395 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1126713 1132714 1132776 "HDP" 1132781 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1120456 1126348 1126500 "HDMP" 1126614 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1119780 1119920 1120084 "HB" 1120312 T HB (NIL) -7 NIL NIL NIL) (-479 1113277 1119626 1119730 "HASHTBL" 1119735 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1112780 1112998 1113090 "HASAST" 1113205 T HASAST (NIL) -8 NIL NIL NIL) (-477 1110585 1112402 1112584 "HACKPI" 1112618 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1106280 1110438 1110551 "GTSET" 1110556 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1099806 1106158 1106256 "GSTBL" 1106261 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1092111 1098837 1099102 "GSERIES" 1099597 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1091278 1091669 1091697 "GROUP" 1091900 T GROUP (NIL) -9 NIL 1092034 NIL) (-472 1090644 1090803 1091054 "GROUP-" 1091059 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1089011 1089332 1089719 "GROEBSOL" 1090321 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1087951 1088213 1088264 "GRMOD" 1088793 NIL GRMOD (NIL T T) -9 NIL 1088961 NIL) (-469 1087719 1087755 1087883 "GRMOD-" 1087888 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1083036 1084073 1085073 "GRIMAGE" 1086739 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1081502 1081763 1082087 "GRDEF" 1082732 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1080946 1081062 1081203 "GRAY" 1081381 T GRAY (NIL) -7 NIL NIL NIL) (-465 1080159 1080539 1080590 "GRALG" 1080743 NIL GRALG (NIL T T) -9 NIL 1080836 NIL) (-464 1079820 1079893 1080056 "GRALG-" 1080061 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1076624 1079405 1079583 "GPOLSET" 1079727 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1075978 1076035 1076293 "GOSPER" 1076561 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1071737 1072416 1072942 "GMODPOL" 1075677 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1070742 1070926 1071164 "GHENSEL" 1071549 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1064793 1065636 1066663 "GENUPS" 1069826 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1064490 1064541 1064630 "GENUFACT" 1064736 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1063902 1063979 1064144 "GENPGCD" 1064408 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1063376 1063411 1063624 "GENMFACT" 1063861 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1061942 1062199 1062506 "GENEEZ" 1063119 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1055843 1061553 1061715 "GDMP" 1061865 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1045212 1049614 1050720 "GCNAALG" 1054826 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1043631 1044467 1044495 "GCDDOM" 1044750 T GCDDOM (NIL) -9 NIL 1044907 NIL) (-451 1043101 1043228 1043443 "GCDDOM-" 1043448 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1041773 1041958 1042262 "GB" 1042880 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1030389 1032719 1035111 "GBINTERN" 1039464 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1028226 1028518 1028939 "GBF" 1030064 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1027007 1027172 1027439 "GBEUCLID" 1028042 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1026356 1026481 1026630 "GAUSSFAC" 1026878 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1024723 1025025 1025339 "GALUTIL" 1026075 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1023031 1023305 1023629 "GALPOLYU" 1024450 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1020396 1020686 1021093 "GALFACTU" 1022728 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1012202 1013701 1015309 "GALFACT" 1018828 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1009590 1010248 1010276 "FVFUN" 1011432 T FVFUN (NIL) -9 NIL 1012152 NIL) (-440 1008856 1009038 1009066 "FVC" 1009357 T FVC (NIL) -9 NIL 1009540 NIL) (-439 1008526 1008681 1008749 "FUNDESC" 1008808 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1008168 1008323 1008404 "FUNCTION" 1008478 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1005939 1006490 1006956 "FT" 1007722 T FT (NIL) -8 NIL NIL NIL) (-436 1004757 1005240 1005443 "FTEM" 1005756 T FTEM (NIL) -8 NIL NIL NIL) (-435 1003013 1003302 1003706 "FSUPFACT" 1004448 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1001410 1001699 1002031 "FST" 1002701 T FST (NIL) -8 NIL NIL NIL) (-433 1000581 1000687 1000882 "FSRED" 1001292 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 999259 999515 999869 "FSPRMELT" 1000296 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 996344 996782 997281 "FSPECF" 998822 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 978398 986847 986887 "FS" 990735 NIL FS (NIL T) -9 NIL 993024 NIL) (-429 967045 970038 974094 "FS-" 974391 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 966559 966613 966790 "FSINT" 966986 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 964878 965552 965855 "FSERIES" 966338 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 963892 964008 964239 "FSCINT" 964758 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 960126 962836 962877 "FSAGG" 963247 NIL FSAGG (NIL T) -9 NIL 963506 NIL) (-424 957888 958489 959285 "FSAGG-" 959380 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 956930 957073 957300 "FSAGG2" 957741 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 954584 954864 955418 "FS2UPS" 956648 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 954166 954209 954364 "FS2" 954535 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 953023 953194 953503 "FS2EXPXP" 953991 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 952449 952564 952716 "FRUTIL" 952903 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 943889 947944 949302 "FR" 951123 NIL FR (NIL T) -8 NIL NIL NIL) (-417 938964 941607 941647 "FRNAALG" 943043 NIL FRNAALG (NIL T) -9 NIL 943650 NIL) (-416 934637 935713 936988 "FRNAALG-" 937738 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 934275 934318 934445 "FRNAAF2" 934588 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 932682 933129 933424 "FRMOD" 934087 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 930460 931065 931382 "FRIDEAL" 932473 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 929655 929742 930031 "FRIDEAL2" 930367 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 928788 929202 929243 "FRETRCT" 929248 NIL FRETRCT (NIL T) -9 NIL 929424 NIL) (-410 927900 928131 928482 "FRETRCT-" 928487 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 925104 926288 926347 "FRAMALG" 927229 NIL FRAMALG (NIL T T) -9 NIL 927521 NIL) (-408 923238 923693 924323 "FRAMALG-" 924546 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 917186 922713 922989 "FRAC" 922994 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 916822 916879 916986 "FRAC2" 917123 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 916458 916515 916622 "FR2" 916759 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 911123 913983 914011 "FPS" 915130 T FPS (NIL) -9 NIL 915687 NIL) (-403 910572 910681 910845 "FPS-" 910991 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 908018 909661 909689 "FPC" 909914 T FPC (NIL) -9 NIL 910056 NIL) (-401 907811 907851 907948 "FPC-" 907953 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 906689 907299 907340 "FPATMAB" 907345 NIL FPATMAB (NIL T) -9 NIL 907497 NIL) (-399 904389 904865 905291 "FPARFRAC" 906326 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 899782 900281 900963 "FORTRAN" 903821 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 897498 897998 898537 "FORT" 899263 T FORT (NIL) -7 NIL NIL NIL) (-396 895174 895736 895764 "FORTFN" 896824 T FORTFN (NIL) -9 NIL 897448 NIL) (-395 894938 894988 895016 "FORTCAT" 895075 T FORTCAT (NIL) -9 NIL 895137 NIL) (-394 893071 893554 893944 "FORMULA" 894568 T FORMULA (NIL) -8 NIL NIL NIL) (-393 892859 892889 892958 "FORMULA1" 893035 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 892382 892434 892607 "FORDER" 892801 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 891478 891642 891835 "FOP" 892209 T FOP (NIL) -7 NIL NIL NIL) (-390 890086 890758 890932 "FNLA" 891360 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 888841 889230 889258 "FNCAT" 889718 T FNCAT (NIL) -9 NIL 889978 NIL) (-388 888407 888800 888828 "FNAME" 888833 T FNAME (NIL) -8 NIL NIL NIL) (-387 887062 887999 888027 "FMTC" 888032 T FMTC (NIL) -9 NIL 888068 NIL) (-386 883422 884585 885214 "FMONOID" 886466 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 882641 883164 883313 "FM" 883318 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 880065 880711 880739 "FMFUN" 881883 T FMFUN (NIL) -9 NIL 882591 NIL) (-383 879334 879515 879543 "FMC" 879833 T FMC (NIL) -9 NIL 880015 NIL) (-382 876528 877362 877416 "FMCAT" 878611 NIL FMCAT (NIL T T) -9 NIL 879106 NIL) (-381 875421 876294 876394 "FM1" 876473 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 873195 873611 874105 "FLOATRP" 874972 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 866796 870924 871545 "FLOAT" 872594 T FLOAT (NIL) -8 NIL NIL NIL) (-378 864234 864734 865312 "FLOATCP" 866263 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 863035 863847 863888 "FLINEXP" 863893 NIL FLINEXP (NIL T) -9 NIL 863986 NIL) (-376 862189 862424 862752 "FLINEXP-" 862757 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 861265 861409 861633 "FLASORT" 862041 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 858482 859324 859376 "FLALG" 860603 NIL FLALG (NIL T T) -9 NIL 861070 NIL) (-373 852266 855968 856009 "FLAGG" 857271 NIL FLAGG (NIL T) -9 NIL 857923 NIL) (-372 850992 851331 851821 "FLAGG-" 851826 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 850034 850177 850404 "FLAGG2" 850845 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 847001 847983 848042 "FINRALG" 849170 NIL FINRALG (NIL T T) -9 NIL 849678 NIL) (-369 846161 846390 846729 "FINRALG-" 846734 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 845567 845780 845808 "FINITE" 846004 T FINITE (NIL) -9 NIL 846111 NIL) (-367 838025 840186 840226 "FINAALG" 843893 NIL FINAALG (NIL T) -9 NIL 845346 NIL) (-366 833357 834407 835551 "FINAALG-" 836930 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 832752 833112 833215 "FILE" 833287 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 831436 831748 831802 "FILECAT" 832486 NIL FILECAT (NIL T T) -9 NIL 832702 NIL) (-363 829296 830798 830826 "FIELD" 830866 T FIELD (NIL) -9 NIL 830946 NIL) (-362 827916 828301 828812 "FIELD-" 828817 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 825793 826551 826898 "FGROUP" 827602 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 824883 825047 825267 "FGLMICPK" 825625 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 820742 824808 824865 "FFX" 824870 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 820343 820404 820539 "FFSLPE" 820675 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 816332 817115 817911 "FFPOLY" 819579 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 815836 815872 816081 "FFPOLY2" 816290 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 811706 815755 815818 "FFP" 815823 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 807131 811617 811681 "FF" 811686 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 802284 806474 806664 "FFNBX" 806985 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 797240 801419 801677 "FFNBP" 802138 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 791900 796524 796735 "FFNB" 797073 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 790732 790930 791245 "FFINTBAS" 791697 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 786952 789139 789167 "FFIELDC" 789787 T FFIELDC (NIL) -9 NIL 790163 NIL) (-348 785614 785985 786482 "FFIELDC-" 786487 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 785183 785229 785353 "FFHOM" 785556 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 782878 783365 783882 "FFF" 784698 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 778523 782620 782721 "FFCGX" 782821 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 774171 778255 778362 "FFCGP" 778466 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 769381 773898 774006 "FFCG" 774107 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 751206 760252 760338 "FFCAT" 765503 NIL FFCAT (NIL T T T) -9 NIL 766954 NIL) (-341 746404 747451 748765 "FFCAT-" 749995 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 745815 745858 746093 "FFCAT2" 746355 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 735012 738787 740007 "FEXPR" 744667 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 734012 734447 734488 "FEVALAB" 734572 NIL FEVALAB (NIL T) -9 NIL 734833 NIL) (-337 733171 733381 733719 "FEVALAB-" 733724 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 731764 732554 732757 "FDIV" 733070 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 728830 729545 729660 "FDIVCAT" 731228 NIL FDIVCAT (NIL T T T T) -9 NIL 731665 NIL) (-334 728592 728619 728789 "FDIVCAT-" 728794 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 727812 727899 728176 "FDIV2" 728499 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 726498 726757 727046 "FCPAK1" 727543 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 725624 725998 726139 "FCOMP" 726389 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 709353 712774 716312 "FC" 722106 T FC (NIL) -8 NIL NIL NIL) (-329 701924 705917 705957 "FAXF" 707759 NIL FAXF (NIL T) -9 NIL 708451 NIL) (-328 699200 699858 700683 "FAXF-" 701148 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 694300 698576 698752 "FARRAY" 699057 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 689545 691585 691638 "FAMR" 692661 NIL FAMR (NIL T T) -9 NIL 693121 NIL) (-325 688435 688737 689172 "FAMR-" 689177 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 687631 688357 688410 "FAMONOID" 688415 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 685443 686127 686180 "FAMONC" 687121 NIL FAMONC (NIL T T) -9 NIL 687507 NIL) (-322 684135 685197 685334 "FAGROUP" 685339 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 681930 682249 682652 "FACUTIL" 683816 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 681029 681214 681436 "FACTFUNC" 681740 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 673426 680280 680492 "EXPUPXS" 680885 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 670909 671449 672035 "EXPRTUBE" 672860 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 667103 667695 668432 "EXPRODE" 670248 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 652469 665758 666186 "EXPR" 666707 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 646876 647463 648276 "EXPR2UPS" 651767 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 646512 646569 646676 "EXPR2" 646813 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 637909 645644 645941 "EXPEXPAN" 646349 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 637736 637866 637895 "EXIT" 637900 T EXIT (NIL) -8 NIL NIL NIL) (-311 637243 637460 637551 "EXITAST" 637665 T EXITAST (NIL) -8 NIL NIL NIL) (-310 636870 636932 637045 "EVALCYC" 637175 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 636411 636529 636570 "EVALAB" 636740 NIL EVALAB (NIL T) -9 NIL 636844 NIL) (-308 635892 636014 636235 "EVALAB-" 636240 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 633352 634628 634656 "EUCDOM" 635211 T EUCDOM (NIL) -9 NIL 635561 NIL) (-306 631757 632199 632789 "EUCDOM-" 632794 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 619295 622055 624805 "ESTOOLS" 629027 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 618927 618984 619093 "ESTOOLS2" 619232 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 618678 618720 618800 "ESTOOLS1" 618879 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 612583 614311 614339 "ES" 617107 T ES (NIL) -9 NIL 618516 NIL) (-301 607530 608817 610634 "ES-" 610798 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 603904 604665 605445 "ESCONT" 606770 T ESCONT (NIL) -7 NIL NIL NIL) (-299 603649 603681 603763 "ESCONT1" 603866 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 603324 603374 603474 "ES2" 603593 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 602954 603012 603121 "ES1" 603260 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 602170 602299 602475 "ERROR" 602798 T ERROR (NIL) -7 NIL NIL NIL) (-295 595673 602029 602120 "EQTBL" 602125 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 588224 590987 592436 "EQ" 594257 NIL -3292 (NIL T) -8 NIL NIL NIL) (-293 587856 587913 588022 "EQ2" 588161 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 583145 584194 585287 "EP" 586795 NIL EP (NIL T) -7 NIL NIL NIL) (-291 581723 582020 582332 "ENV" 582853 T ENV (NIL) -8 NIL NIL NIL) (-290 580894 581422 581450 "ENTIRER" 581455 T ENTIRER (NIL) -9 NIL 581501 NIL) (-289 577388 578849 579219 "EMR" 580693 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 576532 576717 576771 "ELTAGG" 577151 NIL ELTAGG (NIL T T) -9 NIL 577362 NIL) (-287 576251 576313 576454 "ELTAGG-" 576459 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 576040 576069 576123 "ELTAB" 576207 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 575166 575312 575511 "ELFUTS" 575891 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 574908 574964 574992 "ELEMFUN" 575097 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 574778 574799 574867 "ELEMFUN-" 574872 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 569669 572878 572919 "ELAGG" 573859 NIL ELAGG (NIL T) -9 NIL 574322 NIL) (-281 567954 568388 569051 "ELAGG-" 569056 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 566619 566897 567190 "ELABEXPR" 567681 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 559483 561286 562113 "EFUPXS" 565895 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 552933 554734 555544 "EFULS" 558759 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 550355 550713 551192 "EFSTRUC" 552565 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 539426 540992 542552 "EF" 548870 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 538527 538911 539060 "EAB" 539297 T EAB (NIL) -8 NIL NIL NIL) (-274 537736 538486 538514 "E04UCFA" 538519 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 536945 537695 537723 "E04NAFA" 537728 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 536154 536904 536932 "E04MBFA" 536937 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 535363 536113 536141 "E04JAFA" 536146 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 534574 535322 535350 "E04GCFA" 535355 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 533785 534533 534561 "E04FDFA" 534566 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 532994 533744 533772 "E04DGFA" 533777 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 527167 528519 529883 "E04AGNT" 531650 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 525873 526353 526393 "DVARCAT" 526868 NIL DVARCAT (NIL T) -9 NIL 527067 NIL) (-265 525077 525289 525603 "DVARCAT-" 525608 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 517969 524876 525005 "DSMP" 525010 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 512778 513914 514982 "DROPT" 516921 T DROPT (NIL) -8 NIL NIL NIL) (-262 512443 512502 512600 "DROPT1" 512713 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 507558 508684 509821 "DROPT0" 511326 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 505903 506228 506614 "DRAWPT" 507192 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 500490 501413 502492 "DRAW" 504877 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 500123 500176 500294 "DRAWHACK" 500431 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 498854 499123 499414 "DRAWCX" 499852 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 498369 498438 498589 "DRAWCURV" 498780 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 488837 490799 492914 "DRAWCFUN" 496274 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 485650 487532 487573 "DQAGG" 488202 NIL DQAGG (NIL T) -9 NIL 488475 NIL) (-253 473921 480628 480711 "DPOLCAT" 482563 NIL DPOLCAT (NIL T T T T) -9 NIL 483108 NIL) (-252 468757 470106 472064 "DPOLCAT-" 472069 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 461906 468618 468716 "DPMO" 468721 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 454958 461686 461853 "DPMM" 461858 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 454590 454877 454925 "DOMCTOR" 454930 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 453885 454112 454249 "DOMAIN" 454473 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 447628 453520 453672 "DMP" 453786 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 447228 447284 447428 "DLP" 447566 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 441098 446555 446745 "DLIST" 447070 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 437942 439951 439992 "DLAGG" 440542 NIL DLAGG (NIL T) -9 NIL 440772 NIL) (-243 436747 437385 437413 "DIVRING" 437505 T DIVRING (NIL) -9 NIL 437588 NIL) (-242 435984 436174 436474 "DIVRING-" 436479 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 434086 434443 434849 "DISPLAY" 435598 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 428022 434000 434063 "DIRPROD" 434068 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 426870 427073 427338 "DIRPROD2" 427815 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 416127 422085 422138 "DIRPCAT" 422548 NIL DIRPCAT (NIL NIL T) -9 NIL 423388 NIL) (-237 413453 414095 414976 "DIRPCAT-" 415313 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 412740 412900 413086 "DIOSP" 413287 T DIOSP (NIL) -7 NIL NIL NIL) (-235 409442 411652 411693 "DIOPS" 412127 NIL DIOPS (NIL T) -9 NIL 412356 NIL) (-234 408991 409105 409296 "DIOPS-" 409301 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 407875 408477 408505 "DIFRING" 408692 T DIFRING (NIL) -9 NIL 408802 NIL) (-232 407521 407598 407750 "DIFRING-" 407755 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 405318 406564 406605 "DIFEXT" 406968 NIL DIFEXT (NIL T) -9 NIL 407262 NIL) (-230 403603 404031 404697 "DIFEXT-" 404702 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 400925 403135 403176 "DIAGG" 403181 NIL DIAGG (NIL T) -9 NIL 403201 NIL) (-228 400309 400466 400718 "DIAGG-" 400723 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 395774 399268 399545 "DHMATRIX" 400078 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 391386 392295 393305 "DFSFUN" 394784 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 386491 390317 390629 "DFLOAT" 391094 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 384719 385000 385396 "DFINTTLS" 386199 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 381775 382740 383140 "DERHAM" 384385 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 379624 381550 381639 "DEQUEUE" 381719 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 378839 378972 379168 "DEGRED" 379486 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 375234 375979 376832 "DEFINTRF" 378067 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 372761 373230 373829 "DEFINTEF" 374753 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 372138 372381 372496 "DEFAST" 372666 T DEFAST (NIL) -8 NIL NIL NIL) (-217 366169 371733 371882 "DECIMAL" 372009 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 363679 364139 364645 "DDFACT" 365713 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 363275 363318 363469 "DBLRESP" 363630 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 361174 361508 361868 "DBASE" 363042 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 360443 360654 360800 "DATAARY" 361073 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 359576 360402 360430 "D03FAFA" 360435 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 358710 359535 359563 "D03EEFA" 359568 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 356660 357126 357615 "D03AGNT" 358241 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 355976 356619 356647 "D02EJFA" 356652 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 355292 355935 355963 "D02CJFA" 355968 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 354608 355251 355279 "D02BHFA" 355284 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 353924 354567 354595 "D02BBFA" 354600 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 347121 348710 350316 "D02AGNT" 352338 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 344889 345412 345958 "D01WGTS" 346595 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 343983 344848 344876 "D01TRNS" 344881 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 343078 343942 343970 "D01GBFA" 343975 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 342173 343037 343065 "D01FCFA" 343070 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 341268 342132 342160 "D01ASFA" 342165 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 340363 341227 341255 "D01AQFA" 341260 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 339458 340322 340350 "D01APFA" 340355 T D01APFA (NIL) -8 NIL NIL NIL) (-197 338553 339417 339445 "D01ANFA" 339450 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 337648 338512 338540 "D01AMFA" 338545 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 336743 337607 337635 "D01ALFA" 337640 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 335838 336702 336730 "D01AKFA" 336735 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 334933 335797 335825 "D01AJFA" 335830 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 328228 329781 331342 "D01AGNT" 333392 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 327565 327693 327845 "CYCLOTOM" 328096 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 324300 325013 325740 "CYCLES" 326858 T CYCLES (NIL) -7 NIL NIL NIL) (-189 323612 323746 323917 "CVMP" 324161 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 321383 321641 322017 "CTRIGMNP" 323340 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 320878 321177 321250 "CTOR" 321330 T CTOR (NIL) -8 NIL NIL NIL) (-186 320414 320609 320710 "CTORKIND" 320797 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 319762 320021 320049 "CTORCAT" 320231 T CTORCAT (NIL) -9 NIL 320344 NIL) (-184 319360 319471 319630 "CTORCAT-" 319635 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 318876 319063 319161 "CTORCALL" 319282 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 318250 318349 318502 "CSTTOOLS" 318773 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 314049 314706 315464 "CRFP" 317562 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 313551 313770 313862 "CRCEAST" 313977 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 312598 312783 313011 "CRAPACK" 313355 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 311982 312083 312287 "CPMATCH" 312474 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 311707 311735 311841 "CPIMA" 311948 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 308071 308743 309461 "COORDSYS" 311042 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 307479 307601 307744 "CONTOUR" 307948 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 303397 305482 305974 "CONTFRAC" 307019 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 303277 303298 303326 "CONDUIT" 303363 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 302442 302970 302998 "COMRING" 303003 T COMRING (NIL) -9 NIL 303055 NIL) (-171 301523 301800 301984 "COMPPROP" 302278 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 301184 301219 301347 "COMPLPAT" 301482 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 291233 300993 301102 "COMPLEX" 301107 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 290869 290926 291033 "COMPLEX2" 291170 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 290587 290622 290720 "COMPFACT" 290828 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 274741 284969 285009 "COMPCAT" 286013 NIL COMPCAT (NIL T) -9 NIL 287409 NIL) (-165 264252 267180 270807 "COMPCAT-" 271163 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 263981 264009 264112 "COMMUPC" 264218 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 263776 263809 263868 "COMMONOP" 263942 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 263359 263527 263614 "COMM" 263709 T COMM (NIL) -8 NIL NIL NIL) (-161 262962 263163 263238 "COMMAAST" 263304 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 262211 262405 262433 "COMBOPC" 262771 T COMBOPC (NIL) -9 NIL 262946 NIL) (-159 261107 261317 261559 "COMBINAT" 262001 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 257304 257878 258518 "COMBF" 260529 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 256089 256420 256655 "COLOR" 257089 T COLOR (NIL) -8 NIL NIL NIL) (-156 255592 255810 255902 "COLONAST" 256017 T COLONAST (NIL) -8 NIL NIL NIL) (-155 255232 255279 255404 "CMPLXRT" 255539 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 254707 254932 255031 "CLLCTAST" 255153 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 250207 251237 252317 "CLIP" 253647 T CLIP (NIL) -7 NIL NIL NIL) (-152 248580 249313 249552 "CLIF" 250034 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 244802 246726 246767 "CLAGG" 247696 NIL CLAGG (NIL T) -9 NIL 248232 NIL) (-150 243224 243681 244264 "CLAGG-" 244269 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 242768 242853 242993 "CINTSLPE" 243133 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 240269 240740 241288 "CHVAR" 242296 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 239504 240032 240060 "CHARZ" 240065 T CHARZ (NIL) -9 NIL 240080 NIL) (-146 239258 239298 239376 "CHARPOL" 239458 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 238377 238938 238966 "CHARNZ" 239013 T CHARNZ (NIL) -9 NIL 239069 NIL) (-144 236366 237067 237402 "CHAR" 238062 T CHAR (NIL) -8 NIL NIL NIL) (-143 236092 236153 236181 "CFCAT" 236292 T CFCAT (NIL) -9 NIL NIL NIL) (-142 235337 235448 235630 "CDEN" 235976 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 231329 234490 234770 "CCLASS" 235077 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230636 230779 230942 "CATEGORY" 231186 T -10 (NIL) -8 NIL NIL NIL) (-139 230268 230555 230603 "CATCTOR" 230608 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229746 229971 230069 "CATAST" 230190 T CATAST (NIL) -8 NIL NIL NIL) (-137 229249 229467 229559 "CASEAST" 229674 T CASEAST (NIL) -8 NIL NIL NIL) (-136 224285 225278 226031 "CARTEN" 228552 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 223393 223541 223762 "CARTEN2" 224132 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221735 222543 222800 "CARD" 223156 T CARD (NIL) -8 NIL NIL NIL) (-133 221338 221539 221614 "CAPSLAST" 221680 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220710 221038 221066 "CACHSET" 221198 T CACHSET (NIL) -9 NIL 221275 NIL) (-131 220206 220502 220530 "CABMON" 220580 T CABMON (NIL) -9 NIL 220636 NIL) (-130 219706 219910 220020 "BYTEORD" 220116 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 218709 219240 219382 "BYTE" 219545 T BYTE (NIL) -8 NIL NIL 219667) (-128 214109 218214 218386 "BYTEBUF" 218557 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211666 213801 213908 "BTREE" 214035 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209163 211314 211436 "BTOURN" 211576 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206580 208633 208674 "BTCAT" 208742 NIL BTCAT (NIL T) -9 NIL 208819 NIL) (-124 206247 206327 206476 "BTCAT-" 206481 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201539 205390 205418 "BTAGG" 205640 T BTAGG (NIL) -9 NIL 205801 NIL) (-122 201029 201154 201360 "BTAGG-" 201365 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198072 200307 200522 "BSTREE" 200846 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197210 197336 197520 "BRILL" 197928 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193909 195936 195977 "BRAGG" 196626 NIL BRAGG (NIL T) -9 NIL 196884 NIL) (-118 192438 192844 193399 "BRAGG-" 193404 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185694 191784 191968 "BPADICRT" 192286 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184036 185631 185676 "BPADIC" 185681 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183734 183764 183878 "BOUNDZRO" 184000 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178773 179938 180899 "BOP" 182793 T BOP (NIL) -8 NIL NIL NIL) (-113 176394 176838 177358 "BOP1" 178286 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 175096 175818 176011 "BOOLEAN" 176221 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174458 174836 174890 "BMODULE" 174895 NIL BMODULE (NIL T T) -9 NIL 174960 NIL) (-110 170286 174256 174329 "BITS" 174405 T BITS (NIL) -8 NIL NIL NIL) (-109 169698 169820 169962 "BINDING" 170164 T BINDING (NIL) -8 NIL NIL NIL) (-108 163732 169295 169443 "BINARY" 169570 T BINARY (NIL) -8 NIL NIL NIL) (-107 161559 162987 163028 "BGAGG" 163288 NIL BGAGG (NIL T) -9 NIL 163425 NIL) (-106 161390 161422 161513 "BGAGG-" 161518 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160488 160774 160979 "BFUNCT" 161205 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159178 159356 159644 "BEZOUT" 160312 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155695 158030 158360 "BBTREE" 158881 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155429 155482 155510 "BASTYPE" 155629 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155282 155310 155383 "BASTYPE-" 155388 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154716 154792 154944 "BALFACT" 155193 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153599 154131 154317 "AUTOMOR" 154561 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153325 153330 153356 "ATTREG" 153361 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151604 152022 152374 "ATTRBUT" 152991 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151239 151432 151498 "ATTRAST" 151556 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150775 150888 150914 "ATRIG" 151115 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150584 150625 150712 "ATRIG-" 150717 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150255 150415 150441 "ASTCAT" 150446 T ASTCAT (NIL) -9 NIL 150476 NIL) (-92 149982 150041 150160 "ASTCAT-" 150165 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148179 149758 149846 "ASTACK" 149925 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146684 146981 147346 "ASSOCEQ" 147861 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145716 146343 146467 "ASP9" 146591 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145479 145664 145703 "ASP8" 145708 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144347 145084 145226 "ASP80" 145368 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143245 143982 144114 "ASP7" 144246 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142199 142922 143040 "ASP78" 143158 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141168 141879 141996 "ASP77" 142113 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140080 140806 140937 "ASP74" 141068 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138980 139715 139847 "ASP73" 139979 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138084 138806 138906 "ASP6" 138911 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137028 137761 137879 "ASP55" 137997 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135977 136702 136821 "ASP50" 136940 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135065 135678 135788 "ASP4" 135898 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134153 134766 134876 "ASP49" 134986 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132937 133692 133860 "ASP42" 134042 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131713 132470 132640 "ASP41" 132824 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130663 131390 131508 "ASP35" 131626 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130428 130611 130650 "ASP34" 130655 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130165 130232 130308 "ASP33" 130383 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129058 129800 129932 "ASP31" 130064 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128823 129006 129045 "ASP30" 129050 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128558 128627 128703 "ASP29" 128778 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128323 128506 128545 "ASP28" 128550 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128088 128271 128310 "ASP27" 128315 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127172 127786 127897 "ASP24" 128008 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126248 126974 127086 "ASP20" 127091 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125336 125949 126059 "ASP1" 126169 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124278 125010 125129 "ASP19" 125248 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124015 124082 124158 "ASP12" 124233 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122867 123614 123758 "ASP10" 123902 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120766 122711 122802 "ARRAY2" 122807 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116579 120414 120528 "ARRAY1" 120683 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115611 115784 116005 "ARRAY12" 116402 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109970 111841 111916 "ARR2CAT" 114546 NIL ARR2CAT (NIL T T T) -9 NIL 115304 NIL) (-56 107404 108148 109102 "ARR2CAT-" 109107 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106996 107231 107310 "ARITY" 107343 T ARITY (NIL) -8 NIL NIL NIL) (-54 105744 105896 106202 "APPRULE" 106832 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105395 105443 105562 "APPLYORE" 105690 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104369 104660 104855 "ANY" 105218 T ANY (NIL) -8 NIL NIL NIL) (-51 103647 103770 103927 "ANY1" 104243 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101204 102084 102411 "ANTISYM" 103371 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100723 100911 101007 "ANON" 101126 T ANON (NIL) -8 NIL NIL NIL) (-48 94847 99262 99716 "AN" 100287 T AN (NIL) -8 NIL NIL NIL) (-47 91095 92457 92508 "AMR" 93256 NIL AMR (NIL T T) -9 NIL 93856 NIL) (-46 90207 90428 90791 "AMR-" 90796 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74757 90124 90185 "ALIST" 90190 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71586 74351 74520 "ALGSC" 74675 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68141 68696 69303 "ALGPKG" 71026 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67418 67519 67703 "ALGMFACT" 68027 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63155 63842 64497 "ALGMANIP" 66941 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54552 62781 62931 "ALGFF" 63088 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53748 53879 54058 "ALGFACT" 54410 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52805 53379 53417 "ALGEBRA" 53422 NIL ALGEBRA (NIL T) -9 NIL 53463 NIL) (-37 52523 52582 52714 "ALGEBRA-" 52719 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34782 50525 50577 "ALAGG" 50713 NIL ALAGG (NIL T T) -9 NIL 50874 NIL) (-35 34318 34431 34457 "AHYP" 34658 T AHYP (NIL) -9 NIL NIL NIL) (-34 33249 33497 33523 "AGG" 34022 T AGG (NIL) -9 NIL 34301 NIL) (-33 32683 32845 33059 "AGG-" 33064 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30359 30782 31200 "AF" 32325 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29866 30084 30174 "ADDAST" 30287 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29134 29393 29549 "ACPLOT" 29728 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18418 26347 26398 "ACFS" 27109 NIL ACFS (NIL T) -9 NIL 27348 NIL) (-28 16432 16922 17697 "ACFS-" 17702 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14599 14625 "ACF" 15504 T ACF (NIL) -9 NIL 15916 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index b9bc2cb0..669422dc 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,84 +1,38 @@
-(735988 . 3449600532)
-(((*1 *2 *3)
- (-12 (-4 *3 (-1235 (-407 (-564))))
- (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))
- (-5 *1 (-910 *3 *4)) (-4 *4 (-1235 (-407 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3))
- (-4 *3 (-1235 (-407 *4))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))
- (-5 *2 (-1032)) (-5 *1 (-745)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *10))
- (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8))
- (-4 *10 (-1103 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6)))
- (-5 *1 (-626 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170)))
- (-5 *2
- (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6)))))
- (-5 *1 (-626 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6)))
- (-5 *1 (-1043 *5 *6))))
+(736189 . 3450528890)
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213))
+ (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-752)))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-1066 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-1202 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1046)) (-4 *2 (-1235 *4))
- (-5 *1 (-444 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5)))
- (-5 *4 (-564)) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-1124 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079)))))
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044))
+ (-5 *3 (-564)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-504 (-407 (-564)) (-240 *4 (-768)) (-861 *3)
- (-247 *3 (-407 (-564)))))
- (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-505 *3 *4)))))
+ (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-946 *3 *5 *4))
+ (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170))))
+ (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-974 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9)))
- (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-768)))
- (-4 *11 (-847)) (-4 *9 (-307)) (-4 *12 (-946 *9 *10 *11))
- (-4 *10 (-790)) (-5 *2 (-641 (-1166 *12)))
- (-5 *1 (-704 *10 *11 *9 *12)) (-5 *3 (-1166 *12)))))
+ (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3))
+ (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-748)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))))
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
(((*1 *2 *1 *3 *3 *2)
(-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209))
(-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
@@ -110,14 +64,14 @@
(-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4))
(-4 *4
(-13 (-847)
- (-10 -8 (-15 -4382 ((-1152) $ *3)) (-15 -3463 ((-1264) $))
- (-15 -3092 ((-1264) $)))))))
+ (-10 -8 (-15 -4382 ((-1152) $ *3)) (-15 -3512 ((-1264) $))
+ (-15 -2890 ((-1264) $)))))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-986)) (-5 *1 (-214 *3))
(-4 *3
(-13 (-847)
- (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 ((-1264) $))
- (-15 -3092 ((-1264) $)))))))
+ (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 ((-1264) $))
+ (-15 -2890 ((-1264) $)))))))
((*1 *2 *1 *3)
(-12 (-5 *3 "count") (-5 *2 (-768)) (-5 *1 (-245 *4)) (-4 *4 (-847))))
((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-847))))
@@ -203,62 +157,231 @@
(-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
((*1 *2 *1 *3)
(-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225))))
- (-5 *2 (-1032)) (-5 *1 (-751)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6))
- (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
+ (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7)))
+ (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363))
(-5 *2
(-2 (|:| |mainpart| *3)
(|:| |limitedlogs|
(-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-568 *5 *6)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-641
- (-641
- (-3 (|:| -4363 (-1170))
- (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))))
- (-5 *1 (-1174)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170))))
- (-4 *7 (-790))
- (-5 *2
- (-641
- (-2 (|:| -4224 (-768))
- (|:| |eqns|
- (-641
- (-2 (|:| |det| *8) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564))))))
- (|:| |fgb| (-641 *8)))))
- (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-768)))))
-(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-918)) (-5 *2 (-379)) (-5 *1 (-782 *3))
- (-4 *3 (-612 *2))))
+ (-5 *1 (-574 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349))
+ (-5 *1 (-528 *4)))))
+(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2))
- (-5 *2 (-379)) (-5 *1 (-782 *4))))
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2))
+ (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4))
+ (-4 *3 (-409 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-765 *3 *4))
+ (-4 *4 (-409 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847)) (-4 *3 (-172))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3))
+ (-4 *3 (-373 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3))
+ (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-685 *4)) (-4 *4 (-989 *2)) (-4 *2 (-556))
+ (-5 *1 (-689 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
+ (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))
+ (-12 (-5 *4 (-407 (-564)))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564)))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8))
+ (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564)))
+ (-4 *8 (-13 (-27) (-1194) (-430 *7)))
+ (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564))))
+ (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8)))
+ (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1046)) (-4 *1 (-1242 *4 *3))
+ (-4 *3 (-1219 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *2 (-1032)) (-5 *1 (-751)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2))
+ (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4413)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847))
+ (-4 *4 (-266 *3)) (-4 *5 (-790)))))
+(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-790))
+ (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))))
+(((*1 *1) (-5 *1 (-1058))))
+(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
+ (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2))
- (-5 *2 (-379)) (-5 *1 (-782 *4))))
+ (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))
+ (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-847) (-1035 *4) (-637 *4)))
+ (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-452) (-847) (-1035 *5) (-637 *5))) (-5 *5 (-564))
+ (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564)))
+ (-4 *7 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564)))
+ (-4 *3 (-13 (-27) (-1194) (-430 *7)))
+ (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-564)) (-4 *4 (-1046)) (-4 *1 (-1221 *4 *3))
+ (-4 *3 (-1250 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-506)) (-5 *2 (-687 (-771))) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-771)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-962)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
+ (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564)))
+ (-5 *1 (-190)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-768)) (-5 *4 (-1259 *2)) (-4 *5 (-307))
+ (-4 *6 (-989 *5)) (-4 *2 (-13 (-409 *6 *7) (-1035 *6)))
+ (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6)))))
+(((*1 *1) (-5 *1 (-1079))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-828)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
+ (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847))
- (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4))))
+ (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))))
+ (-12 (-5 *4 (-768))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-294 *3)) (-5 *5 (-768))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6))
+ (-4 *6 (-13 (-27) (-1194) (-430 *5)))
+ (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-768)))
+ (-4 *7 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-768)))
+ (-4 *3 (-13 (-27) (-1194) (-430 *7)))
+ (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))))
+(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31))))
((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49))))
((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133))))
@@ -270,131 +393,54 @@
((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016))))
((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1061))))
((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-641 *3)) (-5 *5 (-918)) (-4 *3 (-1235 *4))
+ (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112))
- (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-641
- (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2))
- (|:| |logand| (-1166 *2)))))
- (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-363)) (-5 *1 (-585 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3))
- (-4 *3 (-964)))))
+ (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6))
- (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-58 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4411))
- (-4 *1 (-151 *2)) (-4 *2 (-1209))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2))
- (-4 *2 (-1209))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2))
- (-4 *2 (-1209))))
+ (-12 (-5 *3 (-418 *5)) (-4 *5 (-556))
+ (-5 *2
+ (-2 (|:| -3078 (-768)) (|:| -1817 *5) (|:| |radicand| (-641 *5))))
+ (-5 *1 (-320 *5)) (-5 *4 (-768))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-564)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))))
+(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307))
+ (-4 *3 (-556)) (-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-1046))
- (-5 *2 (-2 (|:| -3808 (-1166 *4)) (|:| |deg| (-918))))
- (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-847)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768))
- (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-847))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2))
- (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209))
- (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094))
- (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2))))
- ((*1 *1 *1) (-5 *1 (-495)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-639 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1046)) (-4 *2 (-1046))
- (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2))
- (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3))))
+ (-12 (-5 *3 (-918)) (-4 *4 (-363)) (-5 *2 (-1259 *1))
+ (-4 *1 (-329 *4))))
+ ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1))
+ (-4 *1 (-409 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4))
+ (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6))
+ (-4 *6 (-13 (-409 *4 *5) (-1035 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4))
+ (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))
+ (-4 *6 (-409 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4))
+ (-4 *4 (-349)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363))
- (-4 *3 (-172)) (-4 *1 (-721 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-955 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-954 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5))
- (-14 *6 (-641 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1046)) (-4 *2 (-1046))
- (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7))
- (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2))
- (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *12 (-1049 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-790))
- (-4 *7 (-847)) (-4 *2 (-1060 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209))
- (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-790))
- (-4 *3 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))) (-4 *5 (-556))
- (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1046)) (-4 *5 (-790))
- (-4 *3
- (-13 (-847)
- (-10 -8 (-15 -2127 ((-1170) $))
- (-15 -3657 ((-3 $ "failed") (-1170))))))
- (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *6))
- (-4 *6
- (-13 (-847)
- (-10 -8 (-15 -2127 ((-1170) $))
- (-15 -3657 ((-3 $ "failed") (-1170))))))
- (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2))
- (-4 *2 (-946 (-949 *4) *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-901 *4))
- (-4 *4 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+ (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261))))
+ ((*1 *1 *1) (-5 *1 (-1261))))
(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96))))
((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-109))))
((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-114))))
@@ -410,548 +456,175 @@
((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109))))
((*1 *1 *1) (-5 *1 (-1170))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))))
-(((*1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-641
- (-2
- (|:| -2351
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225))))
- (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225)))
- (|:| |g| (-316 (-225))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -1327
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379)))))))
- (-5 *1 (-800)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194)))
- (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7))
- (-5 *3 (-1166 *6)) (-4 *7 (-1094))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10))
- (-5 *7 (-641 (-768))) (-5 *8 (-641 *11)) (-4 *10 (-847))
- (-4 *11 (-307)) (-4 *9 (-790)) (-4 *5 (-946 *11 *9 *10))
- (-5 *2 (-641 (-1166 *5))) (-5 *1 (-739 *9 *10 *11 *5))
- (-5 *3 (-1166 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1031 *3 *4 *5 *2 *6))
- (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-14 *6 (-641 *2)))))
+ (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307))
+ (-5 *2 (-768)) (-5 *1 (-455 *5 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-918)) (-5 *1 (-466)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349))
- (-4 *2
- (-13 (-402)
- (-10 -7 (-15 -1765 (*2 *4)) (-15 -2209 ((-918) *2))
- (-15 -3941 ((-1259 *2) (-918))) (-15 -1560 (*2 *2)))))
- (-5 *1 (-356 *2 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564))
- (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172))
- (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-128)) (-5 *2 (-768)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *4 (-641 (-1170)))
+ (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5))
+ (-4 *5 (-13 (-845) (-363)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *9)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790))
- (-4 *8 (-1046)) (-4 *2 (-946 *9 *7 *5))
- (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790))
- (-4 *4 (-946 *8 *6 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-752)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4)))
- (-5 *1 (-1180 *4)) (-4 *4 (-847)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225)))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1032)) (-5 *1 (-750)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -2745 (-407 *6)) (|:| |coeff| (-407 *6))))
- (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-955 (-1166 *4))) (-5 *1 (-357 *4))
- (-5 *3 (-1166 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847)))
- (-14 *3 (-641 (-1170)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172))
- (-4 *5 (-238 (-2589 *2) (-768)))
- (-14 *6
- (-1 (-112) (-2 (|:| -1403 *4) (|:| -3747 *5))
- (-2 (|:| -1403 *4) (|:| -3747 *5))))
- (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-847))
- (-4 *7 (-946 *3 *5 (-861 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1046))
- (-4 *3 (-723))))
- ((*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
- (-14 *4 (-768)) (-4 *5 (-172)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-744)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
- (-4 *4 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-685 (-949 *4))) (-5 *1 (-1025 *4))
- (-4 *4 (-1046)))))
+ (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-845) (-363))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-641 (-949 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-949 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-641 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-949 *4)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172))
- (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-918)) (-5 *1 (-442 *2))
- (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-918)) (-5 *4 (-768)) (-5 *1 (-442 *2))
- (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *1 (-442 *2))
- (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768))
- (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768))
- (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5))
- (-5 *1 (-444 *5 *2)) (-4 *5 (-1046)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-946 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-564)) (-5 *1 (-204)))))
+(((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-786)) (-5 *5 (-564)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4))
+ (-2 (|:| -1817 *3) (|:| |gap| (-768)) (|:| -3031 (-779 *3))
+ (|:| -2550 (-779 *3))))
+ (-5 *1 (-779 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5))
- (|:| |c2| (-407 *5)) (|:| |deg| (-768))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
-(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
- ((*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))
- ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
- ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-564)))))
+ (-2 (|:| -1817 *1) (|:| |gap| (-768)) (|:| -3031 *1)
+ (|:| -2550 *1)))
+ (-4 *1 (-1060 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2
+ (-2 (|:| -1817 *1) (|:| |gap| (-768)) (|:| -3031 *1)
+ (|:| -2550 *1)))
+ (-4 *1 (-1060 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-847)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3)))
+ (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-847) (-556)))
+ (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3)))))
+(((*1 *1 *1) (-4 *1 (-545))))
(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-719)))
((*1 *1) (-4 *1 (-723)))
((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094))))
((*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6))))
+ (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6))
+ (-5 *1 (-1252 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
+ (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
+ (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-974 *3 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
(-4 *2 (-13 (-430 *3) (-1194))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-949 (-564)))))
- (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-845) (-363)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-294 (-407 (-949 (-564))))))
- (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-845) (-363)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 (-294 (-949 *4))))
- (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-949 (-564)))))
- (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-845) (-363)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1170))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1194) (-956)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3941 (-641 *4))))
- (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2))
- (-4 *2 (-13 (-29 *6) (-1194) (-956)))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
- (|:| -3941 (-641 (-1259 *5)))))
- (-5 *1 (-663 *5)) (-5 *4 (-1259 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
- (|:| -3941 (-641 (-1259 *5)))))
- (-5 *1 (-663 *5)) (-5 *4 (-1259 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *5)) (-4 *5 (-363))
- (-5 *2
- (-641
- (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
- (|:| -3941 (-641 (-1259 *5))))))
- (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363))
- (-5 *2
- (-641
- (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
- (|:| -3941 (-641 (-1259 *5))))))
- (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412))))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4))))
- (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412))))
- (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4412))))
- (-5 *2
- (-641
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3941 (-641 *7)))))
- (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7))
- (-4 *3 (-683 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170))
- (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-769 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-956)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170))
- (-4 *7 (-13 (-29 *6) (-1194) (-956)))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1259 *7)) (|:| -3941 (-641 (-1259 *7)))))
- (-5 *1 (-799 *6 *7)) (-5 *4 (-1259 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170))
- (-4 *6 (-13 (-29 *5) (-1194) (-956)))
- (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-1259 *6))) (-5 *1 (-799 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114)))
- (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956)))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1259 *7)) (|:| -3941 (-641 (-1259 *7)))))
- (-5 *1 (-799 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114)))
- (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956)))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1259 *7)) (|:| -3941 (-641 (-1259 *7)))))
- (-5 *1 (-799 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170))
- (-4 *7 (-13 (-29 *6) (-1194) (-956)))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -3941 (-641 *7))) *7 "failed"))
- (-5 *1 (-799 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1170))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -3941 (-641 *3))) *3 "failed"))
- (-5 *1 (-799 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-956)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2))
- (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-5 *1 (-799 *6 *2))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2))
- (-4 *2 (-13 (-29 *6) (-1194) (-956)))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-799 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1032)) (-5 *1 (-802))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-802))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4))
- (-5 *2 (-1032)) (-5 *1 (-802))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4))
- (-5 *2 (-1032)) (-5 *1 (-802))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379)))
- (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4))
- (-5 *2 (-1032)) (-5 *1 (-802))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379)))
- (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379)))
- (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -3941 (-641 *6))) "failed")
- *7 *6))
- (-4 *6 (-363)) (-4 *7 (-652 *6))
- (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -3941 (-685 *6))))
- (-5 *1 (-810 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1032)) (-5 *1 (-894))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-894))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152))
- (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379))
- (-5 *2 (-1032)) (-5 *1 (-894))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152))
- (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032))
- (-5 *1 (-894))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 (-379)))
- (-5 *1 (-1020)) (-5 *4 (-379))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1020))
- (-5 *4 (-379))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4))
- (-5 *3 (-316 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4))
- (-5 *3 (-294 (-316 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5))
- (-5 *3 (-294 (-316 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5))
- (-5 *3 (-316 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5))
- (-5 *3 (-641 (-294 (-316 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5))))))
- (-5 *1 (-1178 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5))
- (-5 *3 (-641 (-294 (-407 (-949 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4))))))
- (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-949 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-556))
- (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5))
- (-5 *3 (-407 (-949 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-556))
- (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5))
- (-5 *3 (-294 (-407 (-949 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4)))))
- (-5 *1 (-1178 *4)) (-5 *3 (-407 (-949 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4)))))
- (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-949 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1094))
- (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))
- (-5 *1 (-1070 *3 *4 *2))
- (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2589 *3) (-768)))
- (-14 *6
- (-1 (-112) (-2 (|:| -1403 *4) (|:| -3747 *5))
- (-2 (|:| -1403 *4) (|:| -3747 *5))))
- (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-847))
- (-4 *7 (-946 *2 *5 (-861 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1094))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-847))
- (-4 *3 (-723))))
- ((*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *3 (-789)) (-4 *4 (-847))
- (-4 *2 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4))
- (-5 *2
- (-3 (|:| |overq| (-1166 (-407 (-564))))
- (|:| |overan| (-1166 (-48))) (|:| -1966 (-112))))
- (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+ (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-556))
+ (-4 *7 (-946 *3 *5 *6))
+ (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *8) (|:| |radicand| *8)))
+ (-5 *1 (-950 *5 *6 *3 *7 *8)) (-5 *4 (-768))
+ (-4 *8
+ (-13 (-363)
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $))))))))
+(((*1 *1) (-5 *1 (-820))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564))))
+ (-4 *5 (-883 (-564)))
+ (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-567 *5 *3)) (-4 *3 (-627))
+ (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-840 *2)) (-4 *2 (-1133))
+ (-4 *2 (-13 (-27) (-1194) (-430 *5)))
+ (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564)))
+ (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))))
+ (-5 *1 (-567 *5 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))))
(((*1 *1) (-4 *1 (-23)))
((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-536)))
((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))))
-(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697))))
- ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4267 *4)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1094))
- (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))
- (-5 *1 (-1070 *3 *4 *2))
- (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-4 *6 (-238 (-2589 *3) (-768)))
- (-14 *7
- (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *6))
- (-2 (|:| -1403 *5) (|:| -3747 *6))))
- (-5 *2 (-710 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-847)) (-4 *8 (-946 *4 *6 (-861 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-723)) (-4 *2 (-847)) (-5 *1 (-732 *3 *2))
- (-4 *3 (-1046))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789))
- (-4 *4 (-847)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-847)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209))
- (-5 *2 (-112)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)))))
+ (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4))
+ (-4 *4 (-349)))))
+(((*1 *2)
+ (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1046))
+ (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-901 *4))
+ (-5 *3 (-641 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-901 *4))
+ (-5 *3 (-1096 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4))))
+ (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1032)) (-5 *1 (-750)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7))
+ (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1))
+ (-4 *1 (-1066 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3773)) (-5 *2 (-112)) (-5 *1 (-615))))
+ (-12 (-5 *3 (|[\|\|]| -3803)) (-5 *2 (-112)) (-5 *1 (-615))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3951)) (-5 *2 (-112)) (-5 *1 (-615))))
+ (-12 (-5 *3 (|[\|\|]| -3821)) (-5 *2 (-112)) (-5 *1 (-615))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2538)) (-5 *2 (-112)) (-5 *1 (-615))))
+ (-12 (-5 *3 (|[\|\|]| -2736)) (-5 *2 (-112)) (-5 *1 (-615))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2509)) (-5 *2 (-112)) (-5 *1 (-687 *4))
+ (-12 (-5 *3 (|[\|\|]| -1553)) (-5 *2 (-112)) (-5 *1 (-687 *4))
(-4 *4 (-611 (-859)))))
((*1 *2 *1 *3)
(-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-859))) (-5 *2 (-112))
@@ -1026,146 +699,6 @@
(-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175))))
((*1 *2 *1 *3)
(-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-999))))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-735)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094))
- (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094))
- (-4 *2 (-1209)) (-5 *1 (-638 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094))
- (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094))
- (-4 *2 (-1209)) (-5 *1 (-638 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6))
- (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-768)))))
-(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))))
- ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-847)) (-4 *5 (-906)) (-4 *6 (-790))
- (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-418 (-1166 *8)))
- (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-1166 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5)))
- (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-4 *2 (-1235 *5))
- (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1114))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6))
- (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
- (-4 *6 (-790)) (-5 *2 (-641 (-641 (-564))))
- (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -4006 (-1166 *6)) (|:| -3747 (-564)))))
- (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
- (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4))
- (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677))))
- ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-967))))
- ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1068))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1259 (-407 (-949 *4))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *4)))))))
- (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147)))
- (-4 *7 (-946 *4 *6 *5)) (-4 *5 (-13 (-847) (-612 (-1170))))
- (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094))
- (-5 *2 (-641 (-2 (|:| -1327 *3) (|:| -3815 (-768))))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3941 (-641 *1))))
- (-4 *1 (-367 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-453 *3 *4 *5 *6))
- (|:| -3941 (-641 (-453 *3 *4 *5 *6)))))
- (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213))
- (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
- (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1 *1) (-4 *1 (-964))))
-(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564)))
- (-5 *1 (-190)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-641 *3)) (-5 *5 (-918)) (-4 *3 (-1235 *4))
- (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-918)) (-5 *1 (-466)))))
-(((*1 *1 *1) (-4 *1 (-243)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (-4002 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209)))
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209)))))
- ((*1 *1 *1) (-4 *1 (-473)))
- ((*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6))))
- (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6))
- (-5 *1 (-1252 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4))
- (-4 *4 (-349)))))
(((*1 *2 *1 *3)
(-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046))
(-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))))
@@ -1176,555 +709,40 @@
(-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3))
(-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847))
(-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847)) (-4 *3 (-172))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-556))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1 *1) (-4 *1 (-964))))
-(((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
- (-5 *2 (-641 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
- (-5 *2 (-641 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 *3)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-723))))
- ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-641 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-5 *2 (-1150 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-847))
- (-5 *1 (-1180 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-847))
- (-5 *1 (-113 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1) (-4 *1 (-964))) ((*1 *1 *1) (-5 *1 (-1114))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1) (-5 *1 (-1058))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-946 *6 *4 *5))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
- (-5 *1 (-321 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
- (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-407 (-564)))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564)))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8))
- (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564)))
- (-4 *8 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564))))
- (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8)))
- (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *8 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-835))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1046)) (-4 *1 (-1242 *4 *3))
- (-4 *3 (-1219 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4267 *4)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209)))))
+ (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
- (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847))
- (-5 *2 (-2 (|:| -1662 *1) (|:| |gap| (-768)) (|:| -2746 *1)))
- (-4 *1 (-1060 *4 *5 *3))))
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3))))
+ (-5 *1 (-386 *3)) (-4 *3 (-1094))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-2 (|:| -1662 *1) (|:| |gap| (-768)) (|:| -2746 *1)))
- (-4 *1 (-1060 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-12
(-5 *2
- (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-786)) (-5 *5 (-564)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170)))
- (-4 *2 (-13 (-430 (-169 *5)) (-999) (-1194)))
- (-4 *5 (-13 (-556) (-847))) (-5 *1 (-598 *5 *6 *2))
- (-4 *6 (-13 (-430 *5) (-999) (-1194))))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871)))
- (-5 *4 (-641 (-918))) (-5 *5 (-641 (-263))) (-5 *1 (-468))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871)))
- (-5 *4 (-641 (-918))) (-5 *1 (-468))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468))))
- ((*1 *1 *1) (-5 *1 (-468))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
- (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-847) (-1035 *4) (-637 *4)))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-847) (-1035 *5) (-637 *5))) (-5 *5 (-564))
- (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564)))
- (-4 *7 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564)))
- (-4 *3 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-564)) (-4 *4 (-1046)) (-4 *1 (-1221 *4 *3))
- (-4 *3 (-1250 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))))
-(((*1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2 *3) (-12 (-5 *3 (-968)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-845)) (-5 *1 (-303 *3)))))
-(((*1 *1) (-5 *1 (-144)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183)))))
-(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3))
- (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
- (-5 *2 (-768)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
- (-14 *4 *2) (-4 *5 (-172))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-918)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-918))))
- ((*1 *2)
- (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
- (-5 *2 (-918))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363))
- (-5 *2 (-768)) (-5 *1 (-663 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412))))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-768))
- (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3))
- (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
- (-5 *2 (-768)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
- (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-768))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-5 *5 (-768))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6))
- (-4 *6 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-768)))
- (-4 *7 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-768)))
- (-4 *3 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363))
- (-5 *2 (-112)) (-5 *1 (-663 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412))))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-112))
- (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4))))
- (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2))
- (-4 *3 (-13 (-363) (-147))))))
-(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046))
- (-5 *2 (-641 (-641 (-641 (-768))))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *3 (-1060 *4 *5 *6))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *1))))
- (-4 *1 (-1066 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2))
- (-4 *4 (-38 (-407 (-564)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363))
- (-5 *2 (-641 (-294 (-949 *6)))) (-5 *1 (-538 *5 *6 *7))
- (-4 *5 (-452)) (-4 *7 (-13 (-363) (-845))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1032)) (-5 *1 (-744)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330))
- (-5 *1 (-332)))))
+ (-2 (|:| |lm| (-816 *3)) (|:| |mm| (-816 *3)) (|:| |rm| (-816 *3))))
+ (-5 *1 (-816 *3)) (-4 *3 (-847)))))
(((*1 *2 *3 *3 *4)
(-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
(-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
- (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))))
- (-5 *2 (-2 (|:| -2166 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4))
- (-5 *1 (-1284 *4)) (-4 *4 (-1209))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564))
- (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5))
- (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
- (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-112))
- (-5 *1 (-908 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
- (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4)))
- (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-909 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564)))
- (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $))
- (-15 -1517 ((-1119 *3 (-610 $)) $))
- (-15 -1765 ($ (-1119 *3 (-610 $))))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1035 *4)) (-4 *3 (-13 (-847) (-556))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))
- (-5 *2 (-1032)) (-5 *1 (-743)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452))
- (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7))
- (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5))
- (-4 *5 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536))))
- (-5 *2 (-52)) (-5 *1 (-317 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536))))
- (-5 *2 (-52)) (-5 *1 (-317 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8))
- (-5 *6 (-641 *8)) (-4 *8 (-430 *7))
- (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7))
- (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536))))
- (-5 *2 (-52)) (-5 *1 (-317 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8)))
- (-4 *8 (-430 *7)) (-5 *5 (-294 *8))
- (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6))
- (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
- (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
- (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
- (-5 *1 (-317 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3))
- (-4 *3 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536))))
- (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-235 *3))
- (-4 *3 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-434))
- (-5 *2
- (-641
- (-3 (|:| -4363 (-1170))
- (|:| -2792 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))))
- (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046))
- (-4 *5 (-847)) (-5 *2 (-949 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046))
- (-4 *5 (-847)) (-5 *2 (-949 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046))
- (-5 *2 (-949 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046))
- (-5 *2 (-949 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-294 (-830 *3)))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-830 *3)) (-5 *1 (-634 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-830 (-949 *5)))) (-4 *5 (-452))
- (-5 *2 (-830 (-407 (-949 *5)))) (-5 *1 (-635 *5))
- (-5 *3 (-407 (-949 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5)))
- (-4 *5 (-452)) (-5 *2 (-830 *3)) (-5 *1 (-635 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218))))
- ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439))))
- ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-835))))
- ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27))
- (-5 *2 (-641 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170)))
- (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545))))
+ ((*1 *1 *1) (-4 *1 (-1055))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1)))
- (-4 *1 (-1066 *4 *5 *6 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-768)) (-5 *1 (-589)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307))
- (-5 *1 (-179 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 *8))
- (-5 *4
- (-641
- (-2 (|:| -3941 (-685 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-685 *7)))))
- (-5 *5 (-768)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349))
- (-5 *2
- (-2 (|:| -3941 (-685 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-685 *7))))
- (-5 *1 (-498 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-1166 *6))
- (-5 *1 (-321 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105)))))
+ (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1094)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3))
- (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2))
- (-4 *2 (-683 *3 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-918)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3))
- (-4 *3 (-363)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+ (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3))
+ (-4 *3 (-964)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-835))) (-5 *1 (-140)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))
+ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))
(-5 *2 (-641 (-1170))) (-5 *1 (-267))))
((*1 *2 *3)
(-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790))
@@ -1746,7 +764,7 @@
(-5 *1 (-947 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $)))))))
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $)))))))
((*1 *2 *1)
(-12 (-5 *2 (-1096 (-1170))) (-5 *1 (-963 *3)) (-4 *3 (-964))))
((*1 *2 *1)
@@ -1758,63 +776,47 @@
((*1 *2 *3)
(-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170)))
(-5 *1 (-1040 *4)))))
-(((*1 *1) (-5 *1 (-1076))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *1 *1) (-5 *1 (-379)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
- (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-752)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *4))
+ (-4 *4 (-1209)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1114))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-172))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-685 *2)) (-5 *4 (-564))
- (-4 *2 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
- (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
- (-5 *1 (-176 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-786)) (-5 *5 (-564)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-192)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4))
- (-5 *1 (-811 *4 *3)) (-4 *3 (-652 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1046))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859))))
- ((*1 *1 *1) (-5 *1 (-859)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-940 (-225))) (-5 *2 (-225)) (-5 *1 (-1205))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))))
+ (-12 (-5 *3 (-407 (-564))) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *9) (|:| |radicand| *9)))
+ (-5 *1 (-950 *5 *6 *7 *8 *9)) (-5 *4 (-768))
+ (-4 *9
+ (-13 (-363)
+ (-10 -8 (-15 -3714 ($ *8)) (-15 -1655 (*8 $)) (-15 -1668 (*8 $))))))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *2)
(-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2))
(-4 *2 (-13 (-430 *5) (-27) (-1194)))
@@ -1831,47 +833,87 @@
(-4 *6 (-1046))
(-4 *2
(-13 (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $)))))
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $)))))
(-5 *1 (-947 *5 *4 *6 *7 *2)) (-4 *7 (-946 *6 *5 *4))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-407 (-1166 (-407 (-949 *5))))) (-5 *4 (-1170))
(-5 *2 (-407 (-949 *5))) (-5 *1 (-1040 *5)) (-4 *5 (-556)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
-(((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-59 *3)) (-4 *3 (-1209))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-142 *3 *4 *2))
- (-4 *2 (-373 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-4 *2 (-373 *4))
- (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556))
- (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2)))
+ (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5))
+ (-4 *3 (-342 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213))
+ (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-300)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *1) (-4 *1 (-964))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847)) (-4 *3 (-172))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-556))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4))
+ (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-918))
+ (-14 *4 (-918))))
+ ((*1 *2)
+ (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-1166 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-918)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-918)) (-4 *3 (-363))
+ (-14 *4 (-990 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
+ ((*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1) (|partial| -4 *1 (-719)))
+ ((*1 *1 *1) (|partial| -4 *1 (-723)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363)))
+ (-4 *2 (-1235 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-1228 *3 *4 *2))
- (-4 *2 (-1235 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8))
- (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147)))
- (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-112))
- (-5 *1 (-921 *5 *6 *7 *8)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1046))
- (-5 *2 (-685 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564))
- (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1014 *6)))))
+ (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-847)))
+ (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))))
+(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))))
(((*1 *1 *2 *3)
(-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))))
((*1 *1 *2 *3)
@@ -1879,10 +921,10 @@
(-4 *2 (-363)) (-14 *5 (-990 *4 *2))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-710 *5 *6 *7)) (-4 *5 (-847))
- (-4 *6 (-238 (-2589 *4) (-768)))
+ (-4 *6 (-238 (-2779 *4) (-768)))
(-14 *7
- (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *6))
- (-2 (|:| -1403 *5) (|:| -3747 *6))))
+ (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *6))
+ (-2 (|:| -3338 *5) (|:| -3078 *6))))
(-14 *4 (-641 (-1170))) (-4 *2 (-172))
(-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-946 *2 *6 (-861 *4)))))
((*1 *1 *2 *3)
@@ -1912,560 +954,414 @@
((*1 *1 *1 *2 *3)
(-12 (-4 *1 (-970 *4 *3 *2)) (-4 *4 (-1046)) (-4 *3 (-789))
(-4 *2 (-847)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-768) (-768))) (-5 *1 (-386 *3)) (-4 *3 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871))
- (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-468))
- (-5 *1 (-1263))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263)))
- (-5 *2 (-468)) (-5 *1 (-1263)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225)))
- (-5 *1 (-693)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768))
- (-14 *4 (-768)) (-4 *5 (-172)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-721 *5 *7))
- (-5 *2 (-2 (|:| -1447 (-685 *6)) (|:| |vec| (-1259 *5))))
- (-5 *1 (-808 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3)))
+ (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2))
+ (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6))
+ (-4 *6 (-342 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3)))
+ (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
+ (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363))
+ (-4 *1 (-335 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *1) (-4 *1 (-964))))
+(((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
(-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-889 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094))
- (-4 *5 (-1209)) (-5 *1 (-887 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-889 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094))
- (-4 *5 (-1209)) (-5 *1 (-887 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-889 *5)) (-5 *3 (-641 (-1170)))
- (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209))
- (-5 *1 (-887 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-847))
- (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-847))
- (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209))
- (-5 *2 (-316 (-564))) (-5 *1 (-935 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209))
- (-5 *2 (-316 (-564))) (-5 *1 (-935 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6)))
- (-4 *6 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-4 *4 (-1094))
- (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4))))
- (-5 *1 (-1070 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378)))) (-5 *3 (-225))
- (-5 *2 (-1032)) (-5 *1 (-745)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6))
- (-4 *6 (-13 (-27) (-430 *5)))
- (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7)))
- (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3))
- (-4 *3 (-342 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3))))
- (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-768))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-918))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
- (-4 *4 (-172))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-157))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194)))
- (-5 *1 (-227 *3))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))
- ((*1 *1 *2 *1)
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-4 *6 (-238 (-2589 *3) (-768)))
- (-14 *7
- (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *6))
- (-2 (|:| -1403 *5) (|:| -3747 *6))))
- (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-847))
- (-4 *2 (-946 *4 *6 (-861 *3)))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-536)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1053))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-641 (-1170)))
+ (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1020)) (-5 *5 (-379))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
+ (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4)))))
+ (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-680 *5 *6 *7))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1046)) (-4 *2 (-373 *3))
- (-4 *4 (-373 *3))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
- (-4 *2 (-373 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-717)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
- ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556))
- (-5 *1 (-966 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1053))))
- ((*1 *1 *1 *1) (-4 *1 (-1106)))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *2 (-238 *3 *4))
- (-4 *5 (-238 *3 *4))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4))
- (-4 *2 (-238 *3 *4))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2))
- (-4 *2 (-946 *3 (-531 *4) *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-940 (-225))) (-5 *3 (-225)) (-5 *1 (-1205))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))))
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-949 *4)))
+ (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817))
+ (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-797))
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-1032)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-4 *1 (-1235 *4)) (-4 *4 (-1046))
- (-5 *2 (-1259 *4)))))
+ (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009))))
+ ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1))
+ (-4 *1 (-1063 *4 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1264))
- (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1046))
- (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-849 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046))
- (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-850 *5 *3))
- (-4 *3 (-849 *5)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032))
- (-5 *1 (-753)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-756)))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1) (-4 *1 (-964))) ((*1 *1 *1) (-5 *1 (-1114))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
+ (-5 *2 (-641 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
+ (-5 *2 (-641 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 *3)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-723))))
+ ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-641 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-5 *2 (-1150 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-491)) (-5 *4 (-951)) (-5 *2 (-687 (-533)))
+ (-5 *1 (-533))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-951)) (-4 *3 (-1094)) (-5 *2 (-687 *1))
+ (-4 *1 (-764 *3)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *1 *1) (-5 *1 (-1058))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27))
+ (-5 *2 (-641 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-112))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
+ (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564))))
+ (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4))))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-112)) (-5 *1 (-1198 *4 *3))
+ (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3))
(-4 *3 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-974 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363))
- (-5 *1 (-663 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-363))
- (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4412))))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412))))
- (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363))
- (-5 *1 (-811 *2 *3)) (-4 *3 (-652 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556))
- (-4 *3 (-946 *7 *5 *6))
- (-5 *2
- (-2 (|:| -3747 (-768)) (|:| -1662 *3) (|:| |radicand| (-641 *3))))
- (-5 *1 (-950 *5 *6 *7 *3 *8)) (-5 *4 (-768))
- (-4 *8
- (-13 (-363)
- (-10 -8 (-15 -1765 ($ *3)) (-15 -1507 (*3 $)) (-15 -1517 (*3 $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564)))
- (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-918))
- (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-974 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6))
- (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *1 (-974 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-641 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
+ (-5 *2 (-641 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))
+ ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-847))
+ (-5 *1 (-1180 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))))
+(((*1 *2) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
+(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-641 (-768)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
+ (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4))))
+ (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
+ (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *2 (-1032)) (-5 *1 (-751)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
+ (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
+ (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-1272 *4 *5 *6 *7)))
- (-5 *1 (-1272 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556))
- (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-641 (-1272 *6 *7 *8 *9)))
- (-5 *1 (-1272 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-753)))))
+ (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112))
+ (-5 *1 (-1286 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-968))
- (-5 *3 (-641 (-564))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-874 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-876 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-879 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11))
- (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-768)))
- (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-847))
- (-4 *8 (-307)) (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-790))
- (-5 *1 (-704 *9 *10 *8 *11)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094))
- (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))
- (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))
- (-5 *1 (-1071 *3 *4 *5)))))
+ (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7))
+ (-4 *7 (-946 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-418 *3)) (-4 *3 (-556))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-2 (|:| -4139 *4) (|:| -3475 (-564)))))
+ (-4 *4 (-1235 (-564))) (-5 *2 (-768)) (-5 *1 (-442 *4)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1138))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
+(((*1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 *4))))
+ (-12 (-5 *2 (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 *4))))
(-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))))
((*1 *2 *1)
(-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))
(-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112))
- (-5 *2 (-1032)) (-5 *1 (-750)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6))
- (-4 *6 (-342 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918))))
- ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215)))
- ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)))))
-(((*1 *2 *1 *1)
- (-12
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564))
+ (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-768))) (-5 *6 (-768))
(-5 *2
- (-2 (|:| |polnum| (-779 *3)) (|:| |polden| *3) (|:| -2213 (-768))))
- (-5 *1 (-779 *3)) (-4 *3 (-1046))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2213 (-768))))
- (-4 *1 (-1060 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))))
+ (-2 (|:| |contp| (-564))
+ (|:| -3020 (-641 (-2 (|:| |irr| *3) (|:| -2534 (-564)))))))
+ (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-702 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
- (-5 *2 (-1166 (-949 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
+ (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-847))
+ (-5 *1 (-113 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1166 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3))
+ (-4 *3 (-1235 (-407 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)))))
+(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-828)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
((*1 *1 *1) (-5 *1 (-859)))
((*1 *1 *2)
(-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3))))
((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))))
+ (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
+(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3))
+ (-4 *3 (-13 (-404) (-1194)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-744)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-748)))))
(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094))
+ (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906))
+ (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-946 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906))
+ (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1235 *2)))))
+(((*1 *2)
(-12
- (-5 *3
- (-641
- (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8))
- (|:| |wcond| (-641 (-949 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-949 *5))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *5))))))))))
- (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6))
- (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564))
- (-5 *1 (-921 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1032)) (-5 *1 (-750)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))))
-(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918))))
- ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215)))
- ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307))
- (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209))
- (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-768))
- (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5))
- (-5 *1 (-239 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209))
- (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094))
- (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209))
- (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-955 *6)) (-4 *6 (-1209))
- (-4 *5 (-1209)) (-5 *2 (-955 *5)) (-5 *1 (-954 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209))
- (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209))
- (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5)))))
-(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-612 (-889 *3))) (-4 *3 (-883 *3))
- (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-612 (-889 *3))) (-4 *2 (-883 *3))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *5 *6))
- (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *1 (-449 *4 *5 *6 *7)))))
+ (-5 *2
+ (-1259 (-641 (-2 (|:| -3387 (-907 *3)) (|:| -3338 (-1114))))))
+ (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3387 *3) (|:| -3338 (-1114))))))
+ (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3387 *3) (|:| -3338 (-1114))))))
+ (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4))))
- (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
+ (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-918))
+ (-4 *2 (-13 (-1046) (-10 -7 (-6 (-4414 "*")))))
+ (-5 *1 (-899 *4 *2)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-373 *2)) (-4 *2 (-1209))
+ (-4 *2 (-847))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4413))
+ (-4 *1 (-373 *3)) (-4 *3 (-1209)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4))
- (-4 *4 (-1235 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046))
- (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7))
- (-4 *6 (-1235 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046))
- (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7))
- (-4 *6 (-1235 *4)))))
-(((*1 *1 *1) (-5 *1 (-225)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379))))
+ (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556))
+ (-4 *3 (-1209)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1133))))
+ (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4))
+ (-5 *1 (-1284 *4)) (-4 *4 (-1209))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564))
+ (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209)))))
+(((*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-826)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094))
- (-4 *2 (-847)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032))
- (-5 *1 (-752)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4))
- (-4 *4 (-847))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))))
+ (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
+ (-4 *5 (-238 (-2779 *3) (-768)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3338 *2) (|:| -3078 *5))
+ (-2 (|:| -3338 *2) (|:| -3078 *5))))
+ (-4 *2 (-847)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-946 *4 *5 (-861 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *6))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
+ (-5 *7 (-685 (-564)))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-750)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-575 *4 *2))
+ (-4 *2 (-13 (-1194) (-956) (-1133) (-29 *4))))))
(((*1 *1 *2)
(-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-964))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-407 *6))
- (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363))
- (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5)))
- (-5 *1 (-865 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363))
- (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5)))
- (-5 *1 (-865 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-822)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131))
- (-4 *3 (-789)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5))
- (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3)))
- (-5 *1 (-763 *3 *4)) (-4 *3 (-705 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1046))
- (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-849 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046))
- (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-850 *5 *3))
- (-4 *3 (-849 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225)))
- (-5 *1 (-693)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-923)))
- (-5 *1 (-318))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152))
- (-5 *2 (-1204 (-923))) (-5 *1 (-318))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564))
- (-5 *2 (-1204 (-923))) (-5 *1 (-318))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152))
- (-5 *2 (-1204 (-923))) (-5 *1 (-318)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-368))
- (-4 *3 (-1094)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-886 *5 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094))
+ (-4 *3 (-166 *6)) (-4 (-949 *6) (-883 *5))
+ (-4 *6 (-13 (-883 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-886 *4 *1)) (-5 *3 (-889 *4)) (-4 *1 (-883 *4))
+ (-4 *4 (-1094))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-886 *5 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094))
+ (-4 *6 (-13 (-1094) (-1035 *3))) (-4 *3 (-883 *5))
+ (-5 *1 (-928 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094))
+ (-4 *3 (-13 (-430 *6) (-612 *4) (-883 *5) (-1035 (-610 $))))
+ (-5 *4 (-889 *5)) (-4 *6 (-13 (-556) (-847) (-883 *5)))
+ (-5 *1 (-929 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-886 (-564) *3)) (-5 *4 (-889 (-564))) (-4 *3 (-545))
+ (-5 *1 (-930 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-886 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094))
+ (-4 *6 (-13 (-847) (-1035 (-610 $)) (-612 *4) (-883 *5)))
+ (-5 *4 (-889 *5)) (-5 *1 (-931 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-882 *5 *6 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094))
+ (-4 *6 (-883 *5)) (-4 *3 (-662 *6)) (-5 *1 (-932 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-886 *6 *3) *8 (-889 *6) (-886 *6 *3)))
+ (-4 *8 (-847)) (-5 *2 (-886 *6 *3)) (-5 *4 (-889 *6))
+ (-4 *6 (-1094)) (-4 *3 (-13 (-946 *9 *7 *8) (-612 *4)))
+ (-4 *7 (-790)) (-4 *9 (-13 (-1046) (-847) (-883 *6)))
+ (-5 *1 (-933 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094))
+ (-4 *3 (-13 (-946 *8 *6 *7) (-612 *4))) (-5 *4 (-889 *5))
+ (-4 *7 (-883 *5)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *8 (-13 (-1046) (-847) (-883 *5)))
+ (-5 *1 (-933 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-989 *6))
+ (-4 *6 (-13 (-556) (-883 *5) (-612 *4))) (-5 *4 (-889 *5))
+ (-5 *1 (-936 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-886 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-889 *5))
+ (-4 *5 (-1094)) (-5 *1 (-937 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-641 (-889 *7))) (-5 *5 (-1 *9 (-641 *9)))
+ (-5 *6 (-1 (-886 *7 *9) *9 (-889 *7) (-886 *7 *9))) (-4 *7 (-1094))
+ (-4 *9 (-13 (-1046) (-612 (-889 *7)) (-1035 *8)))
+ (-5 *2 (-886 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1046) (-847)))
+ (-5 *1 (-938 *7 *8 *9)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))))
+ (-12 (-4 *3 (-1035 (-564))) (-4 *3 (-13 (-847) (-556)))
+ (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1046)) (-4 *1 (-302))))
+ ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3))))
+ ((*1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363)))
+ (-4 *2 (-1235 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
+ (-4 *2 (-430 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))
+ ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))))
+(((*1 *1 *1) (-4 *1 (-1138))))
+(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))))
(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4))
@@ -2473,34 +1369,42 @@
((*1 *2 *2)
(-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
(-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-768)) (-4 *6 (-363)) (-5 *4 (-1203 *6))
- (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6))
- (-5 *5 (-1150 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260))))
- ((*1 *1 *1) (-5 *1 (-1260))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094))
- (-4 *3 (-1209)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 *2)))
- (-5 *2 (-889 *3)) (-5 *1 (-1070 *3 *4 *5))
- (-4 *5 (-13 (-430 *4) (-883 *3) (-612 *2))))))
+ (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1094)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847))
+ (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-946 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1)))
+ (-4 *1 (-1235 *3)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))))
-(((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4))
+ (-4 *4 (-13 (-430 *7) (-27) (-1194)))
+ (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4))))
+ (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4)))
+ (-4 *4 (-13 (-430 *7) (-27) (-1194)))
+ (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4))))
+ (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-768)) (-5 *1 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5))
+ (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4))
@@ -2510,88 +1414,51 @@
((*1 *2 *2)
(-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
(-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046))))
- ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
- (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1244 *4 *5 *6))
- (|:| |%expon| (-319 *4 *5 *6))
- (|:| |%expTerms|
- (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4))))))
- (|:| |%type| (-1152))))
- (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3)))
- (-14 *5 (-1170)) (-14 *6 *4))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-847)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4))
- (-5 *3 (-641 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))))
-(((*1 *1 *1) (-4 *1 (-627)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999) (-1194))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-708 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-564))) (-5 *4 (-902 (-564)))
- (-5 *2 (-685 (-564))) (-5 *1 (-589))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7))
+ (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5))
+ (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-652 *3)) (-4 *3 (-1046)) (-4 *3 (-363))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-768)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
+ (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7))
+ (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1))
+ (-4 *1 (-1066 *4 *5 *6 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))))
+(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-144)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094))
+ (-5 *1 (-113 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564))))
- (-5 *1 (-589))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-902 (-564))))
- (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1094)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *1) (-5 *1 (-437))))
(((*1 *1 *1)
(-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
(-14 *3 (-641 (-1170))) (-4 *4 (-387))))
@@ -2601,65 +1468,55 @@
((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1009))))
((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-918))))
((*1 *1 *1) (-4 *1 (-1009))))
+(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-906)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-744)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4412)) (-4 *1 (-151 *3))
+ (-4 *3 (-1209))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556))
+ (-4 *5 (-790)) (-4 *3 (-847)) (-4 *2 (-1060 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-5 *1 (-1206 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
- (-4 *4 (-1235 *3))
- (-5 *2
- (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3))
- (-5 *2
- (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-5 *1 (-765 *4 *5)) (-4 *5 (-409 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3))
- (-5 *2
- (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-5 *1 (-982 *4 *3 *5 *6)) (-4 *6 (-721 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3))
- (-5 *2
- (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112))
+ (-5 *1 (-1210 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5))
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4))
- (-14 *3 (-918)) (-4 *4 (-1046))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-349)) (-4 *2 (-1046)) (-5 *1 (-709 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
- (-4 *4 (-172)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4))))
+ (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046))
+ (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (|has| *1 (-6 -4413)) (-4 *1 (-1247 *3))
+ (-4 *3 (-1209)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3))
(-4 *3 (-1235 (-48)))))
@@ -2708,8 +1565,8 @@
(-12
(-4 *4
(-13 (-847)
- (-10 -8 (-15 -2127 ((-1170) $))
- (-15 -3657 ((-3 $ "failed") (-1170))))))
+ (-10 -8 (-15 -2374 ((-1170) $))
+ (-15 -3832 ((-3 $ "failed") (-1170))))))
(-4 *5 (-790)) (-4 *7 (-556)) (-5 *2 (-418 *3))
(-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556))
(-4 *3 (-946 *7 *5 *4))))
@@ -2758,13 +1615,13 @@
(-12 (-4 *4 (-790))
(-4 *5
(-13 (-847)
- (-10 -8 (-15 -2127 ((-1170) $))
- (-15 -3657 ((-3 $ "failed") (-1170))))))
+ (-10 -8 (-15 -2374 ((-1170) $))
+ (-15 -3832 ((-3 $ "failed") (-1170))))))
(-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-727 *4 *5 *6 *3))
(-4 *3 (-946 (-949 *6) *4 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-790))
- (-4 *5 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))) (-4 *6 (-556))
+ (-4 *5 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))) (-4 *6 (-556))
(-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3))
(-4 *3 (-946 (-407 (-949 *6)) *4 *5))))
((*1 *2 *3)
@@ -2800,70 +1657,44 @@
((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213))))
((*1 *2 *3)
(-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1032)) (-5 *1 (-747)))))
-(((*1 *2)
- (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4))
- (-4 *4 (-1235 *3)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
- (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112))
- (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3))
- (-5 *1 (-739 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1235 (-169 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1235 (-169 *2))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1032)) (-5 *1 (-744)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 (-940 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1046))
- (-5 *2 (-768)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *1 *1) (-4 *1 (-35)))
+ (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7))
+ (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1170))
+ (-4 *5 (-13 (-556) (-1035 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| -2537 (-407 (-949 *5))) (|:| |coeff| (-407 (-949 *5)))))
+ (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5))
+ (-5 *1 (-804 *5 *2 *3 *6))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564)))))
+ (-4 *3 (-652 *2)) (-4 *6 (-652 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5))
+ (-5 *1 (-804 *5 *2 *3 *6))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2))
+ (-4 *6 (-652 (-407 *2))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-741 *3)) (-4 *3 (-172)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-748)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046))
+ (-14 *4 (-641 (-1170)))))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
(-4 *2 (-13 (-430 *3) (-999)))))
@@ -2873,181 +1704,267 @@
((*1 *2 *2)
(-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
(-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1) (-4 *1 (-284)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5))
+ (-14 *5 (-918))))
((*1 *2 *2)
(-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
(-5 *1 (-1155 *3))))
((*1 *2 *2)
(-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262))))
- ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-1169)))
- ((*1 *1 *2)
+ (-5 *1 (-1156 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564)))))
+ (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4))
+ (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-768))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-918))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
+ (-4 *4 (-172))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-157))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194)))
+ (-5 *1 (-227 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
+ (-4 *6 (-238 (-2779 *3) (-768)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *6))
+ (-2 (|:| -3338 *5) (|:| -3078 *6))))
+ (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-847))
+ (-4 *2 (-946 *4 *6 (-861 *3)))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-536)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1053))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094))
+ (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-680 *5 *6 *7))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1046)) (-4 *2 (-373 *3))
+ (-4 *4 (-373 *3))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
+ (-4 *2 (-373 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-717)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556))
+ (-5 *1 (-966 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1053))))
+ ((*1 *1 *1 *1) (-4 *1 (-1106)))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *2 (-238 *3 *4))
+ (-4 *5 (-238 *3 *4))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4))
+ (-4 *2 (-238 *3 *4))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2))
+ (-4 *2 (-946 *3 (-531 *4) *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-940 (-225))) (-5 *3 (-225)) (-5 *1 (-1205))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-685 (-407 (-949 (-564)))))
+ (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))))
+(((*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-786)) (-5 *5 (-564)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-556))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-556)))))
+ (-641
+ (-2
+ (|:| -1350
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -2575
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1150 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4167
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-559))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209))
+ (-5 *2 (-641 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))))
+(((*1 *1) (-5 *1 (-820))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363))
+ (-4 *7 (-1235 *6))
+ (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
+ (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215))))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-911 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-418 (-949 *6))) (-5 *5 (-1170)) (-5 *3 (-949 *6))
- (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-752)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *5 (-368))
+ (-5 *2 (-768)))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-918)) (-4 *6 (-13 (-556) (-847)))
+ (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6))
+ (-4 *5 (-1046))))
+ ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))
((*1 *2 *3)
- (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3))
- (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5))))
+ (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194)))
+ (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
+ (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307))
- (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 *7)))
- (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
+ (-12 (-5 *3 (-585 (-407 (-949 *4))))
+ (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
+ (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-418 *1)) (-4 *1 (-946 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-452)) (-5 *2 (-418 *3))
- (-5 *1 (-976 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452))
- (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7))))
- (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3))
- (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2527 ($ $ $)))))))
+ (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1143 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
- (-14 *5 (-641 (-1170)))
- (-5 *2
- (-641 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6)))))
- (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-887 *4 *5)) (-4 *5 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
+ (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845))
+ (-4 *2 (-1143 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194)))))
((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363)))
- (-4 *3 (-1235 *4)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *1 *1) (-5 *1 (-1058))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046))
- (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *2
- (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))
- (-5 *4 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-407 (-564)))
- (-5 *2 (-641 (-2 (|:| -3538 *5) (|:| -3549 *5)))) (-5 *1 (-1017 *3))
- (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -3538 *5) (|:| -3549 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))
- (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))
- (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564))))
- (-5 *4 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-407 (-564)))
- (-5 *2 (-641 (-2 (|:| -3538 *4) (|:| -3549 *4)))) (-5 *1 (-1018 *3))
- (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-407 (-564)))
- (-5 *2 (-641 (-2 (|:| -3538 *5) (|:| -3549 *5)))) (-5 *1 (-1018 *3))
- (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -3538 *5) (|:| -3549 *5))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9))
- (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-4 *9 (-1060 *6 *7 *8))
- (-5 *2
- (-641
- (-2 (|:| -2076 (-641 *9)) (|:| -3853 *10) (|:| |ineq| (-641 *9)))))
- (-5 *1 (-985 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9))
- (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-4 *9 (-1060 *6 *7 *8))
- (-5 *2
- (-641
- (-2 (|:| -2076 (-641 *9)) (|:| -3853 *10) (|:| |ineq| (-641 *9)))))
- (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-786)) (-5 *5 (-564)))))
+ (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-1046)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *1 *1) (-5 *1 (-112))))
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1170))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1194) (-956)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -4339 (-641 *4))))
+ (-5 *1 (-798 *6 *4 *3)) (-4 *3 (-652 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363))
+ (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)))))
+ (-5 *1 (-975 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *6)))))
(((*1 *2 *1 *3)
(-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847))
(-4 *4 (-556)) (-5 *2 (-407 (-1166 *1)))))
@@ -3071,258 +1988,145 @@
(-5 *1 (-947 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $)))))))
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $)))))))
((*1 *2 *3 *4 *2)
(-12 (-5 *2 (-1166 *3))
(-4 *3
(-13 (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $)))))
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $)) (-15 -1668 (*7 $)))))
(-4 *7 (-946 *6 *5 *4)) (-4 *5 (-790)) (-4 *4 (-847))
(-4 *6 (-1046)) (-5 *1 (-947 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1170)) (-4 *5 (-556))
(-5 *2 (-407 (-1166 (-407 (-949 *5))))) (-5 *1 (-1040 *5))
(-5 *3 (-407 (-949 *5))))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-892))
- (-5 *3
- (-2 (|:| |pde| (-641 (-316 (-225))))
- (|:| |constraints|
- (-641
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-768)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
- (|:| |tol| (-225))))
- (-5 *2 (-1032)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-861 *4))
- (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564)))
- (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $))
- (-15 -1517 ((-1119 *3 (-610 $)) $))
- (-15 -1765 ($ (-1119 *3 (-610 $))))))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046))
- (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-871))))
- ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3))
- (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-1058))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-768)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-847))
- (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8))
- (-4 *8 (-946 *3 *7 *6)))))
-(((*1 *1) (-5 *1 (-615))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1094))
- (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))
- (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5))
- (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6))
- (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6))
- (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))))
+ (-4 *2 (-13 (-430 *3) (-999))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-946 *3 *5 *4))
- (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170))))
- (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
+ (-5 *1 (-176 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3))
- (-4 *3 (-373 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3))
- (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 *4)) (-4 *4 (-989 *2)) (-4 *2 (-556))
- (-5 *1 (-689 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *1) (-5 *1 (-1058))))
-(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307))
- (-4 *3 (-556)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-4 *4 (-363)) (-5 *2 (-1259 *1))
- (-4 *1 (-329 *4))))
- ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1))
- (-4 *1 (-409 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4))
- (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6))
- (-4 *6 (-13 (-409 *4 *5) (-1035 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4))
- (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))
- (-4 *6 (-409 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *4 (-641 (-1170)))
- (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5))
- (-4 *5 (-13 (-845) (-363)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-845) (-363))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-556))
- (-4 *7 (-946 *3 *5 *6))
- (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *8) (|:| |radicand| *8)))
- (-5 *1 (-950 *5 *6 *3 *7 *8)) (-5 *4 (-768))
- (-4 *8
- (-13 (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $)) (-15 -1517 (*7 $))))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-901 *4))
- (-5 *3 (-641 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-901 *4))
- (-5 *3 (-1096 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-835))) (-5 *1 (-140)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-847)))
- (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
+ (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 *4))))
+ (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-949 (-564))) (-5 *3 (-1170))
+ (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817))
- (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
+ (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4)))
+ (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))))
+(((*1 *1)
+ (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-363)) (-5 *1 (-1022 *3 *2)) (-4 *2 (-652 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -4035 *3) (|:| -3395 (-641 *5))))
+ (-5 *1 (-1022 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-4 *5 (-238 (-2589 *3) (-768)))
- (-14 *6
- (-1 (-112) (-2 (|:| -1403 *2) (|:| -3747 *5))
- (-2 (|:| -1403 *2) (|:| -3747 *5))))
- (-4 *2 (-847)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-946 *4 *5 (-861 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))
- ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-768)) (-5 *1 (-561)))))
-(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174)))))
+(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-564)) (-14 *4 (-768)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-109)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363))
- (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)))))
- (-5 *1 (-975 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)))))
+ (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 (-641 *4))))
+ (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-172))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6))
+ (-4 *6 (-13 (-363) (-147) (-1035 *4))) (-5 *4 (-564))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -4035
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1012 *6 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-556) (-147)))
+ (-5 *2 (-2 (|:| -2578 *3) (|:| -2592 *3))) (-5 *1 (-1229 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1021 *3))
+ (-4 *3 (-13 (-845) (-363) (-1019)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
+ (-4 *3 (-1235 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363)))
+ (-4 *3 (-1235 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1235 (-407 (-564))))
+ (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))
+ (-5 *1 (-910 *3 *4)) (-4 *4 (-1235 (-407 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3))
+ (-4 *3 (-1235 (-407 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-918)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-871))
+ (-5 *2 (-1264)) (-5 *1 (-1260)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4412)) (-4 *1 (-235 *3))
+ (-4 *3 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4412)) (-4 *1 (-235 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094))
+ (-5 *1 (-734 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-968)))))
+(((*1 *1 *1 *1) (-5 *1 (-129)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918))))
+ ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215)))
+ ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046))
+ (-5 *1 (-1154 *3)))))
(((*1 *2 *3)
(-12 (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379)))))
((*1 *2 *3 *4)
@@ -3371,1747 +2175,158 @@
(-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556))
(-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
(-5 *1 (-782 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-1022 *3 *2)) (-4 *2 (-652 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -2076 *3) (|:| -3351 (-641 *5))))
- (-5 *1 (-1022 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6))
- (-4 *6 (-13 (-363) (-147) (-1035 *4))) (-5 *4 (-564))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -2076
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1012 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (|has| *1 (-6 -4402)) (-4 *1 (-404))
- (-5 *2 (-918)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
- (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
- (-5 *4 (-316 (-379))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
- (-5 *4 (-316 (-564))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379)))))
- (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379)))))
- (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
- (-5 *4 (-316 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
- (-5 *4 (-316 (-695))) (-5 *1 (-330))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
- (-5 *4 (-316 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330))))
- ((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))
- (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1017 *4))
- (-4 *4 (-1235 (-564))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2)))
- (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3))
- (-4 *3 (-342 *5 *2 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-999))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2))
- (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4411) (-6 -4412))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2))
- (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4411) (-6 -4412)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-564))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-776 *4))
- (-4 *4 (-13 (-363) (-845))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-754)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-418 *4)) (-4 *4 (-556)))))
-(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-825) (-847) (-1046)))
- (-5 *2 (-1152)) (-5 *1 (-823 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 *5)) (-5 *4 (-112))
- (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152))
- (-5 *1 (-823 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-819)) (-5 *4 (-316 *5))
- (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264))
- (-5 *1 (-823 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-819)) (-5 *4 (-316 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264))
- (-5 *1 (-823 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-1152))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-825)) (-5 *3 (-112)) (-5 *2 (-1152))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *2 (-1264))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1264)))))
-(((*1 *1 *1 *1) (-4 *1 (-964))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-1 (-225) (-225) (-225) (-225)))
- (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *1 (-693)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-868 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-14 *2 (-564))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-869 *3 *4))
- (-4 *4 (-866 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-564)) (-5 *1 (-869 *2 *3)) (-4 *3 (-866 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-1250 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1250 *2)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2))
- (-4 *2 (-652 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *1 *1) (-4 *1 (-493)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3549 *7) (|:| |sol?| (-112)))
- (-564) *7))
- (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7))
- (-5 *3 (-407 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-574 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2))
- (-4 *2 (-652 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1046))
- (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1)))
- (-4 *1 (-1066 *4 *5 *6 *3)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -4006 *4) (|:| -3344 (-564)))))
- (-4 *4 (-1235 (-564))) (-5 *2 (-734 (-768))) (-5 *1 (-442 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1046))
- (-5 *2 (-734 (-768))) (-5 *1 (-444 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -4000 (-768)) (|:| |period| (-768))))
- (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-768)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-877)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564)))))
- (-4 *3 (-1235 *4)) (-5 *1 (-806 *4 *3 *2 *5)) (-4 *2 (-652 *3))
- (-4 *5 (-652 (-407 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-407 *5))
- (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4))
- (-5 *1 (-806 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564))))
- (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *1 (-1120 *4 *3 *5))
- (-4 *5 (-946 *4 (-531 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4))
- (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))))
-(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170))
- (-5 *1 (-262 *2)) (-4 *2 (-1209))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52))
- (-5 *1 (-263)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))))
-(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-373 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1)
+(((*1 *1 *2 *1)
(-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))))
-(((*1 *2)
- (-12 (-14 *4 (-768)) (-4 *5 (-1209)) (-5 *2 (-134))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-172))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790))
- (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1046)) (-5 *2 (-918))))
- ((*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-594 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1046))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))
+ (-5 *2 (-1032)) (-5 *1 (-745)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3))))
+ ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-971)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-748)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-768))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5))
- (-14 *4 (-918)) (-4 *5 (-1046)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291)))
- ((*1 *1) (-5 *1 (-859)))
- ((*1 *1)
- (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790))
- (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1079)))
- ((*1 *1)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-789)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-174 *6))
+ (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2))
(-4 *3 (-13 (-1094) (-34)))))
- ((*1 *1) (-5 *1 (-1173))) ((*1 *1) (-5 *1 (-1174))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112))
- (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1032)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-5 *2 (-968)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-845)))
- (-5 *2 (-641 (-2 (|:| -2362 (-641 *3)) (|:| -1919 *5))))
- (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-363) (-845)))
- (-5 *2 (-641 (-2 (|:| -2362 (-641 *3)) (|:| -1919 *4))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-641
- (-2
- (|:| -2351
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -1327
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1361
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-559)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-612 (-1170)))
- (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *2 (-1159 (-641 (-949 *4)) (-641 (-294 (-949 *4)))))
- (-5 *1 (-504 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
- ((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183))))
- ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-407 (-564))))
- (-5 *2 (-2 (|:| -3727 (-1150 *4)) (|:| -3739 (-1150 *4))))
- (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2))
- (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4411) (-6 -4412))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2))
- (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4411) (-6 -4412)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))
- ((*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790))
- (-4 *3 (-847)) (-5 *2 (-768)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
- ((*1 *1 *1) (|partial| -4 *1 (-719))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *1 *1 *1) (-5 *1 (-379)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379))))
-(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4413 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
- (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2))
- (-4 *4 (-683 *2 *5 *6)))))
-(((*1 *1) (-5 *1 (-1261))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3))
- (-4 *3 (-644 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859))))
- ((*1 *1 *1) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270)))))
+(((*1 *1 *1 *1) (-5 *1 (-129)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918))))
+ ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215)))
+ ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-768)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
- (-5 *2 (-641 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-734 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-862)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-940 (-225)) (-225) (-225)))
- (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
- (-4 *3 (-1094)) (-5 *2 (-768))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4))
- (-4 *4 (-1209)) (-5 *2 (-768)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-845)) (-4 *5 (-363))
- (-5 *2 (-768)) (-5 *1 (-942 *5 *6)) (-4 *6 (-1235 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-267)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1170)) (-5 *6 (-112))
- (-4 *7 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-4 *3 (-13 (-1194) (-956) (-29 *7)))
+ (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452))
(-5 *2
- (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *7 *3)) (-5 *5 (-840 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (|has| *1 (-6 -4402)) (-4 *1 (-404))
- (-5 *2 (-918)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564))
- (-5 *2 (-685 *6)) (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1046))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4))
- (-4 *4 (-363)) (-4 *4 (-1046))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5))
- (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1046)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1046)) (-5 *1 (-711 *2 *4))
- (-4 *4 (-644 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-361 (-114))) (-5 *1 (-833 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-886 *4 *5)) (-5 *3 (-886 *4 *6)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-882 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -2362 (-641 (-2 (|:| |irr| *10) (|:| -1490 (-564)))))))
- (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-847)) (-4 *3 (-307))
- (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-790))
- (-5 *2
- (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-641 (-1166 *3)))))
- (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3))))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4412)) (-4 *4 (-363)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3))
- (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4412)) (-4 *4 (-556)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *8 (-373 *7))
- (-4 *9 (-373 *7)) (-5 *2 (-641 *6))
- (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6))
- (-4 *10 (-683 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3))
- (-4 *3 (-683 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
- (-5 *2 (-641 *7)))))
+ (-2 (|:| |dpolys| (-641 (-247 *5 *6)))
+ (|:| |coords| (-641 (-564)))))
+ (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-840 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (-840 *3)
- (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-840 *3) "failed")))
- "failed"))
- (-5 *1 (-634 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-840 *3)) (-5 *1 (-634 *6 *3))))
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *10))
+ (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8))
+ (-4 *10 (-1103 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-840 (-949 *5)))) (-4 *5 (-452))
- (-5 *2
- (-3 (-840 (-407 (-949 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-840 (-407 (-949 *5))) "failed")))
- "failed"))
- (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5)))))
+ (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6)))
+ (-5 *1 (-626 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5)))
- (-4 *5 (-452))
- (-5 *2
- (-3 (-840 *3)
- (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-840 *3) "failed")))
- "failed"))
- (-5 *1 (-635 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-294 (-407 (-949 *6)))) (-5 *5 (-1152))
- (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-840 *3))
- (-5 *1 (-635 *6)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225)))
- (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-751)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-768)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2))
- (-4 *2 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112))
- (-5 *2 (-1032)) (-5 *1 (-742)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263)))
- (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4267 *3) (|:| |coef1| (-779 *3))))
- (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170))
- (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170))
- (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3))))
- ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046))
- (-5 *2 (-641 (-641 (-641 (-940 *3))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-949 (-564)))))
+ (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-641 (-1170)))
(-5 *2
- (-641
- (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564))
- (|:| |radvect| (-641 (-685 (-316 (-564))))))))
- (-5 *1 (-1028)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-4 *7 (-1235 (-407 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -1390 *3)))
- (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))
+ (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6)))))
+ (-5 *1 (-626 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6)))
+ (-5 *1 (-1043 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |answer| (-407 *6)) (|:| -1390 (-407 *6))
- (|:| |specpart| (-407 *6)) (|:| |polypart| *6)))
- (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-705 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1046)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1032))
- (-5 *1 (-755)))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1209)) (-5 *2 (-768)) (-5 *1 (-182 *4 *3))
- (-4 *3 (-670 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
- (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3557 (-641 *3)) (|:| -2781 (-641 *3))))
- (-5 *1 (-1210 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-1066 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8))))
+ ((*1 *2 *3)
(-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-974 *4 *5 *6 *7)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1007 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))
- (-5 *2 (-1032)) (-5 *1 (-745)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-955 *3)) (-5 *1 (-1157 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -1765 ($ *7)))))
- (-4 *7 (-845))
- (-4 *8
- (-13 (-1237 *3 *7) (-363) (-1194)
- (-10 -8 (-15 -3226 ($ $)) (-15 -3591 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))))
- (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8))
- (-14 *10 (-1170)))))
-(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-556))))
- ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-1202 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-882 *3 *4 *5))
- (-4 *3 (-1094)) (-4 *5 (-662 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-129)))
- ((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
- (-4 *4 (-172))))
- ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))
- ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))
- ((*1 *1) (-4 *1 (-723))) ((*1 *1) (-5 *1 (-1170)))
- ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-918))))
- ((*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918))))
- ((*1 *1) (-5 *1 (-1214))) ((*1 *1) (-5 *1 (-1215)))
- ((*1 *1) (-5 *1 (-1216))) ((*1 *1) (-5 *1 (-1217))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225))
- (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-786)) (-5 *5 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *3)
(-12
- (-5 *3
- (-641
- (-2 (|:| -4224 (-768))
- (|:| |eqns|
- (-641
- (-2 (|:| |det| *7) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564))))))
- (|:| |fgb| (-641 *7)))))
- (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768))
- (-5 *1 (-921 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-847))
- (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1046))
- (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-768)))
- (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452))
- (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452))
- (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5))
- (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-710 *3 *2 *4)) (-4 *3 (-847))
- (-14 *4
- (-1 (-112) (-2 (|:| -1403 *3) (|:| -3747 *2))
- (-2 (|:| -1403 *3) (|:| -3747 *2)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-918)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-363)) (-14 *5 (-990 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
- (-5 *2 (-1166 (-949 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *1 *1) (-4 *1 (-1055)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-744)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-330)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
- (-4 *3 (-1235 *4))
- (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-610 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2))
- (-4 *2 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-610 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170)))
- (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-889 *6)))
- (-5 *5 (-1 (-886 *6 *8) *8 (-889 *6) (-886 *6 *8))) (-4 *6 (-1094))
- (-4 *8 (-13 (-1046) (-612 (-889 *6)) (-1035 *7)))
- (-5 *2 (-886 *6 *8)) (-4 *7 (-13 (-1046) (-847)))
- (-5 *1 (-938 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-847) (-556))))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225)))
+ (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112))
+ (-5 *2 (-1032)) (-5 *1 (-751)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *1 *1) (-4 *1 (-1197))))
-(((*1 *1) (-4 *1 (-349))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *3 *5))
- (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2))
- (-4 *5 (-652 (-407 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *5 *3))
- (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-652 *2))
- (-4 *3 (-652 (-407 *2))))))
+ (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
+ (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
- (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |k| (-890 *3)) (|:| |c| *4))))
- (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
- (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-890 *3)) (-4 *3 (-847)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $))
- (-15 -1517 ((-1119 *3 (-610 $)) $))
- (-15 -1765 ($ (-1119 *3 (-610 $))))))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-949 *4)))
- (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-1043 *4 *5))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349))
- (-5 *1 (-528 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))))
-(((*1 *1 *1) (-4 *1 (-627)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999) (-1194))))))
-(((*1 *1 *1) (-4 *1 (-173)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-768)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -4006 *3) (|:| -3344 *4))))
- (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-157)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-169 *4)))
- (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564))))))
- (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5))))
- (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-845))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4))
- (-14 *3 (-918)) (-4 *4 (-1046)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363))
- (-4 *4 (-1046)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847))
- (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
- (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))))
-(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1046))
- (-5 *1 (-1026 *4)))))
-(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170))
+ (-4 *4 (-13 (-556) (-1035 (-564)) (-147))) (-5 *1 (-570 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-768)) (-4 *2 (-1094))
+ (-5 *1 (-674 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3)))
+ (-5 *1 (-763 *3 *4)) (-4 *3 (-705 *4))))
+ ((*1 *2 *1 *1)
(-12 (-4 *3 (-363)) (-4 *3 (-1046))
- (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-849 *3))))
+ (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-849 *3))))
((*1 *2 *3 *3 *4)
(-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046))
- (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-850 *5 *3))
+ (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-850 *5 *3))
(-4 *3 (-849 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2087 *4)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
- (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13))
- (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13))
- (-5 *7 (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| *13)))))
- (-5 *8 (-641 (-768))) (-5 *9 (-1259 (-641 (-1166 *10))))
- (-4 *12 (-847)) (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12))
- (-4 *11 (-790)) (-5 *1 (-704 *11 *12 *10 *13)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *4)) (-5 *1 (-882 *3 *4 *5))
- (-4 *3 (-1094)) (-4 *5 (-662 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871)))
- (-5 *1 (-468)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-801 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1194) (-956))))))
-(((*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-5 *2
- (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225)))
- (|:| |singularities| (-1150 (-225)))))
- (-5 *1 (-105)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564)))))
- (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-949 *9))))
- (-5 *6 (-641 (-641 *12))) (-5 *7 (-768)) (-5 *8 (-564))
- (-4 *9 (-13 (-307) (-147))) (-4 *12 (-946 *9 *11 *10))
- (-4 *10 (-13 (-847) (-612 (-1170)))) (-4 *11 (-790))
- (-5 *2
- (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12))
- (|:| |wcond| (-641 (-949 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-949 *9))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *9)))))))))
- (-5 *1 (-921 *9 *10 *11 *12)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1170))
- (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *1 (-1173)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032))
- (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2527 *3)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-967))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-991))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1033))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1068)))))
-(((*1 *1 *1) (-4 *1 (-627)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999) (-1194))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
- (-4 *3 (-1094)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-112))
- (-5 *1 (-901 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-918)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-749)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307))
- (-4 *5 (-1046)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5))
- (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -2076 *3))))
- (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6))
- (-4 *7 (-652 (-407 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-4 *6 (-1235 *5))
- (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -2076 (-650 *6 (-407 *6))))))
- (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7))
- (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 (-407 (-564)))))
- (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -2076 *3))))
- (-5 *1 (-806 *6 *7 *3 *8)) (-4 *3 (-652 *7))
- (-4 *8 (-652 (-407 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-5 *2
- (-641 (-2 (|:| |frac| (-407 *6)) (|:| -2076 (-650 *6 (-407 *6))))))
- (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1061)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-736 *3)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-641 *11))
- (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -3853 *11))))))
- (-5 *6 (-768))
- (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -3853 *11))))
- (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9))
- (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790))
- (-4 *9 (-847)) (-5 *1 (-1064 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-641 *11))
- (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -3853 *11))))))
- (-5 *6 (-768))
- (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -3853 *11))))
- (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9))
- (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790))
- (-4 *9 (-847)) (-5 *1 (-1139 *7 *8 *9 *10 *11)))))
-(((*1 *2)
- (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4))
- (-14 *3 (-918)) (-14 *4 (-918)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1046))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112))
- (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-768)) (-4 *5 (-172))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
- (-4 *4 (-172))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3))
- (-4 *4 (-373 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-768)) (-4 *3 (-1046)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))))
-(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-861 *3)) (-14 *3 (-641 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-986))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
- (-5 *2 (-1170))))
- ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4))
- (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3549 *6) (|:| |sol?| (-112))) (-564)
- *6))
- (-4 *6 (-363)) (-4 *7 (-1235 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
- (-2 (|:| -2745 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
- (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+ (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
+ (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-447 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6))
- (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *1 (-447 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6))
- (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *1 (-447 *4 *5 *6 *7)))))
+ (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3))
+ (-4 *3 (-13 (-363) (-147) (-1035 (-564)))) (-5 *1 (-568 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3))
- (-4 *3 (-13 (-1194) (-29 *5))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209))
- (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790))
- (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6))
- (-4 *6 (-946 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
- ((*1 *1 *1) (|partial| -4 *1 (-719))))
-(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
- (-5 *2 (-1166 *3)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-564))))
- (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2527 ($ $ $)))))
- (-4 *3 (-556)) (-5 *1 (-1238 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-363) (-147)))
- (-5 *2 (-641 (-2 (|:| -3747 (-768)) (|:| -3415 *4) (|:| |num| *4))))
- (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-752)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))))
-(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379)))
- ((*1 *1) (-5 *1 (-379))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1032)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225))
- (-5 *2 (-1032)) (-5 *1 (-746)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225)))
- (|:| |lb| (-641 (-840 (-225))))
- (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-840 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-641 (-316 (-225))))
- (|:| -1611 (-641 (-225)))))))
- (-5 *2 (-641 (-1152))) (-5 *1 (-267)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-847))
- (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225)))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))))
-(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847)))
- (-14 *4 (-641 (-1170))))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *1) (-5 *1 (-820))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
-(((*1 *1 *1) (-5 *1 (-1058))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7)))
- (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-574 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-790))
- (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-128)) (-5 *2 (-768)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2)
- (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3))))
- (-5 *1 (-386 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
(-5 *2
- (-2 (|:| |lm| (-816 *3)) (|:| |mm| (-816 *3)) (|:| |rm| (-816 *3))))
- (-5 *1 (-816 *3)) (-4 *3 (-847)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-491)) (-5 *4 (-951)) (-5 *2 (-687 (-533)))
- (-5 *1 (-533))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-951)) (-4 *3 (-1094)) (-5 *2 (-687 *1))
- (-4 *1 (-764 *3)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))))
+ (-2 (|:| |solns| (-641 *5))
+ (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5)))))
+(((*1 *1 *1) (-5 *1 (-225)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112))
- (-5 *1 (-1286 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1166 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3))
- (-4 *3 (-13 (-404) (-1194)))))
- ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-373 *2)) (-4 *2 (-1209))
- (-4 *2 (-847))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4412))
- (-4 *1 (-373 *3)) (-4 *3 (-1209)))))
-(((*1 *1) (-5 *1 (-186))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7))
- (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1))
- (-4 *1 (-1066 *4 *5 *6 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5))
- (-5 *1 (-804 *5 *2 *3 *6))
- (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564)))))
- (-4 *3 (-652 *2)) (-4 *6 (-652 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5))
- (-5 *1 (-804 *5 *2 *3 *6))
- (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2))
- (-4 *6 (-652 (-407 *2))))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-641
- (-2
- (|:| -2351
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -1327
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1361
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-559))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209))
- (-5 *2 (-641 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 *4))))
- (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *1) (-5 *1 (-186))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-971)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))))
+ (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1046)) (-4 *2 (-1235 *4))
+ (-5 *1 (-444 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5)))
+ (-5 *4 (-564)) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-1124 *5)))))
+(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-968)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1086 (-840 *3))) (-4 *3 (-13 (-1194) (-956) (-29 *5)))
(-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
@@ -5230,13 +2445,13 @@
(-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564))))
(-4 *3 (-1046))))
((*1 *1 *1 *2)
- (-4002
+ (-4012
(-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046))
(-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194))
(-4 *3 (-38 (-407 (-564))))))
(-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046))
- (-12 (|has| *3 (-15 -4170 ((-641 *2) *3)))
- (|has| *3 (-15 -3591 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
+ (-12 (|has| *3 (-15 -4292 ((-641 *2) *3)))
+ (|has| *3 (-15 -4039 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
((*1 *1 *1)
(-12 (-4 *1 (-1219 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564))))))
((*1 *1 *1 *2)
@@ -5245,1108 +2460,911 @@
((*1 *1 *1)
(-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564))))))
((*1 *1 *1 *2)
- (-4002
+ (-4012
(-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046))
(-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194))
(-4 *3 (-38 (-407 (-564))))))
(-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046))
- (-12 (|has| *3 (-15 -4170 ((-641 *2) *3)))
- (|has| *3 (-15 -3591 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
+ (-12 (|has| *3 (-15 -4292 ((-641 *2) *3)))
+ (|has| *3 (-15 -4039 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
((*1 *1 *1)
(-12 (-4 *1 (-1240 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564))))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5))
(-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-4002
+ (-4012
(-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046))
(-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194))
(-4 *3 (-38 (-407 (-564))))))
(-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046))
- (-12 (|has| *3 (-15 -4170 ((-641 *2) *3)))
- (|has| *3 (-15 -3591 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
+ (-12 (|has| *3 (-15 -4292 ((-641 *2) *3)))
+ (|has| *3 (-15 -4039 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))
((*1 *1 *1)
(-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564))))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5))
(-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564))))
- (-4 *5 (-883 (-564)))
- (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-567 *5 *3)) (-4 *3 (-627))
- (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225)))
- (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-768)) (-4 *5 (-349)) (-4 *6 (-1235 *5))
- (-5 *2
- (-641
- (-2 (|:| -3941 (-685 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-685 *6)))))
- (-5 *1 (-498 *5 *6 *7))
- (-5 *3
- (-2 (|:| -3941 (-685 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-685 *6))))
- (-4 *7 (-1235 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4413)) (-4 *1 (-1007 *3))
+ (-4 *3 (-1209)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1950 *1) (|:| -4398 *1) (|:| |associate| *1)))
- (-4 *1 (-556)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1046))
- (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046))
- (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046))
- (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1) (-5 *1 (-186))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3))))
- ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1032))
- (-5 *1 (-747)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147)))
- (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+ (-4 *2 (-13 (-430 *3) (-999))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172))
- (-4 *3 (-238 (-2589 *4) (-768)))
- (-14 *6
- (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *3))
- (-2 (|:| -1403 *5) (|:| -3747 *3))))
- (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-847))
- (-4 *7 (-946 *2 *3 (-861 *4))))))
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1058)))))
-(((*1 *1)
- (-12 (-4 *1 (-404)) (-4254 (|has| *1 (-6 -4402)))
- (-4254 (|has| *1 (-6 -4394)))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847))))
- ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-847))))
- ((*1 *1) (-4 *1 (-841))) ((*1 *1 *1 *1) (-4 *1 (-847))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-744)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264))
- (-5 *1 (-449 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))))
+(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-918))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-918))
+ (-5 *1 (-528 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-379)) (-5 *1 (-1037)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170)))
- (-4 *6 (-13 (-556) (-1035 *5))) (-4 *5 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-949 *6)))))) (-5 *1 (-1036 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-641 (-779 *3))) (-5 *1 (-779 *3)) (-4 *3 (-556))
- (-4 *3 (-1046)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-986))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209))
- (-5 *1 (-1086 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046))
- (-14 *4 (-641 (-1170)))))
+ (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046))
+ (-4 *2 (-1250 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
+ (-5 *2 (-2 (|:| |k| (-816 *3)) (|:| |c| *4))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225)))
+ (-5 *1 (-693)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
+ (-5 *1 (-1169)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7))
+ (-5 *5 (-1 (-418 *7) *7))
+ (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7))
+ (-5 *5 (-1 (-418 *7) *7))
+ (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847)))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-847)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-564)) (-5 *2 (-859))
- (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-859)) (-5 *1 (-851 *3 *4 *5)) (-4 *3 (-1046))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-859))))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-859)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-748)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-845)) (-4 *4 (-363)) (-5 *2 (-768))
- (-5 *1 (-942 *4 *5)) (-4 *5 (-1235 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847))))
+ (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3 *4))
- (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5)))))
+ (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
+ (-4 *6 (-1235 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-883 *5)) (-4 *5 (-1094))
- (-5 *2 (-112)) (-5 *1 (-884 *5 *6 *4)) (-4 *4 (-612 (-889 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *2)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4))
- (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790))
- (-4 *4 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $)))))
- (-4 *6 (-556)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
- (-5 *2 (-1032)) (-5 *1 (-751)))))
+ (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
+ (-4 *6 (-1235 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307))
- (-5 *2 (-641 (-768))) (-5 *1 (-775 *3 *4 *5 *6 *7))
- (-4 *3 (-1235 *6)) (-4 *7 (-946 *6 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1057))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3941 (-641 *1))))
- (-4 *1 (-367 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-453 *3 *4 *5 *6))
- (|:| -3941 (-641 (-453 *3 *4 *5 *6)))))
- (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847))))
- ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
- ((*1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4267 *4)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1056 (-1021 *4) (-1166 (-1021 *4)))) (-5 *3 (-859))
- (-5 *1 (-1021 *4)) (-4 *4 (-13 (-845) (-363) (-1019))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
+ (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4))
+ (-5 *1 (-729 *5 *4 *6 *2)) (-5 *3 (-407 (-949 *6))) (-4 *5 (-790))
+ (-4 *4 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1235 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2 *3 *5))
- (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2))
- (-4 *5 (-652 (-407 *2))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
- (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6)))
- (-4 *8 (-342 *5 *6 *7))
- (-4 *4 (-13 (-847) (-556) (-1035 (-564))))
- (-5 *2 (-2 (|:| -2261 (-768)) (|:| -2387 *8)))
- (-5 *1 (-908 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
- (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4)))
- (-4 *6 (-342 (-407 (-564)) *4 *5))
- (-5 *2 (-2 (|:| -2261 (-768)) (|:| -2387 *6)))
- (-5 *1 (-909 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847))))
- ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
- ((*1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-564))
- (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-859)) (-5 *1 (-1150 *3)) (-4 *3 (-1094))
- (-4 *3 (-1209)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-5 *2 (-1152)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4413 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
- (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2))
- (-4 *4 (-683 *2 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-685 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *4)) (-4 *4 (-1046)) (-4 *1 (-1117 *3 *4 *5 *6))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-610 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170)))
- (-4 *2 (-13 (-430 *5) (-27) (-1194)))
- (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209))
- (-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094))
- (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-974 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
- (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-407 (-564)))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564)))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6))
- (-4 *6 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564)))
- (-4 *7 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564)))
- (-4 *3 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8))
- (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564)))
- (-4 *8 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564))))
- (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8)))
- (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-52)) (-5 *1 (-459 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3))))
- (-4 *3 (-1046)) (-5 *1 (-594 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-595 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3))))
- (-4 *3 (-1046)) (-4 *1 (-1219 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-768))
- (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4))))
- (-4 *4 (-1046)) (-4 *1 (-1240 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-4 *1 (-1250 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1150 (-2 (|:| |k| (-768)) (|:| |c| *3))))
- (-4 *3 (-1046)) (-4 *1 (-1250 *3)))))
+ (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 (-564))))
+ (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564)))))
+ (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
(((*1 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $))
- (-15 -1517 ((-1119 *3 (-610 $)) $))
- (-15 -1765 ($ (-1119 *3 (-610 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $))
- (-15 -1517 ((-1119 *3 (-610 $)) $))
- (-15 -1765 ($ (-1119 *3 (-610 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *4 (-610 $)) $))
- (-15 -1517 ((-1119 *4 (-610 $)) $))
- (-15 -1765 ($ (-1119 *4 (-610 $)))))))
- (-4 *4 (-556)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-610 *2)))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *4 (-610 $)) $))
- (-15 -1517 ((-1119 *4 (-610 $)) $))
- (-15 -1765 ($ (-1119 *4 (-610 $)))))))
- (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114))))
- ((*1 *1) (-5 *1 (-578))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847))
- (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-768)) (|:| -3808 *3))))
- (-5 *4 (-768)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790))
- (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790))
- (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-430 *4) (-999))) (-4 *4 (-13 (-847) (-556)))
- (-5 *1 (-276 *4 *2)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1058)))))
+ (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $))
+ (-15 -1668 ((-1119 *3 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *3 (-610 $))))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52))
- (-5 *1 (-1002)))))
-(((*1 *2)
- (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *3))
- (-4 *3 (-1209)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-961 *3 *2)) (-4 *3 (-1094)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1938 *4)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)) (-5 *3 (-1152)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -1662 (-641 *1)) (|:| -1502 *1)))
- (-5 *3 (-641 *1)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1035 *3))
- (-4 *2 (-363))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2))
- (-4 *2 (-13 (-430 *4) (-999) (-1194)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194)))
- (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1170))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-956)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-748)))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170))))
- ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264))))
- ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397))))
+ (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170))
+ (-4 *5 (-13 (-307) (-847) (-147)))
+ (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5)))))
+ (-5 *1 (-1123 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))
- ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999))
- (-4 *2 (-1046)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3))
- (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147)))
- (-5 *1 (-1146 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4))
- (-4 *4 (-847)) (-5 *1 (-573 *4 *5)))))
+ (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170))
+ (-4 *5 (-13 (-307) (-847) (-147)))
+ (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5)))))
+ (-5 *1 (-1123 *5)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
(-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
+ (-5 *1 (-1169)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4))
- (-5 *3 (-641 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225)))))
- ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *2 (-1264))
- (-5 *1 (-468))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-977 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-940 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)) (-5 *3 (-225)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-1035 (-407 *2)))) (-5 *2 (-564))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-999))))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1170))
- (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330))
- (-5 *1 (-332)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))))
-(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
-(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225)))))
- ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))))
-(((*1 *1) (-5 *1 (-820))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1209)) (-5 *2 (-1264)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4))
- (-4 *4 (-38 (-407 (-564))))
- (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-918)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1046))
- (-4 *4 (-1209))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-4 *5 (-238 (-2589 *3) (-768)))
- (-14 *6
- (-1 (-112) (-2 (|:| -1403 *2) (|:| -3747 *5))
- (-2 (|:| -1403 *2) (|:| -3747 *5))))
- (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-847))
- (-4 *7 (-946 *4 *5 (-861 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-685 (-407 (-949 (-564)))))
- (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028))
- (-5 *3 (-316 (-564))))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094))
- (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-685 (-316 (-225))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
+ (-5 *1 (-205)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-989 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
- (-4 *3 (-373 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-989 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4)))
- (-5 *1 (-689 *4 *5))))
+ (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-316 (-564))))
+ (-5 *1 (-1028)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9)))
+ (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-768)))
+ (-4 *11 (-847)) (-4 *9 (-307)) (-4 *12 (-946 *9 *10 *11))
+ (-4 *10 (-790)) (-5 *2 (-641 (-1166 *12)))
+ (-5 *1 (-704 *10 *11 *9 *12)) (-5 *3 (-1166 *12)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564)))))
- (-4 *6 (-1235 *5))
- (-5 *2 (-2 (|:| -2076 *7) (|:| |rh| (-641 (-407 *6)))))
- (-5 *1 (-804 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6)))
- (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-989 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3))
- (-4 *3 (-1235 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))
- (-14 *4 (-1170)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -1765 ($ *4)))))
- (-4 *4 (-845))
- (-4 *5
- (-13 (-1237 *2 *4) (-363) (-1194)
- (-10 -8 (-15 -3226 ($ $)) (-15 -3591 ($ $)))))
- (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-980 *5)) (-14 *7 (-1170)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1035 *5)))
- (-4 *5 (-883 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-928 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
- (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-768)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918))
- (-4 *2 (-1094)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3))
- (-4 *3
- (-13 (-847)
- (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 (*2 $))
- (-15 -3092 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502))))
- ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-707))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-187))) (-5 *1 (-187)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2))
- (-4 *5 (-373 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2))
- (-14 *4 (-918))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-949 (-564)))))
- (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225))
- (-5 *2 (-1032)) (-5 *1 (-746)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-840 (-379))) (-5 *2 (-840 (-225))) (-5 *1 (-305)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-863 *4 *5 *6 *7))
- (-4 *4 (-1046)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-4 *5 (-847)) (-4 *6 (-790))
- (-14 *8 (-641 *5)) (-5 *2 (-1264))
- (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-946 *4 *6 *5))
- (-14 *9 (-641 *3)) (-14 *10 *3))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
- (-14 *6
- (-1 (-112) (-2 (|:| -1403 *5) (|:| -3747 *2))
- (-2 (|:| -1403 *5) (|:| -3747 *2))))
- (-4 *2 (-238 (-2589 *3) (-768))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-847)) (-4 *7 (-946 *4 *2 (-861 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))
- (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-277 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3))
- (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147)))
- (-5 *1 (-1146 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300))))
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))))
+ (-12 (-5 *3 (-641 (-949 *4)))
+ (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-1043 *4 *5))) (-5 *1 (-1285 *4 *5 *6))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-974 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-784)) (-5 *2 (-1032))
- (-5 *3
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-784)) (-5 *2 (-1032))
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-700 *3))
- (-4 *3 (-612 (-536)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225)))
- (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363)))
- (-4 *3 (-1235 *4)) (-5 *2 (-564))))
- ((*1 *2 *3)
- (|partial| -12
- (-4 *4 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452)))
- (-5 *2 (-564)) (-5 *1 (-1110 *4 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452)))
- (-5 *2 (-564)) (-5 *1 (-1110 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152))
- (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452)))
- (-5 *2 (-564)) (-5 *1 (-1110 *6 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-564))
- (-5 *1 (-1111 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 (-407 (-949 *6))))
- (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-564))
- (-5 *1 (-1111 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1170))
- (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790))
- (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))
- (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *5))
- (-4 *5 (-1235 (-407 *4))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5))
- (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)))))
-(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391))))
- ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
- ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545))
- (-4 *3 (-556))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545))
- (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545))
- (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2)))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-847))
- (-5 *1 (-573 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7)))
- (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790))
- (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8)))
- (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175)))))
-(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-974 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *3)
(-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-748)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170))
- (-4 *4 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4))))
- (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))))
+ (-5 *1 (-744)))))
(((*1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4))
+ (-4 *4 (-1235 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-923)))
+ (-5 *1 (-318))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152))
+ (-5 *2 (-1204 (-923))) (-5 *1 (-318))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564))
+ (-5 *2 (-1204 (-923))) (-5 *1 (-318))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152))
+ (-5 *2 (-1204 (-923))) (-5 *1 (-318)))))
+(((*1 *1 *1) (-5 *1 (-1169)))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-641
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-564)))))
- (-5 *1 (-418 *3)) (-4 *3 (-556))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-768)) (-4 *3 (-349)) (-4 *5 (-1235 *3))
- (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6))
- (-4 *6 (-1235 *5)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847))
- (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152))
- (-5 *1 (-241))))
- ((*1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-671 *2)) (-4 *2 (-1046)) (-4 *2 (-1094)))))
+ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
+ (-5 *1 (-1169)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-452)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
+(((*1 *1 *1 *1) (-5 *1 (-162)))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6))))
+ (-5 *4 (-1023 (-840 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564)))
+ (-4 *6 (-1046)) (-5 *2 (-859)) (-5 *1 (-594 *6)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-789)) (-4 *3 (-172)))))
+(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
(-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3))
- (-4 *3 (-1235 (-407 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452))
- (-5 *2
- (-641
- (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))
- (|:| |eigmult| (-768))
- (|:| |eigvec| (-641 (-685 (-407 (-949 *4))))))))
- (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-121 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790))
- (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-4 *3 (-1060 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790))
- (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-4 *3 (-1060 *6 *7 *8))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-368))
+ (-4 *3 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-946 *7 *5 *6))
+ (-5 *1 (-739 *5 *6 *7 *2)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363))
(-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3))))
+ (-2 (|:| A (-685 *5))
+ (|:| |eqs|
+ (-641
+ (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -4035 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5))
+ (-4 *6 (-652 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-768))
- (-4 *3 (-13 (-723) (-368) (-10 -7 (-15 ** (*3 *3 (-564))))))
- (-5 *1 (-246 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1046))
- (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))))
+ (-12 (-4 *5 (-363)) (-4 *6 (-652 *5))
+ (-5 *2 (-2 (|:| -1920 (-685 *6)) (|:| |vec| (-1259 *5))))
+ (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3))
+ (-4 *3 (-1094)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
- (-5 *2 (-816 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5))
- (-5 *3 (-407 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+ (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-768)) (-4 *6 (-363)) (-5 *4 (-1203 *6))
+ (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6))
+ (-5 *5 (-1150 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2601 (-564)) (|:| -3020 (-641 *3))))
+ (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379))))
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1150 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4167
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *2 (-1032)) (-5 *1 (-305)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046))
- (-5 *1 (-1154 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))))
+(((*1 *1 *1) (-4 *1 (-173)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3)))))
+(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-826)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
+ (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225))))
+ (-5 *2 (-1032)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032))
+ (-5 *1 (-745)))))
+(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-768)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-818)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-768)) (-4 *5 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
+ (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6))
+ (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-568 *5 *6)))))
(((*1 *2 *1)
(-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
(-4 *5 (-373 *3)) (-5 *2 (-768))))
((*1 *2 *1)
(-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
(-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -4139 *3) (|:| -3475 *4))))
+ (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
(((*1 *2 *1)
(-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))))
+ (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
+ (-5 *2 (-413 *4 (-407 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4)))
+ (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307))
+ (-5 *1 (-413 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-585 *3)) (-4 *3 (-363)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-641
+ (-641
+ (-3 (|:| -4337 (-1170))
+ (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))))
+ (-5 *1 (-1174)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-974 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2))
+ (-4 *2 (-1235 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-157)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363))
+ (-4 *5 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1046))
+ (-5 *2 (-112)) (-5 *1 (-1026 *4)))))
(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-330)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147)))
+ (-5 *1 (-399 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170))))
+ (-4 *7 (-790))
+ (-5 *2
+ (-641
+ (-2 (|:| -1595 (-768))
+ (|:| |eqns|
+ (-641
+ (-2 (|:| |det| *8) (|:| |rows| (-641 (-564)))
+ (|:| |cols| (-641 (-564))))))
+ (|:| |fgb| (-641 *8)))))
+ (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-768)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *1 *1) (-4 *1 (-1133))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-847))
+ (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3))
+ (-5 *2 (-407 (-564))))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -1652 (-641 (-1170))) (|:| -1908 (-641 (-1170)))))
+ (-5 *1 (-1211)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260))))
+ ((*1 *1 *1) (-5 *1 (-1260))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4403)) (-4 *1 (-404))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112))
+ (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-169 *4)))
+ (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564))))))
+ (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5))))
+ (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-845))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847))
+ (-4 *4 (-266 *3)) (-4 *5 (-790)))))
+(((*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))))
+(((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1068))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-967))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1033))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1061))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1055))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-1055))))
+ ((*1 *1 *1) (-4 *1 (-845)))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1055))))
+ ((*1 *1 *1) (-4 *1 (-1055))) ((*1 *1 *1) (-4 *1 (-1133))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094))
+ (-4 *3 (-1209)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-752))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388))
+ (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452))
+ (-5 *1 (-915 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094))))
((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4))
+ (-14 *3 (-918)) (-4 *4 (-1046)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))))
+(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4))
+ (-4 *4 (-1046)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-641
+ (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2))
+ (|:| |logand| (-1166 *2)))))
+ (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-363)) (-5 *1 (-585 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363))
+ (-4 *4 (-1046)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)))))
+(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-641 (-940 (-225)))))
+ (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-925)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214))))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))))
+(((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
(((*1 *2 *3)
(-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3))
(-4 *3 (-417 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-768))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556))
+ (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-4 *1 (-627)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999) (-1194))))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
+ ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545)))
+ ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094))
+ (-4 *2 (-131)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152)))))
+ (-5 *2 (-1032)) (-5 *1 (-305))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))
+ (-5 *2 (-1032)) (-5 *1 (-305)))))
(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))
((*1 *1 *1 *1) (-4 *1 (-790))))
+(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
+(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3))
+ (-4 *3 (-964)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-910 *3 *2))
+ (-4 *2 (-1235 (-407 *3))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847))
+ (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
+ (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))))
+(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
(-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032))
(-5 *1 (-752)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6))
+ (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1133))))
+(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209))
+ (-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4413)) (-4 *1 (-119 *3))
+ (-4 *3 (-1209))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4413)) (-4 *1 (-119 *3))
+ (-4 *3 (-1209))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094))
+ (-4 *2 (-1209))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4413)) (-4 *1 (-647 *2))
+ (-4 *2 (-1209))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4413)) (-4 *1 (-1007 *2))
+ (-4 *2 (-1209))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2))
+ (-4 *2 (-1209))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4413)) (-4 *1 (-1247 *3))
+ (-4 *3 (-1209))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2))
+ (-4 *2 (-1209)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363))
+ (-5 *2 (-685 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-685 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-1259 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
+ (-5 *2 (-1259 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172))
+ (-5 *2 (-685 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363))
+ (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5)))))
+(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170)))
+ (-4 *5 (-556)) (-5 *2 (-641 (-641 (-949 *5)))) (-5 *1 (-1178 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046))))
+ ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))))
(((*1 *2 *2 *3 *4)
(|partial| -12
(-5 *3
- (-1 (-3 (-2 (|:| -2745 *4) (|:| |coeff| *4)) "failed") *4))
+ (-1 (-3 (-2 (|:| -2537 *4) (|:| |coeff| *4)) "failed") *4))
(-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *4 (-1170))
+ (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-790))
+ (-4 *3 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))) (-4 *5 (-556))
+ (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1046)) (-4 *5 (-790))
+ (-4 *3
+ (-13 (-847)
+ (-10 -8 (-15 -2374 ((-1170) $))
+ (-15 -3832 ((-3 $ "failed") (-1170))))))
+ (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 *6))
+ (-4 *6
+ (-13 (-847)
+ (-10 -8 (-15 -2374 ((-1170) $))
+ (-15 -3832 ((-3 $ "failed") (-1170))))))
+ (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2))
+ (-4 *2 (-946 (-949 *4) *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1046))
+ (-5 *1 (-1026 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349))
+ (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -2248 *3))))
+ (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
+ (-4 *3 (-1094)) (-5 *2 (-768))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *4))
+ (-4 *4 (-1209)) (-5 *2 (-768)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3))
+ (-4 *3 (-964)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
+ (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
(((*1 *2 *1)
(-12
(-5 *2
(-1259
(-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3604 (-564))
- (|:| -4338 (-564)) (|:| |spline| (-564)) (|:| -4184 (-564))
- (|:| |axesColor| (-871)) (|:| -2310 (-564))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4182 (-564))
+ (|:| -3588 (-564)) (|:| |spline| (-564)) (|:| -1679 (-564))
+ (|:| |axesColor| (-871)) (|:| -1294 (-564))
(|:| |unitsColor| (-871)) (|:| |showing| (-564)))))
(-5 *1 (-1260)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1136 *3 *4))
+ (-14 *3 (-768)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1046))
+ (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-849 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046))
+ (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-850 *5 *3))
+ (-4 *3 (-849 *5)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363))
+ (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5))
+ (-4253 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5)))
+ (-5 *1 (-636 *5 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1061)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
(((*1 *1 *1) (-4 *1 (-627)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
(-4 *2 (-13 (-430 *3) (-999) (-1194))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-901 *4))
+ (-4 *4 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790))
+ (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790))
+ (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-861 *3)) (-14 *3 (-641 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-986))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
+ (-5 *2 (-1170))))
+ ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))))
(((*1 *1 *1) (-5 *1 (-225)))
((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
@@ -6357,32 +3375,1082 @@
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
(-4 *2 (-430 *3))))
((*1 *1 *1) (-4 *1 (-1133))) ((*1 *1 *1 *1) (-4 *1 (-1133))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4))
+ (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4)))
+ (-5 *1 (-1252 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2259 *4)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
+ (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
+ (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-615))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1244 *4 *5 *6))
+ (|:| |%expon| (-319 *4 *5 *6))
+ (|:| |%expTerms|
+ (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4))))))
+ (|:| |%type| (-1152))))
+ (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3)))
+ (-14 *5 (-1170)) (-14 *6 *4))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2727 (-779 *3)) (|:| |coef1| (-779 *3))))
+ (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-2 (|:| -2727 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1060 *3 *4 *5)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1046))
(-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1026 *5)) (-5 *4 (-1259 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-1235 (-169 *3))))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225)))
+ (-5 *1 (-923))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225)))
+ (-5 *1 (-923))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225)))
+ (-5 *1 (-924))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225)))
+ (-5 *1 (-924)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-889 *4))
+ (-4 *4 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-768)) (-4 *5 (-556))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
+ (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3))
+ (-4 *4 (-13 (-363) (-845))) (-4 *3 (-1235 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-847)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4))
+ (-5 *3 (-641 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-961 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
(((*1 *1 *1) (|partial| -4 *1 (-1145))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7))
+ (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))
+ (-4 *7 (-1209)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))
+ (-5 *2 (-379)) (-5 *1 (-267))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-641
+ (-2
+ (|:| -1350
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225))))
+ (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225)))
+ (|:| |g| (-316 (-225))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -2575
+ (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
+ (|:| |expense| (-379)) (|:| |accuracy| (-379))
+ (|:| |intermediateResults| (-379)))))))
+ (-5 *1 (-800)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-818)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-828)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-734 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094))))
+ ((*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13))
+ (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13))
+ (-5 *7 (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| *13)))))
+ (-5 *8 (-641 (-768))) (-5 *9 (-1259 (-641 (-1166 *10))))
+ (-4 *12 (-847)) (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12))
+ (-4 *11 (-790)) (-5 *1 (-704 *11 *12 *10 *13)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170))
+ (-4 *5 (-363)) (-5 *1 (-920 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5))
+ (-5 *1 (-920 *4 *5)) (-14 *4 (-1170))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-641 *6)) (-5 *4 (-768)) (-4 *6 (-363))
+ (-5 *2 (-407 (-949 *6))) (-5 *1 (-1047 *5 *6)) (-14 *5 (-1170)))))
+(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))))
(((*1 *2 *3 *2)
(-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4))
+ (-4 *4 (-1209)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152))
+ (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *1) (-5 *1 (-578)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-860))))
+ ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-860))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-860))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4))
+ (-4 *4 (-1094)) (-4 *4 (-1209)))))
+(((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))
+ ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))
+ ((*1 *1 *1) (-4 *1 (-1055))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9))
+ (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6))
+ (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2)) (-4 *2 (-307))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
+ (-4 *2 (-683 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1049 *2 *3 *4 *5 *6)) (-4 *4 (-1046))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452))
+ (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-449 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *1 *1) (-4 *1 (-627)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999) (-1194))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
(-4 *2 (-13 (-430 *3) (-1194))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))))
+ (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-821)) (-5 *3 (-641 (-1170))) (-5 *1 (-822)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349))
+ (-4 *2
+ (-13 (-402)
+ (-10 -7 (-15 -3714 (*2 *4)) (-15 -4031 ((-918) *2))
+ (-15 -4339 ((-1259 *2) (-918))) (-15 -1946 (*2 *2)))))
+ (-5 *1 (-356 *2 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *4)) (-5 *1 (-882 *3 *4 *5))
+ (-4 *3 (-1094)) (-4 *5 (-662 *4)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172))
+ (-4 *4 (-238 (-2779 *5) (-768)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3338 *3) (|:| -3078 *4))
+ (-2 (|:| -3338 *3) (|:| -3078 *4))))
+ (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-847))
+ (-4 *7 (-946 *2 *4 (-861 *5))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790))
+ (-4 *8 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2667 (-641 *9))))
+ (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2667 (-641 *8))))
+ (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-917)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349))
+ (-5 *1 (-528 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1046))
+ (-5 *1 (-1154 *4)))))
(((*1 *1 *1)
(-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170)))))
+ (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098))
+ (-5 *1 (-397))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170)))))
+ (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098))
+ (-5 *1 (-397))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170))
+ (-5 *2 (-1098)) (-5 *1 (-397)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
+ (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4)))))
+ (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-949 *4)))
+ (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
+ (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871)))
+ (-5 *1 (-468)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-708 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))
+ (-4 *2 (-13 (-847) (-21))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))))
(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-752)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-801 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1194) (-956))))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -4275 *3) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3))))
+ (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-768)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-564))) (-5 *4 (-902 (-564)))
+ (-5 *2 (-685 (-564))) (-5 *1 (-589))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564))))
+ (-5 *1 (-589))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-902 (-564))))
+ (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-847))
+ (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))))
(((*1 *2 *2)
(|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2))
(-4 *2 (-670 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1046)) (-4 *4 (-847))
+ (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3078 (-564))))
+ (-4 *1 (-430 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1046)) (-4 *4 (-847))
+ (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3078 (-564))))
+ (-4 *1 (-430 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847))
+ (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3078 (-564))))
+ (-4 *1 (-430 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -3078 (-768))))
+ (-5 *1 (-889 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-2 (|:| |var| *5) (|:| -3078 (-768))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
+ (-4 *7 (-946 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -3078 (-564))))
+ (-5 *1 (-947 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $))
+ (-15 -1668 (*7 $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4)))
+ (-5 *1 (-1180 *4)) (-4 *4 (-847)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))))
+(((*1 *1) (-5 *1 (-330))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
+ (-4 *4 (-1235 *3))
+ (-5 *2
+ (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-685 *3))))
+ (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3))
+ (-5 *2
+ (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-685 *3))))
+ (-5 *1 (-765 *4 *5)) (-4 *5 (-409 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3))
+ (-5 *2
+ (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-685 *3))))
+ (-5 *1 (-982 *4 *3 *5 *6)) (-4 *6 (-721 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3))
+ (-5 *2
+ (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-685 *3))))
+ (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-484 *3)))))
+(((*1 *1) (-5 *1 (-1079))))
(((*1 *2 *1)
(-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))))
(-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
+ (-5 *2 (-1032)) (-5 *1 (-753)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1032)) (-5 *1 (-750)))))
+(((*1 *1) (-5 *1 (-800))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-641 (-2 (|:| -3078 (-768)) (|:| -2390 *4) (|:| |num| *4))))
+ (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-112)) (-5 *1 (-437))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4))
+ (-4 *4 (-172))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4))
+ (-4 *4 (-172))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4))
+ (-4 *4 (-172))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094))
+ (-5 *1 (-671 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-710 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-1094))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -3338 *2) (|:| -3078 *3))
+ (-2 (|:| -3338 *2) (|:| -3078 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-835))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 *4))))
+ (-4 *4 (-1094)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34)))
+ (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5))
+ (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -4011 *5))))
+ (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34)))
+ (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4011 *4)))
+ (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34)))
+ (-5 *1 (-1134 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34)))
+ (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3))
+ (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6)))
+ (-5 *1 (-626 *5 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1046)) (-4 *8 (-1046))
+ (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8))
+ (-4 *7 (-1235 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-997 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))))
+(((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))))
(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-847) (-556)))
+ (-5 *2 (-859)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-5 *2
+ (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225)))
+ (|:| |singularities| (-1150 (-225)))))
+ (-5 *1 (-105)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725 'JINT 'X 'ELAM) (-3725) (-695))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725) (-3725 'XC) (-695))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3725 'X) (-3725) (-695))) (-5 *1 (-64 *3))
+ (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3725) (-3725 'XC) (-695))) (-5 *1 (-66 *3))
+ (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725 'X) (-3725 '-4192) (-695))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725) (-3725 'X) (-695))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725 'X 'EPS) (-3725 '-4192) (-695))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170))
+ (-14 *5 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725 'EPS) (-3725 'YA 'YB) (-695))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170))
+ (-14 *5 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3725) (-3725 'X) (-695))) (-5 *1 (-77 *3))
+ (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3725) (-3725 'X) (-695))) (-5 *1 (-78 *3))
+ (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725) (-3725 'XC) (-695))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725) (-3725 'X) (-695))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725 'X '-4192) (-3725) (-695))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-685 (-339 (-3725 'X '-4192) (-3725) (-695))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-685 (-339 (-3725 'X) (-3725) (-695)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725 'X) (-3725) (-695))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-339 (-3725 'X) (-3725 '-4192) (-695))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-685 (-339 (-3725 'XL 'XR 'ELAM) (-3725) (-695))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-339 (-3725 'X) (-3725 '-4192) (-695))) (-5 *1 (-89 *3))
+ (-14 *3 (-1170))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-564)) (-14 *4 (-768))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172))
+ (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172))
+ (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172))
+ (-5 *2 (-1259 (-685 (-407 (-949 *4))))) (-5 *1 (-189 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1086 (-316 *4)))
+ (-4 *4 (-13 (-847) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379)))
+ (-5 *1 (-258 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7))
+ (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3)))
+ (-14 *5 (-1170)) (-14 *6 *4)
+ (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)))
+ (-5 *1 (-313 *3 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5))
+ (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2))
+ (-4 *3 (-329 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3))
+ (-4 *3 (-329 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172))
+ (-5 *2 (-1283 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172))
+ (-5 *2 (-1274 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))
+ (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383))))
+ ((*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))
+ (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384))))
+ ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))
+ (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))
+ (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6))
+ (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170))
+ (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-847) (-21)))
+ (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564)))))
+ (-4 *3 (-13 (-847) (-21)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-949 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-847))
+ (-4 *1 (-430 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-949 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-847))
+ (-4 *1 (-430 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-847))
+ (-4 *1 (-430 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1046)) (-4 *3 (-847))
+ (-4 *1 (-430 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434))))
+ ((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))
+ (-4 *1 (-440))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1353 (-641 (-330)))))
+ (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-407 (-949 *3)))) (-4 *3 (-172))
+ (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-14 *4 (-918)) (-14 *5 (-641 (-1170)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170))
+ (-14 *5 *3) (-5 *1 (-474 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-741 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
+ (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
+ (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-741 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-5 *1 (-671 *3))
+ (-4 *3 (-1094))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-4 *3 (-1094))
+ (-5 *1 (-671 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3))
+ (-4 *2 (-373 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690))))
+ ((*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697))))
+ ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-172)) (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-2 (|:| -1817 *3) (|:| -2579 *4))))
+ (-4 *3 (-1046)) (-4 *4 (-723)) (-5 *1 (-732 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-760))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-641 (-1088 (-840 (-225)))))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+ (-5 *1 (-766))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *1 (-766))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *1 (-766))))
+ ((*1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-770 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *1 (-805))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-821))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225)))
+ (|:| |lb| (-641 (-840 (-225))))
+ (|:| |cf| (-641 (-316 (-225))))
+ (|:| |ub| (-641 (-840 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-641 (-316 (-225))))
+ (|:| -3304 (-641 (-225)))))))
+ (-5 *1 (-838))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))
+ (-5 *1 (-838))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225)))
+ (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225))))
+ (|:| |ub| (-641 (-840 (-225))))))
+ (-5 *1 (-838))))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-855))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-949 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-872))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-949 (-48)))) (-5 *2 (-316 (-564)))
+ (-5 *1 (-872))))
+ ((*1 *1 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847))))
+ ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-641 (-316 (-225))))
+ (|:| |constraints|
+ (-641
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-768)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
+ (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
+ (|:| |tol| (-225))))
+ (-5 *1 (-895))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-911 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-916 *4))
+ (-4 *4 (-13 (-847) (-556)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964))))
+ ((*1 *1 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1030 *3)) (-4 *3 (-1209))))
+ ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1030 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5))
+ (-14 *6 (-641 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-1040 *3)) (-4 *3 (-556))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2))
+ (-4 *2 (-946 *3 (-531 *4) *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4))
+ (-4 *4 (-946 *3 (-531 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170))
+ (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-5 *1 (-1203 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170))
+ (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1260))))
+ ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-172))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-172))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172))
+ (-5 *1 (-1279 *3 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2727 (-779 *3)) (|:| |coef2| (-779 *3))))
+ (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-2 (|:| -2727 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1060 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880))
+ (-5 *3 (-641 (-564))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768))
+ (-14 *4 (-768)) (-4 *5 (-172)))))
+(((*1 *2 *3)
(-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-834)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032))
+ (-5 *1 (-751)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-966 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -2537 (-407 *6)) (|:| |coeff| (-407 *6))))
+ (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-245 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8))
+ (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790))
+ (-4 *7 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *5 *6 *7 *8)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564))
+ (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
(((*1 *2 *3)
(-12
(-5 *3
@@ -6391,69 +4459,968 @@
(|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))
(-5 *2 (-379)) (-5 *1 (-205)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-768))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1046))
+ (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-610 *3)) (-4 *3 (-847))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
+ (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
+ (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| -1662 *4) (|:| -3741 *3) (|:| -2746 *3)))
+ (-5 *2 (-2 (|:| -1817 *4) (|:| -3031 *3) (|:| -2550 *3)))
(-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))
((*1 *2 *1 *1)
(-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-1060 *3 *4 *5))))
+ (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-1060 *3 *4 *5))))
((*1 *2 *1 *1)
(-12 (-4 *3 (-556)) (-4 *3 (-1046))
- (-5 *2 (-2 (|:| -1662 *3) (|:| -3741 *1) (|:| -2746 *1)))
+ (-5 *2 (-2 (|:| -1817 *3) (|:| -3031 *1) (|:| -2550 *1)))
(-4 *1 (-1235 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-955 (-1166 *4))) (-5 *1 (-357 *4))
+ (-5 *3 (-1166 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-641 (-564)))
+ (|:| |cols| (-641 (-564)))))
+ (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-949 *9))))
+ (-5 *6 (-641 (-641 *12))) (-5 *7 (-768)) (-5 *8 (-564))
+ (-4 *9 (-13 (-307) (-147))) (-4 *12 (-946 *9 *11 *10))
+ (-4 *10 (-13 (-847) (-612 (-1170)))) (-4 *11 (-790))
+ (-5 *2
+ (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12))
+ (|:| |wcond| (-641 (-949 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1259 (-407 (-949 *9))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *9)))))))))
+ (-5 *1 (-921 *9 *10 *11 *12)))))
+(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4))
+ (-14 *3 (-918)) (-4 *4 (-1046))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817))
(-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1235 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-590 *5 *6 *7 *8 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1170))
+ (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *1 (-1173)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-685 *2)) (-5 *4 (-768))
+ (-4 *2 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
+ (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
(((*1 *2 *1)
(-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4))
(-4 *2 (-238 *3 *4)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3395 (-114)) (|:| |arg| (-641 (-889 *3)))))
+ (-5 *1 (-889 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-889 *4)))
+ (-5 *1 (-889 *4)) (-4 *4 (-1094)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564))))
+ (-5 *1 (-190)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032))
+ (-5 *1 (-753)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170)))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170)))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-387)))))
+(((*1 *1) (-5 *1 (-186))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))))
(((*1 *1 *1 *2)
(-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046))
(-5 *1 (-711 *3 *4))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-685 *4)) (-4 *5 (-652 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-749)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-940 *5)) (-5 *3 (-768)) (-4 *5 (-1046))
+ (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))))
+(((*1 *1) (-4 *1 (-349)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4))
+ (-4 *4 (-13 (-556) (-847) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5)))
+ (|:| |prim| (-1166 *5))))
+ (-5 *1 (-432 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-556) (-847) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3))
+ (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3))))
+ (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-949 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147)))
+ (-5 *2
+ (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564))
+ (|:| |prim| (-1166 *5))))
+ (-5 *1 (-957 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170)))
+ (-4 *5 (-13 (-363) (-147)))
+ (-5 *2
+ (-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 *5)))
+ (|:| |prim| (-1166 *5))))
+ (-5 *1 (-957 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170))
+ (-4 *6 (-13 (-363) (-147)))
+ (-5 *2
+ (-2 (|:| -1817 (-641 (-564))) (|:| |poly| (-641 (-1166 *6)))
+ (|:| |prim| (-1166 *6))))
+ (-5 *1 (-957 *6)))))
+(((*1 *1) (-5 *1 (-186))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))
+ ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
+ (-4 *2 (-1250 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3))
+ (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1250 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147)))
+ (-5 *1 (-1146 *3)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-889 *3)) (|:| |den| (-889 *3))))
+ (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-744)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *1) (-5 *1 (-186))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-126 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-349)) (-4 *2 (-1046)) (-5 *1 (-709 *2 *3))
+ (-4 *3 (-1235 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466)))))
(((*1 *2 *3 *2)
(-12 (-5 *3 (-407 (-564)))
(-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
(-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
+ (-4 *4 (-172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-307))
+ (-5 *2 (-407 (-418 (-949 *4)))) (-5 *1 (-1039 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2727 *3)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
+ (-4 *4 (-172)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-918)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-789))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-5 *1 (-893 *2 *4))
+ (-4 *2 (-1235 *4)))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
(-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3378))))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))
(-5 *2 (-1032)) (-5 *1 (-745)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-685 (-949 *4))) (-5 *1 (-1025 *4))
+ (-4 *4 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5))
+ (-4 *5 (-1046))
+ (-5 *2 (-2 (|:| -1920 (-685 *5)) (|:| |vec| (-1259 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1046))
+ (-5 *2 (-685 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5)))
+ (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790))
+ (-4 *8 (-847)) (-5 *1 (-974 *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-918))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-747)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1))
+ (-4 *1 (-1066 *4 *5 *6 *3)))))
(((*1 *2 *2 *3)
(-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5))
(-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
+ (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6))
+ (-4 *6 (-342 *3 *4 *5)))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-768)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918))
+ (-4 *2 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-641 (-949 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-949 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-641 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-949 *4)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172))
+ (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
+ (-4 *3 (-1094)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-112))
+ (-5 *1 (-901 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-918)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4))
+ (-4 *4 (-1235 *3)))))
(((*1 *2 *3)
(-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2))
+ (-4 *5 (-373 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2))
+ (-14 *4 (-918))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7))
+ (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5))
+ (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5))
+ (-5 *1 (-1252 *5 *2)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-430 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3))
+ (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
+ (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3))
+ (-5 *1 (-947 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $))
+ (-15 -1668 (*7 $))))))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-671 *2)) (-4 *2 (-1046)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
+(((*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-749)))))
+(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))
+ ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4))
+ (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-768))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
+ (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112))
+ (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-407 (-564)))
+ (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5))
+ (-4 *5 (-13 (-847) (-556) (-1035 (-564))))
+ (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3))
+ (-4 *3 (-1094)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7))
(-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
(-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6)))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4))))
(-5 *1 (-803 *5 *6 *7 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9))
+ (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6))
+ (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046))
+ (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
+ (-4 *2 (-683 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1046))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363))))
+ ((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-1180 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-918)) (-5 *1 (-442 *2))
+ (-4 *2 (-1235 (-564)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-918)) (-5 *4 (-768)) (-5 *1 (-442 *2))
+ (-4 *2 (-1235 (-564)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *1 (-442 *2))
+ (-4 *2 (-1235 (-564)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768))
+ (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768))
+ (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5))
+ (-5 *1 (-444 *5 *2)) (-4 *5 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307))
+ (-4 *5 (-1046)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)))))
+(((*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1094))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1094))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046))
+ (-5 *1 (-711 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
+(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-52)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114))))
+ ((*1 *1) (-5 *1 (-578))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3))
+ (-5 *1 (-739 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213))
+ (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172))
+ (-4 *1 (-367 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172))
+ (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4))
+ (-4 *4 (-1235 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-768)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *1) (-5 *1 (-171)))
+ ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1094))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389))))
+ ((*1 *1) (-5 *1 (-394)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094))
+ (-4 *4 (-662 *3))))
+ ((*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-768)) (-4 *2 (-1046))))
+ ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))
+ ((*1 *1 *1) (-5 *1 (-1170))) ((*1 *1) (-5 *1 (-1170)))
+ ((*1 *1) (-5 *1 (-1189))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-685 *5)) (-4 *5 (-1046)) (-5 *1 (-1050 *3 *4 *5))
+ (-14 *3 (-768)) (-14 *4 (-768)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-641 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5))
+ (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4035 *3))))
+ (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6))
+ (-4 *7 (-652 (-407 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-641 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-4 *6 (-1235 *5))
+ (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4035 (-650 *6 (-407 *6))))))
+ (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2))
+ (-4 *2 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
+ (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1235 (-169 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1235 (-169 *2))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-2 (|:| -1350 *3) (|:| -2575 *4))))
+ (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
(((*1 *2 *3 *3 *4 *5 *5 *3)
(-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
(-5 *2 (-1032)) (-5 *1 (-744)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1046)) (-5 *1 (-824 *2 *3)) (-4 *2 (-705 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046))
+ (-5 *1 (-686 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4))
+ (-5 *1 (-919 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
(((*1 *2 *2 *3)
(-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-790))
(-4 *5 (-847)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6)
+ (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1344 *6)))
+ (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-786)) (-5 *5 (-564)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7))
+ (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 (-407 (-564)))))
+ (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -4035 *3))))
+ (-5 *1 (-806 *6 *7 *3 *8)) (-4 *3 (-652 *7))
+ (-4 *8 (-652 (-407 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2
+ (-641 (-2 (|:| |frac| (-407 *6)) (|:| -4035 (-650 *6 (-407 *6))))))
+ (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094))
+ (-4 *2 (-1209)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-452)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556))
+ (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556))
+ (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-685 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4339 (-641 *6)))
+ *7 *6))
+ (-4 *6 (-363)) (-4 *7 (-652 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1259 *6) "failed"))
+ (|:| -4339 (-641 (-1259 *6)))))
+ (-5 *1 (-810 *6 *7)) (-5 *4 (-1259 *6)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-504 (-407 (-564)) (-240 *4 (-768)) (-861 *3)
+ (-247 *3 (-407 (-564)))))
+ (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-505 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
+ (-5 *2 (-1032)) (-5 *1 (-744)))))
+(((*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
+ ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
+ ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4))))
+ (-5 *1 (-807 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2 (-2 (|:| -4339 (-641 (-407 *6))) (|:| -1920 (-685 *5))))
+ (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4))))
+ (-5 *1 (-807 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2 (-2 (|:| -4339 (-641 (-407 *6))) (|:| -1920 (-685 *5))))
+ (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
(-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4))
+ (-5 *1 (-1014 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-736 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-918)) (-5 *2 (-379)) (-5 *1 (-782 *3))
+ (-4 *3 (-612 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2))
+ (-5 *2 (-379)) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2))
+ (-5 *2 (-379)) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847))
+ (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-407 (-949 *6)) (-1159 (-1170) (-949 *6))))
+ (-5 *5 (-768)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *6)))))
+ (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-949 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5))))
+ (|:| |eigmult| (-768)) (|:| |eigvec| (-641 *4))))
+ (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5)))))
+ (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
+ (-5 *1 (-176 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
(-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1035 (-564)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-641 *11))
+ (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -4011 *11))))))
+ (-5 *6 (-768))
+ (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -4011 *11))))
+ (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9))
+ (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790))
+ (-4 *9 (-847)) (-5 *1 (-1064 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-641 *11))
+ (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -4011 *11))))))
+ (-5 *6 (-768))
+ (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -4011 *11))))
+ (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9))
+ (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790))
+ (-4 *9 (-847)) (-5 *1 (-1139 *7 *8 *9 *10 *11)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1046)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1235 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
+(((*1 *1 *1) (-4 *1 (-1055))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3))
+ (-4 *3
+ (-13 (-847)
+ (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 (*2 $))
+ (-15 -2890 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-707))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-641 (-940 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1046))
+ (-5 *2 (-768)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))))
(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5))
+ (|:| |c2| (-407 *5)) (|:| |deg| (-768))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4))
+ (-14 *3 (-918)) (-14 *4 (-918)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4))))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545))
+ (-4 *3 (-556))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545))
+ (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545))
+ (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3))
+ (-4 *3 (-1035 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-564)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-307))
+ (-4 *9 (-946 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2485 (-1166 *9)) (|:| |polval| (-1166 *8))))
+ (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8)))))
(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4)))
+ (-4 *4 (-847)) (-5 *1 (-1180 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))))
+(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-564)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-744)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131))
+ (-4 *2 (-1094))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-816 *2)) (-4 *2 (-847)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))))
(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))))
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170))
+ (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1046))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4275 *4)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7))
+ (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))
+ (-4 *7 (-1209))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *3 *5 *6))
+ (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262))))
+ ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))))
(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))
((*1 *2 *1)
(-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046))
@@ -6504,324 +5471,378 @@
((*1 *2 *1)
(-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
(-5 *2 (-768)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
- (-247 *4 (-407 (-564)))))
- (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112))
- (-5 *1 (-505 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-847)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5)
- (|:| |f4| (-641 *5))))
- (-5 *1 (-1180 *6)) (-5 *4 (-641 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *1) (-5 *1 (-1058))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225))
- (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (|has| *1 (-6 -4413)) (-4 *1 (-373 *3))
+ (-4 *3 (-1209)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-1046))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556)))))
+ (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170)))
+ (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1046))
+ (-4 *5 (-238 (-2779 *3) (-768)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-407 (-949 (-564)))))
+ (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-845) (-363)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-847) (-556)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-4 *1 (-1009))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-5 *4 (-859))
- (-4 *1 (-1009))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-918)) (-4 *4 (-13 (-845) (-363)))
- (-4 *1 (-1063 *4 *2)) (-4 *2 (-1235 *4)))))
+ (-12 (-5 *3 (-641 (-294 (-407 (-949 (-564))))))
+ (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-845) (-363)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 (-294 (-949 *4))))
+ (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-407 (-949 (-564)))))
+ (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-845) (-363)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1170))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1194) (-956)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -4339 (-641 *4))))
+ (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2))
+ (-4 *2 (-13 (-29 *6) (-1194) (-956)))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 *5)) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
+ (|:| -4339 (-641 (-1259 *5)))))
+ (-5 *1 (-663 *5)) (-5 *4 (-1259 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
+ (|:| -4339 (-641 (-1259 *5)))))
+ (-5 *1 (-663 *5)) (-5 *4 (-1259 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 *5)) (-4 *5 (-363))
+ (-5 *2
+ (-641
+ (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
+ (|:| -4339 (-641 (-1259 *5))))))
+ (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363))
+ (-5 *2
+ (-641
+ (-2 (|:| |particular| (-3 (-1259 *5) "failed"))
+ (|:| -4339 (-641 (-1259 *5))))))
+ (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4413))))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4413))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4))))
+ (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4413))))
+ (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4413))))
+ (-5 *2
+ (-641
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4339 (-641 *7)))))
+ (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7))
+ (-4 *3 (-683 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556))
+ (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556))
+ (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170))
+ (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-769 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-956)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170))
+ (-4 *7 (-13 (-29 *6) (-1194) (-956)))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1259 *7)) (|:| -4339 (-641 (-1259 *7)))))
+ (-5 *1 (-799 *6 *7)) (-5 *4 (-1259 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170))
+ (-4 *6 (-13 (-29 *5) (-1194) (-956)))
+ (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-641 (-1259 *6))) (-5 *1 (-799 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114)))
+ (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956)))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1259 *7)) (|:| -4339 (-641 (-1259 *7)))))
+ (-5 *1 (-799 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114)))
+ (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956)))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1259 *7)) (|:| -4339 (-641 (-1259 *7)))))
+ (-5 *1 (-799 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170))
+ (-4 *7 (-13 (-29 *6) (-1194) (-956)))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -4339 (-641 *7))) *7 "failed"))
+ (-5 *1 (-799 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-1170))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -4339 (-641 *3))) *3 "failed"))
+ (-5 *1 (-799 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-956)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2))
+ (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-5 *1 (-799 *6 *2))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2))
+ (-4 *2 (-13 (-29 *6) (-1194) (-956)))
+ (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-799 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1032)) (-5 *1 (-802))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-802))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4))
+ (-5 *2 (-1032)) (-5 *1 (-802))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4))
+ (-5 *2 (-1032)) (-5 *1 (-802))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379)))
+ (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4))
+ (-5 *2 (-1032)) (-5 *1 (-802))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379)))
+ (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379)))
+ (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -4339 (-641 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-363)) (-4 *7 (-652 *6))
+ (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -4339 (-685 *6))))
+ (-5 *1 (-810 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1032)) (-5 *1 (-894))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-894))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152))
+ (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379))
+ (-5 *2 (-1032)) (-5 *1 (-894))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152))
+ (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032))
+ (-5 *1 (-894))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 (-379)))
+ (-5 *1 (-1020)) (-5 *4 (-379))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1020))
+ (-5 *4 (-379))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4))
+ (-5 *3 (-316 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4))
+ (-5 *3 (-294 (-316 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170))
+ (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5))
+ (-5 *3 (-294 (-316 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170))
+ (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5))
+ (-5 *3 (-316 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-1170)))
+ (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5))
+ (-5 *3 (-641 (-294 (-316 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170)))
+ (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5))))))
+ (-5 *1 (-1178 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556))
+ (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5))
+ (-5 *3 (-641 (-294 (-407 (-949 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-556))
+ (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4))))))
+ (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-949 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170)) (-4 *5 (-556))
+ (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5))
+ (-5 *3 (-407 (-949 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170)) (-4 *5 (-556))
+ (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5))
+ (-5 *3 (-294 (-407 (-949 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4)))))
+ (-5 *1 (-1178 *4)) (-5 *3 (-407 (-949 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4)))))
+ (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-949 *4)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564))))
- (-5 *1 (-305)))))
+ (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556))
+ (-4 *4 (-1046)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2))
+ (-4 *6 (-652 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112))
+ (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-859))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-990 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-363))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1046))
+ (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5))
+ (-4 *7 (-238 *3 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7))
+ (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-790))
+ (-4 *4 (-847)) (-5 *1 (-903 *5 *6 *4 *7)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-753)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3))
- (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
+ (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4))
+ (-4 *4 (-1046)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3))
- (-4 *3 (-363)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170)))
- (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3))
- (-4 *3 (-1209))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-4 *4 (-452))
- (-5 *2 (-641 (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))))
- (-5 *1 (-292 *4)))))
-(((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1235 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
- ((*1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452))
+ (-12
(-5 *2
- (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564)))))
- (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5))))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
+ (-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859)))
+ (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859)))
+ (|:| |args| (-641 (-859)))))
+ (-5 *1 (-1170))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-1170)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1410 (-641 (-859))) (|:| -3884 (-641 (-859)))
+ (|:| |presup| (-641 (-859))) (|:| -3080 (-641 (-859)))
+ (|:| |args| (-641 (-859)))))
+ (-5 *1 (-1170)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3)))
+ (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7)))
+ (-4 *7 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3)))
+ (-5 *1 (-557 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-1046)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157))))
- ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+ (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5))
+ (-5 *1 (-724 *5 *2)) (-4 *5 (-363)))))
+(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-134)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5))
- (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-949 *5)))
- (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7))))
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
+ (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213))
- (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363))
- (-5 *2 (-641 (-949 *4))))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-748)))))
-(((*1 *1 *1 *1) (-4 *1 (-657))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579)))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-847))
+ (-5 *1 (-573 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
- (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-752)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261))))
- ((*1 *1 *1) (-5 *1 (-1261))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-847)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311))))
+ (-12 (-4 *4 (-1046))
+ (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))
+ ((*1 *1 *1) (-4 *1 (-545)))
+ ((*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-673 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-890 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1206 *3)) (-4 *3 (-1209))))
((*1 *2 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *1) (-5 *1 (-820))))
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999))
+ (-4 *2 (-1046)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4))))
- (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *1 *1 *1) (-4 *1 (-657))))
-(((*1 *2)
+ (-12
+ (-5 *3
+ (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
+ (-247 *4 (-407 (-564)))))
+ (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112))
+ (-5 *1 (-505 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1194) (-999)))))
+ ((*1 *2)
(|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2)))
(-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5))
(-4 *3 (-342 *4 *2 *5))))
((*1 *2)
(|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213))
(-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3)))
- (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2))
- (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6))
- (-4 *6 (-342 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3)))
- (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363))
- (-4 *1 (-335 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170))
- (-5 *1 (-1173))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-859))))
- ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-959)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009))))
- ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1))
- (-4 *1 (-1063 *4 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564))
- (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6))))
-(((*1 *2)
- (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906))
- (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-946 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906))
- (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1235 *2)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
- (-5 *7 (-685 (-564)))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-750)))))
-(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7))
- (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5))
- (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-906)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (|has| *1 (-6 -4412)) (-4 *1 (-1247 *3))
- (-4 *3 (-1209)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-685 (-407 (-949 (-564)))))
- (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3))))
- ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3))
- (-4 *3 (-13 (-363) (-147) (-1035 (-564)))) (-5 *1 (-568 *3 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7))
- (-5 *5 (-1 (-418 *7) *7))
- (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7))
- (-5 *5 (-1 (-418 *7) *7))
- (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
- (-4 *6 (-1235 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6))
- (-4 *6 (-1235 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-316 (-225))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
- (-5 *1 (-205)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5))
+ (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-1272 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768)))
+ (-5 *1 (-901 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-847) (-556))))))
+ (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5))
+ (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-210))
(-5 *3 (-1170))))
@@ -6841,533 +5862,992 @@
((*1 *2 *1)
(-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
(-5 *2 (-641 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3))
- (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7))
- (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790))
- (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
- (-5 *2 (-1166 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-939)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144))))
- ((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-144)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-840 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4))
- (-5 *1 (-267)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172))
- (-5 *1 (-660 *3 *4))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4))
- (-4 *3 (-847)) (-4 *4 (-172)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1032)) (-5 *1 (-748)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
-(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-847)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-999))))))
+ (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
+ (-5 *2 (-685 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-768)) (-4 *5 (-172))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
+ (-4 *4 (-172))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3))
+ (-4 *4 (-373 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-768)) (-4 *3 (-1046)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564))))
- (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1013 *4 *5))
- (-5 *3 (-407 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-1060 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-785)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-679 *4 *5)) (-4 *4 (-1094))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-984 *3 *4 *5 *2))
- (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)))))
-(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))))
-(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))))
-(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112))
- (-5 *1 (-357 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790))
+ (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-641 *3))
+ (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
+ (-5 *2
+ (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5))))))
+ (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5)))
+ (-14 *6 (-641 (-1170)))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
- (-247 *4 (-407 (-564)))))
- (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112))
- (-5 *1 (-505 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545))))
- ((*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-13 (-307) (-147)))
+ (-5 *2
+ (-641 (-2 (|:| -3924 (-1166 *4)) (|:| -3867 (-641 (-949 *4))))))
+ (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-949 *4)))
+ (-14 *5 (-641 (-1170)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
+ (-5 *2
+ (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5))))))
+ (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5)))
+ (-14 *6 (-641 (-1170))))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-4 *1 (-374 *3 *4))
+ (-4 *4 (-172)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-847)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5)
+ (|:| |f4| (-641 *5))))
+ (-5 *1 (-1180 *6)) (-5 *4 (-641 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8))
+ (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *9 (-946 *8 *6 *7))
+ (-4 *6 (-790)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
+(((*1 *1)
+ (-12 (-4 *1 (-404)) (-4253 (|has| *1 (-6 -4403)))
+ (-4253 (|has| *1 (-6 -4395)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847))))
+ ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-847))))
+ ((*1 *1) (-4 *1 (-841))) ((*1 *1 *1 *1) (-4 *1 (-847))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
+(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225)))
+ (-5 *2 (-1261)) (-5 *1 (-257)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217))))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
(-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
(-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8 *3))))
((*1 *2 *3 *3)
(-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
(-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-263))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3427 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-1261))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+ (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5))
- (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *3) (|:| |radicand| *6)))
- (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-768)) (-4 *7 (-1235 *3)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-685 *3))
- (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))))
+ (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4)))
+ (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-307) (-147)))
- (-4 *2 (-946 *4 *6 *5)) (-5 *1 (-921 *4 *5 *6 *2))
- (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)))))
-(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3)))))
-(((*1 *1 *1) (-5 *1 (-1058))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4))
+ (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *1)
+ (-12 (-4 *1 (-404)) (-4253 (|has| *1 (-6 -4403)))
+ (-4253 (|has| *1 (-6 -4395)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847))))
+ ((*1 *1) (-4 *1 (-841))) ((*1 *1 *1 *1) (-4 *1 (-847)))
+ ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-847))
+ (-4 *5 (-790)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -2592 *6) (|:| |sol?| (-112))) (-564)
+ *6))
+ (-4 *6 (-363)) (-4 *7 (-1235 *6))
(-5 *2
- (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-786)) (-5 *5 (-564)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2))
- (-4 *2 (-1235 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))))
+ (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
+ (-2 (|:| -2537 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
+ (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-819)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-641
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847))
- (-5 *1 (-449 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4))
- (-4 *4 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768))))
- ((*1 *1 *1) (-4 *1 (-233)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-266 *3)) (-4 *3 (-847))))
- ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
- (-4 *4 (-1235 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3))
- (-4 *3 (-1235 *2))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-363)) (-4 *2 (-897 *3)) (-5 *1 (-585 *2))
- (-5 *3 (-1170))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4))
- (-4 *4 (-1094))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8))))
- (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-857)) (-5 *2 (-687 (-549))) (-5 *3 (-549)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1046)) (-4 *3 (-847))
- (-5 *2 (-2 (|:| |val| *1) (|:| -3747 (-564)))) (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -3747 (-889 *3))))
- (-5 *1 (-889 *3)) (-4 *3 (-1094))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
- (-4 *7 (-946 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -3747 (-564))))
- (-5 *1 (-947 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $))
- (-15 -1517 (*7 $))))))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1032)) (-5 *1 (-745)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131))
- (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| -1662 *3) (|:| -2292 *4))))
- (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
- (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225)))
+ (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225))))
+ (|:| |ub| (-641 (-840 (-225))))))
+ (-5 *1 (-267)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
+ (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363))
+ (-5 *1 (-663 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-363))
+ (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4413))))
+ (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4413))))
+ (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363))
+ (-5 *1 (-811 *2 *3)) (-4 *3 (-652 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3))
- (-4 *3 (-721 *4 *2))))
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-766))
+ (-5 *2
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))
+ (-5 *1 (-565))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-407 (-949 *5)))) (-5 *4 (-1170))
- (-5 *2 (-949 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))
+ (-12 (-5 *3 (-766)) (-5 *4 (-1058))
+ (-5 *2
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))
+ (-5 *1 (-565))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-784)) (-5 *3 (-1058))
+ (-5 *4
+ (-2 (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))
+ (|:| |extra| (-1032))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-784)) (-5 *3 (-1058))
+ (-5 *4
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))
+ (|:| |extra| (-1032))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-797)) (-5 *3 (-1058))
+ (-5 *4
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))))))
((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-5 *2 (-949 *4))
- (-5 *1 (-292 *4)) (-4 *4 (-452))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3))))
+ (-12 (-5 *3 (-805))
+ (-5 *2
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152)))))
+ (-5 *1 (-802))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-805)) (-5 *4 (-1058))
+ (-5 *2
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152)))))
+ (-5 *1 (-802))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-836)) (-5 *3 (-1058))
+ (-5 *4
+ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))
+ (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-836)) (-5 *3 (-1058))
+ (-5 *4
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225)))
+ (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225))))
+ (|:| |ub| (-641 (-840 (-225))))))
+ (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))))))
((*1 *2 *3)
- (-12 (-5 *3 (-685 (-169 (-407 (-564)))))
- (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *4))
- (-4 *4 (-13 (-363) (-845)))))
+ (-12 (-5 *3 (-838))
+ (-5 *2
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152)))))
+ (-5 *1 (-837))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170))
- (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *5))
- (-4 *5 (-13 (-363) (-845)))))
+ (-12 (-5 *3 (-838)) (-5 *4 (-1058))
+ (-5 *2
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152)))))
+ (-5 *1 (-837))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-892)) (-5 *3 (-1058))
+ (-5 *4
+ (-2 (|:| |pde| (-641 (-316 (-225))))
+ (|:| |constraints|
+ (-641
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-768)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
+ (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
+ (|:| |tol| (-225))))
+ (-5 *2 (-2 (|:| -3402 (-379)) (|:| |explanations| (-1152))))))
((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-949 (-407 (-564))))
- (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845)))))
+ (-12 (-5 *3 (-895))
+ (-5 *2
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152)))))
+ (-5 *1 (-894))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170))
- (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *5))
- (-4 *5 (-13 (-363) (-845))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-918)) (-5 *1 (-1027 *2))
- (-4 *2 (-13 (-1094) (-10 -8 (-15 -1771 ($ $ $))))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-749)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *1)
- (-12
+ (-12 (-5 *3 (-895)) (-5 *4 (-1058))
(-5 *2
- (-641
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225)))))
- (-5 *1 (-559))))
+ (-2 (|:| -3402 (-379)) (|:| -4337 (-1152))
+ (|:| |explanations| (-641 (-1152)))))
+ (-5 *1 (-894)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094))
+ (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-447 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6))
+ (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *1 (-447 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6))
+ (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *1 (-447 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-174 (-564))) (-5 *1 (-762 *3)) (-4 *3 (-404))))
((*1 *2 *1)
- (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-5 *2 (-641 *3))))
+ (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3)) (-14 *3 (-564))))
((*1 *2 *1)
- (-12
- (-5 *2
- (-641
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225)))))
- (-5 *1 (-800)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225)))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
+ (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564))))
+ (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3)))))
(((*1 *1 *1)
(-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556))
- (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))))
-(((*1 *1 *2 *2)
- (-12
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556))
+ (-4 *3 (-946 *7 *5 *6))
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))
- ((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1) (-4 *1 (-866 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789))
- (-4 *4 (-847)))))
+ (-2 (|:| -3078 (-768)) (|:| -1817 *3) (|:| |radicand| (-641 *3))))
+ (-5 *1 (-950 *5 *6 *7 *3 *8)) (-5 *4 (-768))
+ (-4 *8
+ (-13 (-363)
+ (-10 -8 (-15 -3714 ($ *3)) (-15 -1655 (*3 $)) (-15 -1668 (*3 $))))))))
+(((*1 *1) (-5 *1 (-1058))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1046)) (-5 *1 (-824 *2 *3)) (-4 *2 (-705 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564)))
- (-5 *1 (-880)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+ (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-949 *4)) (-949 *4)))
+ (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225)))
+ (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1032))
+ (-5 *1 (-751)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-949 (-564))))
- (-5 *2
- (-2 (|:| |varOrder| (-641 (-1170)))
- (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed"))
- (|:| |hom| (-641 (-1259 (-768))))))
- (-5 *1 (-236)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-768)) (-4 *5 (-556))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))))
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *4 *5))
+ (-4 *5 (-13 (-27) (-1194) (-430 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *4 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-407 (-564)))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *5 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564)))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-315 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6))
+ (-4 *6 (-13 (-27) (-1194) (-430 *5)))
+ (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564)))
+ (-4 *7 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564)))
+ (-4 *3 (-13 (-27) (-1194) (-430 *7)))
+ (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8))
+ (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564)))
+ (-4 *8 (-13 (-27) (-1194) (-430 *7)))
+ (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564))))
+ (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8)))
+ (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-52)) (-5 *1 (-459 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3))))
+ (-4 *3 (-1046)) (-5 *1 (-594 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-595 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3))))
+ (-4 *3 (-1046)) (-4 *1 (-1219 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-768))
+ (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4))))
+ (-4 *4 (-1046)) (-4 *1 (-1240 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-4 *1 (-1250 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1150 (-2 (|:| |k| (-768)) (|:| |c| *3))))
+ (-4 *3 (-1046)) (-4 *1 (-1250 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175)))
+ (-5 *1 (-1175)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1259 *4)) (-5 *3 (-768)) (-4 *4 (-349))
+ (-5 *1 (-528 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-962))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-986))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3))
+ (-4 *3 (-13 (-1094) (-34))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-949 *6))))
- (-5 *3 (-407 (-949 *6)))
- (-4 *6 (-13 (-556) (-1035 (-564)) (-147)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-570 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
+ (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170))
+ (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170))
+ (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-847)) (-5 *2 (-768)) (-5 *1 (-429 *3 *4))
+ (-4 *3 (-430 *4))))
+ ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-544 *3)) (-4 *3 (-545))))
+ ((*1 *2) (-12 (-4 *1 (-760)) (-5 *2 (-768))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-793 *3 *4))
+ (-4 *3 (-794 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-988 *3 *4))
+ (-4 *3 (-989 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-993 *3 *4))
+ (-4 *3 (-994 *4))))
+ ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1008 *3)) (-4 *3 (-1009))))
+ ((*1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-768))))
+ ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1054 *3)) (-4 *3 (-1055)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4)))))
+ (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-847))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194)))
+ (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
+ (-5 *1 (-583 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-585 (-407 (-949 *3))))
+ (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
+ (-5 *1 (-588 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147))
- (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
- (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -3139 *3) (|:| |special| *3))) (-5 *1 (-724 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1046))
+ (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5))
+ (-5 *3 (-641 (-685 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1046))
+ (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5))
+ (-5 *3 (-641 (-685 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3))))
+ ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-430 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3))
+ (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
+ (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3))
+ (-5 *1 (-947 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $))
+ (-15 -1668 (*7 $))))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))))
+(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564)))
+ (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-754)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307))
+ (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5))
+ (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-307)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-756)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-751)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *2 (-1264))
+ (-5 *1 (-468))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-977 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-940 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)) (-5 *3 (-225)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225))
+ (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564)))
+ (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))
+ (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046))
+ (-4 *5 (-847)) (-5 *2 (-949 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))
+ (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046))
+ (-4 *5 (-847)) (-5 *2 (-949 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379))))
+ (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046))
+ (-5 *2 (-949 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))))
-(((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046))
+ (-5 *2 (-949 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-847) (-556))))))
+(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-128)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-918))
+ (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *7 (-897 *6))
+ (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7))
+ (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4412)))))))
+(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790))
+ (-5 *2
+ (-641
+ (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7))
+ (|:| |wcond| (-641 (-949 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1259 (-407 (-949 *4))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *4))))))))))
+ (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1046))
+ (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *2 (-687 (-187))) (-5 *1 (-187)))))
+(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4))
+ (-4 *4 (-349)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-2 (|:| -1350 (-1170)) (|:| -2575 (-437)))))
+ (-5 *1 (-1174)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-1060 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))))
+(((*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-368))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4))
+ (-4 *4 (-349))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-847)) (-5 *1 (-710 *2 *3 *4)) (-4 *3 (-1094))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -3338 *2) (|:| -3078 *3))
+ (-2 (|:| -3338 *2) (|:| -3078 *3)))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213))
+ (-4 *6 (-1235 (-407 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-342 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-974 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6))
+ (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *1 (-974 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3))
+ (|:| |genIdeal| (-504 *3 *4 *5 *6))))
+ (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-38 (-407 (-564))))
+ (-4 *2 (-172)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046))
+ (-5 *2 (-641 (-641 (-641 (-940 *3))))))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1170))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-641 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2537 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1194) (-27) (-430 *8)))
+ (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3)))
+ (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1011 *8 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-307))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3))))
+ (-5 *1 (-386 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3031 (-768)) (|:| -2550 (-768))))
+ (-5 *1 (-768))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-641 (-768)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1046))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1729 *1)))
+ (-4 *1 (-849 *3)))))
+(((*1 *2 *2 *3 *3)
(-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046))
(-5 *1 (-1154 *4))))
- ((*1 *1 *2 *2 *1)
+ ((*1 *1 *1 *2 *2)
(-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046))
(-14 *4 (-1170)) (-14 *5 *3))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4))
- (-4 *4 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768))))
- ((*1 *1 *1) (-4 *1 (-233)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
- (-4 *4 (-1235 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3))
- (-4 *3 (-1235 *2))))
- ((*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4))
- (-4 *4 (-1094))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))
+ (-4 *2 (-452))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564)))
+ (-5 *1 (-486 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-790))
- (-4 *3 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))) (-4 *5 (-556))
- (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1046)) (-4 *5 (-790))
- (-4 *3
- (-13 (-847)
- (-10 -8 (-15 -2127 ((-1170) $))
- (-15 -3657 ((-3 $ "failed") (-1170))))))
- (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *6))
- (-4 *6
- (-13 (-847)
- (-10 -8 (-15 -2127 ((-1170) $))
- (-15 -3657 ((-3 $ "failed") (-1170))))))
- (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2))
- (-4 *2 (-946 (-949 *4) *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170))
- (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291)))))
+ (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847)) (-4 *3 (-452)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-847)))
- (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-5 *1 (-598 *4 *2 *3))
- (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))))
-(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+ (-12 (-5 *3 (-685 (-407 (-949 (-564)))))
+ (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1235 *9)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-307))
+ (-4 *10 (-946 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-641 (-1166 *10)))
+ (|:| |dterm|
+ (-641 (-641 (-2 (|:| -2574 (-768)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10))))
+ (-5 *1 (-775 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6))
+ (-5 *5 (-641 *10)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144))))
+ ((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-144)))))
+(((*1 *1) (-5 *1 (-55))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5))))
+ (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4))))
+ (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-685 (-407 (-949 (-564)))))
+ (-5 *2
+ (-641
+ (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564))
+ (|:| |radvect| (-641 (-685 (-316 (-564))))))))
+ (-5 *1 (-1028)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170))
+ (-14 *4 *2))))
+(((*1 *2)
+ (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
+ (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6))
+ (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-1272 *4 *5 *6 *7)))
+ (-5 *1 (-1272 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556))
+ (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-641 (-1272 *6 *7 *8 *9)))
+ (-5 *1 (-1272 *6 *7 *8 *9)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564)))))
+ (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-746)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1005 *3)) (-4 *3 (-1035 (-407 (-564)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
+ (-4 *7 (-1235 (-407 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -2218 *3)))
+ (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |answer| (-407 *6)) (|:| -2218 (-407 *6))
+ (|:| |specpart| (-407 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-753)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847))))
+ ((*1 *1) (-4 *1 (-1145))))
+(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-768))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209))
+ (-4 *3 (-1094))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094))
+ (-5 *2 (-564))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209))
+ (-5 *2 (-564))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-800)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-840 (-379))) (-5 *2 (-840 (-225))) (-5 *1 (-305)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1235 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556))
- (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1235 (-564)))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918))
- (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-782 *5))))
+ (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1235 (-564)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3))
+ (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
+ (-4 *3 (-1235 (-564)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556))
- (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-782 *5))))
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3))
+ (-4 *3 (-1235 (-407 (-564))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847))
- (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-705 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-112))
+ (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-777 *4 (-861 *5)))) (-4 *4 (-452))
+ (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-968))
+ (-5 *3 (-641 (-564))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-863 *4 *5 *6 *7))
+ (-4 *4 (-1046)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-4 *5 (-847)) (-4 *6 (-790))
+ (-14 *8 (-641 *5)) (-5 *2 (-1264))
+ (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-946 *4 *6 *5))
+ (-14 *9 (-641 *3)) (-14 *10 *3))))
+(((*1 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
+ (-5 *1 (-1169)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-771)) (-5 *1 (-52)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556))
- (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
- (-5 *1 (-782 *5)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
- (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+ (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264))
+ (-5 *1 (-1173))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264))
+ (-5 *1 (-1173)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1032))
+ (-5 *1 (-755)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6))
+ (-4 *6 (-13 (-27) (-430 *5)))
+ (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7)))
+ (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3))
+ (-4 *3 (-342 *6 *7 *8)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-874 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-876 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-879 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046))
+ (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7)))
+ (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *2))
+ (-2 (|:| -3338 *5) (|:| -3078 *2))))
+ (-4 *2 (-238 (-2779 *3) (-768))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-847)) (-4 *7 (-946 *4 *2 (-861 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -3532 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -3139 (-407 *6))
+ (|:| |special| (-407 *6))))
+ (-5 *1 (-724 *5 *6)) (-5 *3 (-407 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-893 *3 *4))
+ (-4 *3 (-1235 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-768)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -2578 *3) (|:| -2592 *3))) (-5 *1 (-893 *3 *5))
+ (-4 *3 (-1235 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
+ (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
+ (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
+ (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
+ (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452))
+ (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1209)) (-5 *2 (-768)) (-5 *1 (-182 *4 *3))
+ (-4 *3 (-670 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))))
+(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11))
+ (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-768)))
+ (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-847))
+ (-4 *8 (-307)) (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-790))
+ (-5 *1 (-704 *9 *10 *8 *11)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-685 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2))
+ (-4 *2 (-1250 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3)))
+ (-4 *5 (-1235 *4)) (-4 *6 (-721 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2))
+ (-4 *2 (-1250 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3)))
+ (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *1 (-1146 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
+ (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))))
(((*1 *2 *2 *3)
(-12 (-5 *3 (-407 (-564))) (-4 *4 (-1035 (-564)))
(-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4))))
@@ -7440,187 +6920,186 @@
(-5 *1 (-1156 *3))))
((*1 *1 *1 *2)
(-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194)))
- (-4 *4 (-13 (-556) (-847)))
- (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194)))
- (-5 *1 (-598 *4 *5 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1035 *4)) (-4 *3 (-307))
- (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5))
- (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-989 *3))
- (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-5 *2 (-468)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-821)) (-5 *1 (-822)))))
-(((*1 *1 *1 *2)
- (-12
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) ((*1 *1) (-4 *1 (-545)))
+ ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-744)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-349))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))
+ (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *4 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *2 (-1060 *4 *5 *6)) (-5 *1 (-773 *4 *5 *6 *2 *3))
+ (-4 *3 (-1066 *4 *5 *6 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -1908 (-641 *3)) (|:| -1652 (-641 *3))))
+ (-5 *1 (-1210 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046))
(-5 *2
- (-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859)))
- (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859)))
- (|:| |args| (-641 (-859)))))
- (-5 *1 (-1170))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-1170)))))
+ (-2 (|:| -4182 (-768)) (|:| |curves| (-768))
+ (|:| |polygons| (-768)) (|:| |constructs| (-768)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-430 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170))))
+ ((*1 *1 *1) (-4 *1 (-160))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-847))
+ (-4 *5 (-790)) (-4 *2 (-266 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112))
+ (-5 *2 (-1032)) (-5 *1 (-750)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
+ (-4 *2 (-1250 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3))
+ (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1250 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147)))
+ (-5 *1 (-1146 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-1259 (-685 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3)))))
+ (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4))
+ (-5 *1 (-811 *4 *5)) (-4 *5 (-652 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363))
- (-5 *2 (-1259 (-685 (-407 (-949 *5))))) (-5 *1 (-1080 *5))
- (-5 *4 (-685 (-407 (-949 *5))))))
+ (-12 (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-363))
+ (-5 *2 (-685 *5)) (-5 *1 (-811 *5 *6)) (-4 *6 (-652 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1046))
+ (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363))
- (-5 *2 (-1259 (-685 (-949 *5)))) (-5 *1 (-1080 *5))
- (-5 *4 (-685 (-949 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363))
- (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4)))))
+ (-12 (-5 *4 (-918)) (-4 *5 (-1046))
+ (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284)))
+ (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564)))))
- (-4 *5 (-1235 *4))
- (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -2076 *5))))
- (-5 *1 (-806 *4 *5 *3 *6)) (-4 *3 (-652 *5))
- (-4 *6 (-652 (-407 *5))))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-1060 *3 *4 *2)) (-4 *2 (-847))))
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-974 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847))
+ (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-641 (-768)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
-(((*1 *1) (-5 *1 (-291))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-564))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847))
- (-5 *1 (-449 *5 *6 *7 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))
- (-4 *3 (-556))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *5 (-556))
- (-5 *2
- (-2 (|:| |minor| (-641 (-918))) (|:| -2076 *3)
- (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))))
-(((*1 *1 *1) (-5 *1 (-1058))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556))
- (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8))))
- (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *1) (-5 *1 (-1260))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918))
- (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918))
- (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170)))
- (-14 *6 (-1259 (-685 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170)))
- (-14 *6 (-1259 (-685 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-918)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-918))
- (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170))
- (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))))
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
+ (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1032)) (-5 *1 (-746))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-388)) (-5 *2 (-1032)) (-5 *1 (-746)))))
(((*1 *2 *3)
(-12 (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-660 *4 *5)))
(-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-714 (-407 (-564)))))
(-14 *6 (-918)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112))
+ (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -3714 ($ *7)))))
+ (-4 *7 (-845))
+ (-4 *8
+ (-13 (-1237 *3 *7) (-363) (-1194)
+ (-10 -8 (-15 -2203 ($ $)) (-15 -4039 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))))
+ (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8))
+ (-14 *10 (-1170)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225))
+ (-5 *2 (-641 (-940 *4))) (-5 *1 (-1205)) (-5 *3 (-940 *4)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1007 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))))
(((*1 *2 *1 *1)
(|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
(-5 *2 (-1166 *3))))
((*1 *2 *1)
(-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
(-5 *2 (-1166 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-974 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-556))
+ (-5 *2 (-2 (|:| -1920 (-685 *5)) (|:| |vec| (-1259 (-641 (-918))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *5)) (-5 *1 (-882 *3 *4 *5))
+ (-4 *3 (-1094)) (-4 *5 (-662 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))
+ (-5 *2 (-1032)) (-5 *1 (-745)))))
(((*1 *1 *2)
(-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363))
(-5 *1 (-990 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
+ (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6))
+ (-4 *6 (-342 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-768)) (-4 *5 (-556))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-860)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-768)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-768)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1046)))))
(((*1 *1 *1)
(-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-847))
(-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3))))
@@ -7628,6 +7107,53 @@
((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
(-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4))
+ (-14 *4 (-641 (-1170)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-450 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6))
+ (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *1 (-450 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6))
+ (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *1 (-450 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452))
+ (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-784)) (-5 *2 (-1032))
+ (-5 *3
+ (-2 (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-784)) (-5 *2 (-1032))
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225)))))))
+(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-758))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-955 *3)) (-5 *1 (-1157 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1259 *5)) (-5 *3 (-768)) (-5 *4 (-1114)) (-4 *5 (-349))
+ (-5 *1 (-528 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
@@ -7635,26 +7161,304 @@
(-247 *4 (-407 (-564)))))
(-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112))
(-5 *1 (-505 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564))
+ (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172))
+ (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *9)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790))
+ (-4 *8 (-1046)) (-4 *2 (-946 *9 *7 *5))
+ (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790))
+ (-4 *4 (-946 *8 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1))
+ (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-700 *3))
+ (-4 *3 (-612 (-536)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225)))
+ (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209))
+ (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *2 *7)) (-4 *6 (-1046))
+ (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112))
+ (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -3714 ($ *7)))))
+ (-4 *7 (-845))
+ (-4 *8
+ (-13 (-1237 *3 *7) (-363) (-1194)
+ (-10 -8 (-15 -2203 ($ $)) (-15 -4039 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))))
+ (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8))
+ (-14 *10 (-1170)))))
(((*1 *2 *3 *3 *4 *5 *5)
(-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
(-4 *3 (-1060 *6 *7 *8))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
(-5 *1 (-1067 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3853 *9))))
+ (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -4011 *9))))
(-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8))
(-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847))
- (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -3853 *9))))
+ (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -4011 *9))))
(-5 *1 (-1067 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-564))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847))
+ (-5 *1 (-449 *5 *6 *7 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
+ (-4 *4 (-373 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
+ (-14 *4 (-768)) (-4 *5 (-172)))))
+(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-556))))
+ ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307))
+ (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
+ (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
(((*1 *2 *2 *2)
(-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3))))
((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-779 *3)) (|:| |polden| *3) (|:| -4071 (-768))))
+ (-5 *1 (-779 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4071 (-768))))
+ (-4 *1 (-1060 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-564))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363)))
+ (-4 *3 (-1235 *4)) (-5 *2 (-564))))
+ ((*1 *2 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452)))
+ (-5 *2 (-564)) (-5 *1 (-1110 *4 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452)))
+ (-5 *2 (-564)) (-5 *1 (-1110 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152))
+ (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452)))
+ (-5 *2 (-564)) (-5 *1 (-1110 *6 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-564))
+ (-5 *1 (-1111 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 (-407 (-949 *6))))
+ (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-564))
+ (-5 *1 (-1111 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1170))
+ (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (|has| *4 (-6 (-4414 "*")))
+ (-4 *4 (-1046)) (-5 *1 (-1025 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918))
+ (|has| *4 (-6 (-4414 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564)))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-882 *3 *4 *5))
+ (-4 *3 (-1094)) (-4 *5 (-662 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302))))
+ ((*1 *1 *1) (-4 *1 (-302)))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-859))))
(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112)))))
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094))
+ (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-506)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170))
+ (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5))))
+ (-5 *1 (-1123 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-13 (-307) (-847) (-147)))
+ (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170))
+ (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5))))
+ (-5 *1 (-1123 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-407 (-949 *4))))
+ (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4))))
+ (-5 *1 (-1123 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170)))
+ (-4 *5 (-13 (-307) (-847) (-147)))
+ (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-407 (-949 *4))))
+ (-4 *4 (-13 (-307) (-847) (-147)))
+ (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-294 (-407 (-949 *5))))) (-5 *4 (-641 (-1170)))
+ (-4 *5 (-13 (-307) (-847) (-147)))
+ (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-294 (-407 (-949 *4)))))
+ (-4 *4 (-13 (-307) (-847) (-147)))
+ (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-641 (-918))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5))
+ (-14 *4 (-918)) (-14 *5 (-990 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4))
+ (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4))
+ (-4 *4 (-1235 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-723))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5))
+ (-4 *4 (-1046)) (-4 *5 (-847))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046))
+ (-4 *2 (-847))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6))
+ (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046))
+ (-4 *5 (-790)) (-4 *2 (-847))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-4 *2 (-946 *4 (-531 *5) *5))
+ (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-847))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-949 *4)) (-5 *1 (-1203 *4))
+ (-4 *4 (-1046)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-129)))
+ ((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
+ (-4 *4 (-172))))
+ ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547)))
+ ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))
+ ((*1 *1) (-4 *1 (-723))) ((*1 *1) (-5 *1 (-1170)))
+ ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-918))))
+ ((*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918))))
+ ((*1 *1) (-5 *1 (-1214))) ((*1 *1) (-5 *1 (-1215)))
+ ((*1 *1) (-5 *1 (-1216))) ((*1 *1) (-5 *1 (-1217))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -4011 *8)))
+ (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -4011 *8)))
+ (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-1101 *4 *5 *6 *7 *8)))))
(((*1 *1 *1)
(-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
(-4 *4 (-847)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-313 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))))
+ (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
+ (-14 *6 (-1170)) (-14 *7 *3))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
+ (-5 *2 (-1166 (-949 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790))
+ (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))))
+(((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4403)) (-4 *1 (-404))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918))))
+ ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695))))
+ ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225))
+ (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))))
(((*1 *2 *1 *3)
(|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-112))
(-5 *1 (-886 *4 *5)) (-4 *5 (-1094))))
@@ -7664,8 +7468,88 @@
((*1 *2 *3 *4)
(-12 (-5 *3 (-641 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094))
(-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -4337 (-1152))))
+ (-5 *1 (-819)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4))
+ (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-845))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-786)) (-5 *5 (-564)))))
+(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330))))
+ ((*1 *1) (-5 *1 (-330))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))))
+(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2))
+ (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4413)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564))))))
+ (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4))
+ (-4 *4 (-13 (-363) (-845)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-294 (-407 (-949 (-169 (-564)))))))
+ (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4))
+ (-4 *4 (-13 (-363) (-845)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-949 (-169 (-564)))))
+ (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4))
+ (-4 *4 (-13 (-363) (-845)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-407 (-949 (-169 (-564))))))
+ (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4))
+ (-4 *4 (-13 (-363) (-845))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-967))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1068))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4))))
+ (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *8 (-1060 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-641 *8))
+ (|:| |towers| (-641 (-1024 *5 *6 *7 *8)))))
+ (-5 *1 (-1024 *5 *6 *7 *8)) (-5 *3 (-641 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *8 (-1060 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-641 *8))
+ (|:| |towers| (-641 (-1140 *5 *6 *7 *8)))))
+ (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
+ (-5 *2 (-2 (|:| -3489 (-641 *6)) (|:| -1721 (-641 *6)))))))
(((*1 *2 *3)
(-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
(-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
@@ -7675,6 +7559,39 @@
((*1 *2)
(-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
(-5 *2 (-685 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))
+ (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *5))
+ (-4 *5 (-1235 (-407 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302))))
+ ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2259 *4))) (-5 *1 (-966 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-641
+ (-2 (|:| -1595 (-768))
+ (|:| |eqns|
+ (-641
+ (-2 (|:| |det| *7) (|:| |rows| (-641 (-564)))
+ (|:| |cols| (-641 (-564))))))
+ (|:| |fgb| (-641 *7)))))
+ (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768))
+ (-5 *1 (-921 *4 *5 *6 *7)))))
(((*1 *1 *1 *1)
(-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768))
(-4 *4 (-172))))
@@ -7691,1475 +7608,393 @@
((*1 *1 *1 *1 *2)
(-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847))
(-4 *4 (-172)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-847)) (-5 *1 (-1180 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4))
- (-4 *4 (-1235 *2)))))
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170)))
- (-5 *2
- (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6)))))
- (-5 *1 (-626 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1152))
- (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4))))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6))
- (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *1 (-573 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))))
+ (-12
+ (-5 *3
+ (-641
+ (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8))
+ (|:| |wcond| (-641 (-949 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1259 (-407 (-949 *5))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *5))))))))))
+ (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6))
+ (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564))
+ (-5 *1 (-921 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363)))
+ (-4 *3 (-1235 *4)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-847) (-556))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094))
+ (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-407 (-564))))
+ (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-847))
+ (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1046))
+ (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-349))
(-5 *2
- (-641
- (-2 (|:| |outval| *4) (|:| |outmult| (-564))
- (|:| |outvect| (-641 (-685 *4))))))
- (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5))
- (-5 *2 (-641 *3)) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6))
- (-14 *7 (-918)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1023 (-840 (-564))))
- (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1046))
- (-5 *1 (-594 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-974 *3 *4 *5 *6)))))
+ (-2 (|:| |cont| *5)
+ (|:| -3020 (-641 (-2 (|:| |irr| *3) (|:| -2534 (-564)))))))
+ (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
- (-5 *2 (-768))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
- (-5 *2 (-768))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-723)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-610 *3))
- (-4 *3 (-13 (-430 *5) (-27) (-1194)))
- (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3)))
- (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209))
- (-4 *2 (-1094)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768)))
- (-5 *1 (-901 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4))
- (-4 *4 (-1235 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-723))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556))
- (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-1231 *4 *2))
- (-4 *2 (-1235 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3))
- (-5 *1 (-787 *3)) (-4 *3 (-971))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-112))
- (-5 *1 (-1204 *2)) (-4 *2 (-971)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-214 *4))
- (-4 *4
- (-13 (-847)
- (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 (*2 $))
- (-15 -3092 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3))
- (-4 *3
- (-13 (-847)
- (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 (*2 $))
- (-15 -3092 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-847)) (-5 *1 (-1180 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790))
(-5 *2
- (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-786)) (-5 *5 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
-(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))))
+ (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4))
+ (|:| |genIdeal| (-504 *4 *5 *6 *7))))
+ (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-750)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194))))
+ ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-847)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
- ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
- ((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556))
- (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-847)) (-5 *2 (-610 *5))
- (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094))))
- ((*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2))
- (-4 *2 (-1235 *4)))))
+ (-12 (-4 *3 (-1094))
+ (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))
+ (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5))
+ (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-641 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
+ (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209))
(-5 *2 (-641 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-768)))
+ (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556)))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3))
- (-5 *2 (-407 (-564))))))
-(((*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-847))
- (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
- ((*1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1209)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847))
+ (-5 *2 (-2 (|:| -1817 (-564)) (|:| |var| (-610 *1))))
+ (-4 *1 (-430 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
- ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-1259 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
+ (-12 (-4 *3 (-1094))
+ (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))
+ (-5 *1 (-1070 *3 *4 *2))
+ (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))))
((*1 *2 *1)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
- (-5 *2 (-1259 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363))
- (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363))
- (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5))
- (-4254 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5)))
- (-5 *1 (-636 *5 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-962))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3))
- (-4 *4 (-13 (-363) (-845))) (-4 *3 (-1235 *2)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452))
- (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-449 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790))
- (-4 *8 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1417 (-641 *9))))
- (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -1417 (-641 *8))))
- (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1046)) (-4 *8 (-1046))
- (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8))
- (-4 *7 (-1235 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2527 (-779 *3)) (|:| |coef2| (-779 *3))))
- (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-2 (|:| -2527 *1) (|:| |coef2| *1)))
- (-4 *1 (-1060 *3 *4 *5)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564))
- (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-940 *5)) (-5 *3 (-768)) (-4 *5 (-1046))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))))
-(((*1 *1) (-5 *1 (-1264))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
+ (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2))
- (-4 *2 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
- (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4))
- (-5 *1 (-919 *4 *2)))))
+ (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5))
+ (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131))
- (-5 *2 (-768))))
- ((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4))
+ (-12 (-4 *4 (-363)) (-5 *2 (-918)) (-5 *1 (-328 *3 *4))
(-4 *3 (-329 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
- ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-386 *3)) (-4 *3 (-1094))))
((*1 *2)
- (-12 (-4 *4 (-1094)) (-5 *2 (-768)) (-5 *1 (-424 *3 *4))
- (-4 *3 (-425 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094))
- (-4 *4 (-23)) (-14 *5 *4)))
+ (-12 (-4 *4 (-363)) (-5 *2 (-830 (-918))) (-5 *1 (-328 *3 *4))
+ (-4 *3 (-329 *4))))
+ ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918))))
((*1 *2)
- (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-768))
- (-5 *1 (-720 *3 *4 *5)) (-4 *3 (-721 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-452)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-407 (-949 *6)) (-1159 (-1170) (-949 *6))))
- (-5 *5 (-768)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *6)))))
- (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-949 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5))))
- (|:| |eigmult| (-768)) (|:| |eigvec| (-641 *4))))
- (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5)))))
- (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))))
-(((*1 *1 *1) (-4 *1 (-1055))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7))
- (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))
- (-4 *7 (-1209))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *3 *5 *6))
- (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7))
- (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-790))
- (-4 *4 (-847)) (-5 *1 (-903 *5 *6 *4 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-134)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768)))
- (-5 *1 (-901 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-4 *1 (-374 *3 *4))
- (-4 *4 (-172)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4)))
- (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-174 (-564))) (-5 *1 (-762 *3)) (-4 *3 (-404))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3)) (-14 *3 (-564))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564))))
- (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-768)) (-4 *4 (-349))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094))
- (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))))
-(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-128)))))
+ (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790))
- (-5 *2
- (-641
- (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7))
- (|:| |wcond| (-641 (-949 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-949 *4))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *4))))))))))
- (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213))
- (-4 *6 (-1235 (-407 *5)))
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4))
+ (-4 *4 (-1235 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-768)) (|:| -2485 *4))) (-5 *5 (-768))
+ (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
(-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-342 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1046))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-849 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1046))
- (-5 *1 (-850 *2 *3)) (-4 *3 (-849 *2)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170))
- (-4 *2 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-277 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-407 (-564))))
- (-5 *2 (-2 (|:| -3879 (-1150 *4)) (|:| -3891 (-1150 *4))))
- (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-449 *6 *7 *8 *4)))))
(((*1 *2)
(-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
(-4 *3 (-367 *4))))
((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1135 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
- (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-949 (-564)))) (-5 *1 (-437))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098))
- (-5 *1 (-756))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098))
- (-5 *1 (-756)))))
-(((*1 *1 *1 *1) (-4 *1 (-758))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-768)) (-5 *1 (-226))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-169 (-225))) (-5 *3 (-768)) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-452)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-999))))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
- (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1) (-5 *1 (-1079))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211)))))
-(((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545))))
- ((*1 *1 *1) (-4 *1 (-1055))))
-(((*1 *2)
- (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))
+ (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27))
- (-5 *2 (-641 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5))
+ (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379))))
- ((*1 *1 *1 *1) (-4 *1 (-545)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
- ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-768)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094))
- (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4))))
- (-5 *1 (-1070 *4 *5 *2))
- (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4))))))
- ((*1 *1 *2 *2)
(-12 (-4 *3 (-1094))
- (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))
+ (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))
(-5 *1 (-1070 *3 *4 *2))
- (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-744)))))
-(((*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-826)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094))
- (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4))
- (-4 *4 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4))))
- (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4)))
- (-4 *4 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4))))
- (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1094)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112))
- (-5 *1 (-1210 *3)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-748)))))
-(((*1 *1) (-5 *1 (-820))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4)))
- (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-968)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094))
- (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-789)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046))
- (-4 *2 (-1250 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452))
- (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-974 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-789)) (-4 *3 (-172)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-174 *6))
- (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))))
-(((*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
- (-5 *2 (-2 (|:| |k| (-816 *3)) (|:| |c| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))))
+ (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *3 (-1046))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1729 *1)))
+ (-4 *1 (-849 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-735)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4))
- (-4 *4 (-1235 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
+ (-14 *6 (-641 (-1170)))
+ (-5 *2
+ (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6)))))
+ (-5 *1 (-626 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3819 (-564)) (|:| -2362 (-641 *3))))
- (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-768)) (-4 *5 (-556))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))))
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-685 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
- (-5 *2 (-413 *4 (-407 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4)))
- (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307))
- (-5 *1 (-413 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
- (-5 *2 (-1032)) (-5 *1 (-752))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388))
- (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))))
-(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))))
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5))
+ (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307))
+ (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
+ ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
(((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-836))
(-5 *3
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *2 (-1032)) (-5 *1 (-305))))
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225)))
+ (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225))))
+ (|:| |ub| (-641 (-840 (-225))))))
+ (-5 *2 (-1032))))
((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-836))
(-5 *3
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))
- (-5 *2 (-1032)) (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-556)) (-5 *2 (-641 (-641 (-949 *5)))) (-5 *1 (-1178 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3))
- (-4 *3 (-964)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-961 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170))
- (-4 *5 (-363)) (-5 *1 (-920 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5))
- (-5 *1 (-920 *4 *5)) (-14 *4 (-1170))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-768)) (-4 *6 (-363))
- (-5 *2 (-407 (-949 *6))) (-5 *1 (-1047 *5 *6)) (-14 *5 (-1170)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))
- (-4 *2 (-13 (-847) (-21))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-847))
- (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-484 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-997 *3)))))
+ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3304 (-641 (-225)))))
+ (-5 *2 (-1032)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768))
- (-14 *4 (-768)) (-4 *5 (-172)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))
- ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-918))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))))
+ (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-407 (-564)))
- (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5))
- (-4 *5 (-13 (-847) (-556) (-1035 (-564))))
- (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213))
- (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172))
- (-4 *1 (-367 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172))
- (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4))
- (-4 *4 (-1235 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
-(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))))
-(((*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131))
- (-4 *2 (-1094))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-816 *2)) (-4 *2 (-847)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4))
- (-4 *4 (-1046)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
- (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046))
- (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))))
+ (|partial| -12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452))
+ (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452))
+ (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| -1662 (-407 *5)) (|:| |poly| *3)))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-52)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
- (-4 *6 (-790)) (-4 *7 (-946 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7))))
- (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+ (-12 (-5 *3 (-1152))
+ (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209))
+ (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-768))
+ (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5))
+ (-5 *1 (-239 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209))
+ (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094))
+ (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209))
+ (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-955 *6)) (-4 *6 (-1209))
+ (-4 *5 (-1209)) (-5 *2 (-955 *5)) (-5 *1 (-954 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209))
+ (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209))
+ (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
(-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-307))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1502 *1)))
- (-4 *1 (-307)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3))
+ (-12 (-4 *4 (-556)) (-5 *2 (-641 (-768))) (-5 *1 (-966 *4 *3))
(-4 *3 (-1235 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
- (-5 *2 (-1166 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046))
- (-5 *3 (-564)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4267 *4)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-641 *5)) (-4 *5 (-847)) (-5 *1 (-1180 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
- (-5 *2 (-816 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918))
- (-14 *4 (-918)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
+ (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-307)) (-4 *3 (-989 *2)) (-4 *4 (-1235 *3))
- (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187)))))
-(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291)))))
-(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-564)) (-5 *1 (-204)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
(((*1 *2 *1)
(-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3))
(-4 *3 (-964)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-564))) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6))
- (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *9) (|:| |radicand| *9)))
- (-5 *1 (-950 *5 *6 *7 *8 *9)) (-5 *4 (-768))
- (-4 *9
- (-13 (-363)
- (-10 -8 (-15 -1765 ($ *8)) (-15 -1507 (*8 $)) (-15 -1517 (*8 $))))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564))))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-641 (-1170)))
- (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1020)) (-5 *5 (-379))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
- (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4)))))
- (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-949 *4)))
- (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6))
+ (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *1 (-573 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564))))
- (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4))))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-5 *2 (-1264)) (-5 *1 (-1173))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170))
+ (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *2 (-1264))
+ (-5 *1 (-1173))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1170))
+ (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3035 "void"))) (-5 *2 (-1264))
+ (-5 *1 (-1173)))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4))))
- (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
- (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1032)) (-5 *1 (-748)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))))
-(((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5))
- (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+ (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046))
- (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
- ((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-172))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
-(((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
- (-4 *1 (-721 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5))
- (-5 *2 (-685 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564))))
- (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))))
+ (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3))
+ (-4 *3 (-1060 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-171))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768))))
+ (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5))
+ (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-768)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-847))
- (-4 *3 (-1094)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-753)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4))
- (-5 *1 (-1171 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-918)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3))
- (-4 *3 (-1046)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-5 *1 (-695))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-363)) (-5 *1 (-975 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4))
- (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))))
+ (-12 (-4 *2 (-1094)) (-5 *1 (-710 *3 *2 *4)) (-4 *3 (-847))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -3338 *3) (|:| -3078 *2))
+ (-2 (|:| -3338 *3) (|:| -3078 *2)))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-999))))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3)))))
+ (-12 (-4 *4 (-1046)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4))
+ (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
- (-5 *1 (-985 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
- (-5 *1 (-1101 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
- (-4 *3 (-556)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *3 (-897 *6))
- (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3))
- (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4411)))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1032))) (-5 *2 (-1032)) (-5 *1 (-305))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *1) (-5 *1 (-1058)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4))
- (-4 *4 (-1209))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379)))
- (-5 *2 (-1032)) (-5 *1 (-837)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-949 *5))))
- (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-949 *5))))))
+ (-12 (-4 *3 (-612 (-889 *3))) (-4 *3 (-883 *3))
+ (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-612 (-889 *3))) (-4 *2 (-883 *3))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
- (-5 *2 (-112))))
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545))
+ (-4 *3 (-556))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564)))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-843)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379))))
- (-5 *1 (-305)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
-(((*1 *1) (-5 *1 (-144))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-29 *4))))))
-(((*1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-866 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112))
- (-5 *1 (-357 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2))
- (-4 *2 (-1235 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -4336 (-418 *3)) (|:| |special| (-418 *3))))
- (-5 *1 (-724 *5 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-996 *3)) (-4 *3 (-172)) (-5 *1 (-796 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1259 (-768))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-847)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1044)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *1))
- (-4 *1 (-382 *3 *4))))
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545))
+ (-4 *3 (-1094))))
((*1 *2 *1)
- (-12 (-5 *2 (-641 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-723))))
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545))
+ (-4 *3 (-1094))))
((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-946 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564)))
- (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3))
- (-4 *3 (-13 (-27) (-1194) (-430 *6)))
- (-4 *6 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-557 *6 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209))
- (-14 *4 (-564)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
- ((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)))))
+ (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545))
+ (-5 *2 (-407 (-564)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-847))
- (-4 *3 (-13 (-172) (-714 (-407 (-564))))) (-14 *4 (-918))))
- ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
- ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-386 *4)) (-4 *4 (-1094))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5))
- (-4 *4 (-1094)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-816 *4)) (-4 *4 (-847)))))
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847))
- (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-4 *3 (-1060 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-4 *3 (-1060 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6)))
- (-4 *6 (-363))
- (-5 *2
- (-641
- (-2 (|:| |outval| *7) (|:| |outmult| (-564))
- (|:| |outvect| (-641 (-685 *7))))))
- (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-845))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3))
- (-4 *3 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3))
- (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194)))
- (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-949 *8))))
- (-5 *5 (-768)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147)))
- (-4 *11 (-946 *8 *10 *9)) (-4 *9 (-13 (-847) (-612 (-1170))))
- (-4 *10 (-790))
+ (-12 (-4 *4 (-847))
(-5 *2
- (-2
- (|:| |rgl|
- (-641
- (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11))
- (|:| |wcond| (-641 (-949 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1259 (-407 (-949 *8))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *8))))))))))
- (|:| |rgsz| (-564))))
- (-5 *1 (-921 *8 *9 *10 *11)) (-5 *7 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
- (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-112)))))
+ (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4))))
+ (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4))))))
+ (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174)))))
(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))
- (-4 *2 (-13 (-847) (-21))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556))
- (-5 *2 (-407 (-949 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556))
- (-5 *2 (-407 (-949 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-233)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4))
- (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790))
- (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-266 *2)) (-4 *2 (-847)))))
-(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2))
- (-4 *2 (-430 *4))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *5 *6))
+ (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *1 (-449 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1088 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-790))
+ (-4 *4 (-847)) (-4 *7 (-556))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564))))
+ (-5 *1 (-593 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-556))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564))))
+ (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1) (-5 *1 (-859)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556)))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *1 (-1029 *2))
- (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-999))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34)))
- (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) ((*1 *1) (-4 *1 (-545)))
- ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112))
- (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194)))
+ (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-1162 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564))))
+ (-5 *2 (-407 (-949 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-949 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564))))
+ (-5 *2 (-3 (-407 (-949 *5)) (-316 *5))) (-5 *1 (-1163 *5))
+ (-5 *3 (-407 (-949 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1086 (-949 *5))) (-5 *3 (-949 *5))
+ (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 *3))
+ (-5 *1 (-1163 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1086 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5)))
+ (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 *3 (-316 *5)))
+ (-5 *1 (-1163 *5)))))
(((*1 *1 *1)
(-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046))
- (-4 *2 (-1219 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-940 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-902 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4))
- (-5 *1 (-1025 *5)) (-4 *5 (-1046))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1025 *4))
- (-4 *4 (-1046))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-902 (-564)))) (-5 *4 (-564))
- (-5 *2 (-641 (-685 *4))) (-5 *1 (-1025 *5)) (-4 *5 (-1046))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564))))
- (-5 *1 (-1025 *4)) (-4 *4 (-1046)))))
-(((*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046))
- (-5 *2
- (-2 (|:| -3604 (-768)) (|:| |curves| (-768))
- (|:| |polygons| (-768)) (|:| |constructs| (-768)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7)))
- (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790))
- (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8)))
- (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8))))
- ((*1 *2 *3)
+(((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4))
+ (-4 *3 (-329 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-768)))))
+(((*1 *2 *3)
(-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847))
(-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7)))
(-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))
@@ -9167,254 +8002,64 @@
(-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790))
(-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8)))
(-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1009)) (-5 *2 (-859)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-316 (-225))))
- (-5 *2
- (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564))
- (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))))
- (-5 *1 (-305)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847)))
- (-14 *3 (-641 (-1170))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-847))
- (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-940 (-225)))) (-5 *1 (-1260)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-1046))
- (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-1235 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-1204 *3))
- (-4 *3 (-971)))))
+ (-12 (-4 *4 (-790))
+ (-4 *5 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))) (-4 *6 (-556))
+ (-5 *2 (-2 (|:| -3884 (-949 *6)) (|:| -1641 (-949 *6))))
+ (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1035 (-48)))
- (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4))
- (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3))
- (-4 *3 (-1235 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4267 *3) (|:| |coef2| (-779 *3))))
- (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))))
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-847) (-556))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564)))
- (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4)))))
-(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-1060 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1170))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-641 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2745 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1194) (-27) (-430 *8)))
- (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3)))
- (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1011 *8 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))
- (-4 *2 (-452))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564)))
- (-5 *1 (-486 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847)) (-4 *3 (-452)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1209)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1209))))
- ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+ (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4))))
+ (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-752)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4))))
- (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))))
+ (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-225)))
+ (-5 *1 (-468)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363))
+ (-5 *2 (-1166 (-949 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1005 *3)) (-4 *3 (-1035 (-407 (-564)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1235 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3))
- (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3))
- (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3))
- (-4 *3 (-1235 (-407 (-564))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264))
- (-5 *1 (-1173))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264))
- (-5 *1 (-1173)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)))))
-(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847))
- (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-641 (-768)))))
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
- (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225))
- (-5 *2 (-641 (-940 *4))) (-5 *1 (-1205)) (-5 *3 (-940 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-768)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1046)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209))
- (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *2 *7)) (-4 *6 (-1046))
- (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307))
- (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302))))
- ((*1 *1 *1) (-4 *1 (-302)))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
- ((*1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3853 *8)))
- (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-985 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3853 *8)))
- (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330))))
- ((*1 *1) (-5 *1 (-330))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *8 (-1060 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-641 *8))
- (|:| |towers| (-641 (-1024 *5 *6 *7 *8)))))
- (-5 *1 (-1024 *5 *6 *7 *8)) (-5 *3 (-641 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *8 (-1060 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-641 *8))
- (|:| |towers| (-641 (-1140 *5 *6 *7 *8)))))
- (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2087 *4))) (-5 *1 (-966 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3853 *9))))
- (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264))
- (-5 *1 (-1064 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3853 *9))))
- (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264))
- (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-768)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-349))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -2362 (-641 (-2 (|:| |irr| *3) (|:| -1490 (-564)))))))
- (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556)))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-768)) (|:| -3808 *4))) (-5 *5 (-768))
- (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-449 *6 *7 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4))
- (-4 *3 (-417 *4))))
- ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-843)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+ (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1009)) (-5 *2 (-859)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-225)))
- (-5 *1 (-468)))))
+ (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4))
+ (-4 *4 (-1235 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1032)) (-5 *1 (-750)))))
+(((*1 *1 *1) (-4 *1 (-1055)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307))))
((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209))))
((*1 *1 *1 *2)
@@ -9443,16 +8088,152 @@
(-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))
((*1 *1 *1 *2)
(-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 (-407 (-564))))
+ (-5 *2
+ (-641
+ (-2 (|:| |outval| *4) (|:| |outmult| (-564))
+ (|:| |outvect| (-641 (-685 *4))))))
+ (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349))
+ (-5 *1 (-528 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-641 *6))
+ (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170))
+ (-4 *4 (-13 (-430 *7) (-27) (-1194)))
+ (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4339 (-641 *4))))
+ (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094))
+ (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-1264))))
(((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545))))
((*1 *1 *1) (-4 *1 (-1055))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5))
+ (-5 *2 (-641 *3)) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6))
+ (-14 *7 (-918)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046))
+ (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7))
+ (-4 *6 (-1235 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046))
+ (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7))
+ (-4 *6 (-1235 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-2 (|:| -4139 (-1166 *6)) (|:| -3078 (-564)))))
+ (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564))
+ (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-641
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-564)))))
+ (-5 *1 (-418 *3)) (-4 *3 (-556))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-768)) (-4 *3 (-349)) (-4 *5 (-1235 *3))
+ (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6))
+ (-4 *6 (-1235 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-1060 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *2)))))
(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847))
+ (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1023 (-840 (-564))))
+ (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1046))
+ (-5 *1 (-594 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 (-564)))))
+ (-5 *1 (-361 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 (-768)))))
+ (-5 *1 (-386 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| -4139 *3) (|:| -3078 (-564)))))
+ (-5 *1 (-418 *3)) (-4 *3 (-556))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 (-768)))))
+ (-5 *1 (-816 *3)) (-4 *3 (-847)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-744)))))
+(((*1 *2 *3)
(-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-974 *3 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *1 (-349))
+ (-5 *2 (-641 (-2 (|:| -4139 (-564)) (|:| -3078 (-564))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
+ (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847))
+ (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
(((*1 *2 *2 *3)
(|partial| -12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2743 *3) (|:| -3747 (-768)))) (-5 *1 (-586 *3))
+ (-12 (-5 *2 (-2 (|:| -3270 *3) (|:| -3078 (-768)))) (-5 *1 (-586 *3))
(-4 *3 (-545)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
+ (-5 *1 (-176 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))))
+(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *1 *1) (-4 *1 (-1133))))
+(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-949 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *2 *2)
(-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3))))
((*1 *1 *1 *1)
@@ -9460,32 +8241,167 @@
(-4 *4 (-847)) (-4 *2 (-556))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
+ (-5 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
+ (-5 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-723)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2))
+ (-4 *2 (-1235 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1046))
+ (-5 *2 (-685 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-940 *4)) (-4 *4 (-1046)) (-5 *1 (-1158 *3 *4))
+ (-14 *3 (-918)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094))
+ (-4 *2 (-847)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3))
+ (-4 *3 (-1235 (-407 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4)))
+ (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))))
(((*1 *2 *3)
(-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363))
(-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5))))
((*1 *2 *1)
(-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2))
- (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046))))
+ (|has| *2 (-6 (-4414 "*"))) (-4 *2 (-1046))))
((*1 *2 *3)
(-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172))
(-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5))))
((*1 *2 *1)
(-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))))
+ (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4414 "*"))) (-4 *2 (-1046)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-610 *3))
+ (-4 *3 (-13 (-430 *5) (-27) (-1194)))
+ (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3)))
+ (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547))))))
+(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
(((*1 *2 *2)
(-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3))
(-4 *3 (-1235 (-169 *2))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768)))
+ (-5 *1 (-901 *4)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-685 *3))))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
+ (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032))
+ (-5 *1 (-752)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1209)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1209))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209))
+ (-14 *4 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2))
+ (-4 *3 (-13 (-847) (-556))))))
(((*1 *1 *2 *2)
(-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
+ (-4 *3 (-1235 *4))
+ (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 *2)))
+ (-5 *2 (-889 *3)) (-5 *1 (-1070 *3 *4 *5))
+ (-4 *5 (-13 (-430 *4) (-883 *3) (-612 *2))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452))
+ (-5 *2
+ (-641
+ (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))
+ (|:| |eigmult| (-768))
+ (|:| |eigvec| (-641 (-685 (-407 (-949 *4))))))))
+ (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))))
+(((*1 *1) (-5 *1 (-1173))))
(((*1 *2 *3 *4 *5 *3)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2745 *6) (|:| |coeff| *6)) "failed") *6))
+ (-5 *5 (-1 (-3 (-2 (|:| -2537 *6) (|:| |coeff| *6)) "failed") *6))
(-4 *6 (-363)) (-4 *7 (-1235 *6))
(-5 *2
(-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6))
- (-2 (|:| -2745 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
+ (-2 (|:| -2537 (-407 *7)) (|:| |coeff| (-407 *7))) "failed"))
(-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *1 *1) (-5 *1 (-536))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-610 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2))
+ (-4 *2 (-13 (-430 *6) (-27) (-1194)))
+ (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-610 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170)))
+ (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194)))
+ (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4))
+ (-4 *4 (-1235 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-723))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
+ (-14 *4 (-768)) (-4 *5 (-172)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-121 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1003)))))
(((*1 *2 *2 *2)
(-12
(-5 *2
@@ -9494,560 +8410,113 @@
(|:| |polj| *6))))
(-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847))
(-5 *1 (-449 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-5 *2 (-564))
- (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5))
- (-4 *6 (-13 (-404) (-1035 *5) (-363) (-1194) (-284)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
- (-4 *3 (-1235 *4))
- (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
(-4 *3 (-367 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
- (-5 *2 (-641 (-1259 *3))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5)))
- (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5)))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-112))
- (-5 *1 (-668 *4)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3))
- (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094)))))
+ (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556))
+ (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 (-564))))
- (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564)))))
- (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6))))
- (-5 *4 (-1023 (-840 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564)))
- (-4 *6 (-1046)) (-5 *2 (-859)) (-5 *1 (-594 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-363))
- (-5 *2
- (-2 (|:| A (-685 *5))
- (|:| |eqs|
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-641 (-316 (-225))))
+ (|:| |constraints|
(-641
- (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -2076 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5))
- (-4 *6 (-652 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-363)) (-4 *6 (-652 *5))
- (-5 *2 (-2 (|:| -1447 (-685 *6)) (|:| |vec| (-1259 *5))))
- (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032))
- (-5 *1 (-745)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-974 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1) (-4 *1 (-1133))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847))
- (-4 *4 (-266 *3)) (-4 *5 (-790)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-910 *3 *2))
- (-4 *2 (-1235 (-407 *3))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-349))
- (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -2085 *3))))
- (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1136 *3 *4))
- (-14 *3 (-768)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-768)) (-4 *5 (-556))
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-768)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
+ (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
+ (|:| |tol| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-210)))))
+(((*1 *1 *1 *1) (-4 *1 (-964))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790))
+ (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-818)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-828)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152))
- (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172))
- (-4 *4 (-238 (-2589 *5) (-768)))
- (-14 *6
- (-1 (-112) (-2 (|:| -1403 *3) (|:| -3747 *4))
- (-2 (|:| -1403 *3) (|:| -3747 *4))))
- (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-847))
- (-4 *7 (-946 *2 *4 (-861 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
- (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4)))))
- (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-949 *4)))
- (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
-(((*1 *2 *1 *1)
- (-12
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
+ (-4 *3 (-1060 *6 *7 *8))
(-5 *2
- (-2 (|:| -4267 *3) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3))))
- (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260)))))
-(((*1 *1) (-5 *1 (-800))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8))
- (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790))
- (-4 *7 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-126 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-307))
- (-5 *2 (-407 (-418 (-949 *4)))) (-5 *1 (-1039 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5))
- (-4 *5 (-1046))
- (-5 *2 (-2 (|:| -1447 (-685 *5)) (|:| |vec| (-1259 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1046))
- (-5 *2 (-685 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046))
- (-5 *1 (-686 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094))
- (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4))
- (-5 *1 (-1014 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556))
- (-4 *4 (-1046)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2))
- (-4 *6 (-652 *5)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790))
- (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-641 *3))
- (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8))))
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
(-5 *2
- (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5))))))
- (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5)))
- (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147)))
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790))
+ (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9))
(-5 *2
- (-641 (-2 (|:| -3707 (-1166 *4)) (|:| -3072 (-641 (-949 *4))))))
- (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-949 *4)))
- (-14 *5 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147)))
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
+ (-4 *3 (-1060 *6 *7 *8))
(-5 *2
- (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5))))))
- (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5)))
- (-14 *6 (-641 (-1170))))))
-(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-847))
- (-4 *5 (-790)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094))
- (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6)))))
-(((*1 *1 *1) (-4 *1 (-545))))
-(((*1 *2 *3 *2)
- (-12
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
(-5 *2
- (-641
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-768)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-790)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-847))
- (-5 *1 (-449 *4 *3 *5 *6)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3))
- (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-768)) (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225))
- (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-918) (-768))))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-34)) (-5 *2 (-768))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-843)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-768)) (-5 *3 (-940 *5)) (-4 *5 (-1046))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5))
- (-14 *4 (-918)) (-4 *5 (-1046))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))))
-(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-275)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-621 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3549 *4) (|:| |sol?| (-112)))
- (-564) *4))
- (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5)))))
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-955 (-1114)))
- (-5 *1 (-346 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
- ((*1 *2 *1)
(-12
- (-5 *2
- (-2 (|:| -1637 (-641 (-859))) (|:| -3382 (-641 (-859)))
- (|:| |presup| (-641 (-859))) (|:| -1745 (-641 (-859)))
- (|:| |args| (-641 (-859)))))
- (-5 *1 (-1170)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (-4 *4 (-1046))
- (-5 *1 (-1025 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (-4 *4 (-1046))
- (-5 *1 (-1025 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-906))
- (-5 *2 (-1259 *1)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-768))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5))
- (-14 *4 (-918)) (-4 *5 (-1046)))))
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-379)) (-5 *1 (-205)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -3853 *7))))
- (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-985 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -3853 *7))))
- (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349))
- (-5 *1 (-528 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-768)) (-5 *4 (-1259 *2)) (-4 *5 (-307))
- (-4 *6 (-989 *5)) (-4 *2 (-13 (-409 *6 *7) (-1035 *6)))
- (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1046))
- (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))
- ((*1 *1 *1) (-4 *1 (-545)))
- ((*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
- ((*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-673 *3)) (-4 *3 (-847))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-890 *3)) (-4 *3 (-847))))
- ((*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1206 *3)) (-4 *3 (-1209))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999))
- (-4 *2 (-1046)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205)))))
-(((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *1) (-5 *1 (-330))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-172))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))))
-(((*1 *2)
- (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-918))
- (-14 *4 (-918))))
- ((*1 *2)
- (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-1166 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-918)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7))
- (-4 *7 (-946 *6 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3))
- (-4 *3 (-1235 (-407 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556))
- (-4 *3 (-1209)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-886 *5 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094))
- (-4 *3 (-166 *6)) (-4 (-949 *6) (-883 *5))
- (-4 *6 (-13 (-883 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-886 *4 *1)) (-5 *3 (-889 *4)) (-4 *1 (-883 *4))
- (-4 *4 (-1094))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-886 *5 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094))
- (-4 *6 (-13 (-1094) (-1035 *3))) (-4 *3 (-883 *5))
- (-5 *1 (-928 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094))
- (-4 *3 (-13 (-430 *6) (-612 *4) (-883 *5) (-1035 (-610 $))))
- (-5 *4 (-889 *5)) (-4 *6 (-13 (-556) (-847) (-883 *5)))
- (-5 *1 (-929 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-886 (-564) *3)) (-5 *4 (-889 (-564))) (-4 *3 (-545))
- (-5 *1 (-930 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-886 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094))
- (-4 *6 (-13 (-847) (-1035 (-610 $)) (-612 *4) (-883 *5)))
- (-5 *4 (-889 *5)) (-5 *1 (-931 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-882 *5 *6 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094))
- (-4 *6 (-883 *5)) (-4 *3 (-662 *6)) (-5 *1 (-932 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-886 *6 *3) *8 (-889 *6) (-886 *6 *3)))
- (-4 *8 (-847)) (-5 *2 (-886 *6 *3)) (-5 *4 (-889 *6))
- (-4 *6 (-1094)) (-4 *3 (-13 (-946 *9 *7 *8) (-612 *4)))
- (-4 *7 (-790)) (-4 *9 (-13 (-1046) (-847) (-883 *6)))
- (-5 *1 (-933 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094))
- (-4 *3 (-13 (-946 *8 *6 *7) (-612 *4))) (-5 *4 (-889 *5))
- (-4 *7 (-883 *5)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *8 (-13 (-1046) (-847) (-883 *5)))
- (-5 *1 (-933 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-989 *6))
- (-4 *6 (-13 (-556) (-883 *5) (-612 *4))) (-5 *4 (-889 *5))
- (-5 *1 (-936 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-886 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-889 *5))
- (-4 *5 (-1094)) (-5 *1 (-937 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-641 (-889 *7))) (-5 *5 (-1 *9 (-641 *9)))
- (-5 *6 (-1 (-886 *7 *9) *9 (-889 *7) (-886 *7 *9))) (-4 *7 (-1094))
- (-4 *9 (-13 (-1046) (-612 (-889 *7)) (-1035 *8)))
- (-5 *2 (-886 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1046) (-847)))
- (-5 *1 (-938 *7 *8 *9)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847))
- (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-946 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1)))
- (-4 *1 (-1235 *3)))))
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-889 *6)))
+ (-5 *5 (-1 (-886 *6 *8) *8 (-889 *6) (-886 *6 *8))) (-4 *6 (-1094))
+ (-4 *8 (-13 (-1046) (-612 (-889 *6)) (-1035 *7)))
+ (-5 *2 (-886 *6 *8)) (-4 *7 (-13 (-1046) (-847)))
+ (-5 *1 (-938 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
+ (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-1231 *4 *2))
+ (-4 *2 (-1235 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
+ (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-407 *6))
+ (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363))
+ (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5)))
+ (-5 *1 (-865 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363))
+ (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5)))
+ (-5 *1 (-865 *5 *6 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-291)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-741 *3)) (-4 *3 (-172)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))))
+ (-12 (-4 *4 (-13 (-556) (-847))) (-5 *2 (-169 *5))
+ (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-999) (-1194)))
+ (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))))
(((*1 *2 *3)
(-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
(-4 *4 (-349))))
@@ -10065,196 +8534,122 @@
(-12 (-5 *3 (-564)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4))
(-4 *4 (-1094))))
((*1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-545)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1170))
- (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1194) (-956)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3941 (-641 *4))))
- (-5 *1 (-798 *6 *4 *3)) (-4 *3 (-652 *4)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-949 (-564))) (-5 *3 (-1170))
- (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 (-641 *4))))
- (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4))))))
-(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-918)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-871))
- (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225)))
- (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112))
- (-5 *2 (-1032)) (-5 *1 (-751)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4412)) (-4 *1 (-1007 *3))
- (-4 *3 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264))
- (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790))
- (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790))
- (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452))))
- ((*1 *1 *1 *1) (-4 *1 (-452)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-768)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307))
- (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5))
- (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-307))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6))))
+ (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-5 *2 (-564))
+ (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5))
+ (-4 *6 (-13 (-404) (-1035 *5) (-363) (-1194) (-284)))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-913 *4 *5 *6 *7))
- (-4 *7 (-946 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-918)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2))
- (-4 *2 (-1235 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-452)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-847)) (-5 *4 (-641 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4))))
- (-5 *1 (-1180 *6)) (-5 *5 (-641 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225))
- (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-748)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170)))
- (-4 *5 (-452))
- (-5 *2
- (-2 (|:| |gblist| (-641 (-247 *4 *5)))
- (|:| |gvlist| (-641 (-564)))))
- (-5 *1 (-629 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *2 *3)
(-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
(-4 *3 (-1235 *4))
(-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+(((*1 *2)
+ (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-822)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-768))
+ (-4 *3 (-13 (-723) (-368) (-10 -7 (-15 ** (*3 *3 (-564))))))
+ (-5 *1 (-246 *3)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -3395 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-918)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1))
- (-4 *1 (-329 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363))
- (-4 *2 (-1235 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-330)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
- (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-871))))
+ ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))))
+(((*1 *1) (-4 *1 (-349))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3))
+ (-4 *3 (-1094)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131))
+ (-4 *3 (-789)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564))))
+ (-5 *1 (-1104)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-749)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-857)) (-5 *2 (-687 (-129))) (-5 *3 (-129)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363)))
- (-4 *3 (-1235 *4)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330)))))
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-685 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *3 *5))
+ (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2))
+ (-4 *5 (-652 (-407 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *5 *3))
+ (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-652 *2))
+ (-4 *3 (-652 (-407 *2))))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
+ (-5 *2 (-641 (-1259 *3))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046))
- (-5 *3 (-564)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *1 *1 *1) (-4 *1 (-473)))
- ((*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-880))))
- ((*1 *1 *1) (-5 *1 (-968)))
- ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213))
+ (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
+ (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-452))
+ (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5))
+ (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-2 (|:| |deg| (-768)) (|:| -2248 *5))))
+ (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5))
+ (-5 *1 (-216 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-2 (|:| -4139 *5) (|:| -3475 (-564)))))
+ (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5))
+ (-5 *1 (-692 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1046))
+ (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
+ (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170))
+ (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
(-5 *2
- (-641
- (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))
- (|:| |geneigvec| (-641 (-685 (-407 (-949 *4))))))))
- (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-192)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225))))
- (-5 *2 (-1032)) (-5 *1 (-752)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-172))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-1046)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+ (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3)))
+ (|:| |vals| (-641 *3))))
+ (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3))
+ (-5 *1 (-787 *3)) (-4 *3 (-971))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-112))
+ (-5 *1 (-1204 *2)) (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-157))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
+ (-4 *2 (-1209)))))
(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209))))
@@ -10263,159 +8658,565 @@
((*1 *2 *1 *3)
(-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847))
(-4 *6 (-1060 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2677 *1) (|:| |upper| *1)))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3034 *1) (|:| |upper| *1)))
(-4 *1 (-973 *4 *5 *3 *6)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2527 *3)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452))))
- ((*1 *1 *1 *1) (-4 *1 (-452))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5)))
+ (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094))
+ (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| |k| (-890 *3)) (|:| |c| *4))))
+ (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
+ (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-890 *3)) (-4 *3 (-847)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-556))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))
- (-5 *2 (-407 (-564))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))))
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-556)))))
+(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1032))
+ (-5 *1 (-743)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088 (-840 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-305))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3))
- (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3)))
- (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3)))
+ (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-112))
+ (-5 *1 (-668 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-214 *4))
+ (-4 *4
+ (-13 (-847)
+ (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 (*2 $))
+ (-15 -2890 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3))
+ (-4 *3
+ (-13 (-847)
+ (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 (*2 $))
+ (-15 -2890 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
+ (-5 *2 (-816 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112))
+ (-5 *2 (-1032)) (-5 *1 (-742)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170))
+ (-14 *4 *2))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3))
(-4 *3 (-13 (-430 *6) (-27) (-1194)))
(-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3)))
- (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-786)) (-5 *5 (-564)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5))
+ (-4 *5 (-13 (-27) (-430 *4)))
+ (-4 *4 (-13 (-847) (-556) (-1035 (-564))))
+ (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2))
+ (-4 *2 (-342 *5 *6 *7)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1)))
+ (-4 *1 (-1066 *4 *5 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5))
+ (-5 *3 (-407 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5))
+ (-4 *5 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847)))
- (-14 *3 (-641 (-1170))))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-749)))))
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
+ (-12 (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3))
+ (-4 *3 (-13 (-430 *4) (-999))))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-771)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-771)) (-5 *1 (-114)))))
+(((*1 *1 *1) (-5 *1 (-112))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))
+ (-12 (-14 *4 (-768)) (-4 *5 (-1209)) (-5 *2 (-134))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4))
+ (-4 *3 (-329 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-172))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790))
+ (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1046)) (-5 *2 (-918))))
+ ((*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-1046)) (-4 *4 (-172))))
((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032))
- (-5 *1 (-745)))))
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))
+ (-4 *3 (-172)))))
+(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))))
+(((*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-768)) (-5 *1 (-589)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
+ (|:| |expense| (-379)) (|:| |accuracy| (-379))
+ (|:| |intermediateResults| (-379))))
+ (-5 *2 (-1032)) (-5 *1 (-305)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1055)) (-4 *3 (-1194))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+ (-12 (-4 *3 (-1094))
+ (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))
+ (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5))
+ (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-594 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1046)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *3 (-641 (-263)))
+ (-5 *1 (-261))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6))
+ (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6))
+ (-5 *1 (-629 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3)))))
- (-5 *1 (-1281 *3)) (-4 *3 (-1046))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4)))))
- (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-847))
- (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed"))
- (|:| -3941 (-641 (-1259 (-407 *8))))))
- (-5 *1 (-665 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-316 *5)))
- (-5 *1 (-1123 *5))))
+ (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170))
+ (-5 *1 (-262 *2)) (-4 *2 (-1209))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-316 *5))))
- (-5 *1 (-1123 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2745 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7))
- (-5 *3 (-407 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-574 *7 *8)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-785))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-785)))))
+ (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52))
+ (-5 *1 (-263)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307))
+ (-5 *1 (-179 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-641 *8))
+ (-5 *4
+ (-641
+ (-2 (|:| -4339 (-685 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-685 *7)))))
+ (-5 *5 (-768)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349))
+ (-5 *2
+ (-2 (|:| -4339 (-685 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-685 *7))))
+ (-5 *1 (-498 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046))
+ (-5 *1 (-1154 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-748)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-790)) (-4 *5 (-1046)) (-4 *6 (-946 *5 *4 *2))
+ (-4 *2 (-847)) (-5 *1 (-947 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -3714 ($ *6)) (-15 -1655 (*6 $))
+ (-15 -1668 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556))
+ (-5 *2 (-1170)) (-5 *1 (-1040 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
- (-5 *2 (-1032)) (-5 *1 (-753)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34)))
- (-5 *1 (-1135 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-574 *5 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
+ ((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))))
+(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-847))
+ (-4 *3 (-13 (-172) (-714 (-407 (-564))))) (-14 *4 (-918))))
+ ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-768))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5))
+ (-14 *4 (-918)) (-4 *5 (-1046)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-1166 *6))
+ (-5 *1 (-321 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))))
(((*1 *1 *1)
(-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
+ (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291)))
+ ((*1 *1) (-5 *1 (-859)))
+ ((*1 *1)
+ (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790))
+ (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1079)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34)))))
+ ((*1 *1) (-5 *1 (-1173))) ((*1 *1) (-5 *1 (-1174))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-847)) (-5 *2 (-610 *5))
+ (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330))
+ (-5 *1 (-332)))))
+(((*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105)))))
(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-889 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094))
+ (-4 *5 (-1209)) (-5 *1 (-887 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-889 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094))
+ (-4 *5 (-1209)) (-5 *1 (-887 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-889 *5)) (-5 *3 (-641 (-1170)))
+ (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209))
+ (-5 *1 (-887 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-847))
+ (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-847))
+ (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209))
+ (-5 *2 (-316 (-564))) (-5 *1 (-935 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209))
+ (-5 *2 (-316 (-564))) (-5 *1 (-935 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6)))
+ (-4 *6 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4))))
+ (-5 *1 (-1070 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847))
+ (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-386 *4)) (-4 *4 (-1094))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5))
+ (-4 *4 (-1094)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-816 *4)) (-4 *4 (-847)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112))
+ (-5 *1 (-1150 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094))))
+ ((*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-768)) (|:| -2485 *3))))
+ (-5 *4 (-768)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790))
+ (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *3)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
(-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(-5 *2 (-641 (-225))) (-5 *1 (-204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112))
+ (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1032)) (-5 *1 (-753)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847))
+ (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3))
+ (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2))
+ (-4 *2 (-683 *3 *5 *6)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790))
+ (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))))
+(((*1 *1) (-5 *1 (-506))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209))
+ (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *7 *2)) (-4 *6 (-1046))
+ (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
+ (-4 *3 (-1060 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
+ (-4 *3 (-1060 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-968)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))
+ ((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1) (-4 *1 (-866 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789))
+ (-4 *4 (-847)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-918)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3))
+ (-4 *3 (-363)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094))
+ (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))
+ (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))
+ (-5 *1 (-1071 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-430 *4) (-999))) (-4 *4 (-13 (-847) (-556)))
+ (-5 *1 (-276 *4 *2)))))
(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-845)))
+ (-5 *2 (-641 (-2 (|:| -3020 (-641 *3)) (|:| -2000 *5))))
+ (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-363) (-845)))
+ (-5 *2 (-641 (-2 (|:| -3020 (-641 *3)) (|:| -2000 *4))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
(-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
(-5 *2 (-1032)) (-5 *1 (-744)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-641
+ (-2
+ (|:| -1350
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -2575
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1150 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4167
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-559)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1) (-5 *1 (-1076))))
(((*1 *1 *2 *3)
(-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *1 *2)
(-12 (-4 *2 (-1046)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
(-4 *5 (-238 *3 *2)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1058)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-612 (-1170)))
+ (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *2 (-1159 (-641 (-949 *4)) (-641 (-294 (-949 *4)))))
+ (-5 *1 (-504 *4 *5 *6 *7)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564)))
+ (-5 *1 (-880)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8)))
+ (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790))
+ (-5 *2
+ (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8))
+ (|:| |Lfact|
+ (-641 (-2 (|:| -4139 (-1166 *8)) (|:| -3078 (-564)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-739 *6 *7 *8 *9)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-918)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-363)) (-14 *5 (-990 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))
+ ((*1 *1 *1) (-5 *1 (-379)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
+ (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-34)) (-5 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-843)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52))
+ (-5 *1 (-1002)))))
(((*1 *2 *3 *3 *4)
(-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5))
(-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6))
@@ -10424,14 +9225,175 @@
(-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5))
(-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6))
(-4 *6 (-452)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4))
+ (-4 *4 (-847))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1094)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6)))
+ (-4 *6 (-363))
+ (-5 *2
+ (-641
+ (-2 (|:| |outval| *7) (|:| |outmult| (-564))
+ (|:| |outvect| (-641 (-685 *7))))))
+ (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-845))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-847)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-949 (-564))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-641 (-1170)))
+ (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed"))
+ (|:| |hom| (-641 (-1259 (-768))))))
+ (-5 *1 (-236)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
(((*1 *2)
(-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
(-4 *4 (-417 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-847)))
+ (-5 *1 (-1124 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-768)) (-4 *5 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-685 *2)) (-5 *4 (-564))
+ (-4 *2 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
+ (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
(((*1 *2 *2 *3 *4)
(-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8))
(-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556))
(-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-974 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4))))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1094)) (-5 *1 (-961 *3 *2)) (-4 *3 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4))))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-949 *6))))
+ (-5 *3 (-407 (-949 *6)))
+ (-4 *6 (-13 (-556) (-1035 (-564)) (-147)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-570 *6)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1032))
+ (-5 *1 (-743)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4)))
+ (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
+ (-5 *1 (-176 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924))
(-5 *1 (-922 *3)) (-4 *3 (-612 (-536)))))
@@ -10464,8 +9426,219 @@
((*1 *1 *2 *3)
(-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225)))
(-5 *1 (-924)))))
+(((*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-641 (-1024 *5 *6 *7 *3))) (-5 *1 (-1024 *5 *6 *7 *3))
+ (-4 *3 (-1060 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-641 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3))
+ (-4 *3 (-1060 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-131)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-845) (-363))) (-5 *2 (-112)) (-5 *1 (-1056 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452))))
+ ((*1 *1 *1 *1) (-4 *1 (-452)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-768)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307))
+ (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5))
+ (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-307))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-913 *4 *5 *6 *7))
+ (-4 *7 (-946 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-918)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2))
+ (-4 *2 (-1235 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-452)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-967))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-991))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1033))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1068)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4378 *4)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-407 (-564))))
+ (-5 *2 (-2 (|:| -2491 (-1150 *4)) (|:| -2502 (-1150 *4))))
+ (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3))
+ (-4 *3 (-13 (-430 *7) (-27) (-1194)))
+ (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3))
+ (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194)))
+ (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225)))
+ (-5 *1 (-693))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225)))
+ (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-940 (-225)) (-225) (-225)))
+ (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147))
+ (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
+ (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-786)) (-5 *5 (-564)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)) (-5 *3 (-1152)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564))
+ (-5 *1 (-1104)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))))
(((*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2))
+ (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4412) (-6 -4413))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4412) (-6 -4413)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880))
+ (-5 *3 (-641 (-564)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880))
+ (-5 *3 (-641 (-564))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-379)) (-5 *1 (-192)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
(((*1 *2 *1)
(-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3)))))
((*1 *1 *2)
@@ -10474,18 +9647,290 @@
(-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-430 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *4))
+ (-4 *4 (-430 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *4))
+ (-4 *4 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302))))
+ ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *4 (-847)) (-5 *1 (-429 *3 *4))
+ (-4 *3 (-430 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *4))
+ (-4 *4 (-430 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-847))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *4))
+ (-4 *4 (-13 (-430 *3) (-999) (-1194)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -1817 (-641 *1)) (|:| -1729 *1)))
+ (-5 *3 (-641 *1)))))
+(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))
+ ((*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790))
+ (-4 *3 (-847)) (-5 *2 (-768)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-949 *8))))
+ (-5 *5 (-768)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147)))
+ (-4 *11 (-946 *8 *10 *9)) (-4 *9 (-13 (-847) (-612 (-1170))))
+ (-4 *10 (-790))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-641
+ (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11))
+ (|:| |wcond| (-641 (-949 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1259 (-407 (-949 *8))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *8))))))))))
+ (|:| |rgsz| (-564))))
+ (-5 *1 (-921 *8 *9 *10 *11)) (-5 *7 (-564)))))
+(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4))
+ (-5 *1 (-811 *4 *3)) (-4 *3 (-652 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3))
+ (-4 *3 (-644 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3))
+ (-4 *3 (-644 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046))))
+ ((*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))))
(((*1 *1 *1) (-4 *1 (-627)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
(-4 *2 (-13 (-430 *3) (-999) (-1194))))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452))))
+ ((*1 *1 *1 *1) (-4 *1 (-452))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046))
+ (-5 *1 (-1154 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046))
+ (-14 *4 (-1170)) (-14 *5 *3))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1) (|partial| -4 *1 (-719))))
+(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))))
+(((*1 *2)
+ (-12 (-5 *2 (-685 (-907 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918))
+ (-14 *4 (-918))))
+ ((*1 *2)
+ (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
+ (-14 *4
+ (-3 (-1166 *3)
+ (-1259 (-641 (-2 (|:| -3387 *3) (|:| -3338 (-1114)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-918)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1046))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-940 (-225))) (-5 *2 (-225)) (-5 *1 (-1205))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4))
(-4 *4 (-38 (-407 (-564))))
(-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
+ ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
+ ((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4403)) (-4 *1 (-404))))
+ ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918))))
+ ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1150 (-564))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-709 *3 *4))
+ (-4 *4 (-1235 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
+ (-4 *3 (-1235 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
+ (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-790))
+ (-4 *3 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))) (-4 *5 (-556))
+ (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1046)) (-4 *5 (-790))
+ (-4 *3
+ (-13 (-847)
+ (-10 -8 (-15 -2374 ((-1170) $))
+ (-15 -3832 ((-3 $ "failed") (-1170))))))
+ (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 *6))
+ (-4 *6
+ (-13 (-847)
+ (-10 -8 (-15 -2374 ((-1170) $))
+ (-15 -3832 ((-3 $ "failed") (-1170))))))
+ (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2))
+ (-4 *2 (-946 (-949 *4) *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-768))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-768)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1035 *3))
+ (-4 *2 (-363))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2))
+ (-4 *2 (-13 (-430 *4) (-999) (-1194)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194)))
+ (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1170))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-956)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))))
(((*1 *2 *3)
(-12 (-4 *2 (-363)) (-4 *2 (-845)) (-5 *1 (-942 *2 *3))
(-4 *3 (-1235 *2)))))
(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1920 (-685 (-407 (-949 *4))))
+ (|:| |vec| (-641 (-407 (-949 *4)))) (|:| -1595 (-768))
+ (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))
+ (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
+ (-4 *6 (-790))
+ (-5 *2
+ (-2 (|:| |partsol| (-1259 (-407 (-949 *4))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *4)))))))
+ (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-845)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *2 *3)
(-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
(-4 *6 (-790)) (-5 *2 (-407 (-949 *4))) (-5 *1 (-921 *4 *5 *6 *3))
(-4 *3 (-946 *4 *6 *5))))
@@ -10499,45 +9944,334 @@
(-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
(-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4))))
(-5 *1 (-921 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218))))
+ ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-748)))))
+(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))
+ (-4 *2 (-13 (-847) (-21))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170))
+ (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-984 (-407 (-564)) (-861 *3) (-240 *4 (-768))
+ (-247 *3 (-407 (-564)))))
+ (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-983 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
(-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
(-5 *2 (-1032)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452))
+ (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363))
+ (-4 *5 (-13 (-363) (-845))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556))
+ (-5 *2 (-407 (-949 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556))
+ (-5 *2 (-407 (-949 *4))))))
+(((*1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-982 *4 *2 *3 *5))
+ (-4 *4 (-349)) (-4 *5 (-721 *2 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-887 *4 *5)) (-4 *5 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999))
+ (-4 *2 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *1 *1) (-4 *1 (-493)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1046))
+ (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-849 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046))
+ (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-850 *5 *3))
+ (-4 *3 (-849 *5)))))
(((*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-233)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4))
+ (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790))
+ (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-266 *2)) (-4 *2 (-847)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4414 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
+ (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2))
+ (-4 *4 (-683 *2 *5 *6)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-768)) (-4 *5 (-172))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-768)) (-4 *5 (-172))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
+ (-247 *4 (-407 (-564)))))
+ (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-768))
+ (-5 *1 (-505 *4 *5)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847))
+ (-4 *8 (-307)) (-4 *6 (-790)) (-4 *9 (-946 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-641 (-2 (|:| -4139 (-1166 *9)) (|:| -3078 (-564)))))))
+ (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-59 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
+ (-4 *2 (-1250 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3))
+ (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1250 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147)))
+ (-5 *1 (-1146 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564))))
+ (-4 *5 (-1235 *4))
+ (-5 *2 (-2 (|:| -2537 (-407 *5)) (|:| |coeff| (-407 *5))))
+ (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-506)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))))
+(((*1 *1) (-5 *1 (-1261))))
+(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-5 *1 (-893 *2 *3))
+ (-4 *2 (-1235 *3)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1361
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-559)))))
+ (-12 (-4 *4 (-13 (-556) (-847)))
+ (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-5 *1 (-598 *4 *2 *3))
+ (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170))
+ (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3))
+ (-4 *3 (-13 (-1194) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147)))
+ (-5 *2 (-585 (-407 (-949 *5)))) (-5 *1 (-570 *5))
+ (-5 *3 (-407 (-949 *5))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
(((*1 *2 *1)
(-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
(-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-924))
+ (-5 *2
+ (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
+ (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564)))
+ (-5 *2
+ (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
+ (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
+ (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-641 (-940 (-225))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
+ (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 (-225)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3))
+ (-4 *3 (-644 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))))
+(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112))))))
+(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))))
+(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-142 *3 *4 *2))
+ (-4 *2 (-373 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-4 *2 (-373 *4))
+ (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556))
+ (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-1228 *3 *4 *2))
+ (-4 *2 (-1235 *4)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1138))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4))
+ (-4 *4 (-847)) (-5 *1 (-573 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-430 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556)))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
+(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8))
+ (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147)))
+ (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-112))
+ (-5 *1 (-921 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *1 *1 *1) (-5 *1 (-379)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6))
(-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170))))
@@ -10548,7 +10282,7 @@
(|:| |wcond| (-641 (-949 *5)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1259 (-407 (-949 *5))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *5))))))))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *5))))))))))
(-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-641 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-946 *5 *7 *6))
@@ -10560,7 +10294,7 @@
(|:| |wcond| (-641 (-949 *5)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1259 (-407 (-949 *5))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *5))))))))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *5))))))))))
(-5 *1 (-921 *5 *6 *7 *8))))
((*1 *2 *3)
(-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5))
@@ -10572,7 +10306,7 @@
(|:| |wcond| (-641 (-949 *4)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1259 (-407 (-949 *4))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *4))))))))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *4))))))))))
(-5 *1 (-921 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-685 *9)) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7))
@@ -10584,7 +10318,7 @@
(|:| |wcond| (-641 (-949 *6)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1259 (-407 (-949 *6))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *6))))))))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *6))))))))))
(-5 *1 (-921 *6 *7 *8 *9)) (-5 *4 (-641 *9))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-918))
@@ -10596,7 +10330,7 @@
(|:| |wcond| (-641 (-949 *6)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1259 (-407 (-949 *6))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *6))))))))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *6))))))))))
(-5 *1 (-921 *6 *7 *8 *9))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-685 *8)) (-5 *4 (-918)) (-4 *8 (-946 *5 *7 *6))
@@ -10608,7 +10342,7 @@
(|:| |wcond| (-641 (-949 *5)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1259 (-407 (-949 *5))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *5))))))))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *5))))))))))
(-5 *1 (-921 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152))
@@ -10639,149 +10373,53 @@
(-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147)))
(-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564))
(-5 *1 (-921 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170)))
- (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 (-949 *6))) (-4 *6 (-556))
- (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2))
- (-4 *5 (-790))
- (-4 *4 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| -4217 (-621 *4 *5)) (|:| -3643 (-407 *5))))
- (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4))
- (-14 *3 (-918)) (-4 *4 (-1046))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-452)) (-4 *3 (-1046))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1235 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *2 (-13 (-1094) (-34))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4))
- (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1035 (-564)))
- (-4 *4 (-13 (-847) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-610 *1)) (-4 *1 (-1046)) (-4 *1 (-302))
- (-5 *2 (-1166 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349))
- (-5 *2 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114))))))
- (-5 *1 (-346 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248)))))
+ (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
+ (-4 *3 (-1235 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
(-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-641 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *2 (-897 *5)) (-5 *1 (-688 *5 *2 *3 *4))
- (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-719)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-5 *2 (-1166 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-837))))
+ ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379))))
+ (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1032))
+ (-5 *1 (-837))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379)))
+ (-5 *5 (-641 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-837))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1032))
+ (-5 *1 (-837))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379)))
+ (-5 *2 (-1032)) (-5 *1 (-837)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-1259 *3))
- (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5))
- (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-1272 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556))
- (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046))
- (-5 *2 (-641 (-641 (-940 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *4 (-1046))
- (-4 *1 (-1128 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 (-940 *3)))) (-4 *3 (-1046))
- (-4 *1 (-1128 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112))
- (-4 *1 (-1128 *4)) (-4 *4 (-1046))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112))
- (-4 *1 (-1128 *4)) (-4 *4 (-1046))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-641 (-641 (-940 *5)))) (-5 *3 (-641 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-641 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564))))))
- (-5 *2 (-641 (-225))) (-5 *1 (-305)))))
-(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *4 (-610 $)) $))
- (-15 -1517 ((-1119 *4 (-610 $)) $))
- (-15 -1765 ($ (-1119 *4 (-610 $))))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))))
+ (-12 (-5 *4 (-768)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
+(((*1 *1 *1) (-5 *1 (-1058))))
+(((*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6))
+ (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-949 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6))
+ (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564))
+ (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1014 *6)))))
(((*1 *2 *2 *3 *3)
(-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4))
(-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3))))
@@ -10881,94 +10519,223 @@
((*1 *2 *1 *3)
(-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
(|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3))
- (|:| |genIdeal| (-504 *3 *4 *5 *6))))
- (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1046))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1502 *1)))
- (-4 *1 (-849 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-837))))
- ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379))))
- (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1032))
- (-5 *1 (-837))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379)))
- (-5 *5 (-641 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-837))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1032))
- (-5 *1 (-837))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379)))
- (-5 *2 (-1032)) (-5 *1 (-837)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1235 *9)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-307))
- (-4 *10 (-946 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-641 (-1166 *10)))
- (|:| |dterm|
- (-641 (-641 (-2 (|:| -2748 (-768)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10))))
- (-5 *1 (-775 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6))
- (-5 *5 (-641 *10)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564)))))
- (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-800)))))
-(((*1 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046))
- (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7)))
- (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-771)) (-5 *1 (-52)))))
-(((*1 *2)
- (-12 (-4 *1 (-349))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+ (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4))
+ (-5 *3 (-641 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1046))
- (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))
+ (|partial| -12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2667 (-641 *7))))
+ (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-918)) (-4 *5 (-1046))
- (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284)))
- (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112))
- (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -1765 ($ *7)))))
- (-4 *7 (-845))
- (-4 *8
- (-13 (-1237 *3 *7) (-363) (-1194)
- (-10 -8 (-15 -3226 ($ $)) (-15 -3591 ($ $)))))
+ (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3))
+ (-4 *3 (-1046))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-816 *4)) (-4 *4 (-847)) (-4 *1 (-1276 *4 *3))
+ (-4 *3 (-1046)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
+ (-4 *3 (-1235 *2)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170)))
+ (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))))
- (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8))
- (-14 *10 (-1170)))))
-(((*1 *2)
- (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1150 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4167
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-559)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))))
+ (-12 (-5 *3 (-918)) (-5 *1 (-1029 *2))
+ (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-847))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209))
+ (-5 *2 (-641 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-734 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-862)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
+ (-5 *2 (-1032)) (-5 *1 (-753)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130)))))
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-847) (-556))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))))
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166 (-949 *6))) (-4 *6 (-556))
+ (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2))
+ (-4 *5 (-790))
+ (-4 *4 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-940 (-225)) (-225) (-225)))
+ (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1194) (-999))))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
+ (-4 *3 (-1060 *6 *7 *8))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
+ (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -4011 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8))
+ (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847))
+ (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -4011 *9))))
+ (-5 *1 (-1102 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556))
+ (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918))
+ (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
+ (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556))
+ (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
+ (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847))
+ (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556))
+ (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379)))
+ (-5 *1 (-782 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194)))
+ (-5 *1 (-583 *4 *2))
+ (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-585 (-407 (-949 *4))))
+ (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
+ (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-768) (-768))) (-5 *1 (-386 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3))))
+ ((*1 *1 *1) (-4 *1 (-1197))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536))))
((*1 *2 *3 *2)
@@ -10980,76 +10747,59 @@
((*1 *2 *3 *2 *4)
(-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-701 *3))
(-4 *3 (-612 (-536))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (|has| *4 (-6 (-4413 "*")))
- (-4 *4 (-1046)) (-5 *1 (-1025 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918))
- (|has| *4 (-6 (-4413 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))))
(((*1 *2 *3 *1)
(|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-5 *2 (-2 (|:| -2351 *3) (|:| -1327 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5))))
- (-5 *1 (-1123 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-13 (-307) (-847) (-147)))
- (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5))))
- (-5 *1 (-1123 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-294 (-407 (-949 *4))))
- (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4))))
- (-5 *1 (-1123 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-307) (-847) (-147)))
- (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-407 (-949 *4))))
- (-4 *4 (-13 (-307) (-847) (-147)))
- (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-294 (-407 (-949 *5))))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-307) (-847) (-147)))
- (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-294 (-407 (-949 *4)))))
- (-4 *4 (-13 (-307) (-847) (-147)))
- (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))))
+ (-5 *2 (-2 (|:| -1350 *3) (|:| -2575 *4))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094))
+ (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-845)) (-4 *5 (-363))
+ (-5 *2 (-768)) (-5 *1 (-942 *5 *6)) (-4 *6 (-1235 *5)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -4363 (-1152))))
- (-5 *1 (-819)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564))))))
- (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-845)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-294 (-407 (-949 (-169 (-564)))))))
- (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-845)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 (-169 (-564)))))
- (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-845)))))
+ (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3))
+ (-4 *3 (-1094)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871))
+ (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-468))
+ (-5 *1 (-1263))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-949 (-169 (-564))))))
- (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4))
- (-4 *4 (-13 (-363) (-845))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094))
- (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194))))
- ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-847)))))
+ (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263)))
+ (-5 *2 (-468)) (-5 *1 (-1263)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3))))
+ ((*1 *1 *1) (-4 *1 (-1197))))
(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))
((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090))))
((*1 *2 *1)
@@ -11058,82 +10808,143 @@
((*1 *1 *1 *2)
(-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847))
- (-5 *2 (-2 (|:| -1662 (-564)) (|:| |var| (-610 *1))))
- (-4 *1 (-430 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))
- (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-836))
- (-5 *3
- (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225)))
- (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-840 (-225))))))
- (-5 *2 (-1032))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-836))
- (-5 *3
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))
- (-5 *2 (-1032)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 (-768))) (-5 *1 (-966 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170))
- (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *2 (-1264))
- (-5 *1 (-1173))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1170))
- (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void"))) (-5 *2 (-1264))
- (-5 *1 (-1173)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3))))
+(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-986))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-641 *6))
- (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -4006 (-1166 *6)) (|:| -3747 (-564)))))
- (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564))
- (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 (-564)))))
- (-5 *1 (-361 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 (-768)))))
- (-5 *1 (-386 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| -4006 *3) (|:| -3747 (-564)))))
- (-5 *1 (-418 *3)) (-4 *3 (-556))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 (-768)))))
- (-5 *1 (-816 *3)) (-4 *3 (-847)))))
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209))
+ (-5 *1 (-1086 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))))
(((*1 *2 *3 *4 *5 *6 *5)
(-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
(-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-949 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
+ (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114))))))
+ (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4))
+ (-4 *4 (-1235 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-267)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225)))
+ (-5 *1 (-693)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4))
+ (-5 *2 (-2 (|:| -2024 (-621 *4 *5)) (|:| -1495 (-407 *5))))
+ (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4))
+ (-14 *3 (-918)) (-4 *4 (-1046))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-452)) (-4 *3 (-1046))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1235 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3))))
+ ((*1 *1 *1) (-4 *1 (-1197))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1046))
+ (-5 *1 (-850 *5 *2)) (-4 *2 (-849 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34)))
+ (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1046)) (-4 *1 (-1235 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-556)) (-4 *2 (-1046))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-556))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *3 (-1060 *4 *5 *6))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *1))))
+ (-4 *1 (-1066 *4 *5 *6 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1058)) (-5 *3 (-1152)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-1150 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170)))
+ (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170)))
+ (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3))))
+ ((*1 *1 *1) (-4 *1 (-1197))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209))
+ (-12 (|has| *1 (-6 -4412)) (-4 *1 (-151 *2)) (-4 *2 (-1209))
(-4 *2 (-1094))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *3))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4412)) (-4 *1 (-151 *3))
(-4 *3 (-1209))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209))))
@@ -11145,259 +10956,316 @@
((*1 *1 *2 *1)
(-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
(-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *2 (-13 (-1094) (-34))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-685 *3))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
+ (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-1035 (-407 *2)))) (-5 *2 (-564))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209))
- (-14 *4 (-564)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112))
+ (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046))))
+ ((*1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5))
+ (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5))
+ (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564)))
+ (-5 *1 (-572))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1))
+ (-4 *1 (-906)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-847))
+ (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-641 *5) *6))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5))
+ (-5 *2 (-641 (-2 (|:| -2222 *5) (|:| -4035 *3))))
+ (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6))
+ (-4 *7 (-652 (-407 *6))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1170)) (-5 *6 (-112))
+ (-4 *7 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-4 *3 (-13 (-1194) (-956) (-29 *7)))
(-5 *2
- (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4))))
- (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4))))))
- (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4)))))))
+ (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *7 *3)) (-5 *5 (-840 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2))
+ (-4 *2 (-1094))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-847))
+ (-5 *1 (-1210 *2)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1170))
- (|:| |arrayIndex| (-641 (-949 (-564))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1170)) (|:| |rand| (-859))
- (|:| |ints2Floats?| (-112))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330))
- (|:| |elseClause| (-330))))
- (|:| |returnBranch|
- (-2 (|:| -2742 (-112))
- (|:| -1451
- (-2 (|:| |ints2Floats?| (-112)) (|:| -3617 (-859))))))
- (|:| |blockBranch| (-641 (-330)))
- (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152))
- (|:| |forBranch|
- (-2 (|:| -1361 (-1086 (-949 (-564))))
- (|:| |span| (-949 (-564))) (|:| -4374 (-330))))
- (|:| |labelBranch| (-1114))
- (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4374 (-330))))
- (|:| |commonBranch|
- (-2 (|:| -4363 (-1170)) (|:| |contents| (-641 (-1170)))))
- (|:| |printBranch| (-641 (-859)))))
- (-5 *1 (-330)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
+ (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768))
(-14 *4 (-768)) (-4 *5 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3))))
+ ((*1 *1 *1) (-4 *1 (-1197))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4))
+ (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
+ (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-1060 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3))))
+ ((*1 *1 *1) (-4 *1 (-1197))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379))))
+ ((*1 *1 *1 *1) (-4 *1 (-545)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
+ ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-768)))))
+(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-291)))))
+ (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1194) (-999))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -3351 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179)))))
+ (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4))
+ (-5 *1 (-528 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564))))
- (-5 *1 (-1104)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847))
- (-4 *4 (-266 *3)) (-4 *5 (-790)))))
+ (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194)))
+ (-4 *4 (-13 (-556) (-847)))
+ (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194)))
+ (-5 *1 (-598 *4 *5 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| |deg| (-768)) (|:| -2085 *5))))
- (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5))
- (-5 *1 (-216 *4 *5))))
+ (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564)))))
+ (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2390 *5) (|:| -2538 *5))))
+ (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-652 *5))
+ (-4 *6 (-652 (-407 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-2 (|:| -4006 *5) (|:| -3344 (-564)))))
- (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5))
- (-5 *1 (-692 *5)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
- (-4 *2 (-1209)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-556))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112))
- (-5 *2 (-1032)) (-5 *1 (-742)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3))
- (-4 *3 (-13 (-430 *4) (-999))))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1361
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1032)) (-5 *1 (-305)))))
+ (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564)))))
+ (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2390 *4) (|:| -2538 *4))))
+ (-5 *1 (-804 *5 *4 *3 *6)) (-4 *3 (-652 *4))
+ (-4 *6 (-652 (-407 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564)))))
+ (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2390 *5) (|:| -2538 *5))))
+ (-5 *1 (-804 *4 *5 *6 *3)) (-4 *6 (-652 *5))
+ (-4 *3 (-652 (-407 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564)))))
+ (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2390 *4) (|:| -2538 *4))))
+ (-5 *1 (-804 *5 *4 *6 *3)) (-4 *6 (-652 *4))
+ (-4 *3 (-652 (-407 *4))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
- (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3))))
+ (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-721 *5 *7))
+ (-5 *2 (-2 (|:| -1920 (-685 *6)) (|:| |vec| (-1259 *5))))
+ (-5 *1 (-808 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4))
+ (-14 *4 (-564)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-627)))
((*1 *2 *2)
- (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363))
- (-4 *5 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1046))
- (-5 *2 (-112)) (-5 *1 (-1026 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452))
- (-5 *1 (-915 *4)))))
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999) (-1194))))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1170))
+ (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4))
- (-4 *4 (-1046)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
+ (-12 (-5 *3 (-564)) (|has| *1 (-6 -4403)) (-4 *1 (-404))
+ (-5 *2 (-918)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1035 *4)) (-4 *3 (-307))
+ (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5))
+ (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-989 *3))
+ (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564)))
+ (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $))
+ (-15 -1668 ((-1119 *3 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *3 (-610 $))))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
+ (-4 *6 (-790)) (-5 *2 (-641 *3)) (-5 *1 (-921 *4 *5 *6 *3))
+ (-4 *3 (-946 *4 *6 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2527 (-779 *3)) (|:| |coef1| (-779 *3))))
- (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-2 (|:| -2527 *1) (|:| |coef1| *1)))
- (-4 *1 (-1060 *3 *4 *5)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *2))
+ (-4 *2 (-644 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-833 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330))
+ (-5 *1 (-332)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))
- (-5 *2 (-379)) (-5 *1 (-267))))
+ (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1035 (-564)))
+ (-4 *4 (-13 (-847) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))))
+ (-12 (-5 *3 (-610 *1)) (-4 *1 (-1046)) (-4 *1 (-302))
+ (-5 *2 (-1166 *1)))))
+(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-641 (-641 (-940 (-225)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-641 (-641 (-940 (-225))))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564))
+ (-5 *2 (-685 *6)) (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1046))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4))
+ (-4 *4 (-363)) (-4 *4 (-1046))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5))
+ (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1046)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-5 *2 (-468)) (-5 *1 (-1260)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564))
+ (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))))
+ (|partial| -12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349))
+ (-5 *2 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114))))))
+ (-5 *1 (-346 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-847)) (-4 *5 (-790))
+ (-4 *6 (-556)) (-4 *7 (-946 *6 *5 *3))
+ (-5 *1 (-462 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1035 (-407 (-564))) (-363)
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $))
+ (-15 -1668 (*7 $))))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1046))
- (-5 *1 (-1154 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147)))
- (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(((*1 *1) (-5 *1 (-1079))))
-(((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *1) (-4 *1 (-545))))
+ (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046))
+ (-4 *2 (-1219 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1235 *4)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+ (-12
+ (-5 *2
+ (-641
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-790)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847))
+ (-5 *1 (-449 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438)))) (-5 *3 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-745)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))))
+(((*1 *1 *1) (-4 *1 (-627)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999) (-1194))))))
(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -3351 (-114)) (|:| |arg| (-641 (-889 *3)))))
- (-5 *1 (-889 *3)) (-4 *3 (-1094))))
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-889 *4)))
- (-5 *1 (-889 *4)) (-4 *4 (-1094)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))))
+ (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790))
+ (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))))
(((*1 *2 *1)
(-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
(-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
(-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-918)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-789))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1046)))))
(((*1 *2 *1 *3)
(-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3)
(-5 *3 (-564))))
@@ -11414,796 +11282,487 @@
(-4 *3 (-1235 *2))))
((*1 *2 *1 *3)
(-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1765 (*2 (-1170))))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3714 (*2 (-1170))))
(-4 *2 (-1046)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1))
- (-4 *1 (-1066 *4 *5 *6 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-940 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3))
- (-4 *3 (-1046))))
+ (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1046)) (-5 *1 (-711 *2 *4))
+ (-4 *4 (-644 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-816 *4)) (-4 *4 (-847)) (-4 *1 (-1276 *4 *3))
- (-4 *3 (-1046)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
- ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
- ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-564)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-307))
- (-4 *9 (-946 *8 *6 *7))
- (-5 *2 (-2 (|:| -3808 (-1166 *9)) (|:| |polval| (-1166 *8))))
- (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (|has| *1 (-6 -4412)) (-4 *1 (-373 *3))
- (-4 *3 (-1209)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5))
- (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8))
- (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *9 (-946 *8 *6 *7))
- (-4 *6 (-790)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225)))
- (-5 *2 (-1261)) (-5 *1 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094))
- (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-771)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-962)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225)))
- (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1032))
- (-5 *1 (-751)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))))
+ (-12 (-5 *3 (-361 (-114))) (-5 *1 (-833 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
+(((*1 *2 *1) (-12 (-5 *2 (-821)) (-5 *1 (-822)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-685 *3))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
+ (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-685 *3))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
+ (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+ (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6))
+ (-4 *6 (-13 (-27) (-430 *5)))
+ (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7)))
+ (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3))
+ (-4 *3 (-342 *6 *7 *8)))))
+(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2727 *3)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-902 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4))
+ (-5 *1 (-1025 *5)) (-4 *5 (-1046))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1025 *4))
+ (-4 *4 (-1046))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-902 (-564)))) (-5 *4 (-564))
+ (-5 *2 (-641 (-685 *4))) (-5 *1 (-1025 *5)) (-4 *5 (-1046))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564))))
+ (-5 *1 (-1025 *4)) (-4 *4 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
+ (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094))
- (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-1259 (-685 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4))
+ (-4 *3 (-417 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363))
+ (-5 *2 (-1259 (-685 (-407 (-949 *5))))) (-5 *1 (-1080 *5))
+ (-5 *4 (-685 (-407 (-949 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363))
+ (-5 *2 (-1259 (-685 (-949 *5)))) (-5 *1 (-1080 *5))
+ (-5 *4 (-685 (-949 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363))
+ (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
- (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918))))
- ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695))))
- ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))))
-(((*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-379)) (-5 *1 (-205)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3))))
+ (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-641
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-564)))))
+ (-4 *2 (-556)) (-5 *1 (-418 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-564))
+ (|:| -3020 (-641 (-2 (|:| |irr| *4) (|:| -2534 (-564)))))))
+ (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-918))
- (-5 *2
- (-3 (-1166 *4)
- (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114)))))))
- (-5 *1 (-346 *4)) (-4 *4 (-349)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147)))
- (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))))
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))))
+ (|partial| -12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790))
+ (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6))
+ (-4 *6 (-946 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-886 *4 *5)) (-5 *3 (-886 *4 *6)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-882 *4 *5 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-918))
- (-5 *2 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114))))))
- (-5 *1 (-346 *4)) (-4 *4 (-349)))))
+ (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564)))))
+ (-4 *5 (-1235 *4))
+ (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -4035 *5))))
+ (-5 *1 (-806 *4 *5 *3 *6)) (-4 *3 (-652 *5))
+ (-4 *6 (-652 (-407 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
- (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847))
- (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-918))))
+ (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094))
+ (-4 *2 (-847)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-797))
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-1032)))))
+(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))))
+(((*1 *1) (-5 *1 (-820))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *1 *1) (-4 *1 (-866 *2))))
+(((*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -3020 (-641 (-2 (|:| |irr| *10) (|:| -2534 (-564)))))))
+ (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-847)) (-4 *3 (-307))
+ (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-790))
+ (-5 *2
+ (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-641 (-1166 *3)))))
+ (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3))))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918))
+ (-14 *4 (-918)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-4 *1 (-1235 *4)) (-4 *4 (-1046))
+ (-5 *2 (-1259 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-641 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1209)) (-5 *2 (-1264)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4413)) (-4 *4 (-363)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3))
+ (-4 *3 (-683 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363)))
- (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6))
- (-5 *2 (-768)) (-5 *1 (-392 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-830 (-918)))))
- ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
+ (-12 (|has| *9 (-6 -4413)) (-4 *4 (-556)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *8 (-373 *7))
+ (-4 *9 (-373 *7)) (-5 *2 (-641 *6))
+ (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6))
+ (-4 *10 (-683 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4))
- (-4 *4 (-1235 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-737 *4 *3)) (-4 *4 (-1046))
- (-4 *3 (-847))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847))
- (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))
+ (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
- (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6)))
- (-4 *8 (-342 *5 *6 *7))
- (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-768))
- (-5 *1 (-908 *4 *5 *6 *7 *8))))
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3))
+ (-4 *3 (-683 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
+ (-5 *2 (-641 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7)))
+ (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790))
+ (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8)))
+ (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
- (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4)))
- (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-768))
- (-5 *1 (-909 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363))
- (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4))
- (-4 *9 (-13 (-368) (-363))) (-5 *2 (-768))
- (-5 *1 (-1015 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556))
- (-5 *2 (-768))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7)))
+ (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790))
+ (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8)))
+ (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-1060 *3 *4 *2)) (-4 *2 (-847))))
((*1 *2 *1)
- (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))))
-(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170))
- (-14 *4 *2))))
+ (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-210)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094))
- (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4))))
- (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-918)) (-4 *5 (-1094))
- (-4 *6 (-13 (-1046) (-883 *5) (-847) (-612 (-889 *5))))
- (-4 *2 (-13 (-430 *6) (-883 *5) (-612 (-889 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790))
- (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2076 (-641 *9)) (|:| -3853 *4) (|:| |ineq| (-641 *9))))
- (-5 *1 (-985 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9))
- (-4 *4 (-1066 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790))
- (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2076 (-641 *9)) (|:| -3853 *4) (|:| |ineq| (-641 *9))))
- (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9))
- (-4 *4 (-1066 *6 *7 *8 *9)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
- (-4 *3 (-556)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1046))
- (-5 *1 (-850 *5 *2)) (-4 *2 (-849 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5))
- (-4 *4 (-1094)) (-4 *5 (-1094)))))
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
+ (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1264))
+ (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152))
+ (-5 *1 (-241))))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-4 *2 (-897 *5)) (-5 *1 (-688 *5 *2 *3 *4))
+ (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5))))
- (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-768)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6))
- (|:| -1353 *6)))
- (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1032)) (-5 *1 (-751)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
+ (-14 *5 (-641 (-1170)))
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307))
- (-5 *2 (-768)) (-5 *1 (-455 *5 *3)))))
-(((*1 *2 *1 *1)
- (-12
+ (-641 (-2 (|:| -3924 (-1166 *4)) (|:| -3867 (-641 (-949 *4))))))
+ (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
(-5 *2
- (-2 (|:| -1662 *3) (|:| |gap| (-768)) (|:| -3741 (-779 *3))
- (|:| -2746 (-779 *3))))
- (-5 *1 (-779 *3)) (-4 *3 (-1046))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847))
+ (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5))))))
+ (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5)))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
(-5 *2
- (-2 (|:| -1662 *1) (|:| |gap| (-768)) (|:| -3741 *1)
- (|:| -2746 *1)))
- (-4 *1 (-1060 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5))))))
+ (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5)))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
(-5 *2
- (-2 (|:| -1662 *1) (|:| |gap| (-768)) (|:| -3741 *1)
- (|:| -2746 *1)))
- (-4 *1 (-1060 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564))))
- (-4 *5 (-883 (-564)))
- (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-567 *5 *3)) (-4 *3 (-627))
- (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-840 *2)) (-4 *2 (-1133))
- (-4 *2 (-13 (-27) (-1194) (-430 *5)))
- (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564)))
- (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))))
- (-5 *1 (-567 *5 *2)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225)))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1032)) (-5 *1 (-750)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4))
- (-4 *4 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
-(((*1 *1 *2 *2)
- (-12
+ (-641 (-2 (|:| -3924 (-1166 *5)) (|:| -3867 (-641 (-949 *5))))))
+ (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5)))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1032)) (-5 *1 (-751)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-768))) (-5 *6 (-768))
+ (-641 (-2 (|:| -3924 (-1166 *4)) (|:| -3867 (-641 (-949 *4))))))
+ (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-949 *4)))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 (-840 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
(-5 *2
- (-2 (|:| |contp| (-564))
- (|:| -2362 (-641 (-2 (|:| |irr| *3) (|:| -1490 (-564)))))))
- (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *2)
- (-12
+ (-3 (-840 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-840 *3) "failed")))
+ "failed"))
+ (-5 *1 (-634 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-840 *3)) (-5 *1 (-634 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 (-840 (-949 *5)))) (-4 *5 (-452))
(-5 *2
- (-1259 (-641 (-2 (|:| -1451 (-907 *3)) (|:| -1403 (-1114))))))
- (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918))))
- ((*1 *2)
- (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1451 *3) (|:| -1403 (-1114))))))
- (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1259 (-641 (-2 (|:| -1451 *3) (|:| -1403 (-1114))))))
- (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *6))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1094)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1094)))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *1 *2 *2)
- (-12
+ (-3 (-840 (-407 (-949 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-840 (-407 (-949 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5)))
+ (-4 *5 (-452))
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-245 *3)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1170))
- (-4 *5 (-13 (-556) (-1035 (-564)) (-147)))
- (-5 *2
- (-2 (|:| -2745 (-407 (-949 *5))) (|:| |coeff| (-407 (-949 *5)))))
- (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
-(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-702 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174)))))
+ (-3 (-840 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-840 *3) "failed")))
+ "failed"))
+ (-5 *1 (-635 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-294 (-407 (-949 *6)))) (-5 *5 (-1152))
+ (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-840 *3))
+ (-5 *1 (-635 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-556) (-147)))
- (-5 *2 (-2 (|:| -3538 *3) (|:| -3549 *3))) (-5 *1 (-1229 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046))
- (-5 *1 (-1154 *3)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-5 *3 (-1259 (-316 (-225))))
(-5 *2
- (-3 (|:| I (-316 (-564))) (|:| -3378 (-316 (-379)))
- (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
- (-5 *1 (-1169)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-847) (-556))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
- (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-918))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-918))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4))
- (-5 *1 (-729 *5 *4 *6 *2)) (-5 *3 (-407 (-949 *6))) (-4 *5 (-790))
- (-4 *4 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-452)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-819)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4))
- (-5 *1 (-419 *4))))
- ((*1 *1 *1) (-5 *1 (-923)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
- ((*1 *1 *1) (-5 *1 (-924)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))
- (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))
- (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))
- (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3538 (-407 (-564))) (|:| -3549 (-407 (-564)))))
- (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+ (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564))
+ (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))))
+ (-5 *1 (-305)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 *4))))
+ (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
(-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-192)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-779 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556))
- (-4 *3 (-1046)) (-4 *2 (-789))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-1166 *3)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-968)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556))
- (-4 *3 (-1046))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170))
- (-4 *3 (-1046)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-578))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452))
- (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *2 (-768))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5))
- (-14 *4 (-918)) (-4 *5 (-1046))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046))
- (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))
- (-4 *2 (-452))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2))
- (-4 *4 (-1235 (-407 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847)) (-4 *3 (-452))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-452))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2))
- (-4 *2 (-1235 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-768)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1) (-4 *1 (-284)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-418 *4)) (-4 *4 (-556))
- (-5 *2 (-641 (-2 (|:| -1662 (-768)) (|:| |logand| *4))))
- (-5 *1 (-320 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
- (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564)))))
- (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4))
- (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-768))))
- ((*1 *1 *1) (-4 *1 (-402))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564))))
- (-5 *1 (-190)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5))))
- (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-1230 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-861 *4)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6))
- (-4 *6 (-452)))))
+ (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
+ (-5 *1 (-205)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-768)) (-5 *3 (-940 *4)) (-4 *1 (-1128 *4))
- (-4 *4 (-1046))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-768)) (-5 *4 (-940 (-225))) (-5 *2 (-1264))
- (-5 *1 (-1261)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-768))
- (-5 *2 (-685 (-225))) (-5 *1 (-267)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225)))
- (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-747)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046))
- (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564))))
- (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114))))))
- (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4)))))
-(((*1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094))
- (-4 *3 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-768)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *3))
- (-4 *3 (-1209))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556))
- (-4 *5 (-790)) (-4 *3 (-847)) (-4 *2 (-1060 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-5 *1 (-1206 *2)) (-4 *2 (-1209)))))
+ (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-889 *4))
+ (-4 *4 (-1094)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6))
- (-5 *2 (-641 (-2 (|:| -3439 *1) (|:| -1589 (-641 *7)))))
- (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1056 (-1021 *3) (-1166 (-1021 *3))))
- (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4))
+ (-4 *4 (-38 (-407 (-564))))
+ (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-847) (-556))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-4 *4 (-1060 *6 *7 *8)) (-5 *2 (-1264))
- (-5 *1 (-773 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
- (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
- (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
- ((*1 *1 *1) (-4 *1 (-284)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-749)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209))))
((*1 *1 *2)
- (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5))
- (-14 *5 (-918))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
- (-5 *1 (-1156 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564)))))
- (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4))
- (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)))
- (-5 *2 (-840 *4)) (-5 *1 (-313 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170))
- (-14 *6 *4)))
+ (-12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170)))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170)))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170)))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170)))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170)))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5))
+ (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170)))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2))
+ (-14 *4 (-641 *2)) (-4 *5 (-387))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5))
+ (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441))))
((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)))
- (-5 *2 (-840 *4)) (-5 *1 (-1245 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170))
- (-14 *6 *4))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112))
- (-5 *1 (-263)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3))
- (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3)))
- (-4 *3 (-13 (-430 *6) (-27) (-1194)))
- (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170)))
- (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *6 (-897 *5)) (-5 *2 (-685 *6))
- (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6))
- (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))))
-(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8)))
- (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790))
+ (-12
(-5 *2
- (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8))
- (|:| |Lfact|
- (-641 (-2 (|:| -4006 (-1166 *8)) (|:| -3747 (-564)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-739 *6 *7 *8 *9)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-4 *1 (-404))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
-(((*1 *1) (-5 *1 (-437))))
-(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-847)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-918)) (-4 *6 (-13 (-556) (-847)))
- (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6))
- (-4 *5 (-1046))))
- ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194)))
- (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
- (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-585 (-407 (-949 *4))))
- (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
- (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4))))
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-641 (-1088 (-840 (-225)))))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+ (-5 *1 (-766))))
((*1 *2 *1)
- (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1143 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845))
- (-4 *2 (-1143 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *1 (-805))))
((*1 *2 *1)
- (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1046))))
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225)))
+ (|:| |lb| (-641 (-840 (-225))))
+ (|:| |cf| (-641 (-316 (-225))))
+ (|:| |ub| (-641 (-840 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-641 (-316 (-225))))
+ (|:| -3304 (-641 (-225)))))))
+ (-5 *1 (-838))))
((*1 *2 *1)
- (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-1046)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-131)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225)))
- (-5 *1 (-693))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225)))
- (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-940 (-225)) (-225) (-225)))
- (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677)))))
-(((*1 *2)
- (-12 (-5 *2 (-685 (-907 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918))
- (-14 *4 (-918))))
- ((*1 *2)
- (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
- (-14 *4
- (-3 (-1166 *3)
- (-1259 (-641 (-2 (|:| -1451 *3) (|:| -1403 (-1114)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-918)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-641 (-316 (-225))))
+ (|:| |constraints|
+ (-641
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-768)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
+ (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
+ (|:| |tol| (-225))))
+ (-5 *1 (-895))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2)
+ (-4012
+ (-12 (-5 *2 (-949 *3))
+ (-12 (-4253 (-4 *3 (-38 (-407 (-564)))))
+ (-4253 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170))))
+ (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790))
+ (-4 *5 (-847)))
+ (-12 (-5 *2 (-949 *3))
+ (-12 (-4253 (-4 *3 (-545))) (-4253 (-4 *3 (-38 (-407 (-564)))))
+ (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170))))
+ (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790))
+ (-4 *5 (-847)))
+ (-12 (-5 *2 (-949 *3))
+ (-12 (-4253 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564))))
+ (-4 *5 (-612 (-1170))))
+ (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790))
+ (-4 *5 (-847)))))
+ ((*1 *1 *2)
+ (-4012
+ (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5))
+ (-12 (-4253 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
+ (-4 *5 (-612 (-1170))))
+ (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))
+ (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))))
+ (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046))
+ (-4 *4 (-790)) (-4 *5 (-847)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225)))
+ (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-751)))))
(((*1 *2 *3)
(-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-889 *4))
(-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5))))
@@ -12236,9 +11795,9 @@
(-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5))
(-4 *5 (-612 (-1170))) (-4 *4 (-790)) (-4 *5 (-847))))
((*1 *1 *2)
- (-4002
+ (-4012
(-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5))
- (-12 (-4254 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
+ (-12 (-4253 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
(-4 *5 (-612 (-1170))))
(-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))
(-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5))
@@ -12249,12 +11808,12 @@
(-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046))
(-4 *4 (-790)) (-4 *5 (-847))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3853 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -4011 *8)))
(-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452))
(-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152))
(-5 *1 (-1064 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -3853 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -4011 *8)))
(-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452))
(-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152))
(-5 *1 (-1139 *4 *5 *6 *7 *8))))
@@ -12286,120 +11845,6 @@
(-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170)))
(-5 *2 (-641 (-777 *4 (-861 *6)))) (-5 *1 (-1285 *4 *5 *6))
(-14 *5 (-641 (-1170))))))
-(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4))
- (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-845)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-982 *4 *2 *3 *5))
- (-4 *4 (-349)) (-4 *5 (-721 *2 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-768)) (-4 *5 (-172))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-768)) (-4 *5 (-172))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
- (-247 *4 (-407 (-564)))))
- (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-768))
- (-5 *1 (-505 *4 *5)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-5 *1 (-893 *2 *3))
- (-4 *2 (-1235 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *1 *1) (-5 *1 (-1058))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
- (-5 *2 (-1032)) (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-4 *3 (-1060 *6 *7 *8))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
- (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -3853 *9))))
- (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8))
- (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847))
- (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -3853 *9))))
- (-5 *1 (-1102 *6 *7 *4 *8 *9)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114))))))
- (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1046)) (-4 *1 (-1235 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5))
- (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5))
- (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564)))
- (-5 *1 (-572))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1))
- (-4 *1 (-906)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564)))
- (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
- (-4 *2
- (-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *3 (-610 $)) $))
- (-15 -1517 ((-1119 *3 (-610 $)) $))
- (-15 -1765 ($ (-1119 *3 (-610 $))))))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564))
- (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-564))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
-(((*1 *2)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918))
- (-14 *4 (-918)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -2152 *4))))
- (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))
((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847))))
((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-847))))
@@ -12411,11 +11856,11 @@
(-12
(-5 *2
(-2
- (|:| -2351
+ (|:| -1350
(-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
- (|:| -1327
+ (|:| -2575
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -12431,7 +11876,7 @@
(-3 (|:| |str| (-1150 (-225)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1361
+ (|:| -4167
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -12446,12 +11891,12 @@
(-12
(-5 *2
(-2
- (|:| -2351
+ (|:| -1350
(-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
(|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
(|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (|:| -1327
+ (|:| -2575
(-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
(|:| |expense| (-379)) (|:| |accuracy| (-379))
(|:| |intermediateResults| (-379))))))
@@ -12459,55 +11904,290 @@
((*1 *2 *3 *4)
(-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
(-4 *4 (-1094)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1133))))
+(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2))
+ (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4413)))))))
+(((*1 *1) (-5 *1 (-291))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1046))
+ (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-849 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046))
+ (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-850 *5 *3))
+ (-4 *3 (-849 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-918)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1046))
+ (-4 *4 (-1209))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
+ (-4 *5 (-238 (-2779 *3) (-768)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3338 *2) (|:| -3078 *5))
+ (-2 (|:| -3338 *2) (|:| -3078 *5))))
+ (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-847))
+ (-4 *7 (-946 *4 *5 (-861 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
+ (-5 *1 (-1169)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-857)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-768)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2))
+ (-4 *2 (-1235 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847)))
+ (-14 *3 (-641 (-1170))))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
(((*1 *2 *3 *1)
(-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790))
(-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
+ (-5 *1 (-1169)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-685 (-407 (-949 (-564)))))
+ (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028))
+ (-5 *3 (-316 (-564))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6))
+ (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-847))
+ (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579)))))
(((*1 *1) (-5 *1 (-468))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-192)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-756)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330))
+ (-5 *1 (-332))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-949 (-564)))) (-5 *2 (-330))
+ (-5 *1 (-332))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046))
+ (-4 *3 (-1094)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
+ (-5 *1 (-1169)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-719)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
+ (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
+ (-4 *4 (-1235 *3))
+ (-5 *2
+ (-2 (|:| -4339 (-685 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-685 *3))))
+ (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1235 (-564)))
+ (-5 *2
+ (-2 (|:| -4339 (-685 (-564))) (|:| |basisDen| (-564))
+ (|:| |basisInv| (-685 (-564)))))
+ (-5 *1 (-765 *3 *4)) (-4 *4 (-409 (-564) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4))
+ (-5 *2
+ (-2 (|:| -4339 (-685 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-685 *4))))
+ (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-721 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4))
+ (-5 *2
+ (-2 (|:| -4339 (-685 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-685 *4))))
+ (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094))
+ (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-940 (-225)))) (-5 *1 (-1260)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112))
+ (-5 *2 (-1032)) (-5 *1 (-742)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-859))))
+ ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-959)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363))
+ (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-5 *1 (-450 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363))
+ (-5 *2
+ (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6))))
+ (-5 *1 (-975 *6)) (-5 *3 (-685 *6)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2))
+ (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4))
+ (-5 *1 (-807 *4 *2))
+ (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-112))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-112)) (-5 *1 (-1198 *4 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-5 *2 (-1166 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-989 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
+ (-4 *3 (-373 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-989 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4)))
+ (-5 *1 (-689 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564)))))
+ (-4 *6 (-1235 *5))
+ (-5 *2 (-2 (|:| -4035 *7) (|:| |rh| (-641 (-407 *6)))))
+ (-5 *1 (-804 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6)))
+ (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-989 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3))
+ (-4 *3 (-1235 *5)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-316 (-564))) (|:| -3438 (-316 (-379)))
+ (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169))))
+ (-5 *1 (-1169)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2))
+ (-5 *2 (-379)) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556))
+ (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556))
+ (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847))
+ (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556))
+ (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379))
+ (-5 *1 (-782 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *2 *3)
(-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172))
(-5 *2 (-1259 (-685 (-949 *4)))) (-5 *1 (-189 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-131))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2))
- (-4 *3 (-13 (-1094) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032))
- (-5 *1 (-745)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-847)) (-4 *2 (-847))
- (-5 *1 (-609 *2 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5))
- (-4 *5 (-847)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-768))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
- (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-966 *2 *3))
- (-4 *3 (-1235 *2)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-768)) (-4 *2 (-1094))
- (-5 *1 (-674 *2)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1046)))))
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2))
+ (-4 *2 (-1250 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-974 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))
+ (-14 *4 (-1170)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -3714 ($ *4)))))
+ (-4 *4 (-845))
+ (-4 *5
+ (-13 (-1237 *2 *4) (-363) (-1194)
+ (-10 -8 (-15 -2203 ($ $)) (-15 -4039 ($ $)))))
+ (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-980 *5)) (-14 *7 (-1170)))))
+(((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-4 *4 (-1046))
+ (-5 *2 (-2 (|:| -3031 *1) (|:| -2550 *1))) (-4 *1 (-1235 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263)))
+ (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1046))
(-4 *4 (-789))))
@@ -12615,9 +12295,9 @@
(-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2745 *5) (|:| |coeff| *5)) "failed"))
+ (-5 *4 (-3 (-2 (|:| -2537 *5) (|:| |coeff| *5)) "failed"))
(-4 *5 (-363)) (-4 *6 (-363))
- (-5 *2 (-2 (|:| -2745 *6) (|:| |coeff| *6)))
+ (-5 *2 (-2 (|:| -2537 *6) (|:| |coeff| *6)))
(-5 *1 (-584 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
@@ -12736,7 +12416,7 @@
(-4 *8 (-1046)) (-4 *6 (-790))
(-4 *2
(-13 (-1094)
- (-10 -8 (-15 -1771 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))))))
+ (-10 -8 (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))))))
(-5 *1 (-948 *6 *7 *8 *5 *2)) (-4 *5 (-946 *8 *6 *7))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-955 *5)) (-4 *5 (-1209))
@@ -12749,8 +12429,8 @@
(-4 *2 (-946 (-949 *4) *5 *6)) (-4 *5 (-790))
(-4 *6
(-13 (-847)
- (-10 -8 (-15 -2127 ((-1170) $))
- (-15 -3657 ((-3 $ "failed") (-1170))))))
+ (-10 -8 (-15 -2374 ((-1170) $))
+ (-15 -3832 ((-3 $ "failed") (-1170))))))
(-5 *1 (-981 *4 *5 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556))
@@ -12837,420 +12517,391 @@
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-1282 *3 *4))
(-4 *4 (-843)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3549 *6) (|:| |sol?| (-112))) (-564)
- *6))
- (-4 *6 (-363)) (-4 *7 (-1235 *6))
- (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
- (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *2)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6))
- (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3))))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-112))
- (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-777 *4 (-861 *5)))) (-4 *4 (-452))
- (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6))
- (-4 *6 (-13 (-27) (-430 *5)))
- (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7)))
- (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3))
- (-4 *3 (-342 *6 *7 *8)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-744)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2))
- (-4 *2 (-430 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170))))
- ((*1 *1 *1) (-4 *1 (-160))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1032)) (-5 *1 (-746))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-388)) (-5 *2 (-1032)) (-5 *1 (-746)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4))
- (-14 *4 (-641 (-1170)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-450 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6))
- (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *1 (-450 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6))
- (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *1 (-450 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452))
- (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1259 *5)) (-5 *3 (-768)) (-5 *4 (-1114)) (-4 *5 (-349))
- (-5 *1 (-528 *5)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-131))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
(-12 (-5 *2 (-564))
(-5 *3
(-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4)
(|:| |polj| *4)))
(-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847))
(-5 *1 (-449 *5 *6 *7 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5))
- (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2))
- (-14 *4 (-641 *2)) (-4 *5 (-387))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5))
- (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170)))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -1361 (-641 (-1088 (-840 (-225)))))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
- (-5 *1 (-766))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *1 (-805))))
- ((*1 *2 *1)
- (-12
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209))
+ (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 (-169 (-407 (-564)))))
(-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225)))
- (|:| |lb| (-641 (-840 (-225))))
- (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-840 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-641 (-316 (-225))))
- (|:| -1611 (-641 (-225)))))))
- (-5 *1 (-838))))
+ (-641
+ (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564))
+ (|:| |outvect| (-641 (-685 (-169 *4)))))))
+ (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))
((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-641 (-316 (-225))))
- (|:| |constraints|
- (-641
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-768)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
- (|:| |tol| (-225))))
- (-5 *1 (-895))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2)
- (-4002
- (-12 (-5 *2 (-949 *3))
- (-12 (-4254 (-4 *3 (-38 (-407 (-564)))))
- (-4254 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790))
- (-4 *5 (-847)))
- (-12 (-5 *2 (-949 *3))
- (-12 (-4254 (-4 *3 (-545))) (-4254 (-4 *3 (-38 (-407 (-564)))))
- (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790))
- (-4 *5 (-847)))
- (-12 (-5 *2 (-949 *3))
- (-12 (-4254 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564))))
- (-4 *5 (-612 (-1170))))
- (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790))
- (-4 *5 (-847)))))
- ((*1 *1 *2)
- (-4002
- (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5))
- (-12 (-4254 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
- (-4 *5 (-612 (-1170))))
- (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))
- (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5))
- (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))))
- (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5))
- (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046))
- (-4 *4 (-790)) (-4 *5 (-847)))))
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
- (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *2
- (-3 (|:| |%expansion| (-313 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))))
- (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))
- (-14 *6 (-1170)) (-14 *7 *3))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
- (-5 *2 (-2 (|:| -3439 (-641 *6)) (|:| -1589 (-641 *6)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))))
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1035 *5)))
+ (-4 *5 (-883 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-928 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *1 *1) (-4 *1 (-284)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-418 *4)) (-4 *4 (-556))
+ (-5 *2 (-641 (-2 (|:| -1817 (-768)) (|:| |logand| *4))))
+ (-5 *1 (-320 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
+ (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
+ (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564)))))
+ (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4))
+ (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
+ (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7)))
+ (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5)))
+ (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))
+ (-4 *3 (-556))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032))
+ (-5 *1 (-745)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790))
- (-5 *2
- (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4))
- (|:| |genIdeal| (-504 *4 *5 *6 *7))))
- (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
+ (-4 *2 (-683 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5))
- (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))))
+ (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-1204 *3))
+ (-4 *3 (-971)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4275 *3) (|:| |coef1| (-779 *3))))
+ (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3))
- (-4 *3 (-964)))))
+ (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1046)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4))
- (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174)))))
+ (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-847)) (-4 *2 (-847))
+ (-5 *1 (-609 *2 *4)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *5 (-918))
+ (-5 *2 (-1264)) (-5 *1 (-468))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-871)) (-5 *5 (-918))
+ (-5 *2 (-1264)) (-5 *1 (-468)))))
+(((*1 *1 *1) (-5 *1 (-1058))))
(((*1 *2 *3)
- (-12 (-4 *4 (-790))
- (-4 *5 (-13 (-847) (-10 -8 (-15 -2127 ((-1170) $))))) (-4 *6 (-556))
- (-5 *2 (-2 (|:| -3382 (-949 *6)) (|:| -3851 (-949 *6))))
- (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))))
+ (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170))
+ (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-1259 *3))
+ (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
- (-5 *2 (-112))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-564))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046))
- (-4 *4 (-843)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349))
- (-5 *1 (-528 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
+(((*1 *1 *1 *1) (-4 *1 (-657))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1035 (-48)))
+ (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4))
+ (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3))
+ (-4 *3 (-1235 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847))
- (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-349))
- (-5 *2 (-641 (-2 (|:| -4006 (-564)) (|:| -3747 (-564))))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5))
+ (-4 *5 (-847)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1046)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2))
- (-4 *2 (-1235 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *2 *2)
- (-12
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *4))
+ (-4 *4 (-1209)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *5 (-556))
(-5 *2
- (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
+ (-2 (|:| |minor| (-641 (-918))) (|:| -4035 *3)
+ (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-946 *6 *4 *5))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
+ (-5 *1 (-321 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5))
+ (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-1272 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4275 *3) (|:| |coef2| (-779 *3))))
+ (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))))
+(((*1 *1 *1 *1) (-4 *1 (-657))))
+(((*1 *1 *1) (-5 *1 (-1058))))
+(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579)))))
+(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170))
+ (-5 *1 (-1173))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4275 *4)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-768))
+ (-4 *3 (-13 (-307) (-10 -8 (-15 -1592 ((-418 $) $)))))
(-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170))))
+ ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170))))
+ ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264))))
+ ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))
+ ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046))
+ (-5 *2 (-641 (-641 (-940 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *4 (-1046))
+ (-4 *1 (-1128 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 (-940 *3)))) (-4 *3 (-1046))
+ (-4 *1 (-1128 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1128 *4)) (-4 *4 (-1046))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1128 *4)) (-4 *4 (-1046))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171)))
+ (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-641 (-641 (-940 *5)))) (-5 *3 (-641 (-171)))
+ (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1046)) (-5 *1 (-1281 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
+ (-5 *1 (-1283 *3 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-966 *2 *3))
+ (-4 *3 (-1235 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-749)))))
+(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |pde| (-641 (-316 (-225))))
- (|:| |constraints|
- (-641
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-768)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
- (|:| |tol| (-225))))
- (-5 *2 (-112)) (-5 *1 (-210)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2)
- (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
+ (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))
+ (-5 *2 (-641 (-225))) (-5 *1 (-305)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-564)) (|has| *1 (-6 -4403)) (-4 *1 (-404))
+ (-5 *2 (-918)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556))
+ (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8))))
+ (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6))
+ (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-749)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-4 *1 (-404))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))))
+(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037))))
+ ((*1 *1 *1 *1) (-4 *1 (-1133))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
(-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213))
- (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1032))
- (-5 *1 (-743)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-27) (-430 *4)))
- (-4 *4 (-13 (-847) (-556) (-1035 (-564))))
- (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2))
- (-4 *2 (-342 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-1046)) (-4 *4 (-172))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))
- (-4 *3 (-172)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *3 (-641 (-263)))
- (-5 *1 (-261))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6))
- (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6))
- (-5 *1 (-629 *5 *6)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-790)) (-4 *5 (-1046)) (-4 *6 (-946 *5 *4 *2))
- (-4 *2 (-847)) (-5 *1 (-947 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1765 ($ *6)) (-15 -1507 (*6 $))
- (-15 -1517 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556))
- (-5 *2 (-1170)) (-5 *1 (-1040 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330))
- (-5 *1 (-332)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112))
- (-5 *1 (-1150 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -2781 (-641 (-1170))) (|:| -3557 (-641 (-1170)))))
- (-5 *1 (-1211)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1055))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4))
+ (-4 *4 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768))))
+ ((*1 *1 *1) (-4 *1 (-233)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
+ (-4 *4 (-1235 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
- (-14 *3 (-641 (-1170))) (-4 *4 (-387))))
+ (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3))
+ (-4 *3 (-1235 *2))))
+ ((*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4))
+ (-4 *4 (-1094))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112))
+ (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))))
+(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-1055))))
- ((*1 *1 *1) (-4 *1 (-845)))
- ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1055))))
- ((*1 *1 *1) (-4 *1 (-1055))) ((*1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+ (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-940 (-225)))))
- (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-925)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -1655 ((-1119 *4 (-610 $)) $))
+ (-15 -1668 ((-1119 *4 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *4 (-610 $))))))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
+ (-4 *1 (-721 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5))
+ (-5 *2 (-685 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+(((*1 *1) (-5 *1 (-1260))))
(((*1 *2 *3)
(|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209))))
((*1 *1 *2)
@@ -13326,26 +12977,26 @@
(-4 *1 (-973 *3 *4 *5 *6))))
((*1 *2 *1) (|partial| -12 (-4 *1 (-1035 *2)) (-4 *2 (-1209))))
((*1 *1 *2)
- (|partial| -4002
+ (|partial| -4012
(-12 (-5 *2 (-949 *3))
- (-12 (-4254 (-4 *3 (-38 (-407 (-564)))))
- (-4254 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170))))
+ (-12 (-4253 (-4 *3 (-38 (-407 (-564)))))
+ (-4253 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170))))
(-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790))
(-4 *5 (-847)))
(-12 (-5 *2 (-949 *3))
- (-12 (-4254 (-4 *3 (-545))) (-4254 (-4 *3 (-38 (-407 (-564)))))
+ (-12 (-4253 (-4 *3 (-545))) (-4253 (-4 *3 (-38 (-407 (-564)))))
(-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170))))
(-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790))
(-4 *5 (-847)))
(-12 (-5 *2 (-949 *3))
- (-12 (-4254 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564))))
+ (-12 (-4253 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564))))
(-4 *5 (-612 (-1170))))
(-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790))
(-4 *5 (-847)))))
((*1 *1 *2)
- (|partial| -4002
+ (|partial| -4012
(-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5))
- (-12 (-4254 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
+ (-12 (-4253 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564)))
(-4 *5 (-612 (-1170))))
(-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))
(-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5))
@@ -13355,682 +13006,1125 @@
(|partial| -12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5))
(-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))
(-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094))
- (-4 *2 (-131)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546))))))
-(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790))
- (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790))
- (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))
- ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))
- ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307))))
+ (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1046)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-679 *4 *5)) (-4 *4 (-1094))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927))))
((*1 *2 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))
- ((*1 *1 *1) (-4 *1 (-1055))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-917)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-768)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452))
- (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6)))
- (-5 *1 (-626 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880))
- (-5 *3 (-641 (-564))))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))))
-(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-685 *2)) (-5 *4 (-768))
- (-4 *2 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
- (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))))
+ (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170)))
- (-14 *4 (-641 (-1170))) (-4 *5 (-387)))))
-(((*1 *1) (-4 *1 (-349)))
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
+ (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4))
- (-4 *4 (-13 (-556) (-847) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5)))
- (|:| |prim| (-1166 *5))))
- (-5 *1 (-432 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-556) (-847) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3))
- (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3))))
- (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-949 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147)))
- (-5 *2
- (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564))
- (|:| |prim| (-1166 *5))))
- (-5 *1 (-957 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170)))
- (-4 *5 (-13 (-363) (-147)))
- (-5 *2
- (-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 *5)))
- (|:| |prim| (-1166 *5))))
- (-5 *1 (-957 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170))
- (-4 *6 (-13 (-363) (-147)))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| -1662 (-641 (-564))) (|:| |poly| (-641 (-1166 *6)))
- (|:| |prim| (-1166 *6))))
- (-5 *1 (-957 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790))
- (-4 *8 (-847)) (-5 *1 (-974 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-768))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1094))))
+ (-641
+ (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3))
+ (|:| |logand| (-1166 *3)))))
+ (-5 *1 (-585 *3)) (-4 *3 (-363)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094))
- (-5 *1 (-113 *4))))
+ (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094))
- (-5 *1 (-113 *4))))
+ (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1094))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046))
- (-5 *1 (-711 *3 *4))))
+ (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1235 (-169 *2)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556))
- (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-685 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3941 (-641 *6)))
- *7 *6))
- (-4 *6 (-363)) (-4 *7 (-652 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1259 *6) "failed"))
- (|:| -3941 (-641 (-1259 *6)))))
- (-5 *1 (-810 *6 *7)) (-5 *4 (-1259 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1046)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1235 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545))
- (-4 *3 (-556))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
+ (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545))
- (-4 *3 (-1094))))
+ (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545))
- (-4 *3 (-1094))))
+ (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-413 *3 *2 *4 *5))
+ (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1035 *2)))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545))
- (-5 *2 (-407 (-564)))))
+ (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3))
+ (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4))
+ (-14 *6 (-1259 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-918)) (-4 *5 (-1046))
+ (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284)))
+ (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495))))
+ (-5 *1 (-495))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349))
+ (-5 *1 (-528 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3))
- (-4 *3 (-1035 *2)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-744)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4267 *4)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-753)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5))
- (-5 *1 (-724 *5 *2)) (-4 *5 (-363)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5))
- (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-1272 *3 *4 *5 *6))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-721 *4 *2)) (-4 *2 (-1235 *4))
+ (-5 *1 (-772 *4 *2 *5 *3)) (-4 *3 (-1235 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1) (-4 *1 (-1055))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
+ (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556))
- (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))))
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
+ (-5 *4 (-316 (-379))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
+ (-5 *4 (-316 (-564))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379)))))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379)))))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
+ (-5 *4 (-316 (-690))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
+ (-5 *4 (-316 (-695))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564))))
+ (-5 *4 (-316 (-697))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564))))
+ (-4 *2 (-172)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452))
+ (-4 *5 (-847)) (-4 *6 (-790)) (-5 *1 (-984 *4 *5 *6 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
+ (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564))))
+ (-4 *5 (-883 (-564)))
+ (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-567 *5 *3)) (-4 *3 (-627))
+ (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225)))
- (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-840 (-225))))))
- (-5 *1 (-267)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-564) (-225) (-506) (-1152) (-1175)))
- (-5 *1 (-1175)))))
-(((*1 *1)
- (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094))
- (-4 *4 (-662 *3))))
- ((*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-847)) (-5 *2 (-768)) (-5 *1 (-429 *3 *4))
- (-4 *3 (-430 *4))))
- ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-544 *3)) (-4 *3 (-545))))
- ((*1 *2) (-12 (-4 *1 (-760)) (-5 *2 (-768))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-793 *3 *4))
- (-4 *3 (-794 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-988 *3 *4))
- (-4 *3 (-989 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-993 *3 *4))
- (-4 *3 (-994 *4))))
- ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1008 *3)) (-4 *3 (-1009))))
- ((*1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-768))))
- ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1054 *3)) (-4 *3 (-1055)))))
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3))
+ (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2))
+ (-4 *2 (-683 *3 *5 *6)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3))
- (-4 *3 (-1094))))
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-171))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4))
+ (-4 *4 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768))))
+ ((*1 *1 *1) (-4 *1 (-233)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-266 *3)) (-4 *3 (-847))))
+ ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
+ (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))
+ (-4 *4 (-1235 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3))
+ (-4 *3 (-1235 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-363)) (-4 *2 (-897 *3)) (-5 *1 (-585 *2))
+ (-5 *3 (-1170))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4))
+ (-4 *4 (-1094))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5))
+ (-4 *3 (-1046)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -2592 *6) (|:| |sol?| (-112))) (-564)
+ *6))
+ (-4 *6 (-363)) (-4 *7 (-1235 *6))
+ (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
+ (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
- (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3))
- (-5 *1 (-947 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $))
- (-15 -1517 (*7 $))))))))
+ (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789))
+ (-4 *5 (-847)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847))
+ (-5 *2 (-2 (|:| -1817 *1) (|:| |gap| (-768)) (|:| -2550 *1)))
+ (-4 *1 (-1060 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-2 (|:| -1817 *1) (|:| |gap| (-768)) (|:| -2550 *1)))
+ (-4 *1 (-1060 *3 *4 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *2 (-556)) (-5 *1 (-966 *2 *4))
+ (-4 *4 (-1235 *2)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225)))
+ (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-847) (-556))))))
+ (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1046))
- (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-859)))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-790)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2))
+ (-4 *4 (-452)) (-4 *6 (-847)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-307))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3))))
- (-5 *1 (-386 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3741 (-768)) (|:| -2746 (-768))))
- (-5 *1 (-768))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-1046))))
- ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))))
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1938 *4)))
- (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1) (-5 *1 (-630))))
-(((*1 *1 *1) (-4 *1 (-627)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999) (-1194))))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225)))
- (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263))))
+ (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918))
+ (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918))
+ (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170)))
+ (-14 *6 (-1259 (-685 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170)))
+ (-14 *6 (-1259 (-685 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-918)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3)))))
((*1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2))
- (-4 *2 (-683 *4 *5 *6)))))
+ (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-918))
+ (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-918)) (-5 *1 (-1027 *2))
+ (-4 *2 (-13 (-1094) (-10 -8 (-15 -1814 ($ $ $))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264))
- (-5 *1 (-1210 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264))
- (-5 *1 (-1210 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768))
+ (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-786)) (-5 *5 (-564)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-768)) (-4 *5 (-349)) (-4 *6 (-1235 *5))
+ (-5 *2
+ (-641
+ (-2 (|:| -4339 (-685 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-685 *6)))))
+ (-5 *1 (-498 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -4339 (-685 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-685 *6))))
+ (-4 *7 (-1235 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5))
- (-4 *4 (-1094)) (-4 *5 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556))
- (-4 *8 (-946 *7 *5 *6))
- (-5 *2 (-2 (|:| -3747 (-768)) (|:| -1662 *3) (|:| |radicand| *3)))
- (-5 *1 (-950 *5 *6 *7 *8 *3)) (-5 *4 (-768))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1765 ($ *8)) (-15 -1507 (*8 $)) (-15 -1517 (*8 $))))))))
-(((*1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264))
+ (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452))
+ (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))
+ (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1017 *4))
+ (-4 *4 (-1235 (-564))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-768)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
- ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044))
- (-5 *3 (-564)))))
-(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2))
- (-4 *2 (-172))))
- ((*1 *2)
- (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4))
- (-4 *3 (-409 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172))))
- ((*1 *2)
- (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-765 *3 *4))
- (-4 *4 (-409 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847)) (-4 *3 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-828)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 *5)) (-4 *5 (-556))
+ (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3035 "void")))
+ (-5 *1 (-437)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170)))
+ (-4 *2 (-13 (-430 (-169 *5)) (-999) (-1194)))
+ (-4 *5 (-13 (-556) (-847))) (-5 *1 (-598 *5 *6 *2))
+ (-4 *6 (-13 (-430 *5) (-999) (-1194))))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
+ (-4 *3 (-1060 *6 *7 *8))
(-5 *2
- (-2 (|:| -3747 (-768)) (|:| -1662 *5) (|:| |radicand| (-641 *5))))
- (-5 *1 (-320 *5)) (-5 *4 (-768))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-564)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-847)) (-5 *1 (-926 *4 *2))
- (-4 *2 (-430 *4))))
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564)))
- (-5 *1 (-927)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261))))
- ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-974 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1046))
- (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *3 *3 *4)
(-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
(-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-918)) (-4 *3 (-363))
- (-14 *4 (-990 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
- ((*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))
- ((*1 *1 *1) (|partial| -4 *1 (-719)))
- ((*1 *1 *1) (|partial| -4 *1 (-723)))
+ (-5 *2
+ (-2 (|:| |done| (-641 *4))
+ (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-847))
+ (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-847))
+ (-4 *3 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-819)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871)))
+ (-5 *4 (-641 (-918))) (-5 *5 (-641 (-263))) (-5 *1 (-468))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871)))
+ (-5 *4 (-641 (-918))) (-5 *1 (-468))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468))))
+ ((*1 *1 *1) (-5 *1 (-468))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790))
+ (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363)))
- (-4 *2 (-1235 *3))))
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790))
+ (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
+(((*1 *2)
+ (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1068))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-967))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1033))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1061))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218))))
- ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))))
-(((*1 *1 *1) (-5 *1 (-1058))))
-(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-418 *3)) (-4 *3 (-556))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -4006 *4) (|:| -3344 (-564)))))
- (-4 *4 (-1235 (-564))) (-5 *2 (-768)) (-5 *1 (-442 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296))))
+ (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312))
- (-5 *1 (-296)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-819)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1035 (-564))) (-4 *3 (-13 (-847) (-556)))
- (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1046)) (-4 *1 (-302))))
- ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3))))
- ((*1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363)))
- (-4 *2 (-1235 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))))
+ (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-753)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4))))
- (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363))
- (-4 *7 (-1235 *6))
- (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
- (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2)))
+ (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3))
+ (-4 *3 (-342 *5 *2 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-235 *3))
- (-4 *3 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4411)) (-4 *1 (-235 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094))
- (-5 *1 (-734 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-847) (-556))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170))
- (-4 *4 (-13 (-556) (-1035 (-564)) (-147))) (-5 *1 (-570 *4)))))
-(((*1 *1) (-5 *1 (-291))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-545))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-847) (-147)))
- (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5)))))
- (-5 *1 (-1123 *5))))
+ (-12 (-4 *4 (-1094)) (-4 *2 (-897 *4)) (-5 *1 (-688 *4 *2 *5 *3))
+ (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4412)))))))
+(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1425 *1) (|:| -4399 *1) (|:| |associate| *1)))
+ (-4 *1 (-556)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4))
+ (-5 *1 (-1171 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-847) (-147)))
- (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5)))))
- (-5 *1 (-1123 *5)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-744)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545)))
- ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094))))
- ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046))))
- ((*1 *1 *1)
+ (-12 (-5 *4 (-918)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3))
+ (-4 *3 (-1046)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *1 *1)
(-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
(-4 *3 (-13 (-1094) (-34))))))
-(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3))
- (-4 *3 (-1094)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-826)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-818)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4))
+ (-5 *1 (-419 *4))))
+ ((*1 *1 *1) (-5 *1 (-923)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923))))
+ ((*1 *1 *1) (-5 *1 (-924)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))
+ (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))
+ (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
+ (-4 *3 (-1235 *2)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-641
+ (-2 (|:| -1595 (-768))
+ (|:| |eqns|
+ (-641
+ (-2 (|:| |det| *7) (|:| |rows| (-641 (-564)))
+ (|:| |cols| (-641 (-564))))))
+ (|:| |fgb| (-641 *7)))))
+ (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768))
+ (-5 *1 (-921 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-545))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-847)) (-5 *4 (-641 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4))))
+ (-5 *1 (-1180 *6)) (-5 *5 (-641 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1046))
+ (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046))
+ (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046))
+ (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-5 *1 (-695))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-363)) (-5 *1 (-975 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
+ ((*1 *2 *3) (-12 (-5 *3 (-968)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225))
+ (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1032))
+ (-5 *1 (-747)))))
(((*1 *2)
(-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
(-4 *4 (-1094)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
+ (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
+ (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-962))) (-5 *1 (-291)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4))
+ (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3))
+ (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7))
+ (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-192)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-845)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -3020 (-418 *3))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-845)) (-5 *1 (-303 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147)))
+ (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
(((*1 *2 *1)
(-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2))
- (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046))))
+ (|has| *2 (-6 (-4414 "*"))) (-4 *2 (-1046))))
((*1 *2 *3)
(-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172))
(-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5))))
((*1 *2 *1)
(-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))))
+ (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4414 "*"))) (-4 *2 (-1046)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170)))
+ (-4 *5 (-452))
+ (-5 *2
+ (-2 (|:| |gblist| (-641 (-247 *4 *5)))
+ (|:| |gvlist| (-641 (-564)))))
+ (-5 *1 (-629 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1194) (-999))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
+ (-5 *2 (-1166 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
+ (-4 *3 (-13 (-1094) (-34))))))
+(((*1 *1) (-5 *1 (-144)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032))
+ (-5 *1 (-745)))))
(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-939)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
(((*1 *2 *3 *4 *3 *5)
(-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564))
(-5 *2 (-1032)) (-5 *1 (-755)))))
(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
+ (-5 *1 (-985 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
+ (-5 *1 (-1101 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1194) (-999))))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-779 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556))
+ (-4 *3 (-1046)) (-4 *2 (-789))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-1166 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-968)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556))
+ (-4 *3 (-1046))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170))
+ (-4 *3 (-1046)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-840 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4))
+ (-5 *1 (-267)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3))
+ (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3))
+ (-4 *3 (-683 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
+ (-5 *2 (-768)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
+ (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *2 *2)
(-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
((*1 *1 *1)
(-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170))
(-14 *4 *2))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2))
+ (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4412) (-6 -4413))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2))
+ (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4412) (-6 -4413)))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
+ (-4 *3 (-556)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172))
+ (-5 *1 (-660 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4))
+ (-4 *3 (-847)) (-4 *4 (-172)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
+ (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241)))))
+(((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5))
+ (-4 *3 (-1235 *4))
+ (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))))
(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4412)) (-4 *1 (-151 *2)) (-4 *2 (-1209))
+ (-4 *2 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *1) (-5 *1 (-578))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172))
+ (-4 *3 (-238 (-2779 *4) (-768)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *3))
+ (-2 (|:| -3338 *5) (|:| -3078 *3))))
+ (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-847))
+ (-4 *7 (-946 *2 *3 (-861 *4))))))
(((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-525)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-776 *4))
+ (-4 *4 (-13 (-363) (-845))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-748)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
+ (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
+ (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
+ (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-999)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))
+ ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *5 (-847)) (-5 *2 (-112))
+ (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
+ (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
+ (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))))
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556))
+ (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094))
+ (-4 *4 (-662 *3))))
+ ((*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *3 (-897 *6))
+ (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3))
+ (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4412)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-962))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1058)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3))
+ (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3))
+ (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1155 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564))))
+ (-5 *1 (-1156 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))))
(((*1 *2 *3 *3)
(-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3)))
+ (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3)))
(-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-696 *3))
+ (-12 (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-696 *3))
(-4 *3 (-307)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-847))
+ (-4 *2 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847))))
+ ((*1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1209)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379)))
+ (-5 *2 (-1032)) (-5 *1 (-837)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452))
+ (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-847)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2))
+ (-4 *3 (-13 (-847) (-556))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363))
+ (-5 *2 (-112)) (-5 *1 (-663 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4413))))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-5 *2 (-112))
+ (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-744)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-918)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1))
+ (-4 *1 (-329 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363))
+ (-4 *2 (-1235 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4))
+ (-5 *1 (-528 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-452)))))
(((*1 *1) (-5 *1 (-291))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-949 *5))))
+ (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-949 *5))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *2 (-768))
+ (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5))
+ (-14 *4 (-918)) (-4 *5 (-1046))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046))
+ (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1194) (-999))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368))
+ (-4 *6 (-1046)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1026 *6))
+ (-5 *3 (-641 (-685 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1046))
+ (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1026 *4))
+ (-5 *3 (-641 (-685 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046))
+ (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5))
+ (-5 *3 (-641 (-685 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-918)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046))
+ (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5))
+ (-5 *3 (-641 (-685 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4))))
+ (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264))
+ (-5 *1 (-449 *4 *5 *6 *7)))))
(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241))))
((*1 *2 *3)
(-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-418 *4)) (-4 *4 (-556)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2))
+ (-4 *3 (-13 (-363) (-147))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170)))
+ (-4 *6 (-13 (-556) (-1035 *5))) (-4 *5 (-556))
+ (-5 *2 (-641 (-641 (-294 (-407 (-949 *6)))))) (-5 *1 (-1036 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-545))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-840 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1194) (-29 *6)))
+ (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-224 *6 *4)))))
(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131))
+ (-5 *2 (-768))))
+ ((*1 *2)
+ (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4))
+ (-4 *3 (-329 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-361 *3)) (-4 *3 (-1094))))
+ ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-386 *3)) (-4 *3 (-1094))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1094)) (-5 *2 (-768)) (-5 *1 (-424 *3 *4))
+ (-4 *3 (-425 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-768))
+ (-5 *1 (-720 *3 *4 *5)) (-4 *3 (-721 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
+ (-4 *3 (-1235 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-843)))))
+(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))
+ (-4 *2 (-452))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2))
+ (-4 *4 (-1235 (-407 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847)) (-4 *3 (-452))))
((*1 *1 *1)
+ (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-452))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2))
+ (-4 *2 (-1235 *3)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564))))
+ (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1013 *4 *5))
+ (-5 *3 (-407 *5)))))
+(((*1 *1 *1)
(-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847))))
- ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209))
- (-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4412)) (-4 *1 (-119 *3))
- (-4 *3 (-1209))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4412)) (-4 *1 (-119 *3))
- (-4 *3 (-1209))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4412)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094))
- (-4 *2 (-1209))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4412)) (-4 *1 (-647 *2))
- (-4 *2 (-1209))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4412)) (-4 *1 (-1007 *2))
- (-4 *2 (-1209))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2))
- (-4 *2 (-1209))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *3))
- (-4 *3 (-1209))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2))
- (-4 *2 (-1209)))))
+ (-4 *4 (-847)))))
+(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1152)) (-4 *4 (-847)) (-5 *1 (-926 *4 *2))
+ (-4 *2 (-430 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564)))
+ (-5 *1 (-927)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-857)) (-5 *2 (-687 (-129))) (-5 *3 (-129)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-641 (-779 *3))) (-5 *1 (-779 *3)) (-4 *3 (-556))
+ (-4 *3 (-1046)))))
(((*1 *2 *1) (-12 (-4 *1 (-764 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379))))
+ (-5 *1 (-305)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-1060 *3 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-768)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-918)) (-4 *5 (-556)) (-5 *2 (-685 *5))
+ (-5 *1 (-953 *5 *3)) (-4 *3 (-652 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046))
+ (-5 *2 (-641 (-641 (-641 (-768))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363)))
+ (-4 *3 (-1235 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312))
+ (-5 *1 (-296)))))
(((*1 *2 *3 *4 *4 *5 *6)
(-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871))
(-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-1260))
@@ -14038,40 +14132,508 @@
((*1 *2 *3 *4)
(-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263)))
(-5 *2 (-1260)) (-5 *1 (-1263)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209))
+ (-4 *4 (-373 *2)) (-4 *5 (-373 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094))
+ (-4 *2 (-1209)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1046))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-849 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1046))
+ (-5 *1 (-850 *2 *3)) (-4 *3 (-849 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-556)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *3 (-1060 *4 *5 *6))
+ (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *1))))
+ (-4 *1 (-1066 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046))
+ (-14 *4 (-641 (-1170)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847)))
+ (-14 *4 (-641 (-1170)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-847)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4413)) (-4 *1 (-489 *3))
+ (-4 *3 (-1209)))))
(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003))))
((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-564))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-825) (-847) (-1046)))
+ (-5 *2 (-1152)) (-5 *1 (-823 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-316 *5)) (-5 *4 (-112))
+ (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152))
+ (-5 *1 (-823 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-819)) (-5 *4 (-316 *5))
+ (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264))
+ (-5 *1 (-823 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-819)) (-5 *4 (-316 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264))
+ (-5 *1 (-823 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-1152))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-825)) (-5 *3 (-112)) (-5 *2 (-1152))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *2 (-1264))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1264)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
+ (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
+ (-5 *1 (-785)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2))
+ (-4 *4 (-38 (-407 (-564)))))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-564)) (-5 *2 (-859))
+ (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-859)) (-5 *1 (-851 *3 *4 *5)) (-4 *3 (-1046))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-859)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))))
(((*1 *2 *2)
(|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
+(((*1 *1 *1 *1) (-4 *1 (-964))))
+(((*1 *1) (-5 *1 (-144))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-984 *3 *4 *5 *2))
+ (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363))
+ (-5 *2 (-641 (-294 (-949 *6)))) (-5 *1 (-538 *5 *6 *7))
+ (-4 *5 (-452)) (-4 *7 (-13 (-363) (-845))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046))
+ (-5 *3 (-564)))))
+(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4))))
+ (-5 *1 (-1070 *4 *5 *2))
+ (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1094))
+ (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))
+ (-5 *1 (-1070 *3 *4 *2))
+ (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-748)))))
(((*1 *2 *2 *3)
(-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-1 (-225) (-225) (-225) (-225)))
+ (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *1 (-693)))))
+(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-768))))
+ ((*1 *1 *1) (-4 *1 (-402))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1 *1) (-4 *1 (-473)))
+ ((*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
+ ((*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-880))))
+ ((*1 *1 *1) (-5 *1 (-968)))
+ ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
(((*1 *2 *3 *2)
(-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))))
-(((*1 *1) (-5 *1 (-578)))
- ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-860))))
- ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-860))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-860))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4))
- (-4 *4 (-1094)) (-4 *4 (-1209)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094))
+ (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-29 *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4))
+ (-5 *1 (-774 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-918))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225)))
+ (-5 *2 (-1032)) (-5 *1 (-744)))))
+(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *4)) (-4 *4 (-845)) (-4 *4 (-363)) (-5 *2 (-768))
+ (-5 *1 (-942 *4 *5)) (-4 *5 (-1235 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-452))
+ (-5 *2
+ (-641
+ (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))
+ (|:| |geneigvec| (-641 (-685 (-407 (-949 *4))))))))
+ (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))))
(((*1 *2 *2 *3 *2)
(-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094))
+ (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-866 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112))
+ (-5 *1 (-357 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564))))
+ (-5 *1 (-190)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
+ (-4 *4 (-349)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330))
+ (-5 *1 (-332)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3 *4))
+ (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *6)) (-4 *6 (-883 *5)) (-4 *5 (-1094))
+ (-5 *2 (-112)) (-5 *1 (-884 *5 *6 *4)) (-4 *4 (-612 (-889 *5))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-192)))))
(((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1260))))
((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-868 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-14 *2 (-564))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-869 *3 *4))
+ (-4 *4 (-866 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-564)) (-5 *1 (-869 *2 *3)) (-4 *3 (-866 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-1250 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1250 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112))
+ (-5 *1 (-357 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112))
+ (-5 *1 (-528 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
+ (-247 *4 (-407 (-564)))))
+ (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112))
+ (-5 *1 (-505 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-641
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225)))))
+ (-5 *1 (-559))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-5 *2 (-641 *3))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-641
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225)))))
+ (-5 *1 (-800)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
+ (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-225))) (-5 *4 (-768)) (-5 *2 (-685 (-225)))
+ (-5 *1 (-305)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166 *2)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4))
+ (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790))
+ (-4 *4 (-13 (-847) (-10 -8 (-15 -2374 ((-1170) $)))))
+ (-4 *6 (-556)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
(((*1 *2 *3)
(-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1))
(-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847))))
((*1 *2 *3)
(-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2))
+ (-4 *2 (-1235 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2))
+ (-4 *2 (-652 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5))))
+ (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1032))
+ (-5 *1 (-746)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172))))
((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2))))
((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
+ (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363))
+ (-5 *2 (-2 (|:| -3139 (-418 *3)) (|:| |special| (-418 *3))))
+ (-5 *1 (-724 *5 *3)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *3 (-641 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-263))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *2 (-1264)) (-5 *1 (-1261))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3099 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-1261))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152))))
+ ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))))
+(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-585 *3) *3 (-1170)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1170)))
+ (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1035 *4)) (-4 *3 (-430 *7))
+ (-5 *4 (-1170)) (-4 *7 (-612 (-889 (-564)))) (-4 *7 (-452))
+ (-4 *7 (-883 (-564))) (-4 *7 (-847)) (-5 *2 (-585 *3))
+ (-5 *1 (-573 *7 *3)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225))))
+ (-5 *2 (-1032)) (-5 *1 (-752)))))
+(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))))
(((*1 *1 *1 *2)
(-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
(-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -2592 *7) (|:| |sol?| (-112)))
+ (-564) *7))
+ (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7))
+ (-5 *3 (-407 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-574 *7 *8)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| -3031 *3) (|:| -2550 *3))) (-5 *1 (-1230 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
+ (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170))
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-172))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-1046)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
+ (-5 *2 (-1032)) (-5 *1 (-751)))))
(((*1 *2 *2 *3)
(|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7))
(-4 *7 (-946 *4 *5 *6)) (-4 *4 (-906)) (-4 *5 (-790))
@@ -14079,386 +14641,147 @@
((*1 *2 *2 *3)
(|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5))
(-4 *5 (-1235 *4)) (-4 *4 (-906)) (-5 *1 (-904 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1046) (-847)))
- (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4))
- (-4 *4 (-906)) (-5 *1 (-659 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 *8)) (-5 *4 (-768)) (-4 *8 (-946 *5 *7 *6))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170))))
- (-4 *7 (-790))
- (-5 *2
- (-641
- (-2 (|:| |det| *8) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564))))))
- (-5 *1 (-921 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-918)) (-4 *5 (-307)) (-4 *3 (-1235 *5))
- (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5)))
- (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3)))))
+ (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-861 *4)))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6))
+ (-4 *6 (-452)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4))))
- (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
- (|:| |expense| (-379)) (|:| |accuracy| (-379))
- (|:| |intermediateResults| (-379))))
- (-5 *1 (-800)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
+ (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5))
+ (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *3) (|:| |radicand| *6)))
+ (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-768)) (-4 *7 (-1235 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-752)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
- (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-973 *4 *5 *3 *6)) (-4 *4 (-1046)) (-4 *5 (-790))
- (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))))
+ (-12 (-4 *4 (-13 (-556) (-847)))
+ (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194)))
+ (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-999) (-1194))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5))))
- (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5)))))
- (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-758))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1058)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-847))
- (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-4 *8 (-307))
- (-5 *2 (-641 (-768))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *5 (-768)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-641 (-2 (|:| -1451 *4) (|:| -1403 (-1114))))))
- (-4 *4 (-349)) (-5 *2 (-768)) (-5 *1 (-346 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-351 *3 *4)) (-14 *3 (-918))
- (-14 *4 (-918))))
- ((*1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
- (-14 *4
- (-3 (-1166 *3)
- (-1259 (-641 (-2 (|:| -1451 *3) (|:| -1403 (-1114)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
- (-14 *4 (-918)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-171)))))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1170))
- (-5 *5 (-840 *7))
- (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-840 *6))
- (-4 *6 (-13 (-1194) (-29 *5)))
- (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-224 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452))
- (-5 *1 (-915 *4)))))
-(((*1 *1 *1) (-4 *1 (-556))))
-(((*1 *1) (-5 *1 (-330))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-556)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))))
+ (-12 (-5 *4 (-1170))
+ (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))))
+ (-5 *2 (-2 (|:| -1766 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-5 *2 (-882 *5 *6 (-641 *6)))
- (-5 *1 (-884 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-889 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-884 *5 *3 *4))
- (-4 *3 (-1035 (-1170))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-949 *3))))
- (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1046))
- (-4254 (-4 *3 (-1035 (-1170)))) (-4 *3 (-883 *5))
- (-4 *4 (-612 (-889 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1094)) (-5 *2 (-886 *5 *3)) (-5 *1 (-884 *5 *3 *4))
- (-4254 (-4 *3 (-1035 (-1170)))) (-4254 (-4 *3 (-1046)))
- (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))))
-(((*1 *2)
- (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
- (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-847)))
- (-5 *1 (-1124 *3)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-768)) (-5 *3 (-940 *4)) (-4 *1 (-1128 *4))
+ (-4 *4 (-1046))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-768)) (-5 *4 (-940 (-225))) (-5 *2 (-1264))
+ (-5 *1 (-1261)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4))))
- (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-641 (-1024 *5 *6 *7 *3))) (-5 *1 (-1024 *5 *6 *7 *3))
- (-4 *3 (-1060 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-641 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3))
- (-4 *3 (-1060 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))))
+ (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-685 *3))
+ (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1032)) (-5 *1 (-745)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-923)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564))
- (-5 *1 (-1104)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *4))
- (-4 *4 (-430 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *4))
- (-4 *4 (-430 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *4))
- (-4 *4 (-13 (-430 *3) (-999)))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302))))
- ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-847)) (-5 *1 (-429 *3 *4))
- (-4 *3 (-430 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *4))
- (-4 *4 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-847))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *4))
- (-4 *4 (-13 (-430 *3) (-999) (-1194)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))))
-(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
- (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3))
- (-4 *3 (-644 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3))
- (-4 *3 (-644 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046))))
- ((*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))))
-(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
- ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404))))
- ((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404))))
- ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918))))
- ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1150 (-564))))))
-(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *5)) (-5 *1 (-882 *3 *4 *5))
- (-4 *3 (-1094)) (-4 *5 (-662 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218))))
- ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452))
- (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363))
- (-4 *5 (-13 (-363) (-845))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1046))
- (-5 *2 (-2 (|:| -3741 *1) (|:| -2746 *1))) (-4 *1 (-849 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046))
- (-5 *2 (-2 (|:| -3741 *3) (|:| -2746 *3))) (-5 *1 (-850 *5 *3))
- (-4 *3 (-849 *5)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564))))
- (-4 *5 (-1235 *4))
- (-5 *2 (-2 (|:| -2745 (-407 *5)) (|:| |coeff| (-407 *5))))
- (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-924))
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564)))
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153))))
+ (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104)))))
+(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-641 (-940 (-225))))))
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 (-225)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -1417 (-641 *7))))
- (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))
- ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-768))))
+ (-12 (-5 *3 (-641 (-1032))) (-5 *2 (-1032)) (-5 *1 (-305))))
+ ((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1 *1) (-5 *1 (-1058)))
((*1 *2 *3)
- (-12 (-4 *4 (-1046))
- (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))
- (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-610 *3)) (-4 *3 (-847))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
+ (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4))
+ (-4 *4 (-1209))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3))))
- ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
- (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-641 (-641 (-940 (-225)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-641 (-641 (-940 (-225))))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-847)) (-4 *5 (-790))
- (-4 *6 (-556)) (-4 *7 (-946 *6 *5 *3))
- (-5 *1 (-462 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1035 (-407 (-564))) (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $))
- (-15 -1517 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+ (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1046) (-847)))
+ (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-996 *3)) (-4 *3 (-172)) (-5 *1 (-796 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-768))
+ (-5 *2 (-685 (-225))) (-5 *1 (-267)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *3 (-949 (-564)))
+ (-5 *1 (-330))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *1 (-330)))))
+(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-129)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2527 *3)))
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2727 *3)))
(-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *1 *1) (-4 *1 (-866 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
- (-14 *5 (-641 (-1170)))
- (-5 *2
- (-641 (-2 (|:| -3707 (-1166 *4)) (|:| -3072 (-641 (-949 *4))))))
- (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2
- (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5))))))
- (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5)))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2
- (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5))))))
- (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5)))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2
- (-641 (-2 (|:| -3707 (-1166 *5)) (|:| -3072 (-641 (-949 *5))))))
- (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5)))
- (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
- (-5 *2
- (-641 (-2 (|:| -3707 (-1166 *4)) (|:| -3072 (-641 (-949 *4))))))
- (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-949 *4)))
- (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1032)) (-5 *1 (-749)))))
+ (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307))
+ (-5 *2 (-641 (-768))) (-5 *1 (-775 *3 *4 *5 *6 *7))
+ (-4 *3 (-1235 *6)) (-4 *7 (-946 *6 *4 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4))
+ (-4 *4 (-906)) (-5 *1 (-659 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170)))))
+(((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *2 (-946 *4 *6 *5)) (-5 *1 (-921 *4 *5 *6 *2))
+ (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225)))
+ (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-747)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-857)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217)))))
+ (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
+ (-5 *2 (-685 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5))
+ (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7))
+ (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-112))
+ (-5 *1 (-908 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
+ (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4)))
+ (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-909 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-559))))
+(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1057))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))))
(((*1 *1 *1 *2)
(-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))
(-4 *2 (-363))))
((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225))))
((*1 *1 *1 *1)
- (-4002 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209)))
+ (-4012 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209)))
(-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209)))))
((*1 *1 *1 *1) (-4 *1 (-363)))
((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379))))
@@ -14506,86 +14829,55 @@
((*1 *1 *1 *2)
(-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1046))
(-4 *3 (-843)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1259 (-768))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
+(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6))
- (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))))
+ (-12 (-4 *4 (-1046)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6)))
+ (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))))
(((*1 *2)
- (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
- (-4 *4 (-1235 *3))
- (-5 *2
- (-2 (|:| -3941 (-685 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-685 *3))))
- (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1235 (-564)))
- (-5 *2
- (-2 (|:| -3941 (-685 (-564))) (|:| |basisDen| (-564))
- (|:| |basisInv| (-685 (-564)))))
- (-5 *1 (-765 *3 *4)) (-4 *4 (-409 (-564) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4))
- (-5 *2
- (-2 (|:| -3941 (-685 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-685 *4))))
- (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-721 *4 *5))))
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564)))
+ (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $))
+ (-15 -1668 ((-1119 *3 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *3 (-610 $))))))))))
+(((*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -4339 (-641 *1))))
+ (-4 *1 (-367 *3))))
((*1 *2)
- (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4))
- (-5 *2
- (-2 (|:| -3941 (-685 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-685 *4))))
- (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2))
- (-5 *2 (-379)) (-5 *1 (-782 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556))
- (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556))
- (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847))
- (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556))
- (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379))
- (-5 *1 (-782 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397)))))
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-453 *3 *4 *5 *6))
+ (|:| -4339 (-641 (-453 *3 *4 *5 *6)))))
+ (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7)))
- (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5)))
- (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-564))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1046)) (-5 *1 (-1281 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
- (-5 *1 (-1283 *3 *4)))))
+ (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-214 *2))
(-4 *2
(-13 (-847)
- (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 ((-1264) $))
- (-15 -3092 ((-1264) $)))))))
+ (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 ((-1264) $))
+ (-15 -2890 ((-1264) $)))))))
((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))
((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))
((*1 *1 *1 *1)
@@ -14605,149 +14897,74 @@
((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21))))
((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1235 (-169 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
- ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-413 *3 *2 *4 *5))
- (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1035 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3))
- (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4))
- (-14 *6 (-1259 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-918)) (-4 *5 (-1046))
- (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284)))
- (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495))))
- (-5 *1 (-495))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349))
- (-5 *1 (-528 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-721 *4 *2)) (-4 *2 (-1235 *4))
- (-5 *1 (-772 *4 *2 *5 *3)) (-4 *3 (-1235 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))
- ((*1 *1 *1) (-4 *1 (-1055))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3))
- (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2))
- (-4 *2 (-683 *3 *5 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+(((*1 *1 *1) (-5 *1 (-1058))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-790)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2))
- (-4 *4 (-452)) (-4 *6 (-847)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-641 (-2 (|:| -3747 (-768)) (|:| -3415 *4) (|:| |num| *4))))
- (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-112)) (-5 *1 (-437))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4))
- (-4 *4 (-172))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4))
- (-4 *4 (-172))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4))
- (-4 *4 (-172))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094))
- (-5 *1 (-671 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-710 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-1094))
- (-14 *4
- (-1 (-112) (-2 (|:| -1403 *2) (|:| -3747 *3))
- (-2 (|:| -1403 *2) (|:| -3747 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-835))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 *4))))
- (-4 *4 (-1094)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34)))
- (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5))
- (-4 *3 (-13 (-1094) (-34)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -3853 *5))))
- (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34)))
- (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3853 *4)))
- (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34)))
- (-5 *1 (-1134 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34)))))
- ((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34)))
- (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3))
- (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452))
- (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6)))))
+ (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046))
+ (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-753)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305)))))
+(((*1 *1) (-5 *1 (-291))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-847))
- (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))))
+ (-12 (-5 *3 (-924))
+ (-5 *2
+ (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
+ (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564)))
+ (-5 *2
+ (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
+ (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
+ (-5 *1 (-153)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1035 *4)) (-4 *3 (-13 (-847) (-556))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4275 *4)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-847))
+ (-4 *2 (-172))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-816 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-847))
+ (-4 *2 (-1046))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 *8)) (-5 *4 (-768)) (-4 *8 (-946 *5 *7 *6))
+ (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170))))
+ (-4 *7 (-790))
+ (-5 *2
+ (-641
+ (-2 (|:| |det| *8) (|:| |rows| (-641 (-564)))
+ (|:| |cols| (-641 (-564))))))
+ (-5 *1 (-921 *5 *6 *7 *8)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-214 *2))
(-4 *2
(-13 (-847)
- (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3463 ((-1264) $))
- (-15 -3092 ((-1264) $)))))))
+ (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3512 ((-1264) $))
+ (-15 -2890 ((-1264) $)))))))
((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209))))
((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209))))
((*1 *1 *2 *1)
@@ -14770,1144 +14987,93 @@
(-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5))
- (-5 *2
- (-2 (|:| -1600 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -4336 (-407 *6))
- (|:| |special| (-407 *6))))
- (-5 *1 (-724 *5 *6)) (-5 *3 (-407 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-893 *3 *4))
- (-4 *3 (-1235 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-768)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -3538 *3) (|:| -3549 *3))) (-5 *1 (-893 *3 *5))
- (-4 *3 (-1235 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
- (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
- (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
- (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112))
- (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452))
- (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2))
- (-4 *2 (-1250 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3)))
- (-4 *5 (-1235 *4)) (-4 *6 (-721 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2))
- (-4 *2 (-1250 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3)))
- (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147)))
- (-5 *1 (-1146 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *2 (-1060 *4 *5 *6)) (-5 *1 (-773 *4 *5 *6 *2 *3))
- (-4 *3 (-1066 *4 *5 *6 *2)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2))
+ (-4 *2 (-652 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4))
- (-5 *1 (-811 *4 *5)) (-4 *5 (-652 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-363))
- (-5 *2 (-685 *5)) (-5 *1 (-811 *5 *6)) (-4 *6 (-652 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776 'JINT 'X 'ELAM) (-1776) (-695))))
- (-5 *1 (-61 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776) (-1776 'XC) (-695))))
- (-5 *1 (-63 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1776 'X) (-1776) (-695))) (-5 *1 (-64 *3))
- (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1776) (-1776 'XC) (-695))) (-5 *1 (-66 *3))
- (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776 'X) (-1776 '-4203) (-695))))
- (-5 *1 (-71 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776) (-1776 'X) (-695))))
- (-5 *1 (-74 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776 'X 'EPS) (-1776 '-4203) (-695))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170))
- (-14 *5 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776 'EPS) (-1776 'YA 'YB) (-695))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170))
- (-14 *5 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1776) (-1776 'X) (-695))) (-5 *1 (-77 *3))
- (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1776) (-1776 'X) (-695))) (-5 *1 (-78 *3))
- (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776) (-1776 'XC) (-695))))
- (-5 *1 (-79 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776) (-1776 'X) (-695))))
- (-5 *1 (-80 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776 'X '-4203) (-1776) (-695))))
- (-5 *1 (-82 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-685 (-339 (-1776 'X '-4203) (-1776) (-695))))
- (-5 *1 (-83 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-685 (-339 (-1776 'X) (-1776) (-695)))) (-5 *1 (-84 *3))
- (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776 'X) (-1776) (-695))))
- (-5 *1 (-85 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-339 (-1776 'X) (-1776 '-4203) (-695))))
- (-5 *1 (-86 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-685 (-339 (-1776 'XL 'XR 'ELAM) (-1776) (-695))))
- (-5 *1 (-87 *3)) (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-339 (-1776 'X) (-1776 '-4203) (-695))) (-5 *1 (-89 *3))
- (-14 *3 (-1170))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-564)) (-14 *4 (-768))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172))
- (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172))
- (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172))
- (-5 *2 (-1259 (-685 (-407 (-949 *4))))) (-5 *1 (-189 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1086 (-316 *4)))
- (-4 *4 (-13 (-847) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379)))
- (-5 *1 (-258 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7))
- (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3)))
- (-14 *5 (-1170)) (-14 *6 *4)
- (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)))
- (-5 *1 (-313 *3 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5))
- (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2))
- (-4 *3 (-329 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3))
- (-4 *3 (-329 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172))
- (-5 *2 (-1283 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172))
- (-5 *2 (-1274 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))
- (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383))))
- ((*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))
- (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384))))
- ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))
- (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))
- (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170))
- (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6))
- (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170))
- (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-847) (-21)))
- (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564)))))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564)))))
- (-4 *3 (-13 (-847) (-21)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 (-949 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-847))
- (-4 *1 (-430 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-949 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-847))
- (-4 *1 (-430 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-847))
- (-4 *1 (-430 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1046)) (-4 *3 (-847))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434))))
- ((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))
- (-4 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -2353 (-641 (-330)))))
- (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1259 (-407 (-949 *3)))) (-4 *3 (-172))
- (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6))
- (-14 *4 (-918)) (-14 *5 (-641 (-1170)))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170))
- (-14 *5 *3) (-5 *1 (-474 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-741 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1046))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
- (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847))
- (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-741 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
- ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-5 *1 (-671 *3))
- (-4 *3 (-1094))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-4 *3 (-1094))
- (-5 *1 (-671 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847))))
- ((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3))
- (-4 *2 (-373 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690))))
- ((*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695))))
- ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697))))
- ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| -1662 *3) (|:| -2292 *4))))
- (-4 *3 (-1046)) (-4 *4 (-723)) (-5 *1 (-732 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-760))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -1361 (-641 (-1088 (-840 (-225)))))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
- (-5 *1 (-766))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *1 (-766))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *1 (-766))))
- ((*1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-770 *3)) (-4 *3 (-1209))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *1 (-805))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-821))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225)))
- (|:| |lb| (-641 (-840 (-225))))
- (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-840 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-641 (-316 (-225))))
- (|:| -1611 (-641 (-225)))))))
- (-5 *1 (-838))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))
- (-5 *1 (-838))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225)))
- (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-840 (-225))))))
- (-5 *1 (-838))))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-855))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-949 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-872))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-407 (-949 (-48)))) (-5 *2 (-316 (-564)))
- (-5 *1 (-872))))
- ((*1 *1 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847))))
- ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-641 (-316 (-225))))
- (|:| |constraints|
- (-641
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-768)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
- (|:| |tol| (-225))))
- (-5 *1 (-895))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-911 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-916 *4))
- (-4 *4 (-13 (-847) (-556)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964))))
- ((*1 *1 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964))))
- ((*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1030 *3)) (-4 *3 (-1209))))
- ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1030 *2)) (-4 *2 (-1209))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5))
- (-14 *6 (-641 *2))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-1040 *3)) (-4 *3 (-556))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2))
- (-4 *2 (-946 *3 (-531 *4) *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4))
- (-4 *4 (-946 *3 (-531 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-859))))
- ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170))
- (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169))))
- ((*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094))))
- ((*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-5 *1 (-1203 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1046))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5))
- (-4 *3 (-1046)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170))
- (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1260))))
- ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-172))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847))
- (-4 *4 (-172))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172))
- (-5 *1 (-1279 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-556))
- (-5 *2 (-2 (|:| -1447 (-685 *5)) (|:| |vec| (-1259 (-641 (-918))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-768)) (-4 *5 (-556))
+ (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-847))
+ (-4 *4 (-847)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))
+ ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-758))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1))
- (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-889 *3)) (|:| |den| (-889 *3))))
- (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564)))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 (-918))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5))
- (-14 *4 (-918)) (-14 *5 (-990 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4))
- (-4 *4 (-1235 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-723))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5))
- (-4 *4 (-1046)) (-4 *5 (-847))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046))
- (-4 *2 (-847))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6))
- (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046))
- (-4 *5 (-790)) (-4 *2 (-847))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-4 *2 (-946 *4 (-531 *5) *5))
- (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-847))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-949 *4)) (-5 *1 (-1203 *4))
- (-4 *4 (-1046)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
- (-4 *3 (-367 *4))))
- ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4))
- (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-845))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -3853 *4))))
- (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363)))
- (-4 *3 (-1235 *4)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1094))
- (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3))))
- (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5))
- (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5))
- (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-363)) (-4 *3 (-1046))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1502 *1)))
- (-4 *1 (-849 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
- (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-506)) (-5 *1 (-280)))))
-(((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-768)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-752)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225)))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1032)) (-5 *1 (-750)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-1060 *4 *5 *6)) (-4 *4 (-556))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
- ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
- ((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2))
- (-4 *3 (-13 (-847) (-556))))))
-(((*1 *1) (-5 *1 (-1173))))
-(((*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1003)))))
+ (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-786)) (-5 *5 (-564)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-847))) (-5 *2 (-169 *5))
- (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-999) (-1194)))
- (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
+ (-4 *2 (-683 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-225))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3)))
- (|:| |vals| (-641 *3))))
- (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))))
-(((*1 *1) (-5 *1 (-157))))
-(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170))
- (-14 *4 *2))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302))))
- ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-771)) (-5 *1 (-114)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-574 *5 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
- (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209))
- (-4 *5 (-373 *4)) (-4 *2 (-373 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *7 *2)) (-4 *6 (-1046))
- (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
-(((*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556))
- (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5)))))
-(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *4 (-1170))
- (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))))
-(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1235 (-169 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7))
- (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))
- (-4 *7 (-1209)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4))
- (-4 *4 (-1209)))))
+ (-2 (|:| |brans| (-641 (-641 (-940 *4))))
+ (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4))))
+ (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 *4)))))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3438))))
+ (-5 *2 (-1032)) (-5 *1 (-743)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-768)) (-5 *2 (-1264)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-821)) (-5 *3 (-641 (-1170))) (-5 *1 (-822)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170)))))
- (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098))
- (-5 *1 (-397))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170)))))
- (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098))
- (-5 *1 (-397))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170))
- (-5 *2 (-1098)) (-5 *1 (-397)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1046)) (-4 *4 (-847))
- (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3747 (-564))))
- (-4 *1 (-430 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1046)) (-4 *4 (-847))
- (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3747 (-564))))
- (-4 *1 (-430 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847))
- (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -3747 (-564))))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -3747 (-768))))
- (-5 *1 (-889 *3)) (-4 *3 (-1094))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-2 (|:| |var| *5) (|:| -3747 (-768))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
- (-4 *7 (-946 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -3747 (-564))))
- (-5 *1 (-947 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $))
- (-15 -1517 (*7 $))))))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
- (-5 *2 (-1032)) (-5 *1 (-753)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-847) (-556)))
- (-5 *2 (-859)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-966 *4 *3))
- (-4 *3 (-1235 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
- ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1209)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8))
- (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-590 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564))))
- (-5 *1 (-190)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-685 *4)) (-4 *5 (-652 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3))
- (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1250 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147)))
- (-5 *1 (-1146 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+ (-12 (-5 *2 (-1056 (-1021 *4) (-1166 (-1021 *4)))) (-5 *3 (-859))
+ (-5 *1 (-1021 *4)) (-4 *4 (-13 (-845) (-363) (-1019))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-417 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5))
- (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5))
- (-5 *1 (-1252 *5 *2)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9))
- (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6))
- (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046))
- (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
- (-4 *2 (-683 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1046))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-1180 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-685 *5)) (-4 *5 (-1046)) (-5 *1 (-1050 *3 *4 *5))
- (-14 *3 (-768)) (-14 *4 (-768)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6)
- (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1353 *6)))
- (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4))))
- (-5 *1 (-807 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-5 *2 (-2 (|:| -3941 (-641 (-407 *6))) (|:| -1447 (-685 *5))))
- (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-12 (-5 *3 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))
+ (-5 *2 (-407 (-564))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1046))
+ (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1044)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2))
+ (-4 *2 (-1235 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564))))
+ (-4 *2 (-172)))))
+(((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3941 (-641 *4))))
- (-5 *1 (-807 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5))
- (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
- (-5 *2 (-2 (|:| -3941 (-641 (-407 *6))) (|:| -1447 (-685 *5))))
- (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1035 (-564)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
- (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4)))
- (-4 *4 (-847)) (-5 *1 (-1180 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170))
- (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4))
- (-14 *3 (-641 (-1170))) (-4 *4 (-1046))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170)))
- (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1046))
- (-4 *5 (-238 (-2589 *3) (-768)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4))
- (-14 *3 (-641 (-1170))) (-4 *4 (-1046)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3)))
- (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7)))
- (-4 *7 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-2 (|:| -2745 *3) (|:| |coeff| *3)))
- (-5 *1 (-557 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-363) (-1194) (-999)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2)))
- (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5))
- (-4 *3 (-342 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213))
- (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1235 *4)) (-5 *2 (-685 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
- (-5 *2 (-685 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-847))
- (-4 *2 (-172))))
+ (-2 (|:| -2727 (-779 *3)) (|:| |coef1| (-779 *3))
+ (|:| |coef2| (-779 *3))))
+ (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-816 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-847))
- (-4 *2 (-1046))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| -2351 (-1170)) (|:| -1327 (-437)))))
- (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217))))))
-(((*1 *2)
- (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-417 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-766))
- (-5 *2
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))
- (-5 *1 (-565))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-766)) (-5 *4 (-1058))
- (-5 *2
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))
- (-5 *1 (-565))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-784)) (-5 *3 (-1058))
- (-5 *4
- (-2 (|:| |fn| (-316 (-225)))
- (|:| -1361 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))
- (|:| |extra| (-1032))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-784)) (-5 *3 (-1058))
- (-5 *4
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))
- (|:| |extra| (-1032))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-797)) (-5 *3 (-1058))
- (-5 *4
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-805))
- (-5 *2
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-802))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-805)) (-5 *4 (-1058))
- (-5 *2
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-802))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-836)) (-5 *3 (-1058))
- (-5 *4
- (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -1611 (-641 (-225)))))
- (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-836)) (-5 *3 (-1058))
- (-5 *4
- (-2 (|:| |fn| (-316 (-225))) (|:| -1611 (-641 (-225)))
- (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225))))
- (|:| |ub| (-641 (-840 (-225))))))
- (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-838))
- (-5 *2
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-837))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-838)) (-5 *4 (-1058))
- (-5 *2
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-837))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-892)) (-5 *3 (-1058))
- (-5 *4
- (-2 (|:| |pde| (-641 (-316 (-225))))
- (|:| |constraints|
- (-641
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-768)) (|:| |boundaryType| (-564))
- (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
- (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
- (|:| |tol| (-225))))
- (-5 *2 (-2 (|:| -1657 (-379)) (|:| |explanations| (-1152))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-895))
+ (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-2 (|:| -2727 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1060 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
(-5 *2
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-894))))
+ (-2 (|:| |contp| (-564))
+ (|:| -3020 (-641 (-2 (|:| |irr| *3) (|:| -2534 (-564)))))))
+ (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-895)) (-5 *4 (-1058))
+ (-12 (-5 *4 (-112))
(-5 *2
- (-2 (|:| -1657 (-379)) (|:| -4363 (-1152))
- (|:| |explanations| (-641 (-1152)))))
- (-5 *1 (-894)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-949 *4)) (-949 *4)))
- (-5 *1 (-1267 *4)) (-4 *4 (-363)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+ (-2 (|:| |contp| (-564))
+ (|:| -3020 (-641 (-2 (|:| |irr| *3) (|:| -2534 (-564)))))))
+ (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452))
+ (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7))
+ (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-847))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194)))
- (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
- (-5 *1 (-583 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-585 (-407 (-949 *3))))
- (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
- (-5 *1 (-588 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363))
- (-5 *2 (-2 (|:| -4336 *3) (|:| |special| *3))) (-5 *1 (-724 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1046))
- (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5))
- (-5 *3 (-641 (-685 *5)))))
+ (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1046))
- (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5))
- (-5 *3 (-641 (-685 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-751)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *7 (-897 *6))
- (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7))
- (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4411)))))))
-(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-38 (-407 (-564))))
- (-4 *2 (-172)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046))
- (-5 *1 (-1154 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046))
- (-14 *4 (-1170)) (-14 *5 *3))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-749)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194)))
- (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1235 (-169 *3))))))
+ (-12 (-5 *4 (-1088 (-840 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-305))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-918)) (-4 *5 (-307)) (-4 *3 (-1235 *5))
+ (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379)))
(-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255))))
@@ -15961,168 +15127,213 @@
(-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379)))
(-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225)))
(-5 *1 (-259 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *3 *4)
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
+ (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
+ (-5 *1 (-785)))))
+(((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5))
+ (-4 *5 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7))
+ (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536))))
+ (-5 *2 (-52)) (-5 *1 (-317 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7))
+ (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536))))
+ (-5 *2 (-52)) (-5 *1 (-317 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8))
+ (-5 *6 (-641 *8)) (-4 *8 (-430 *7))
+ (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7))
+ (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536))))
+ (-5 *2 (-52)) (-5 *1 (-317 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8)))
+ (-4 *8 (-430 *7)) (-5 *5 (-294 *8))
+ (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6))
+ (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
+ (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6))
+ (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52))
+ (-5 *1 (-317 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3))
+ (-4 *3 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536))))
+ (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3))
+ (-4 *3 (-13 (-430 *6) (-27) (-1194)))
+ (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3)))
+ (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3)))
+ (-4 *3 (-13 (-430 *6) (-27) (-1194)))
+ (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2 (-2 (|:| -2537 *3) (|:| |coeff| *3)))
+ (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -4011 *4))))
+ (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1)))
+ (-4 *1 (-1066 *4 *5 *6 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114))))))
+ (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3))))
- (-5 *1 (-594 *3)) (-4 *3 (-1046)))))
-(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-768)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1) (-5 *1 (-171)))
- ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1094))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389))))
- ((*1 *1) (-5 *1 (-394))) ((*1 *1) (-5 *1 (-506)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))
- ((*1 *1)
- (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094))
- (-4 *4 (-662 *3))))
- ((*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-768)) (-4 *2 (-1046))))
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-1158 3 *3))))
((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))
- ((*1 *1 *1) (-5 *1 (-1170))) ((*1 *1) (-5 *1 (-1170)))
- ((*1 *1) (-5 *1 (-1189))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))))
(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-862))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
- (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1032)) (-5 *1 (-752)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-768) *2)) (-5 *4 (-768)) (-4 *2 (-1094))
+ (-5 *1 (-674 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-768) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4412)) (-4 *1 (-235 *3))
+ (-4 *3 (-1094))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2))
- (-4 *4 (-38 (-407 (-564)))))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847)))
+ (-14 *3 (-641 (-1170))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2))
- (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-2 (|:| -2351 *3) (|:| -1327 *4))))
- (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3)))
- (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-847) (-556)))
- (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
- (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7))
- (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1))
- (-4 *1 (-1066 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1032)) (-5 *1 (-752)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379))
+ (|:| |expense| (-379)) (|:| |accuracy| (-379))
+ (|:| |intermediateResults| (-379))))
+ (-5 *1 (-800)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *1))
+ (-4 *1 (-382 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046))
+ (-4 *4 (-723))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-946 *3 *4 *5)))))
(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094))
+ (-4 *3 (-1094)))))
+(((*1 *2 *2)
(-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-112)) (-5 *1 (-300)))))
-(((*1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))))
+ (-5 *2
+ (-641
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847))
+ (-5 *1 (-449 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032))
+ (-5 *1 (-745)))))
(((*1 *2 *3 *1)
- (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847))))
- ((*1 *1) (-4 *1 (-1145))))
-(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+ (-12 (-5 *3 (-434))
+ (-5 *2
+ (-641
+ (-3 (|:| -4337 (-1170))
+ (|:| -1780 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))))
+ (-5 *1 (-1174)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-918))
- (-4 *2 (-13 (-1046) (-10 -7 (-6 (-4413 "*")))))
- (-5 *1 (-899 *4 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5))
- (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-859))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-990 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-363))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1046))
- (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5))
- (-4 *7 (-238 *3 *5)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1170))
- (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-575 *4 *2))
- (-4 *2 (-13 (-1194) (-956) (-1133) (-29 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-652 *3)) (-4 *3 (-1046)) (-4 *3 (-363))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-768)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363))
- (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5)))))
-(((*1 *2 *3 *3 *4 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
+ (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-379)) (-5 *1 (-205)))))
+(((*1 *2 *3 *4 *4 *3)
(-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-744)))))
-(((*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7))
- (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
- (-5 *2
- (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-786)) (-5 *5 (-564)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *5 (-368))
- (-5 *2 (-768)))))
+ (-5 *1 (-749)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1235 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-417 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-564)) (-14 *4 (-768)))))
+ (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7))
+ (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8))))
+ (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-768)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-840 (-379)))) (-5 *2 (-1088 (-840 (-225))))
+ (-5 *1 (-305)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))))
+(((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
+ (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264))
+ (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379)))
(-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255))))
@@ -16220,215 +15431,355 @@
((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261))
(-5 *1 (-260)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1021 *3))
- (-4 *3 (-13 (-845) (-363) (-1019)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3))
- (-4 *3 (-1235 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363)))
- (-4 *3 (-1235 *2)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452))
- (-5 *2
- (-2 (|:| |dpolys| (-641 (-247 *5 *6)))
- (|:| |coords| (-641 (-564)))))
- (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
- (-5 *2
- (-2 (|:| |solns| (-641 *5))
- (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094))
- (-4 *4 (-1094))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-379)) (-5 *1 (-1037)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-316 (-564))))
- (-5 *1 (-1028)))))
-(((*1 *1 *1 *1) (-5 *1 (-162)))
- ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-946 *7 *5 *6))
- (-5 *1 (-739 *5 *6 *7 *2)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-307)))))
+ (-12 (-5 *3 (-641 (-2 (|:| -4139 *4) (|:| -3475 (-564)))))
+ (-4 *4 (-1235 (-564))) (-5 *2 (-734 (-768))) (-5 *1 (-442 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1046))
+ (-5 *2 (-734 (-768))) (-5 *1 (-444 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6))
+ (-5 *2 (-641 (-2 (|:| -3489 *1) (|:| -1721 (-641 *7)))))
+ (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-857)) (-5 *2 (-687 (-549))) (-5 *3 (-549)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2 *3 *5))
+ (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2))
+ (-4 *5 (-652 (-407 *2))))))
(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302))))
((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114))))
((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847))))
((*1 *1 *2 *3 *4)
(-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-847))
(-5 *1 (-610 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-585 *3)) (-4 *3 (-363)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564)))
+ (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4)))
+ (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147)))
- (-5 *1 (-399 *3 *4)))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3))
- (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
- (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
- (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
- (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-999)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))
- ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-847)) (-5 *2 (-112))
- (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5))))
+ (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046))
+ (-14 *4 (-641 (-1170)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847)))
+ (-14 *4 (-641 (-1170)))))
+ ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363))
+ (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
+ (-4 *2 (-342 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-172))))
+ ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-721 *2 *3)) (-4 *3 (-1235 *2)))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209))
+ (-4 *2 (-1209)) (-5 *1 (-58 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4412))
+ (-4 *1 (-151 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4412)) (-4 *1 (-151 *2))
+ (-4 *2 (-1209))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4412)) (-4 *1 (-151 *2))
+ (-4 *2 (-1209))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
- (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))
+ (-12 (-4 *4 (-1046))
+ (-5 *2 (-2 (|:| -2485 (-1166 *4)) (|:| |deg| (-918))))
+ (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-847)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768))
+ (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-847))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2))
+ (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209))
+ (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094))
+ (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2))))
+ ((*1 *1 *1) (-5 *1 (-495)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209))
+ (-4 *2 (-1209)) (-5 *1 (-639 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1046)) (-4 *2 (-1046))
+ (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2))
+ (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363))
+ (-4 *3 (-172)) (-4 *1 (-721 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-955 *5)) (-4 *5 (-1209))
+ (-4 *2 (-1209)) (-5 *1 (-954 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5))
+ (-14 *6 (-641 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1046)) (-4 *2 (-1046))
+ (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7))
+ (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2))
+ (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *12 (-1049 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209))
+ (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
+ (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-790))
+ (-4 *7 (-847)) (-4 *2 (-1060 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209))
+ (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046))
+ (-5 *1 (-1154 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046))
+ (-14 *4 (-1170)) (-14 *5 *3))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
+ (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6)))
+ (-4 *8 (-342 *5 *6 *7))
+ (-4 *4 (-13 (-847) (-556) (-1035 (-564))))
+ (-5 *2 (-2 (|:| -1454 (-768)) (|:| -2553 *8)))
+ (-5 *1 (-908 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112))
- (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
+ (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
+ (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4)))
+ (-4 *6 (-342 (-407 (-564)) *4 *5))
+ (-5 *2 (-2 (|:| -1454 (-768)) (|:| -2553 *6)))
+ (-5 *1 (-909 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-973 *4 *5 *3 *6)) (-4 *4 (-1046)) (-4 *5 (-790))
+ (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094))
+ (-4 *4 (-1094))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))
+ ((*1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1209)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-112)) (|:| -2893 (-768)) (|:| |period| (-768))))
+ (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-768)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *6)))
+ (-4 *6 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-557 *6 *3)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2))
- (-4 *3 (-13 (-847) (-556))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368))
- (-4 *6 (-1046)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1026 *6))
- (-5 *3 (-641 (-685 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1046))
- (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1026 *4))
- (-5 *3 (-641 (-685 *4)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
+ (-4 *3 (-367 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194)))
+ (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7))
+ (-5 *3 (-1166 *6)) (-4 *7 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10))
+ (-5 *7 (-641 (-768))) (-5 *8 (-641 *11)) (-4 *10 (-847))
+ (-4 *11 (-307)) (-4 *9 (-790)) (-4 *5 (-946 *11 *9 *10))
+ (-5 *2 (-641 (-1166 *5))) (-5 *1 (-739 *9 *10 *11 *5))
+ (-5 *3 (-1166 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1031 *3 *4 *5 *2 *6))
+ (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-14 *6 (-641 *2)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-294 (-830 *3)))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-830 *3)) (-5 *1 (-634 *5 *3))
+ (-4 *3 (-13 (-27) (-1194) (-430 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046))
- (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5))
- (-5 *3 (-641 (-685 *5)))))
+ (-12 (-5 *4 (-294 (-830 (-949 *5)))) (-4 *5 (-452))
+ (-5 *2 (-830 (-407 (-949 *5)))) (-5 *1 (-635 *5))
+ (-5 *3 (-407 (-949 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-918)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046))
- (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5))
- (-5 *3 (-641 (-685 *5))))))
-(((*1 *1 *1) (-4 *1 (-657))))
+ (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5)))
+ (-4 *5 (-452)) (-5 *2 (-830 *3)) (-5 *1 (-635 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)))))
+ (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-877)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-749)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1056 (-1021 *3) (-1166 (-1021 *3))))
+ (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1046)) (-4 *3 (-847))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -3078 (-564)))) (-4 *1 (-430 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -3078 (-889 *3))))
+ (-5 *1 (-889 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
+ (-4 *7 (-946 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -3078 (-564))))
+ (-5 *1 (-947 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -3714 ($ *7)) (-15 -1655 (*7 $))
+ (-15 -1668 (*7 $))))))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1094)))))
+(((*1 *1 *1) (-4 *1 (-657))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-940 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
+ (-4 *4 (-1046)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-918)) (-4 *5 (-556)) (-5 *2 (-685 *5))
- (-5 *1 (-953 *5 *3)) (-4 *3 (-652 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
- (-5 *1 (-176 *3)))))
-(((*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534))))
- ((*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52)))))
+ (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27))
+ (-5 *2 (-641 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170)))
+ (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))))
+(((*1 *2) (-12 (-5 *2 (-830 (-564))) (-5 *1 (-534))))
+ ((*1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564))
+ (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032))
+ (-5 *1 (-745)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)))))
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-564))
+ (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5))))
+ (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5)))))
+ (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4))
- (-5 *1 (-774 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-918))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368))))
- ((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-752)))))
-(((*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534))))
- ((*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
(-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
(-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))
(-5 *2 (-1032)) (-5 *1 (-745)))))
-(((*1 *2) (-12 (-5 *2 (-830 (-564))) (-5 *1 (-534))))
- ((*1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1094)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *3 (-949 (-564)))
- (-5 *1 (-330))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *1 (-330)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172))
- (-5 *2 (-685 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847))
+ (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1046)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6)))
- (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4)))))
-(((*1 *1)
- (-12 (-4 *1 (-404)) (-4254 (|has| *1 (-6 -4402)))
- (-4254 (|has| *1 (-6 -4394)))))
- ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847))))
- ((*1 *1) (-4 *1 (-841))) ((*1 *1 *1 *1) (-4 *1 (-847)))
- ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225)))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
- (-5 *2 (-1032)) (-5 *1 (-753)))))
+ (-12 (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3))
+ (-4 *3 (-1235 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-5 *2 (-112)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
- (-4 *2 (-683 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2527 (-779 *3)) (|:| |coef1| (-779 *3))
- (|:| |coef2| (-779 *3))))
- (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-2 (|:| -2527 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1060 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
- (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
- (-5 *1 (-785)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-1158 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261))))
- ((*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032))
- (-5 *1 (-745)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088 (-840 (-379)))) (-5 *2 (-1088 (-840 (-225))))
- (-5 *1 (-305)))))
+ (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))))
(((*1 *2)
(-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2))
(-4 *3 (-13 (-847) (-556)))))
@@ -16436,79 +15787,85 @@
(-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170)))
(-14 *3 (-641 (-1170))) (-4 *4 (-387))))
((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1194))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-758))))
+(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1055)) (-4 *3 (-1194))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *1 *1) (-4 *1 (-1133))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564)))))
+ (-4 *3 (-1235 *4)) (-5 *1 (-806 *4 *3 *2 *5)) (-4 *2 (-652 *3))
+ (-4 *5 (-652 (-407 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4)))
- (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
- (-4 *4 (-1094)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3))
- (-4 *3 (-1235 *4))))
+ (-12 (-5 *3 (-407 *5))
+ (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4))
+ (-5 *1 (-806 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131))
+ (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4130 *4))))))
((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-641 (-2 (|:| -1817 *3) (|:| -2579 *4))))
+ (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
+ (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3)))))))
(((*1 *2 *3 *1)
(|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-4 *2 (-1094))
(-5 *1 (-886 *4 *2)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-768))
+ (-5 *2
+ (-641
+ (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
+ (-247 *4 (-407 (-564))))))
+ (-5 *1 (-505 *4 *5))
+ (-5 *3
+ (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
+ (-247 *4 (-407 (-564))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3)))))
+ (-5 *1 (-1281 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4)))))
+ (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-859)) (-5 *1 (-1150 *3)) (-4 *3 (-1094))
+ (-4 *3 (-1209)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1058)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564))))
+ (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *1 (-1120 *4 *3 *5))
+ (-4 *5 (-946 *4 (-531 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4))
+ (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209))
+ (-14 *4 (-564)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
(((*1 *1 *1)
(|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
(-4 *3 (-13 (-1094) (-34))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
- (-5 *1 (-985 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
- (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
- (-5 *1 (-1101 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))))
-(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))
- ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1046)) (-5 *2 (-685 *4))
- (-5 *1 (-1026 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-2 (|:| -1451 *4) (|:| -3703 (-564)))))
- (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225))))
- (-5 *2 (-1032)) (-5 *1 (-751)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1032)) (-5 *1 (-748)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
- (-5 *2 (-1032)) (-5 *1 (-754)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7)))
- (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5)))
- (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
(((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
(-12 (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307))
@@ -16524,52 +15881,45 @@
(-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4))
(-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4))))
((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-847))
+ (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790))
(-5 *2
- (-2 (|:| -1451 *4) (|:| -1919 *4) (|:| |totalpts| (-564))
- (|:| |success| (-112))))
- (-5 *1 (-786)) (-5 *5 (-564)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170))))
- (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790))
- (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7))
- (-4 *7 (-946 *4 *6 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046))
- (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1032))
- (-5 *1 (-743)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-845) (-363))) (-5 *2 (-112)) (-5 *1 (-1056 *4 *3))
- (-4 *3 (-1235 *4)))))
+ (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed"))
+ (|:| -4339 (-641 (-1259 (-407 *8))))))
+ (-5 *1 (-665 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-847))
+ (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-4 *8 (-307))
+ (-5 *2 (-641 (-768))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *5 (-768)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880))
- (-5 *3 (-641 (-564)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880))
- (-5 *3 (-641 (-564))))))
+ (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-5 *2 (-1152)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-13 (-847) (-556))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2537 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-363)) (-4 *7 (-1235 *6))
+ (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
+ (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170))
+ (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-316 *5)))
+ (-5 *1 (-1123 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170)))
+ (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-316 *5))))
+ (-5 *1 (-1123 *5)))))
(((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
(-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4))
@@ -16586,448 +15936,485 @@
(-12 (-4 *3 (-172)) (-4 *2 (-714 *3)) (-5 *1 (-658 *2 *3 *4))
(-4 *4 (|SubsetCategory| (-723) *3))))
((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))))
-(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-768))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-768)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046))
- (-14 *4 (-641 (-1170)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847)))
- (-14 *4 (-641 (-1170)))))
- ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363))
- (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-4 *2 (-342 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-172))))
- ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-721 *2 *3)) (-4 *3 (-1235 *2)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-984 (-407 (-564)) (-861 *3) (-240 *4 (-768))
- (-247 *3 (-407 (-564)))))
- (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-983 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847))
- (-4 *8 (-307)) (-4 *6 (-790)) (-4 *9 (-946 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-641 (-2 (|:| -4006 (-1166 *9)) (|:| -3747 (-564)))))))
- (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170))
- (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
- (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3))
- (-4 *3 (-13 (-1194) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147)))
- (-5 *2 (-585 (-407 (-949 *5)))) (-5 *1 (-570 *5))
- (-5 *3 (-407 (-949 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6))
- (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-949 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6))
- (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-13 (-847) (-556))))))
+ (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114))))))
+ (-4 *4 (-349)) (-5 *2 (-768)) (-5 *1 (-346 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-351 *3 *4)) (-14 *3 (-918))
+ (-14 *4 (-918))))
+ ((*1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349))
+ (-14 *4
+ (-3 (-1166 *3)
+ (-1259 (-641 (-2 (|:| -3387 *3) (|:| -3338 (-1114)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-768)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349))
+ (-14 *4 (-918)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194)))
- (-5 *1 (-583 *4 *2))
- (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))))
+ (-12 (|has| *2 (-6 (-4414 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2))
+ (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2))
+ (-4 *4 (-683 *2 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))))
+(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-373 *2)) (-4 *2 (-1209))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-585 (-407 (-949 *4))))
- (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))))
- (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-756)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
-(((*1 *2)
- (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4))
- (-4 *4 (-1235 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-556)) (-4 *2 (-1046))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-556))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *3 (-1060 *4 *5 *6))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *1))))
- (-4 *1 (-1066 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-641 *5) *6))
- (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5))
- (-5 *2 (-641 (-2 (|:| -3246 *5) (|:| -2076 *3))))
- (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6))
- (-4 *7 (-652 (-407 *6))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
-(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564)))))
- (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -3415 *5) (|:| -3566 *5))))
- (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-652 *5))
- (-4 *6 (-652 (-407 *5)))))
+ (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3))
+ (-4 *3 (-721 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564)))))
- (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3415 *4) (|:| -3566 *4))))
- (-5 *1 (-804 *5 *4 *3 *6)) (-4 *3 (-652 *4))
- (-4 *6 (-652 (-407 *4)))))
+ (-12 (-5 *3 (-685 (-407 (-949 *5)))) (-5 *4 (-1170))
+ (-5 *2 (-949 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564)))))
- (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -3415 *5) (|:| -3566 *5))))
- (-5 *1 (-804 *4 *5 *6 *3)) (-4 *6 (-652 *5))
- (-4 *3 (-652 (-407 *5)))))
+ (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-5 *2 (-949 *4))
+ (-5 *1 (-292 *4)) (-4 *4 (-452))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-685 (-169 (-407 (-564)))))
+ (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *4))
+ (-4 *4 (-13 (-363) (-845)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564)))))
- (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -3415 *4) (|:| -3566 *4))))
- (-5 *1 (-804 *5 *4 *6 *3)) (-4 *6 (-652 *4))
- (-4 *3 (-652 (-407 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
- (-4 *6 (-790)) (-5 *2 (-641 *3)) (-5 *1 (-921 *4 *5 *6 *3))
- (-4 *3 (-946 *4 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141))))
- ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-641
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-790)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847))
- (-5 *1 (-449 *4 *5 *6 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-685 *3))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
- (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-685 *3))
- (-4 *3 (-13 (-307) (-10 -8 (-15 -3981 ((-418 $) $)))))
- (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094))
- (-4 *2 (-847)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))))
- (-5 *1 (-205)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
- (-4 *2 (-430 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1133))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-192)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363))
- (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *1 (-450 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363))
- (-5 *2
- (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6))))
- (-5 *1 (-975 *6)) (-5 *3 (-685 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209))
- (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))))
-(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
- ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *5 (-918))
- (-5 *2 (-1264)) (-5 *1 (-468))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-871)) (-5 *5 (-918))
- (-5 *2 (-1264)) (-5 *1 (-468)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4))
- (-4 *4 (-1209)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *2 (-847))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6))
- (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112))
- (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4))
- (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112))))
+ (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170))
+ (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *5))
+ (-4 *5 (-13 (-363) (-845)))))
((*1 *2 *3)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452))
- (-4 *5 (-847)) (-4 *6 (-790)) (-5 *1 (-984 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789))
- (-4 *5 (-847)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768))
- (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))))
+ (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-949 (-407 (-564))))
+ (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170))
+ (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *5))
+ (-4 *5 (-13 (-363) (-845))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
+ (-4 *4 (-1060 *6 *7 *8)) (-5 *2 (-1264))
+ (-5 *1 (-773 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
+ (-5 *1 (-985 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
+ (-5 *1 (-1101 *3 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3048 "void")))
- (-5 *1 (-437)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790))
- (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1094)) (-4 *2 (-897 *4)) (-5 *1 (-688 *4 *2 *5 *3))
- (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4411)))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-641
- (-2 (|:| -4224 (-768))
- (|:| |eqns|
- (-641
- (-2 (|:| |det| *7) (|:| |rows| (-641 (-564)))
- (|:| |cols| (-641 (-564))))))
- (|:| |fgb| (-641 *7)))))
- (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147)))
- (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768))
- (-5 *1 (-921 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-363) (-845)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -2362 (-418 *3))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-962))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-986))))
- ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1209))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3))
- (-4 *3 (-13 (-1094) (-34))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34)))
- (-4 *3 (-13 (-1094) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4))
- (-4 *4 (-349)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 (-225))) (-5 *4 (-768)) (-5 *2 (-685 (-225)))
- (-5 *1 (-305)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1032))
- (-5 *1 (-746)))))
+ (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))))
+(((*1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-585 *3) *3 (-1170)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1170)))
- (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1035 *4)) (-4 *3 (-430 *7))
- (-5 *4 (-1170)) (-4 *7 (-612 (-889 (-564)))) (-4 *7 (-452))
- (-4 *7 (-883 (-564))) (-4 *7 (-847)) (-5 *2 (-585 *3))
- (-5 *1 (-573 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170))
- (-14 *4 *2))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-556) (-847)))
- (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194)))
- (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-999) (-1194))))))
-(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-923)))))
-(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
- ((*1 *1 *1) (-5 *1 (-1114))))
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2537 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7))
+ (-5 *3 (-407 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-574 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-171)))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))))
+(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))))
+(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))))
+(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))
+ ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 *1)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-685 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 *4)) (-4 *4 (-1046)) (-4 *1 (-1117 *3 *4 *5 *6))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
+ (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
+ (-5 *1 (-785))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
+ (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
+ (-5 *1 (-785)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))))
+(((*1 *1 *1) (-5 *1 (-536))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-749)))))
(((*1 *1 *1)
(-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
-(((*1 *1) (-5 *1 (-559))))
-(((*1 *2)
- (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
- (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-924))
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564)))
+ (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1046)) (-5 *2 (-685 *4))
+ (-5 *1 (-1026 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4))
(-5 *2
- (-2 (|:| |brans| (-641 (-641 (-940 (-225)))))
- (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))))
- (-5 *1 (-153)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-768)) (-5 *2 (-1264)))))
+ (-3 (|:| |overq| (-1166 (-407 (-564))))
+ (|:| |overan| (-1166 (-48))) (|:| -2062 (-112))))
+ (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-564))
- (|:| -2362 (-641 (-2 (|:| |irr| *3) (|:| -1490 (-564)))))))
- (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-564))
- (|:| -2362 (-641 (-2 (|:| |irr| *3) (|:| -1490 (-564)))))))
- (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))))
-(((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-768) *2)) (-5 *4 (-768)) (-4 *2 (-1094))
- (-5 *1 (-674 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-768) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-610 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170)))
+ (-4 *2 (-13 (-430 *5) (-27) (-1194)))
+ (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225)))
- (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-379)) (-5 *1 (-205)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
- ((*1 *1 *1 *1) (-5 *1 (-1114))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046))
- (-5 *1 (-1154 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046))
- (-14 *4 (-1170)) (-14 *5 *3))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-752)))))
+ (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046))
+ (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-940 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+ (|partial| -12
+ (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)))
+ (-5 *2 (-840 *4)) (-5 *1 (-313 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)))
+ (-5 *2 (-840 *4)) (-5 *1 (-1245 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170))
+ (-14 *6 *4))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-768))
- (-5 *2
- (-641
- (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
- (-247 *4 (-407 (-564))))))
- (-5 *1 (-505 *4 *5))
- (-5 *3
- (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4)
- (-247 *4 (-407 (-564))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
- (-4 *2 (-13 (-430 *3) (-999))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2745 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-363)) (-4 *7 (-1235 *6))
- (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6)))
- (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
- ((*1 *1 *1 *1) (-5 *1 (-1114))))
-(((*1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262))))
- ((*1 *2 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))))
-(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))))
+ (-12 (-5 *3 (-641 (-2 (|:| -3387 *4) (|:| -3879 (-564)))))
+ (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4413)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564))
+ (-5 *2 (-1032)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-556))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-556)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4))
+ (-5 *2 (-2 (|:| -1817 (-407 *5)) (|:| |poly| *3)))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112))
+ (-5 *1 (-263)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225))))
+ (-5 *2 (-1032)) (-5 *1 (-751)))))
+(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697))))
+ ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))))
(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
(-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
(-5 *1 (-749)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34)))
+ (-5 *1 (-1135 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $))
+ (-15 -1668 ((-1119 *3 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *3 (-610 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $))
+ (-15 -1668 ((-1119 *3 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *3 (-610 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 *2))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -1655 ((-1119 *4 (-610 $)) $))
+ (-15 -1668 ((-1119 *4 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *4 (-610 $)))))))
+ (-4 *4 (-556)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-641 (-610 *2)))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -1655 ((-1119 *4 (-610 $)) $))
+ (-15 -1668 ((-1119 *4 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *4 (-610 $)))))))
+ (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1170))
+ (-5 *5 (-840 *7))
+ (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-840 *6))
+ (-4 *6 (-13 (-1194) (-29 *5)))
+ (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-224 *5 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-911 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170))
+ (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-418 (-949 *6))) (-5 *5 (-1170)) (-5 *3 (-949 *6))
+ (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3))
+ (-4 *3 (-13 (-430 *6) (-27) (-1194)))
+ (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3)))
+ (-4 *3 (-13 (-430 *6) (-27) (-1194)))
+ (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-748)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-768)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564))
+ (-14 *4 *2) (-4 *5 (-172))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-918)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-918))))
+ ((*1 *2)
+ (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3))
+ (-5 *2 (-918))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
+ (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363))
+ (-5 *2 (-768)) (-5 *1 (-663 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4413))))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4413)))) (-5 *2 (-768))
+ (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3))
+ (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3))
+ (-4 *3 (-683 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556))
+ (-5 *2 (-768)))))
(((*1 *2 *3 *2 *4)
(-12 (-5 *3 (-114)) (-5 *4 (-768)) (-4 *5 (-452)) (-4 *5 (-847))
(-4 *5 (-1035 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2))
(-4 *2 (-430 *5))
(-4 *2
(-13 (-363) (-302)
- (-10 -8 (-15 -1507 ((-1119 *5 (-610 $)) $))
- (-15 -1517 ((-1119 *5 (-610 $)) $))
- (-15 -1765 ($ (-1119 *5 (-610 $))))))))))
+ (-10 -8 (-15 -1655 ((-1119 *5 (-610 $)) $))
+ (-15 -1668 ((-1119 *5 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *5 (-610 $))))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452))
+ (-5 *1 (-915 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3))
+ (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307))
+ (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 *7)))
+ (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
+ (-5 *2 (-418 *1)) (-4 *1 (-946 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-452)) (-5 *2 (-418 *3))
+ (-5 *1 (-976 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452))
+ (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7))))
+ (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3))
+ (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2727 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019)))
+ (-14 *5 (-641 (-1170)))
+ (-5 *2
+ (-641 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6)))))
+ (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))))
+(((*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534))))
+ ((*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *2 (-1032)) (-5 *1 (-754)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4275 *4)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1170))
(-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))))
(-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3))
(-4 *3 (-13 (-27) (-1194) (-430 *5))))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-641
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-768)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-790)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-847))
+ (-5 *1 (-449 *4 *3 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1170))
+ (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3))
+ (-4 *3 (-13 (-1194) (-29 *5))))))
+(((*1 *1 *1) (-4 *1 (-556))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
+ (-4 *6 (-790)) (-4 *7 (-946 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7))))
+ (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
+ ((*1 *1 *1) (-5 *1 (-1114))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556))
+ (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534))))
+ ((*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170)))
+ (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-4 *6 (-897 *5)) (-5 *2 (-685 *6))
+ (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6))
+ (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
(((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *3 (-768)) (-4 *4 (-307)) (-4 *6 (-1235 *4))
(-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)))
- (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1) (-5 *1 (-859)))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209))
+ (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *1 *1) (-4 *1 (-545))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
+ ((*1 *1 *1 *1) (-5 *1 (-1114))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))))
+(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))))
+(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7)))
+ (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))))
+ (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5)))
+ (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-847)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3))
+ (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7))
(-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847))
(-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8))))
(-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-556)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
+ (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363)))
+ (-4 *3 (-1235 *4)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))
+ ((*1 *1 *1 *1) (-5 *1 (-1114))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))))
+(((*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-749)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-768)) (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924))
(-5 *1 (-922 *3)) (-4 *3 (-612 (-536)))))
@@ -17038,56 +16425,97 @@
((*1 *1 *2 *3)
(-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225)))
(-5 *1 (-924)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
+ ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-847) (-556)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-4 *1 (-1009))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-5 *4 (-859))
+ (-4 *1 (-1009))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-918)) (-4 *4 (-13 (-845) (-363)))
+ (-4 *1 (-1063 *4 *2)) (-4 *2 (-1235 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))))
+(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094))
+ (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
(-12 (-5 *4 (-564))
(-5 *6
- (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379))))
+ (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379))))
(-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
(-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
(-5 *1 (-785))))
((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
(-12 (-5 *4 (-564))
(-5 *6
- (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3738 (-379))))
+ (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3905 (-379))))
(-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379)))
(-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264))
(-5 *1 (-785)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-5 *2 (-882 *5 *6 (-641 *6)))
+ (-5 *1 (-884 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-889 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-884 *5 *3 *4))
+ (-4 *3 (-1035 (-1170))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-949 *3))))
+ (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1046))
+ (-4253 (-4 *3 (-1035 (-1170)))) (-4 *3 (-883 *5))
+ (-4 *4 (-612 (-889 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1094)) (-5 *2 (-886 *5 *3)) (-5 *1 (-884 *5 *3 *4))
+ (-4253 (-4 *3 (-1035 (-1170)))) (-4253 (-4 *3 (-1046)))
+ (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-368))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4))
- (-4 *4 (-349))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-847)) (-5 *1 (-710 *2 *3 *4)) (-4 *3 (-1094))
- (-14 *4
- (-1 (-112) (-2 (|:| -1403 *2) (|:| -3747 *3))
- (-2 (|:| -1403 *2) (|:| -3747 *3)))))))
-(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-225))
- (-5 *2
- (-2 (|:| |brans| (-641 (-641 (-940 *4))))
- (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4))))
- (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209)))))
+ (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-307))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1729 *1)))
+ (-4 *1 (-307)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
(((*1 *1 *2 *2)
(-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5))
(-4 *4 (-373 *3)) (-4 *5 (-373 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-768)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-847))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))))
-(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549))))))
+(((*1 *1) (-5 *1 (-330))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564))))
+ (-5 *1 (-305)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-786)) (-5 *5 (-564)))))
(((*1 *2 *2 *2)
(-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
(-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))
@@ -17095,242 +16523,799 @@
(-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6))
(-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
(-5 *1 (-974 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225))
+ (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-452)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-840 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1194) (-29 *6)))
- (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-224 *6 *4)))))
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
+ ((*1 *1 *1) (|partial| -4 *1 (-719))))
+(((*1 *2)
+ (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5)))
+ (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3))
+ (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *7 (-1060 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7))))
+ (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3))
+ (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170))))
+ (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
+ (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368))
+ (-5 *2 (-1166 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-918))
+ (-5 *2
+ (-3 (-1166 *4)
+ (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114)))))))
+ (-5 *1 (-346 *4)) (-4 *4 (-349)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147)))
+ (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790))
+ (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7))
+ (-4 *7 (-946 *4 *6 *5)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467))))
+ ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-564))))
+ (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2727 ($ $ $)))))
+ (-4 *3 (-556)) (-5 *1 (-1238 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1133))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *1 *1) (-5 *1 (-1058))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147)))
+ (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-363) (-147)))
+ (-5 *2 (-641 (-2 (|:| -3078 (-768)) (|:| -2390 *4) (|:| |num| *4))))
+ (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-918) (-768))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209)))))
+(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-1046))))
+ ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170))
+ (-4 *2 (-13 (-27) (-1194) (-430 *5)))
+ (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
+ (-5 *1 (-277 *5 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046))
+ (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556))
+ (-5 *2 (-1166 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3))
+ (-4 *3 (-363)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *4))))
+ (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1194) (-999))))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-752)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-407 (-564))))
+ (-5 *2 (-2 (|:| -2635 (-1150 *4)) (|:| -2647 (-1150 *4))))
+ (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4378 *4)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046))
+ (-5 *3 (-564)))))
+(((*1 *2 *3)
(-12
(-5 *2
- (-641
- (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3))
- (|:| |logand| (-1166 *3)))))
- (-5 *1 (-585 *3)) (-4 *3 (-363)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264))
- (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))
+ (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))
+ (-5 *4 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))
+ (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-407 (-564)))
+ (-5 *2 (-641 (-2 (|:| -2578 *5) (|:| -2592 *5)))) (-5 *1 (-1017 *3))
+ (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -2578 *5) (|:| -2592 *5)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))))
-(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-768)))
- ((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1058)) (-5 *3 (-1152)))))
+ (-12
+ (-5 *2
+ (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-641 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564))))))
+ (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564))))
+ (-5 *4 (-2 (|:| -2578 (-407 (-564))) (|:| -2592 (-407 (-564)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-407 (-564)))
+ (-5 *2 (-641 (-2 (|:| -2578 *4) (|:| -2592 *4)))) (-5 *1 (-1018 *3))
+ (-4 *3 (-1235 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-407 (-564)))
+ (-5 *2 (-641 (-2 (|:| -2578 *5) (|:| -2592 *5)))) (-5 *1 (-1018 *3))
+ (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -2578 *5) (|:| -2592 *5))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046))))
- ((*1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))))
-(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-968)))))
+ (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170)))
+ (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
+ (|:| -4167 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1150 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4167
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-559)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))))
+(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094))))
+ ((*1 *1 *1) (-5 *1 (-630))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9))
+ (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
+ (-4 *9 (-1060 *6 *7 *8))
+ (-5 *2
+ (-641
+ (-2 (|:| -4035 (-641 *9)) (|:| -4011 *10) (|:| |ineq| (-641 *9)))))
+ (-5 *1 (-985 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9))
+ (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
+ (-4 *9 (-1060 *6 *7 *8))
+ (-5 *2
+ (-641
+ (-2 (|:| -4035 (-641 *9)) (|:| -4011 *10) (|:| |ineq| (-641 *9)))))
+ (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4275 *4)))
+ (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
+ (-5 *1 (-749)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-918))
+ (-5 *2 (-1259 (-641 (-2 (|:| -3387 *4) (|:| -3338 (-1114))))))
+ (-5 *1 (-346 *4)) (-4 *4 (-349)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-847)) (-4 *5 (-906)) (-4 *6 (-790))
+ (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-418 (-1166 *8)))
+ (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-1166 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5)))
+ (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483)))))
+(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262))))
+ ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213))
+ (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))))
(((*1 *2)
(-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4))
(-4 *3 (-367 *4))))
((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790))
- (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556))
- (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-129)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4))
- (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4)))
- (-5 *1 (-1252 *4 *5)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-923))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-924))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225)))
- (-5 *1 (-924)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032))
- (-5 *1 (-752)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209))
- (-5 *2 (-641 *3)))))
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379))
+ (-5 *2
+ (-2 (|:| -3387 *4) (|:| -2000 *4) (|:| |totalpts| (-564))
+ (|:| |success| (-112))))
+ (-5 *1 (-786)) (-5 *5 (-564)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-847))
- (-4 *5 (-790)) (-4 *2 (-266 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-918)) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-363)) (-5 *2 (-830 (-918))) (-5 *1 (-328 *3 *4))
- (-4 *3 (-329 *4))))
- ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918))))
- ((*1 *2)
- (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))))
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
+ (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847))
+ (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-918))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363)))
+ (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6))
+ (-5 *2 (-768)) (-5 *1 (-392 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-830 (-918)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4))
+ (-4 *4 (-1235 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-768)) (-4 *1 (-737 *4 *3)) (-4 *4 (-1046))
+ (-4 *3 (-847))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847))
+ (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-768))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4))
+ (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6)))
+ (-4 *8 (-342 *5 *6 *7))
+ (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-768))
+ (-5 *1 (-908 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6))
+ (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4)))
+ (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-768))
+ (-5 *1 (-909 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363))
+ (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4))
+ (-4 *9 (-13 (-368) (-363))) (-5 *2 (-768))
+ (-5 *1 (-1015 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556))
+ (-5 *2 (-768))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3))
+ (-4 *3 (-1209))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *2 (-452))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
- (-4 *3 (-1060 *4 *5 *6))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *1))))
- (-4 *1 (-1066 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1213)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2))
- (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2527 ($ $ $))))))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1170))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-641 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2745 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1194) (-27) (-430 *8)))
- (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3)))
- (-5 *3 (-564))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3549 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1010 *8 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-768)))
- ((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-734 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094))))
- ((*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))))
+ (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248)))))
+(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-768)) (-5 *3 (-940 *5)) (-4 *5 (-1046))
+ (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5))
+ (-14 *4 (-918)) (-4 *5 (-1046))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046))
+ (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))))
+(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379)))
+ ((*1 *1) (-5 *1 (-379))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1135 *5 *6)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225)))
+ (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))
- (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))
- (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9))
- (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6))
- (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2))
- (-4 *4 (-373 *2)) (-4 *2 (-307))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3))
- (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2))
- (-4 *2 (-683 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-999))))))
+(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-556)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-4 *2 (-1235 *5))
+ (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *2 (-1032)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))))
+(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847))
+ (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-1049 *2 *3 *4 *5 *6)) (-4 *4 (-1046))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))))
+ (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170))
+ (-14 *4 *2))))
+(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194)))
+ (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))))
+ (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225))
+ (-5 *2 (-1032)) (-5 *1 (-746)))))
+(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-275)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564)))))))
+ (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-892))
+ (-5 *3
+ (-2 (|:| |pde| (-641 (-316 (-225))))
+ (|:| |constraints|
+ (-641
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-768)) (|:| |boundaryType| (-564))
+ (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225))))))
+ (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152))
+ (|:| |tol| (-225))))
+ (-5 *2 (-1032)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-4 *4 (-452))
+ (-5 *2 (-641 (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))))
+ (-5 *1 (-292 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-210)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-1235 (-169 *3))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-621 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -2592 *4) (|:| |sol?| (-112)))
+ (-564) *4))
+ (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-316 (-225))) (|:| -3304 (-641 (-225)))
+ (|:| |lb| (-641 (-840 (-225))))
+ (|:| |cf| (-641 (-316 (-225))))
+ (|:| |ub| (-641 (-840 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-641 (-316 (-225))))
+ (|:| -3304 (-641 (-225)))))))
+ (-5 *2 (-641 (-1152))) (-5 *1 (-267)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4))
+ (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2))
+ (-4 *2 (-683 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094))
+ (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094))
+ (-4 *2 (-1209)) (-5 *1 (-638 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094))
+ (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094))
+ (-4 *2 (-1209)) (-5 *1 (-638 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6))
+ (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-768)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1) (-4 *1 (-1138))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-861 *4))
+ (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094))
+ (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4))))
+ (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-918)) (-4 *5 (-1094))
+ (-4 *6 (-13 (-1046) (-883 *5) (-847) (-612 (-889 *5))))
+ (-4 *2 (-13 (-430 *6) (-883 *5) (-612 (-889 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-955 (-1114)))
+ (-5 *1 (-346 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264))
+ (-5 *1 (-1210 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264))
+ (-5 *1 (-1210 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-949 (-564)))) (-5 *1 (-437))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098))
+ (-5 *1 (-756))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098))
+ (-5 *1 (-756)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4))
+ (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-859)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))))
+(((*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192)))))
+(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-768)))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1235 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))))
-(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-144)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-889 *4))
- (-4 *4 (-1094)))))
+ (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564)))
+ (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3))
+ (-4 *2
+ (-13 (-363) (-302)
+ (-10 -8 (-15 -1655 ((-1119 *3 (-610 $)) $))
+ (-15 -1668 ((-1119 *3 (-610 $)) $))
+ (-15 -3714 ($ (-1119 *3 (-610 $))))))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))))
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6))
+ (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094))
+ (-4 *4 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))))
+(((*1 *1 *1 *1) (-4 *1 (-758))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
+ (-4 *2 (-13 (-430 *3) (-1194))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-709 *3 *4))
- (-4 *4 (-1235 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-768))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209))
- (-4 *3 (-1094))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094))
- (-5 *2 (-564))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209))
- (-5 *2 (-564))))
- ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)))))
+ (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046))
+ (-4 *3 (-1094)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790))
+ (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4035 (-641 *9)) (|:| -4011 *4) (|:| |ineq| (-641 *9))))
+ (-5 *1 (-985 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9))
+ (-4 *4 (-1066 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790))
+ (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4035 (-641 *9)) (|:| -4011 *4) (|:| |ineq| (-641 *9))))
+ (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9))
+ (-4 *4 (-1066 *6 *7 *8 *9)))))
+(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))
+ ((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3))))
+ (-5 *1 (-594 *3)) (-4 *3 (-1046)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
+ (-4 *6 (-790)) (-5 *2 (-641 (-641 (-564))))
+ (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -4011 *9))))
+ (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264))
+ (-5 *1 (-1064 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -4011 *9))))
+ (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8))
+ (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264))
+ (-5 *1 (-1139 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1447 (-685 (-407 (-949 *4))))
- (|:| |vec| (-641 (-407 (-949 *4)))) (|:| -4224 (-768))
- (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))
- (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170))))
- (-4 *6 (-790))
+ (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5))
+ (-4 *4 (-1094)) (-4 *5 (-1094)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-768)) (-5 *1 (-226))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-169 (-225))) (-5 *3 (-768)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1133))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046))
+ (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046))
+ (-14 *4 (-641 (-1170)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847)))
+ (-14 *4 (-641 (-1170))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-641 *5)) (-4 *5 (-847)) (-5 *1 (-1180 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847)))
+ (-14 *3 (-641 (-1170)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172))
+ (-4 *5 (-238 (-2779 *2) (-768)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3338 *4) (|:| -3078 *5))
+ (-2 (|:| -3338 *4) (|:| -3078 *5))))
+ (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-847))
+ (-4 *7 (-946 *3 *5 (-861 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1046))
+ (-4 *3 (-723))))
+ ((*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5))
+ (-4 *3 (-556)))))
+(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))))
+(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-768)))
+ ((*1 *1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452))
(-5 *2
- (-2 (|:| |partsol| (-1259 (-407 (-949 *4))))
- (|:| -3941 (-641 (-1259 (-407 (-949 *4)))))))
- (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))))
+ (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564)))))
+ (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (-4 *4 (-1046))
+ (-5 *1 (-1025 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (-4 *4 (-1046))
+ (-5 *1 (-1025 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-452)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556))
+ (-4 *8 (-946 *7 *5 *6))
+ (-5 *2 (-2 (|:| -3078 (-768)) (|:| -1817 *3) (|:| |radicand| *3)))
+ (-5 *1 (-950 *5 *6 *7 *8 *3)) (-5 *4 (-768))
+ (-4 *3
+ (-13 (-363)
+ (-10 -8 (-15 -3714 ($ *8)) (-15 -1655 (*8 $)) (-15 -1668 (*8 $))))))))
+(((*1 *2)
+ (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-417 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))
+ (-5 *2 (-816 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
+ (-4 *3 (-1060 *5 *6 *7))
+ (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -4011 *4))))
+ (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5))
+ (-4 *4 (-1094)) (-4 *5 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
+ (-4 *1 (-946 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34)))
+ (-4 *4 (-13 (-1094) (-34))))))
(((*1 *2 *1 *1)
(|partial| -12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |rm| (-816 *3))))
(-5 *1 (-816 *3)) (-4 *3 (-847))))
((*1 *1 *1 *1) (-5 *1 (-859))))
-(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307))
- (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790))
- (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5))
- (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847))
- (-4 *6 (-307)))))
-(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
-(((*1 *2 *3)
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 (-2 (|:| -4139 (-1166 *6)) (|:| -3078 (-564)))))
+ (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
+ (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-1150 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170)))
- (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170)))
- (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2))
- (-4 *2 (-1094))))
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1170))
+ (|:| |arrayIndex| (-641 (-949 (-564))))
+ (|:| |rand|
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1170)) (|:| |rand| (-859))
+ (|:| |ints2Floats?| (-112))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330))
+ (|:| |elseClause| (-330))))
+ (|:| |returnBranch|
+ (-2 (|:| -2510 (-112))
+ (|:| -3387
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -3779 (-859))))))
+ (|:| |blockBranch| (-641 (-330)))
+ (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152))
+ (|:| |forBranch|
+ (-2 (|:| -4167 (-1086 (-949 (-564))))
+ (|:| |span| (-949 (-564))) (|:| -4347 (-330))))
+ (|:| |labelBranch| (-1114))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4347 (-330))))
+ (|:| |commonBranch|
+ (-2 (|:| -4337 (-1170)) (|:| |contents| (-641 (-1170)))))
+ (|:| |printBranch| (-641 (-859)))))
+ (-5 *1 (-330)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-847))
- (-5 *1 (-1210 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-1060 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4))
- (-14 *4 (-564)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *2))
- (-4 *2 (-644 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-833 *2)) (-4 *2 (-1046)))))
+ (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-906))
+ (-5 *2 (-1259 *1)))))
+(((*1 *1) (-5 *1 (-820))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260))))
+ ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261)))))
+(((*1 *1 *1) (-5 *1 (-859))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-363) (-1194) (-999))))))
(((*1 *1 *1 *2)
(|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556))))
((*1 *1 *1 *2)
@@ -17352,1022 +17337,1041 @@
(-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556))))
((*1 *2 *2 *2)
(|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))
- (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790))
- (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-641
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-564)))))
- (-4 *2 (-556)) (-5 *1 (-418 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-564))
- (|:| -2362 (-641 (-2 (|:| |irr| *4) (|:| -1490 (-564)))))))
- (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -3853 *4))))
- (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-889 *4))
- (-4 *4 (-1094)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1088 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-790))
- (-4 *4 (-847)) (-4 *7 (-556))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564))))
- (-5 *1 (-593 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-556))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564))))
- (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859)))
- ((*1 *1 *1) (-5 *1 (-859)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1170))
- (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194)))
- (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))))
- (-5 *1 (-1162 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564))))
- (-5 *2 (-407 (-949 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-949 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564))))
- (-5 *2 (-3 (-407 (-949 *5)) (-316 *5))) (-5 *1 (-1163 *5))
- (-5 *3 (-407 (-949 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1086 (-949 *5))) (-5 *3 (-949 *5))
- (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 *3))
- (-5 *1 (-1163 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1086 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5)))
- (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 *3 (-316 *5)))
- (-5 *1 (-1163 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-860)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-951)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225)))
- (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330))
- (-5 *1 (-332))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-949 (-564)))) (-5 *2 (-330))
- (-5 *1 (-332))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046))
- (-4 *3 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-871))))
+ ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4))
+ (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2779 *3) (-768)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3338 *4) (|:| -3078 *5))
+ (-2 (|:| -3338 *4) (|:| -3078 *5))))
+ (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-847))
+ (-4 *7 (-946 *2 *5 (-861 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-847))
+ (-4 *3 (-723))))
+ ((*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *3 (-789)) (-4 *4 (-847))
+ (-4 *2 (-1046))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790))
+ (-4 *2 (-847)))))
+(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2))
- (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))))
+ (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4))
- (-5 *1 (-807 *4 *2))
- (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))))
+ (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225)))
+ (-5 *2 (-1032)) (-5 *1 (-752)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225)))
- (|:| -1361 (-1088 (-840 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1150 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1361
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-559)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2))
- (-4 *2 (-1250 *3)))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))
+ (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5))))
+ (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-685 (-169 (-407 (-564)))))
+ (-12 (-5 *3 (-918)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5))
+ (-4 *5 (-1046)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12
(-5 *2
- (-641
- (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564))
- (|:| |outvect| (-641 (-685 (-169 *4)))))))
- (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170))
- (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-2 (|:| |partsol| (-1259 (-407 (-949 *4))))
+ (|:| -4339 (-641 (-1259 (-407 (-949 *4)))))))
+ (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147)))
+ (-4 *7 (-946 *4 *6 *5)) (-4 *5 (-13 (-847) (-612 (-1170))))
+ (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209))
+ (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
+(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918))
+ (-14 *4 (-918)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3))
(-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225))
- (-5 *2 (-1032)) (-5 *1 (-749)))))
-(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
+ (-4 *2 (-430 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1133))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172))
+ (-4 *6 (-238 (-2779 *3) (-768)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -3338 *5) (|:| -3078 *6))
+ (-2 (|:| -3338 *5) (|:| -3078 *6))))
+ (-5 *2 (-710 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-847)) (-4 *8 (-946 *4 *6 (-861 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-723)) (-4 *2 (-847)) (-5 *1 (-732 *3 *2))
+ (-4 *3 (-1046))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789))
+ (-4 *4 (-847)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790))
+ (-4 *4 (-847)) (-4 *2 (-452))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847))
+ (-4 *3 (-1060 *4 *5 *6))
+ (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -4011 *1))))
+ (-4 *1 (-1066 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1213)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2))
+ (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2727 ($ $ $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094))
+ (-5 *2 (-641 (-2 (|:| -2575 *3) (|:| -3855 (-768))))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2))
(-4 *2 (-430 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *2 (-556)) (-5 *1 (-966 *2 *4))
- (-4 *4 (-1235 *2)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7))
- (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847))
- (-4 *3 (-1060 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847))
- (-4 *3 (-1060 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-641 *4))
- (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -3853 *4))))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-962))) (-5 *1 (-291)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-564))
- (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032))
- (-5 *1 (-745)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152))
+ (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))))
+(((*1 *1 *1) (-5 *1 (-1058))))
(((*1 *2 *2)
+ (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))
+ ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-951)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))))
+(((*1 *2)
(-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
-(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-871))))
- ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
-(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918))
- (-4 *4 (-1046)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-940 *4)) (-4 *4 (-1046)) (-5 *1 (-1158 *3 *4))
- (-14 *3 (-918)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))))
-(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))))
+(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))))
+ ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1170))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-641 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2537 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1194) (-27) (-430 *8)))
+ (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3)))
+ (-5 *3 (-564))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -2592 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1010 *8 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-641 (-768))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5))
+ (-14 *4 (-918)) (-4 *5 (-1046)))))
+(((*1 *1 *1) (-5 *1 (-1058))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-5 *1 (-893 *2 *4))
- (-4 *2 (-1235 *4)))))
+ (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-768)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-847))
+ (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8))
+ (-4 *8 (-946 *3 *7 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157))))
+ ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2))
+ (-4 *4 (-38 (-407 (-564)))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))
- (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6))
- (-4 *6 (-342 *3 *4 *5)))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-112)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -4339 (-641 *1))))
+ (-4 *1 (-367 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-453 *3 *4 *5 *6))
+ (|:| -4339 (-641 (-453 *3 *4 *5 *6)))))
+ (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918))
+ (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -4011 *7))))
+ (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-985 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -4011 *7))))
+ (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452))
+ (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-641 *1))
- (-4 *1 (-430 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3))
- (-4 *3 (-1094))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))
- (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046))
- (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3))
- (-5 *1 (-947 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-363)
- (-10 -8 (-15 -1765 ($ *7)) (-15 -1507 (*7 $))
- (-15 -1517 (*7 $))))))))
+ (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790))
+ (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790))
+ (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452))
+ (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112))
+ (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6))
+ (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6))
+ (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-307)) (-4 *3 (-989 *2)) (-4 *4 (-1235 *3))
+ (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5))
+ (-4 *5 (-13 (-363) (-147) (-1035 (-564))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6))
+ (|:| -1344 *6)))
+ (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6)))))
+(((*1 *1 *1) (-4 *1 (-243)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-4012 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209)))
+ (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209)))))
+ ((*1 *1 *1) (-4 *1 (-473)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-363)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468))))
+ ((*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-768)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4))
- (-4 *4 (-349)))))
+ (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5))
+ (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-949 *5)))
+ (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213))
+ (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363))
+ (-5 *2 (-641 (-949 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847))
- (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3))
- (-4 *3 (-1060 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2))
- (-4 *2 (-13 (-430 *3) (-1194))))))
-((-1292 . 735879) (-1293 . 735719) (-1294 . 735625) (-1295 . 735018)
- (-1296 . 734858) (-1297 . 734758) (-1298 . 734708) (-1299 . 734635)
- (-1300 . 734533) (-1301 . 734480) (-1302 . 734381) (-1303 . 734226)
- (-1304 . 734102) (-1305 . 734010) (-1306 . 733930) (-1307 . 733765)
- (-1308 . 733677) (-1309 . 733597) (-1310 . 733520) (-1311 . 733440)
- (-1312 . 733285) (-1313 . 732725) (-1314 . 732317) (-1315 . 732214)
- (-1316 . 732120) (-1317 . 732011) (-1318 . 731906) (-1319 . 731775)
- (-1320 . 731723) (-1321 . 731584) (-1322 . 731529) (-1323 . 731411)
- (-1324 . 731359) (-1325 . 731121) (-1326 . 731022) (-1327 . 729820)
- (-1328 . 729502) (-1329 . 729198) (-1330 . 728876) (-1331 . 728824)
- (-1332 . 728771) (-1333 . 728697) (-1334 . 727227) (-1335 . 727123)
- (-1336 . 726905) (-1337 . 726852) (-1338 . 726784) (-1339 . 726413)
- (-1340 . 726335) (-1341 . 726040) (-1342 . 725988) (-1343 . 725127)
- (-1344 . 724955) (-1345 . 724785) (-1346 . 724669) (-1347 . 724467)
- (-1348 . 723953) (-1349 . 723887) (-1350 . 723763) (-1351 . 723690)
- (-1352 . 723279) (-1353 . 723206) (-1354 . 723043) (-1355 . 722595)
- (-1356 . 722074) (-1357 . 721972) (-1358 . 721888) (-1359 . 721787)
- (-1360 . 721735) (-1361 . 721596) (-1362 . 721510) (-1363 . 721439)
- (-1364 . 720621) (-1365 . 720442) (-1366 . 720345) (-1367 . 719824)
- (-1368 . 719377) (-1369 . 719046) (-1370 . 718928) (-1371 . 718830)
- (-1372 . 718731) (-1373 . 718621) (-1374 . 718204) (-1375 . 718051)
- (-1376 . 717998) (-1377 . 717946) (-1378 . 717788) (-1379 . 717630)
- (-1380 . 717542) (-1381 . 717430) (-1382 . 717346) (-1383 . 717175)
- (-1384 . 717093) (-1385 . 717005) (-1386 . 716953) (-1387 . 716856)
- (-1388 . 716722) (-1389 . 716330) (-1390 . 716152) (-1391 . 716056)
- (-1392 . 715832) (-1393 . 715719) (-1394 . 715664) (-1395 . 715355)
- (-1396 . 715296) (-1397 . 715078) (-1398 . 714871) (-1399 . 714799)
- (-1400 . 714581) (-1401 . 714381) (-1402 . 714325) (-1403 . 713998)
- (-1404 . 713921) (-1405 . 713844) (-1406 . 713761) (-1407 . 713218)
- (-1408 . 712837) (-1409 . 712590) (-1410 . 712247) (-1411 . 712087)
- (-1412 . 711894) (-1413 . 711553) (-1414 . 711434) (-1415 . 711363)
- (-1416 . 711290) (-1417 . 711233) (-1418 . 711161) (-1419 . 711046)
- (-1420 . 710954) (-1421 . 710694) (-1422 . 710587) (-1423 . 710302)
- (-1424 . 710214) (-1425 . 710115) (-1426 . 710005) (-1427 . 709787)
- (-1428 . 709708) (-1429 . 709638) (-1430 . 709546) (-1431 . 709254)
- (-1432 . 709064) (-1433 . 708970) (-1434 . 708890) (-1435 . 708511)
- (-1436 . 708440) (-1437 . 708042) (-1438 . 707908) (-1439 . 707880)
- (-1440 . 707794) (-1441 . 707708) (-1442 . 707642) (-1443 . 707475)
- (-1444 . 707302) (-1445 . 706925) (-1446 . 706724) (-1447 . 706620)
- (-1448 . 706526) (-1449 . 706465) (-1450 . 706357) (-1451 . 706045)
- (-1452 . 705888) (-1453 . 705814) (-1454 . 705421) (-1455 . 705268)
- (-1456 . 705125) (-1457 . 705032) (-1458 . 704894) (-1459 . 704713)
- (-1460 . 704569) (-1461 . 704317) (-1462 . 704201) (-1463 . 704124)
- (-1464 . 703979) (-1465 . 703776) (-1466 . 703675) (-1467 . 703551)
- (-1468 . 703224) (-1469 . 703078) (-1470 . 702955) (-1471 . 702823)
- (-1472 . 702464) (-1473 . 701973) (-1474 . 701889) (-1475 . 701646)
- (-1476 . 701287) (-1477 . 701112) (-1478 . 701026) (-1479 . 700931)
- (-1480 . 700639) (-1481 . 700298) (-1482 . 700059) (-1483 . 699949)
- (-1484 . 699771) (-1485 . 698883) (-1486 . 698763) (-1487 . 698685)
- (-1488 . 698431) (-1489 . 697978) (-1490 . 697870) (-1491 . 697808)
- (-1492 . 697759) (-1493 . 697449) (-1494 . 697337) (-1495 . 697042)
- (-1496 . 696987) (-1497 . 696891) (-1498 . 696540) (-1499 . 696222)
- (-1500 . 696080) (-1501 . 695900) (-1502 . 695289) (-1503 . 695203)
- (-1504 . 695088) (-1505 . 695033) (-1506 . 694956) (-1507 . 694255)
- (-1508 . 694066) (-1509 . 693819) (-1510 . 693705) (-1511 . 693525)
- (-1512 . 692998) (-1513 . 692927) (-1514 . 692709) (-1515 . 692552)
- (-1516 . 692330) (-1517 . 691652) (-1518 . 691456) (-1519 . 691399)
- (-1520 . 691280) (-1521 . 690984) (-1522 . 690843) (-1523 . 690723)
- (-1524 . 690589) (-1525 . 690441) (-1526 . 690309) (-1527 . 690202)
- (-1528 . 690086) (-1529 . 690014) (-1530 . 689663) (-1531 . 689580)
- (-1532 . 689462) (-1533 . 689348) (-1534 . 689139) (-1535 . 689046)
- (-1536 . 688963) (-1537 . 688828) (-1538 . 688522) (-1539 . 688257)
- (-1540 . 688155) (-1541 . 688051) (-1542 . 687779) (-1543 . 687594)
- (-1544 . 687241) (-1545 . 687078) (-1546 . 686875) (-1547 . 686597)
- (-1548 . 686444) (-1549 . 686273) (-1550 . 686105) (-1551 . 685998)
- (-1552 . 685806) (-1553 . 685699) (-1554 . 685589) (-1555 . 685518)
- (-1556 . 685381) (-1557 . 685244) (-1558 . 685191) (-1559 . 685022)
- (-1560 . 684720) (-1561 . 684599) (-1562 . 684532) (-1563 . 684458)
- (-1564 . 684351) (-1565 . 684252) (-1566 . 684122) (-1567 . 684024)
- (-1568 . 683865) (-1569 . 683834) (-1570 . 683157) (-1571 . 683053)
- (-1572 . 683001) (-1573 . 682097) (-1574 . 682069) (-1575 . 681960)
- (-1576 . 681846) (-1577 . 681722) (-1578 . 681609) (-1579 . 681490)
- (-1580 . 681425) (-1581 . 681344) (-1582 . 681289) (-1583 . 680982)
- (-1584 . 680820) (-1585 . 680736) (-1586 . 680628) (-1587 . 680540)
- (-1588 . 680472) (-1589 . 680298) (-1590 . 680042) (-1591 . 679792)
- (-1592 . 679696) (-1593 . 679389) (-1594 . 675326) (-1595 . 675210)
- (-1596 . 675122) (-1597 . 674964) (-1598 . 674745) (-1599 . 674566)
- (-1600 . 674510) (-1601 . 674406) (-1602 . 674196) (-1603 . 674111)
- (-1604 . 673906) (-1605 . 673473) (-1606 . 673336) (-1607 . 673256)
- (-1608 . 673203) (-1609 . 673120) (-1610 . 673067) (-1611 . 672942)
- (-1612 . 672860) (-1613 . 672684) (-1614 . 672474) (-1615 . 672343)
- (-1616 . 672291) (-1617 . 671331) (-1618 . 671257) (-1619 . 671068)
- (-1620 . 670916) (-1621 . 670843) (-1622 . 670641) (-1623 . 670582)
- (-1624 . 670445) (-1625 . 670336) (-1626 . 670253) (-1627 . 670135)
- (-1628 . 670052) (-1629 . 669856) (-1630 . 669713) (-1631 . 669590)
- (-1632 . 669531) (-1633 . 668736) (-1634 . 668678) (-1635 . 668566)
- (-1636 . 668478) (-1637 . 668444) (-1638 . 666099) (-1639 . 665997)
- (-1640 . 665783) (-1641 . 665670) (-1642 . 665592) (-1643 . 665479)
- (-1644 . 665385) (-1645 . 665295) (-1646 . 665239) (-1647 . 665212)
- (-1648 . 664994) (-1649 . 664888) (-1650 . 664729) (-1651 . 664534)
- (-1652 . 664477) (-1653 . 664370) (-1654 . 663261) (-1655 . 663108)
- (-1656 . 662990) (-1657 . 659691) (-1658 . 659596) (-1659 . 659536)
- (-1660 . 659465) (-1661 . 659363) (-1662 . 659005) (-1663 . 658785)
- (-1664 . 658398) (-1665 . 658104) (-1666 . 657730) (-1667 . 657606)
- (-1668 . 657485) (-1669 . 657419) (-1670 . 657138) (-1671 . 656110)
- (-1672 . 655797) (-1673 . 655718) (-1674 . 655600) (-1675 . 654634)
- (-1676 . 654488) (-1677 . 654365) (-1678 . 654270) (-1679 . 654218)
- (-1680 . 653772) (-1681 . 653703) (-1682 . 653579) (-1683 . 653482)
- (-1684 . 653272) (-1685 . 653199) (-1686 . 652927) (-1687 . 652818)
- (-1688 . 652715) (-1689 . 652589) (-1690 . 652451) (-1691 . 651376)
- (-1692 . 651299) (-1693 . 650696) (-1694 . 650616) (-1695 . 650524)
- (-1696 . 650359) (-1697 . 650257) (-1698 . 650191) (-1699 . 650138)
- (-1700 . 650081) (-1701 . 649936) (-1702 . 649853) (-1703 . 649786)
- (-1704 . 649654) (-1705 . 649423) (-1706 . 649356) (-1707 . 649236)
- (-1708 . 649184) (-1709 . 648932) (-1710 . 648880) (-1711 . 648806)
- (-1712 . 648554) (-1713 . 648396) (-1714 . 648347) (-1715 . 648260)
- (-1716 . 648188) (-1717 . 648114) (-1718 . 648007) (-1719 . 647895)
- (-1720 . 647722) (-1721 . 647645) (-1722 . 647574) (-1723 . 647546)
- (-1724 . 647287) (-1725 . 647116) (-1726 . 647063) (-1727 . 646878)
- (-1728 . 646719) (-1729 . 646610) (-1730 . 646541) (-1731 . 646512)
- (-1732 . 646408) (-1733 . 646356) (-1734 . 646190) (-1735 . 646094)
- (-1736 . 646003) (-1737 . 645902) (-1738 . 645815) (-1739 . 645670)
- (-1740 . 645574) (-1741 . 645397) (-1742 . 645281) (-1743 . 645122)
- (-1744 . 645060) (-1745 . 645026) (-1746 . 644888) (-1747 . 644748)
- (-1748 . 644604) (-1749 . 644477) (-1750 . 644273) (-1751 . 644025)
- (-1752 . 643972) (-1753 . 643754) (-1754 . 643667) (-1755 . 643521)
- (-1756 . 643363) (-1757 . 641775) (-1758 . 641495) (-1759 . 641352)
- (-1760 . 641148) (-1761 . 640931) (-1762 . 640866) (-1763 . 640685)
- (-1764 . 640515) (-1765 . 621802) (-1766 . 621723) (-1767 . 621473)
- (-1768 . 621312) (-1769 . 620787) (-1770 . 619210) (-1771 . 618024)
- (-1772 . 617961) (-1773 . 617813) (-1774 . 617701) (-1775 . 617541)
- (-1776 . 614720) (-1777 . 614497) (-1778 . 614341) (-1779 . 612558)
- (-1780 . 612459) (-1781 . 612406) (-1782 . 612353) (-1783 . 611171)
- (-1784 . 610985) (-1785 . 610902) (-1786 . 610656) (-1787 . 610587)
- (-1788 . 610291) (-1789 . 610231) (-1790 . 609391) (-1791 . 608393)
- (-1792 . 608253) (-1793 . 606047) (-1794 . 605966) (-1795 . 605844)
- (-1796 . 604542) (-1797 . 604490) (-1798 . 604456) (-1799 . 604382)
- (-1800 . 604252) (-1801 . 604073) (-1802 . 603767) (-1803 . 603623)
- (-1804 . 603567) (-1805 . 603500) (-1806 . 603389) (-1807 . 603336)
- (-1808 . 603166) (-1809 . 603095) (-1810 . 603021) (-1811 . 602949)
- (-1812 . 602817) (-1813 . 602390) (-1814 . 602157) (-1815 . 602005)
- (-1816 . 601919) (-1817 . 601003) (-1818 . 600788) (-1819 . 600502)
- (-1820 . 600308) (-1821 . 600056) (-1822 . 599934) (-1823 . 599884)
- (-1824 . 599569) (-1825 . 598985) (-1826 . 597897) (-1827 . 597706)
- (-1828 . 597501) (-1829 . 596841) (-1830 . 596622) (-1831 . 596509)
- (-1832 . 595914) (-1833 . 595858) (-1834 . 595585) (-1835 . 594875)
- (-1836 . 594787) (-1837 . 594665) (-1838 . 594596) (-1839 . 594568)
- (-1840 . 594537) (-1841 . 594426) (-1842 . 593966) (-1843 . 593892)
- (-1844 . 593791) (-1845 . 593663) (-1846 . 593575) (-1847 . 593096)
- (-1848 . 592890) (-1849 . 592833) (-1850 . 592796) (-1851 . 592603)
- (-1852 . 592502) (-1853 . 592359) (-1854 . 592307) (-1855 . 591965)
- (-1856 . 591867) (-1857 . 591681) (-1858 . 591202) (-1859 . 590808)
- (-1860 . 590626) (-1861 . 590552) (-1862 . 590246) (-1863 . 590151)
- (-1864 . 590043) (-1865 . 589922) (-1866 . 589803) (-1867 . 589661)
- (-1868 . 589330) (-1869 . 589202) (-1870 . 589007) (-1871 . 588790)
- (-1872 . 588638) (-1873 . 588556) (-1874 . 588198) (-1875 . 588069)
- (-1876 . 587987) (-1877 . 587901) (-1878 . 587800) (-1879 . 587520)
- (-1880 . 587449) (-1881 . 586145) (-1882 . 585938) (-1883 . 585880)
- (-1884 . 585737) (-1885 . 585709) (-1886 . 585412) (-1887 . 585329)
- (-1888 . 585277) (-1889 . 585207) (-1890 . 585034) (-1891 . 584914)
- (-1892 . 584861) (-1893 . 584464) (-1894 . 584371) (-1895 . 584318)
- (-1896 . 584247) (-1897 . 584148) (-1898 . 584082) (-1899 . 583755)
- (-1900 . 583651) (-1901 . 583270) (-1902 . 583205) (-1903 . 583168)
- (-1904 . 583140) (-1905 . 582995) (-1906 . 582943) (-1907 . 582200)
- (-1908 . 582046) (-1909 . 581956) (-1910 . 581883) (-1911 . 581640)
- (-1912 . 581437) (-1913 . 581226) (-1914 . 581159) (-1915 . 581028)
- (-1916 . 580531) (-1917 . 580478) (-1918 . 580428) (-1919 . 580119)
- (-1920 . 580053) (-1921 . 579848) (-1922 . 579792) (-1923 . 579760)
- (-1924 . 577903) (-1925 . 577821) (-1926 . 576605) (-1927 . 576553)
- (-1928 . 576335) (-1929 . 576192) (-1930 . 576158) (-1931 . 575983)
- (-1932 . 575893) (-1933 . 575653) (-1934 . 575402) (-1935 . 575172)
- (-1936 . 575100) (-1937 . 575010) (-1938 . 574307) (-1939 . 573986)
- (-1940 . 573705) (-1941 . 573561) (-1942 . 573495) (-1943 . 573394)
- (-1944 . 573363) (-1945 . 573032) (-1946 . 572919) (-1947 . 572825)
- (-1948 . 572632) (-1949 . 572479) (-1950 . 572290) (-1951 . 572238)
- (-1952 . 572092) (-1953 . 572024) (-1954 . 571880) (-1955 . 571795)
- (-1956 . 571668) (-1957 . 571544) (-1958 . 571301) (-1959 . 570866)
- (-1960 . 570810) (-1961 . 570540) (-1962 . 570401) (-1963 . 570289)
- (-1964 . 569680) (-1965 . 568819) (-1966 . 568651) (-1967 . 568498)
- (-1968 . 568412) (-1969 . 568193) (-1970 . 567936) (-1971 . 567726)
- (-1972 . 567665) (-1973 . 567289) (-1974 . 567167) (-1975 . 567060)
- (-1976 . 566910) (-1977 . 566803) (-1978 . 565986) (-1979 . 565824)
- (-1980 . 565725) (-1981 . 565121) (-1982 . 565022) (-1983 . 564941)
- (-1984 . 564339) (-1985 . 564149) (-1986 . 564014) (-1987 . 563786)
- (-1988 . 563681) (-1989 . 563610) (-1990 . 562445) (-1991 . 562192)
- (-1992 . 562004) (-1993 . 561952) (-1994 . 561897) (-1995 . 561739)
- (-1996 . 561642) (-1997 . 561470) (-1998 . 561371) (-1999 . 561258)
- (-2000 . 561181) (-2001 . 561113) (-2002 . 560763) (-2003 . 560645)
- (-2004 . 560577) (-2005 . 560186) (-2006 . 559762) (-2007 . 559655)
- (-2008 . 559499) (-2009 . 559446) (-2010 . 559378) (-2011 . 559319)
- (-2012 . 559222) (-2013 . 554680) (-2014 . 554572) (-2015 . 554520)
- (-2016 . 554019) (-2017 . 553909) (-2018 . 553872) (-2019 . 553758)
- (-2020 . 553660) (-2021 . 553601) (-2022 . 553123) (-2023 . 552778)
- (-2024 . 552569) (-2025 . 552442) (-2026 . 552190) (-2027 . 552007)
- (-2028 . 551954) (-2029 . 551819) (-2030 . 551635) (-2031 . 551528)
- (-2032 . 551468) (-2033 . 551340) (-2034 . 551288) (-2035 . 550860)
- (-2036 . 550778) (-2037 . 550695) (-2038 . 550449) (-2039 . 550376)
- (-2040 . 550217) (-2041 . 549999) (-2042 . 549902) (-2043 . 549775)
- (-2044 . 549687) (-2045 . 549590) (-2046 . 549402) (-2047 . 549163)
- (-2048 . 549109) (-2049 . 548982) (-2050 . 548887) (-2051 . 548819)
- (-2052 . 548689) (-2053 . 548531) (-2054 . 548428) (-2055 . 548174)
- (-2056 . 547874) (-2057 . 547733) (-2058 . 547548) (-2059 . 547478)
- (-2060 . 547320) (-2061 . 546991) (-2062 . 546921) (-2063 . 546707)
- (-2064 . 541369) (-2065 . 541116) (-2066 . 541000) (-2067 . 540183)
- (-2068 . 540130) (-2069 . 540027) (-2070 . 539484) (-2071 . 539196)
- (-2072 . 539095) (-2073 . 539018) (-2074 . 538770) (-2075 . 538508)
- (-2076 . 538352) (-2077 . 538279) (-2078 . 537968) (-2079 . 537813)
- (-2080 . 537533) (-2081 . 537456) (-2082 . 523342) (-2083 . 523239)
- (-2084 . 523170) (-2085 . 523073) (-2086 . 522972) (-2087 . 522872)
- (-2088 . 522705) (-2089 . 522562) (-2090 . 522453) (-2091 . 522288)
- (-2092 . 522080) (-2093 . 521710) (-2094 . 521591) (-2095 . 521536)
- (-2096 . 521508) (-2097 . 521365) (-2098 . 518950) (-2099 . 518807)
- (-2100 . 518756) (-2101 . 518653) (-2102 . 518544) (-2103 . 518201)
- (-2104 . 517955) (-2105 . 517900) (-2106 . 517723) (-2107 . 517408)
- (-2108 . 517106) (-2109 . 517028) (-2110 . 516954) (-2111 . 516466)
- (-2112 . 516388) (-2113 . 516247) (-2114 . 516148) (-2115 . 515618)
- (-2116 . 515471) (-2117 . 515439) (-2118 . 515390) (-2119 . 515316)
- (-2120 . 515218) (-2121 . 514778) (-2122 . 514690) (-2123 . 514562)
- (-2124 . 514490) (-2125 . 514103) (-2126 . 514002) (-2127 . 510336)
- (-2128 . 509977) (-2129 . 509896) (-2130 . 509771) (-2131 . 509226)
- (-2132 . 509125) (-2133 . 509039) (-2134 . 508029) (-2135 . 507946)
- (-2136 . 507731) (-2137 . 507629) (-2138 . 507601) (-2139 . 507339)
- (-2140 . 506973) (-2141 . 506901) (-2142 . 506816) (-2143 . 506750)
- (-2144 . 506583) (-2145 . 506482) (-2146 . 506183) (-2147 . 506102)
- (-2148 . 505610) (-2149 . 505512) (-2150 . 505059) (-2151 . 504973)
- (-2152 . 503761) (-2153 . 503678) (-2154 . 503479) (-2155 . 503312)
- (-2156 . 503200) (-2157 . 503093) (-2158 . 503039) (-2159 . 502916)
- (-2160 . 502775) (-2161 . 502692) (-2162 . 502639) (-2163 . 502433)
- (-2164 . 501946) (-2165 . 501875) (-2166 . 501776) (-2167 . 501601)
- (-2168 . 501459) (-2169 . 501407) (-2170 . 501301) (-2171 . 501182)
- (-2172 . 501052) (-2173 . 500994) (-2174 . 500787) (-2175 . 500676)
- (-2176 . 500475) (-2177 . 500295) (-2178 . 500147) (-2179 . 500077)
- (-2180 . 499937) (-2181 . 499808) (-2182 . 499714) (-2183 . 499662)
- (-2184 . 499578) (-2185 . 499467) (-2186 . 498229) (-2187 . 498071)
- (-2188 . 497985) (-2189 . 497855) (-2190 . 497260) (-2191 . 497205)
- (-2192 . 496841) (-2193 . 496712) (-2194 . 496644) (-2195 . 496591)
- (-2196 . 496563) (-2197 . 496405) (-2198 . 495908) (-2199 . 495809)
- (-2200 . 495643) (-2201 . 495070) (-2202 . 494982) (-2203 . 493912)
- (-2204 . 493862) (-2205 . 493810) (-2206 . 493697) (-2207 . 493556)
- (-2208 . 493363) (-2209 . 493219) (-2210 . 493020) (-2211 . 492908)
- (-2212 . 492736) (-2213 . 492637) (-2214 . 492479) (-2215 . 492407)
- (-2216 . 492300) (-2217 . 492170) (-2218 . 492102) (-2219 . 492000)
- (-2220 . 491760) (-2221 . 491687) (-2222 . 491607) (-2223 . 491551)
- (-2224 . 491379) (-2225 . 491284) (-2226 . 491207) (-2227 . 490985)
- (-2228 . 490545) (-2229 . 490426) (-2230 . 490192) (-2231 . 490051)
- (-2232 . 489935) (-2233 . 489763) (-2234 . 489629) (-2235 . 489578)
- (-2236 . 489425) (-2237 . 489301) (-2238 . 489130) (-2239 . 488530)
- (-2240 . 487984) (-2241 . 487866) (-2242 . 487694) (-2243 . 487644)
- (-2244 . 487535) (-2245 . 487403) (-2246 . 487296) (-2247 . 487021)
- (-2248 . 486951) (-2249 . 486850) (-2250 . 486797) (-2251 . 486588)
- (-2252 . 486472) (-2253 . 486345) (-2254 . 486181) (-2255 . 485542)
- (-2256 . 485484) (-2257 . 485040) (-2258 . 484933) (-2259 . 484760)
- (-2260 . 484710) (-2261 . 482441) (-2262 . 482284) (-2263 . 482231)
- (-2264 . 482152) (-2265 . 481816) (-2266 . 481568) (-2267 . 481402)
- (-2268 . 481349) (-2269 . 481131) (-2270 . 480917) (-2271 . 480835)
- (-2272 . 480739) (-2273 . 480654) (-2274 . 480568) (-2275 . 480487)
- (-2276 . 480300) (-2277 . 480147) (-2278 . 480064) (-2279 . 479921)
- (-2280 . 479868) (-2281 . 479740) (-2282 . 479533) (-2283 . 479406)
- (-2284 . 479254) (-2285 . 479170) (-2286 . 479066) (-2287 . 478981)
- (-2288 . 478731) (-2289 . 478520) (-2290 . 478492) (-2291 . 478297)
- (-2292 . 478021) (-2293 . 477859) (-2294 . 477802) (-2295 . 477750)
- (-2296 . 477646) (-2297 . 477567) (-2298 . 477418) (-2299 . 476742)
- (-2300 . 476487) (-2301 . 476408) (-2302 . 476229) (-2303 . 476095)
- (-2304 . 475839) (-2305 . 475781) (-2306 . 475678) (-2307 . 475592)
- (-2308 . 475498) (-2309 . 475384) (-2310 . 475000) (-2311 . 474969)
- (-2312 . 474913) (-2313 . 474884) (-2314 . 474699) (-2315 . 474572)
- (-2316 . 474465) (-2317 . 474382) (-2318 . 474254) (-2319 . 474036)
- (-2320 . 473736) (-2321 . 473654) (-2322 . 473525) (-2323 . 473367)
- (-2324 . 473286) (-2325 . 473145) (-2326 . 473050) (-2327 . 472998)
- (-2328 . 472919) (-2329 . 472811) (-2330 . 472700) (-2331 . 472666)
- (-2332 . 472416) (-2333 . 472094) (-2334 . 471821) (-2335 . 471606)
- (-2336 . 470541) (-2337 . 470488) (-2338 . 470460) (-2339 . 470338)
- (-2340 . 470285) (-2341 . 470166) (-2342 . 469936) (-2343 . 469836)
- (-2344 . 469524) (-2345 . 469406) (-2346 . 469312) (-2347 . 469242)
- (-2348 . 468973) (-2349 . 468890) (-2350 . 468598) (-2351 . 468444)
- (-2352 . 468321) (-2353 . 467140) (-2354 . 466903) (-2355 . 466831)
- (-2356 . 466667) (-2357 . 466567) (-2358 . 466514) (-2359 . 465915)
- (-2360 . 465832) (-2361 . 465694) (-2362 . 465242) (-2363 . 465039)
- (-2364 . 464898) (-2365 . 464758) (-2366 . 464684) (-2367 . 464466)
- (-2368 . 464380) (-2369 . 464313) (-2370 . 463940) (-2371 . 463881)
- (-2372 . 463774) (-2373 . 463404) (-2374 . 463179) (-2375 . 463032)
- (-2376 . 462658) (-2377 . 462463) (-2378 . 462345) (-2379 . 462275)
- (-2380 . 462132) (-2381 . 461480) (-2382 . 461386) (-2383 . 461320)
- (-2384 . 460035) (-2385 . 459897) (-2386 . 459640) (-2387 . 459194)
- (-2388 . 459087) (-2389 . 459024) (-2390 . 458945) (-2391 . 458866)
- (-2392 . 458788) (-2393 . 458612) (-2394 . 458120) (-2395 . 457818)
- (-2396 . 457727) (-2397 . 457657) (-2398 . 457562) (-2399 . 457386)
- (-2400 . 457334) (-2401 . 457284) (-2402 . 457131) (-2403 . 456722)
- (-2404 . 456043) (-2405 . 455899) (-2406 . 455663) (-2407 . 451665)
- (-2408 . 451513) (-2409 . 451266) (-2410 . 451214) (-2411 . 451071)
- (-2412 . 450264) (-2413 . 449888) (-2414 . 449713) (-2415 . 449186)
- (-2416 . 448964) (-2417 . 448911) (-2418 . 448833) (-2419 . 448595)
- (-2420 . 448527) (-2421 . 448355) (-2422 . 448232) (-2423 . 448079)
- (-2424 . 448001) (-2425 . 447973) (-2426 . 447836) (-2427 . 447741)
- (-2428 . 447634) (-2429 . 447581) (-2430 . 447436) (-2431 . 447190)
- (-2432 . 446909) (-2433 . 446839) (-2434 . 446659) (-2435 . 446551)
- (-2436 . 446128) (-2437 . 446042) (-2438 . 445970) (-2439 . 445759)
- (-2440 . 445616) (-2441 . 441456) (-2442 . 441392) (-2443 . 441239)
- (-2444 . 439943) (-2445 . 439887) (-2446 . 439832) (-2447 . 439701)
- (-2448 . 439094) (-2449 . 438997) (-2450 . 438830) (-2451 . 438686)
- (-2452 . 438350) (-2453 . 438285) (-2454 . 438234) (-2455 . 437054)
- (-2456 . 436855) (-2457 . 436760) (-2458 . 436686) (-2459 . 436365)
- (-2460 . 436133) (-2461 . 436004) (-2462 . 435952) (-2463 . 435889)
- (-2464 . 435647) (-2465 . 435578) (-2466 . 435492) (-2467 . 435182)
- (-2468 . 435026) (-2469 . 434938) (-2470 . 434576) (-2471 . 434502)
- (-2472 . 434035) (-2473 . 433710) (-2474 . 433432) (-2475 . 433176)
- (-2476 . 433043) (-2477 . 432872) (-2478 . 432511) (-2479 . 432445)
- (-2480 . 432352) (-2481 . 432104) (-2482 . 432000) (-2483 . 431817)
- (-2484 . 431215) (-2485 . 430871) (-2486 . 430715) (-2487 . 430385)
- (-2488 . 430298) (-2489 . 430241) (-2490 . 430185) (-2491 . 430125)
- (-2492 . 429975) (-2493 . 429892) (-2494 . 429461) (-2495 . 429408)
- (-2496 . 429216) (-2497 . 429066) (-2498 . 428985) (-2499 . 428878)
- (-2500 . 428801) (-2501 . 428559) (-2502 . 428280) (-2503 . 428180)
- (-2504 . 428127) (-2505 . 428044) (-2506 . 427796) (-2507 . 427717)
- (-2508 . 427608) (-2509 . 427549) (-2510 . 427391) (-2511 . 426876)
- (-2512 . 426821) (-2513 . 426446) (-2514 . 426387) (-2515 . 426228)
- (-2516 . 426172) (-2517 . 426084) (-2518 . 426031) (-2519 . 425873)
- (-2520 . 425694) (-2521 . 425625) (-2522 . 425548) (-2523 . 425341)
- (-2524 . 425185) (-2525 . 425079) (-2526 . 424881) (-2527 . 423779)
- (-2528 . 423326) (-2529 . 422902) (-2530 . 422851) (-2531 . 422712)
- (-2532 . 422626) (-2533 . 422566) (-2534 . 422461) (-2535 . 422256)
- (-2536 . 422137) (-2537 . 421979) (-2538 . 421926) (-2539 . 421808)
- (-2540 . 421687) (-2541 . 421428) (-2542 . 420778) (-2543 . 420546)
- (-2544 . 420473) (-2545 . 420379) (-2546 . 420283) (-2547 . 420031)
- (-2548 . 419637) (-2549 . 417374) (-2550 . 417273) (-2551 . 417202)
- (-2552 . 417087) (-2553 . 416922) (-2554 . 416848) (-2555 . 416820)
- (-2556 . 416638) (-2557 . 416340) (-2558 . 415783) (-2559 . 415684)
- (-2560 . 415656) (-2561 . 415583) (-2562 . 415242) (-2563 . 415158)
- (-2564 . 414484) (-2565 . 414326) (-2566 . 414142) (-2567 . 414032)
- (-2568 . 413931) (-2569 . 413877) (-2570 . 413448) (-2571 . 413324)
- (-2572 . 413230) (-2573 . 413144) (-2574 . 412953) (-2575 . 412752)
- (-2576 . 412485) (-2577 . 412355) (-2578 . 411968) (-2579 . 411802)
- (-2580 . 411700) (-2581 . 411482) (-2582 . 411430) (-2583 . 411377)
- (-2584 . 411010) (-2585 . 410879) (-2586 . 410799) (-2587 . 410747)
- (-2588 . 410695) (-2589 . 410378) (-2590 . 410294) (-2591 . 410185)
- (-2592 . 410133) (-2593 . 410063) (-2594 . 409864) (-2595 . 409814)
- (-2596 . 409728) (-2597 . 409592) (-2598 . 409564) (-2599 . 409325)
- (-2600 . 409294) (-2601 . 409151) (-2602 . 408996) (-2603 . 408260)
- (-2604 . 408186) (-2605 . 407322) (-2606 . 407268) (-2607 . 407161)
- (-2608 . 406998) (-2609 . 406970) (-2610 . 406897) (-2611 . 406809)
- (-2612 . 406756) (-2613 . 406502) (-2614 . 406294) (-2615 . 406188)
- (-2616 . 406136) (-2617 . 406081) (-2618 . 405962) (-2619 . 405873)
- (-2620 . 405616) (-2621 . 405498) (-2622 . 405425) (-2623 . 405358)
- (-2624 . 405252) (-2625 . 404955) (-2626 . 404889) (-2627 . 404805)
- (-2628 . 404617) (-2629 . 404558) (-2630 . 404530) (-2631 . 404368)
- (-2632 . 404206) (-2633 . 403323) (-2634 . 403030) (-2635 . 402889)
- (-2636 . 402802) (-2637 . 402621) (-2638 . 402279) (-2639 . 402195)
- (-2640 . 402096) (-2641 . 401957) (-2642 . 401714) (-2643 . 401610)
- (-2644 . 401259) (-2645 . 401202) (-2646 . 401136) (-2647 . 401018)
- (-2648 . 400787) (-2649 . 400612) (-2650 . 400517) (-2651 . 400349)
- (-2652 . 400275) (-2653 . 399803) (-2654 . 399593) (-2655 . 399242)
- (-2656 . 399089) (-2657 . 398902) (-2658 . 398529) (-2659 . 398436)
- (-2660 . 398311) (-2661 . 398232) (-2662 . 397953) (-2663 . 397753)
- (-2664 . 397694) (-2665 . 397362) (-2666 . 397175) (-2667 . 396936)
- (-2668 . 396905) (-2669 . 396575) (-2670 . 396491) (-2671 . 396389)
- (-2672 . 395865) (-2673 . 395594) (-2674 . 395404) (-2675 . 395320)
- (-2676 . 395283) (-2677 . 395183) (-2678 . 393985) (-2679 . 393885)
- (-2680 . 393822) (-2681 . 393750) (-2682 . 393654) (-2683 . 393527)
- (-2684 . 393390) (-2685 . 393131) (-2686 . 392841) (-2687 . 392726)
- (-2688 . 392527) (-2689 . 392418) (-2690 . 391914) (-2691 . 391766)
- (-2692 . 391256) (-2693 . 390879) (-2694 . 390718) (-2695 . 390261)
- (-2696 . 390091) (-2697 . 389946) (-2698 . 389694) (-2699 . 389635)
- (-2700 . 389544) (-2701 . 389436) (-2702 . 389294) (-2703 . 389013)
- (-2704 . 388912) (-2705 . 388860) (-2706 . 388657) (-2707 . 388377)
- (-2708 . 387579) (-2709 . 386929) (-2710 . 386807) (-2711 . 386675)
- (-2712 . 386293) (-2713 . 385771) (-2714 . 385655) (-2715 . 385554)
- (-2716 . 385431) (-2717 . 385360) (-2718 . 385291) (-2719 . 385160)
- (-2720 . 384953) (-2721 . 384856) (-2722 . 384799) (-2723 . 384722)
- (-2724 . 384599) (-2725 . 384411) (-2726 . 384344) (-2727 . 384229)
- (-2728 . 384128) (-2729 . 383991) (-2730 . 383778) (-2731 . 383014)
- (-2732 . 382935) (-2733 . 382760) (-2734 . 382658) (-2735 . 382184)
- (-2736 . 382078) (-2737 . 381981) (-2738 . 381925) (-2739 . 381839)
- (-2740 . 381773) (-2741 . 381526) (-2742 . 381221) (-2743 . 380975)
- (-2744 . 380830) (-2745 . 380775) (-2746 . 380567) (-2747 . 380450)
- (-2748 . 380339) (-2749 . 380273) (-2750 . 379935) (-2751 . 379876)
- (-2752 . 379820) (-2753 . 379454) (-2754 . 379213) (-2755 . 379094)
- (-2756 . 379041) (-2757 . 378908) (-2758 . 378780) (-2759 . 378720)
- (-2760 . 378100) (-2761 . 377993) (-2762 . 377189) (-2763 . 377120)
- (-2764 . 376954) (-2765 . 376802) (-2766 . 376739) (-2767 . 376449)
- (-2768 . 376379) (-2769 . 376316) (-2770 . 376264) (-2771 . 376212)
- (-2772 . 375094) (-2773 . 374856) (-2774 . 374496) (-2775 . 374441)
- (-2776 . 374065) (-2777 . 373958) (-2778 . 373800) (-2779 . 373747)
- (-2780 . 373698) (-2781 . 373641) (-2782 . 373550) (-2783 . 373386)
- (-2784 . 373155) (-2785 . 373048) (-2786 . 372911) (-2787 . 372562)
- (-2788 . 372429) (-2789 . 372376) (-2790 . 372317) (-2791 . 372001)
- (-2792 . 371940) (-2793 . 371855) (-2794 . 371793) (-2795 . 371697)
- (-2796 . 371604) (-2797 . 371523) (-2798 . 371467) (-2799 . 371313)
- (-2800 . 371239) (-2801 . 371103) (-2802 . 371032) (-2803 . 370864)
- (-2804 . 370761) (-2805 . 370490) (-2806 . 370347) (-2807 . 370172)
- (-2808 . 369992) (-2809 . 369964) (-2810 . 369718) (-2811 . 369639)
- (-2812 . 369537) (-2813 . 369230) (-2814 . 369117) (-2815 . 368977)
- (-2816 . 368799) (-2817 . 368169) (-2818 . 367977) (-2819 . 367887)
- (-2820 . 367859) (-2821 . 367695) (-2822 . 367344) (-2823 . 367267)
- (-2824 . 367109) (-2825 . 366995) (-2826 . 366859) (-2827 . 366665)
- (-2828 . 366469) (-2829 . 366359) (-2830 . 366197) (-2831 . 365954)
- (-2832 . 365707) (-2833 . 365626) (-2834 . 365567) (-2835 . 365461)
- (-2836 . 365302) (-2837 . 364951) (-2838 . 364870) (-2839 . 364313)
- (-2840 . 364225) (-2841 . 364107) (-2842 . 364047) (-2843 . 363960)
- (-2844 . 363830) (-2845 . 363764) (-2846 . 363634) (-2847 . 363602)
- (-2848 . 363529) (-2849 . 363395) (-2850 . 363329) (-2851 . 363243)
- (-2852 . 363063) (-2853 . 362736) (-2854 . 361474) (-2855 . 361418)
- (-2856 . 361351) (-2857 . 361013) (-2858 . 360918) (-2859 . 360763)
- (-2860 . 360654) (-2861 . 360444) (-2862 . 360370) (-2863 . 360290)
- (-2864 . 360161) (-2865 . 360093) (-2866 . 359940) (-2867 . 359796)
- (-2868 . 359725) (-2869 . 359645) (-2870 . 359484) (-2871 . 359261)
- (-2872 . 359088) (-2873 . 358945) (-2874 . 358836) (-2875 . 358739)
- (-2876 . 358668) (-2877 . 358583) (-2878 . 358530) (-2879 . 358502)
- (-2880 . 358363) (-2881 . 358233) (-2882 . 358133) (-2883 . 358039)
- (-2884 . 357966) (-2885 . 357907) (-2886 . 357804) (-2887 . 357591)
- (-2888 . 357454) (-2889 . 357345) (-2890 . 357259) (-2891 . 356995)
- (-2892 . 356944) (-2893 . 356892) (-2894 . 356839) (-2895 . 356673)
- (-2896 . 356546) (-2897 . 356494) (-2898 . 356432) (-2899 . 356180)
- (-2900 . 356087) (-2901 . 356014) (-2902 . 355522) (-2903 . 355464)
- (-2904 . 355393) (-2905 . 355203) (-2906 . 355131) (-2907 . 355022)
- (-2908 . 354921) (-2909 . 354787) (-2910 . 354190) (-2911 . 353898)
- (-2912 . 353843) (-2913 . 353760) (-2914 . 353694) (-2915 . 353609)
- (-2916 . 353317) (-2917 . 353268) (-2918 . 353204) (-2919 . 353152)
- (-2920 . 353057) (-2921 . 352941) (-2922 . 352828) (-2923 . 352754)
- (-2924 . 352681) (-2925 . 352551) (-2926 . 352432) (-2927 . 352360)
- (-2928 . 352253) (-2929 . 351863) (-2930 . 351783) (-2931 . 351601)
- (-2932 . 351548) (-2933 . 351460) (-2934 . 351365) (-2935 . 351214)
- (-2936 . 351160) (-2937 . 350824) (-2938 . 350756) (-2939 . 350682)
- (-2940 . 350144) (-2941 . 349955) (-2942 . 349900) (-2943 . 349422)
- (-2944 . 349262) (-2945 . 349107) (-2946 . 348985) (-2947 . 348876)
- (-2948 . 348774) (-2949 . 348721) (-2950 . 348595) (-2951 . 348540)
- (-2952 . 348457) (-2953 . 348342) (-2954 . 348183) (-2955 . 348128)
- (-2956 . 348072) (-2957 . 347989) (-2958 . 347874) (-2959 . 347711)
- (-2960 . 347604) (-2961 . 347507) (-2962 . 347400) (-2963 . 347297)
- (-2964 . 347196) (-2965 . 347058) (-2966 . 347006) (-2967 . 346940)
- (-2968 . 346805) (-2969 . 346777) (-2970 . 346749) (-2971 . 346639)
- (-2972 . 346378) (-2973 . 346050) (-2974 . 345396) (-2975 . 345258)
- (-2976 . 345164) (-2977 . 345098) (-2978 . 344997) (-2979 . 344605)
- (-2980 . 344356) (-2981 . 344258) (-2982 . 344118) (-2983 . 344066)
- (-2984 . 343636) (-2985 . 343523) (-2986 . 343416) (-2987 . 343309)
- (-2988 . 343232) (-2989 . 343155) (-2990 . 343061) (-2991 . 342961)
- (-2992 . 342910) (-2993 . 342824) (-2994 . 342773) (-2995 . 342721)
- (-2996 . 342692) (-2997 . 342529) (-2998 . 342469) (-2999 . 342413)
- (-3000 . 342336) (-3001 . 341949) (-3002 . 341898) (-3003 . 341760)
- (-3004 . 341711) (-3005 . 341597) (-3006 . 341484) (-3007 . 341209)
- (-3008 . 341175) (-3009 . 340915) (-3010 . 340838) (-3011 . 340778)
- (-3012 . 340484) (-3013 . 340348) (-3014 . 340171) (-3015 . 340013)
- (-3016 . 339961) (-3017 . 339806) (-3018 . 339591) (-3019 . 339514)
- (-3020 . 339454) (-3021 . 339063) (-3022 . 338837) (-3023 . 338410)
- (-3024 . 338358) (-3025 . 338299) (-3026 . 338094) (-3027 . 337997)
- (-3028 . 337488) (-3029 . 337417) (-3030 . 337280) (-3031 . 336893)
- (-3032 . 336797) (-3033 . 336693) (-3034 . 336641) (-3035 . 336448)
- (-3036 . 336136) (-3037 . 336015) (-3038 . 335796) (-3039 . 335764)
- (-3040 . 335279) (-3041 . 335166) (-3042 . 334162) (-3043 . 334059)
- (-3044 . 333781) (-3045 . 333712) (-3046 . 333596) (-3047 . 333413)
- (-3048 . 333384) (-3049 . 333323) (-3050 . 333229) (-3051 . 333158)
- (-3052 . 333035) (-3053 . 332955) (-3054 . 332906) (-3055 . 332818)
- (-3056 . 332763) (-3057 . 332643) (-3058 . 332343) (-3059 . 332114)
- (-3060 . 331976) (-3061 . 331831) (-3062 . 331747) (-3063 . 331229)
- (-3064 . 331034) (-3065 . 330972) (-3066 . 330859) (-3067 . 330803)
- (-3068 . 330680) (-3069 . 330628) (-3070 . 330309) (-3071 . 330257)
- (-3072 . 329065) (-3073 . 328452) (-3074 . 328381) (-3075 . 328307)
- (-3076 . 328247) (-3077 . 328110) (-3078 . 328036) (-3079 . 327930)
- (-3080 . 327711) (-3081 . 327608) (-3082 . 327363) (-3083 . 327237)
- (-3084 . 327113) (-3085 . 326730) (-3086 . 326303) (-3087 . 326236)
- (-3088 . 326049) (-3089 . 325994) (-3090 . 325924) (-3091 . 325705)
- (-3092 . 325283) (-3093 . 325195) (-3094 . 325133) (-3095 . 324902)
- (-3096 . 324810) (-3097 . 324706) (-3098 . 324551) (-3099 . 324443)
- (-3100 . 324328) (-3101 . 323793) (-3102 . 323741) (-3103 . 323637)
- (-3104 . 323538) (-3105 . 323266) (-3106 . 323121) (-3107 . 322842)
- (-3108 . 322743) (-3109 . 322565) (-3110 . 322417) (-3111 . 322252)
- (-3112 . 322035) (-3113 . 321951) (-3114 . 321839) (-3115 . 321751)
- (-3116 . 321673) (-3117 . 321527) (-3118 . 321357) (-3119 . 321134)
- (-3120 . 321033) (-3121 . 320980) (-3122 . 320897) (-3123 . 320287)
- (-3124 . 319954) (-3125 . 319839) (-3126 . 319464) (-3127 . 319366)
- (-3128 . 319292) (-3129 . 319208) (-3130 . 319055) (-3131 . 318525)
- (-3132 . 318327) (-3133 . 317995) (-3134 . 317894) (-3135 . 317692)
- (-3136 . 317519) (-3137 . 317451) (-3138 . 317399) (-3139 . 317349)
- (-3140 . 317267) (-3141 . 317193) (-3142 . 317040) (-3143 . 316867)
- (-3144 . 315871) (-3145 . 315817) (-3146 . 315658) (-3147 . 315629)
- (-3148 . 315549) (-3149 . 315309) (-3150 . 315087) (-3151 . 315055)
- (-3152 . 314816) (-3153 . 314734) (-3154 . 314463) (-3155 . 314207)
- (-3156 . 314133) (-3157 . 314060) (-3158 . 314005) (-3159 . 313864)
- (-3160 . 313836) (-3161 . 313784) (-3162 . 313563) (-3163 . 313369)
- (-3164 . 313140) (-3165 . 312439) (-3166 . 312161) (-3167 . 312109)
- (-3168 . 311951) (-3169 . 311880) (-3170 . 311519) (-3171 . 311331)
- (-3172 . 311202) (-3173 . 311118) (-3174 . 310458) (** . 307369)
- (-3176 . 307231) (-3177 . 307085) (-3178 . 305229) (-3179 . 305177)
- (-3180 . 305143) (-3181 . 305081) (-3182 . 304989) (-3183 . 304930)
- (-3184 . 304763) (-3185 . 304679) (-3186 . 304596) (-3187 . 304475)
- (-3188 . 304422) (-3189 . 303765) (-3190 . 302933) (-3191 . 302715)
- (-3192 . 302399) (-3193 . 302325) (-3194 . 301980) (-3195 . 301946)
- (-3196 . 301620) (-3197 . 301460) (-3198 . 301243) (-3199 . 301191)
- (-3200 . 301094) (-3201 . 301033) (-3202 . 300875) (-3203 . 300795)
- (-3204 . 300477) (-3205 . 300305) (-3206 . 300237) (-3207 . 300034)
- (-3208 . 299952) (-3209 . 299866) (-3210 . 299478) (-3211 . 298883)
- (-3212 . 298806) (-3213 . 298678) (-3214 . 298563) (-3215 . 298448)
- (-3216 . 297363) (-3217 . 297310) (-3218 . 297228) (-3219 . 296847)
- (-3220 . 296652) (-3221 . 296067) (-3222 . 295909) (-3223 . 295832)
- (-3224 . 295753) (-3225 . 295506) (-3226 . 293344) (-3227 . 293108)
- (-3228 . 292974) (-3229 . 292866) (-3230 . 292754) (-3231 . 292532)
- (-3232 . 292500) (-3233 . 292429) (-3234 . 292251) (-3235 . 292182)
- (-3236 . 292008) (-3237 . 291797) (-3238 . 291731) (-3239 . 290391)
- (-3240 . 290040) (-3241 . 289651) (-3242 . 289507) (-3243 . 289351)
- (-3244 . 289296) (-3245 . 289173) (-3246 . 288757) (-3247 . 288578)
- (-3248 . 288465) (-3249 . 288349) (-3250 . 288170) (-3251 . 287990)
- (-3252 . 287876) (-3253 . 287802) (-3254 . 287721) (-3255 . 287593)
- (-3256 . 287489) (-3257 . 287265) (-3258 . 287158) (-3259 . 287055)
- (-3260 . 286978) (-3261 . 286884) (-3262 . 286131) (-3263 . 286062)
- (-3264 . 285957) (-3265 . 285141) (-3266 . 285029) (-3267 . 284952)
- (-3268 . 284900) (-3269 . 284747) (-3270 . 282969) (-3271 . 282886)
- (-3272 . 282745) (-3273 . 282686) (-3274 . 282489) (-3275 . 282408)
- (-3276 . 282358) (-3277 . 282215) (-3278 . 282144) (-3279 . 282023)
- (-3280 . 281921) (-3281 . 281662) (-3282 . 281464) (-3283 . 281363)
- (-3284 . 280959) (-3285 . 280649) (-3286 . 280493) (-3287 . 280288)
- (-3288 . 280190) (-3289 . 279987) (-3290 . 279398) (-3291 . 279279)
- (-3292 . 278793) (-3293 . 278035) (-3294 . 277760) (-3295 . 277726)
- (-3296 . 277673) (-3297 . 277551) (-3298 . 277523) (-3299 . 277377)
- (-3300 . 277307) (-3301 . 277109) (-3302 . 277005) (-3303 . 276791)
- (-3304 . 276717) (-3305 . 276646) (-3306 . 276612) (-3307 . 276505)
- (-3308 . 276153) (-3309 . 276029) (-3310 . 275952) (-3311 . 275709)
- (-3312 . 275678) (-3313 . 275541) (-3314 . 275291) (-3315 . 275093)
- (-3316 . 275005) (-3317 . 274819) (-3318 . 274787) (-3319 . 274629)
- (-3320 . 274559) (-3321 . 274485) (-3322 . 274313) (-3323 . 274087)
- (-3324 . 273972) (-3325 . 273875) (-3326 . 273766) (-3327 . 273680)
- (-3328 . 273539) (-3329 . 273446) (-3330 . 272668) (-3331 . 272484)
- (-3332 . 272351) (-3333 . 272270) (-3334 . 272241) (-3335 . 272026)
- (-3336 . 271954) (-3337 . 271894) (-3338 . 271810) (-3339 . 271708)
- (-3340 . 271483) (-3341 . 271410) (-3342 . 271212) (-3343 . 271077)
- (-3344 . 268963) (-3345 . 268880) (-3346 . 268828) (-3347 . 268769)
- (-3348 . 268660) (-3349 . 268553) (-3350 . 268393) (-3351 . 268314)
- (-3352 . 268188) (-3353 . 268132) (-3354 . 267839) (-3355 . 267702)
- (-3356 . 267563) (-3357 . 267397) (-3358 . 267226) (-3359 . 267154)
- (-3360 . 266972) (-3361 . 266859) (-3362 . 266726) (-3363 . 266299)
- (-3364 . 266007) (-3365 . 265930) (-3366 . 265877) (-3367 . 265757)
- (-3368 . 265662) (-3369 . 265612) (-3370 . 265526) (-3371 . 265335)
- (-3372 . 265226) (-3373 . 265097) (-3374 . 265055) (-3375 . 264904)
- (-3376 . 264517) (-3377 . 264373) (-3378 . 264295) (-3379 . 263935)
- (-3380 . 263754) (-3381 . 263638) (-3382 . 263537) (-3383 . 263291)
- (-3384 . 263196) (-3385 . 263141) (-3386 . 262951) (-3387 . 262884)
- (-3388 . 262825) (-3389 . 262769) (-3390 . 262616) (-3391 . 262564)
- (-3392 . 262455) (-3393 . 262209) (-3394 . 262110) (-3395 . 262048)
- (-3396 . 261828) (-3397 . 261754) (-3398 . 261321) (-3399 . 261148)
- (-3400 . 261080) (-3401 . 260939) (-3402 . 260796) (-3403 . 260671)
- (-3404 . 260525) (-3405 . 260470) (-3406 . 258740) (-3407 . 258667)
- (-3408 . 258399) (-3409 . 258316) (-3410 . 258257) (-3411 . 258142)
- (-3412 . 257986) (-3413 . 257877) (-3414 . 257609) (-3415 . 257278)
- (-3416 . 257157) (-3417 . 257108) (-3418 . 256773) (-3419 . 256456)
- (-3420 . 256352) (-3421 . 256293) (-3422 . 255913) (-3423 . 255552)
- (-3424 . 254839) (-3425 . 254694) (-3426 . 254585) (-3427 . 254306)
- (-3428 . 254171) (-3429 . 254016) (-3430 . 253891) (-3431 . 253747)
- (-3432 . 253692) (-3433 . 253513) (-3434 . 253398) (-3435 . 253324)
- (-3436 . 253053) (-3437 . 252910) (-3438 . 251534) (-3439 . 251375)
- (-3440 . 251303) (-3441 . 251253) (-3442 . 251019) (-3443 . 250612)
- (-3444 . 250547) (-3445 . 250384) (-3446 . 250133) (-3447 . 249687)
- (-3448 . 249520) (-3449 . 249261) (-3450 . 248977) (-3451 . 248597)
- (-3452 . 248514) (-3453 . 248250) (-3454 . 248135) (-3455 . 247703)
- (-3456 . 247651) (-3457 . 247583) (-3458 . 247506) (-3459 . 246911)
- (-3460 . 246817) (-3461 . 246751) (-3462 . 246694) (-3463 . 245940)
- (-3464 . 245839) (-3465 . 245780) (-3466 . 245724) (-3467 . 245577)
- (-3468 . 245410) (-3469 . 244892) (-3470 . 244022) (-3471 . 243886)
- (-3472 . 243743) (-3473 . 243305) (-3474 . 243138) (-3475 . 243060)
- (-3476 . 242936) (-3477 . 242823) (-3478 . 242795) (-3479 . 242677)
- (-3480 . 242613) (-3481 . 242542) (-3482 . 242414) (-3483 . 242342)
- (-3484 . 242244) (-3485 . 242002) (-3486 . 241888) (-3487 . 241757)
- (-3488 . 241636) (-3489 . 240998) (-3490 . 240964) (-3491 . 240737)
- (-3492 . 240619) (-3493 . 240585) (-3494 . 240463) (-3495 . 240359)
- (-3496 . 240252) (-3497 . 240127) (-3498 . 240002) (-3499 . 239556)
- (-3500 . 239463) (-3501 . 238912) (-3502 . 238841) (-3503 . 238728)
- (-3504 . 238196) (-3505 . 238136) (-3506 . 237999) (-3507 . 237942)
- (-3508 . 237832) (-3509 . 237754) (-3510 . 237607) (-3511 . 237534)
- (-3512 . 237457) (-3513 . 237230) (-3514 . 237181) (-3515 . 237087)
- (-3516 . 236990) (-3517 . 236903) (-3518 . 236875) (-3519 . 236684)
- (-3520 . 236561) (-3521 . 236357) (-3522 . 236116) (-3523 . 235935)
- (-3524 . 235862) (-3525 . 234898) (-3526 . 231971) (-3527 . 231912)
- (-3528 . 231680) (-3529 . 231403) (-3530 . 230959) (-3531 . 230880)
- (-3532 . 230697) (-3533 . 230601) (-3534 . 230508) (-3535 . 230434)
- (-3536 . 230296) (-3537 . 230244) (-3538 . 229906) (-3539 . 229854)
- (-3540 . 229300) (-3541 . 229131) (-3542 . 229065) (-3543 . 228962)
- (-3544 . 228874) (-3545 . 228822) (-3546 . 228748) (-3547 . 228602)
- (-3548 . 228452) (-3549 . 228114) (-3550 . 227706) (-3551 . 227601)
- (-3552 . 227431) (-3553 . 227276) (-3554 . 227188) (-3555 . 227059)
- (-3556 . 227001) (-3557 . 226944) (-3558 . 226740) (-3559 . 226085)
- (-3560 . 225955) (-3561 . 225428) (-3562 . 225318) (-3563 . 224754)
- (-3564 . 224250) (-3565 . 224176) (-3566 . 223949) (-3567 . 223845)
- (-3568 . 223649) (-3569 . 223489) (-3570 . 223388) (-3571 . 223110)
- (-3572 . 223038) (-3573 . 222908) (-3574 . 222615) (-3575 . 222500)
- (-3576 . 222367) (-3577 . 222185) (-3578 . 222061) (-3579 . 221931)
- (-3580 . 221685) (-3581 . 221556) (-9 . 221528) (-3583 . 221067)
- (-3584 . 220961) (-3585 . 220865) (-3586 . 220291) (-3587 . 220149)
- (-3588 . 219820) (-3589 . 219671) (-3590 . 219353) (-3591 . 212354)
- (-3592 . 212223) (-3593 . 212167) (-3594 . 212115) (-8 . 212087)
- (-3596 . 212001) (-3597 . 211858) (-3598 . 211716) (-3599 . 210174)
- (-3600 . 209771) (-3601 . 209708) (-3602 . 209085) (-3603 . 208999)
- (-3604 . 208906) (-7 . 208878) (-3606 . 208670) (-3607 . 208437)
- (-3608 . 208358) (-3609 . 208256) (-3610 . 208167) (-3611 . 207975)
- (-3612 . 207897) (-3613 . 207706) (-3614 . 207620) (-3615 . 207329)
- (-3616 . 207247) (-3617 . 207109) (-3618 . 206933) (-3619 . 206862)
- (-3620 . 206792) (-3621 . 206664) (-3622 . 206580) (-3623 . 206368)
- (-3624 . 206065) (-3625 . 205961) (-3626 . 205890) (-3627 . 205858)
- (-3628 . 205777) (-3629 . 205679) (-3630 . 205651) (-3631 . 205549)
- (-3632 . 205333) (-3633 . 205275) (-3634 . 205050) (-3635 . 204931)
- (-3636 . 204532) (-3637 . 204287) (-3638 . 204158) (-3639 . 204073)
- (-3640 . 203956) (-3641 . 203872) (-3642 . 203759) (-3643 . 203592)
- (-3644 . 203357) (-3645 . 203263) (-3646 . 203211) (-3647 . 203090)
- (-3648 . 202937) (-3649 . 202886) (-3650 . 202757) (-3651 . 202482)
- (-3652 . 202359) (-3653 . 202173) (-3654 . 201707) (-3655 . 201357)
- (-3656 . 201208) (-3657 . 200719) (-3658 . 200651) (-3659 . 200162)
- (-3660 . 200088) (-3661 . 200018) (-3662 . 199902) (-3663 . 199706)
- (-3664 . 199568) (-3665 . 199502) (-3666 . 199394) (-3667 . 198592)
- (-3668 . 198514) (-3669 . 198395) (-3670 . 197821) (-3671 . 197472)
- (-3672 . 196953) (-3673 . 196811) (-3674 . 196698) (-3675 . 196382)
- (-3676 . 196097) (-3677 . 195953) (-3678 . 195643) (-3679 . 195513)
- (-3680 . 195485) (-3681 . 195357) (-3682 . 195247) (-3683 . 195134)
- (-3684 . 194500) (-3685 . 194158) (-3686 . 194072) (-3687 . 193895)
- (-3688 . 193839) (-3689 . 193681) (-3690 . 193471) (-3691 . 193280)
- (-3692 . 193187) (-3693 . 193084) (-3694 . 192962) (-3695 . 192896)
- (-3696 . 192475) (-3697 . 192328) (-3698 . 192163) (-3699 . 192085)
- (-3700 . 191799) (-3701 . 191691) (-3702 . 191632) (-3703 . 191194)
- (-3704 . 191142) (-3705 . 190993) (-3706 . 190808) (-3707 . 190493)
- (-3708 . 190220) (-3709 . 190096) (-3710 . 190047) (-3711 . 189915)
- (-3712 . 189863) (-3713 . 189757) (-3714 . 189613) (-3715 . 189187)
- (-3716 . 188962) (-3717 . 188880) (-3718 . 188746) (-3719 . 188102)
- (-3720 . 187874) (-3721 . 187700) (-3722 . 187570) (-3723 . 187186)
- (-3724 . 187100) (-3725 . 186758) (-3726 . 186730) (-3727 . 185989)
- (-3728 . 185915) (-3729 . 185635) (-3730 . 185477) (-3731 . 184871)
- (-3732 . 184713) (-3733 . 184660) (-3734 . 184502) (-3735 . 184419)
- (-3736 . 184364) (-3737 . 184263) (-3738 . 184207) (-3739 . 183466)
- (-3740 . 183383) (-3741 . 183133) (-3742 . 182942) (-3743 . 182560)
- (-3744 . 182508) (-3745 . 182393) (-3746 . 182340) (-3747 . 181859)
- (-3748 . 181773) (-3749 . 181515) (-3750 . 181462) (-3751 . 181353)
- (-3752 . 180665) (-3753 . 180375) (-3754 . 180184) (-3755 . 180150)
- (-3756 . 179757) (-3757 . 179669) (-3758 . 179447) (-3759 . 179273)
- (-3760 . 178739) (-3761 . 178530) (-3762 . 178407) (-3763 . 177915)
- (-3764 . 177811) (-3765 . 177235) (-3766 . 177133) (-3767 . 176967)
- (-3768 . 176883) (-3769 . 176723) (-3770 . 176607) (-3771 . 176466)
- (-3772 . 176369) (-3773 . 176316) (-3774 . 176218) (-3775 . 176139)
- (-3776 . 175688) (-3777 . 175475) (-3778 . 174899) (-3779 . 174847)
- (-3780 . 174746) (-3781 . 174689) (-3782 . 174630) (-3783 . 174450)
- (-3784 . 174325) (-3785 . 174051) (-3786 . 173998) (-3787 . 173891)
- (-3788 . 173760) (-3789 . 173184) (-3790 . 173111) (-3791 . 172816)
- (-3792 . 172637) (-3793 . 172518) (-3794 . 172444) (-3795 . 172338)
- (-3796 . 172155) (-3797 . 170843) (-3798 . 169956) (-3799 . 169505)
- (-3800 . 169359) (-3801 . 168673) (-3802 . 168554) (-3803 . 168447)
- (-3804 . 168259) (-3805 . 168193) (-3806 . 167774) (-3807 . 167680)
- (-3808 . 167582) (-3809 . 167473) (-3810 . 167131) (-3811 . 166853)
- (-3812 . 166781) (-3813 . 166630) (-3814 . 165944) (-3815 . 165705)
- (-3816 . 165578) (-3817 . 165348) (-3818 . 165258) (-3819 . 165174)
- (-3820 . 165008) (-3821 . 164979) (-3822 . 164793) (-3823 . 164759)
- (-3824 . 164651) (-3825 . 164598) (-3826 . 164502) (-3827 . 163753)
- (-3828 . 163632) (-3829 . 163169) (-3830 . 162873) (-3831 . 162718)
- (-3832 . 162665) (-3833 . 162271) (-3834 . 162173) (-3835 . 162090)
- (-3836 . 161938) (-3837 . 161861) (-3838 . 161634) (-3839 . 160188)
- (-3840 . 159614) (-3841 . 159268) (-3842 . 159197) (-3843 . 158924)
- (-3844 . 158858) (-3845 . 158482) (-3846 . 158358) (-3847 . 158245)
- (-3848 . 158168) (-3849 . 157918) (-3850 . 157183) (-3851 . 157114)
- (-3852 . 156889) (-3853 . 156827) (-3854 . 156253) (-3855 . 156030)
- (-3856 . 155956) (-3857 . 155641) (-3858 . 155288) (-3859 . 155135)
- (-3860 . 155057) (-3861 . 154894) (-3862 . 154252) (-3863 . 153987)
- (-3864 . 153934) (-3865 . 153853) (-3866 . 153692) (-3867 . 153118)
- (-3868 . 153040) (-3869 . 152917) (-3870 . 152739) (-3871 . 152615)
- (-3872 . 152353) (-3873 . 152302) (-3874 . 152075) (-3875 . 152004)
- (-3876 . 151904) (-3877 . 151418) (-3878 . 151285) (-3879 . 150598)
- (-3880 . 150420) (-3881 . 149824) (-3882 . 149736) (-3883 . 149489)
- (-3884 . 149319) (-3885 . 149285) (-3886 . 148472) (-3887 . 148420)
- (-3888 . 148348) (-3889 . 148296) (-3890 . 148176) (-3891 . 147489)
- (-3892 . 147419) (-3893 . 147342) (-3894 . 147238) (-3895 . 147115)
- (-3896 . 146869) (-3897 . 146573) (-3898 . 146459) (-3899 . 146404)
- (-3900 . 146318) (-3901 . 146259) (-3902 . 146119) (-3903 . 146085)
- (-3904 . 145398) (-3905 . 145235) (-3906 . 145138) (-3907 . 144958)
- (-3908 . 144710) (-3909 . 144654) (-3910 . 141873) (-3911 . 141712)
- (-3912 . 141605) (-3913 . 141511) (-3914 . 141167) (-3915 . 140934)
- (-3916 . 138802) (-3917 . 138640) (-3918 . 138065) (-3919 . 137955)
- (-3920 . 137875) (-3921 . 137819) (-3922 . 137658) (-3923 . 137630)
- (-3924 . 137560) (-3925 . 137459) (-3926 . 137172) (-3927 . 137029)
- (-3928 . 136952) (-3929 . 136882) (-3930 . 136754) (-3931 . 136666)
- (-3932 . 136530) (-3933 . 135955) (-3934 . 135845) (-3935 . 135641)
- (-3936 . 135597) (-3937 . 135538) (-3938 . 135166) (-3939 . 134850)
- (-3940 . 134563) (-3941 . 133697) (-3942 . 133524) (-3943 . 133462)
- (-3944 . 133409) (-3945 . 133380) (-3946 . 132958) (-3947 . 132773)
- (-3948 . 132501) (-3949 . 131926) (-3950 . 131713) (-3951 . 131685)
- (-3952 . 131505) (-3953 . 131473) (-3954 . 131328) (-3955 . 131154)
- (-3956 . 130929) (-3957 . 130821) (-3958 . 130729) (-3959 . 130427)
- (-3960 . 130288) (-3961 . 129859) (-3962 . 129670) (-3963 . 129096)
- (-3964 . 127688) (-3965 . 127657) (-3966 . 127550) (-3967 . 127331)
- (-3968 . 126698) (-3969 . 125266) (-3970 . 125139) (-3971 . 125107)
- (-3972 . 125036) (-3973 . 124917) (-3974 . 124832) (-3975 . 124744)
- (-3976 . 124445) (-3977 . 123871) (-3978 . 123698) (-3979 . 123619)
- (-3980 . 123553) (-3981 . 122280) (-3982 . 121923) (-3983 . 121693)
- (-3984 . 121554) (-3985 . 121452) (-3986 . 121374) (-3987 . 121300)
- (-3988 . 121101) (-3989 . 120985) (-3990 . 120869) (-3991 . 120295)
- (-3992 . 120200) (-3993 . 120072) (-3994 . 119967) (-3995 . 119890)
- (-3996 . 119758) (-3997 . 119652) (-3998 . 119447) (-3999 . 119303)
- (-4000 . 119241) (-4001 . 118850) (-4002 . 118678) (-4003 . 118570)
- (-4004 . 118433) (-4005 . 117859) (-4006 . 112345) (-4007 . 112250)
- (-4008 . 112152) (-4009 . 112097) (-4010 . 112011) (-4011 . 111928)
- (-4012 . 111390) (-4013 . 111310) (-4014 . 111238) (-12 . 111066)
- (-4016 . 110993) (-4017 . 110940) (-4018 . 110061) (-4019 . 109669)
- (-4020 . 109095) (-4021 . 108770) (-4022 . 108057) (-4023 . 107868)
- (-4024 . 107724) (-4025 . 107674) (-4026 . 107569) (-4027 . 107093)
- (-4028 . 107005) (-4029 . 106857) (-4030 . 106474) (-4031 . 106337)
- (-4032 . 105882) (-4033 . 105813) (-4034 . 105672) (-4035 . 105620)
- (-4036 . 105468) (-4037 . 105286) (-4038 . 105196) (-4039 . 105086)
- (-4040 . 105020) (-4041 . 104932) (-4042 . 104876) (-4043 . 104839)
- (-4044 . 104681) (-4045 . 104332) (-4046 . 104179) (-4047 . 104084)
- (-4048 . 103330) (-4049 . 103231) (-4050 . 103011) (-4051 . 102927)
- (-4052 . 102516) (-4053 . 102446) (-4054 . 102330) (-4055 . 102233)
- (-4056 . 102173) (-4057 . 101637) (-4058 . 101603) (-4059 . 101523)
- (-4060 . 101114) (-4061 . 101026) (-4062 . 100940) (-4063 . 100833)
- (-4064 . 100748) (-4065 . 100653) (-4066 . 100422) (-4067 . 100313)
- (-4068 . 100219) (-4069 . 100022) (-4070 . 99688) (-4071 . 99654)
- (-4072 . 99552) (-4073 . 99427) (-4074 . 99262) (-4075 . 99061)
- (-4076 . 99006) (-4077 . 97825) (-4078 . 97707) (-4079 . 97611)
- (-4080 . 97389) (-4081 . 97322) (-4082 . 97191) (-4083 . 96743)
- (-4084 . 96495) (-4085 . 96358) (-4086 . 96143) (-4087 . 96036)
- (-4088 . 95921) (-4089 . 95539) (-4090 . 95396) (-4091 . 95343)
- (-4092 . 95027) (-4093 . 94921) (-4094 . 94848) (-4095 . 94757)
- (-4096 . 94535) (-4097 . 94375) (-4098 . 94322) (-4099 . 94188)
- (-4100 . 94036) (-4101 . 93747) (-4102 . 93534) (-4103 . 93445)
- (-4104 . 93100) (-4105 . 92882) (-4106 . 92789) (-4107 . 92682)
- (-4108 . 92265) (-4109 . 92209) (-4110 . 92122) (-4111 . 91786)
- (-4112 . 91734) (-4113 . 91604) (-4114 . 91450) (-4115 . 91363)
- (-4116 . 91296) (-4117 . 90969) (-4118 . 90386) (-4119 . 90329)
- (-4120 . 90258) (-4121 . 90095) (-4122 . 89734) (-4123 . 89684)
- (-4124 . 89561) (-4125 . 89275) (-4126 . 89205) (-4127 . 89083)
- (-4128 . 88984) (-4129 . 88691) (* . 84145) (-4131 . 84020)
- (-4132 . 83772) (-4133 . 83578) (-4134 . 82421) (-4135 . 82334)
- (-4136 . 82227) (-4137 . 82015) (-4138 . 81946) (-4139 . 81833)
- (-4140 . 81752) (-4141 . 81575) (-4142 . 81208) (-4143 . 80921)
- (-4144 . 80768) (-4145 . 79139) (-4146 . 78998) (-4147 . 78899)
- (-4148 . 78675) (-4149 . 78235) (-4150 . 77941) (-4151 . 77797)
- (-4152 . 77733) (-4153 . 77665) (-4154 . 77613) (-4155 . 77547)
- (-4156 . 77430) (-4157 . 76564) (-4158 . 76248) (-4159 . 76111)
- (-4160 . 75901) (-4161 . 75682) (-4162 . 75579) (-4163 . 75480)
- (-4164 . 75289) (-4165 . 75201) (-4166 . 75113) (-4167 . 74822)
- (-4168 . 74275) (-4169 . 74246) (-4170 . 72872) (-4171 . 72820)
- (-4172 . 72722) (-4173 . 72566) (-4174 . 72481) (-4175 . 72424)
- (-4176 . 72259) (-4177 . 72101) (-4178 . 71515) (-4179 . 71441)
- (-4180 . 71355) (-4181 . 71195) (-4182 . 71096) (-4183 . 70940)
- (-4184 . 70686) (-4185 . 70588) (-4186 . 70014) (-4187 . 69727)
- (-4188 . 69224) (-4189 . 69158) (-4190 . 69105) (-4191 . 68679)
- (-4192 . 68607) (-4193 . 68426) (-4194 . 68235) (-4195 . 66384)
- (-4196 . 66185) (-4197 . 66025) (-4198 . 65895) (-4199 . 65593)
- (-4200 . 65159) (-4201 . 65106) (-4202 . 65052) (-4203 . 64783)
- (-4204 . 64569) (-4205 . 64517) (-4206 . 64443) (-4207 . 64362)
- (-4208 . 64144) (-4209 . 64046) (-4210 . 63920) (-4211 . 63836)
- (-4212 . 63648) (-4213 . 63524) (-4214 . 63195) (-4215 . 63097)
- (-4216 . 63038) (-4217 . 62943) (-4218 . 62818) (-4219 . 62503)
- (-4220 . 62361) (-4221 . 62271) (-4222 . 62152) (-4223 . 60314)
- (-4224 . 59064) (-4225 . 59013) (-4226 . 58889) (-4227 . 58307)
- (-4228 . 58252) (-4229 . 58192) (-4230 . 58024) (-4231 . 57951)
- (-4232 . 57796) (-4233 . 57762) (-4234 . 57711) (-4235 . 56201)
- (-4236 . 55816) (-4237 . 55592) (-4238 . 55373) (-4239 . 55040)
- (-4240 . 54888) (-4241 . 54817) (-4242 . 54734) (-4243 . 54663)
- (-4244 . 54610) (-4245 . 54488) (-4246 . 54358) (-4247 . 54278)
- (-4248 . 52730) (-4249 . 52566) (-4250 . 52534) (-4251 . 52385)
- (-4252 . 52315) (-4253 . 52162) (-4254 . 52045) (-4255 . 51957)
- (-4256 . 51898) (-4257 . 51864) (-4258 . 51767) (-4259 . 51671)
- (-4260 . 51591) (-4261 . 51487) (-4262 . 51095) (-4263 . 50981)
- (-4264 . 50470) (-4265 . 50414) (-4266 . 50317) (-4267 . 49930)
- (-4268 . 49878) (-4269 . 49457) (-4270 . 49363) (-4271 . 49192)
- (-4272 . 48456) (-4273 . 48368) (-4274 . 48244) (-4275 . 48147)
- (-4276 . 48092) (-4277 . 47995) (-4278 . 47781) (-4279 . 47647)
- (-4280 . 47239) (-4281 . 47076) (-4282 . 46961) (-4283 . 46667)
- (-4284 . 46408) (-4285 . 46246) (-4286 . 46123) (-4287 . 45862)
- (-4288 . 45782) (-4289 . 45575) (-4290 . 45430) (-4291 . 45332)
- (-4292 . 45254) (-4293 . 45189) (-4294 . 45137) (-4295 . 44992)
- (-4296 . 44943) (-4297 . 44626) (-4298 . 44499) (-4299 . 43626)
- (-4300 . 43557) (-4301 . 43485) (-4302 . 43371) (-4303 . 43298)
- (-4304 . 43152) (-4305 . 39817) (-4306 . 39750) (-4307 . 39662)
- (-4308 . 39588) (-4309 . 39508) (-4310 . 39317) (-4311 . 38673)
- (-4312 . 38107) (-4313 . 37998) (-4314 . 37868) (-4315 . 37739)
- (-4316 . 37640) (-4317 . 37469) (-4318 . 37385) (-4319 . 37145)
- (-4320 . 37075) (-4321 . 36998) (-4322 . 36925) (-4323 . 35753)
- (-4324 . 35187) (-4325 . 25625) (-4326 . 25516) (-4327 . 25269)
- (-4328 . 25042) (-4329 . 24809) (-4330 . 24753) (-4331 . 24569)
- (-4332 . 24350) (-4333 . 24298) (-4334 . 24183) (-4335 . 24109)
- (-4336 . 24031) (-4337 . 23280) (-4338 . 23187) (-4339 . 22519)
- (-4340 . 22417) (-4341 . 22322) (-4342 . 22218) (-4343 . 22075)
- (-4344 . 21966) (-4345 . 21850) (-4346 . 20713) (-4347 . 20627)
- (-4348 . 20522) (-4349 . 20467) (-4350 . 20264) (-4351 . 20157)
- (-4352 . 19986) (-4353 . 19868) (-4354 . 19758) (-4355 . 19614)
- (-4356 . 19213) (-4357 . 18987) (-4358 . 18138) (-4359 . 17994)
- (-4360 . 17448) (-4361 . 17375) (-4362 . 17305) (-4363 . 16537)
- (-4364 . 16369) (-4365 . 16303) (-4366 . 15646) (-4367 . 12025)
- (-4368 . 11876) (-4369 . 11781) (-4370 . 11715) (-4371 . 11469)
- (-4372 . 11416) (-4373 . 11300) (-4374 . 10708) (-4375 . 9787)
- (-4376 . 9373) (-4377 . 9196) (-4378 . 8887) (-4379 . 8748)
- (-4380 . 8674) (-4381 . 8622) (-4382 . 3509) (-4383 . 3426)
- (-4384 . 3095) (-4385 . 2932) (-4386 . 2752) (-4387 . 2692)
- (-4388 . 2438) (-4389 . 470) (-4390 . 304) (-4391 . 30)) \ No newline at end of file
+ (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))))
+((-1292 . 736106) (-1293 . 735754) (-1294 . 735370) (-1295 . 734634)
+ (-1296 . 734359) (-1297 . 734215) (-1298 . 733943) (-1299 . 733556)
+ (-1300 . 733275) (-1301 . 732846) (-1302 . 732775) (-1303 . 732367)
+ (-1304 . 732205) (-1305 . 732087) (-1306 . 732017) (-1307 . 731893)
+ (-1308 . 731713) (-1309 . 731642) (-1310 . 731591) (-1311 . 731447)
+ (-1312 . 731415) (-1313 . 731291) (-1314 . 731128) (-1315 . 730607)
+ (-1316 . 730480) (-1317 . 730403) (-1318 . 730320) (-1319 . 730267)
+ (-1320 . 730166) (-1321 . 730086) (-1322 . 730054) (-1323 . 729916)
+ (-1324 . 729850) (-1325 . 729756) (-1326 . 729675) (-1327 . 729560)
+ (-1328 . 729113) (-1329 . 728917) (-1330 . 728273) (-1331 . 728220)
+ (-1332 . 727977) (-1333 . 727832) (-1334 . 727671) (-1335 . 727622)
+ (-1336 . 727521) (-1337 . 727435) (-1338 . 727337) (-1339 . 727043)
+ (-1340 . 726906) (-1341 . 726697) (-1342 . 726554) (-1343 . 726331)
+ (-1344 . 726258) (-1345 . 725086) (-1346 . 724912) (-1347 . 724051)
+ (-1348 . 723937) (-1349 . 723906) (-1350 . 723752) (-1351 . 723724)
+ (-1352 . 723533) (-1353 . 722352) (-1354 . 722091) (-1355 . 722011)
+ (-1356 . 721761) (-1357 . 721598) (-1358 . 721475) (-1359 . 721360)
+ (-1360 . 721244) (-1361 . 721019) (-1362 . 720846) (-1363 . 720744)
+ (-1364 . 720413) (-1365 . 720300) (-1366 . 720214) (-1367 . 720013)
+ (-1368 . 719933) (-1369 . 719735) (-1370 . 719655) (-1371 . 719558)
+ (-1372 . 719500) (-1373 . 719336) (-1374 . 718199) (-1375 . 718091)
+ (-1376 . 717948) (-1377 . 717732) (-1378 . 717673) (-1379 . 717543)
+ (-1380 . 717268) (-1381 . 717155) (-1382 . 717084) (-1383 . 716580)
+ (-1384 . 716373) (-1385 . 716261) (-1386 . 716173) (-1387 . 715534)
+ (-1388 . 715442) (-1389 . 715333) (-1390 . 715299) (-1391 . 715229)
+ (-1392 . 715135) (-1393 . 715077) (-1394 . 714690) (-1395 . 714545)
+ (-1396 . 714243) (-1397 . 714057) (-1398 . 713969) (-1399 . 713872)
+ (-1400 . 713814) (-1401 . 713717) (-1402 . 713594) (-1403 . 713334)
+ (-1404 . 713255) (-1405 . 713062) (-1406 . 712960) (-1407 . 712735)
+ (-1408 . 712657) (-1409 . 712213) (-1410 . 712179) (-1411 . 712040)
+ (-1412 . 712008) (-1413 . 711937) (-1414 . 711064) (-1415 . 711004)
+ (-1416 . 710851) (-1417 . 710452) (-1418 . 710234) (-1419 . 710169)
+ (-1420 . 710067) (-1421 . 709960) (-1422 . 709802) (-1423 . 709717)
+ (-1424 . 709288) (-1425 . 709099) (-1426 . 708805) (-1427 . 708753)
+ (-1428 . 708508) (-1429 . 708456) (-1430 . 708242) (-1431 . 708172)
+ (-1432 . 707999) (-1433 . 707946) (-1434 . 707757) (-1435 . 707621)
+ (-1436 . 707569) (-1437 . 707516) (-1438 . 707387) (-1439 . 707242)
+ (-1440 . 707214) (-1441 . 707101) (-1442 . 707027) (-1443 . 706977)
+ (-1444 . 706870) (-1445 . 706796) (-1446 . 706650) (-1447 . 706473)
+ (-1448 . 706388) (-1449 . 706021) (-1450 . 705972) (-1451 . 705919)
+ (-1452 . 705841) (-1453 . 705669) (-1454 . 703400) (-1455 . 703181)
+ (-1456 . 703042) (-1457 . 702974) (-1458 . 702816) (-1459 . 702685)
+ (-1460 . 702568) (-1461 . 702453) (-1462 . 702136) (-1463 . 701979)
+ (-1464 . 701866) (-1465 . 701640) (-1466 . 701510) (-1467 . 700877)
+ (-1468 . 700821) (-1469 . 700736) (-1470 . 700684) (-1471 . 700600)
+ (-1472 . 700520) (-1473 . 700448) (-1474 . 700369) (-1475 . 699073)
+ (-1476 . 698958) (-1477 . 697526) (-1478 . 697426) (-1479 . 697299)
+ (-1480 . 697144) (-1481 . 697031) (-1482 . 696979) (-1483 . 696865)
+ (-1484 . 696707) (-1485 . 696180) (-1486 . 696083) (-1487 . 695989)
+ (-1488 . 695653) (-1489 . 695526) (-1490 . 695470) (-1491 . 695255)
+ (-1492 . 695131) (-1493 . 695054) (-1494 . 694970) (-1495 . 694803)
+ (-1496 . 694730) (-1497 . 694659) (-1498 . 694411) (-1499 . 694302)
+ (-1500 . 694196) (-1501 . 694164) (-1502 . 694091) (-1503 . 694014)
+ (-1504 . 693771) (-1505 . 693662) (-1506 . 693427) (-1507 . 693281)
+ (-1508 . 693063) (-1509 . 692897) (-1510 . 692811) (-1511 . 692740)
+ (-1512 . 692681) (-1513 . 692587) (-1514 . 692517) (-1515 . 692440)
+ (-1516 . 692373) (-1517 . 692216) (-1518 . 692075) (-1519 . 691861)
+ (-1520 . 691467) (-1521 . 691348) (-1522 . 691245) (-1523 . 690972)
+ (-1524 . 690851) (-1525 . 690652) (-1526 . 690569) (-1527 . 690481)
+ (-1528 . 690172) (-1529 . 689950) (-1530 . 689857) (-1531 . 689829)
+ (-1532 . 689622) (-1533 . 689540) (-1534 . 689327) (-1535 . 689242)
+ (-1536 . 688532) (-1537 . 688482) (-1538 . 687939) (-1539 . 687786)
+ (-1540 . 687727) (-1541 . 687653) (-1542 . 687457) (-1543 . 687361)
+ (-1544 . 686583) (-1545 . 686446) (-1546 . 686358) (-1547 . 686270)
+ (-1548 . 685889) (-1549 . 685803) (-1550 . 685752) (-1551 . 685672)
+ (-1552 . 685553) (-1553 . 685494) (-1554 . 685442) (-1555 . 685350)
+ (-1556 . 685051) (-1557 . 684942) (-1558 . 684820) (-1559 . 684691)
+ (-1560 . 684444) (-1561 . 684308) (-1562 . 684117) (-1563 . 683821)
+ (-1564 . 683753) (-1565 . 683652) (-1566 . 683573) (-1567 . 683481)
+ (-1568 . 683450) (-1569 . 683364) (-1570 . 683295) (-1571 . 683172)
+ (-1572 . 683144) (-1573 . 682984) (-1574 . 682875) (-1575 . 682734)
+ (-1576 . 682435) (-1577 . 682328) (-1578 . 682125) (-1579 . 682039)
+ (-1580 . 681775) (-1581 . 681709) (-1582 . 681678) (-1583 . 681492)
+ (-1584 . 681253) (-1585 . 681060) (-1586 . 680930) (-1587 . 680848)
+ (-1588 . 680728) (-1589 . 680621) (-1590 . 680540) (-1591 . 680488)
+ (-1592 . 679215) (-1593 . 679104) (-1594 . 678763) (-1595 . 677513)
+ (-1596 . 677384) (-1597 . 677250) (-1598 . 676758) (-1599 . 676672)
+ (-1600 . 676619) (-1601 . 676262) (-1602 . 675802) (-1603 . 674838)
+ (-1604 . 674528) (-1605 . 674409) (-1606 . 674310) (-1607 . 674162)
+ (-1608 . 674064) (-1609 . 673676) (-1610 . 673510) (-1611 . 673280)
+ (-1612 . 673206) (-1613 . 673147) (-1614 . 672991) (-1615 . 672825)
+ (-1616 . 672754) (-1617 . 672670) (-1618 . 672538) (-1619 . 672461)
+ (-1620 . 672008) (-1621 . 671881) (-1622 . 671742) (-1623 . 671641)
+ (-1624 . 671364) (-1625 . 671276) (-1626 . 671203) (-1627 . 670963)
+ (-1628 . 670856) (-1629 . 670770) (-1630 . 670642) (-1631 . 670611)
+ (-1632 . 670483) (-1633 . 670121) (-1634 . 669677) (-1635 . 669605)
+ (-1636 . 669535) (-1637 . 669452) (-1638 . 669336) (-1639 . 669284)
+ (-1640 . 669169) (-1641 . 669100) (-1642 . 669051) (-1643 . 668963)
+ (-1644 . 668496) (-1645 . 668417) (-1646 . 668302) (-1647 . 668225)
+ (-1648 . 667874) (-1649 . 667675) (-1650 . 666590) (-1651 . 666365)
+ (-1652 . 666308) (-1653 . 666125) (-1654 . 665646) (-1655 . 664945)
+ (-1656 . 664620) (-1657 . 664360) (-1658 . 664287) (-1659 . 664175)
+ (-1660 . 664092) (-1661 . 664018) (-1662 . 663965) (-1663 . 663874)
+ (-1664 . 663802) (-1665 . 663706) (-1666 . 663500) (-1667 . 663222)
+ (-1668 . 662544) (-1669 . 662437) (-1670 . 662319) (-1671 . 662212)
+ (-1672 . 662130) (-1673 . 661966) (-1674 . 661651) (-1675 . 661594)
+ (-1676 . 661501) (-1677 . 661245) (-1678 . 660960) (-1679 . 660706)
+ (-1680 . 660592) (-1681 . 660211) (-1682 . 660157) (-1683 . 659804)
+ (-1684 . 659573) (-1685 . 659440) (-1686 . 659366) (-1687 . 659329)
+ (-1688 . 659064) (-1689 . 658911) (-1690 . 658813) (-1691 . 658725)
+ (-1692 . 658516) (-1693 . 658393) (-1694 . 658198) (-1695 . 658091)
+ (-1696 . 657938) (-1697 . 657745) (-1698 . 657607) (-1699 . 657436)
+ (-1700 . 657329) (-1701 . 656755) (-1702 . 656656) (-1703 . 656625)
+ (-1704 . 656532) (-1705 . 655947) (-1706 . 655806) (-1707 . 655669)
+ (-1708 . 655591) (-1709 . 655490) (-1710 . 655438) (-1711 . 655077)
+ (-1712 . 654574) (-1713 . 654464) (-1714 . 653615) (-1715 . 653532)
+ (-1716 . 653449) (-1717 . 653291) (-1718 . 652942) (-1719 . 652779)
+ (-1720 . 652507) (-1721 . 652333) (-1722 . 652190) (-1723 . 651636)
+ (-1724 . 651570) (-1725 . 651504) (-1726 . 651286) (-1727 . 651226)
+ (-1728 . 647605) (-1729 . 646994) (-1730 . 646859) (-1731 . 646806)
+ (-1732 . 646729) (-1733 . 646087) (-1734 . 645954) (-1735 . 645902)
+ (-1736 . 645595) (-1737 . 645426) (-1738 . 645333) (-1739 . 645254)
+ (-1740 . 645201) (-1741 . 644895) (-1742 . 644816) (-1743 . 644610)
+ (-1744 . 644345) (-1745 . 644292) (-1746 . 644061) (-1747 . 639998)
+ (-1748 . 639656) (-1749 . 639408) (-1750 . 639342) (-1751 . 639270)
+ (-1752 . 639200) (-1753 . 639098) (-1754 . 639027) (-1755 . 638780)
+ (-1756 . 638721) (-1757 . 638668) (-1758 . 638581) (-1759 . 638483)
+ (-1760 . 638380) (-1761 . 638276) (-1762 . 637984) (-1763 . 637803)
+ (-1764 . 637699) (-1765 . 637463) (-1766 . 637364) (-1767 . 637048)
+ (-1768 . 636967) (-1769 . 636808) (-1770 . 636329) (-1771 . 636146)
+ (-1772 . 636058) (-1773 . 635867) (-1774 . 635677) (-1775 . 635618)
+ (-1776 . 635346) (-1777 . 635204) (-1778 . 635070) (-1779 . 634909)
+ (-1780 . 634848) (-1781 . 634761) (-1782 . 634367) (-1783 . 633765)
+ (-1784 . 633713) (-1785 . 631862) (-1786 . 631768) (-1787 . 631583)
+ (-1788 . 631475) (-1789 . 631423) (-1790 . 631345) (-1791 . 631260)
+ (-1792 . 628915) (-1793 . 628733) (-1794 . 628389) (-1795 . 628315)
+ (-1796 . 628116) (-1797 . 627737) (-1798 . 627384) (-1799 . 627278)
+ (-1800 . 627166) (-1801 . 627104) (-1802 . 626981) (-1803 . 626907)
+ (-1804 . 626751) (-1805 . 626605) (-1806 . 626534) (-1807 . 626374)
+ (-1808 . 626156) (-1809 . 625993) (-1810 . 625771) (-1811 . 625652)
+ (-1812 . 625556) (-1813 . 625378) (-1814 . 624192) (-1815 . 623862)
+ (-1816 . 623556) (-1817 . 623198) (-1818 . 623048) (-1819 . 622918)
+ (-1820 . 622520) (-1821 . 622492) (-1822 . 622292) (-1823 . 622089)
+ (-1824 . 621959) (-1825 . 621927) (-1826 . 621803) (-1827 . 621710)
+ (-1828 . 620528) (-1829 . 620433) (-1830 . 620025) (-1831 . 619956)
+ (-1832 . 619899) (-1833 . 619597) (-1834 . 619463) (-1835 . 619407)
+ (-1836 . 619254) (-1837 . 619196) (-1838 . 619125) (-1839 . 618863)
+ (-1840 . 618782) (-1841 . 616576) (-1842 . 616468) (-1843 . 616408)
+ (-1844 . 616303) (-1845 . 616275) (-1846 . 615841) (-1847 . 615670)
+ (-1848 . 615593) (-1849 . 615386) (-1850 . 615208) (-1851 . 615152)
+ (-1852 . 615101) (-1853 . 614980) (-1854 . 614810) (-1855 . 614660)
+ (-1856 . 614607) (-1857 . 614521) (-1858 . 614469) (-1859 . 614301)
+ (-1860 . 614190) (-1861 . 614121) (-1862 . 613967) (-1863 . 613740)
+ (-1864 . 613621) (-1865 . 612991) (-1866 . 612836) (-1867 . 612753)
+ (-1868 . 612699) (-1869 . 612633) (-1870 . 612441) (-1871 . 612267)
+ (-1872 . 612066) (-1873 . 611995) (-1874 . 611921) (-1875 . 611779)
+ (-1876 . 611691) (-1877 . 611638) (-1878 . 611424) (-1879 . 611257)
+ (-1880 . 611147) (-1881 . 610936) (-1882 . 610756) (-1883 . 610656)
+ (-1884 . 610520) (-1885 . 610189) (-1886 . 610060) (-1887 . 609868)
+ (-1888 . 609816) (-1889 . 609643) (-1890 . 609300) (-1891 . 609229)
+ (-1892 . 609163) (-1893 . 609015) (-1894 . 608529) (-1895 . 608458)
+ (-1896 . 608330) (-1897 . 608272) (-1898 . 608122) (-1899 . 607745)
+ (-1900 . 607671) (-1901 . 607601) (-1902 . 607464) (-1903 . 607278)
+ (-1904 . 605938) (-1905 . 605770) (-1906 . 605637) (-1907 . 605442)
+ (-1908 . 605385) (-1909 . 605304) (-1910 . 605103) (-1911 . 605022)
+ (-1912 . 604885) (-1913 . 604534) (-1914 . 604394) (-1915 . 604216)
+ (-1916 . 604113) (-1917 . 603896) (-1918 . 603789) (-1919 . 603585)
+ (-1920 . 603481) (-1921 . 603263) (-1922 . 602668) (-1923 . 602443)
+ (-1924 . 602390) (-1925 . 602261) (-1926 . 601872) (-1927 . 601601)
+ (-1928 . 601005) (-1929 . 600890) (-1930 . 600738) (-1931 . 600661)
+ (-1932 . 600006) (-1933 . 599908) (-1934 . 599814) (-1935 . 599645)
+ (-1936 . 599551) (-1937 . 599407) (-1938 . 599319) (-1939 . 599176)
+ (-1940 . 599038) (-1941 . 598956) (-1942 . 598714) (-1943 . 598584)
+ (-1944 . 598523) (-1945 . 598397) (-1946 . 598095) (-1947 . 598043)
+ (-1948 . 597887) (-1949 . 597712) (-1950 . 597465) (-1951 . 597327)
+ (-1952 . 597198) (-1953 . 596919) (-1954 . 596392) (-1955 . 596308)
+ (-1956 . 596187) (-1957 . 596103) (-1958 . 596048) (-1959 . 595878)
+ (-1960 . 595698) (-1961 . 595621) (-1962 . 595539) (-1963 . 595429)
+ (-1964 . 595037) (-1965 . 594919) (-1966 . 594819) (-1967 . 594631)
+ (-1968 . 594564) (-1969 . 594453) (-1970 . 594330) (-1971 . 594302)
+ (-1972 . 594268) (-1973 . 594191) (-1974 . 594114) (-1975 . 594061)
+ (-1976 . 593975) (-1977 . 593915) (-1978 . 593351) (-1979 . 593227)
+ (-1980 . 593153) (-1981 . 592995) (-1982 . 592816) (-1983 . 592003)
+ (-1984 . 591757) (-1985 . 591680) (-1986 . 591597) (-1987 . 591496)
+ (-1988 . 591269) (-1989 . 590765) (-1990 . 590436) (-1991 . 590337)
+ (-1992 . 590251) (-1993 . 590138) (-1994 . 590086) (-1995 . 590007)
+ (-1996 . 589616) (-1997 . 589542) (-1998 . 589310) (-1999 . 589030)
+ (-2000 . 588721) (-2001 . 588473) (-2002 . 588375) (-2003 . 588245)
+ (-2004 . 588115) (-2005 . 587999) (-2006 . 587897) (-2007 . 587825)
+ (-2008 . 587754) (-2009 . 587650) (-2010 . 587571) (-2011 . 587320)
+ (-2012 . 587261) (-2013 . 587163) (-2014 . 586984) (-2015 . 586389)
+ (-2016 . 586337) (-2017 . 586030) (-2018 . 585026) (-2019 . 584968)
+ (-2020 . 584744) (-2021 . 584713) (-2022 . 584517) (-2023 . 584408)
+ (-2024 . 584313) (-2025 . 584154) (-2026 . 584099) (-2027 . 583919)
+ (-2028 . 583799) (-2029 . 583686) (-2030 . 583543) (-2031 . 583383)
+ (-2032 . 583328) (-2033 . 583203) (-2034 . 582526) (-2035 . 582412)
+ (-2036 . 582048) (-2037 . 581978) (-2038 . 581838) (-2039 . 581810)
+ (-2040 . 581697) (-2041 . 581322) (-2042 . 581221) (-2043 . 580906)
+ (-2044 . 580802) (-2045 . 580728) (-2046 . 580599) (-2047 . 580522)
+ (-2048 . 580344) (-2049 . 579731) (-2050 . 579572) (-2051 . 579275)
+ (-2052 . 579220) (-2053 . 578646) (-2054 . 578574) (-2055 . 578432)
+ (-2056 . 578309) (-2057 . 578228) (-2058 . 578176) (-2059 . 577984)
+ (-2060 . 577916) (-2061 . 577812) (-2062 . 577644) (-2063 . 577217)
+ (-2064 . 577134) (-2065 . 577046) (-2066 . 576916) (-2067 . 576826)
+ (-2068 . 575922) (-2069 . 575677) (-2070 . 575549) (-2071 . 575496)
+ (-2072 . 575373) (-2073 . 575283) (-2074 . 575221) (-2075 . 575169)
+ (-2076 . 574876) (-2077 . 574823) (-2078 . 574772) (-2079 . 574744)
+ (-2080 . 574716) (-2081 . 574612) (-2082 . 574584) (-2083 . 574338)
+ (-2084 . 574239) (-2085 . 574169) (-2086 . 574011) (-2087 . 573896)
+ (-2088 . 573772) (-2089 . 573627) (-2090 . 573471) (-2091 . 573362)
+ (-2092 . 573204) (-2093 . 572980) (-2094 . 572816) (-2095 . 572520)
+ (-2096 . 572347) (-2097 . 572168) (-2098 . 572035) (-2099 . 571453)
+ (-2100 . 571339) (-2101 . 571232) (-2102 . 570735) (-2103 . 570621)
+ (-2104 . 570270) (-2105 . 570150) (-2106 . 570081) (-2107 . 569899)
+ (-2108 . 569844) (-2109 . 569745) (-2110 . 569668) (-2111 . 569510)
+ (-2112 . 569455) (-2113 . 569331) (-2114 . 569278) (-2115 . 569113)
+ (-2116 . 569036) (-2117 . 568868) (-2118 . 568760) (-2119 . 568666)
+ (-2120 . 568500) (-2121 . 568386) (-2122 . 568300) (-2123 . 568093)
+ (-2124 . 567959) (-2125 . 567562) (-2126 . 567474) (-2127 . 567344)
+ (-2128 . 567271) (-2129 . 567114) (-2130 . 566541) (-2131 . 565788)
+ (-2132 . 565729) (-2133 . 565593) (-2134 . 565513) (-2135 . 565121)
+ (-2136 . 565028) (-2137 . 564782) (-2138 . 564626) (-2139 . 564471)
+ (-2140 . 564397) (-2141 . 564328) (-2142 . 564240) (-2143 . 564100)
+ (-2144 . 563906) (-2145 . 563445) (-2146 . 563368) (-2147 . 563170)
+ (-2148 . 563136) (-2149 . 562743) (-2150 . 561673) (-2151 . 561568)
+ (-2152 . 561534) (-2153 . 561338) (-2154 . 561275) (-2155 . 561195)
+ (-2156 . 561089) (-2157 . 560636) (-2158 . 560585) (-2159 . 560432)
+ (-2160 . 560320) (-2161 . 560270) (-2162 . 560107) (-2163 . 559997)
+ (-2164 . 559849) (-2165 . 559694) (-2166 . 559270) (-2167 . 559174)
+ (-2168 . 558789) (-2169 . 558646) (-2170 . 558594) (-2171 . 558517)
+ (-2172 . 558420) (-2173 . 558258) (-2174 . 558184) (-2175 . 558072)
+ (-2176 . 557512) (-2177 . 557370) (-2178 . 557319) (-2179 . 557095)
+ (-2180 . 557002) (-2181 . 556759) (-2182 . 556579) (-2183 . 556419)
+ (-2184 . 556280) (-2185 . 555951) (-2186 . 555543) (-2187 . 555324)
+ (-2188 . 555186) (-2189 . 555071) (-2190 . 554075) (-2191 . 553920)
+ (-2192 . 553672) (-2193 . 553425) (-2194 . 553202) (-2195 . 553067)
+ (-2196 . 552981) (-2197 . 552832) (-2198 . 552729) (-2199 . 552396)
+ (-2200 . 552215) (-2201 . 551935) (-2202 . 551881) (-2203 . 549719)
+ (-2204 . 549663) (-2205 . 549582) (-2206 . 549426) (-2207 . 549376)
+ (-2208 . 549282) (-2209 . 549222) (-2210 . 548904) (-2211 . 548752)
+ (-2212 . 548608) (-2213 . 548449) (-2214 . 548372) (-2215 . 548266)
+ (-2216 . 545485) (-2217 . 543702) (-2218 . 543524) (-2219 . 543272)
+ (-2220 . 543163) (-2221 . 543080) (-2222 . 542664) (-2223 . 542561)
+ (-2224 . 538019) (-2225 . 537990) (-2226 . 537938) (-2227 . 537779)
+ (-2228 . 537618) (-2229 . 537371) (-2230 . 537272) (-2231 . 537176)
+ (-2232 . 536581) (-2233 . 536476) (-2234 . 536405) (-2235 . 536336)
+ (-2236 . 536220) (-2237 . 536140) (-2238 . 535308) (-2239 . 535201)
+ (-2240 . 534850) (-2241 . 534756) (-2242 . 534703) (-2243 . 534651)
+ (-2244 . 534389) (-2245 . 534258) (-2246 . 534205) (-2247 . 534060)
+ (-2248 . 533963) (-2249 . 533723) (-2250 . 533629) (-2251 . 533548)
+ (-2252 . 533495) (-2253 . 533352) (-2254 . 533286) (-2255 . 533234)
+ (-2256 . 533112) (-2257 . 532909) (-2258 . 532687) (-2259 . 532587)
+ (-2260 . 532401) (-2261 . 532344) (-2262 . 531537) (-2263 . 530986)
+ (-2264 . 530847) (-2265 . 530680) (-2266 . 530550) (-2267 . 530064)
+ (-2268 . 529963) (-2269 . 529910) (-2270 . 529878) (-2271 . 529844)
+ (-2272 . 529713) (-2273 . 529567) (-2274 . 529484) (-2275 . 529425)
+ (-2276 . 529049) (-2277 . 528994) (-2278 . 528830) (-2279 . 528591)
+ (-2280 . 528467) (-2281 . 528360) (-2282 . 528217) (-2283 . 528010)
+ (-2284 . 527976) (-2285 . 527730) (-2286 . 527555) (-2287 . 527499)
+ (-2288 . 527381) (-2289 . 527349) (-2290 . 527022) (-2291 . 526913)
+ (-2292 . 526831) (-2293 . 526700) (-2294 . 526603) (-2295 . 526534)
+ (-2296 . 526387) (-2297 . 525860) (-2298 . 525808) (-2299 . 525662)
+ (-2300 . 525497) (-2301 . 525226) (-2302 . 525153) (-2303 . 525076)
+ (-2304 . 524780) (-2305 . 523542) (-2306 . 523375) (-2307 . 523153)
+ (-2308 . 522915) (-2309 . 522844) (-2310 . 522721) (-2311 . 522465)
+ (-2312 . 522095) (-2313 . 507981) (-2314 . 507686) (-2315 . 507563)
+ (-2316 . 507503) (-2317 . 506985) (-2318 . 506932) (-2319 . 506769)
+ (-2320 . 506670) (-2321 . 506538) (-2322 . 506464) (-2323 . 506345)
+ (-2324 . 506166) (-2325 . 505978) (-2326 . 505138) (-2327 . 504966)
+ (-2328 . 504096) (-2329 . 504018) (-2330 . 503657) (-2331 . 503339)
+ (-2332 . 503284) (-2333 . 502925) (-2334 . 502852) (-2335 . 502733)
+ (-2336 . 502614) (-2337 . 502547) (-2338 . 502411) (-2339 . 501413)
+ (-2340 . 501175) (-2341 . 501003) (-2342 . 500699) (-2343 . 500649)
+ (-2344 . 500158) (-2345 . 500103) (-2346 . 499912) (-2347 . 499884)
+ (-2348 . 499810) (-2349 . 499736) (-2350 . 499621) (-2351 . 499481)
+ (-2352 . 499413) (-2353 . 499270) (-2354 . 499098) (-2355 . 498776)
+ (-2356 . 498653) (-2357 . 498569) (-2358 . 498426) (-2359 . 498285)
+ (-2360 . 498184) (-2361 . 498078) (-2362 . 498016) (-2363 . 497935)
+ (-2364 . 497763) (-2365 . 497591) (-2366 . 497153) (-2367 . 497101)
+ (-2368 . 496815) (-2369 . 496787) (-2370 . 496650) (-2371 . 496548)
+ (-2372 . 496305) (-2373 . 493890) (-2374 . 490224) (-2375 . 490041)
+ (-2376 . 484703) (-2377 . 484581) (-2378 . 484458) (-2379 . 484291)
+ (-2380 . 484221) (-2381 . 484117) (-2382 . 483758) (-2383 . 483706)
+ (-2384 . 483563) (-2385 . 483350) (-2386 . 482038) (-2387 . 481960)
+ (-2388 . 480658) (-2389 . 480505) (-2390 . 480174) (-2391 . 480052)
+ (-2392 . 479834) (-2393 . 479659) (-2394 . 479438) (-2395 . 479387)
+ (-2396 . 478623) (-2397 . 477736) (-2398 . 477684) (-2399 . 477560)
+ (-2400 . 477482) (-2401 . 477383) (-2402 . 477330) (-2403 . 477244)
+ (-2404 . 477141) (-2405 . 476947) (-2406 . 476496) (-2407 . 476417)
+ (-2408 . 476364) (-2409 . 476330) (-2410 . 476302) (-2411 . 476274)
+ (-2412 . 476206) (-2413 . 475913) (-2414 . 475804) (-2415 . 475709)
+ (-2416 . 475607) (-2417 . 475378) (-2418 . 475232) (-2419 . 474957)
+ (-2420 . 474883) (-2421 . 474746) (-2422 . 474682) (-2423 . 474311)
+ (-2424 . 474186) (-2425 . 473894) (-2426 . 473193) (-2427 . 472850)
+ (-2428 . 472743) (-2429 . 472269) (-2430 . 472139) (-2431 . 472044)
+ (-2432 . 471973) (-2433 . 471725) (-2434 . 471647) (-2435 . 471306)
+ (-2436 . 471254) (-2437 . 471008) (-2438 . 470820) (-2439 . 470714)
+ (-2440 . 470607) (-2441 . 469931) (-2442 . 469752) (-2443 . 469457)
+ (-2444 . 469313) (-2445 . 469185) (-2446 . 468991) (-2447 . 468878)
+ (-2448 . 468639) (-2449 . 468481) (-2450 . 468426) (-2451 . 468360)
+ (-2452 . 468263) (-2453 . 468205) (-2454 . 467899) (-2455 . 467743)
+ (-2456 . 467598) (-2457 . 467526) (-2458 . 467439) (-2459 . 467387)
+ (-2460 . 467277) (-2461 . 467100) (-2462 . 467029) (-2463 . 466973)
+ (-2464 . 466554) (-2465 . 466410) (-2466 . 466164) (-2467 . 466066)
+ (-2468 . 465959) (-2469 . 465787) (-2470 . 465753) (-2471 . 465575)
+ (-2472 . 465273) (-2473 . 464912) (-2474 . 464818) (-2475 . 464732)
+ (-2476 . 464676) (-2477 . 464434) (-2478 . 464290) (-2479 . 464009)
+ (-2480 . 463839) (-2481 . 463627) (-2482 . 462739) (-2483 . 462551)
+ (-2484 . 462473) (-2485 . 462375) (-2486 . 462309) (-2487 . 462195)
+ (-2488 . 462128) (-2489 . 462058) (-2490 . 461809) (-2491 . 461068)
+ (-2492 . 460999) (-2493 . 460883) (-2494 . 460805) (-2495 . 460676)
+ (-2496 . 460602) (-2497 . 460355) (-2498 . 460246) (-2499 . 460115)
+ (-2500 . 460062) (-2501 . 459882) (-2502 . 459141) (-2503 . 459028)
+ (-2504 . 458826) (-2505 . 458484) (-2506 . 458230) (-2507 . 458146)
+ (-2508 . 457658) (-2509 . 457487) (-2510 . 457182) (-2511 . 457061)
+ (-2512 . 456891) (-2513 . 456783) (-2514 . 456184) (-2515 . 456114)
+ (-2516 . 455426) (-2517 . 454912) (-2518 . 454831) (-2519 . 454171)
+ (-2520 . 454089) (-2521 . 453636) (-2522 . 453558) (-2523 . 453481)
+ (-2524 . 453336) (-2525 . 453058) (-2526 . 452987) (-2527 . 452953)
+ (-2528 . 452826) (-2529 . 452250) (-2530 . 451827) (-2531 . 451650)
+ (-2532 . 451584) (-2533 . 451512) (-2534 . 451404) (-2535 . 451263)
+ (-2536 . 451125) (-2537 . 451070) (-2538 . 450843) (-2539 . 450757)
+ (-2540 . 450683) (-2541 . 450309) (-2542 . 449733) (-2543 . 449506)
+ (-2544 . 449382) (-2545 . 449015) (-2546 . 448953) (-2547 . 448854)
+ (-2548 . 448708) (-2549 . 448557) (-2550 . 448349) (-2551 . 448206)
+ (-2552 . 448068) (-2553 . 447622) (-2554 . 447550) (-2555 . 447478)
+ (-2556 . 447444) (-2557 . 446868) (-2558 . 446581) (-2559 . 446271)
+ (-2560 . 444415) (-2561 . 443885) (-2562 . 443768) (-2563 . 443641)
+ (-2564 . 443430) (-2565 . 443298) (-2566 . 442612) (-2567 . 442490)
+ (-2568 . 442337) (-2569 . 442225) (-2570 . 442078) (-2571 . 442044)
+ (-2572 . 441814) (-2573 . 441596) (-2574 . 441485) (-2575 . 440283)
+ (-2576 . 440140) (-2577 . 439454) (-2578 . 439116) (-2579 . 438840)
+ (-2580 . 438607) (-2581 . 438503) (-2582 . 434505) (-2583 . 434364)
+ (-2584 . 434069) (-2585 . 434007) (-2586 . 433975) (-2587 . 433885)
+ (-2588 . 433819) (-2589 . 433140) (-2590 . 433033) (-2591 . 432951)
+ (-2592 . 432613) (-2593 . 432461) (-2594 . 428301) (-2595 . 427552)
+ (-2596 . 427328) (-2597 . 427273) (-2598 . 427224) (-2599 . 427132)
+ (-2600 . 426794) (-2601 . 426710) (-2602 . 426585) (-2603 . 426499)
+ (-2604 . 426435) (-2605 . 425861) (-2606 . 425421) (-2607 . 425325)
+ (-2608 . 425266) (-2609 . 425192) (-2610 . 425133) (-2611 . 424967)
+ (-2612 . 424051) (-2613 . 423970) (-2614 . 423817) (-2615 . 423243)
+ (-2616 . 423118) (-2617 . 422824) (-2618 . 422473) (-2619 . 422306)
+ (-2620 . 422208) (-2621 . 422152) (-2622 . 422123) (-2623 . 422014)
+ (-2624 . 421799) (-2625 . 421353) (-2626 . 420779) (-2627 . 420635)
+ (-2628 . 420317) (-2629 . 420233) (-2630 . 419793) (-2631 . 419607)
+ (-2632 . 419241) (-2633 . 419186) (-2634 . 418900) (-2635 . 418213)
+ (-2636 . 418120) (-2637 . 418056) (-2638 . 417883) (-2639 . 417741)
+ (-2640 . 417658) (-2641 . 417530) (-2642 . 417496) (-2643 . 417255)
+ (-2644 . 417061) (-2645 . 416990) (-2646 . 416859) (-2647 . 416172)
+ (-2648 . 416104) (-2649 . 415924) (-2650 . 415803) (-2651 . 415731)
+ (-2652 . 415612) (-2653 . 415504) (-2654 . 415391) (-2655 . 415139)
+ (-2656 . 414532) (-2657 . 413845) (-2658 . 413793) (-2659 . 413707)
+ (-2660 . 413320) (-2661 . 413267) (-2662 . 413214) (-2663 . 413161)
+ (-2664 . 413111) (-2665 . 412663) (-2666 . 412566) (-2667 . 412509)
+ (-2668 . 411977) (-2669 . 411402) (-2670 . 411336) (-2671 . 411221)
+ (-2672 . 410564) (-2673 . 410463) (-2674 . 410330) (-2675 . 410234)
+ (-2676 . 410132) (-2677 . 409995) (-2678 . 409680) (-2679 . 409105)
+ (-2680 . 408938) (-2681 . 408622) (-2682 . 408263) (-2683 . 408208)
+ (-2684 . 408087) (-2685 . 407869) (-2686 . 407770) (-2687 . 407642)
+ (-2688 . 407555) (-2689 . 407411) (-2690 . 406827) (-2691 . 406770)
+ (-2692 . 406195) (-2693 . 406058) (-2694 . 406006) (-2695 . 405690)
+ (-2696 . 405613) (-2697 . 405532) (-2698 . 405377) (-2699 . 404757)
+ (-2700 . 404294) (-2701 . 404184) (-2702 . 403096) (-2703 . 402760)
+ (-2704 . 402186) (-2705 . 401976) (-2706 . 401787) (-2707 . 401713)
+ (-2708 . 401588) (-2709 . 401481) (-2710 . 401185) (-2711 . 401120)
+ (-2712 . 401061) (-2713 . 400923) (-2714 . 400732) (-2715 . 400654)
+ (-2716 . 400080) (-2717 . 399861) (-2718 . 399614) (-2719 . 399269)
+ (-2720 . 398724) (-2721 . 397920) (-2722 . 397765) (-2723 . 397714)
+ (-2724 . 397567) (-2725 . 397362) (-2726 . 397052) (-2727 . 395950)
+ (-2728 . 395376) (-2729 . 395273) (-2730 . 395159) (-2731 . 395058)
+ (-2732 . 395024) (-2733 . 394971) (-2734 . 394902) (-2735 . 394829)
+ (-2736 . 394776) (-2737 . 394116) (-2738 . 393906) (-2739 . 392726)
+ (-2740 . 392152) (-2741 . 392053) (-2742 . 391887) (-2743 . 391707)
+ (-2744 . 391381) (-2745 . 391295) (-2746 . 390901) (-2747 . 390683)
+ (-2748 . 390606) (-2749 . 390387) (-2750 . 390188) (-2751 . 389614)
+ (-2752 . 389423) (-2753 . 389340) (-2754 . 389180) (-2755 . 388907)
+ (-2756 . 388809) (-2757 . 388657) (-2758 . 388544) (-2759 . 388449)
+ (-2760 . 388400) (-2761 . 388312) (-2762 . 388095) (-2763 . 387880)
+ (-2764 . 387797) (-2765 . 387507) (-2766 . 387433) (-2767 . 386838)
+ (-2768 . 386685) (-2769 . 386591) (-2770 . 386503) (-2771 . 386475)
+ (-2772 . 386423) (-2773 . 386353) (-2774 . 386276) (-2775 . 386220)
+ (-2776 . 385811) (-2777 . 385490) (-2778 . 385393) (-2779 . 385076)
+ (-2780 . 384529) (-2781 . 384414) (-2782 . 384048) (-2783 . 383951)
+ (-2784 . 383888) (-2785 . 383661) (-2786 . 383574) (-2787 . 383342)
+ (-2788 . 383313) (-2789 . 383279) (-2790 . 383121) (-2791 . 383049)
+ (-2792 . 382997) (-2793 . 381551) (-2794 . 381431) (-2795 . 381403)
+ (-2796 . 381274) (-2797 . 381222) (-2798 . 381142) (-2799 . 381057)
+ (-2800 . 381005) (-2801 . 380659) (-2802 . 380607) (-2803 . 380555)
+ (-2804 . 380364) (-2805 . 380151) (-2806 . 380053) (-2807 . 379735)
+ (-2808 . 379669) (-2809 . 379598) (-2810 . 378480) (-2811 . 378228)
+ (-2812 . 378200) (-2813 . 378077) (-2814 . 378014) (-2815 . 377858)
+ (-2816 . 377620) (-2817 . 377347) (-2818 . 377295) (-2819 . 377053)
+ (-2820 . 376849) (-2821 . 376764) (-2822 . 376638) (-2823 . 376524)
+ (-2824 . 376164) (-2825 . 376098) (-2826 . 376024) (-2827 . 375783)
+ (-2828 . 374626) (-2829 . 374557) (-2830 . 374500) (-2831 . 374402)
+ (-2832 . 374278) (-2833 . 374223) (-2834 . 373847) (-2835 . 373595)
+ (-2836 . 373509) (-2837 . 373436) (-2838 . 373271) (-2839 . 373212)
+ (-2840 . 372829) (-2841 . 372769) (-2842 . 372645) (-2843 . 372269)
+ (-2844 . 372117) (-2845 . 371959) (-2846 . 371801) (-2847 . 371734)
+ (-2848 . 371256) (-2849 . 371179) (-2850 . 371072) (-2851 . 370959)
+ (-2852 . 370910) (-2853 . 370857) (-2854 . 370758) (-2855 . 370172)
+ (-2856 . 369949) (-2857 . 369762) (-2858 . 369417) (-2859 . 369259)
+ (-2860 . 369009) (-2861 . 368796) (-2862 . 368724) (-2863 . 368696)
+ (-2864 . 368476) (-2865 . 368402) (-2866 . 368347) (-2867 . 368138)
+ (-2868 . 368085) (-2869 . 367350) (-2870 . 367319) (-2871 . 367174)
+ (-2872 . 367052) (-2873 . 366978) (-2874 . 366892) (-2875 . 366765)
+ (-2876 . 366695) (-2877 . 366588) (-2878 . 366535) (-2879 . 366102)
+ (-2880 . 366050) (-2881 . 365890) (-2882 . 365638) (-2883 . 365419)
+ (-2884 . 365046) (-2885 . 364872) (-2886 . 364699) (-2887 . 364580)
+ (-2888 . 364407) (-2889 . 364308) (-2890 . 363886) (-2891 . 363793)
+ (-2892 . 363610) (-2893 . 363548) (-2894 . 363418) (-2895 . 363350)
+ (-2896 . 363279) (-2897 . 363049) (-2898 . 362939) (-2899 . 362783)
+ (-2900 . 362695) (-2901 . 362642) (-2902 . 362258) (-2903 . 362133)
+ (-2904 . 361702) (-2905 . 361602) (-2906 . 361574) (-2907 . 361433)
+ (-2908 . 361323) (-2909 . 361188) (-2910 . 360957) (-2911 . 360878)
+ (-2912 . 360792) (-2913 . 360533) (-2914 . 360390) (-2915 . 360078)
+ (-2916 . 359962) (-2917 . 359778) (-2918 . 359686) (-2919 . 359486)
+ (-2920 . 359144) (-2921 . 358973) (-2922 . 358848) (-2923 . 358754)
+ (-2924 . 358657) (-2925 . 358550) (-2926 . 358446) (-2927 . 358418)
+ (-2928 . 358359) (-2929 . 358235) (-2930 . 358182) (-2931 . 357913)
+ (-2932 . 357767) (-2933 . 357707) (-2934 . 357552) (-2935 . 357492)
+ (-2936 . 357160) (-2937 . 357086) (-2938 . 357006) (-2939 . 356356)
+ (-2940 . 356171) (-2941 . 356088) (-2942 . 356033) (-2943 . 355497)
+ (-2944 . 355369) (-2945 . 355261) (-2946 . 355074) (-2947 . 354794)
+ (-2948 . 354685) (-2949 . 354393) (-2950 . 352663) (-2951 . 352629)
+ (-2952 . 352201) (-2953 . 352086) (-2954 . 351928) (-2955 . 351689)
+ (-2956 . 351620) (-2957 . 351547) (-2958 . 351424) (-2959 . 351336)
+ (-2960 . 351254) (-2961 . 350719) (-2962 . 350113) (-2963 . 349783)
+ (-2964 . 349754) (-2965 . 349486) (-2966 . 349414) (-2967 . 349328)
+ (-2968 . 349146) (-2969 . 349094) (-2970 . 349011) (-2971 . 348853)
+ (-2972 . 348769) (-2973 . 348665) (-2974 . 348582) (-2975 . 348418)
+ (-2976 . 348286) (-2977 . 348179) (-2978 . 347933) (-2979 . 347829)
+ (-2980 . 347727) (-2981 . 347674) (-2982 . 347622) (-2983 . 347563)
+ (-2984 . 347463) (-2985 . 347406) (-2986 . 347321) (-2987 . 347049)
+ (-2988 . 346976) (-2989 . 346818) (-2990 . 346294) (-2991 . 346128)
+ (-2992 . 346075) (-2993 . 345960) (-2994 . 345865) (-2995 . 345763)
+ (-2996 . 345664) (-2997 . 345505) (-2998 . 345226) (-2999 . 345143)
+ (-3000 . 344872) (-3001 . 344776) (-3002 . 344693) (-3003 . 344584)
+ (-3004 . 344531) (-3005 . 344300) (-3006 . 344247) (-3007 . 344148)
+ (-3008 . 343930) (-3009 . 343875) (-3010 . 343685) (-3011 . 343594)
+ (-3012 . 343473) (-3013 . 343335) (-3014 . 343226) (-3015 . 343129)
+ (-3016 . 342951) (-3017 . 342867) (-3018 . 342766) (-3019 . 342665)
+ (-3020 . 342213) (-3021 . 342164) (-3022 . 342070) (-3023 . 341922)
+ (-3024 . 341795) (-3025 . 341712) (-3026 . 341675) (-3027 . 341530)
+ (-3028 . 341195) (-3029 . 340992) (-3030 . 340658) (-3031 . 340408)
+ (-3032 . 340320) (-3033 . 340155) (-3034 . 340055) (-3035 . 340026)
+ (-3036 . 339930) (-3037 . 339613) (-3038 . 339472) (-3039 . 339438)
+ (-3040 . 339341) (-3041 . 339124) (-3042 . 337926) (-3043 . 337735)
+ (-3044 . 337558) (-3045 . 337454) (-3046 . 337314) (-3047 . 337212)
+ (-3048 . 337128) (-3049 . 336940) (-3050 . 336558) (-3051 . 336458)
+ (-3052 . 336342) (-3053 . 336225) (-3054 . 336166) (-3055 . 336092)
+ (-3056 . 335967) (-3057 . 335855) (-3058 . 335616) (-3059 . 335564)
+ (-3060 . 335501) (-3061 . 335121) (-3062 . 334962) (-3063 . 334876)
+ (-3064 . 333406) (-3065 . 333241) (-3066 . 333153) (-3067 . 333100)
+ (-3068 . 333046) (-3069 . 332974) (-3070 . 332737) (-3071 . 332675)
+ (-3072 . 332566) (-3073 . 332499) (-3074 . 331786) (-3075 . 331585)
+ (-3076 . 331507) (-3077 . 331380) (-3078 . 330899) (-3079 . 330803)
+ (-3080 . 330769) (-3081 . 330609) (-3082 . 330464) (-3083 . 330091)
+ (-3084 . 330036) (-3085 . 329890) (-3086 . 329795) (-3087 . 329709)
+ (-3088 . 329582) (-3089 . 329444) (-3090 . 329337) (-3091 . 329228)
+ (-3092 . 328047) (-3093 . 327877) (-3094 . 327809) (-3095 . 327551)
+ (-3096 . 327414) (-3097 . 327274) (-3098 . 326904) (-3099 . 326625)
+ (-3100 . 326507) (-3101 . 326377) (-3102 . 326118) (-3103 . 325895)
+ (-3104 . 325842) (-3105 . 325758) (-3106 . 325689) (-3107 . 325545)
+ (-3108 . 325426) (-3109 . 324860) (-3110 . 324705) (-3111 . 324480)
+ (-3112 . 324384) (-3113 . 324226) (-3114 . 323936) (-3115 . 323835)
+ (-3116 . 323726) (-3117 . 323395) (-3118 . 323268) (-3119 . 322702)
+ (-3120 . 322555) (-3121 . 322430) (-3122 . 322363) (-3123 . 322248)
+ (-3124 . 322145) (-3125 . 322092) (-3126 . 321802) (-3127 . 321704)
+ (-3128 . 321500) (-3129 . 321356) (-3130 . 321161) (-3131 . 321030)
+ (-3132 . 320776) (-3133 . 320693) (-3134 . 320494) (-3135 . 320303)
+ (-3136 . 320185) (-3137 . 319937) (-3138 . 319882) (-3139 . 319804)
+ (-3140 . 319356) (-3141 . 319056) (-3142 . 318446) (-3143 . 318053)
+ (-3144 . 317905) (-3145 . 317852) (-3146 . 317740) (-3147 . 317561)
+ (-3148 . 317418) (-3149 . 317170) (-3150 . 316837) (-3151 . 316652)
+ (-3152 . 316564) (-3153 . 316054) (-3154 . 315836) (-3155 . 315577)
+ (-3156 . 315462) (-3157 . 314810) (-3158 . 314751) (-3159 . 314614)
+ (-3160 . 314544) (-3161 . 314429) (-3162 . 314052) (-3163 . 313830)
+ (-3164 . 313684) (-3165 . 313610) (-3166 . 313516) (-3167 . 313409)
+ (-3168 . 313251) (-3169 . 312876) (-3170 . 312702) (-3171 . 312541)
+ (-3172 . 312383) (-3173 . 312165) (-3174 . 312099) (-3175 . 311828)
+ (-3176 . 311446) (-3177 . 311117) (-3178 . 311019) (-3179 . 310562)
+ (-3180 . 310028) (-3181 . 308440) (-3182 . 307155) (-3183 . 307012)
+ (-3184 . 306869) (-3185 . 306799) (-3186 . 306715) (-3187 . 306545)
+ (-3188 . 306336) (-3189 . 306056) (-3190 . 305799) (-3191 . 304423)
+ (-3192 . 304107) (-3193 . 303994) (-3194 . 303841) (-3195 . 303627)
+ (-3196 . 303482) (-3197 . 303359) (-3198 . 303243) (-3199 . 303100)
+ (-3200 . 302993) (-3201 . 302921) (-3202 . 302815) (-3203 . 302536)
+ (-3204 . 302283) (-3205 . 301753) (-3206 . 301261) (-3207 . 301009)
+ (-3208 . 300775) (-3209 . 300558) (-3210 . 300157) (-3211 . 300094)
+ (-3212 . 300021) (-3213 . 299823) (-3214 . 299707) (-3215 . 299648)
+ (-3216 . 299544) (-3217 . 299479) (-3218 . 299072) (-3219 . 298993)
+ (-3220 . 298902) (-3221 . 298800) (-3222 . 297983) (-3223 . 297651)
+ (-3224 . 297560) (-3225 . 297451) (-3226 . 297377) (-3227 . 297196)
+ (-3228 . 297118) (-3229 . 297053) (-3230 . 296893) (-3231 . 296840)
+ (-3232 . 296739) (-3233 . 296573) (-3234 . 296465) (-3235 . 296343)
+ (-3236 . 296173) (-3237 . 295997) (-3238 . 295834) (-3239 . 295781)
+ (-3240 . 295579) (-3241 . 295476) (-3242 . 295392) (-3243 . 295250)
+ (-3244 . 295171) (-3245 . 294920) (-3246 . 294428) (-3247 . 294294)
+ (-3248 . 294121) (-3249 . 293578) (-3250 . 293297) (-3251 . 293137)
+ (-3252 . 293084) (-3253 . 292782) (-3254 . 292532) (-3255 . 292086)
+ (-3256 . 291994) (-3257 . 291842) (-3258 . 291724) (-3259 . 291436)
+ (-3260 . 291368) (-3261 . 291193) (-3262 . 291077) (-3263 . 290976)
+ (-3264 . 290815) (-3265 . 290648) (-3266 . 290557) (-3267 . 290468)
+ (-3268 . 290416) (-3269 . 290315) (-3270 . 290069) (** . 286980)
+ (-3272 . 286928) (-3273 . 286787) (-3274 . 286262) (-3275 . 286167)
+ (-3276 . 285908) (-3277 . 285563) (-3278 . 285513) (-3279 . 285436)
+ (-3280 . 285339) (-3281 . 285136) (-3282 . 283559) (-3283 . 283275)
+ (-3284 . 283099) (-3285 . 282881) (-3286 . 282799) (-3287 . 282736)
+ (-3288 . 282488) (-3289 . 282390) (-3290 . 282110) (-3291 . 282040)
+ (-3292 . 281868) (-3293 . 281816) (-3294 . 281436) (-3295 . 281343)
+ (-3296 . 281269) (-3297 . 281007) (-3298 . 280928) (-3299 . 280130)
+ (-3300 . 280036) (-3301 . 279953) (-3302 . 279903) (-3303 . 279382)
+ (-3304 . 279257) (-3305 . 279150) (-3306 . 278997) (-3307 . 278924)
+ (-3308 . 278473) (-3309 . 277823) (-3310 . 277767) (-3311 . 277503)
+ (-3312 . 277350) (-3313 . 276933) (-3314 . 276622) (-3315 . 276449)
+ (-3316 . 276236) (-3317 . 276114) (-3318 . 276087) (-3319 . 275984)
+ (-3320 . 275575) (-3321 . 275460) (-3322 . 275404) (-3323 . 275352)
+ (-3324 . 274970) (-3325 . 274752) (-3326 . 274608) (-3327 . 274556)
+ (-3328 . 274469) (-3329 . 274034) (-3330 . 273974) (-3331 . 273452)
+ (-3332 . 273351) (-3333 . 273245) (-3334 . 273009) (-3335 . 272941)
+ (-3336 . 272605) (-3337 . 272379) (-3338 . 272052) (-3339 . 271996)
+ (-3340 . 271705) (-3341 . 271589) (-3342 . 271487) (-3343 . 271430)
+ (-3344 . 271271) (-3345 . 271197) (-3346 . 271045) (-3347 . 270993)
+ (-3348 . 270854) (-3349 . 270427) (-3350 . 270368) (-3351 . 270267)
+ (-3352 . 270072) (-3353 . 269999) (-3354 . 269869) (-3355 . 269817)
+ (-3356 . 269705) (-3357 . 269279) (-3358 . 269159) (-3359 . 268979)
+ (-3360 . 268856) (-3361 . 268672) (-3362 . 268034) (-3363 . 267927)
+ (-3364 . 267878) (-3365 . 267467) (-3366 . 267382) (-3367 . 267228)
+ (-3368 . 267169) (-3369 . 267089) (-3370 . 266480) (-3371 . 266424)
+ (-3372 . 266299) (-3373 . 266228) (-3374 . 265119) (-3375 . 265033)
+ (-3376 . 264900) (-3377 . 264813) (-3378 . 264608) (-3379 . 263747)
+ (-3380 . 263690) (-3381 . 263416) (-3382 . 263347) (-3383 . 263245)
+ (-3384 . 263164) (-3385 . 263011) (-3386 . 262930) (-3387 . 262618)
+ (-3388 . 262551) (-3389 . 262454) (-3390 . 262301) (-3391 . 262229)
+ (-3392 . 259302) (-3393 . 259115) (-3394 . 258997) (-3395 . 258918)
+ (-3396 . 258889) (-3397 . 258562) (-3398 . 258476) (-3399 . 257967)
+ (-3400 . 257501) (-3401 . 257358) (-3402 . 254059) (-3403 . 253976)
+ (-3404 . 253761) (-3405 . 253178) (-3406 . 252959) (-3407 . 252888)
+ (-3408 . 252538) (-3409 . 252383) (-3410 . 252288) (-3411 . 252235)
+ (-3412 . 252163) (-3413 . 251885) (-3414 . 251828) (-3415 . 251679)
+ (-3416 . 251542) (-3417 . 251285) (-3418 . 251197) (-3419 . 250461)
+ (-3420 . 250401) (-3421 . 250273) (-3422 . 250189) (-3423 . 250121)
+ (-3424 . 249734) (-3425 . 249524) (-3426 . 249450) (-3427 . 249398)
+ (-3428 . 249120) (-3429 . 249049) (-3430 . 248842) (-3431 . 248617)
+ (-3432 . 248515) (-3433 . 248463) (-3434 . 248367) (-3435 . 248306)
+ (-3436 . 247442) (-3437 . 246953) (-3438 . 246875) (-3439 . 246655)
+ (-3440 . 246582) (-3441 . 245766) (-3442 . 245639) (-3443 . 245561)
+ (-3444 . 245499) (-3445 . 245395) (-3446 . 245019) (-3447 . 244965)
+ (-3448 . 244891) (-3449 . 244504) (-3450 . 244306) (-3451 . 243632)
+ (-3452 . 243271) (-3453 . 243119) (-3454 . 243045) (-3455 . 242793)
+ (-3456 . 242741) (-3457 . 242619) (-3458 . 242549) (-3459 . 242442)
+ (-3460 . 242307) (-3461 . 242223) (-3462 . 241929) (-3463 . 241662)
+ (-3464 . 241546) (-3465 . 241268) (-3466 . 241175) (-3467 . 241068)
+ (-3468 . 240875) (-3469 . 240442) (-3470 . 240326) (-3471 . 240163)
+ (-3472 . 230601) (-3473 . 230227) (-3474 . 230123) (-3475 . 228009)
+ (-3476 . 227936) (-3477 . 227820) (-3478 . 227709) (-3479 . 227397)
+ (-3480 . 227247) (-3481 . 227219) (-3482 . 227023) (-3483 . 226914)
+ (-3484 . 226790) (-3485 . 226707) (-3486 . 226622) (-3487 . 226527)
+ (-3488 . 226035) (-3489 . 225876) (-3490 . 225769) (-3491 . 225648)
+ (-3492 . 225575) (-3493 . 225509) (-3494 . 225282) (-3495 . 225224)
+ (-3496 . 225103) (-3497 . 225051) (-3498 . 224801) (-3499 . 224740)
+ (-3500 . 224612) (-3501 . 224524) (-3502 . 223707) (-3503 . 223488)
+ (-3504 . 223380) (-3505 . 223323) (-3506 . 223090) (-3507 . 223024)
+ (-3508 . 222965) (-3509 . 222754) (-3510 . 222649) (-3511 . 222459)
+ (-3512 . 221705) (-3513 . 221673) (-3514 . 221511) (-3515 . 221458)
+ (-3516 . 220656) (-3517 . 220600) (-3518 . 220319) (-3519 . 220291)
+ (-3520 . 220182) (-3521 . 220110) (-3522 . 220033) (-3523 . 219934)
+ (-3524 . 219449) (-3525 . 218528) (-3526 . 218450) (-3527 . 218196)
+ (-3528 . 218012) (-3529 . 217905) (-3530 . 216877) (-3531 . 216682)
+ (-3532 . 216626) (-3533 . 216494) (-3534 . 216385) (-3535 . 216205)
+ (-3536 . 215601) (-3537 . 215488) (-3538 . 215280) (-3539 . 214706)
+ (-3540 . 214487) (-3541 . 214174) (-3542 . 214014) (-3543 . 213852)
+ (-3544 . 213746) (-3545 . 213645) (-3546 . 213546) (-3547 . 213443)
+ (-3548 . 213337) (-3549 . 212988) (-3550 . 212936) (-3551 . 212857)
+ (-3552 . 212731) (-3553 . 212529) (-3554 . 212472) (-3555 . 212267)
+ (-3556 . 212133) (-3557 . 212052) (-3558 . 211774) (-3559 . 211255)
+ (-3560 . 211203) (-3561 . 211129) (-3562 . 211077) (-3563 . 210959)
+ (-3564 . 210189) (-3565 . 210133) (-3566 . 209536) (-3567 . 209392)
+ (-3568 . 209211) (-3569 . 209160) (-3570 . 209091) (-3571 . 208489)
+ (-3572 . 208434) (-3573 . 208292) (-3574 . 207541) (-3575 . 207447)
+ (-3576 . 207357) (-3577 . 206391) (-3578 . 206098) (-3579 . 205994)
+ (-3580 . 205702) (-3581 . 205311) (-3582 . 205259) (-3583 . 205069)
+ (-3584 . 204953) (-3585 . 204840) (-3586 . 204721) (-3587 . 204650)
+ (-3588 . 204557) (-3589 . 204478) (-3590 . 204210) (-3591 . 203603)
+ (-3592 . 203457) (-3593 . 203025) (-3594 . 202888) (-3595 . 202780)
+ (-3596 . 202725) (-3597 . 202648) (-3598 . 202513) (-3599 . 202330)
+ (-3600 . 202241) (-3601 . 201925) (-3602 . 201257) (-3603 . 201156)
+ (-3604 . 200996) (-3605 . 200873) (-3606 . 200734) (-3607 . 200585)
+ (-3608 . 200448) (-3609 . 200365) (-3610 . 200137) (-3611 . 200076)
+ (-3612 . 199791) (-3613 . 199534) (-3614 . 199432) (-3615 . 199337)
+ (-3616 . 199171) (-3617 . 199071) (-3618 . 198953) (-3619 . 198698)
+ (-3620 . 198603) (-3621 . 198537) (-3622 . 198487) (-3623 . 198393)
+ (-3624 . 198288) (-3625 . 198158) (-3626 . 198040) (-3627 . 197945)
+ (-3628 . 197893) (-3629 . 197814) (-3630 . 197643) (-3631 . 197558)
+ (-3632 . 197460) (-3633 . 197331) (-3634 . 197258) (-3635 . 197185)
+ (-3636 . 197114) (-3637 . 197043) (-9 . 197015) (-3639 . 196987)
+ (-3640 . 196883) (-3641 . 196679) (-3642 . 196233) (-3643 . 196054)
+ (-3644 . 195982) (-3645 . 195927) (-3646 . 195635) (-8 . 195607)
+ (-3648 . 194442) (-3649 . 194319) (-3650 . 194252) (-3651 . 194124)
+ (-3652 . 193981) (-3653 . 193857) (-3654 . 193675) (-3655 . 193541)
+ (-3656 . 193455) (-3657 . 193406) (-7 . 193378) (-3659 . 193125)
+ (-3660 . 193045) (-3661 . 192939) (-3662 . 192829) (-3663 . 192720)
+ (-3664 . 192623) (-3665 . 192367) (-3666 . 192254) (-3667 . 192171)
+ (-3668 . 192107) (-3669 . 192058) (-3670 . 191870) (-3671 . 191573)
+ (-3672 . 191460) (-3673 . 191374) (-3674 . 191164) (-3675 . 191061)
+ (-3676 . 190928) (-3677 . 190876) (-3678 . 190338) (-3679 . 190250)
+ (-3680 . 190198) (-3681 . 189564) (-3682 . 189498) (-3683 . 189393)
+ (-3684 . 189320) (-3685 . 189234) (-3686 . 188807) (-3687 . 188712)
+ (-3688 . 188632) (-3689 . 188577) (-3690 . 188522) (-3691 . 188180)
+ (-3692 . 188096) (-3693 . 188041) (-3694 . 187614) (-3695 . 187505)
+ (-3696 . 187213) (-3697 . 187119) (-3698 . 187003) (-3699 . 186931)
+ (-3700 . 186773) (-3701 . 186653) (-3702 . 186566) (-3703 . 186480)
+ (-3704 . 186292) (-3705 . 186219) (-3706 . 186016) (-3707 . 185913)
+ (-3708 . 185799) (-3709 . 185722) (-3710 . 185609) (-3711 . 185536)
+ (-3712 . 185439) (-3713 . 185139) (-3714 . 166426) (-3715 . 166249)
+ (-3716 . 166190) (-3717 . 166083) (-3718 . 165957) (-3719 . 165904)
+ (-3720 . 165848) (-3721 . 165795) (-3722 . 165721) (-3723 . 165492)
+ (-3724 . 165320) (-3725 . 162499) (-3726 . 162443) (-3727 . 162415)
+ (-3728 . 162244) (-3729 . 162106) (-3730 . 161986) (-3731 . 161957)
+ (-3732 . 161884) (-3733 . 161005) (-3734 . 160977) (-3735 . 160836)
+ (-3736 . 160737) (-3737 . 160599) (-3738 . 160441) (-3739 . 160279)
+ (-3740 . 160161) (-3741 . 159086) (-3742 . 158901) (-3743 . 158806)
+ (-3744 . 158676) (-3745 . 158351) (-3746 . 158258) (-3747 . 158145)
+ (-3748 . 158000) (-3749 . 157838) (-3750 . 157647) (-3751 . 157537)
+ (-3752 . 157460) (-3753 . 157410) (-3754 . 157283) (-3755 . 157164)
+ (-3756 . 156451) (-3757 . 156367) (-3758 . 156290) (-3759 . 156187)
+ (-3760 . 155304) (-3761 . 155160) (-3762 . 154557) (-3763 . 154471)
+ (-3764 . 154364) (-3765 . 154175) (-3766 . 154103) (-3767 . 153677)
+ (-3768 . 153609) (-3769 . 153091) (-3770 . 152798) (-3771 . 152676)
+ (-3772 . 152450) (-3773 . 152370) (-3774 . 152287) (-3775 . 152178)
+ (-3776 . 152071) (-3777 . 151927) (-3778 . 151875) (-3779 . 151737)
+ (-3780 . 151542) (-3781 . 150724) (-3782 . 150374) (-3783 . 150016)
+ (-3784 . 149875) (-3785 . 149809) (-3786 . 149665) (-3787 . 149573)
+ (-3788 . 149444) (-3789 . 149316) (-3790 . 149266) (-3791 . 148876)
+ (-3792 . 148455) (-3793 . 148276) (-3794 . 148069) (-3795 . 148007)
+ (-3796 . 147889) (-3797 . 147802) (-3798 . 147644) (-3799 . 147560)
+ (-3800 . 147014) (-3801 . 146796) (-3802 . 146631) (-3803 . 146578)
+ (-3804 . 146536) (-3805 . 146456) (-3806 . 146351) (-3807 . 146238)
+ (-3808 . 146080) (-3809 . 146012) (-3810 . 145865) (-3811 . 145684)
+ (-3812 . 145611) (-3813 . 145510) (-3814 . 145093) (-3815 . 144991)
+ (-3816 . 144840) (-3817 . 144540) (-3818 . 144358) (-3819 . 143882)
+ (-3820 . 143826) (-3821 . 143798) (-3822 . 143407) (-3823 . 143242)
+ (-3824 . 142900) (-3825 . 142830) (-3826 . 142677) (-3827 . 142611)
+ (-3828 . 142529) (-3829 . 142142) (-3830 . 142054) (-3831 . 142001)
+ (-3832 . 141512) (-3833 . 141460) (-3834 . 141036) (-3835 . 140952)
+ (-3836 . 140874) (-3837 . 140706) (-3838 . 140653) (-3839 . 140524)
+ (-3840 . 140380) (-3841 . 140292) (-3842 . 140144) (-3843 . 140025)
+ (-3844 . 139906) (-3845 . 139799) (-3846 . 139480) (-3847 . 139194)
+ (-3848 . 139095) (-3849 . 139029) (-3850 . 138972) (-3851 . 138814)
+ (-3852 . 138454) (-3853 . 138071) (-3854 . 137976) (-3855 . 137737)
+ (-3856 . 137685) (-3857 . 137632) (-3858 . 137493) (-3859 . 137385)
+ (-3860 . 136728) (-3861 . 136583) (-3862 . 136442) (-3863 . 136261)
+ (-3864 . 136124) (-3865 . 135973) (-3866 . 135905) (-3867 . 134713)
+ (-3868 . 133409) (-3869 . 133350) (-3870 . 133107) (-3871 . 132958)
+ (-3872 . 132875) (-3873 . 132780) (-3874 . 132664) (-3875 . 132595)
+ (-3876 . 132541) (-3877 . 132482) (-3878 . 132411) (-3879 . 131973)
+ (-3880 . 131869) (-3881 . 131774) (-3882 . 131707) (-3883 . 131655)
+ (-3884 . 131554) (-3885 . 131218) (-3886 . 131077) (-3887 . 130980)
+ (-3888 . 130928) (-3889 . 130854) (-3890 . 130527) (-3891 . 130383)
+ (-3892 . 130032) (-3893 . 129966) (-3894 . 129834) (-3895 . 129739)
+ (-3896 . 129660) (-3897 . 129608) (-3898 . 129540) (-3899 . 129480)
+ (-3900 . 129420) (-3901 . 129312) (-3902 . 129255) (-3903 . 129106)
+ (-3904 . 128860) (-3905 . 128804) (-3906 . 128737) (-3907 . 128682)
+ (-3908 . 128574) (-3909 . 128500) (-3910 . 128348) (-3911 . 128296)
+ (-3912 . 128159) (-3913 . 128093) (-3914 . 127908) (-3915 . 127855)
+ (-3916 . 127665) (-3917 . 127554) (-3918 . 127016) (-3919 . 126926)
+ (-3920 . 126425) (-3921 . 124568) (-3922 . 124494) (-3923 . 124376)
+ (-3924 . 124061) (-3925 . 123945) (-3926 . 123821) (-3927 . 123754)
+ (-3928 . 123720) (-3929 . 123531) (-3930 . 123421) (-3931 . 123181)
+ (-3932 . 123057) (-3933 . 122947) (-3934 . 122841) (-3935 . 122722)
+ (-3936 . 122491) (-3937 . 122077) (-3938 . 121964) (-3939 . 121905)
+ (-3940 . 121655) (-3941 . 121600) (-3942 . 121534) (-3943 . 121485)
+ (-3944 . 121448) (-3945 . 121345) (-3946 . 121170) (-3947 . 120924)
+ (-3948 . 120747) (-3949 . 120628) (-3950 . 120572) (-3951 . 120250)
+ (-3952 . 119772) (-3953 . 119684) (-3954 . 119589) (-3955 . 119457)
+ (-3956 . 119211) (-3957 . 118902) (-3958 . 118837) (-3959 . 118684)
+ (-3960 . 118411) (-3961 . 118251) (-3962 . 118195) (-3963 . 117925)
+ (-3964 . 117870) (-3965 . 117817) (-3966 . 117765) (-3967 . 117597)
+ (-3968 . 117458) (-3969 . 117377) (-3970 . 117325) (-3971 . 117110)
+ (-3972 . 116955) (-3973 . 116918) (-3974 . 116847) (-3975 . 116791)
+ (-3976 . 116717) (-3977 . 116611) (-3978 . 116537) (-3979 . 116482)
+ (-3980 . 115417) (-3981 . 115308) (-3982 . 115186) (-3983 . 115028)
+ (-3984 . 114945) (-3985 . 114846) (-3986 . 114764) (-3987 . 114292)
+ (-3988 . 114240) (-3989 . 114078) (-3990 . 113983) (-3991 . 113874)
+ (-3992 . 113808) (-3993 . 113693) (-3994 . 113483) (-3995 . 113349)
+ (-3996 . 113266) (-3997 . 113182) (-3998 . 113130) (-3999 . 113017)
+ (-4000 . 112818) (-4001 . 112064) (-4002 . 111962) (-4003 . 111858)
+ (-4004 . 111695) (-4005 . 111344) (-4006 . 110700) (-4007 . 110369)
+ (-4008 . 110228) (-4009 . 110120) (-4010 . 109967) (-4011 . 109905)
+ (-4012 . 109733) (-4013 . 109634) (-4014 . 109581) (-4015 . 109474)
+ (-4016 . 109093) (-4017 . 108865) (-4018 . 108678) (-4019 . 108515)
+ (-4020 . 108427) (-4021 . 108234) (-4022 . 106456) (-12 . 106284)
+ (-4024 . 106064) (-4025 . 105938) (-4026 . 105873) (-4027 . 105776)
+ (-4028 . 105688) (-4029 . 105628) (-4030 . 105560) (-4031 . 105416)
+ (-4032 . 105333) (-4033 . 105278) (-4034 . 105194) (-4035 . 105038)
+ (-4036 . 104931) (-4037 . 104894) (-4038 . 104789) (-4039 . 97790)
+ (-4040 . 97678) (-4041 . 97424) (-4042 . 97227) (-4043 . 96971)
+ (-4044 . 96830) (-4045 . 96631) (-4046 . 96548) (-4047 . 96137)
+ (-4048 . 96036) (-4049 . 95891) (-4050 . 95788) (-4051 . 95657)
+ (-4052 . 95452) (-4053 . 95340) (-4054 . 94825) (-4055 . 92857)
+ (-4056 . 92607) (-4057 . 92548) (-4058 . 92326) (-4059 . 92118)
+ (-4060 . 91959) (-4061 . 91889) (-4062 . 91788) (-4063 . 91669)
+ (-4064 . 91617) (-4065 . 91564) (-4066 . 91508) (-4067 . 91311)
+ (-4068 . 91145) (-4069 . 91049) (-4070 . 88917) (-4071 . 88818)
+ (-4072 . 88596) (-4073 . 88544) (-4074 . 87801) (-4075 . 87749)
+ (-4076 . 87591) (-4077 . 87276) (-4078 . 87223) (-4079 . 86949)
+ (-4080 . 86642) (-4081 . 86561) (-4082 . 86403) (-4083 . 86059)
+ (-4084 . 85502) (-4085 . 85348) (-4086 . 85282) (-4087 . 85196)
+ (-4088 . 85078) (-4089 . 84962) (-4090 . 84900) (-4091 . 84850)
+ (-4092 . 84778) (-4093 . 84690) (-4094 . 84457) (-4095 . 84367)
+ (-4096 . 84232) (-4097 . 84111) (-4098 . 83968) (-4099 . 83880)
+ (-4100 . 83781) (-4101 . 83674) (-4102 . 83586) (-4103 . 82178)
+ (-4104 . 82035) (-4105 . 81917) (-4106 . 81755) (-4107 . 81727)
+ (-4108 . 81654) (-4109 . 81395) (-4110 . 81253) (-4111 . 80243)
+ (-4112 . 80175) (-4113 . 80017) (-4114 . 79907) (-4115 . 79836)
+ (-4116 . 79756) (-4117 . 79696) (-4118 . 79453) (-4119 . 79425)
+ (-4120 . 79193) (-4121 . 77651) (-4122 . 77502) (-4123 . 77335)
+ (-4124 . 77279) (-4125 . 77060) (-4126 . 76958) (-4127 . 76837)
+ (* . 72291) (-4129 . 72204) (-4130 . 70992) (-4131 . 70882)
+ (-4132 . 70679) (-4133 . 70606) (-4134 . 70203) (-4135 . 70133)
+ (-4136 . 69966) (-4137 . 69726) (-4138 . 69547) (-4139 . 64033)
+ (-4140 . 63931) (-4141 . 63770) (-4142 . 63640) (-4143 . 63429)
+ (-4144 . 63168) (-4145 . 63074) (-4146 . 63011) (-4147 . 62858)
+ (-4148 . 62371) (-4149 . 62267) (-4150 . 62008) (-4151 . 61952)
+ (-4152 . 61560) (-4153 . 61532) (-4154 . 61466) (-4155 . 61138)
+ (-4156 . 61086) (-4157 . 61019) (-4158 . 60396) (-4159 . 60300)
+ (-4160 . 60212) (-4161 . 60117) (-4162 . 59907) (-4163 . 59709)
+ (-4164 . 59254) (-4165 . 59124) (-4166 . 59054) (-4167 . 58915)
+ (-4168 . 58784) (-4169 . 58130) (-4170 . 58044) (-4171 . 57792)
+ (-4172 . 57733) (-4173 . 57656) (-4174 . 57571) (-4175 . 57222)
+ (-4176 . 57121) (-4177 . 57089) (-4178 . 56988) (-4179 . 56894)
+ (-4180 . 56397) (-4181 . 54134) (-4182 . 54041) (-4183 . 54007)
+ (-4184 . 53927) (-4185 . 53722) (-4186 . 53318) (-4187 . 53096)
+ (-4188 . 52809) (-4189 . 52736) (-4190 . 52683) (-4191 . 52617)
+ (-4192 . 52348) (-4193 . 52247) (-4194 . 52039) (-4195 . 51942)
+ (-4196 . 51805) (-4197 . 51365) (-4198 . 51055) (-4199 . 50912)
+ (-4200 . 50778) (-4201 . 50677) (-4202 . 50627) (-4203 . 50394)
+ (-4204 . 50323) (-4205 . 50227) (-4206 . 50071) (-4207 . 49991)
+ (-4208 . 49776) (-4209 . 49657) (-4210 . 49580) (-4211 . 49514)
+ (-4212 . 49448) (-4213 . 49350) (-4214 . 49235) (-4215 . 49156)
+ (-4216 . 49052) (-4217 . 48922) (-4218 . 48688) (-4219 . 48608)
+ (-4220 . 48403) (-4221 . 48350) (-4222 . 48061) (-4223 . 47886)
+ (-4224 . 47816) (-4225 . 47730) (-4226 . 47525) (-4227 . 47385)
+ (-4228 . 47220) (-4229 . 47118) (-4230 . 46726) (-4231 . 46643)
+ (-4232 . 46502) (-4233 . 46404) (-4234 . 46224) (-4235 . 46096)
+ (-4236 . 46040) (-4237 . 45988) (-4238 . 45899) (-4239 . 45825)
+ (-4240 . 45711) (-4241 . 45640) (-4242 . 45587) (-4243 . 45471)
+ (-4244 . 45252) (-4245 . 45049) (-4246 . 44961) (-4247 . 44634)
+ (-4248 . 44204) (-4249 . 44172) (-4250 . 44144) (-4251 . 43952)
+ (-4252 . 43441) (-4253 . 43324) (-4254 . 43242) (-4255 . 43108)
+ (-4256 . 42519) (-4257 . 42383) (-4258 . 41121) (-4259 . 41014)
+ (-4260 . 40932) (-4261 . 40854) (-4262 . 40672) (-4263 . 40616)
+ (-4264 . 40519) (-4265 . 40343) (-4266 . 39585) (-4267 . 37956)
+ (-4268 . 37905) (-4269 . 37701) (-4270 . 37634) (-4271 . 37527)
+ (-4272 . 36311) (-4273 . 36013) (-4274 . 35822) (-4275 . 35435)
+ (-4276 . 35338) (-4277 . 35128) (-4278 . 34853) (-4279 . 33987)
+ (-4280 . 33834) (-4281 . 33790) (-4282 . 33452) (-4283 . 33400)
+ (-4284 . 33306) (-4285 . 33220) (-4286 . 32663) (-4287 . 32611)
+ (-4288 . 32513) (-4289 . 32389) (-4290 . 32258) (-4291 . 32205)
+ (-4292 . 30831) (-4293 . 30772) (-4294 . 30677) (-4295 . 30578)
+ (-4296 . 30478) (-4297 . 30260) (-4298 . 29969) (-4299 . 29682)
+ (-4300 . 29261) (-4301 . 25926) (-4302 . 24966) (-4303 . 24795)
+ (-4304 . 24673) (-4305 . 24301) (-4306 . 24146) (-4307 . 24003)
+ (-4308 . 23952) (-4309 . 23879) (-4310 . 23703) (-4311 . 23609)
+ (-4312 . 23438) (-4313 . 23364) (-4314 . 22764) (-4315 . 22736)
+ (-4316 . 22420) (-4317 . 22311) (-4318 . 22225) (-4319 . 22050)
+ (-4320 . 21979) (-4321 . 21638) (-4322 . 21467) (-4323 . 21220)
+ (-4324 . 21189) (-4325 . 21000) (-4326 . 20930) (-4327 . 20384)
+ (-4328 . 20174) (-4329 . 19887) (-4330 . 19797) (-4331 . 19746)
+ (-4332 . 19676) (-4333 . 19592) (-4334 . 19504) (-4335 . 19386)
+ (-4336 . 19234) (-4337 . 18466) (-4338 . 18268) (-4339 . 17402)
+ (-4340 . 17328) (-4341 . 17276) (-4342 . 17046) (-4343 . 16888)
+ (-4344 . 16760) (-4345 . 16636) (-4346 . 16532) (-4347 . 15940)
+ (-4348 . 15867) (-4349 . 15817) (-4350 . 13979) (-4351 . 13806)
+ (-4352 . 13726) (-4353 . 13654) (-4354 . 13625) (-4355 . 13441)
+ (-4356 . 13357) (-4357 . 13260) (-4358 . 13046) (-4359 . 12816)
+ (-4360 . 12757) (-4361 . 12648) (-4362 . 11138) (-4363 . 11009)
+ (-4364 . 10980) (-4365 . 10890) (-4366 . 10727) (-4367 . 10617)
+ (-4368 . 10405) (-4369 . 10350) (-4370 . 10232) (-4371 . 10095)
+ (-4372 . 9963) (-4373 . 9892) (-4374 . 8344) (-4375 . 8276)
+ (-4376 . 7854) (-4377 . 7794) (-4378 . 7091) (-4379 . 6990)
+ (-4380 . 6687) (-4381 . 6473) (-4382 . 1360) (-4383 . 1251)
+ (-4384 . 1144) (-4385 . 1037) (-4386 . 884) (-4387 . 699)
+ (-4388 . 643) (-4389 . 322) (-4390 . 218) (-4391 . 164) (-4392 . 30)) \ No newline at end of file